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ABSTRACT 
 

 Molecularly Imprinted Polymers (MIPs) encompass a wide range of applications by 

changing the different components, e.g. the template, crosslinker or functional monomers. Of 

interest among these different applications are separations and sensors.  

Separations by MIPs traditionally use a chiral pure template but in some cases that chiral 

pure template may not be available for imprinting. Using chiral (N-α-bismethacyloyl-L-alanine) 

and achiral (N,O-bisacrylamide ethanolamine) crosslinkers we investigated imprinting of 

scalemic and racemic template mixtures of Boc-tyrosine enantiomers. The achiral and chiral 

crosslinkers yielded similar results for the partial separation of enantiomers by scalemic 

imprinted polymers because separation and recognition are not dependent on diastereomeric 

interactions here. The racemic imprinted polymers, however, required the chiral crosslinker for 

chiral differentiation. Surprisingly, variable D or L bias was observed in the L-NALA racemic 

imprints with equal probability over multiple replicates of polymer synthesis. The binding of the 

template to the polymer was evaluated in both batch rebinding and chromatographic modes, and 

the results will be discussed in detail.  

Another important area of MIPs is their applicability in sensor devices, especially for 

biological targets. A proven method of development of a sensor by molecular imprinting is by 

incorporating MIPs in a stimuli-responsive hydrogel. An imprinted hydrogel was developed to 

detect a DNA mir21 mimic using complementary aptamers in both a capillary hydrogel format 

and thin film hydrogel diffraction grating. The hydrogels imprinted for the DNA mir21 target 

were responsive to the re-introduction of the target sequence and selective among similar 

nucleotide sequences. It was also shown that a full pre-polymer complex of both the aptamers 



xv 

 

with the DNA mir21 mimic was necessary to achieve maximum stimuli response detected by 

shrinking of the hydrogel sensor.
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CHAPTER 1 INTRODUCTION TO MOLECULAR IMPRINTING AND ITS 

COMPONENTS FOR ENANTIOMER SEPARATIONS AND BIOLOGICAL 

SENSORS 
 

1.1 Molecularly Imprinted Polymers 

Molecular Imprinting Polymers (MIPs) is a method to replicate selective binding seen in 

biological receptors. The molecular recognition in MIPs arises from the creation of selective 

binding sites and is similar to the “lock and key” fit of enzymes and substrates. The first example 

of imprinting was by Polyakov, who investigated the use of silica for chromatography back in 

1931.1 In these studies he discovered the selective absorption of additives like toluene, xylene, 

and benzene to silica treated with these compounds. When the silica was dried, consequently 

removing the additives, a rigid matrix was left behind that exhibited selective reabsorption of the 

solvents. The molecular imprinting methods more commonly used today was developed by 

Wulff in the 1970’s. He set out to design polymers with catalytic sites that were similar in 

function to an enzyme’s active site. In this fashion he wanted to simulate the non-covalent and 

covalent interactions that lead to the specific recognition and binding of an enzyme to its 

substrate.2,3 From there, the world of imprinting began to expand from their use in catalysis to 

various other areas of research. 

Imprinting, as depicted in Figure 1.1, makes use of functional monomers and template(s) 

(a); those functional monomers will preorganize around the template(s) to form a complex (b); a 

crosslinker can then be added that is responsible for binding site formation and the solution is 

then polymerized by either photo or thermal polymerization (c). The template can be 

subsequently removed, leaving an empty binding cavity that is specific to that same template (d) 

and capable of binding and removal of the template. 
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1.1.1 Effects of Changing the Imprinting Components: Functional Monomers 

Some of the various areas that imprinting has been instrumental in are separations, 

sensors, and catalysis. A MIP contains many different components as depicted above which 

lends itself to several structural changes and advances in applications. Using different templates 

can lead to various avenues of recognition. For example, MIPs have been applied to selectively 

bind a range of targets from dendrimers to amino acids.4-6 In order to establish these different 

imprinted systems the components need to be adjusted accordingly.  

Functional monomers are responsible for the recognition of the template molecules by 

covalent or noncovalent interactions. MIPs can use a covalent imprinting approach where the 

template is bound to the polymer network by covalent bonds. By this method, the template and 

functional monomers are covalently bound and the template can be released by cleaving the 

bonds, leaving an empty binding site. Upon re-addition of the template to the MIP, the covalent 

bonds can be re-formed. The covalent approach is useful because it yields high affinity sites and 

 

Figure 1.1 Traditional Imprinting scheme 

+

-

Pre-polymer complex

Polymerize

(a) (b)

(c)(d)
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high binding capacity to the imprinted polymer. However, the biggest disadvantage of this form 

of imprinting is the limitation of reversible bond forming functional groups i.e. disulfides and 

ketals. Breaking the covalent bonds also requires chemical treatment which may degrade the 

polymer providing a harsh environment for any type of biological imprinting. 

The majority of imprinting applications however use noncovalent interactions (Figure 

1.1) which are more versatile. Noncovalent imprinting relies on interactions such as ion-ion, 

hydrogen bonding, π-π, dipole-dipole, and Van der Waals forces between the functional 

monomer and the template. For the noncovalent imprinting there are three different classes of 

functional monomer: acidic, basic, and neutral. Depending on the template to be imprinted, the 

functional monomer is chosen using complementary interactions. In the cases of acidic 

functional monomers, monomers like methacrylic acid (MAA 1, Figure 1.2) are typically used 

and are well suited to binding templates with carboxylic acid functionalities.7-10 Whereas, neutral 

functional monomers can take advantage of hydrophobic and hydrogen bonding interactions.11-13 

Because of these varying groups many libraries have been established to assist in providing the 

right functional monomer to template.14,15 A drawback to these noncovalent imprinting strategies 

is the production of both high affinity and low affinity binding sites.16 One approach to eliminate 

the low affinity binding sites is to use a hybrid imprinting system; imprint using covalent 

bonding of the template to the functional monomer and after cleaving the template, rebinding 

relies on noncovalent interactions.17 However, this pairing may not always be possible or provide 

improved interactions over the covalent and non-covalent approaches between template and 

MIP.   
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1.1.2 Effects of Changing the Imprinting Components: Solvent 

Polymerization solvent plays a large role in the imprinting effect by aiding in binding 

interactions and effectively dissolving all of the imprinting components. Solvent, often referred 

to as the porogen, can enhance complexation in non-covalent imprinting as in the case of 

separations where the hydrogen bonding and other weak binding are responsible for template-

monomer interactions.18 Before and during polymerization for organic based MIPs, less polar 

solvents will increase the formation of complexes between the functional monomer and the 

template. On the other hand, the strong polar solvents like acetic acid can cause dissociation of 

the hydrogen bonding causing a poor imprinted polymer to be produced, with little or no 

selectivity for the template.19 Using the same aprotic solvents from polymerization usually 

enhance the rebinding of the template to the MIP after polymerization.20,21  

By contrast, in biological based MIPs it is critical to use an aqueous based media. 

Especially in the cases of drug delivery where biologically safe solutions are necessary 

throughout the polymerization to ensure that even after degradation there will be no toxic 

solvents.  Also, biomacromolecules are only stable in aqueous media because they often have 

very complex tertiary and quaternary structures. 

1.1.3 Effects of Changing the Imprinting Components: Crosslinker 

Crosslinking in MIPs is also vital to each system as seen for catalysis and separations that 

rely on formation of binding sites via highly crosslinked systems. In traditional imprinting 

systems, the polymer is made up of 80-90% crosslinker due to the strong dependence of binding 

site formation. Some commonly used crosslinkers are ethylene glycol dimethacrylate (EGDMA 

2, Figure 1.2), divinylbenzene (DVB), and trimethylolpropane trimethacrylate (TRIM).  
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However, for bio-imprinting in some cases the percentage of crosslinker is much smaller 

to allow for removal and rebinding of the much larger macromolecules. If too much crosslinker 

is used then the large templates may become permanently encapsulated within the imprinted 

cavity, such as proteins and viruses that can be up to thousands of KDa’s in size; thus the 

imprinting strategy has to be revised.  Depending on the type of system and the means of 

recognition, different types of crosslinking can be used.  

1.2 Separations in MIPs 

Enantiomer separations in MIPs are often utilized as the stationary phase material and the 

molecular recognition element for high performance liquid chromatography (HPLC). For 

separations by HPLC a more rigid system is required which means less functional monomer can 

be used. In traditional imprinting, both functional monomers and a crosslinker are incorporated 

and only 5-20% of the system consists of functional monomer requiring optimization of the ratio 

between the two components. Many approaches have been investigated to improve on the 

crosslinker design to maximize its effect. One unique approach was to add some functional 

properties to the crosslinker to make a hybrid monomer such as N, O-bismethacryloyl 

ethanolamine (NOBE 3, Figure 1.2). NOBE contains a crosslinking methacrylate section similar 

to EGDMA and a functional hydrogen bonding section methacrylamide. NOBE is soluble in 

organic solvents which, as previously mentioned, is a very pivotal feature; because using polar 

aprotic solvents helps promote the non-covalent interactions in the complexing of template and 

monomer.18  

When imprinted as the crosslinker with MAA as the functional monomer, NOBE’s 

success was originally reported for its ability to surpass an EGDMA/MAA imprinted polymer 

when imprinted with dansyl-L-phenylalanine as the template. The selectivity of the MIPs by 
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HPLC is measured as the separation factor (α’) (Equation 2), which is a ratio of the capacity 

factors of the imprinted template over the non-imprinted (k’) found from the retention time of the 

analyte (tv) and a non-retained sample (t0) (Equation 1). The new MIPs analyzed resulted in an α’ 

of 2.3 for NOBE/MAA and the EGDMA/MAA imprint a slightly lower value of 1.7.22  

𝑘′ =  
𝑡𝑣−𝑡0

𝑡0
        Equation 1 

𝛼′ =
𝑘′1

𝑘′2
        Equation 2 

This traditional approach is still very popular in the literature despite the required 

customization to each system; however, the Spivak research group discovered a new method. 

This new imprinting technique utilizes NOBE’s design having; one monomer as both the 

crosslinker and functional monomer, known as One MoNomer Molecularly Imprinted Polymers 

(OMNiMIPs). Most impressive was the OMNiMIPs’ advancement over the traditional 

EGDMA/MAA imprint when NOBE was used as the only crosslinking monomer without MAA, 

displaying a 3.6 α’ value.23 

In the interest of developing a crosslinking monomer for even better selectivity, several 

modifications have been made to NOBE’s structure. Some of these alterations were in the form 

of: the addition of a methyl group to give a chiral center (N-α-bismethacryloyl-L-alanine, L-

NALA 4, Figure 1.2), changing the polymerizable groups from methacrylate to acrylate (2-

acrylamidoethyl acrylate, 5), changing the proximity of the hydrogen donor/acceptor groups (2-

methyl-N-(3-methyl-2-oxobut-3-enyl) acrylamide, 6), and incorporating three crosslinking 

appendages with an extra selective site (1, 3-dimethacrylamidopropan-2-yl methacrylate, 7). Of 

interest among the new designs was the chiral monomer derivative L-NALA. L-NALA is not 

sterically hindered, like its predecessors, and was shown to be successful in single enantiomer 

imprinting as apparent by its α’ of 3.8 when imprinting L-Boc-Tyrosine.23  It was thought that L-
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NALA could be successful when imprinting mixtures of enantiomers because of its potential to 

form diastereomeric complexes with chiral analytes. 

 

Enantiomer separations, of course, require a technique that is capable of differentiating 

stereoisomers. Some examples of enantiomer separations using HPLC include: polysaccharide-

based chiral stationary phases,24,25 Pirkle-type chiral stationary phases that rely on π-π 

interactions,26 hydrogen bonding and dipole-dipole stacking or even chiral ionic liquids that can 

be used as either stationary phase or mobile phase additives.27,28 Although these are very useful 

methods, it can be costly to buy individual columns to tailor each separation or to find the correct 

mobile phase/analyte interactions.  

Typically for chiral separations using MIPs, a single enantiomer is imprinted but for 

practical use a pure chiral enantiomer may not always be available for imprinting. This is seen 

many times in pharmaceuticals where a mixture of enantiomers are produced in synthesis 

reactions. The solution to this would be to imprint the mixture of analytes, for example a racemic 

(50/50) or scalemic (non-equal) mixture from the pharmaceutical product and separate the 

 

Figure 1.2 Structures of methacrylic acid (1), ethylene glycol dimethacrylate (2), N, O-

bismethacryloyl ethanolamine (3), N-α-bismethacryloyl-L-alanine (4), 2-acrylamidoethyl 

acrylate (5), 2-methyl-N-(3-methyl-2-oxobut-3-enyl) acrylamide (6), and 1, 3-

dimethacrylamidopropan-2-yl methacrylate.  
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enantiomers using that imprinted mixture as the templates (Figure 1.3). Few examples have been 

researched for racemic imprinting; however a basis was established by the Hosoya group who 

utilized Pirkle-type interactions between the functional monomer and the imprinted racemic 

enantiomer mixture to achieve separation.29 Scalemic imprinting, however, has not been 

attempted until recently.4 Producing a mixture of enantiomers as mentioned is very likely, 

especially an unknown, unequal mixture of enantiomers. It is vital to establish a protocol that can 

provide an easy separation to acquire pure enantiomers in this case. A method of imprinting 

scalemic and racemic mixtures of enantiomers will be discussed in detail in Chapter 2. The 

imprinting was accomplished using the NOBE and L-NALA crosslinking monomers and Boc-

Tyrosine enantiomers as the templates.  

 

For scalemic imprinting of Boc-tyrosine, both the achiral NOBE and chiral L-NALA 

were virtually equal in their partial separation of Boc-tyrosine analytes. Thus, chiral separations 

by scalemic imprinted polymers were determined to rely on an excess number of binding sites 

for one enantiomer over another and not by diasteomeric interactions. Racemic imprinting on the 

other hand was only able to yield partial separation by the L-NALA MIPs. This data corresponds 

with the literature that a chiral selector must be present to differentially recognize enantiomers.      

 

Figure 1.3 Illustration of scalemic and racemic imprinting of enantiomers (L-Boc-tyrosine in 

red and D-Boc-tyrosine in blue) and the appropriate formed binding sites for each system.  

Scalemic

Racemic
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1.3 MIPs for biological imprinting 

Among the other avenues of imprinting are biological imprinted polymers (Bio-MIPs). 

Bio-MIPs require different crosslinking and functional interactions to account for the biological 

templates. These MIPs have much larger templates; in most cases templates such as viruses or 

proteins are imprinted and the imprinted networks cannot contain such highly crosslinked 

systems because of lack of diffusion in and out of the imprinted polymer. This is much different 

than the formulations previously described for traditional molecular imprinting. Not only does 

the crosslinking need to be adjusted but also the solution phase. For example, in drug delivery or 

implanted devices organic solvents may cause cellular damage, therefore it is important to 

construct a MIP that is hydrophilic. Substituting  water for organic solvents, however, weakens 

non-covalent interactions which has created a hurdle for researchers as the resulting molecular 

recognition is decreased.30  

The field of bio-MIPs is rapidly advancing and so are the solutions to creating a sensor 

material that is compatible and sensitive in aqueous media. For the detection of glycoproteins, 

Ye et al. created a boronate affinity sandwich assay (BASA) with a formation of layers between 

the glycoprotein templates, the boronate-affinity MIPs, and boronate-affinity surface-enhanced 

Raman scattering (SERS) probes.31 Their system provides an alternative to immunoassays which 

use antibodies; antibodies are undesirable due to high cost and poor stability. Other examples 

include: hybrid aptamer MIP nanoparticle sensors using a cocaine analog as a template,32  

ultrathin polymeric films with surface imprints of immunoglobulin G (IgG-MIP) fabricated onto 

surface acoustic wave (SAW) chips using an electrosynthesis approach,33 and MIP nanoparticles 

integrated on a surface plasmon resonance (SPR) sensor chip with microfluidics for capture and 
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analysis of waterborne viruses.34 Although these methods are successful sensors for their 

respective templates, they often require very complex method development. 

Another popular method of imprinting biological targets is by incorporating hydrogels 

which are much simpler and cheaper systems. Hydrogels are crosslinked networks that allow for 

the absorption of water and are compatible with bio-macromolecules because of their aqueous 

environment. The crosslinking in hydrogels is also much different than in other MIPs. As 

mentioned previously, bio-MIPs require less crosslinking resulting in a more porous matrix ideal 

for diffusion of large targets. It’s been demonstrated that the best response of a thrombin 

imprinted hydrogel was with networks containing less than 1.0 mol% crosslinking relative to the 

total monomer concentration.35  The hydrogels thus rely heavily on the functional recognition.  

 

Although for bio-MIPs the crosslinking is not a major component of the polymer, it is 

still a much needed support. Depending on the MIP system, the crosslinking could be made by 

chemical or physical routes. In a radical polymerization, a crosslinker such as methylene 

bisacrylamide (MBAA 8, Figure 1.4) can be used.  MBAA makes a good candidate for 

crosslinking in these MIPs due to its solubility in water which is compatible to the desired 

system and is often incorporated into hydrogels to be imprinted for biological targets. The 

hydrogel network can be lightly crosslinked with MBAA, creating a more porous network. 

 

Figure 1.4 Structures of MBAA (8), NIPAM (9), and AM (10).  
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Given the decreased amount of crosslinker in these imprints, shape selectivity is lost in 

the hydrogel; instead the effective imprint is more dependent on preorganization of the 

functional monomer to the biological template. One portion of the functional composition in 

hydrogels is comprised of  monomers such as N-isopropylacrylamide (NIPAM 9, Figure 1.4) and 

acrylamide (AM 10, Figure 1.4); these monomers are often used in bio-imprinting because they 

offer a protein-like backbone that provides hydrogen bonding complementarity.36 An additional 

piece that is essential to the identification of the biological target from the polymer matrix, is a 

recognition element similar to the functional monomer in traditional imprinting, e.g. aptamers.  

In the case of proteins, viruses, or bacteria, aptamers have been used as an artificial 

receptor. Aptamers are pieces of oligonucleotides, DNA or RNA, that are capable of binding 

with high selectivity towards different classes of targets; they are often more stable than their 

antibody counterparts and cheaper to synthesize. They are developed from a system called 

S.E.L.E.X or systematic evolution of ligands by exponential enrichment. S.E.L.E.X. is a 

procedure that involves repetitive rounds of two steps: using an affinity method for partitioning 

of aptamers from non-aptamers and polymerase chain reaction (PCR) amplification of 

aptamers.37,38 Aptamers can easily be modified with a polymerizable group for the incorporation 

into the hydrogel network for easy target recognition.  

Hydrogels are unique systems that can be altered into “smart materials” based on their 

stimuli responsive behavior. Most appropriate is the ability to shrink or swell in response to a 

stimulus or molecular recognition of a target. The response of the hydrogels is dependent on the 

polymers incorporated into the hydrogel allowing the sensor to be tailored to specific templates. 

A good example of the swelling response was a hydrogel network synthesized with poly(vinyl 

alcohol)/poly(acrylic acid).39  Poly(acrylic acid) (PAA) is known for its artificial muscle 
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behavior in gels because of its super absorbent abilities. These hydrogels exhibited a response of 

increasing swelling as the pH subsequently increased.  

There have been many successful examples of MIP hydrogels.  Kuriu et al. employed 

lectin-imprinted hydrogel layers on surface plasmon resonance sensor chips. The MIP was made 

by atom transfer radical polymerization (ATRP) grafting from a gold surface to prepare a 

Concanavalin A imprinted hydrogel.40  Miyata et al. fabricated a tumor responsive hydrogel that 

was pre-complexed to polymerizable antibodies that were copolymerized with acrylamide and a 

crosslinker, poly(ethylene glycol) dimethacrylate.41 The hydrogels were polymerized in 3mm 

capillary tubes, removed from the tube and the resulting MIP showed a swelling response upon 

removal of the glycoprotein target AFP, and  exhibited shrinking upon re-addition of the AFP in 

the 10-7 M (micromolar) range.   

More impressive are the hydrogel MIPs by Bai et al which had recognition in the 10-12 M 

(femtomolar) range.  Similar to the above example by Miyata, the recognition relied on the 

complexation of aptamers to the protein targets. The complex was polymerized by a redox 

initiation and remained in capillary tubes where the swelling and shrinking were directly 

measured using a magnifying glass equipped with a ruler for naked-eye detection. Their system 

also displayed the importance of both imprinting of the template for recognition and the need for 

aptamers in selectivity. The technique was applied to two different targets; thrombin, a 

multifunctional serine protease, and PDGF-ββ, a dimeric protein.35 The complexation was also 

successfully applied to imprinting of an impure extract of apple stem pitting virus (ASPV). Here 

Bai et al. imprinted the ASPV-specific aptamer complex in a patterned mold and the change in 

response was measured by the given diffraction pattern with a simple laser pointer.42  
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The next avenue of research was to explore the molecular recognition response for short 

oligonucleotide sequences as targets. There are very few sensors available for short RNA or 

DNA pieces that are especially cheap and sensitive. Many methods include Mass spectrometry or 

immunoassays which require large sample quantities and trained technicians to prep and analyze 

the samples. To find an alternative, the hydrogel MIP system was ideal for an amplified response 

for a new target, mir21 (a siRNA biomarker). As part of the microRNA family that are naturally 

occurring noncoding strands, they, on occasion, are overexpressed and are known to become 

oncogenic.43 Many researchers have been focusing on ways to suppress these sequences but 

developing a simple recognition application is still a challenge.  

Chapter 3 will discuss the application of the MIP hydrogel developed by the Spivak 

research group for sensing the DNA mir21 mimic, as the RNA sequence is less stable and more 

expensive. As for the case of the capillary hydrogels, an optimal formulation of DNA to the 

crosslinker and functional monomers was found resulting in 5.7 ± 1.8% shrinkage of the gel for a 

10 -8 M (nanomolar) solution of the DNA mir21 target and it was also found to be selective for 

the target among similar sequences. The DNA mir21 hydrogel was also made by the double-

imprinted diffraction-grating method. The method in which to synthesize these grating hydrogels 

was improved upon resulting in better transfer from the mold material to the hydrogel with 

reproducibility. After optimization of the grating hydrogels, a maximum shrinkage of 4.4 ± 

0.40% was observed. In both methods it was proven that the full A1-DNA mir21-A2 was 

necessary for optimal response to the DNA mir21 target; signifying both the importance of 

imprinting and the resulting pre-polymer complexation.   
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CHAPTER 2 ACHIRAL VERSUS CHIRAL CROSSLINKING 

MONOMERS USED FOR MOLECULARLY IMPRINTED CHIRAL 

ENANTIOMERS 
 

2.1 Introduction of Achiral and Chiral Crosslinking monomers 

 The field of molecular imprinting has vastly expanded since its discovery over 40 years 

ago.1 Molecular Imprinting came about as a synthetic mimic to nature’s ability to selectively 

bind an antigen to an antibody.  The first account of imprinting, and what is still used today, 

incorporates a crosslinker, functional monomers, a template molecule and an initiator. This is 

referred to as traditional imprinting and typically uses a non-interactive crosslinker such as 

ethylene glycol dimethacrylate (EGDMA, 2) to create a non-bonding scaffold which supports a 

binding site and uses functional monomers such as methacrylic acid (MAA, 1) (Figure 2.1). The 

traditional approach requires optimization of many variables such as the EGDMA, MAA and 

template ratios along with the choice of mobile phase. A less complicated system was discovered 

which is referred to as One MoNomer Molecularly Imprinted Polymers (OMNiMIPs), merging 

the crosslinking and functionality into one monomer for the same or better selectivity for its 

imprinted template. Here, the ratios of crosslinker to monomer do not have to be adjusted 

because the system only requires one monomer. The first OMNiMIP made used the crosslinker 

N, O-bismethacryloyl ethanolamine or NOBE (Figure 2.1, 3); it can form hydrogen bonding 

interactions and crosslink due to its methacrylamide and methacrylate groups, respectively.  

 NOBE is an achiral crosslinker, which can limit its imprinting ability. For example, while 

NOBE has proven to successfully imprint chiral pure enantiomers and distinguish between them, 

it cannot be employed for chiral discrimination when imprinting a racemic template.2-4 However, 

there is a great need to imprint racemic or scalemic (a mixture that is not one to one) ratios of 

enantiomer templates.   
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 Chiral pure compounds (e.g. natural products) are few in comparison to the vast amount 

synthesized in pharmaceuticals that require specific chirality.5-8 For pharmaceuticals it is of 

special importance to have the pure enantiomer; because approximately half of these synthesized 

compounds are chiral molecules.9,10 Stereochemistry in drugs can make a difference in 

effectiveness or side effects because each enantiomer may react at different rates in the presence 

of enzymes that have different affinities for chiral substrates. 10 For example, in the investigation 

of antidepressant drugs it was found that the racemate of a drug can be used while in other cases 

it was discovered that a single enantiomer is needed such as the case for citalopram. Citalopram 

was commercially available as the racemic mixture of (+)-S and (-)-R enantiomers; however it 

was found that the R enantiomer inhibited the activity of the S enantiomer making the drug 

ineffective. As a result the drug is now administered as the chiral pure S enantiomer known as 

escitalopram.11  Another example is in the form of an anti-nausea drug known as thalidomide. 

Thalidomide has very different acting enantiomers; the R-enantiomer promotes sleep and 

relieves anxiety while the S-enantiomer has been linked to over 2,000 still births in women who 

took it while pregnant.10  

 There is a vast collection of organic reactions that have been developed that have 

stereochemical outcomes that can be understood and sometimes controlled to synthesize chiral 

products. A few well-known examples are the nucleophilic substitution (SN1) and Diels Alder 

reaction which both give racemic products.12 A problem that arises from reactions producing 

 

Figure 2.1 Structures of 11 L-Boc-tyrosine and 12 D-Boc-tyrosine 
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mixtures of enantiomers is the required separation of those chiral products. Enantiomer 

separation can be achieved by various chiral modifications of many analytical methods. Among 

these separation methods are liquid chromatography (LC), gas chromatography (GC), capillary 

electrophoresis (CE) and super critical fluid chromatography (SFC) to name a few.13 While these 

techniques work well they are limited by the chiral selectors available and the selector-ligand 

combinations to be established. Finding the appropriate pairing of the selector for one of the 

enantiomers of a chiral mixture requires extensive empirical experimentation, and a selector 

system found may still not be 100% effective.14  

 An alternative method of chiral separations uses MIPs designed as stationary phases for 

HPLC.  As opposed to the other chiral separation methods mentioned, MIPs are straightforward 

to synthesize, inexpensive and require less optimization, especially if OMNiMIPs are used. MIPs 

are widely used for HPLC, but as previously mentioned have been limited by the availability of a 

single enantiomer to imprint.2-4,15 This limits use of MIPs for newly synthesized products that 

may not have a pure isolated enantiomer to imprint. For that reason, it is of importance to 

synthesize a MIP that can imprint using a (i.e. racemic or scalemic) mixture of template. For 

HPLC the selective ability of the MIP is determined by a normalization factor denoted as the 

capacity factor (k’) (Equation 1). The capacity factor is a function of the retention times where 

the tv is the retention volume of the analyte and t0 is the dead volume usually determined by 

acetone since it should not bind to the stationary phase. The k’ can be calculated for any non-

imprinted analytes as well as the imprinted analyte. These k’ values can further be used in the 

calculation of the selective ability of the MIP; analyzed as the separation factors (α or α’) 

(Equation 2). The separation factor is the ratio of k’ values, the most retained analyte (k’1) over 

the least retained (k’2). The separation factor can be used in two separate cases; when analytes 
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are injected on the HPLC simultaneously as racemic or scalemic mixtures it is denoted as α and 

when the analytes are injected separately on the HPLC it is referred to as α’. When evaluating 

the separation factors, a larger α or α’ indicates a greater separation by the MIP.    

𝑘′ =  
𝑡𝑣−𝑡0

𝑡0
        Equation 1 

𝛼′ =
𝑘′1

𝑘′2
        Equation 2  

Batch rebinding is another method commonly used for MIPs to study the affinity 

distributions and thermodynamic parameters of analyte binding to the polymer material (Figure 

2.2). Batch rebinding differs in respect to HPLC in that it allows the polymer material to reach 

equilibrium with the analytes. Whereas with HPLC there can be non-equilibrium conditions, for 

example analytes may not have the ability to adequately bind to all of the available sites at the 

mobile phase flow rates that are used. The batch rebinding technique provides information on 

affinity constants and distributions of the analyte by isotherms that can be represented in 

logarithmic form with respect to the analyte bound (Cb) to the polymer versus the analyte still 

free in solution (Cf). The isotherms yield information about the binding of the polymer through 

parameters such as the slope and magnitude of binding affinity. For example, isotherms between 

imprinted versus the non-imprinted (or strongly imprinted versus weakly imprinted) polymers 

have different isotherm sloping.16-19  

 

 

Figure 2.2 Batch rebinding process: starting with various concentrations of the template 

(green) are added to a vial containing the polymeric material (purple). The template and 

polymer are allowed to reach equilibrium and the free template in solution can then be 

extracted out and measured by UV/Vis.  
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There have only been three examples of racemic imprinted polymers to date and up to 

this point there were no examples of scalemic imprinting before the studies described here. 

Among the examples of racemic imprinting was an OMNiMIP developed by the Spivak research 

group using L-NALA and Boc-tyrosine enantiomers. This was the first introduction of L-NALA 

as a crosslinking monomer, but in this case it did not show any selectivity for the enantiomers 

imprinted.20 The other two cases of racemic imprinting were more successful but were limited. 

Torres et. al. used a non-crosslinking chiral carboxylate monomer but was restricted to 

imprinting amine based targets, such as the bis(1-phenylethyl)amine enantiomers that was 

used.21 The final example was by the Hosoya group who synthesized a non-crosslinking 

functional monomer that could form Pirkle-type diastereomeric interactions with nitro-aromatic 

derivatized chiral amines.22 Pirkle columns can be useful for enantiomer separations but they are 

specific to separating only certain analytes because they rely on π-π stacking in fortuitous cases. 

These last two examples are also a traditional imprinting approach using EGDMA as their non-

interactive crosslinker whereas the OMNiMIP system was used for Chapter 2’s approach.  

 

 

 The topics covered in this chapter investigate the capability of both the achiral NOBE and 

the chiral L-NALA monomer to imprint racemic (RaceMIP) and scalemic (ScaleMIP) mixtures 

 

Figure 2.3 Imprinting of scalemic (top) and racemic (bottom) using Boc-tyrosine 

enantiomers and the resulting chromatograms for racemic analytes. Reprinted with 

permission 
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of Boc-tyrosine. Separation was shown to occur, or at least partial separation of these 

enantiomers (Figure 2.3), in the chromatographic mode. The structure of Boc-tyrosine is seen in 

Figure 2.1 entry 5 and 6 and is regularly used in imprinted studies because of its intermediate 

size. With respect to biological importance, L-tyrosine acts as a positive regulator of 

melanogenesis (production of melanin) in some species and regulates other cellular functions as 

well.23 Low amounts of D-tyrosine are found in the body, however high concentrations can result 

in interference of biosynthesis or biological action of vital neurotransmitters such as dopamine 

among other conditions.24 Therefore, it is of biological importance to develop sensor materials 

that can detect tyrosine enantiomers or similar compounds, especially in the case where they are 

administered together. 

2.2 Racemic Imprinting Results for Crosslinking Monomers 

 An in-depth look at the racemic imprinting of the achiral NOBE versus the chiral L-

NALA monomers for making OMNiMIPs was studied. Both NOBE and L-NALA were 

imprinted with a racemic (50/50) mixture of L-and D-Boc-tyrosine and the performance for 

enantioseparation is presented below in Table 2.1. It was hypothesized that the NOBE-RaceMIP 

would be ineffective due to its achiral nature and inability to produce chiral discrimination via 

diastereomeric interactions;  and this was true as seen by the effective separation factor (α’) of 

1.0, indicating there was no separation or selectivity of enantiomers (entry 1 in Table 2.1). For 

racemic imprinting all properties of NOBE complexes with Boc-tyrosine analytes are equal for 

each enantiomer including: formation of equal numbers of pre-polymer complexes, the number 

of binding sites formed as a function of the pre-polymer complex concentration, and rebinding 

affinity of the template to the polymer for each enantiomer. This results in the predictable lack of 

enantioseletivity of the NOBE-RaceMIP.  
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Table 2.1 HPLC data for NOBE and L-NALA RaceMIPs* 

Polymer Identifier Entry Template k’
L
 k’

D
 α’ 

NOBE-RaceMIP 1 Racemic Boc-Tyr 4.7 4.5 1.0 

L-NALA-RaceMIP1** 2 Racemic Boc-Tyr 2.9 4.5 1.6 

(D) 

L-NALA-RaceMIP2 3 Racemic Boc-Tyr 3.7 5.1 1.4 

(D) 

L-NALA-RaceMIP3 4 Racemic Boc-Tyr 4.2 3.1 1.4 

(L) 

L-NALA-RaceMIP4 5 Racemic Boc-Tyr 4.5 4.0 1.1 

(L) 

L-NALA-RaceMIP5 6 Racemic Boc-Tyr 8.1 7.1 1.14 

(L) 
*HPLC conditions: particle size 25–37 μm; column 100 x 2.1; mobile phase, MeCN/acetic acid 

(99:1); analytes (1mM Boc-L-tyrosine, 1 mM Boc-D-tyrosine, acetone (used to determine void 

volume)) were all detected at 260 nm; flow rate 0.1 mL/min; sample volume injected 5 μL. 

 

 The L-NALA monomer provided the opportunity for enantioseparation of racemic 

mixtures because of the diastereomeric interactions possible with other enantiomeric template 

compounds. In the same manner as the NOBE-RaceMIP, L-NALA was imprinted with a racemic 

mixture of Boc-tyrosine (L-NALA-RaceMIPs, entries 2-6 in Table 2.1) and to accurately 

investigate the results of imprinting a racemic mixture, five replicate polymers with the same 

formulation were synthesized. For the L-NALA-RaceMIPs enantioselectivity was observed; 

however, it was revealed that there was a bias in the retention for either the L or D enantiomers 

in seemingly equal proportions as seen by the capacity factors (k’) in Table 2.1.  

Table 2.2 Analyte concentration and flow rate data for L-NALA-RaceMIP2 and L-NALA-

RaceMIP3.*  

Polymer Identifier Entry Boc-Tyr 

concentration 

Flow Rate 

mL/min 

k’L k’D α’ 

 

L-NALA-RaceMIP2 

1 5 mM 0.1 4.2 4.2 1.0 

2 2 mM 0.1 3.7 4.6 1.2 

3 1 mM 0.1 3.7 5.1 1.4 



25 

 

 4 1 mM 0.5 3.9 4.0 1.0 

 5 1 mM 1.0 2.4 2.6 1.1 

 

L-NALA-RaceMIP3 

6 5 mM 0.1 3.3 3.4 1.0 

7 2 mM 0.1 4.0 3.2 1.3 

8 1 mM 0.1 4.2 3.1 1.4 

9 1 mM 0.5 3.6 3.6 1.0 

10 1 mM 1.0 2.9 2.8 1.0 

*HPLC conditions: particle size 25–37 μm; column 100 x 2.1; mobile phase, MeCN/acetic acid 

(99:1); analytes (1mM Boc-L-tyrosine, 1 mM Boc-D-tyrosine, acetone (used to determine void 

volume)) were all detected at 260 nm; flow rate 0.1 mL/min; sample volume injected 5 μL. 

 

At this time there is no explanation for the switching biased behavior of the L-NALA-

RaceMIPs, but upon further investigations it was revealed that once the polymer displayed a bias 

it did not change even when the analyte concentration or flow rate (Table 2.2) was changed. In 

the case of flow rate for L-NALA-RaceMIP2 and L-NALA-RaceMIP3 (entries 3-5 and 8-10, 

respectively) as the flow rate was decreased, the α’ increased but the bias for the same 

enantiomer remained the same; however, at higher flow rate there was a loss of selectivity. This 

is a known effect of MIPs that has been ascribed to increased residence time of substrates 

diffusing through the polymer affording greater exposure of the substrate to binding sites within 

the bulk of the polymer.25 The same observation can also be seen by concentration studies 

(entries 1-3 and 6-8) where the imprinted polymers keep the enantioselective bias of the analytes; 

and as the concentration of analytes was decreased the α’ improved. 

 

 

Figure 2.4 Microscope Images of L-NALA-RaceMIP3 (a) 25-38 (b) 38-45µm.  
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The results for each material by HPLC analyses can be seen in Table 2.3. The smallest 

size, entry 1, column was packed differently because of available material, with a smaller 

column length of 50 mm in comparison to 100 mm that was used for the larger sized particles, 

and at a higher concentration of analyte of 2 mM instead of the 1 mM a larger α’ was obtained 

(contrary to the trend observed in Table 2.2 for 25-38 µm material). Notably the bias switched 

giving a higher k’, longer retention, for the 2mM L-Boc-Tyr (entry 1 (a)) with reference to the 

25-38µm material (entry 2) but the α’ value for this material (entry 1 a) was quite insignificant 

indicating no improvement in selectivity. Given the low separation value this could be a 

negligible occurrence and should be replicated with an additional L-NALA-RaceMIP imprint. 

However, the bias switching in this was shown to be unlikely by entry 1 (b) with an α’ of 1.04 

when analyzing 1 mM samples, where the original enantiomeric favorability was observed for 

the D-Boc-tyr analyte. In typical HPLC separations smaller sized material is desired because you 

have more stationary phase that can more uniformly pack into the column and more surface area 

for analytes to come in contact resulting in more theoretical plates and higher efficiencies 

(inverse relationship between theoretical plates and stationary phase size). For MIPs on the other 

hand, they rely on diffusion of analytes through the polymer material and into the binding sites. 

For smaller MIP stationary phase material, like entry 1, loss in selectivity could due to the 

destruction of a significant number of high-affinity sites or density changes in the polymer that 

limit access of substrates to the binding sites.25  

Table 2.3 Effect of polymer size and column length on enantioselectivity.*  

Size Entry Concentration k’L k’D α’ 

20-25 µm** 1 a 

1 b 

2 mM 

1 mM 

4.0 

4.7 

4.3 

5.0 

1.1 

1.0 

25-38 µm 2 1 mM 8.1 7.1 1.1 

38-45 µm 3 1 mM 5.3 5.1 1.0 



27 

 

25-38 µm+ 4 2mM 8.7 7.4 1.2 

 *HPLC conditions: column 100 x 2.1; mobile phase, MeCN/acetic acid (99:1); analytes (1mM 

Boc-L-tyrosine, 1 mM Boc-D-tyrosine, acetone (used to determine void volume)) were all 

detected at 260 nm; flow rate 0.1 mL/min; sample volume injected 5 μL. **column 50 x 2.1 mm. 
+column size 250 x 2.1 mm and flow rate 0.2 mL/min.  

 

There was no enhancement of the separation factor by the larger size (entry 3) but the D-

Boc-tyr bias remained the same. These results could be attributed to inaccessible binding sites 

for the analytes by the larger material, by not accessing more high affinity binding sites when 

grinding the material. The sizing does not seem to change the bias of the D- or L-Boc-tyrosine 

analytes indicating no correlation between the switching of enantiomeric favorability and the size 

of the material; which implies that bias is not formed during the grinding process.  

One last condition that was studied was the effect of column size. L-NALA-RaceMIP5 

sized 25-38µm was packed into a 250 x 2.1 mm column, entry 4 of Table 2.3. This was also not 

a direct comparison because the concentration of analytes used was 2 mM and also the flow rate 

was faster at 0.2 mL/min to compensate for the column size. The larger sized column did give a 

higher α’ of 1.2, this was expected since there are more theoretical plates which improves 

resolution; however, it does not have an effect on the biasing enantiomer. The L-Boc-tyrosine 

bias remained the same in this case indicating that the change in volume of the polymeric 

materials used for analysis does not change the affinity bias for one enantiomer over the other.  

After closely studying the effects on HPLC which is under kinetic conditions of flow 

rate, it was of importance to look at the thermodynamics of the polymer-enantiomer interactions 

using batch rebinding. Batch rebinding studies were used to establish whether a consistent bias 

could be seen under equilibrium conditions providing thermodynamic values that are more 

reliable than conditions affected by kinetics. In other words, batch rebinding allows the 

imprinted material to reach equilibrium with the analyte before binding measurements are taken; 
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where-as HPLC is under constant flow during measurements and mass transfer of the analyte 

between the stationary phase and solution phase may not be complete. The batch rebinding 

results can be interpreted using isotherms of the analytes in the form of log-log plots (Figure 

2.4).  L-NALA-RaceMIPs previously studied (in Table 2.2) were used again in the batch 

rebinding studies for direct comparison to the HPLC results.  

The graphs for both L-NALA-RaceMIPs (Figure 2.5 (a) and (b)) give linear outputs in 

the log-log plots of the binding isotherms. This was anticipated based on log-log plots reported 

for various other molecularly imprinted polymers in the literature.17,26-30 However, it is important 

to note that for both L-NALA-RaceMIPs the relative slopes of the isotherm lines representing the 

L and D enantiomers on each of the polymers are different.  In Figure 2.5 (a), there are two fitted 

lines, one corresponding to the isotherm of L-Boc-Tyr and the other for D-Boc-Tyr, that do not 

have the same slope indicating different binding behavior for each enantiomer on the same 

RaceMIP.  This type of behavior has also been seen in the literature for most of the MIPs 

reported using the log-log plotting isotherms.19,26-28,31-35 The difference in slopes is a known 

result for imprinted polymers arising from different binding affinity distributions for each 

enantiomer.17-19  The reason for inconsistent preference for L or D enantiomers described above 

could be due to the fact that the difference in slopes causes the L and D isotherms to intersect, as 

shown in Figures 2.5 a and b. It can be expected that at the intersection, the preference for 

binding one enantiomer over the other will change as a function of concentration.  
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As shown in Table 2.2 however, that is not the case for HPLC because there is 

overloading of the column or the system is not under equilibrium and those concentration effects 

cannot be observed. Entry c was an experiment carried out as a prerequisite to (D) of Figure 2.5, 

to see the behavior of separately imprinted pure enantiomers. The MIPs from Table 2.4 entries 1 

and 2 were evaluated separately by batch for their selectively of their imprinted enantiomer, for 

example the L-NALA imprinted with pure L-Boc-tyr (entry 1, MIP-100% L) was studied with L-

Boc-tyr, and vice versa (entry 2). From this study it was seen that the L-NALA imprints each 

  

  

Figure 2.5 Log-log plots of isotherms fit to the Freundlich isotherm, comparing batch 

rebinding of tBoc-Tyr enantiomers on (A) L-NALA-RaceMIP2, (B) L-NALA-RaceMIP3, (C) 

L-NALA-100%L and D, and the (D) physically mixed material comprised of 50/50 (w/w) L-

Boc-Tyr and D-Boc-Tyr imprinted polymers. 
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enantiomer differently, even when imprinted independently, indicating the existence of different 

reactivity or interactions between the monomer and each of the enantiomers. 

As a last comparison to the L-NALA-RaceMIP binding affinities, a control stationary 

phase (Table 2.4 entry 3) was created by physically mixing equal amounts (50/50 :  w/w) of pure 

L-Boc-Tyr (Table 2.4 entry 1) imprinted polymer with pure D-Boc-Tyr (Table 2.4 entry 2) 

imprinted polymer. This physically mixed stationary phase was intended to mimic the racemic 

imprinting process. 

Table 2.4 Comparison of α’ for L-NALA imprinted with single enantiomers, single enantiomer 

imprints mixed together, and a Racemic NALA mixture imprinted with a single enantiomer.  

Polymer Identifier Entry Template k’L k’D α’ 

MIP-100% L 1 L-Boc-Tyr 

 

6.2 2.0 3.1 

MIP-100% D 2 D-Boc-Tyr 2.3 7.3 3.0 

Physically Mixed 3 50/50 (w/w) L- & D-Boc-

Tyr MIPs 

3.6 4.7 1.3 

[D-NALA + L-NALA] 

(50/50 : w/w) 

4 L-Boc-Tyr 5.1 2.4 2.1 

*HPLC conditions: particle size 25–37 μm; column 100 x 2.1; mobile phase, MeCN/acetic acid 

(99:1); analytes (1mM Boc-L-tyrosine, 1 mM Boc-D-tyrosine, acetone (used to determine void 

volume)) were all detected at 260 nm; flow rate 0.1 mL/min; sample volume injected 5 μL. 

 

Both polymers should provide equal numbers of L- and D-Boc-Tyr imprinted sites, and 

should in theory give the same results as the L-NALA-RaceMIP.  However, that this was not the 

case and batch rebinding isotherms of the physically mixed stationary phase showed parallel 

slopes (Figure 2.5 (d)), which indicates identical binding affinity distributions for each 

enantiomer. The greater uptake for the “D” imprinted material versus the “L” imprinted polymer 

is explained by direct match to the larger capacity factor for the “D” imprinted polymer (k’D = 

7.3 in Table 2.4, entry 2) versus the “L” imprinted polymer (k’L =6.2, entry 1). For the 

chromatographic results of the column packed with the mixed stationary phase, the larger 
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capacity factor of the “D” imprinted material also gives rise to the greater retention for D-Boc-

Tyr versus L-Boc-Tyr. Thus, the physically mixed stationary phase acts in a predictable manner, 

combining directly the properties of the two different imprinted polymers for both batch 

rebinding and chromatographic results.   

 

For comparison to the L-NALA-RaceMIPs, a polymer was synthesized using a racemic 

crosslinking monomer comprised of D-NALA and L-NALA with pure L-Boc-Tyr as the 

template (Table 2.4 entry 4 and Figure 2.6). The resulting racemic crosslinking material gave an 

α’ value of 2.1. While this α’ value is higher than the L-NALA imprinted with racemic Boc-Tyr, 

it’s still lower than the α’ value of 3.0 for pure L-Boc-Tyr imprinted using L-NALA.  These 

results show that imprinting using a racemic mixture of template or racemic crosslinker curbs the 

chiral recognition of the imprinted polymers; however, racemic templates appear to have a much 

more severe effect on lowering the enantioselectivity of imprinted materials. 

 Lastly, experiments were conducted to determine whether the L-NALA-RaceMIPs 

performed better when used as OMNiMIPs (Table 2.1 entries 2-6) or copolymerized with 

ethyleneglycol dimethacrylate (EGDMA, 1) which provides an inert scaffold for holding the L-

NALA-template interactions in place and allowing L-NALA to act as the functional monomer. 

 

Figure 2.6 Imprinted network of racemic NALA crosslinker with L-Boc-tyr template.  
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As shown in  Figure 2.7, when racemic Boc-Tyr was imprinted using a crosslinker ratio of 25 

mol% L-NALA and 75 mol% EGDMA, an α’ of 1.05 was obtained, indicating a lack of 

enantiomer separation. However, as the amount of L-NALA was increased, the α’ value 

increased until the highest average α’ value of 1.4 was obtained for the 100% L-NALA MIP. 

These results confirm that for imprinting racemic enantiomers, selectivity is improved when 

imprinting as an OMNiMIP.  

 

2.3 Scalemic Imprinting with an Achiral Crosslinker 

 Scalemic imprinting of chiral enantiomers (Scheme 2.1) has not been reported in the 

literature prior to the work presented here that was recently published.36 The MIPs presented 

herein were made using NOBE as the crosslinking monomer and scalemic mixtures of Boc-Tyr 

as the templates, identified as NOBE-ScaleMIPs. The purpose was to evaluate if the chiral 

crosslinker (L-NALA) is also necessary for scalemic imprinting or if the same selectivity could 

be achieved using the simpler achiral monomer (NOBE).  

 

Figure 2.7 OMNiMIP performance using L-NALA for racemic Boc-Tyr imprinting versus 

MIPs made using a more traditional formulation incorporating a mixture of monomers (L-

NALA and EGDMA). 
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The results for the NOBE-ScaleMIPs (entries 1-2) can be seen in Table 2.5 along with the 

reprint of L-NALA-ScaleMIPs’ (entries 3-4) data for direct comparison.36  Both NOBE-

ScaleMIPs gave effective separation factors in the 1.5-1.8 range; and a significant observation 

was that binding is selective for the enantiomer that is in excess in the template mixture; i.e. the 

L-Boc-Tyr is more strongly bound to the 50% ee NOBE-ScaleMIP-L (entry 1), and vice versa 

(entry 2).   

The enantioselectivity seen is presumably due to production of an increased number of 

binding sites for the L enantiomer that proportionally results in longer retention of the L 

enantiomer over D.  This verifies the utility of NOBE OMNiMIPs for scalemic imprinting. The 

chromatogram cascades for the NOBE-ScaleMIPs can be seen in Figures 2.6 and 2.7 where it 

shows partial separation for scalemic and racemic mixtures that matches what has been seen for 

L-NALA. 

 

Scheme 2.1 Representation of molecular imprinting a scalemic template mixture using L-

NALA or NOBE crosslinkers and the resulting selectivity.   
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Table 2.5 NOBE and L-NALA36 scalemic imprinted polymers with Boc-tyrosine as the template 

mixture.*  

Polymer Identifier Entry Template k’L k’D α’ 

NOBE-ScaleMIP-L 1 75 % L; 25 % D 5.4 3.5 1.5 

NOBE-ScaleMIP-D 2 25 % L; 75 % D 3.1 5.6 1.8 

L-NALA-ScaleMIP-L** 3 75 % L; 25 % D 3.8 2.5 1.5 

L-NALA-ScaleMIP-D** 4 25 % L; 75 % D 2.1 3.6 1.7 

*HPLC conditions: particle size 25–37 μm; column 100 x 2.1; mobile phase, MeCN/acetic acid 

(99:1); analytes (1mM Boc-L-tyrosine, 1 mM Boc-D-tyrosine, acetone (used to determine void 

volume)) were all detected at 260 nm; flow rate 0.1 mL/min; sample volume injected 5 μL. 

 

Scalemic imprinting using the chiral crosslinker L-NALA was initially thought to have an 

advantage because of its ability to form diastereomeric pre-polymer complexes with the L and D 

enantiomers of Boc-Tyr.  Potentially, this could have an advantage toward biasing affinity of the 

binding sites preferentially for the L or D enantiomer of the template.   

However, entries 3 and 4 in Table 2.5 for the L-NALA-ScaleMIPs give α' values similar 

to the corresponding entries in Table 2.5 for L- and D-ScaleMIPs synthesized using the achiral 

NOBE crosslinker.  This result discounts any significant influence of crosslinker chirality on the 

overall scalemic imprinting process.  In addition, there is only a small influence on the 

 

Figure 2.8 NOBE-ScaleMIP-L 
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Figure 2.9 NOBE-ScaleMIP-D 

chromatographic cascades of Boc-Tyr 
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enantioselectivity by the crosslinker chirality, seen by the comparable values of L-NALA 

OMNiMIPs made with 100% L- or D-Boc tyrosine as template (Table 2.4). This was also 

supported by the NMR studies where no diastereomeric bias was seen for the solution phase 

complexes of L-NALA with L-and D-Boc-Tyr.36 

2.4 Racemic and Scalemic Enantiomer Imprinting Conclusions 

 A comprehensive comparison of scalemic and racemic imprinted polymers was evaluated 

using OMNiMIPs fabricated from a chiral (L-NALA) and non-chiral (NOBE) crosslinker. To the 

best of our knowledge this is the first report of scalemic imprinted polymers, and an initial focus 

was to determine whether a chiral crosslinker would enhance selectivity by materials that were 

imprinted with a scalemic mixture of enantiomers. The results were nearly identical for the chiral 

L-NALA-based polymers and the achiral NOBE-based polymers for imprinting a scalemic (50% 

ee) mixture of Boc-Tyr, which showed partial resolution of scalemic and racemic mixtures in 

chromatographic mode.  Based on these findings, the selectivity in these materials was reasoned 

to be a result of an increased number of binding sites for the major isomer, and not by 

diastereomeric interactions that could exist between the chiral crosslinker and the template 

enantiomers.  Support for this conclusion came from 1H NMR studies that showed equivalent 

shifts of the N-H peak for L-NALA in the presence of D- and L-Boc-Tyr.36 

 For imprinting a racemic mixture (i.e. RaceMIPs), a difference in chiral selectivity was 

observed when the chiral L-NALA crosslinker was used, versus polymers imprinted with the 

achiral NOBE crosslinker which did not show any chiral selectivity at all.  When L-NALA was 

used in combination with EGDMA as a co-crosslinker, the enantioselectivity decreased, showing 

L-NALA imprinting works best as an OMNiMIP. Partial chromatographic separation was 

achieved by the L-NALA-RaceMIPs; however, roughly half of the imprinted polymers gave 
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better retention for D-Boc-Tyr, while the other half consistently bound L-Boc-Tyr better. The 

underlying mechanism for the chromatographic bias for one enantiomer or the other for each 

RaceMIP is not clear, however a basic understanding of the behavior of these RaceMIPs has 

been linked to the binding affinity distribution properties of these materials determined by batch 

rebinding isotherms. This was seen by the different binding affinity distributions for each 

enantiomer owing to the strongly or weakly formed imprinted sites formed.   

Optimization of HPLC parameters revealed that slower flow rate and lower 

concentrations improved α’ values. Thus it has been shown that the L-NALA-RaceMIPs have 

equal performance to previously reported racemic imprinted polymers;21,22 however, baseline 

chromatographic resolution of enantiomers remains a goal for the future development of chiral 

crosslinkers.  Because both the RaceMIPs and the ScaleMIPs can be developed within a day, this 

provides a facile route toward determination of the % ee of the racemate or scalemate used for 

imprinting, using peak deconvolution for any overlapping peaks. 

2.5 Future Work 

 The next step in this project is the development of a new crosslinker incorporating two 

steoreocenters (Figure 2.8) This is anticipated to be beneficial for racemic imprinting toward 

achieving better resolution of enantiomers by increasing the number of chiral interactions 

between the monomer and template.  

 

2.6 Experimental Work  

Synthesis of Crosslinking Monomers 

 

Figure 2.10 New crosslinker,  
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N, O-bismethacryloyl ethanolamine 

The synthesis of NOBE was similar to a published protocol.4,20 Ethanolamine (1 eq.) and 

dichloromethane (DCM) were added to a 500 mL roundbottom and allowed to cool to 0°C. This 

was followed by the addition of 4-dimethylaminopyridine (DMAP, 0.2 eq.), methacrylic acid 

(MAA, 2.2 eq.), and dicyclohexylcarbodiimide (DCC, 2.1 eq.). Slowly, the mixture warmed to 

room temperature and remained stirring for two days. The white dicyclohexylurea (DCU) was 

filtered off by vacuum filtration leaving the organic solution that was then washed with 1 N HCL 

(aq) (3 x 100 mL) and saturated NaHCO3 (aq) (6 x 100 mL). Magnesium sulfate (MgSO4) was 

used to dry the organic layer and yielded an oil after the solvent was evaporated (98 % yield). 1H 

NMR (CDCl3, 400 MHz) δ ppm 6.41 (1H, br, NH), 6.06 (1H, s), 5.64 (1H, s), 5.54 (1H, s), 5.27-

5.25 (1H, d, J= 8 Hz), 4.25-4.22 (2H, t, J= 6 Hz), 3.58-3.54 (2H, q), 1.90 (3H, s), 1.88 (3H, s.)  

13C NMR (CDCl3, 100MHz) δ ppm 168.46, 167.65, 139.78, 135.94, 126.20, 119.76, 63.36, 

39.22, 18.58, 18.29. 

 

N-α-bismethacryloyl-L-alanine  

The crosslinker L-NALA was synthesized by collecting dry tetrahydrofuran (THF) in 500 

mL roundbottom and cooling it to 0°C followed by adding lithium aluminum hydride (LAH, 1 

 

Scheme 2.2 Synthesis of NOBE, details outlined below 

 

Scheme 2.3 Synthesis of L-NALA, details outlined below 
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eq.). After the temperature was allowed to equilibrate, L-alanine (1 eq.) was slowly added to the 

roundbottom and was refluxed overnight. The reaction was quenched with saturated potassium 

carbonate (aq) (20 mL) and the THF was removed via vacuum filtration yielding a colorless oil 

(70% yield). 1H NMR (CDCl3, 400 MHz) δ ppm 3.55 (m, 1H), 3.23 (m, 1H), 3.01 (m, 1H), 2.01 

(br, 3H), 1.06 (s, 3H).  13C NMR (CDCl3, 100MHz) δ ppm 6827, 48.22, 20.09. 

 The resulting alcohol, L-alaninol (1 eq.) was added into a 500 mL roundbottom with 

DCM and cooled to 0°C. After, MAA (2.5 eq.) and DMAP (0.2 eq.) were added and after five 

minutes DCC (2 eq.) was also added to the mixture. The reaction was slowly warmed to room 

temperature and continued to stir for two days. The DCU was vacuum filtered off followed by 

washing with 0.5 N HCl (aq) (3 x 50 mL) and saturated NaHCO3 (aq) (4 x 50 mL). The 

remaining organic layer was dried over MgSO4 and purified by column chromatography with 

50/50 EtOAc/hexane (80% yield). 1H NMR (CDCl3, 400 MHz) δ ppm 6.12 (s, 1H), 6.01 (br, 

1H), 5.99 (s, 1H), 5.66 (s, 1H), 5.59 (s, 1H) 4, 4.39-4.36 (m, 1H), 4.16-4.09 (m, 2H), 1.94 (s, 

6H), 1.24 (d, 3H, 4Hz).  13C NMR (CDCl3, 100MHz) δ ppm 171.14, 167.89, 140.02, 135.93, 

126.16, 119.51, 67.10, 44.89, 18.56, 18.27, 17.31. 

Polymerization of Crosslinking monomers 

 The monomer (1.0 g) was added to a 13 x 100 mm glass tube along with solutions of 

Boc-Tyr (5 mol% with respect to monomer) in 1.3 mL acetonitrile. The initiator AIBN (1.0 

mol% with respect to monomer) was added into the solution and purged with nitrogen for five 

minutes. To seal the system, the glass tube was capped, wrapped with Teflon tape, and overlayed 

with Parafilm. The glass tube was inserted into a photoreactor apparatus and submerged in a 

water bath where the temperature was maintained at 21°C. The tube with the solution mixture 

was then exposed to a 450 W mercury arc lamp surrounded by a borosilicate jacket for 8 hours 
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immersed in the water bath along with the polymer mixture.  To remove the polymer, the glass 

test tube was broken with a hammer and the particle monolith removed.  The resulting polymer 

was lightly crushed into pieces in the 1-5mm size range and placed in a Soxhlet extraction 

apparatus charged with methanol for two days to remove the template(s). Using U.S.A. Standard 

Testing Sieves the polymer was further sized to 25-38 µm after grinding with mortar and pestle 

and slurried with acetone. The sized polymer was slurry-packed into a stainless steel column 

(100 mm x 2.1mm i.d.) for analysis by HPLC (Hitachi L-7000 series equipped with L-7100 

pump, L-7400 detector and L-7500 integrator) in a 99/1 acetonitrile/acetic acid mobile phase. 

Batch rebinding studies 

 For batch rebinding the dry sized (25-38 µm) polymer material (50 mg) was placed into 

scintillation vials. In each scintillation vial filled with polymer, various concentrations (0.4 mM-

1.6 mM) of L- or D-Boc-Tyr solutions (2 mL) in 99/1 acetonitrile/acetic acid were added. The 

mixture was lightly shaken by hand every 2-3 hours for the first 8 hours, and allowed to sit 

overnight (16 hours) in order to reach equilibrium. An aliquot of the solution was removed and 

the absorbance directly measured by UV spectroscopy (Cary 50 UV-Vis spectrophotometer) at 

278 nm. The imprinted polymer material was regenerated by washing with acetonitrile until a 

peak at 278 nm no longer remained in the supernatant.  
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CHAPTER 3 BIOLOGICAL IMPRINTED HYDROGELS FOR DNA 

DETECTION 
 

3.1 Introduction Biological Imprinted Hydrogels 

 Recognition, quantification, and sensing of biological compounds are an important and 

fast growing field of research. The abundance of biological species is the driving force behind 

the large area of research conducted to understand how each component may affect the human 

body and the surrounding environment. These species consist of viruses, proteins, DNA, RNA, 

and bacteria among many others and there are a wide variety of devices used to detect and 

quantify these species. A biological sensor can be defined as a device that responds to a physical 

or chemical stimulus by producing a signal in return. In some cases it may be life-saving to 

detect a certain species easily and with very little cost to the manufacturer and user. 

 

  

The basic components of a biological sensor are depicted in Figure 3.1. In most instances 

there are three elements: the bio-receptor that is capable of specifically recognizing a target of 

interest, a transducer that translates the recognition into a signal and a detector that can give 

readable results. The bio-receptor contains a component for recognition, in some cases by 

incorporating a substrate that is specific to a particular enzyme of interest; such as β-

galactosidase for lactose and chymosin for K-casein.1,2 A synthetic replacement for recognition 

 

Figure 3.1 Bio-sensor components 
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of the bio-receptor is the use of aptamers. Aptamers are DNA or RNA strands that bind to 

selective molecules (e.g. proteins, viruses, and toxins) with high binding affinity to a specific 

section or structure of a target made possible by a technique called S.E.L.E.X. (systematic 

evolution of ligands by exponential enrichment).3,4      

 A biological sensor should be able to specifically recognize the target at abnormal 

biological concentrations within a high background matrix (having additional samples other than 

the analyte). It should also be capable of withstanding repeated washing and repetitions without 

being easily degraded. Biological sensors are typically very costly, for example methods such as 

mass spectrometry (MS) and immunoassays used for sensing mycotoxins or surface plasmon 

resonance sensors (SPR) for pathogens, proteins, toxins, and etc.5,6  Using an instrument like MS 

is not only expensive, but also requires trained personnel to run; ideally, it is also desired for the 

practitioner to have a portable and easy to operate bio-sensor.  

 Hydrogels constitute a desirable bio-sensor in that it incorporates all the features of a 

typical bio-sensor in one system i.e. recognition, signal translation and readable detection. 

Hydrogels are loosely defined as crosslinked networks that are capable of retaining water. A 

hydrogel is neither a liquid nor a solid and can be either chemically or physically crosslinked 

depending on the application.7,8 Hydrogels have been used since the 1960s when discovered by 

Wichterle and Limand.9,10 These networks have proven to be very versatile for systems such as 

drug delivery vehicles to autocatalytic enzyme reactions capable of controlling gelation.11-13   

 Hydrogels are an excellent scaffold for a polymeric detection device because they have 

the ability to change properties based on stimuli such as pH, chemical, mechanical, heat, light or 

temperature depending on the hydrogel’s structural components (i.e. monomers, polymerization 

conditions, and crosslink density).14-16 The properties changed can be an alteration of the 
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hydrophilic/hydrophobic balance, a release of a small molecule or a conformation change such as 

a swelling or shrinking response of the gel.17 An example of a stimuli responsive hydrogel would 

be one incorporated with poly(N,N-dimethylaminoethyl methacrylate) (PDMA) or poly(ethylene 

glycol) (PEG) that can give pH responsive behavior. Similarly adding a monomer such as N-

isopropylacrylamide (NIPAM) gives the hydrogel thermo-responsive behavior. 

Copolymerization of groups such as poly(hydroxyethyl methacrylate-coacrylic acid) or 

poly(acrylamide-co-acrylic acid) for example can give a multi-responsive (temperature and pH 

responsive) hydrogel system opening up more possibilities.18    

 Molecular Imprinting in hydrogels has become a useful means to detect biological targets 

because memory of template molecules is created within the hydrogel. The memory is said to be 

due to orientation of chemical groups that can form a complexation (non-covalent interactions) 

with the template. Imprinting allows the organization of monomers in a conformation that 

supports complexation of the template at multiple points and is often accomplished with the use 

of aptamers as receptors.16  

 Due to the outlined versatility described above and the macromolecular memory by 

imprinting, MIP hydrogels have been a great advancement in the field of recognition. Progress in 

the field has been propelled by the Miyata group who has incorporated molecular complexes into 

hydrogels. Among the many stimuli-responsive hydrogels they have developed is an α-

Fetoprotein (AFP) imprinted hydrogel. Lectins and antibodies that are specific to AFP were 

modified with polymerizable groups and copolymerized with the AFP target. This formed lectin-

AFP-antibody complexes, thus enabling the lectins and antibodies to be arranged at favorable 

positions for the recognition of AFP. The imprinted complex allowed for the removal and 
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specific rebinding of the AFP which was not seen in non-imprinted hydrogels (did not contain 

AFP prior to polymerization).19,20 

The Spivak research group has also been instrumental in developing simple bio-

responsive networks by employing imprinted hydrogels. They successfully imprinted the 

proteins thrombin and PDGF-ββ in the form of capillary hydrogels for naked-eye detection.21 

Acrylamide (AM) was used as the functional monomer and methylene bisacrylamide (MBAM) 

as the crosslinker in addition to target specific aptamers. Their results showed limits of detection 

as low as femtomolar concentrations of target protein. This was attributed to complex interplay 

between the aptamers and protein supermolecular crosslinks (utilizing noncovalent interactions) 

and also to the reduction of excluded volume in their gels.  

Additionally, the Spivak group imprinted the apple stem pitting virus (ASPS) to show 

that other templates could be identified. Instead of making the hydrogels in capillaries, a new 

method was developed for synthesizing and measuring the hydrogels; a double imprinting 

technique. The double imprinting included the imprinting of the target virus at the molecular 

scale and an additional imprinted pattern at the macromolecular scale that was obtained by 

polymerizing the hydrogel in a lithographic mold.22 This created a diffraction-grating sensor 

where the shrinking of the hydrogel to ASPS could be measured by the change in the diffraction 

pattern with faster response times. 

Employing the imprinted hydrogel technique, a microRNA target was of interest. 

MicroRNA’s are short, naturally occurring noncoding RNA sequences. These miRNAs also 

control gene expression such as differentiation and proliferation. When overexpressed, some of 

these sequences can exhibit oncogenic properties causing tumor growth.23-25 Among these 

mRNAs is mir21 (Figure 3.2 (a)), it is a 22 base pair sequence that has been linked to colon and 
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breast cancer among others. There has been a wide array of research since its discovery in 1993, 

including methods to suppress mir21 overexpression26-29 and detection methods30-32.  Northern 

blotting is the most common method used for detecting microRNA’s; others include Surface 

Enhanced Raman Spectroscopy (SERS) and fluorophore based detection.33-35 In the field of 

MIPs, RNA research is very sparse and few examples can be found. One example by Longo et 

al. imprinted Tri-O-acetyladenosine using zinc-phthalocyanine as one of their functional 

monomers.36 However, this was for separations and not as a detector and was for a specific base 

pair unlike the goals here where a sequence is the target.   

 

As opposed to using RNA, DNA was desired as the target; RNA is expensive and more 

difficult to handle since it is easily degradable. Thus, to develop a proof of concept a matching 

DNA mir21 mimic was studied in exchange (Figure 3.2 (bottom)). The difference between the 

RNA and DNA sequence is the nucleic acids thymine in the place of uracil (Figure 3.2) thereby 

it is not difficult to create a mimic sequence from DNA in the place of RNA. DNA has been 

widely studied for use in analytical sensors because it is chemically and physically stable, 

biocompatible and modifiable. Hybridization and dehybridization can be controlled at varying 

temperature, given as the temperature at which the DNA is unpaired, known as the melting 

temperature (Tm, equation 3.1).37 The melting temperature can be modified based on the salt 

concentration (M); the salt decreases the electrostatic repulsion between the phosphate groups 

along the backbone of the DNA strands effectively controlling the annealing of DNA. This is, of 

 

Figure 3.2 (green, top) RNA mir21 sequence (purple, bottom) DNA mir21 mimic sequence 
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course, also dependent on the Guanine and Cytosine content (G/C) of the strands since they 

provide the most hydrogen bonding, as compared to Thymine and Adenosine, and in turn create 

stronger bonds.  

 𝑇𝑚 = 16.6logM + 0.41 (G/C) + 81.5    Equation 3.1 

There have been several studies on DNA incorporated into hydrogels because of DNA’s 

stability and capability of modifications.38 Flexibility can be added to the sequence by linking an 

18-atom hexa-ethyleneglycol spacer (Sp18, Figure 3.3 (a)) and has been used to facilitate facile 

rebinding of the aptamer functionalized hydrogel to the template molecule.21,22 For the 

incorporation of DNA into a hydrogel network it can be modified with a phosphoramidite or 

acrydite (Figure 3.3 (b)) for covalent conjugation to the polymer backbones. Hydrogels can also 

be formed by the DNA strands themselves with the addition of DNA ligases, e.g. T4 DNA 

ligase,  to create a physically crosslinked system.39 In an example by Lin et al. the authors used 

two acrydite modified oligos co-polymerized with acrylamide and added in a third DNA strand 

that was used to crosslink the system.40 

 

Previous research in DNA sensors have been for larger target sequences with the shortest 

at 26 base pairs. This was achieved by using a quantum-dot-tagged bio-responsive hydrogel 

suspension array. When the target DNA strand was added to the hydrogel, the hydrogel shrank in 

 

Figure 3.3. Functional modifies on the aptamers (a) acrydite (b) Sp18 

(a)

(b)
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response causing a blue shift in the Bragg diffraction peak position which had a 10 nM limit of 

detection (LOD).41 This example shows that it is possible to sense short DNA sequences, 

however several steps are required to synthesize the quantum-dot beads.  

Other detection methods of DNA have utilized imprinted hydrogels. One example by 

Tierney et al. also deployed functionalized aptamers for a hydrogel attached to the end of an 

optical fiber for high resolution interferometric readout.42 Their 35 base pair target sequences 

were detectable in the micromolar concentration range. Using gel electrophoresis Ogiso et al. 

created binding sites in the MIP gel that hindered the migration of their double stranded DNA 

target sequence (for 5 μM samples).43  

The sensor designs that will be applied in this chapter will be the capillary imprinted 

hydrogels and the diffraction-grating sensors that were previously shown to perform well in the 

Spivak research group.21,22 What distinguishes the sensor and application presented here apart 

from previous research is the size of the DNA target, the amount imprinted, the detectable limit 

of the target sequence and its later application towards detecting RNA sequences. Also of 

importance is the imprinting approaches where complimentary DNA aptamers are used to 

hybridize with the DNA target sequence prior and post polymerization. 

 The capillary hydrogels provide a simple sensor that directly measures the volume 

change by measuring the direct length changes of the gel associated with stimuli response such 

as the addition and removal of the target DNA mir21 mimic. Using the diffraction grating design 

is also advantageous in that the gratings are influenced by physical properties such as specific 

molecules by shrinking or swelling in response (i.e. addition and removal of a target), change in 

pH and temperature. These factors can, in turn, deform the grating structure making it possible to 
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observe the resulting shrinking/swelling responses by laser diffraction; in our case the addition 

and removal of the DNA mir21 target. 

 

An improved method for the diffraction-grating hydrogels will be discussed in detail 

(vide infra), the material used to transfer the grating pattern onto the hydrogel played an 

important role in creating the diffraction hydrogels. The most common material used as the 

hydrogel stamp or mold is poly(dimethylsilaxane) (PDMS, 13 Figure 3.4)22,44-46 which produces 

a fine replica of the grating master to the mold; some of its useful properties include elastomeric 

nature, low cost of manufacturing and moldability to submicrometer features. The problem with 

this material lies in the transfer from the mold to the hydrogel due to PDMS’s hydrophobicity 

making the introduction of aqueous solutions difficult in cases like microfluidics and in this case 

hydrogel patterning. Bounds et al. introduced an alternative in the form of thiol-acrylate 

materials.47 Using pentaerythritol triacrylate (PETA) 14 and trimethylolpropane tris(3-

mercaptopropionate) (TMPTMP) 15 that was catalyzed by diethylamine 16, they were able to 

fabricate stable hydrophilic microfluidic devices. Because of the success seen by this application, 

new diffraction-grating gels were made using the thiol-acrylate composite as the mold.  

 

Figure 3.4 Structures of poly(dimethylsiloxane) (PDMS) 13, pentaerythritol triacrylate 

(PETA) 14, trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) 15 and 

diethylamine 16. 
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3.2 Results and Discussion of Capillary DNA mir21 Imprinted Hydrogels 

 Research focusing on imprinting hydrogels in the Spivak research group has been 

successful which lead us to focus on new avenues of sensors for various bio-macromolecule 

targets; the new target of interest was a mir21 DNA mimic.  The hydrogels were imprinted in 

capillaries and the basic hydrogel preparation and synthesis can be seen in Figure 3.5 and 

previously in Figure 3.2 (b). The DNA target in Table 3.1 entry 1 is a short 22-mer sequence and 

its biomimetic receptors are the two 11 base pair aptamers (entries 2 and 3) that are 

complimentary to the DNA mimic.  

Table 3.1 The sequences for the DNA mir21 mimic target and its complimentary aptamers 

Reference Name Entry DNA sequence including modifications 

DNA mir21 mimic 1 5’ – TAG CTT ATC AGA CTG ATG TTG A – 3’ 

Aptamer 1 2 5’ - /5Acryd /iSp18/ CTG ATA AGC TA – 3’ 

Aptamer 2 3 5’ - /5Acryd /iSp18/ TCA ACA TCA GT – 3’ 

 

 

  

 

Figure 3.5 Illustration of binding of aptamer 1 and 2 to the DNA target, polymerization and 

response of DNA removal and rebinding to the polymerized hydrogel.  
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As listed in Table 3.1 both aptamers are modified at the 5’ end. Nucleotides hybridize 

from opposing ends, because of this it was imperative to verify that the position of the modifiers 

would not hinder the hybridization between the DNA mir21 target and aptamer 1 (as seen in 

Figure 3.5). To confirm that the modifications did not disrupt binding of the DNA complexes, a 

gel electrophoresis was used to verify that the DNA mir21 target and aptamers hybridize. 

 

The binding of aptamer 1 to the DNA mir21 target, aptamer 2 to the DNA mir21 target, 

and both aptamers with DNA mir21 target in solution was tested on an agarose gel (Figure 3.6) 

which was used to observe the change in base pairs by bands in the gel. The hybridization was 

tested by applying a current to the agarose gel with the DNA added to the wells. The phosphate 

groups along the DNA backbone are negatively charged and migrate to the positively charged 

anode. If the DNA was hybridized, one single band would be observed and if they were not there 

would be multiple bands for each sequence. Ethidium bromide was placed on the far left of the 

agarose gel as a reference to the base pairs traveling along the current; the shorter the sequence 

 

Figure 3.6 Agarose gel results for: the ethidium bromide (lane 1), DNA mir21 mimic with A1 

(lane 2), A2 (lane 3) and A1 + A2 (lane 4). 
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the further the samples travel with the current and vice versa for longer strands.  As seen in 

Figure 3.6, only single bands were observed for DNA with each variation of aptamers verifying 

that the DNA target effectively hybridizes with its complimentary aptamers during pre-

polymerization. Additionally, a 1:1 mole ratio of the DNA target and the aptamers was used 

during the electrophoresis experiment which justified the mole equivalents used for future 

experiments. 

3.2.1 Various Hydrogel Imprints and their response to the DNA mir21 mimic target  

After testing the successful annealing of the DNA target to its aptamers, various 

hydrogels were made incorporating those DNA components plus monomers (NIPAM and 

acrylamide, AM), crosslinker (methylene bisacrylamide, MBAA) and initiators (ammonium 

persulfate, APS and tetramethylethylenediamine, TEMED) starting with the formulation listed in 

Table 3.2 for a total volume of 120 µL with the addition of PBS (phosphate-buffered saline). 

Based on past successes, the hydrogels were made in capillary tubes where the hydrogel’s length 

change was measured in response to addition and removal of target DNA. All hydrogels were 

made in at least triplicates. The change in hydrogel length was evaluated as the percent shrinkage 

(equation 3.2) where the original length in the 0.05 M NaCl preparative solution is given as d0 

and the new length in response to the target analyte is denoted as d.  

% 𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 =  
𝑑0− 𝑑

𝑑0
𝑥100      Equation 3.2 

The distance between each meniscus of the capillary hydrogel was measured by a 

magnifying glass equipped with a ruler. The lengths measured are of the hydrogel with 

preparative 0.05 M NaCl to the maximum shrinkage with subsequent additions of 12 nM DNA 

mir21 target. Controlled hydrogels were made using the general formulation in Table 3.2; 
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adjusted accordingly for the non-imprinted hydrogel (NIP), polymerization without aptamers, 

and those polymerized with single aptamers. 

Table 3.2 Formulation for DNA mir-21 mimic Imprinted Hydrogel 

Reagent MW (g/mol) Mole equiv. 

of reagents 

Mass of reagents 

used (mg) 

Reagent concn. 

(mol/L) 

DNA mir21 mimic 6764.5 1 0.017 2.1 x 10-5 

Aptamer 1 3931.8 1 0.087 2.1 x 10-5 

Aptamer 2 3891.7 1 0.086 2.1 x 10-5 

MBAM 154.17 390 0.15 8.3 x 10-3 

NIPAM/AM 113.16/71.08 80500 26/17 2.0 

 

3.2.1.1 Various Formulations for Capillary Hydrogels 

Table 3.3 Optimization of Capillary Hydrogels Performance via Concentration of Prepolymer 

Complex and Crosslinker Concentration for Maximum Volume Response 

Entry 

Ratio 

(MBAA:DNA complex) 

% shrinkage response to DNA 

mir21 mimic 

F1 390:1 5.7 ± 1.8 

F2 267:1 1.9 ± 0.30 

F3 203:1 1.1 ± 0.54 

F4 320:1 1.2 ± 0.40 

 

To optimize the hydrogel response, the original formulation from Table 3.2 (seen also in 

Table 3.3 entry F1) was adjusted; varying the volume of aptamers and target (also known as the 

complex) in the pre-polymerization mixture. It is beneficial to polymerize the least amount of 
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DNA as possible because the modified aptamers can be costly. Past examples showed a 

maximum response at the mole ratio of 483:1 for MBAA to A1-thrombin-A2 (complex).21 For 

simplicity, just the amounts of crosslinker (MBAA) and DNA mir21 mimic are listed in Table 

3.3; for entry F4 however, the amount of monomers and MBAA were also increased. The 

percent shrinkage results are also shown in Figure 3.7.  

In Entry F2 the volume of DNA mir21 mimic and aptamers was increased to 1.5 times 

that of entry F1, this changed the MBAA:DNA ratio to 267:1 providing more reversible 

crosslinks. Increasing the ratio from 390 to 267, further increasing the amount of A1-DNA 

mir21-A2 complex, decreased the percent shrinkage to 1/3 the original response (entry F1). 

 

Increasing the DNA complex by twice the amount of F1 (entry F3) during imprinting 

further decreased the response to the DNA mir21 target yielding 1.1 ± 0.54% shrinkage; 

indicating that as the complex is increased the response decreases in return. In Entry F4 the 

amounts of MBAA and monomers were increased by 1.2 times their original concentration in 

addition to increasing the DNA target and aptamers by 1.5 times giving a ratio of 320:1. This 

slight increase in crosslinking in comparison to F1 did not have an improvement on the response 

and resulted in 1.2% ± 0.40 shrinkage of the hydrogel. As compared to entry F2, having more 

 

Figure 3.7 Percent shrinkage results with respect to changing the MBAA : DNA complex 
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MBAA also decreases the response. The results for the formulation optimizations indicated that 

the best response was seen when polymerizing the least amount of complex (F1). 

  3.2.1.2 Controls: Changing the structural components 

 To verify the importance of incorporating both the aptamers and the DNA target into the 

imprinted complex, several controls were completed. These studies consisted of: single 

imprinted aptamers with the DNA mir21 (Figure 3.8), both aptamers and no DNA mir21 target, 

and the DNA mir21 target alone without aptamers. Each of these hydrogels was incubated with 

DNA mir21 mimic and the results are shown in Figure 3.9.  

For this set of controls it was expected that, for the selective recognition of the DNA 

mir21 target, both aptamers are required to effectively hybridize the target and result in the 

largest response. Pre-complexation of both aptamers to the respective targets was previously 

shown by Bai et al. to be a key component in the response mechanisms for their hydrogels 

because multiple complexation points are required for imprinted polymers.21,22 Hydrogels were 

polymerized with a single aptamer (aptamer 1 or 2) and the DNA mir21 target (Figure 3.8); all 

other components (monomers, crosslinker and initiators) remained the same. The results of the 

hydrogels are displayed in Figure 3.9 for response to the DNA mir21 target. Imprinting of 

aptamer 1 (A1) and the DNA mir21 target resulted in a significant loss of response; from 5.7% 

with both aptamers to 1.5 ± 0.94%. Similarly, including only apamter 2 (A2) and the DNA mir21 

target resulting in a response of 1.7 ± 0.97%. Without both aptamers, there are reduced 

functional receptors present which is especially consequential due to the reduced amount of 

functional monomers (NIPAM/AM) within these imprinted hydrogels.  
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To further verify the importance of incorporating the aptamers into the hydrogel for the 

DNA target recognition, a set of gels were made without aptamers imprinting only the target 

DNA. These hydrogels had no recognition elements and relied solely on the macromolecular 

memory formed during polymerization within the network. These hydrogels had a response of 

0.66 ± 1.3% and in comparison to the single aptamer imprints show a decrease in recognition as 

the hydrogel loses both aptamer. Thus the hydrogels’ response relies heavily on the hybridization 

of the DNA mir21 target to its complimentary aptamers and this is especially apparent in these 

control hydrogels where the response increases when polymerizing both aptamers.  These results 

verified the significance of forming the full complex of A1-DNA mir21-A2 and removing a 

component of the complex had a negative effect on the responsiveness of the hydrogels. 

 

 

Figure 3.8 Hybridization representation of DNA mir21target plus aptamer 1 only.  

 

Figure 3.9 Shrinking response of hydrogels when polymerizing with the full A1-DNA-A2 

complex, the target only, the aptamers only, the target and aptamer 1 and the target plus 

aptamers 2.  
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The next series of hydrogels were designed to study if it is necessary to have an imprinted 

system where both the aptamers and target are included in the polymerization. Hydrogels were 

polymerized without the DNA mir21 target, known as a non-imprinted polymer or “no target” as 

identified in Figure 3.9. This polymer still contained the aptamers within the hydrogel network 

and relied only on the hybridization of the aptamer/DNA complex formation post 

polymerization. In response to the DNA mir21, the hydrogels without a target gave a 0.84 ± 

0.35% shrinkage. This is attributed to the random placement of aptamers when polymerized 

without the target instead of forming a pre-organized complex of A1-DNA mir21-A2; 

polymerizing the DNA target with the aptamers allows the aptamers to be arranged in a 

favorable orientation for rebinding of the DNA target.   

3.2.1.3 Controls: Imprinting Different Target Sequences  

 A set of controls were made in the form of imprinting different target sequences as a 

follow-up to the aptamer controls in section 3.2.1.2. The studies provided a means of testing the 

selectivity of the aptamers and how that can affect the pre-complexing and resulting binding to 

DNA sequences. Several sequences were imprinted in the place of the DNA mir21 mimic (Table 

3.4). Among these newly imprinted sequences are: anti-sequence, random, and a spacer.   

Table 3.4 Sequences of the anti, random and spacer targets. 

Reference Name Entry DNA sequence including modifications 

Anti-sequence 1 5’ – TCA ACA TCA GTC TGA TAA GCT A – 3’ 

Random sequence 2 5’ – CGA TAG CAT CTG AGT CAC TTA G – 3’ 

5-spacer DNA mimic 3 5’ – TAG CTT ATC AGT TTT TA CTG ATG TTG A – 3’ 

 

The referenced anti-sequence (Table 3.4 entry 1) is the full aptamer sequence, without the 

modified Sp18 and acrydite, arranged 5’ to 3’ and has five complementary pairs for each 
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aptamer. As highlighted in Figure 3.10 the anti-sequence contains five complimentary pairings in 

the middle of its sequence, providing a means of testing mismatched base pairs towards the ends 

of the sequence. As seen in Figure 3.11 when DNA mir21 sequence was added to the anti-

imprinted hydrogel it gave a low response of 0.80 ± 0.13%. Although the anti-sequence is similar 

to the DNA mir21 mimic, any resulting complex or orientation of the aptamers formed during 

pre-polymerization is different than the full complimentary complex thus decreasing the 

response for the DNA mir21 target. Additionally, the anti-imprint was tested for its response to 

its imprinted “anti” sequence as seen in Figure 3.13. Incubating the imprinted sequence had a 

slightly larger response of 1.2 ± 0.49%; but without the aptamers forming a fully hybridized 

complex during pre-polymerization the aptamers will not be in a preferred orientation for 

rebinding. Examples of hybridization between non-complementary strands was shown by 

Ouldrige et. al. where the non-hybridized sections form different configurations.48  

 

 The next control was made by imprinting a sequence that has no complementarity to the 

aptamers, Table 3.4 entry 2, referred to as the “random” sequence. Figure 3.11 shows 

insignificant shrinking response to the DNA mir21 target of 0.20 ± 1.07%, even lower than that 

of the anti-imprinted polymer. Without any complementarity and resulting hybridization to the 

aptamers, the hydrogels displayed negligent response to the DNA mir-21 target. The random 

sequence was unable to form any complex with the aptamers which could have resulted in 

random placement of the aptamers, much like imprinting without a target sequence (Figure 3.9).  

 

Figure 3.10 Aptamer interactions with the anti-sequence.  

3’- ATC GAA TAG TC /Sp18/Acryd – 5’

TCA AC ATC AG T CTG AT AA GCT A5’ 3’

3’- T GAC TA CAAC T /Sp18/Acryd – 5’
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The last sequence tested, 5-spacer (Figure 3.12), could hybridize to the aptamers at the 

ends of its sequence but had a short non-complimentary section in the middle made up of 

Thymine pairs. The objective here was to identify any non-specific binding that may occur with 

mismatched pairing towards the center of its sequence as opposed to the anti-sequence that had 

complementarity in the middle. The imprinting remained the same and the only difference was 

the imprinted target leaving an unhybridized section between the DNA mir21 spacer target 

(referenced as 5-spacer) and the aptamers (Figure 3.12).  

 

 The result for the 5-spacer imprint also saw reduced recognition response with addition 

of the DNA mir21 mimic of 2.7 ± 0.82%. The reduction in response compared to the full 

complex imprint (5.7%) was not as significant as that of the anti-sequence (0.80%) or the 

 

Figure 3.11 Hydrogels imprinted with various sequences and their response to the DNA 

mir21 target as compared to the DNA mir21 imprinted hydrogel. 
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Figure 3.12 Spacer sequence hybridized with aptamers. 
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random (0.20%); however, it once again demonstrating how important it was to have full 

complementarity between the aptamers and the DNA sequence target.  

  

An additional study was completed to understand more about the binding to the 5-spacer 

imprinted hydrogels (Figure 3.13). When the 5-spacer sequence was added to the 5-spacer 

imprinted hydrogels, it showed very little difference in recognition (2.5 ± 1.1% shrinkage) in 

comparison and also no improvement over the addition of the shorter DNA mir21 target. It is 

possible here that with the added spacing in the sequence that the hydrogel does not result in 

such a large collapse of the hydrogel. Also, because the DNA mir21 was not imprinted the 

aptamers are not arranged in the correct orientation thus decreasing likelihood for it to effectively 

bind to all of the aptamer pairs. Another explanation could be that the unhybridized section of 

thymine is single stranded and flexible which could cause the aptamers to bend or turn during the 

pre-polymerization in a different orientation than that of the fully hybridized DNA mir21 

complex.     

 

Figure 3.13 Response of the anti-imprinted hydrogel to the DNA mir21 target and the anti-

sequence and the 5-spacer imprinted hydrogel response to the DNA mir21 target and the 5-

spacer sequence.  

0

1

2

3

4

Anti - DNA

mir21

Anti - Anti 5spacer - DNA

mir21

5spacer -

5spacer

%
 S

h
ri

n
k
ag

e

Hydrogel Response for DNA mir21 vs. their 

Imprinted sequences



62 

 

3.2.2 Investigating Selectivity in the DNA mir21 Imprinted Hydrogels 

 Once a successful imprinted hydrogel system was established it was crucial to study its 

selectivity towards its imprinted target versus similar sequences. As established by the above 

hydrogels imprinted for non-complimentary sequences that were tested for the DNA mir21 

mimic which resulted in lack of response, there should also be no selectivity for other non-

imprinted sequences in the DNA mir21 imprinted gel. To test this, three similar sequences were 

incubated: anti-sequence, 5 spacer and 20 spacer. The anti-sequence, as mentioned earlier, has 

some complementarity to the aptamers but has differing base pairs at the ends of the sequence. 

The spacers, however, have the exact same base pairs at the ends of their sequences but in the 

center of the sequence thymine was incorporated (five for the “5 spacer” and twenty for the “20 

spacer”).  

 

The results for the DNA mir21 imprinted gel are displayed in Figure 3.14 for the various 

targets. When incubated with all three differing sequences there was less than 1% response by 

the hydrogels. This was expected based on the findings in the previous sections where the 

 

Figure 3.14 Investigating the selectivity of the DNA mir21 imprinted hydrogels with 

similar sequences.   
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hydrogels imprinted with similar sequences displayed very limited response to the DNA mir21 

target. 

Since the hydrogels do not have full complementary aptamers or the required pre-

complexed binding, there should be no responsive recognition to these other sequences.  In the 

case for the anti-sequence, it is possible for this piece to bind to the aptamers in a free solution 

with high enough salt concentration. However, the hydrogels were imprinted for the DNA mir21 

target and the aptamers were arranged in the orientation to bind only the DNA mir21. 

Additionally, the hybridization of complementary sequences starts at the ends whereas the anti-

sequence has complimentary base pairs in the middle of its sequence (Figure 3.10). According to 

Ouldridge et al. pairing of DNA strands start at the ends and then subsequently zipper or 

hybridize down the sequence.48 With the spacer pieces, however, this is not the same issue as 

their complimentary base pairs are at the ends. The lack of response to these similar sequences is 

likely due to the pre-complexed binding, allowing for the aptamers to be arranged in a specific 

manner to the DNA mir21 imprinted target rather than the longer spacer sequences that contain 

non-interactive base pairs that do not hybridize to the aptamers.  

3.3 Results and Discussion of Diffraction-Grating for DNA mir21 Imprinted Hydrogels 

 Based on the results shown by Bai et al. it was of interest to replicate the design of the 

Molecularly Imprinted Polymer Gel Laser Diffraction Sensor (MIP-GLaDiS) because they were 

able to show specific binding and recognition for the ASPV target.22 Same as the capillaries a 

new target was evaulated, mir21, which has not been explored for MIPs. The original design 

used a PDMS (poly(dimethysiloxane), 13) mold to transfer the diffraction pattern onto the 

hydrogel. However, when using PDMS mold for the DNA mir21 hydrogels it would result in 

difficult reproducibility of the pattern from the mold to the hydrogel. PDMS has a hydrophobic 
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surface that expresses a water contact angle of about 105°C. An alternative to PDMS is made 

from a two part system of amine-catalyzed thiol-acrylate (TA) in the same manner as the PDMS 

(Figure 3.15). The TA system was prepared by the Pojman group where they used pentaerythritol 

triacrylate ( PETA, 14) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP, 15) via a 

Michael Addition reaction using diethylamine (16) as the catalyst.47 The large advantage of the 

TA as opposed to the PDMS material is that it is hydrophilic with a smaller water contact angle 

of 60°C which allows the aqueous hydrogel solution to enter into the patterned channels in TA’s 

mold which resulted in a desirable visible pattern (Figure 3.16 (b)) on the hydrogel’s surface. 

This is the same rationale for using TA in microfluidic devices because the TA composites 

produce stable hydrophilic surfaces.47 

 

 In addition to more precise molding, the new intermediary mold system was 

advantageous because it decreases the time between creation of the grating mold to the finished 

gel product resulting in faster processing as displayed in Figure 3.15. For the two part PDMS 

mold, a 10:1 mixture of elastomer base to curing agent is used and requires 10 hours for the 

solution to cure at 80°C. The T.A. mold uses a 1:1 ratio of PETA to TMPTMP and requires one 

 

Figure 3.15 New mold designs for MIP-GLaDiS using TA versus PDMS 
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hour at room temperature for the mold to cure. After removing the master, the hydrogel solution 

can be added; however, the time required for the hydrogel solution to stay in each of the mold 

composites also differs on the amount of time needed for adequate transfer of the pattern to the 

hydrogel. When using a PDMS mold, the hydrogel solutions have to sit in the mold, clamped 

tightly, for over 72 hours for the gel to adopt the pattern (as previously determined by Bai) and in 

most cases the pattern does not transfer fully from the starting PDMS mold. However, using the 

TA composite mold the hydrogel solution only needs to remain in the mold for 12 hours or less, 

cutting the time dramatically.  It should also be noted that the pattern on the hydrogel from the 

TA mold is a very good replica of the mold’s grating pattern (Figure 3.16 (a)) and Figure 3.16 

(b) shows the visible pattern on the hydrogel’s surface.  

 

The change in the diffraction pattern channels by microscope images in addition to the 

change in distance in the resulting diffraction by the laser pointer can be seen. Figure 3.17 (a) 

shows how the distance between the channels shrinks in response to the rebinding of DNA mir21 

to the hydrogel and the resulting swelling as seen by the larger distance in the channels. The 

change in the diffraction pattern distances can be seen Figure 3.17 (b) where the hydrogel with 

DNA mir21 results in a greater distance between the pattern and when the DNA mir21 is 

removed the distance in the diffraction pattern grows smaller. The inverse relationship between 

 

Figure 3.16 (a) Diffraction pattern of the imprinted hydrogel (top) as compared to the thiol-

acrylate mold (bottom) (b) picture of the visible pattern on the surface of the hydrogel. 

Thiol-Acrylate Mold

Imprinted hydrogel
(a) (b) 
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the pattern distance and the hydrogel shrinking and swelling can be explained by application of 

the equations below:22  

 𝜃 = 𝑠𝑖𝑛−1(
𝜆

𝑑
)      Equation 3.3  

𝜃 =  𝑡𝑎𝑛−1(
𝐷

ℎ
)      Equation 3.4 

𝐷 = ℎ 𝑡𝑎𝑛 [𝑠𝑖𝑛−1(
𝜆

𝑑
)]     Equation 3.5 

The distance in the diffraction pattern (d) can give the angle of diffraction (θ) for the 

transmitted laser light (Equation 3.3, λ is the wavelength of the laser source and is 532 nm for the 

green laser pointer used herein). As a result, when θ becomes larger the distance between the 

diffraction patterns becomes smaller. The distance between two adjacent projected laser points 

(D) can be determined by θ seen in Equation 3.4 which is also dependent on the height (h) of the 

laser source. When the two equations are combined (equation 3.5) it gives an inversely 

proportional relationship between the distance (D) and the grating period; meaning as the 

hydrogel swells, the distance between the laser points decreases (Figure 3.17 (b)).  

 

  

Figure 3.17 (a) Microscope images of the DNA mir21 imprinted grating gels in response to 

the addition (top) and removal (bottom) of DNA mir21 target. (b) Resulting diffraction 

pattern with DNA mir21 in the top image and the hydrogel without DNA mir21.   

(a) (b) 
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3.3.1 Optimization of Parameters for the Diffraction Gratings 

 Similar to the capillary hydrogels above (section 3.2), optimization of the formulation for 

the diffraction grating hydrogels was also explored. Different from the capillaries however, the 

amount of MBAA and monomers were decreased instead of the DNA complex. The formulation 

changes were prompted from previous work by Bai et al. who found that the grating hydrogels 

with the largest response were those made with lower monomer and crosslinker.22 The mole 

ratios can be observed in Table 3.5 where the crosslinker, monomers and DNA complex are 

listed with the resulting percent shrinkage to the DNA mir21 target (also presented in Figure 

3.18). The percent shrinkage of the gels was calculated using Equation 3.1, similarly to the 

capillary gels.  

Table 3.5 Formulation changes for the DNA mir21 mimic diffraction grating hydrogels via 

monomer and crosslinker concentration and the maximum volume response. 

Entry 

Ratio 

(MBAA:Monomers:DNA) 

% shrinkage response to DNA 

mir21 mimic 

G1 390:93000:1 3.5 ± 0.53 

G2 260:78000:1 4.2 ± 0.40 

G3 208:68000:1 2.9 ± 0.46 

  

Using the same formulation as the capillary hydrogels (F1 in Table 3.3), the grating 

hydrogels displayed a 3.5 ± 0.53% response. Upon lowering the amount of monomers and 

crosslinker by 1.2 times for G2, the best response of 4.2 ± 0.40% to the target was observed 

without losing the orientation of the A1-DNA mir21-A2 complex. Further decreasing the 

monomers by 1.5 and the MBAA by 1.9 did not improve the response (2.9 ± 0.46%) and so the 

formulation of G2 was used for further experiments. The decrease in response by G3 in 
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comparison to G2 could be because the system was not crosslinked enough, dissociating the 

orientation of the receptors (aptamers) and hindering the complexation of both the aptamers with 

the DNA mir21 target.   

 In addition to the initial response tests for the grating hydrogels, a study was done to test 

the reversible nature of these systems. Figure 3.19 shows the response of G2 over three cycles of 

adding the DNA mir21 target, removing it with water and the re-addition of the DNA target. The 

reversible behavior of the hydrogel shows the stability of the system over multiple cycles with an 

average response of 4.4 ± 0.055 %.  

 

 

Figure 3.18 Formulation optimization for the diffraction grading hydrogels and their response 

to the DNA mir21 target 
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Figure 3.19 Reversible volume change of the diffraction grating hydrogel, G2, over multiple 

cycles  
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3.3.2 Controls: Diffraction Grating Hydrogels Investigation of Aptamers and Target 

 Similar to the treatment of the capillary hydrogels in section 3.2, several controls were 

made to ensure that the grating hydrogels also required the polymerization of the complexed A1-

DNA mir21-A2. The control hydrogels made were polymerized with: a single aptamer and the 

target, no aptamers (target only), and both the aptamers without the target. These hydrogels were 

tested for the response to the DNA mir21 target and their results are displayed in Figure 3.20.  

 

As previously shown for the capillary hydrogels, it is imperative to incorporate all 

components of the A1-DNA mir21-A2 complex. The response seen for the hydrogel that 

included a single aptamer resulted in 1.5 ± 0.65 % shrinkage and the response decreased slightly 

more without any aptamers present (1.4 ± 0.32 %). Hydrogels imprinted without the DNA mir21 

target also resulted in a very low response of 0.38 ± 0.75 %. These results reiterated the 

importance of having the full A1-DNA mir21-A2 complex prior to polymerization. Removing a 

component within the complex significantly decreases the shrinking response of the hydrogels 

where the rebinding of the DNA mir21 target is dependent on the hybridization to both of the 

aptamers. Unlike traditional imprinted polymers, like those used for separations, the light 

 

Figure 3.20 DNA mir21 response upon altering the aptamers and DNA mir21 target for the 

diffraction grating hydrogels.  

-1

0

1

2

3

4

5

Full complex No Aptamers Target + A1 No Target

%
 S

h
ri

n
k
ag

e

Diffraction Grating Hydrogels : Changing 

the Structural Components (DNA mir21 

response)



70 

 

crosslinking and low amount of the functional monomers of the MIP hydrogels relies on the 

aptamers as receptors for the selective rebinding of the DNA mir21 target provided by the pre-

organization of the aptamers and DNA target prior to polymerization. 

3.4 Discussion for the Shrinking Response of the DNA mir21 Hydrogels  

 Past examples of DNA hydrogels were structured differently than our system thus the 

mechanisms of the response to their target were different than ours. In an example by Murakami 

et. al. they developed DNA crosslinked hydrogels, where the aptamers are crosslinked as part of 

the hydrogel backbone, that shrank in response to addition of their target sequence because of the 

change in chain length from the longer single stranded DNA to the shorter double stranded DNA 

when the complimentary sequence was added.49 The length change is due to the flexible single 

stranded DNA being hybridized with a complimentary single stranded DNA forming a rigid 

double helix.

 

Based on the results from sections 3.2.1.2 and 3.3.2, we know that the shrinking response 

for our hydrogel system was very dependent on having both of the aptamers which act as the 

functional receptors in the hydrogel network which lead us to believe that the hybridization of 

 

Scheme 3.1 Shrinking illustration of DNA mir21 imprinted hydrogels in response to multiple 

additions of DNA mir21 target. As more DNA mir21 solution is added, the hydrogels 

additionally shrinks possibly due to the aptamers becoming closer to the optimal orientation 

for DNA mir21 binding.  
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the complex causes the shrinking response for these DNA imprinted hydrogels. Unlike the above 

example49, however, the aptamers are not crosslinked to the hydrogel network on both ends and 

thus are not directly part of the crosslinking mechanism. The system we used, instead, relied 

heavily on the imprinting effect of arranging the aptamers in cooperative orientation for the 

rebinding of the DNA target. A proposed explanation of the shrinking is depicted in Scheme 3.1 

where there could be aptamers (which are crosslinked at the 5’ end) arranged towards the corners 

of the hydrogel allowing those aptamers and DNA target to easily bind with the first addition of 

the DNA mir21 target. The theory of cornered aptamer groups is assuming the hydrogels are 

made up of multiple layers of cubes within our network. Once the corners hybridize this could 

cause the hydrogel to shrink slightly allowing the next set of aptamers to bind to the target when 

more is added because they are in a closer orientation causing the hydrogel to collapse more as a 

result of each addition of DNA mir21 target. The shrinking response could be a result of 

percolation which would account for the larger than expected response of our hydrogels as 

compared to the above examples where the aptamers are fully crosslinked within the hydrogel. 

Percolation theory can be described where the solute molecules connect by pores that can 

diffuse.50   

For both the capillaries and the grating hydrogels, additional shrinking was observed each 

time more of the DNA mir21 solution was added to the hydrogels which is consistent with the 

theory. Data presented in Figure 3.21 shows that there is a shrinking response of our hydrogels 

each time more of the DNA mir21 target was added for the grating diffraction hydrogels and this 

effect was also seen for the capillary hydrogels (data not shown). After a certain amount of DNA 

mir21 is added to the hydrogels, the hydrogel stops shrinking possibly due to reaching a 

saturation point. The hydrogel is imprinted for a micromolar amount of the complex so once this 
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amount is reached within the hydrogel there should be no cause for the DNA mir21 target to 

rebind above that concentration.  

 

3.5 Conclusions 

 A new hydrogel sensor system was developed for a mir21 DNA mimic. The capillary 

imprinted hydrogel system was optimized giving an average response of 5.7 % shrinkage of the 

gel. Removing any of the components, such as the aptamers or the DNA mir21 target during the 

polymerization has a negative effect on the response of the gel, indicating that a fully complexed 

system is required (A1-DNA mir21-A2). When imprinting other sequences, such as the random 

or anti-sequence, the hydrogel had no response for the DNA mir21 mimic owing to the 

importance of the imprinted complex and the fully complimentary aptamers for recognition. Also 

of importance was the selectivity of the DNA mir21 imprinted gels that were only responsive to 

the DNA mir21 target, even with a similar sequence like the 5 spacer that had the same 

complimentary sequences with the addition of five thymine nucleotides as spacers in the middle 

of its sequence.   

 

Figure 3.21 Subsequent Shrinking Response of the Grating Hydrogels as more DNA mir21 

solution is added.  
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 The second sensor system studied was the MIP-GLaDiS sensors that had a micro- and 

macro-imprint. A new approach to the hydrogel stamping was employed using PETA and 

TMPTMP (TA) in the place of PDMS. The TA composite material is more hydrophilic which 

allowed for the effective and reproducible transfer of the pattern on the TA mold to the gel. The 

diffraction hydrogels displayed similar results as the capillary hydrogels was a 4.2 % response to 

the DNA mir21 target. The imprinted complex was shown to be imperative to the gels response 

to the DNA mir21 target which supports the necessity for an imprinted system. The swelling and 

shrinking response of the diffraction hydrogel can be seen by the change in the diffraction 

pattern relative to the addition and removal of the DNA mir21 target and could be used for 

multiple cycles. 

Possible explanations for the shrinking response of the hydrogel to the DNA mir21 target 

were believed to be caused by initial hybridization of cornered aptamers in closer proximity to 

bind the DNA target. As additional DNA mir21 was added the hydrogels subsequently shrank 

more in response. Both the capillary and diffraction grating gels were proven to be successful for 

their intended target and displayed the importance of imprinting with a short DNA sequence. 

These imprinted hydrogels also match detectable concentrations of other DNA detectors with a 

known detection in the nanomolar range.42,43,49 

3.6 Future Work  

 This system needs to, most importantly, be tested for mir21 in place of its DNA mimic to 

ensure that the system works for the desired target. Additionally, isotherm studies are necessary 

to determine the LOD for these imprinted hydrogels. Also, a sequence with just one or more 

mismatches should also be tested to identify the exact selectivity of our hydrogels.  
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Having an additional detection mechanism was of interest, especially to further the 

sensitivity of the hydrogels. One way to achieve this is to incorporate a fluorescent aspect into 

the hydrogel. Nile blue is a fluorescent dye typically used in gel electrophoresis as a stain to 

visualize DNA. Nile blue is among the phenoxazine family of dyes, which are known to have 

high fluorescence quantum yields and fluorescence at long wavelengths.   

 The Nile blue can be incorporated into the hydrogel network by adding a polymerizable 

group such as acrylamide or methacrylamide, similar to the aptamers (Scheme 3.1). Because the 

workup has been completed, the experimental section outlines the synthesis to modify Nile blue 

with methacrylamide. Although there was not adequate time to incorporate this dye into the 

sensor it at the current time it is still a desirable addition to improve the measuring response.   

3.7 Experimental Work 

Capillary Hydrogel preparations and polymerization 

 The hydrogel preparations first starts with making a Phophate Buffer Saline (PBS pH = 

7.4) solution which is then used to make the solutions of ammonium persulfate (APS), N,N’-

methylenebisacrylamide (MBAM, 6.6 x 10-2 M) and the monomers N-

isopropylacrylamide/acrylamide (NIPAM/AM 7.8 M). The corresponding amounts of DNA mir-

21 mimic and aptamers are added together in a microcentrifuge tube with half of the PBS 

solutions (30 µL) (Table 3.2) and placed in a 90°C water bath for two minutes. The DNA 

solution was then allowed to slowly cool to room temperature while remaining in the water bath 

to anneal and the remaining PBS (30 µL), APS (6.3 µL, 10 wt% in PBS buffer), MBAM (1 wt% 

in PBS buffer) and monomers solutions were added. Purging of the solution with nitrogen 

followed and TEMED (0.6 µL) was added last. Once the TEMED was placed into the tube, the 

solution was quickly vortexed and a capillary with dimensions 1.7mm inner diameter and 10cm 
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in length was dipped into the tube. The capillary pulled the hydrogel solutions up via capillary 

action, was sealed with parafilm and allowed to sit to complete polymerization. Prior to use, the 

capillary tubes were cleaned using piranha solution, rinsed well with deionized water and dried 

in a low temperature oven to remove any remaining moisture. All capillaries were done in 

triplicates.    

Grating Hydrogel solution prep and measurements 

 The TA grating molds were made by Michael Tullier in the Pojman research team and 

followed the procedure published.47 The diethylamine (16.1 mol %) was added to the PETA to 

form the trifunctional acrylate and the TMPTMP was then added in a 1:1 mole ratio (thiol to 

acrylate functional groups). The TA was added over the grating master with gratings 5 µm of 

negative photoresist SU-8 (purchased from MicroChem Corp.) on a silicon wafer. The masters 

used were cut and sized to 1.0 cm2 and a plastic backing was added to add depth to the resulting 

grating molds.  

 The new grating molds were rinsed with deionized water and dried with nitrogen and the 

hydrogel solution (prepared the same as the above capillary solution) was added into the well of 

the grating mold using a micropipette. A small glass slide was placed on top of the hydrogel 

solution, clamped and allowed to sit overnight. After approximately 12 hours the mold, hydrogel 

and glass slide were placed into a small pitre dish with water. After about 30 minutes the glass 

slide was removed and the hydrogel was cut from the mold.  

 Measurements were performed by placing the hydrogel onto a glass slide, another smaller 

glass slide was placed on top and the hydrogel was measured using a green laser pointer (532 

nm). A pink piece of paper was placed on the floor of the fume hood in which the laser apparatus 

was set up and a clear yellow diffraction pattern was observed. Because the diffraction grating 
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gels were shown to be stable after multiple cycles (Figure 3.19) the gels were made in singles or 

duplicates and the percent shrinkage was determined from three separate cycles between one or 

two hydrogels.  

Nile Blue Methacrylamide synthesis from Nile Blue A 

The synthesis of the Nile Blue methacrylamide (NBM) follows a published procedure 

(Scheme 3.2). Nile Blue A (NBA) (1 g, 2.74 mmol) is weighed into a 50 mL round bottom flask 

with a stir bar. This was followed by addition of DCM (50 mL) and trimethylamine (1.2 mL, 8.6 

mmol) which garnered a red/ maroon solution, then placed under nitrogen and an ice-bath. A 

solution of DCM (10 mL), methacrylic anhydride (0.6 mL, 4 mmol) and DMAP (20 mg, 0.175 

mmol) were added next and the solution was allowed to reach room temperature. 

 

After stirring for 22 hours, additional methacrylic anhydride (0.22 mL, 1.48 mmol) and 

triethyamine (0.4 mL, 2.86 mmol) were added and left to stir for an additional 26 hours. The 

solid was then washed with water and filtered leaving behind blue crystals. From there, ether was 

added yielding a dark red solution and 2 M HCl in diethyl ether was added which then turned the 

solution dark blue. The round bottom was cooled to -10°C and left to stir over night and the 

temperature was left to gradual warm to room temperature. The following day, after rotovaping 

the ether down, the crystals were filtered and washed with water. The remaining solid was dried 

in a vacuum oven at 25 °C yielding blue crystals.  

 

 

Scheme 3.2 Nile blue methacrylamide synthesis from Nile Blue A 
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APPENDIX A: EFFECTS OF INITIATORS ON ENANTIOMER 

SEPARATIONS 
 

A short study was done in the form of improved separations by changing the initiator to a 

compound that has some functional interactions with the template. The work described here is 

compared to a previous study that evaluated the enhanced performance of NOBE as an 

OMNiMIP as compared to the traditional imprinting approach with EGDMA and MAA using 

Azobisisobutyronitrile (AIBN, 17) as the initiator.1 Of interest was the polymers imprinted with 

(S)-(−)-1-(1-Naphthyl)ethylamine (NEA, 20) as the initiator. Unlike many of the imprinted 

material in the study, the EGDMA/MAA imprinted material performed better with an α’ of 2.54 

and NOBE with an α’ of 1.35 (Figure A.1).  

 

 The new initiator of interest was 4,4′-Azobis(4-cyanovaleric acid) (ACVA, 18). This new 

initiator has carboxylic acid groups on each end that could provide additional functional 

interactions between it and the NEA template. The results are displayed in Table A.1 where both 

a NOBE polymer (entry 3) was made with ACVA and EGDMA (entry 4) without an additional 

functional monomer like MAA. As compared to the results by Martha et al., the separation 

factors seemed to improve for both polymers made with ACVA. The NOBE polymer had an 

increased α’ value of 1.64 in comparison to entry 1 where the α’ was 1.35. Again, the same 

improvement was shown for the EGDMA polymer with ACVA with an improved α’ of 1.15 

 

Figure A.1 Structures of AIBN 17, ACVA 18, and R- and S-NEA 19 and 20, respectively. 



83 

 

from 1.0 shown previously with AIBN (entry 2). The only difference between the material used 

here and the polymers that were previously reported was the polymer size (at 20-25µm for entry 

1-2 and 25-38µm for entries 3-4) and this may have a slight effect on the separation. 

Table A.1 HPLC results for NOBE and EGDMA polymers imprinted with different initiators. 

Monomer Entry Initiator k’
S
 k’

R
 α’ 

NOBE* 1 AIBN 51.9 38.5 1.35 

EGDMA* 2 AIBN 2.2 2.2 1.0 

NOBE 3 ACVA 8.8 5.3 1.6 

EGDMA 4 ACVA 0.4 0.3 1.2 

* Polymers (entries 1-3) originally reported in (Reprinted (adapted) with permission from 

Sibrian-Vazquez, M.; Spivak, D. A. Molecular Imprinting Made Easy. J. Am. Chem. Soc. 2004, 

126, 7827-7833.)1, 20-25µm particles and 1mM analytes. Entries 3-6 were 25-38µm, analyzing 

1mM analytes. 

 

In conclusion, it was shown that the initiator can have an impact on the separation of 

analytes. The addition of the carboxylic acid groups on the initiator improved selectivity for both 

the NOBE and the EGDMA polymers. As the polymer size was different, more studies should be 

done to prove that there was an adequate improvement on the performance of the polymer 

materials.     
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APPENDIX B: LETTERS OF PERMISSION 
 

 



85 

 

 

  



86 

 

 

THE VITA 
 

 Britney Lyn Hebert was born and raised in Houma, La. She received her Bachelor’s 

degree in Chemistry from Nicholls State University in 2011. In August of 2011 she started the 

pursuit for her doctoral degree in chemistry from Louisiana State University. After joining the 

Spivak research group in the spring of 2012, she started investigating molecularly imprinted 

polymers for enantiomer separations and DNA hydrogel sensors. During her time at LSU she 

was awarded a GAANN fellowship and the Coates travel award. Also, Britney was an active 

leader in the Chemistry Graduate Student Council as a Treasurer from 2013-2014 and the 

treasurer of the Macromolecular Studies Graduate Student Association from 2014-2015. At the 

LSU summer commencement, August 5th of 2016, Britney anticipates the receipt of her degree 

of Doctor of Philosophy in Chemistry.  

 


