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ABSTRACT 

 Atomic Layer Deposition is a robust technique used to deposit high quality, 

conformal, and size-tunable ultrathin films on a substrate. This technique can be used to 

coat protective films on battery anode and cathode materials for enhanced performance. 

In the case of cathodes, the ultrathin film provides a protective barrier preventing cationic 

dissolution. In the case of anodes, the film acts as a supporting matrix reducing strain 

caused by volume expansions. In these study, we use this technique to coat an optimally 

thick conductive iron oxide film on tin oxide particles to improve its electrochemical 

performance at high current densities when tested in a practical voltage window. The 

conductive nature of the iron oxide film enabled faster kinetics at the interface for Li+ 

transfer that enabled improved performance.  
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SECTION 

1. INTRODUCTION 

1.1. LITHIUM-ION BATTERY ANODE MATERIALS 

 The use of lithium-ion (Li-Ion) batteries is widespread in our daily life in portable 

electronics, electric vehicles, power tools, and various electric grid applications. This 

influx into our daily lives has been possible due to Li-Ion battery technology’s 

advantages including ease of portability, high power and energy density, and high energy 

efficiency. With power and energy demand increasing, there is a need for this technology 

to push for more energy storage capacity, the higher rate at which this stored energy is 

delivered and longer battery life. A typical Li-Ion battery is made of a positive and 

negative terminals or electrodes, which are separated by a thin film polymer membrane 

(separator) to avoid a short circuit between them. The electrodes and separator are 

generally soaked in a liquid electrolyte (e.g., LiPF6 dissolved in ethyl carbonate and 

dimethyl carbonate) to facilitate Li+ ion transfer. The positive electrode or, cathode 

typically consists of a lithium transition metal oxide (e.g., LiCoO2) whereas the negative 

electrode or, anode consists typically of graphite. Once, an external connection is 

established between the two electrodes, chemical reactions convert chemical energy into 

electrical energy that flows past this external connection. Figure 1.1 illustrates the typical 

working of Li-ion battery. 

 When a Li-Ion battery is charging, Li+ ions are extracted from the cathode side 

and travel to the anode through the electrolyte where they get inserted into the anode 

structure. The supplied energy is used to deliver Li+ ions from the cathode to anode. 
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However, in the case of discharging, the reverse happens and electrons move from the 

anode to cathode in the external connection thereby resulting in useful work. 

 

 

Figure 1.1. An illustration of the charge-discharge process inside a Lithium-Ion battery 
with LiCoO2 as cathode and graphite as anode 
 

 Commercial lithium ion batteries prefer graphite or carbon as an anode material 

even though it was introduced more than 20 years ago.1 The intercalation of Li+ between 

graphene planes enables electrochemical activity in these materials. When this occurs, 

volume expansions occur, which can lead to exfoliation of graphite. Also, this results in a 

strain that can cause damage to SEI layer, thus reducing cell life. With the demand for 

higher energy density materials, new anode materials have been studied which have a 
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theoretical capacity much greater than that of graphite (~372 mAh/g). Tin oxide (SnO2) is 

one of such materials and has the potential to be commercialized owing to its natural 

abundance, low cost, and low environmental impact.2 SnO2 has a theoretical capacity 

almost twice as that of graphite (~782 mAh/g). The electrochemical activity in SnO2 is a 

result of conversion reaction followed by an alloying reaction as follows:3, 4 

SnO2 + 2Li+ + 2e-              SnO + Li2O (1) 

SnO + 2Li+ + 2e-                Sn+ Li2O (2) 

Sn + xLi+ + xe-                  LixSn (0 ≤ x ≤ 4.4) (3) 

Due to the alloying reaction, SnO2 experiences huge volume changes, which lead to loss 

of electrical contacts that cause a reduction in delivered capacity. Also, this is the reason 

why SnO2 fails when cycled at high current densities or for a large number of charge-

discharge cycles. In this work, an effort was made to improve the performance and life 

cycle of SnO2 at high current densities at both room temperature and high temperature 

(i.e., 55°C). 

 

1.2. ATOMIC LAYER DEPOSITION TECHNIQUE 

 Atomic layer deposition technique (ALD) can deposits robust, conformal, pin-

hole free, and size-tunable films on a substrate. The alternate dosing of precursors 

enables size tunability, which sets it apart from others deposition techniques such as 

chemical vapor deposition (CVD) and physical vapor deposition (PVD).5 The alternate 

dosing enables self-limiting surface reactions that drive the ALD process. In a typical 

ALD process, the reactor system is under very low pressure and one of the precursors is 

introduced into the reaction chamber where the substrate is already present. After some 
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time, the self-limiting surface reaction saturates the surface and then, the excess 

precursors and gaseous products are purged and the chamber is flushed using an inert gas. 

Then the second precursor is introduced and the same process is repeated. This completes 

one cycle of the ALD process, which results in the deposition of one monolayer. Figure 

1.2 illustrates this process for a typical alumina ALD process. 
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Figure 1.2. A typical alumina ALD process using trimethylaluminum and water as 
precursors 
 

 These advantages of ALD technique have made it a process of choice for coating 

ultrathin films on lithium ion battery materials that improve their electrochemical 

performance.6 ALD films have been coated on various cathode materials such as 

LiCoO2,7-9 LiMn2O4,10-12 and  LiMn1.5Ni0.5O4
13-15 for protection from undesirable 

reactions with the electrolyte thereby preventing dissolution. ALD coatings have been 

also used to increase the conductivity of the cathode materials.12, 16 In present times, ALD 

coating have been used on next-generation Nickel Manganese Cobalt (NMC) and Nickel 
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Cathode Aluminum (NCA) cathodes for mitigation of high voltage phase transitions.17 In 

the case of anode materials, such as Li4Ti5O12
18, Si19, 20, and SnO2,21, 22 ALD films were 

used to buffer volume expansions that improved their electrochemical performance. In 

this study, iron oxide films were coated on SnO2 particles by ALD to improve its 

electrochemical performance. Iron oxide was chosen, since iron oxide is 

electrochemically active and has been used as an anode with a theoretical capacity higher 

than that of SnO2.  
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PAPER 

I. Enhanced Cycle Life and Capacity Retention of Iron Oxide Ultrathin Film Coated 
SnO2 Nanoparticles at High Current Densities 

 

Sai Abhishek Palaparty†, Rajankumar L. Patel†, Xinhua Liang* 

Department of Chemical and Biochemical Engineering, Missouri University of Science 

and Technology, Rolla, MO 65409, USA 

† These authors contributed equally. 

* Corresponding author, Email: liangxin@mst.edu 

Abstract 

 Tin oxide (SnO2) has a high theoretical capacity (~782 mAh/g) but, it experiences 

large volume changes during charge and discharge cycles that cause rapid capacity fade, 

which limits its practical use as an anode material. In an attempt to solve this, we coated 

these particles with ultrathin electrochemically active iron oxide (FeOx) films that act as 

an artificial solid electrolyte interphase layer, thus stabilizing the SnO2 particles for better 

longevity of significantly improved performance at high current densities in a practical 

voltage window. Since there exists a tradeoff between species transport and protection of 

particles (expecting long life), a film with an optimum thickness was achieved by atomic 

layer deposition (ALD) of FeOx on SnO2 particles. With an optimum thickness of about 

0.24 nm after 20 cycles of iron oxide ALD (20Fe), an initial capacity of ~ 658 mAh/g 

was achieved at a high current density of 1,250 mA/g. After 1,000 cycles of  
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charge/discharge at 1,250 mA/g, the 20Fe sample showed a capacity retention of 94% as 

compared to 52% of the uncoated sample when cycled at room temperature; at 55 ºC, the 

capacity retention of the 20Fe sample was 93% compared to 33% of the uncoated sample. 
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1. Introduction 

 In recent times, there has been a thrust for improving battery electrode materials 

for use in applications that require high energy densities, long cycle life and high capacity 

retention. Traditional lithium ion batteries use graphite as anode material however, 

drawbacks include exfoliation and sensitivity to electrolyte that reduces its 

electrochemical performance. Several researchers have focused on using graphene as an 

alternative to graphite as it delivers better capacity and performance.1-3 However, the 

downside of using graphene is that its synthesis process is either complex or expensive. 

Other materials like Li4Ti5O12 and TiO2 have been investigated as alternative anode 

materials, but they deliver lower capacity than graphite.4, 5 Tin oxide (SnO2) has gained 

significant interest as an alternative to graphite as an anode material in lithium ion 

batteries (LIBs) due to its high theoretical capacity (~782 mAhg-1),6-9 which is 

approximately twice that of graphite (~372 mAhg-1).10 SnO2 is an ideal choice for LIB 

anodes owing to its natural abundance, low cost, and low environmental impact. 

However, it has yet to be commercialized because of its low cycleablity due to high 

volume variations (~250 %) that cause pulverization leading to loss of electrical 

contacts.11, 12  Many researchers have tried to use nanostructured particles to alleviate 

strain that causes these volume expansions.13-16 However, preparation of such ultra-small 

nanoparticles may not be commercially viable due to increased costs even though they 

show improvement in electrochemical performance. Another tactic is to provide a 

supporting matrix for the SnO2 particles in form of thin film coating.17-20 Reported studies 

of thin film coating mainly focused on liquid phase wet methods. However, these 

methods have some limitations, leading to poor endurance of electrochemical 
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performance due to non-uniform (non-conformal) or an excessively thick coating.21 On 

the contrary, an ultrathin film with a nanometer or sub-nanometer level thickness has 

demonstrated to induce stability and enhance electrochemical performance in battery 

electrode materials.22-25 

   Atomic layer deposition (ALD) is the process of choice for such ultrathin film 

growth as it enables conformal, pin-hole free, and high aspect ratio film formation.26 

These ultrathin ALD films increased the cycle life and capacity retention; however, 

normally there was a decrease in the initial discharge capacity of the ALD coated 

samples, as compared to the uncoated sample. In these studies, an ultra-thin film was 

generally used and the charge/discharge cycle were limited to small cycle numbers (<200 

cycles). This can be due to the fact that these films (e.g., Al2O3, ZnO and ZrO2) used in 

these studies were insulating and thus increased mass transfer resistance for Li+ transfer. 

There was a trade-off between capacity and cycling life due to the insulating properties of 

ALD films. Recently, we demonstrated that this dilemma could be solved by using 

conductive ultrathin cerium oxide films.27 The initial capacity of the optimal 3 nm CeO2-

coated LiMn2O4 particles showed an initial discharge capacity increase of 24% compared 

to the pristine one, and the capacity retention significantly improved to 96% and 95% 

after 1,000 cycles at room temperature and 55 ºC, respectively, when cycled at 1 C rate. 

This study showed that both high capacity and high cycling stability can be achieved by 

using suitable conductive thin film coating with an optimal thickness. 

 In this study, ultrathin iron oxide film is considered as a candidate to improve the 

performance of SnO2 nanoparticles, since iron oxide is electrochemically active and has 

been used as an anode with a theoretical capacity higher than that of SnO2.28-30 Also, iron 
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oxide is abundant in nature and is environmentally benign. Iron oxide thin film coating 

on SnO2 has been studied previously and it was found out that the synergy between iron 

oxide and SnO2 could stabilize its structure and improve its electrochemical 

performance.17, 20, 31-33 However, in these studies, the iron oxide films were prepared by 

liquid phase methods, and they were either too thick or not conformally coated on the 

SnO2 particles surface. In addition, these studies were limited to low cycle numbers of 

charge/discharge testing or tested at low current densities for capacity retention and/or 

cycle life. To the best of our knowledge, there has been no electrochemical study of 

ultrathin film of iron oxide coated on LIB electrode particles by ALD. In this study, we 

report the initial discharge capacity increase and long cycling life of the iron oxide ALD 

coated commercial SnO2 nanoparticles at both room temperature and elevated 

temperature when tested in a practical voltage window. 

 

2. Experimental  

A fluidized bed reactor, as described in detail elsewhere34 was used to perform ultrathin 

film coating of iron oxide on as-purchased SnO2 particles (<100 nm, Aldrich) by ALD. 

Ferrocene (C10H10Fe, 99%, Alfa Aesar) and oxygen gas were used as the precursors for 

the iron oxide ALD. The reaction temperature was 450 ºC. The reactor was operated at a 

low pressure of ~5 torr and the quality of fluidization was improved using two vibro 

motors. The vapor of solid precursor (ferrocene) was sent into the reactor by using a 

heating bubbler at a pressure of similar order of that of the system. The gas flow rates 

were controlled using MKS flow controllers. To avoid accumulation of ferrocene on the 

internal walls of the system and to prevent undesirable CVD (chemical vapor deposition) 
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reactions, the feed lines were maintained at ~150 ºC. The ALD coating process was 

similar to that applied in our recent publication.27 

 The particles were subjected to X-ray powder diffraction analysis in Philips X-

Pert Multi-purpose Diffractometer (MPD) using Cu Kα radiation (λ= 1.54056 Å) with 2θ 

ranging from 5 to 90° at a scanning rate of 1.4°/min. The coated particles were visualized 

using FEI Tecnai F20 TEM/STEM supported with an energy dispersive X-ray 

spectrometer system. The loading of Fe on coated samples was determined using 

inductively coupled plasma atomic emission spectrometer (ICP-AES). The 

thermogravimetric analysis (TGA) of the uncoated and the coated particles was 

conducted using a Q50 TGA/DSC (TA instruments) with a flowing oxygen atmosphere 

(40 mL/min) at a heating rate of 10°C /min up to 1,000°C. 

 The anode for the coin cell was prepared using 5 wt. % of PVDF binder dissolved 

in NMP, which was added to a mixture of 85 wt. % of anode material and 10 wt. % 

carbon black to form a slurry. Using a razor blade, this slurry was spread on a Cu foil 

(>99.9%, MTI corporation) uniformly mounted on a glass plate. This electrode composite 

was placed in an oven and dried under vacuum at 120 ºC to evaporate the solvent for 8 

hours. After that, disks of approximately 8-13 mm in diameter were punched and cold 

pressed. Two electrode CR 2032 coin cells were fabricated in an Ar glovebox using 

punched disks as active anode electrode and with Li metal (99.99%, Aldrich) as counter 

and reference electrode. The two electrodes were separated using a porous Celgard-2320 

separator composed of a 20 µm thick polypropylene (PP)/polyethylene/PP tri-layer film. 

Commercial electrolyte (LiPF6 in 1:1:1 volume ratio of EC: DMC: DEC) was used as 

purchased from MTI corporation. 
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 The prepared CR 2032 coin cells were subjected to galvanostatic charge-

discharge capacity testing at different current densities, capacity retention testing for 

1,000 charge-discharge cycles and ac impedance analysis at room temperature as well as 

at 55 ºC. An 8-channel battery analyzer (Neware Corporation) was used to measure 

charge/discharge capacity ranging from 0.5 to 3 V. Electrochemical impedance 

spectroscopy (EIS) of the prepared cells were performed using a BioLogic SP-150 

potentiostat and impedance analyzer. The impedance was measured over a frequency 

range of 0.01Hz - 1MHz and at a perturbation of 5 mV. Equivalent circuit models for the 

impedance spectra were fitted using EC-Lab software.  

 

3. Results and Discussion 

Different thicknesses of iron oxide films were coated on SnO2 nanoparticles by ALD. In 

an attempt to find an optimal thickness of iron oxide films on SnO2 particles, the particles 

were coated with 10 cycles (10Fe), 15 cycles (15Fe), 20 cycles (20Fe), 30 cycles (30Fe), 

and 100 cycles (100Fe) of iron oxide films. XRD analysis was performed on the 30Fe 

and 100Fe samples to determine the phase of iron oxide ALD films deposited on the 

SnO2 particles. In this study, the phase of the iron oxide in the ultrathin film cannot be 

interpreted without ambiguity (see Figure S1 in Electronic Supplementary Information). 

The TGA results were also inconclusive about the phase of iron oxide deposited by ALD 

on the SnO2 particles (see Figure 2 in Electronic Supplementary Information).   

Henceforth, it is referred as FeOx in the paper. Transmission electron microscopy (TEM) 

images of the 30Fe and the 100Fe samples are shown in Figure 1. In Figure 1a, the film 

on the 30Fe sample cannot be seen clearly, since the film is very thin, but energy 
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dispersive spectroscopy (EDS) spectrum of the 30Fe sample clearly indicates significant 

peaks for Fe, which confirm the presence of iron in the sample (see Figure S3a in 

Electronic Supplementary Information). For the 100Fe sample, a conformal film of ~1.2 

nm can be seen clearly (Figure 1b). Conformity is one of the characteristics of the ALD 

coating process.26, 27 The EDS spectrum of the 100Fe sample (see Figure S3b in 

Electronic Supplementary Information) shows stronger peaks for Fe as compared to the 

30Fe sample, since there was more FeOx loading with the increase in the number of ALD 

cycles. The growth rate of FeOx ALD film is estimated to be ~ 0.012 nm/cycle based on 

the TEM image of the 100Fe sample in this work. This growth rate is in good agreement 

with the results of previous studies of iron oxide film growth by ALD using ferrocene 

and oxygen as precursors.35 Brunauer–Emmett–Teller (BET) isotherms were obtained for 

the 30Fe sample using Quantachrome Autosorb-1. The surface area of the 30Fe sample 

was found to be 33.5 m2/g. Based on the surface area, assuming the iron oxide phase in 

the ultrathin film to be Fe2O3, and the percentage of Fe on the sample obtained from 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) (see Figure S4 in 

Electronic Supplementary Information), the expected thickness of the ultrathin film was 

found to be about 0.4 nm, which is very close to the thickness of 0.36 nm based on the 

growth rate of 0.012 nm/cycle. 

 Figure 2 depicts the galvanostatic discharge capacities of coin cells assembled 

from the UC, 10Fe, 15Fe, 20Fe, and 30Fe samples obtained using different current 

densities at both room temperature and 55 ºC. The measurements were carried out at 

different current densities of 50 mA/g, 125 mA/g, 250 mA/g, 500 mA/g, 1,250 mA/g, and 

2,500 mA/g and each for five cycles. In this study, we used the discharge cutoff voltage 
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to 0.5 V as a practical limit and the charge cutoff voltage to 3 V for testing the cycle life 

and capacity retention of our coated and uncoated samples. Cycling at room temperature 

and a low current density of 50 mA/g, the UC sample showed a discharge capacity of 

~744 mAh/g, which is close to the theoretical capacity of SnO2. The 10Fe, 15Fe and 20Fe 

exhibited higher initial discharge capacities as compared to the UC and the 30Fe sample 

at the current densities of 50 mA/g, 125 mA/g, and 250 mA/g. At high current densities 

(i.e., 1,250 mA/g), a clear distinction is seen in the performance of various samples. The 

UC sample performed poorest due to formation of solid electrolyte interface (SEI) at high 

current densities. The 10Fe, 15Fe, and 20Fe performed significantly well in terms of 

capacity retention as the ultrathin coating served as an artificial SEI layer at higher 

current densities. However, the 30Fe sample performed the poorest among the coated 

samples. A similar trend was observed at 55 ºC; however, the initial capacities of the 

10Fe, 15Fe, and 20Fe samples at the low current density of 50 mA/g were higher than 

those tested at room temperature. This could be resulted from high electrical and ionic 

conductivity, and low ohmic potential at high temperature for tin based electrodes.36  

 The SEI is very crucial for the cycle life of the LIB.37 This is because it forms a 

protective layer that prevents undesirable reactions with the electrolyte, but it grows 

thicker while cycling, which eventually slows the Li+ diffusion. Therefore, the ultrathin 

ALD film in our case can act as an artificial SEI layer thereby passivating the entire 

surface of the active material, and potentially stopping the formation of the growing 

organic SEI layer. This could be the reason for better performance of the coated samples 

as compared to the UC sample during cycling at high current densities of 1,250 mA/g and 

2,500 mA/g. Most of the previous ALD studies on battery electrode particles 
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demonstrated that this ultrathin coating could delay the transport of Li+, thus decreasing 

the specific capacity.21, 27 The reason is that the ALD films were insulating metal oxides 

in the previous studies. In this study, iron oxide was used as the coating materials. Iron 

oxide is electrochemically active and has been used as anode materials. In addition, iron 

oxide has a higher theoretical specific capacity as compared to tin oxide.29, 30 At a low 

current density of 50 mA/g, the 10Fe, 15Fe and 20Fe samples showed an improvement in 

initial capacity both at room temperature and at 55 ºC, when compared to the UC sample. 

This trend of increase in initial discharge capacity at higher temperature is in agreement 

with other studies on iron oxide/SnO2 nanocomposites.38, 39 The voltage testing window 

falls inside the electrochemical active region for iron oxide. This means elemental Fe was 

formed due to irreversible initial reaction between iron oxide and Li+. The reaction 

between SnO2 and Li+ yielded Sn and Li2O. This means there would be formation of 

Sn/Fe/Li2O matrix. The formation of Sn/Fe/Li2O matrix further increased the electronic 

conductivity.17 In one previous report of graphene/SnO2/Fe2O3 nanocomposites, the Sn 

acted as an inactive matrix for the iron oxide, which contributed most towards capacity.39 

However, in our case, the film is very thin and the amount of iron oxide is very less than 

that of the SnO2. Hence, it is very difficult to determine individual contribution of SnO2 

and iron oxide towards the capacity of the coated samples. 

  The exact reason for the poor performance of the 30Fe sample is not clear. This 

could be due to the increased mass transfer resistance of Li+ due to “excessive” thickness 

of the film. Similar thickness effect was observed for the case of LiMn2O4 particles 

coated with CeO2 films.27 However, 30 cycles of iron oxide is only about 0.36 nm thick 

(growth rate of 0.012 nm/cycle), which may seem too thin to be said excessively thick. 
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For example, in our recent studies, the optimum thickness of CeO2 films on 8 μm 

LiMn2O4 particles was 3 nm.27 Studies by Lee et al. showed that a 1.1 nm thick alumina 

coating on LiCoO2 (~400 nm) itself was too thick and increased Li+ diffusion resistance.40 

Studies by Guan and Wang of alumina ALD coated on micron sized LiMn2O4 powders 

showed that a film thickness of ~1.2 nm was too thick.41 Sun et al. showed that a ~1 nm 

thick film of ZrO2 on Li4Ti5O12 anode had an optimal performance.42 1.2 nm alumina is 

overly thick, while 3 nm of CeO2 is not, because the alumina film is insulating whereas 

CeO2 has high ionic conductivity and has been used as a solid electrolyte.43, 44 Hence, it 

can be said that the definition of “overly” thick film depends upon the nature of the film 

and the substrate. 

 Herein, the FeOx film of ~0.36 nm thickness may itself be too thick for the nano-

SnO2 particles in the 30Fe sample. Recent study on lithium ion diffusion mechanism in 

iron oxide electrode suggested that there existed three regions in the diffusion profile of 

intercalated iron oxide.45 The region consisting of Fe/Li2O was found to be the slowest 

for Li+ diffusion. In our case, the Li+ ion first reacted with the FeOx film before entering 

the SnO2 lattice and hence, Fe/Sn/Li2O matrix would form. With increase in the number 

of ALD coating cycles, the FeOx film got thicker, which in turn lead to more Fe/Li2O 

formation. Since, this is the region for the slowest diffusion for Li+, and with limited 

lithiation, it increased the mass transfer resistance in case of 30Fe sample that led to 

poorer performance as compared to the other coated samples at higher current densities. 

Hence, it can be said that the 30Fe sample has an “overly” thick ALD film. Studies to 

understand this mechanism in detail is being pursued. 
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 To see whether this ALD coating enhances the electrochemical performance in 

terms of capacity retention and cycle life of SnO2 at higher current densities, the samples 

were cycled at a high current density of 1,250 mA/g at both room temperature and at 55 

ºC (Figure 3). The FeOx coated samples (10Fe, 15Fe, and 20Fe) performed far better in 

terms of capacity retention. At room temperature, after 1,000 cycles of charge/discharge, 

the coated samples showed high capacity retention, ~91% capacity retention of the 10Fe 

sample, ~92% of the 15Fe sample, and ~94% of the 20Fe sample. This is because the 

ultrathin film was sufficiently thick and provided artificial SEI. Also, the formation of the 

electronic conductive in-situ Sn/Fe/Li2O matrix leads to a better capacity as compared to 

the UC sample even after a large number of charge-discharge cycles. In contrast, the 

30Fe, similar as the UC, experienced a severe capacity fade after only 350 cycles as 

compared to the other coated samples at room temperature. At room temperature after 

1,000 cycles, the capacity retention of the UC sample was about ~52%. The performance 

of 30Fe sample is even worse as it showed a capacity retention of only ~11% after 1,000 

cycles at this current density. This is because of the formation of thick SEI on the UC 

sample and the presence of “overly” thick FeOx film on the 30Fe sample.  

 At 55 ºC, a similar trend was observed but there was an increase in initial 

discharge capacity of the coated samples when compared to the testing at room 

temperature. The 10Fe sample showed a capacity retention of ~89%, compared to ~90% 

of the 15Fe sample and ~93% of the 20Fe sample after 1,000 charge/discharge cycles. 

The very high capacity retention over long cycling of these coated samples can be 

attributed to the formation of the stable artificial SEI layer provided by the ultrathin film. 

At higher temperature, the performance of the cell degrades faster.46 This is also 
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evidenced in form of reduced capacity retention during testing at higher temperature. The 

capacity retention of the UC and 30Fe sample at this temperature is ~33% and ~10%, 

respectively. 

 To further understand the effect of this ultrathin film on the performance of the 

SnO2 particles, testing was performed at lower current densities at both room temperature 

and 55 ºC. Figure 4 shows the results at a current density of 500 mA/g. The UC sample 

showed an initial discharge capacity of ~680 mA/g at room temperature. The 10Fe, 15Fe 

and 20Fe samples showed an initial discharge capacity of ~689 mAh/g, ~706 mAh/g and 

~720 mAh/g, respectively, at room temperature. The 10Fe, 15Fe and 20Fe samples 

showed excellent capacity retention of ~ 93%, ~ 93%, ~ 94%, respectively, even after 

1,000 cycles. With decrease in current density, there was more capacity retention for the 

UC and the 30Fe sample. The UC sample retained a capacity of ~66%, whereas the 30Fe 

sample retained a capacity of ~62% after 1,000 cycles. As in the previous case, the initial 

capacity of the samples further improved and the capacity retention decreased when 

tested at a higher temperature of 55 ºC. 

 The cycling performance of the cells were also tested at a current density of 250 

mA/g at both room temperature and 55 ºC (see Figure S5 in Electronic Supplementary 

Information). Compared to the testing at 500 mA/g, all the samples showed a further 

improvement in capacity retention at both room temperature and 55 ºC. These results 

suggest that the effect of the ultrathin film is more significant for the samples tested at 

high current densities as it passivated the particle surface by serving as an artificial 

conformal SEI layer and thus providing protection from undesirable reactions with the 

electrolyte. It is also interesting to note that during initial cycles, the 30Fe sample 



19 

 

performed better than the UC sample. However, with cycling the 30Fe sample performs 

poorer as compared to the UC sample (Figures 3 and 4). This could be due to the 

electrochemical active nature of the ultrathin film. As discussed earlier, when Li+ reacts 

with iron oxide, volume expansions occur.28-30 This could increase the stress on the 

ultrathin film. This increased stress could be the reason for poorer performance of 30Fe 

sample than that of the UC sample.  

 This series of testing indicates that the 10Fe, 15Fe, and 20Fe samples showed a 

very high capacity retention even after 1,000 cycles of charge/discharge at a high current 

density of 1,250 mA/g. This is a significant achievement as compared to the previous 

studies. For example, FeOx/SnO2 composite synthesized by El-Shinawi et al. showed a 

capacity retention of only ~20% after 100 cycles when discharged at a current density of 

400 mA/g.17 Heterostructures of iron oxide and SnO2 produced by Zhou et al. also 

showed significant capacity fade of about 75% only after 30 charge/discharge cycles at 

1,000 mA/g.32 In contrast, our 20Fe sample showed a significantly higher capacity 

retention of 94% even at a high current density of 1,250 mA/g after 1,000 cycles at room 

temperature. Ultra-small SnO2 nanocomposites have demonstrated enhanced performance 

in terms of capacity retention at high current densities.7, 16 However, the average size of 

the synthesized particles in these studies was less than <10 nm. Our study is unique as we 

demonstrated how capacity retention can be improved for much larger commercial SnO2 

nanoparticles (<100 nm) using optimal ultrathin film coating by ALD. 

 To understand the kinetics change due to the ultrathin film, EIS analysis was 

performed for the coated samples as well as the uncoated samples at room temperature 

and 55 ºC. Figure 5 presents the results tested at room temperature. The equivalent circuit 
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(Figure 5c), comprised of three resistances. Rohm refers to the uncompensated ohmic 

resistance between the working electrode and the reference electrode, i.e., Rf (the 

resistance for lithium ion mobility in the surface layer including SEI layer and/or surface 

modification layer), Cct (the ideal capacitance of the surface layer and the double 

layer), and Rct (the charge transfer resistance). W represents the Warburg impedance that 

outlines the lithium ion diffusion in the bulk material. The Warburg impedance and the 

lithium ion diffusion coefficent of the working electrode are inversely proportional. 

Though these values of resistances have no physical significance, it can be used to 

compare the kinetics of the coated and the uncoated samples. 

  At room temperature, in the EIS of the fresh cells, two significant semicircles for 

the UC sample, whereas only one major semicircle was observed for the coated samples. 

In the case of the coated samples, there was overlap between contribution of the charge 

transfer resistance at mid-high frequencies and the SEI layer/ultrathin coating 

contribution at high frequencies,47 which could be the reason for appearance of only one 

major semicircle in the EIS. From the impedance parameters tested at room temperature 

(Table 1), the 20Fe sample has the least charge transfer and warburg impedance values, 

when compared to other samples before and after 1,000 charge/discharge cycles. The 

coated samples showed low film resistance even after 1,000 cycles of charge/discharge, 

when compared to the UC sample. Out of all the tested samples, the 30Fe sample shows 

the highest diffusion resistance, which could be the reason for its poor performance when 

compared to the other coated samples. As compared to the 30Fe sample, the decreasing 

values of the charge transfer resistance and lower warburg impedance values of the 10Fe, 
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15Fe and 20Fe samples served as evidence to say that the 20Fe sample had an optimal 

fim thickness. 

 At 55 ºC, a similar trend was seen when compared to the EIS analysis at room 

temperature. For the coated samples only one semicircle was observed, whereas for the 

uncoated sample, two semicircles were present in the EIS analysis (Figure 6). Out of all 

the samples, the 20Fe sample showed the lowest charge transfer resistance and warburg 

resistance, as compared to the other samples after 1,000 cycles of charge/discharge 

(Table 2). These values are also lower when compared to the results tested at room 

temperature. This could be due to the increase in electric and ionic conducitivity of SnO2 

particles at higher temperatures. The 30Fe sample experiences the highest warburg 

resistance of all the samples. When compared to the room temperature testing, the charge 

transfer and the warburg resistance values decreased during the testing at 55 ºC. This 

supplements the improved performance of the coated samples at higher temperatures 

when compared to the samples tested at room temperature in terms of initial capacity. 

 From the EIS analysis at both room temperature and at 55 ºC, it is found that the 

20Fe sample has the optimal ALD film thickness. Iron oxide is conductive (see Figure S6 

in Electronic Supplementary Information). The lower values of the film resistance of the 

coated samples, as compared to the uncoated sample, after 1,000 cycles of 

charge/discharge is indicative of the ultrathin film serving as an artificial SEI layer. The 

lower charge transfer, film and warburg resistances of the 10Fe, 15Fe and 20Fe samples, 

as compared to the UC sample, could probably explain improved performace at high 

current densities. 
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4. Conclusions 

This work demonstrates that electrochemically active iron oxide films with an optimal 

thickness can significantly improve the life of cycling, and capacity retention of SnO2 

nanoparticles at high current densities when operated in a practical voltage window. 

From the electrochemical testing data at both room temperature and at 55 ºC, the 20Fe 

sample had the best performance in terms of capacity retention for long cycle life. At a 

current density of 1,250 mA/g, the coated samples (10Fe, 15Fe, and 20Fe) exhibited a 

capacity retention of at least ~90% after 1,000 charge/discharge cycles at room 

temperature and ~89% at 55 ºC, respectively. In contrast, the capacity retention of the UC 

sample at these conditions was ~52% and ~33%, respectively. The reason for such 

improvement can be attributed to the conformal supporting matrix provided by the 

electrochemically active iron oxide coating and the synergy between iron oxide and 

SnO2. The “overly” thick FeOx film of the 30Fe sample led to poorer performance as 

compared to the other coated samples. This work demonstrates the importance of ALD as 

a very promising technique in stabilizing LIB anode particles for improved performance 

for long cycle life in lithium ion batteries. 
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Figure 1. TEM images (a) 30 cycles and (b) 100 cycles of iron oxide ALD coated SnO2 
nanoparticles 
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Figure 2. Galvanostatic discharge capacities at different current densities of SnO2 
particles coated with various thicknesses of iron oxide ALD films between 0.5-3V at (a) 
room temperature and (b) 55 ºC 

(b) 

(a) 
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Figure 3. Galvanostatic discharge capacities of SnO2 particles coated with various 
thicknesses of iron oxide ALD films at 1,250 mA/g between 0.5-3V at (a) room 
temperature (b) 55 ºC 
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Figure 4. Galvanostatic discharge capacities of SnO2 particles coated with various 
thicknesses of iron oxide ALD films at 500 mA/g between 0.5-3V at (a) room 
temperature (b) 55 ºC 
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Figure 5. Electrochemical impedance spectra for uncoated and SnO2 particles coated with 
various thicknesses of iron oxide with (a) 0th cycle and (b) 1,000th cycle at room 
temperature, and (c) equivalent circuit used for fitting electrochemical impedance spectra. 
Inset shows the higher frequency (10 MHz-1 Hz) semi-circle region 

(a) 

(c) 

 

(b) 
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Figure 6. Electrochemical impedance spectra for uncoated and SnO2 particles coated with 
various thicknesses of iron oxide with (a) 0th cycle and (b) 1,000th cycle at 55 ºC. Inset 
shows the higher frequency (10MHz-1Hz) semi-circle region 
 

 

(a) 

(b) 
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Table 1. Impedance parameters using equivalent circuit for EIS spectra at room 
temperature 
 
 

 

 

 

Table 2. Impedance parameters using equivalent circuit for EIS spectra at 55 ºC 
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Supporting Information 

 

Figure S1. XRD spectra of the uncoated (UC), 30 cycles of iron oxide ALD (30Fe), and 
100 cycles of iron oxide ALD (100Fe) coated SnO2 particles. * represents new peaks 
with low intensity  
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Figure S2. Thermogravimetric analysis (TGA) of the uncoated (UC), 30 cycles of iron 
oxide ALD (30Fe), and 100 cycles of iron oxide ALD (100Fe) coated SnO2 particles 
performed under O2 with a step increase of 10°C/min 
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Figure S3. EDS spectra of (a) 30Fe, and (b) 100Fe coated SnO2 particles 
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Figure S4. Fe content versus the number of iron oxide ALD coating cycles, as obtained 
from ICP-AES analysis 
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Figure S5. Galvanostatic discharge capacities of SnO2 particles coated with various 
thicknesses of iron oxide ALD films at a current density of 250 mA/g between 0.5-3 V at 
(a) room temperature and (b) 55 ºC 

(a) 

(b) 
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Figure S6. (a) Arrhenius plot of uncoated and 15Fe, 30Fe, 100Fe coated SnO2 particles 
for the effects of temperature on conductivity, (b) equivalent circuit for impedance 
spectra 
 

 

Iron oxide film phase characterization 

XRD analysis was performed on the 30Fe and 100Fe samples to determine the phase of 

iron oxide ALD films deposited on tin oxide particles. The XRD spectra of the 30Fe and 

100Fe samples were compared to that of the uncoated (UC) sample (Figure S1). In both 

spectra, the diffraction peaks at 26.5, 33.8, 38.2, 51.8, 54.8, 58.2, 61.7, 64.8, 66.1, 71.8 

and 78.8º depict the (110), (101), (200), (211), (220), (002), (310), (112), (301), (202) 

and (321) crystal planes of the rutile phase SnO2 (JCPDS No. 41-1445). The XRD 

analysis showed that there was no significant difference between the spectra of the UC 

(a) 

(b) 
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and 30Fe samples. The observation of similarity in XRD spectra of iron oxide coated and 

uncoated SnO2 particles was also reported by El-Shiwani et al.1 However, the XRD 

analysis of the 100Fe sample showed evidence of low intensity new peaks (denoted by * 

in Figure S1) at 30.9 and 61.8º, corresponding to (220) and (440) crystal planes of Fe3O4 

(JCPDS No. 75-0033). These peaks also match with (220) and (440) planes of α-Fe2O3 

(JCPDS No. 80-2377). Hence, in this study, the phase of the iron oxide in the ultrathin 

film cannot be interpreted without ambiguity. The other low intensity new peak at 37.9º 

can match with any form or phase of iron oxide. Khalr and coworkers2 also observed that 

XRD spectra of thin iron oxide coating on fluorine doped tin oxide (FTO) by ALD had 

weak signals for iron oxide and hence, the phase could not be interpreted without 

ambiguity. 

 Thermogravimetric analysis (TGA) under O2 with a step increase of 10°C/min 

was performed on the 30Fe and 100Fe sample to interpret the phase of iron oxide (Figure 

S2). The TGA curve of the UC sample was used as a baseline to compare the 30Fe and 

the 100Fe samples. For all the samples, the initial weight loss occurred due to removal of 

physically adsorbed water. The TGA curves of the 30Fe and the UC samples show a total 

weight loss of ~1.6% at 400°C, which is mainly due to loss of physically adsorbed water 

(< 200°C) and dehydration of surface hydroxyl groups (> 200°C). Above 400°C, the 

curve remains stable with no apparent weight loss or gain. In case of the 100Fe sample, 

the total weight loss was higher at ~3%, most of which had already occurred at 400°C. 

Above this temperature, the curves show no apparent weight loss or gain. If there was 

mass gain, the phase of iron oxide would be FeO or Fe3O4 as there would be mass gain 

from its oxidation. The oxidation of FeO to Fe3O4 or Fe3O4 to Fe2O3 normally occurs 



40 

 

above 120°C and 200°C in presence of oxygen respectively. However, there was no mass 

gain observed in the TGA curves of both the 30Fe and the 100 Fe samples. Theoretically, 

by using the content of Fe from the ICP-AES data and assuming the film to be entirely 

Fe3O4, the expected mass gain in case of the 30Fe and the 100 Fe samples is 0.19 % and 

0.38 % respectively. Assuming the film to be entirely FeO, the mass gain in case of the 

30Fe and the 100 Fe samples is 0.59 % and 1.14 %, respectively. This expected mass 

gain is less than the mass loss of water removal and hence cannot be seen in the TGA 

curves. The higher mass loss in case of the 100Fe sample was due to presence of more 

surface hydroxyl groups because of thicker iron oxide film. Herein, since the phase of 

iron oxide could not be confidently identified, which is similar to the XRD results and 

hence, it is referred as FeOx in the paper. 

 

Conductivity measurements 

Pellets of only UC, 15Fe, 30Fe and 100Fe samples were prepared for mixed ionic and 

electronic conductivity measurements. The ac complex plane impedance experiment as 

described in our previous work was conducted on these samples.3 The impedance planes 

were obtained using the same impedance analyzer that was used to measure the EIS 

spectra. Figure S6b depicts the equivalent circuit that was used to fit the impedance 

spectra. Out of all the samples, the 100Fe sample showed the highest mixed conductivity 

(Figure S6a). The conductivity plot is found to be linear and to obey the Arrhenius 

equation, 

σ ∙ T = σ0 ∙ exp �
−Ea
kBT

� 
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where, σ0 is the pre-exponential factor, kB is the Boltzmann contant, T is the absolute 

temperature, and Ea is the activation energy for Li ion movement. Figure S6a shows the 

direct corelation between the mixed conductivity and the temperature (a linear Arrhenius 

plot). Since the testing temperature were limited to 328 K, there was no phase or 

structural change observed during the measurements. 

 

References 

1. H. El-Shinawi, A. S. Schulze, M. Neumeier, T. Leichtweiß and J. Janek, The 
Journal of Physical Chemistry C, 2014, 118, 8818-8823. 

 
2. B. M. Klahr, A. B. F. Martinson and T. W. Hamann, Langmuir, 2011, 27, 461-468. 
 
3. R. L. Patel, H. Xie, J. Park, H. Y. Asl, A. Choudhury and X. Liang, Advanced 

Materials Interfaces, 2015, 2, 1500046 
 
 

 

 

 

 

 

 

 

 

 



42 

 

SECTION 

2. CONCLUSION AND FUTURE WORK 

 

 The optimally thick iron oxide coated sample showed excellent performance at 

high current densities for long charge-discharge cycles in a practical voltage window. 

The enhancement of kinetics for Li+
 at the interface due to the conductive film coated by 

ALD process is novel and can be applied to other Li-ion battery cathode and anode 

materials. 

 Even though much of alloying reaction for tin oxide occurs well below tested 

practical voltage window, tin oxide delivered near theoretical capacity. It is proposed that 

the irreversible conversion reaction was partially or completely reversible that 

contributed to the delivered capacity. The mechanism has to be investigated for a better 

understanding of tin oxide’s electrochemical performance in the practical voltage 

window. Also, the effect of different voltage windows on tin oxide’s electrochemical 

performance needs to be studied. 
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