
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2016

Investigating the Structure of the Papain-Inhibitor
Complex using SPR and NMR
Margaret Sara Thomasson
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Thomasson, Margaret Sara, "Investigating the Structure of the Papain-Inhibitor Complex using SPR and NMR" (2016). LSU Doctoral
Dissertations. 493.
https://digitalcommons.lsu.edu/gradschool_dissertations/493

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/493?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


INVESTIGATING THE STRUCTURE OF THE PAPAIN-INHIBITOR 
COMPLEX USING SPR AND NMR 

 
 
 
 
 
 

 
 

 
A Dissertation 

 
Submitted to the Graduate Faculty of the 

Louisiana State University and 
Agricultural and Mechanical College 

in partial fulfilment of the 
requirements for the degree of 

Doctor of Philosophy 
 

in 
 

The Department of Chemistry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
Margaret Sara Thomasson 

B.S., College of Charleston, 2010 
August 2016  



ii 
 

 

 

 

 

For Mom and Dad, who challenge, love, and encourage me. 

For Curry, who picks me up the most.  

For everyone who reminded me that I could – Guess what? I did. 

 

 

“Think for yourself, and question.” – Lorin Ashton  

 

  



iii 
 

ACKNOWLEDGMENTS 

 It takes a village to raise a child, so I suppose it makes sense that it would take an 

incredible network of people to help a 20-something survive graduate school. 

Allow me to begin by thanking Dr. Megan Macnaughtan, my advisor. Without her 

support, guidance, and extreme patience, I would not still be here. Joining her research group 

pulled me out of my comfort zone and away from the kind of chemistry I knew. It was difficult 

(and I know I whined about it at least a few times) but in the end, I’m glad it happened. To my 

labmates, Abigael, Amid, Huimin, and Thilini: it has been a pleasure to share lab space with you 

all. I know you will all find success wherever the future takes you. Dr. Octavia Goodwin, you are 

a brilliant scientist, and a great friend. Stay awesome. 

To Tsu, my Someone, who was willing to call me at 2am and tell me to wake up and get 

back to work: you’ve stuck with me ever since, helping me carry on through all of the blood, 

sweat, and tears that have gone into this research these past few years. Thanks, partner. I love 

you. 

 Is it silly to thank the internet? I feel I should. Thank you, internet. You allowed me to 

contact my precious people from all corners of the world, which is the best source of sanity. 

Thank you especially to Curry, Saffron, Brenna, Brona, Tony, Lela D, Emily, Jchan, Alicia, 

Lacy, Lysa, Kelsey, Paulina, Ryin… Some were here from the beginning, others joined along the 

way, but all of you have helped me through this. It’s impossible to name everyone who matters. I 

wish I could.   

I doubt my parents knew for certain they had a scientist to raise, they were likely too 

focused on the nearly impossible task of keeping her alive and well – no matter how many trees 

she fell from, how many crosswalks she ignored, how hard she fought against doing what she 

was told, or how many tears she cried on their shoulders. This is for them, their love and support. 



iv 

Thank you, everyone. I love you all. 



v 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS .......................................................................................................... iii 

ABSTRACT .............................................................................................................................. viii 

CHAPTER 1: BACKGROUND ...................................................................................................1 
1.1. The Importance of Protein Structure in Protein Function .................................................1 
1.2. Protein-Protein Interactions ..............................................................................................1 
1.3. Cysteine Proteases and Their Inhibitors ...........................................................................2 
1.4. L. mexicana ICP – Structural Conservations in Lieu of Sequence Consistency ..............3 
1.5. The Papain-ICP Complex .................................................................................................5 
1.6. Conclusion ........................................................................................................................6 
1.7. References .........................................................................................................................7 

CHAPTER 2: INVESTIGATING THE EFFECTS OF STERIC HINDRANCE ON PAPAIN-ICP 
BINDING USING SURFACE PLASMON RESONANCE ........................................................9 
2.1. Introduction .......................................................................................................................9 
2.2. Materials  ..........................................................................................................................9 
2.3. Expression and Purification of L. mexicana ICP Mutants ..............................................10 
2.4. Purification of Papain for SPR ........................................................................................11 
2.5. Reductive Methylation of Papain ....................................................................................11 
2.6. Study of Papain-ICP Interaction with SPR .....................................................................12 
2.7. Results .............................................................................................................................13 
2.8. Discussion .......................................................................................................................16 
2.9. Conclusion ......................................................................................................................17 
2.10. References .......................................................................................................................18 

CHAPTER 3: STRUCTURE ELUCIDATION OF THE PAPAIN-ICP COMPLEX USING 
PARAMAGNETIC RELAXATION ENHANCEMENT NMR ................................................19 
3.1. Introduction .....................................................................................................................19 

3.1.1. Using NMR to Study Protein Complexes ...........................................................19 
3.1.2. Paramagnetic Relaxation Enhancement NMR in Protein Complex Analysis ....20 

3.2. Materials .........................................................................................................................21 
3.3. Expression and Purification of L. mexicana ICP Mutants ..............................................22 
3.4. Spin Labeling of ICP ......................................................................................................22 
3.5. Reductive Methylation of Papain ....................................................................................22 
3.6. Instrumentation ...............................................................................................................23 

3.6.1. EPR of ICP for Determination of Percent of Sample Labeled ...........................23 
3.6.2. NMR Analysis of the Papain-ICP Complex  ......................................................24 

3.7. Results .............................................................................................................................24 
3.8. Discussion  ......................................................................................................................27 
3.9. Future Work ....................................................................................................................29 
3.10.  Conclusion ......................................................................................................................30 
3.11. References .......................................................................................................................31 



vi 

CHAPTER 4: DEVELOPING AN AFM TECHNIQUE TO OBSERVE PROTEIN-PROTEIN 
COMPLEXES .............................................................................................................................33 
4.1. Studying Protein Complexes using AFM .......................................................................33 
4.2. Materials .........................................................................................................................34 
4.3. Expression and Purification of L. mexicana ICP Mutants ..............................................34 
4.4. Creation of Nanopatterned Surfaces ...............................................................................35 
4.5. Attachment of ICP to Nanopatterned Substrates for AFM .............................................37 
4.6. Height Confirmation of ICP with Mica Thin Films........................................................37 
4.7. Study of Papain-ICP Interaction with AFM ...................................................................37 
4.8. Instrumentation ...............................................................................................................38 
4.9. Results .............................................................................................................................38 
4.10. Discussion .......................................................................................................................41 
4.11. Future Work ....................................................................................................................42 
4.12. Conclusion ......................................................................................................................43 
4.13. References .......................................................................................................................44 

CHAPTER 5: MICROSCOPY BASICS AND THE STUDY OF ACTIN–ACTIN-BINDING 
PROTEIN INTERACTIONS......................................................................................................46 
5.1. Introduction .....................................................................................................................46 
5.2. Fluorescence Microscopy ...............................................................................................47 

5.2.1.  Fluorescent Speckle Microscopy .......................................................................48 
5.2.2.  Advantages of FSM ...........................................................................................49 
5.2.3.  Study: Correlation of Actin Assembly with a GFP-p34 Signal .........................49 
5.2.4.  Total Internal Reflection Fluorescence Microscopy ..........................................51 
5.2.5.  Advantages of TIRFM .......................................................................................52 
5.2.6.  Study: Assembly of F-Actin Barbed Ends in Association with Formins ..........52 
5.2.7.  Fluorescence – Conclusion ................................................................................54 

5.3. Atomic Force Microscopy ..............................................................................................55 
5.3.1.  Advantages of AFM ...........................................................................................55 
5.3.2.  Study: AFM of F-Actin Remodeling When Bound by Drebrin A .....................55 
5.3.3.  Study: Hand-Over-Hand Motion of Myosin V on F-Actin ...............................57 
5.3.4.  AFM – Conclusion .............................................................................................59 

5.4. Transmission Electron Microscopy ................................................................................59 
5.4.1.  Cryo-Electron Microscopy.................................................................................60 
5.4.2.  Advantages of CryoEM .....................................................................................61 
5.4.3.  Study: Remodeling of Actin Filaments by ADF/Cofilin Proteins .....................61 
5.4.4.  Cryo-Electron Tomography ...............................................................................62 
5.4.5.  Speculation: CryoET for the Study of Actin-ABP Complexes .........................63 
5.4.6.  TEM – Conclusion .............................................................................................63 

5.5. Looking Forward: Correlative Light/Electron Microscopy ............................................64 
5.6. Discussion .......................................................................................................................64 
5.7. References .......................................................................................................................65 

APPENDIX .................................................................................................................................72 
A1. Letter of Permission – Elsevir License Terms and Conditions ................................72 



vii 

A2. Supplementary Figures: Biacore SPR Screenshots (Chapter 2) ..............................77
A3. Supplementary Figures: AFM Images  (Chapter 4) .................................................79 

VITA .........................................................................................................................................81 



viii 

ABSTRACT

Cysteine proteases (CPs) are enzymes with a nucleophilic thiol in their active sites. 

Inhibitors of cysteine proteases (ICPs) occur naturally in bacterial pathogens and some protozoa. 

In parasites, ICPs are often virulence factors, contributing to the formation and survival of 

amastigotes within host cells. These amastigotes have higher CP activity, therefore making both 

ICPs and CPs potential drug targets. Despite great genetic variability, ICPs contain highly 

conserved structural features, including a series of defined loops that play a significant role in 

binding CPs. Papain, a CP from Carica papaya, complexes with ICP from Leishmania

mexicana. Although the individual 3-D structures of ICP and papain have been determined, as of 

this work, the structure of the papain-ICP complex has only been predicted, not solved.  

This research details the development of a technique for determining quaternary structure 

of the papain-ICP complex using paramagnetic relaxation enhancement NMR (PRE-NMR). A 

paramagnetic tag (MTSL) was added to various cysteine-mutants of ICP to measure distances to 

reductively 13C-methylated papain. The modification of ICP with MTSL was quantified using 

EPR, and the effects of labeling on the binding kinetics of papain and ICP were determined using 

SPR. 13C-methyl peak perturbations due to PRE were observed when papain was bound to spin-

labeled E102C-ICP and K27C-ICP. Intermolecular distances were predicted using modeling 

software and a working model of the complex was created. Data from additional mutants will 

help to further determine complex structure and perfect the model. 

The penultimate chapter of this dissertation includes work towards the development of a 

method for studying protein-protein interactions using atomic force microscopy. Papain-ICP was 

used as a model system, with the intention to apply this method to the study of another system: 

filamentous actin (f-actin) and the actin-binding domain of abelson tyrosine-protein kinase 
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(ABL2-FABD). The creation of nanopores on an AFM sensor chip surface was successful. ICP 

monomers bound selectively into the pores. Attempts to form the papain-ICP complex on the 

chip surface were unsuccessful, and future work is needed to perfect this method. The final 

chapter of this dissertation is a literature review outlining previous work in this area.  
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CHAPTER 1: BACKGROUND 

1.1. The Importance of Protein Structure in Protein Function 

Protein structure is categorized by four tiers: primary, secondary, tertiary, and quaternary 

(1). Primary structure, the amino acid sequence of a protein, gives information on the chemical 

properties of the protein at any position along the protein chain. Each amino acid residue has a 

different chemical structure, therefore different types of chemistry occur at different positions 

along the protein chain. Secondary structure refers to the formation of beta sheets or alpha 

helixes along the protein chain, or to unstructured regions referred to as loops. Tertiary structure 

refers to the interaction of secondary structural elements, causing the protein to fold. This is the 

shape the protein takes in its natural, functional state. The final tier of protein structure, 

quaternary structure, describes the way that two proteins bind to form a complex.  

Protein function is dependent on the structure of the protein (1). In order for proteins to 

carry out their functions, they often must be folded in a specific conformation that directly aids 

activity. For example, enzyme activity is dependent on the position of amino acids in the active 

site and their availability to bind to other proteins or small molecules. If the active site is 

hindered, blocked, or altered due to improper folding, binding will not occur. The more that is 

known about the structure of a protein, the more our understanding about its function in 

biological processes increases.  

1.2. Protein-Protein Interactions 

Over 80% of proteins function through complex formation in biological systems (1). 

Protein-protein interactions dictate the function and activity of individual proteins, as well as 

their use in overall processes. This significant impact makes the study of these interactions 

imperative for biochemical and biomedical research. Potential drug targets can be identified 
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through the study of protein-protein interactions, which can lead to the development of disease 

treatments, therapies, regulations, or vaccines (2).   

1.3. Cysteine Proteases and Their Inhibitors 

Cysteine proteases (CPs) are enzymes that degrade proteins by reacting with basic side 

chains of adjacent amino acids, typically histidine (3). They have a molecular mass in the range 

of 21-30 kDa. The family of CPs that has been the most extensively characterized is the papain 

family, (3) which is comprised of CPs that are structurally related to papain, a CP naturally 

present in the papaya fruit (Carica papaya). Papain is a 23.4 kDa protein with 212 residues. It is 

extracted from the latex of the unripe fruit and is used in many health and beauty products, such 

as teeth whitening and skin care. All CPs in the papain family contain a two-domain structure 

with an active site between them containing the catalytic residues of cysteine-25 and histidine-

159 (4). 

Figure 1.1: (A) The structure of papain from Carica papaya, from the Protein Data Bank, ID#: 
9PAP. (B) Zoom: atoms shown are the catalytic residues C25 and H159, located on either side of 
the catalytic cleft. Standard color convention is used: red for hydrogen, yellow for sulfur, blue 
for nitrogen, gray for carbon. 

Protease inhibitors are molecules that inhibit protease functions. Many of these are 

proteins that naturally occur. In 2004, Rawlings et al. proposed a classification system to better 

streamline the availability of and access to information about protease inhibitors (5). This system 
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is organized first by assigning the inhibitors to 85 families (as of 2015) based on similarities in 

amino acid sequence. Further classification involves the grouping of families into clans when 

there is evidence that members of two families are distantly related to each other through tertiary 

structure. This classification system is available as a database that can be accessed electronically. 

(6) 

Cysteine protease inhibitors are proteins that specifically inhibit the activity of CPs. 

Multiple clans and families of protease inhibitors exhibit activity for papain-like CPs, such as the 

cystatin super-family (clan IH, family I25) (7) and clan IX, family I31 (8). Recently, the 

chagasin family (clan I-, family I42) has been found to also inhibit papain-like CPs in both 

parasites and mammals (9). Members of family I42 are specifically called ICPs. According to the 

MEROPS database, family I42 contains 168 protein sequences. Of these proteins, four were 

given MEROPS identifiers, signifying that enough is known about the protein to merit being 

given an identifier. This could be information such as one or more amino acid sequence, or 

information about substrate specificity (7). Two of these proteins also have PDB entries: 

chagasin and amoebiasin-2. It has also been found that inhibition is reversible and tight-binding 

(9). Family I42 family members appear in some parasitic protozoa (such as Trypanosoma cruzi), 

and some bacteria (such as Pseudomonus aeruginosa). Nevertheless, these proteins do not appear 

to be similar in amino acid sequence, but there is evidence that some highly conserved structural 

motifs between ICPs are what contribute to their activity (10). 

1.4. L. mexicana ICP – Structural Conservations in Lieu of Sequence Consistency

Though ICPs from protozoa and bacteria share only a low percentage of sequence 

homology, they are all effective inhibitors of papain-like CPs due to similar tertiary structures at 

the point of interaction. According to Sanderson et al., there are three highly conserved sequence 
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motifs: LXS/GNPTTGY/FXW, L/MV/LGA/XGG, and LV/XYXRPW/F (11). These motifs may 

be involved in binding papain-like CPs, pointing to the formation of similar tertiary structure. It 

has also been determined that the addition of a 6x-His-tag to the N-terminus of ICPs does not 

affect inhibition. This information suggests that, unlike the cystatin family of cysteine protease 

inhibitors (family I25) (12), the N-terminal region is not involved in ICP-CP interaction for 

family I42 ICPs .  

Figure 1.2: The structure of ICP from L. mexicana, from the Protein Data Bank. (ID#: 2C34) 
Highlighted are the three conserved structural motifs: loop B-C, GNPTTGY (magenta); loop D-
E, MVGVGG (green); and loop F-G, RPF (yellow).  

A clan I-, family I42 ICP from the parasite Leishmania mexicana was used in this study. 

This ICP appears to regulate enzyme activity in the host that the parasite infects, making it a 

strong virulence factor for the parasite. Over-expression of ICP in the parasite shows a 

significant decrease in virulence in vivo. Interestingly, the infectivity of ICP null mutants in mice 

was reduced as well (13). Consistent with the observation that ICPs have low sequence 
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homology, L. mexicana ICP has only 31% identity with ICP from T. cruzi, and 25% identity with 

ICP of P. aeruginos (11). Its structure was determined by NMR by Brian Smith and coworkers in 

2006 (10). They confirmed residues key for inhibitory activity and created a preliminary model 

of its possible interaction with both papain and a L. mexicana CP known as CPB (14). In 

solution, ICP adopts an immunoglobulin-like fold. It contains seven beta-strands, with one sheet 

formed by anti-parallel strands B, E, and D. The other is formed by parallel strands G, F, and C, 

along with strand A in parallel to strand G. These beta-sheets surround a hydrophobic core of 

other residues. The three highly conserved motifs appear once again here, with all three located 

in the loops at one end of the molecule, which suggests the CP-binding site. Furthermore, 

residues in the D-E loop are critical for CP-binding, as proteins with mutations in the D-E loop 

lacked activity toward the native CP in L. mexicana.   

1.5. The Papain-ICP Complex 

Although L. mexicana ICP does not encounter papain naturally, given their separate 

natural environments, ICP and papain bind in a tight-binding 1:1 ratio. The papain-ICP complex 

has been previously modeled by Brian Smith, et al, and is shown in Figure 1.3 (10). The model 

was constructed using information derived from chemical shifts in NMR spectra when ICP is 

bound to papain, and was supplemented with information from the crystal structure of papain in 

complex with stefin B (Protein Data Bank ID#: 2CIO), another cysteine protease inhibitor in the 

same family. Very few amino acids of ICP are resolved in the x-ray structure, and more 

information that is specific to the interaction between papain and ICP is needed. Additionally, 

computational data sets disagree on whether loop B-C or D-E of ICP is the more important loop 

in inhibiting papain or other CPs (10). When the work detailed in this dissertation began, ICP 

was unique. Although a homologous structure has been found since the project began, (15) as of 
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this work, the structure of the papain-ICP complex has not yet been fully solved. Because CPs 

are ideal drug targets for many neglected diseases (for example, leishmaniasis, which is caused 

by the bite of the L. mexicana sand fly), it is important to fully understand the interaction of ICPs 

and their CPs.  

Figure 1.3: A model of the complex of L. mexicana ICP and papain. Adapted from Smith, et al. 
and used with permission (10). 

1.6. Conclusion 

The work in this dissertation has two goals. The first goal is to develop a method to 

determine the interaction surface on a cysteine protease inhibitor for binding the cysteine 

protease papain. Surface plasmon resonance (SPR) was used for method development and 

analysis. The second goal of this dissertation is to determine the structure of the papain-inhibitor 

complex using paramagnetic relaxation enhancement NMR (PRE-NMR), which will give us the 

data we need to determine the quaternary structure of the complex.  
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The penultimate chapter of this dissertation involves the development of an AFM 

technique to observe protein-protein interactions. The papain-ICP complex was used as a model 

for method development with the intention of applying this technique to studying the complex 

formed between the actin binding domain of abelson tyrosine-protein kinase (ABL2-FABD) and 

filamentous actin (F-actin). Finally, the dissertation concludes with a review of microscopy 

basics for the study of actin with actin-binding proteins, which was previously published in 

Analytical Biochemistry volume 443, issue 2 (16). 
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CHAPTER 2: INVESTIGATING THE EFFECTS OF STERIC HINDRANCE ON 

PAPAIN-ICP BINDING USING SURFACE PLASMON RESONANCE 
 

2.1. Introduction 

 Papain is a cysteine protease (CP), which is an enzyme with a nucleophilic thiol (cysteine 

residue) in its active site to cleave peptide bonds (1). CPs are often virulence factors, which 

makes them potential drug targets (2). Inhibitors of cysteine proteases (ICPs) contain highly 

conserved structural features, suggesting important regions for ICP-CP interactions (3). Most of 

these sites are conventionally predictable, but complex structure, steric hindrance, or properties 

of the binding site can all affect ICP-CP interactions. Additionally, modifications that are 

necessary to study the papain-ICP complex with NMR, such as reductive methylation of papain, 

may interfere with complex formation. It is important to confirm that the complex still forms 

even when papain has been reductively methylated. 

Here, we investigate the effects of steric hindrance on papain-ICP binding using surface 

plasmon resonance (SPR) when the ICP is anchored to a surface in various orientations. Results 

using unmodified papain were compared to results using reductively methylated papain (RM-

papain) to ensure that the added methyl groups do not interfere with the formation of the papain-

ICP complex.  

2.2. Materials 

 Two pET28 plasmids encoding Leishmania mexicana ICP with an N-terminal 6XHis-tag 

were supplied by Brian O. Smith, University of Glasgow. Papain from papaya latex (Carica 

papaya), isopropyl β-D-1-thiogalactopyranoside (IPTG), kanamycin, sodium dodecyl sulfate 

(SDS), sodium chloride (NaCl), sodium phosphate monobasic, potassium phosphate monobasic, 

imidazole, nickel chloride, ethylenediaminetetraacetic acid (EDTA), HEPES, tween, ammonium 

sulfate, dimethylamine borane (DMAB), tris(hydroxymethyl)aminomethane (tris), formaldehyde, 
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glycine, ethanol, and methanol were purchased from Sigma-Aldrich. Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), Coomassie Plus Protein assay, and bovine serum 

albumin protein standard were purchased from Pierce. All SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) materials (gels, tank, lid, power source, sample buffer) and 

Sephadex G50-medium were purchased from Bio-Rad. Ni Sepharose FastFlow media and a 

Sephacryl S-100 chromatography column were purchased from GE Healthcare. Poly-NTA 

derivatized linear polycarboxylate hydrogel SPR chips were purchased from Xantec. All water 

used was supplied from a Millipore Direct-Q 3 ultrapure water system. 

2.3. Expression and Purification of L. mexicana ICP Mutants 

Two pET28 plasmids encoding L. mexicana ICP with an N-terminal 6XHis-tag were 

used in these experiments. Each plasmid encodes for a double mutant to produce a protein with a 

single cysteine residue: (1) C56S, K27C (ICP K27C) and (2) C56S, K8C (ICP K8C). C41 (DE3) 

E. coli cells were transformed with each plasmid and grown in 1 L of LB media with 50 µg/mL 

kanamycin at 37 °C until an optical density at 600 nm of 0.6-0.8 was reached. The culture was 

induced with 1 mL of 1 M IPTG and grown at 17 °C for 20 h. The cells were harvested and lysed 

using 1 mL BugBuster in 10 mL lysis buffer (10 mM Tris, 150 mM NaCl, 10 mM imidizole, pH 

7.5) and sonication on ice (3 iterations of a 30/10 seconds on/off pulse cycle at 40% power). 

Cleared lysate was obtained by centrifugation at 30,000g for 30 min at 4 °C, and the protein was 

purified by Ni-affinity chromatography. A 2 mL column bed of Ni Sepharose Fast Flow was 

equilibrated with 4 mL 20 mM sodium phosphate, 500 mM sodium chloride, 20 mM imidazole 

at pH 7.4. The cleared lysate was loaded onto the column and washed with 8 mL of the same 

equilibration buffer. The protein was eluted with 4 x 2 mL of 20 mM sodium phosphate, 500 

mM sodium chloride, 500 mM imidazole at pH 7.4, and further purified by gel filtration 
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chromatography using a Hiprep 26/60 Sephacryl S-100 column and 20 mM potassium 

phosphate, 150 mM NaCl buffer at pH 7.2. The protein elution was collected and analyzed using 

SDS-PAGE to confirm the purity and identity of the protein. To reduce disulfide bonds that 

commonly form between monomers of ICP, 5 mM TCEP was added to the stock solution. 

Excess TCEP was removed by buffer exchange into SPR buffer (100 mM sodium phosphate and 

100 mM sodium chloride at pH 7.0) using a 5 kDa molecular-weight cut-off centrifugal filter 

before SPR analysis.

2.4. Purification of Papain for SPR 

Due to impurities in the papain stock detected by SDS-PAGE, steps were taken to purify 

stock solutions of papain before use. A fresh solution of 5 mg/mL papain (Sigma-Aldrich, Cat # 

P4762, Lot # SLBC2123V) in water was prepared. A 1 mL injection was purified by gel 

filtration using a Sephadex G50-medium (4 mL) column at a flow rate of 5 mL/min. The run 

buffer used was 100 mM sodium phosphate and 100 mM sodium chloride at pH 7.0. The final 

concentration was determined using the Bio-Rad Coomassie Assay following the manufacturer’s 

instructions.  

2.5. Reductive Methylation of Papain 

Stock solutions of 1 M dimethylamine borane (DMAB) and 1 M formaldehyde were 

prepared fresh before each reaction. An aliquot of DMAB equal to 10x molar excess of lysine 

residue concentration (papain contains 11 lysine residues) was added to the papain stock 

solution. Immediately, an aliquot of formaldehyde equal to 20x molar excess of lysine residue 

was added. The reaction mixture was protected from light with aluminum foil and allowed to 

react for 2 hours at 4 °C with constant gentle mixing. This step was repeated with another aliquot 

each of DMAB and formaldehyde. A final aliquot of DMAB was added, and the reaction 
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mixture was left for 20 hours at 4 °C with constant gentle mixing. An aliquot of 125 µL of 10 

mM ammonium sulfate was added to quench the reaction. The reductively methylated papain 

was exchanged into SPR run buffer (100 mM sodium phosphate and 100 mM sodium chloride at 

pH 7.0) using a 5 kDa molecular-weight cut-off centrifugal filter for binding kinetics analysis.  

2.6. Study of Papain-ICP Interaction with SPR 

All SPR studies were performed using a Biacore X100 (GE Healthcare). For binding and 

kinetics assays, the run buffer used was 100 mM sodium phosphate, 100 mM sodium chloride, 

pH 7.0 (flow rate 5 µL/min). A linear polycarboxylate hydrogel chip modified with 

nitrilotriacetic acid (NTA) was regenerated with a solution of 0.35 M ethylenediaminetetraacetic 

acid (EDTA) and then treated with a solution of 5 mM nickel chloride to complex Ni2+ ions with 

the surface. The ICP mutant of choice (K8C or K27C) was immobilized on the chip channel 2 at 

the N-terminal 6x histidine tag (his-tag) by washing the chip with a solution of 100 µg/mL of 

reduced ICP mutant in immobilization buffer (10 mM HEPES, 0.005% Tween 20, 0.15 M NaCl, 

and 5 µM EDTA, pH 8.5). A simplified visual of this procedure is shown in Figure 2.1. The 

sensor chip was regenerated in order to immobilize fresh ICP on the surface before each 

experiment. 

Figure 2.1: A visual representation of the chip surface. An NTA-modified polycarboxylate 
hydrogel chip is modified with nickel ions in order to immobilize ICP by its N-terminal his-tag. 
The immobilized ICP is then available for papain binding for kinetics studies.  

The single-cycle kinetic approach was used with varying concentrations of papain in run 

buffer to produce a binding curve for kinetics assays, and to determine the dissociation constant 
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(KD) for the protein-protein interaction using the association and dissociation rate constants (ka 

and kd, respectively) determined for papain and ICP. All data were analyzed using a 1:1 binding 

model using the evaluation software provided by GE Healthcare. The formula for the 

determination of KD from kd and ka uses the following equation: 

KD =  ����
2.7. Results

 Attempts to immobilize the K8C mutant of ICP to the sensor chip surface were 

unsuccessful. No increase in the SPR signal baseline was observed after multiple attempts, 

including attempts with modified immobilization conditions. It is possible that ICP K8C is 

susceptible to protease cleavage of its N-terminus, which would remove the 6x his-tag and 

prevent immobilization.  Another possibility is that the N-terminus is buried in the structure and 

sterically hindered from immobilization.  Since the K8C mutant could not be anchored to the 

sensor chip, it was not possible to determine kinetic data for the interaction between papain and 

ICP K8C. SPR studies with ICP K8C were discontinued. An example of a reference-subtracted 

sensorgram for these attempts can be seen in Figure 2.2.  

Figure 2.2: Reference-subtracted sensorgram for the attempted immobilization of K8C on a Ni-NTA 
modified SPR sensor chip. Time 6000 s marks the beginning of the flow of immobilization buffer 
containing the K8C mutant, until 6900 s. 
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Figure 2.3: Reference-subtracted sensorgram for the interaction of unmodified papain with 
immobilized ICP K27C. The concentrations of papain used for this trial were 50, 100, 200, 400, 
and 800 nM.  

Figure 2.4: Blank-subtracted and reference-subtracted sensorgram used by the Biacore software 
to determine kinetic data for unmodified papain and ICP K27C. The solid blue line represents the 
sensorgram. The dashed black line is the best fit to a 1:1 binding model. “Spikes” in the 
sensorgram produced by bulk effects were removed manually before the determination of the fit. 
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Immobilization of ICP K27C was successful. Single-cycle kinetic analysis using 50, 100, 

200, 400, and 800 nM of papain was performed.   The blank-subtracted sensorgram is shown in 

Figure 2.3. The sensorgram curve was fit using a 1:1 binding model using the evaluation 

software on the Biacore X100.  The data and the fit are shown in Figure 2.4.  The equilibrium 

dissociation constant (KD) was determined to be 25.7 nM. 

Binding of RM-papain to mounted K27C was also successful. The data was fit to a 1:1 

binding model using the evaluation software, and the KD for the interaction was determined to be 

9.4 nM. The blank-subtracted sensorgram is shown in Figure 2.5, and the calculated fit is shown 

in Figure 2.6.   

Table 1 contains a list of the calculated KD values for each mutant interaction with 

unmodified papain or RM-papain. Data for the E102C mutant was determined previously by 

Pamlea Brady and is included with permission.  

Table 1. Overview of Papain-ICP Binding Data 

Mutant + Papain KD 
K8C + unmod. papain -- 
K27C + unmod. papain 25.7 ± 0.9 nM 

K27C + RM-Papain 9.4 ± 0.9 nM 
E102C + RM-papain * 4 ± 1 nM 

* = Data from Pamlea Brady’s dissertation, provided for comparison. Reprinted with permission. 
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Figure 2.5: Reference-subtracted sensorgram for the interaction of RM-papain with immobilized 
ICP K27C. The concentrations of papain used for this trial were 200, 400, 600, 800, and 1000 
nM. 

 

 
Figure 2.4: Blank-subtracted and reference-subtracted sensorgram used by the Biacore software 
to determine kinetics data for RM-papain and ICP K27C. The solid blue line represents the 
sensorgram. The dashed black line is the fit that the software calculated and used to determine 
the KD value of the interaction. “Spikes” in the sensorgram produced by bulk effects were 
removed manually before determination of the fit.  
 
2.8. Discussion 

 Unique KD values were determined for ICP K27C with unmodified papain and with RM- 

papain. The determined constants are both in the nanomolar range, which is consistent with 
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previous studies (4,5) and indicates a tight-binding and favorable interaction. Since there is no 

significant difference in these values, we can conclude that the methyl groups introduced at the 

lysine residues of papain do not interfere with papain-ICP binding. This observation is further 

confirmed when comparing these data with data collected from previous experiments by Pamlea 

Brady, which showed that the interaction between ICP mutant E102C and RM- papain has a KD 

in the nanomolar range as well.  

The errors reported in Table 1 were determined from the calculated fit using the Biacore 

software. This error does not include any error that could arise from measuring the protein 

concentration using the Coomassie assay or making low-concentration solutions of proteins in 

buffer. These sources of error are expected to be larger than the fit error; hence, the values of 

25.7 nM, 9.4 nM, and 4 nM are not significantly different.  Moreover, if methylation did 

interfere with binding, we would expect to see a 1000+ fold change in KD.  

2.9. Conclusion 

 Reductive methylation of proteins is a common method for the introduction of methyl 

groups for NMR and x-ray crystallographic studies (6). However, any modifications of proteins 

may inhibit or prevent complex formation. In order to study the papain-ICP complex with 

reductively methylated papain, it is necessary to ensure that binding still occurs. The SPR studies 

in this chapter resulted in KD values in the nanomolar range, and with no significant difference 

between those experiments using unmodified papain and RM-papain. These data show that 

complex formation is tight-binding and favorable between ICP and papain, and that the methyl 

groups of RM-papain do not interfere with its ability to bind with ICP. When 13C formaldehyde 

is used to add 13C-labeled methyl groups to the lysine residues of papain, NMR studies of the 

papain-ICP complex can be performed.  
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 The SPR method used in this study allowed us to collect unique data for reductively 

methylated papain and successfully determine if this modification interferes with the protein’s 

ability to complex with our ICP mutants. This method can also be used for the screening of 

mutants with decreased binding with papain. If the ability of an ICP mutant to bind with papain 

has been compromised, SPR can be used to identify this and eliminate it from future studies. 
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CHAPTER 3: STRUCTURE ELUCIDATION OF THE PAPAIN-ICP COMPLEX USING 

PARAMAGNETIC RELAXATION ENHANCEMENT NMR 

 

3.1. Introduction 

Although a model exists for the papain-ICP complex, based on chemical shift 

perturbations in NMR spectra when ICP is bound to papain, it is largely supplemented by 

information derived from the binding of papain with a different cysteine protease inhibitor, stefin 

B (1). Due to the lack of information concerning specific interactions between ICP and papain, 

the full structure of the papain-ICP complex has yet to be solved. Our goal is to improve the 

existing model, or to propose a new model of the complex. This model will include information 

about specific dimensions of the proteins that can be determined through paramagnetic relaxation 

enhancement (PRE) NMR studies.  

 In the work detailed in this chapter, PRE-NMR was used to determine intermolecular 

distances between residues of ICP labeled with paramagnetic tags and 13C-enriched reductively 

methylated lysine residues of papain when the two proteins form a complex. These distances 

were used to create a new preliminary working model for the papain-ICP complex. Electron 

paramagnetic resonance spectroscopy was used to determine the percent of ICP successfully 

labeled with the paramagnetic tag used.  

3.1.1. Using NMR to Study Protein Complexes 

The study of proteins and protein structure using NMR has become a very broad field 

since its beginnings in the 1980s (2). There are many established methods for the determination 

of protein structure, covering everything from backbone structure and side chain analyses, to 

distance and dynamic measurements (3). Furthermore, methods have been developed to study 

protein complexes in solution, providing more information about two or more proteins at once – 

specifically, their quaternary structure, or how the proteins interact with each other (4). These 
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advances have made NMR structural determination of proteins an integral part of analytical and 

biochemical fields of study. 

One method for studying proteins with NMR is a technique called reductive methylation. 

Reductive methylation is a highly selective reaction that adds two methyl groups to the side 

chains of lysine residues as well as the α-amino group of the N-terminus. It does not alter the pI 

of the protein, nor does it disrupt the positive charge of the lysine side chain (5). It is commonly 

known as a routine “rescue strategy” in protein crystallization studies, as the reductive 

methylation of proteins has proven to increase the degree of successful crystallization for 

analysis (6). This technique can be applied to NMR structural studies through the addition of 

13C-enriched methyl groups, which label the protein at known positions. There have been many 

studies reported that take advantage of 13C-enriched reductive methylation for the study of 

intramolecular distances of proteins, (7-9) as well as intermolecular distances between 

complexed proteins (10-12). Although these distance constraints are sparse, the data can be 

useful for determining the quaternary structure of protein-protein interactions and complex 

formations.  

3.1.2. Paramagnetic Relaxation Enhancement NMR in Protein Complex Analysis 

In PRE-NMR, a paramagnetic label is attached to a known site on a protein. This 

technique is called site-directed spin labeling, and it has been previously used to study 

interactions between proteins in solution using NMR. (13-15) A common label used for site-

directed spin labeling is S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl 

methanesulfonothioate (MTSL), which is attached to a cysteine residue of a protein. This 

reaction is shown in Figure 3.1.  
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When a paramagnetic label is present, the relaxation rate of nearby nuclei is increased. In 

NMR spectra, this rate increase causes peak perturbation: broadening of the peak is increased 

and the intensity of the peak decreases. The degree of peak perturbation as compared to the peak 

in its unaffected form is related to the distance (r) of the affected nucleus from the paramagnetic 

label by the relationship: 1/r6. Using this relationship, distances of up to 35 Å can be measured. 

This method can be used to measure much longer distance constraint than methods based on the 

nuclear Overhauser effect (NOE), which can detect distances up to 6 Å. This long-range 

measurement capability makes PRE-NMR an appealing candidate for the analysis of protein 

complexes. 

 
Figure 3.1:  A chemical formula representing the attachment of the MTSL label to a cysteine. A 
disulfide bond is formed between the available thiol of the cysteine and the thiol of the label. 
 
3.2. Materials 

Two pET28 plasmids encoding Leishmania mexicana ICP with an N-terminal 6XHis-tag 

was supplied by Brian O. Smith, University of Glasgow, Glasgow, UK. Papain from papaya 

latex (Carica papaya), isopropyl β-D-1-thiogalactopyranoside (IPTG), kanamycin, (tris(2-

carboxyethyl)phosphine) (TCEP), imidazole, succinic acid (succinate), sodium chloride (NaCl), 

sodium phosphate monobasic, potassium phosphate monobasic, potassium phosphate dibasic, 

dimethylamine borane (DMAB), tris(hydroxymethyl)aminomethane (tris), formaldehyde, 13C-

formaldehyde solution, glycine, ethanol, and methanol were purchased from Sigma-Aldrich. 

Luria broth (LB) media was purchased from Fisher Scientific. BugBuster 10x concentrated lysis 

buffer solution was purchased from EMD Millipore. Ni Sepharose Fast Flow media was 
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purchased from GE Healthcare Sciences. S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-

yl)methyl methanesulfonothioate (MTSL) was purchased from Toronto Research Chemicals. All 

water used was taken from a Millipore Direct-Q3 water system by EMD Millipore.  

 

3.3. Expression and Purification of L. mexicana ICP Mutants 

 Mutants of L. mexicana ICP were expressed using the same protocol as in Chapter 2 of 

this dissertation, Section 2.3. The mutants used in these NMR studies were (1) C56S, K27C (ICP 

K27C) and (2) C56S, E102C (ICP E102C).  

3.4. Spin Labeling of ICP 

 The single cysteine-ICP mutants have been shown to form disulfide bonds between 

monomers, creating dimers that are unsuitable for protein complex studies. In order to ensure 

that all ICP in solution is in monomer form, it was necessary to reduce any existing disulfide 

bonds between ICP monomers. A 15x molar excess of tris(2-carboxyethyl)phosphine (TCEP) 

was added to stock solutions of ICP mutants and was allowed to react at room temperature for 10 

mins. The samples were immediately desalted by exchanging the buffer to NMR buffer (20 mM 

succinate, 50 mM NaCl, pH 5.0) using 5 kDa molecular-weight cut-off centrifugal filters at 

5,000 x g to remove excess TCEP. A 20x molar excess of the spin label (MTSL) was added to 

the ICP samples and allowed to react for 15 hrs at 4 °C while protected from light. Unreacted 

MTSL was removed from the protein by exchanging the buffer to succinate buffer as before.  

3.5. Reductive Methylation of Papain  

 Papain was reductively methylated (RM-papain) using the protocol explained in Chapter 

2 of this dissertation, Section 2.5. 13C-enriched formaldehyde was used for the addition of 13C 
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labeled methyl groups. NMR buffer (20 mM succinate, 50 mM NaCl, pH 5.0) was used for all 

experiments.  

3.6. Instrumentation  

 The purpose of these studies was to use PRE-NMR to measure specific distances between 

papain and ICP when a complex is formed. 2D NMR experiments were performed to compare 

the intensity of 13C-methyl peaks from RM-papain that are near the paramagnetic labels on 

MTSL-labeled ICP (MTSL-ICP) to their intensity when the paramagnetic labels are reduced. In 

order to take advantage of relaxation enhancement of 13C-methyl peaks, it is important to 

confirm that ICP is sufficiently labeled with the MTSL tag. Electron paramagnetic resonance 

(EPR) was used to determine the percent of ICP labeled with MTSL.  

3.6.1. EPR of ICP for Determination of Percent of Sample Labeled  

 Experiments were performed on a Bruker EMX-20/2.7 spectrometer equipped with a dual 

cavity probe at room temperature. Parameters were adjusted manually to produce the best 

possible spectra going forward. The microwave frequency was 9.789 GHz and the power was 

19.84 mW. Sweep time was set to 168 s, conversion time was 163.8 ms. The time constant was 

40.96 ms.  Modulation patterns consisted of 1024 data points for data collection and processing.   

MTSL calibration standards at concentrations of 1, 3, 5, 7, 9, and 10 µM in succinate 

buffer (20 mM succinate, 50 mM NaCl, pH 5.0) were made from a stock solution of 37.8 µM 

MTSL in acetonitrile. A calibration curve was formed by plotting the value of the 2nd integration 

of the spectra (determined with the on-system evaluation software WINEPR provided by Bruker) 

versus the concentration of the standard. Linear least squares regression was used to determine 

the line of best fit. MTSL-ICP samples were analyzed, and the calibration curve was used to 

determine the concentration of MTSL present in the sample. This value was compared to the 
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known ICP concentration of the sample, as determined by the Coomassie assay, to determine the 

percent of ICP labeled with MTSL.  

3.6.2. NMR Analysis of the Papain-ICP Complex 

 NMR samples were made to a volume of 500 µL with a molar ratio of 1:1 MTSL-ICP to 

RM-papain. 2D 1H-13C heteronuclear single quantum coherence (HSQC) spectra were acquired 

on a 700 MHz Varian spectrometer with a 5 mm HCN probe at room temperature. All 

experiments were collected with 8 scans and a relaxation delay of 5 s. The total experiment time 

was 5 hrs and 35 mins.  

After acquiring spectra for samples while the MTSL label was in its paramagnetic 

(oxidized) form, the label was reduced with an addition of 5 mM sodium ascorbate. In its 

reduced state, the MTSL label was diamagnetic ("inactive"), and another experiment was run 

using the same parameters. The spectra were compared for any evidence of peak perturbations. 

All spectra were processed using NMRpipe (16) and visualized with NMRview (17). 

3.7. Results 

 EPR analysis of MTSL-ICP samples and MTSL standards produced the expected spectra. 

Three peaks were observed at even intervals.  The second derivative of these spectra were 

calculated, and the area under the curve was used for concentration determination. An example 

of a calibration curve used is shown in Figure 3.2.  The average percent labeling of the MTSL-

ICP sample was found to be 82% for the E102C mutant, and 80% for the K27C mutant.  
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Figure 3.2: An example of a calibration curve used to determine the percentage of ICP in 
solution labeled with the MTSL paramagnetic tag.  
 
  NMR spectra of ICP K27C in complex with RM-papain before and after the reduction of 

the MTSL spin label on ICP K27C are overlaid in Figure 3.3. All peaks are perturbed to some 

degree when the MTSL label is paramagnetic. Of note, peak 11 is no longer present in the 

paramagnetic MTSL sample. It is also notable that peaks 4 – 6 show a significant decrease in 

intensity when the MTSL label is paramagnetic. 
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Figure 3.3:  Overlay of spectra for the complex of papain and ICP-K27C with MTSL (red), and 
of the same complex after MTSL has been reduced. Spectra are offset along the x-axis to for the 
comparison of peak intensities. Boxes (A) and (B) show a zoom of the central area of the spectra, 
separated for easier viewing. 
 
  Spectra of the RM-papain and ICP E102C complex before and after the reduction of the 

MTSL label on ICP E102C were overlaid in Figure 3.4. Here, we observe less overall peak 

perturbation across the spectra, when we compare the results to the ICP K27C sample. Only 

peaks 4a and 4b appear to have decreased in intensity in the presence of the paramagnetic label, 

and even that amount is not as significant as the decreases in intensity with the ICP K27C 

sample.  
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Figure 3.4:  Overlay of spectra for the complex of papain and ICP-E102C with MTSL (red), and 
of the same complex after MTSL has been reduced. Spectra are offset along the x-axis to for the 
comparison of peak intensities. Boxes (A) and (B) show a zoom of the central area of the spectra, 
separated for easier viewing. 
 
3.8. Discussion 

 The disappearance of peaks in the presence of the MTSL label on ICP K27C indicate that 

those lysine residues of papain are well within the 35 Å range of residue 27 of ICP. With such a 

high degree of perturbation, these lysine residues must be close enough to experience significant 

relaxation enhancement. Since other peaks were perturbed, especially peaks 4 – 6, position 27 of 

ICP must be near to all of them. This observation is significant information for the development 

of our model. It is possible that position 27 is close to, if not well within, the catalytic cleft of 
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papain when the complex is formed. This scenario positions ICP in a way that most – if not all – 

of the lysine residues of papain are within range of relaxation enhancement.  

 The NMR spectra of the E102C mutant complexed with papain had significantly fewer 

instances of peak perturbation. Only peaks 4a and 4b show any signs of relaxation enhancement 

due to the MTSL label. From this, we can assume that residue 102 of ICP is far from papain even 

when the complex is formed, and that only a single methyl group – a single papain lysine – is 

close to this residue.  

 
Figure 3.5: a. Our proposed model, created in USCF Chimera software, using information from 
PRE-NMR studies. b. The complex model proposed by Smith, et al. (1), used with permission. 
 

Using the information from the PRE-NMR studies, a model was developed by 

positioning known, individual structures of ICP and papain in proximity to each other to simulate 

complex formation. Distances were calculated using the modeling software, and the model was 

adjusted to best represent the position of methylated lysines in relation to the positions where the 

MTSL tags were located. Figure 3.5a shows a full image of the model developed. For a side-by-

side comparison, the model created by Smith et al. is provided as well (Figure 3.5b) (1). 
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Compared to Smith’s model, ICP is rotated nearly 180 degrees. This reverses the positions of the 

three binding loops of ICP, placing the outer loops at opposite ends of the catalytic cleft. The 

chemical shift perturbations observed by Smith et al. are consistent with our model as the loops 

maintain contact with the catalytic cleft.  Additionally, we see that residues 27 and 102 are in 

different locations. Residue 27 is now closer to papain lysines 139 and 156 in particular and is 

within 35 Å of others. In Smith’s model, residue 102 does not appear to be within range of any 

lysines. Our model accounts for the interaction of residue 102 with a single methyl group at 

lysine 156. A zoom view of the binding site between ICP and papain is shown in Figure 3.6. 

Residue 27 of ICP is well within the 35 Å range of surrounding papain lysines, while residue 102 

is outside of this range for all but one methyl group on lysine 156. 

 
Figure. 3.6: Close-up view of the binding site between ICP and papain. The 27 position (orange) 
and the 102 position (pink) of ICP are highlighted. Lysine side-chains of papain are displayed as 
red spheres. Distances were determined using chimera software. 
3.9. Future Work 

 
 The model proposed in this dissertation is an improvement on the available model of 

papain-ICP. It takes into account specific distances between lysine residues in papain and 
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cysteine residues at different locations in mutants of ICP. However, it is still not a perfected 

model, and further study is necessary to calculate more distances and refine the model. Other 

MTSL-labeled mutants of ICP can be used to cover other distance determinations and give 

insight into specific interactions between ICP and papain during complex formation.  

Distance calculations are complicated by the flexibility of the lysine side-chains. 

Behavior of the protein in solution means that the 13C-methyl groups on the lysines are not 

always in the same place. Because of this uncertainty, our model is based on qualitative data 

rather than calculated distances. However, with enough data collected, an average could be used 

to determine distance constraints related to the PRE effects using the relationship described by 

1/r6. With these distances constraints and the chemical shift perturbations, computational 

docking experiments could be used to improve the model of the complex.  

3.10. Conclusion 

PRE-NMR was used to study the structure of the papain-ICP complex. ICP mutants with 

a single cysteine residue in different locations were labeled with the paramagnetic tag, MTSL. 

When in close proximity to 13C-enriched methyl groups attached to lysine residues on papain, the 

corresponding NMR peaks were perturbed. The higher the amount of perturbation, the closer the 

lysine residue must be to the position of the MTSL tag. Using information obtained from the 

mutants K27C and E102C of ICP, a new model of the complex was created.  

Future work will involve repeating the method with other mutants of ICP, allowing for 

more determinations of distances between papain lysines and corresponding ICP residues. It will 

be necessary to account for the flexibility of lysine side-chains in order to determine distances 

accurately. With more distance constraints determined and more information about the 
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interactions of the two proteins, the full structure of the papain-ICP complex can be modeled 

confidently.  
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CHAPTER 4: DEVELOPING AN AFM TECHNIQUE TO OBSERVE PROTEIN-

PROTEIN COMPLEXES 

 

4.1. Studying Protein Complexes using AFM 

The attachment of proteins to surfaces for atomic force microscopy (AFM) study is a 

critical field for the development of bioelectronics or biosensor devices, due to its application of 

target protein interaction with selective surfaces. Several studies have been published with 

established methods for binding proteins to surfaces using particle lithography (1-5). The 

creation of a disulfide bond between a cysteine on the target protein and a free thiol on the 

substrate surface is one such method. When the protein has only one cysteine residue, the protein 

is anchored in a particular orientation. Further studies of protein-protein complexation can be 

performed to confirm the location (or steric hindrance) of a binding site on the protein.  

The purpose of this work is to develop a versatile method for the study of protein-protein 

interactions using AFM. The model interaction chosen is the complex formed between the 

cysteine protease, papain, and a cysteine protease inhibitor (ICP). The ICP-papain interaction is 

both tight-binding and binds in a ratio of 1:1, making the complex an ideal candidate for method 

development. Successful study of this complex will pave the way for future studies of surface 

imaging for other protein-protein interactions. In this study, we report the successful anchoring 

of a mutant of ICP from Leishmania mexicana to a modified surface using a simple disulfide 

bond formation between the single cysteine of the protein and the free thiol head-group of the 

surface. Images acquired with AFM confirm the collection of the protein as a single monolayer 

inside the 3-mercaptopropyl-trimethoxysilane (MPTMS) pores. The approximate height of the 

protein was measured by imaging ICP bound to an ultra-flat mica thin film and found to be 

comparable to the observed change in height within the pores. The protein-modified surfaces 
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were then washed with papain to determine whether or not the exposed end of ICP contained the 

binding site.  

4.2. Materials  

Single-side polished Si(111) doped with boron (Ted Pella, Inc.) was used as the substrate 

for AFM studies. Papain isolated from papaya (Carica papaya), sulfuric acid (95%), hydrogen 

peroxide (30%), anhydrous toluene, sodium chloride (NaCl), sodium phosphate dibasic, sodium 

phosphate monobasic, dithiolthreitol (DTT), imidazole, tris(hydroxymethyl)aminomethane (tris), 

and Tween 20 were purchased from Sigma-Aldrich. 2-[Methoxy(polyethyleneoxy)propyl]-

trichlorosilane (PEG-silane) and 3-mercaptopropyl-trimethoxysilane (MPTMS) were purchased 

from Gelest. Luria broth (LB) and agar were purchased from BD Biosciences. Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), immobilized TCEP, Coomassie Plus protein 

assay, and bovine serum albumin protein standard were purchased from Pierce. Other chemicals 

and materials used include OverExpress C41(DE3) cells (Lucigen), isopropyl β-D-1-

thiogalactopyranoside (IPTG, Affymetrix Anatrace), complete EDTA-free protease inhibitor 

(Roche Life Science), 10x BugBuster protein extraction reagent (EMD Millipore/Novagen), Ni 

Sepharose 6 FastFlow (GE Healthcare), 2,2'-dipyridyldisulfide (Alfa Aesar), disulfide 

derivatized 2D carboxymethyldextran chip (Xantec), 500 nm silica mesoparticles in suspension 

(Fisher Scientific), monodisperse silica powder (Fiber Optic Center, Inc.), and ACS grade 

ethanol (Pharmco-Aaper). All water used was supplied from a Millipore Direct-Q 3 ultrapure 

water system.  

4.3. Expression and Purification of L. mexicana ICP mutant.   

A pET28 plasmid encoding L. mexicana ICP with an N-terminal 6XHis-tag was supplied 

by from Brian O. Smith, University of Glasgow, Glasgow, UK (6). The plasmid encodes for a 
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double mutant to produce a protein with a single cysteine residue: C56S, V46C. C41(DE3) E.

coli cells were transformed with the plasmid and grown in 1 L of LB media with 50 µg/mL 

kanamycin at 37 °C until an optical density at 600 nm of 0.6-0.8 was reached. The culture was 

induced with 1 mL of 1 M IPTG and grown at 17 °C for 20 h. The cells were harvested and lysed 

using BugBuster in lysis buffer (10 mM Tris, 150 mM NaCl, 10 mM imidizole, pH 7.5) and 

sonicated on ice (3 iterations of a 30/10 seconds on/off pulse cycle at 40% power).  Cleared 

lysate was obtained by centrifugation at 30,000 g for 30 min at 4 °C, and the protein was purified 

by Ni-affinity chromatography.  A 2 mL column bed of Ni Sepharose Fast Flow was equilibrated 

with 4 mL of 20 mM sodium phosphate, 500 mM sodium chloride, 50 mM imidazole at pH 7.4. 

The cleared lysate was loaded onto the column and washed with 5 mL of the same equilibration 

buffer. The protein was eluted with 2 mL of 20 mM sodium phosphate, 500 mM sodium 

chloride, 500 mM imidazole at pH 7.4, and further purified by gel filtration chromatography 

using a Hiprep 26/60 Sephacryl S-100 column (GE Healthcare) and 20 mM potassium 

phosphate, 150 mM NaCl buffer at pH 7.2. The protein elution was collected and analyzed using 

SDS-PAGE to confirm the purity and identity of the protein. 

4.4. Creation of Nanopatterned Surfaces. 

Surfaces of nanopatterned MPTMS pores within a matrix of PEG-silane on Si(111) were 

prepared using the particle lithography procedure previously reported by Englade-Franklin et al. 

in section 2.2 of their work (7). Figure 4.1 is a graphical overview of this procedure. Silicon 

substrates were rinsed with deionized water, dried with argon, and submerged in a 3:1 (v/v) 

solution of sulfuric acid and hydrogen peroxide for cleaning. After 90 min, the substrates were 

removed from the cleaning solution, rinsed with deionized water, and dried under argon. The 

substrates were placed on a raised platform in a reaction vessel over a deposit of 400 mL of 
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MPTMS. The vessel was heated in an oven at 70 °C for 4 hours to generate a vapor of MPTMS 

to produce a thin film of MPTMS over the surface of the substrates. The substrates were then 

washed with ethanol, rinsed by sonication in ethanol for 30 min, and then dried under a stream of 

argon.  

A suspension of silica mesoparticles (0.1g in 10 mL ethanol) was cleaned by washing 

four times using centrifugation and resuspension in deionized water. A surface mask was 

prepared by depositing 10 μL of the silica mesoparticle suspension onto each MPTMS/Si 

substrate and dried at 4 °C for 16 hours. The substrates were then treated with UV–ozone for 20 

min to oxidize exposed areas between the particle masks to form silanol functional groups. 

Immediately, the samples were immersed in a 1% (v/v) solution of PEG-silane in anhydrous 

toluene for 5 hours. Areas that were exposed to UV–ozone refilled with PEG-silane, while areas 

underneath the silica mesospheres remained protected. The reaction was quenched with 

deionized water, and the silica mesopheres were removed by sonication in ethanol for 30 mins. 

The final nanopatterned substrates were dried under argon.  

Figure 4.1: Particle lithography procedure for the creation of MPTMS nanopores in PEG-silane 
on a silicon(111) substrate.  
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To reduce the exposed thiols on the substrate surface and prepare them for disulfide 

bonding with the protein, the nanopatterned substrates were submerged in a solution of 10 mM 

TCEP at room temp for 5 h and then rinsed with deionized water. ICP is prone to forming 

disulfide bonds in solution, therefore the ICP mutant was reduced using immobilized TCEP. A 

bed of 1 mL of immobilized TCEP resin was incubated with 250 µg of ICP in gel filtration 

buffer for 1 hr and eluted using the same buffer. An aliquot of the elution was concentrated to 90 

µg/mL as determined by the Coomassie Plus Protein assay (Pierce) using a bovine serum 

albumin standard. The substrates were submerged in 2 mL of 90 µg/mL reduced ICP at 4°C for 

16 h. The substrates were rinsed successively with 20 mM sodium phosphate, 150 mM sodium 

chloride buffer at pH 7.5, followed by deionized water, twice each, to remove non-specifically 

bound protein. The substrates were dried under a stream of argon and then analyzed with 

tapping-mode AFM. To confirm ICP binding through a disulfide bond, the substrates were rinsed 

successively with 20 mM TCEP followed by deionized water. A figure of the ICP-bound 

substrate before and after rinsing with TCEP can be found in Appendix A3.   

4.6. Height Confirmation of ICP with Mica Thin Film

To confirm that the height recorded in filled MPTMS pores was due to the anchoring of 

ICP, protein was attached to a flat, ultra-thin film of mica. A 1:100 dilution was made of the 90 

µg/mL sample of ICP and 15 µL of this dilution were deposited onto a freshly separated sheet of 

mica. The film was allowed to dry at room temperature for 2 hours and then immediately imaged 

and characterized using tapping-mode AFM.  

4.7. Study of Papain-ICP Interaction with AFM. 

The ICP-modified substrates were submerged in a solution of 50 µg/mL papain in water 

for 16 h at 4 °C. The samples were rinsed successively with 20 mM sodium phosphate, 150 mM 

4.5. Attachment of ICP to Nanopatterned Substrates for AFM.
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sodium chloride buffer to remove non-specifically bound protein. A final rinse was done with 

deionized water. The samples were dried under a stream of argon and then characterized using 

tapping-mode AFM.  

4.8. Instrumentation

Scanning probe studies were performed using a 5500 instrument with PicoView (v. 1.12) 

software (Agilent Technologies, Tempe, AZ). Probes were acquired from Applied 

Nanostructures (ACTA, resonant frequency 300 kHz, k = 37 N m-1). Images were taken in 

tapping mode, and then processed and analyzed using Gwyddion (v. 2.15), which is free software 

supported by the Czech Meteorology Institute (8). 

4.9. Results 

AFM images of substrates modified with MPTMS and PEG-silane show uniformly 

patterned nanopores that are approximately 5.5 nm deep. The images derived from phase shift of 

the cantilever versus distance show a clear difference between the nanopores and the rest of the 

surface, indicating that the chemical composition of the surface within the nanopores is different 

from that of the surrounding area. Cursor profiles confirm the presence of pores and allow for 

height determination (Figure 4.2a-c). 

After submerging the substrate in the reduced ICP V46C solution, the topography images 

showed a visible collection of new heights within the nanopores, though they do not appear to be 

filled to capacity. Cursor profiles show that the height difference decreased across all pores. An 

example of this height change can be observed in the Figure 4.2d-f. Rinsing the substrate with 

TCEP to reduce the disulfide bonds returned the surface of the substrate to its unmodified form, 

and the height difference between the pores and the PEG-silane surface returned.   
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ICP on mica thin films provided height measurements for the protein. Multiple cursor 

profiles were taken to develop a histogram of maxima. The average height of 100 cursor profiles 

was determined to be 2.9 ± 0.6 nm. An example of a sampling of cursor profiles is in Figure 4.3. 

A full set of images used for the histogram of protein heights is in Appendix A3. 

Figure 4.2: MPTMS pores in PEG-silane before (a-c) and after (d-f) the addition of ICP V46C. 
Topography images (a and d) show the appearance of raised spots within the pores after protein 
addition. Phase images (b and e) highlight the difference in chemical composition along the 
surface. Cursor profiles (c and f) are derived from the white line as seen in topography images a 
and d. 
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Figure 4.3: A topography image of ICP on an ultra-thin film of mica used for the determination 
of the height of the protein. Cursor profiles are derived from lines over the center of raised areas 
in the topography image. This figure is one of several images taken to determine the distribution 
of heights. The other images can be found in the appendix. 

 The histogram can be seen in Figure 4.4. For comparison, Chimera software developed 

by UCSF (9) was used to obtain the protein’s dimensions based on the 3-dimensional NMR 

structure (PDB ID #2C34). Since proteins are dynamic and constantly in motion, a single set of 

defined dimensions is not feasible. This model can be seen in Figure 4.5.  

 
Figure 4.4: A histogram of heights taken from 100 cursor profiles of raised areas of ICP on an 
ultra-thin film of mica. The average height was determined to be 2.9 ± 0.6 nm. 
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Figure 4.5: A model of ICP (6) with various distance measurements taken across the protein, to 
establish a rough model of expected protein dimensions.  

Another possibility for comparison of dimensional data comes from the average diameter 

of ICP as calculated using the CalcTool online calculator (10). Based on 133 amino acids in the 

ICP sequence, the average diameter is determined by the tool to be 3.5 nm.  However, the 

CalcTool does not take into account the ellipsoidal shape of the protein. 

Submerging the substrate with anchored ICP in a solution of papain did not result in any 

change in height when analyzed with AFM. Many variations of the reaction conditions were 

tried, including varying degrees of protein concentration (anywhere from 20 – 200 µg/mL), 

decreased salt concentration for the buffer, and increased reaction time. No modifications 

resulted in any positive results. Papain did not selectively bind to the ICP anchored within the 

pores.  

4.10. Discussion 

The uniform filling of MPTMS pores on the substrate surface indicates successful 

disulfide bonding between the exposed thiol in the pore and the free cysteine residue of the ICP 

mutant. The disulfide bond was confirmed when the substrate was rinsed with a TCEP solution 
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meant to reduce disulfide bonds – cursor profiles showed the return of pores, and the height gain 

from the protein disappeared. The addition of the protein to the MPTMS pores caused the height 

profile to increase approximately 3.0 nm. This is expected to be a monomer layer of the protein 

within the pore. The average height determined for ICP on the ultra-thin films of mica was 2.9 ± 

0.6 nm, which agrees with the data collected from cursor profiles of ICP in MPTMS pores. 

These values also agree with the range of distances measured from the protein model in Chimera. 

It should be noted that a direct comparison is difficult to make because the protein is dry in the 

AFM measurement and hydrated in the structure.  It is likely that when sufficiently dried, as in 

the AFM studies performed in this work, ICP collapses into a smaller size due to denaturation. 

Denaturation would also explain why papain was unable to bind to immobilized ICP within the 

pores. 

4.11. Future Work 

The ICP-papain complex remains an excellent model for method development of protein 

interaction studies. Future work should be done to perfect observation of this model using AFM 

techniques, such as taking advantage of liquid imaging techniques as opposed to allowing the 

protein to dry on the substrate surface. The potential is great for this method of protein-protein 

interaction study using AFM to become universally applicable, and it will be a critical stepping 

stone for the observation of other protein-protein interactions with AFM. 

The inability to observe papain binding with ICP has been a hindrance. Steps need to be 

taken to allow for the protein-protein interaction to occur. As the binding of ICP and papain in 

solution proceeds as would be expected, it can be assumed that the problem lies with the 

involvement of the AFM chip surface, or that ICP is denatured on the surface, rendering it 

incapable of binding to papain. Another possibility is that ICP’s orientation on the surface is 
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unfavorable. Other mutants of ICP could be anchored to the chip, as this would cause different 

areas of the protein to be available for binding. It is possible that anchoring at the 46 position 

(V46C) does not allow for enough exposure of the ICP’s binding site.  

The differences between the expected dimensions of ICP taken from the model and the 

measured heights of ICP observed on the ultra-thin mica film may only be a mild discrepancy, 

but steps can be taken in the future to correct for this difference. With the use of AFM imaging 

techniques in liquid systems, liquid imaging of substrates would give a more accurate 

representation to the behavior of proteins in native conditions. Many techniques exist that use 

liquid imaging to observe protein samples with AFM. The adaptation of one of these established 

techniques would likely give results that are more indicative of the behavior of our proteins in 

native conditions.  

4.12. Conclusion

The ICP V46C mutant of ICP was successfully anchored to a modified AFM surface 

through disulfide bond formation between the single cysteine of the protein and the free thiol 

head-group within the surface pore. Images acquired with AFM confirm the collection of the 

protein inside the MPTMS pores, and cursor profiles across the pores display the height change 

associated with anchoring selectively within the pores. The approximate height of the protein 

was confirmed by imaging of ICP bound to an ultra-flat mica thin film. This confirmed height 

was slightly shorter than the height expected for ICP based on distance calculations with 

computer models. This difference is believed to be due to the nature of the protein in solution 

versus dehydrated on a surface.  

Washing the protein-modified surfaces with papain produced no change in height and no 

usable images, which is believed to be due to denatured ICP in dry conditions or due to steric 
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hindrance of the binding site based on the orientation of ICP anchored in the MPTMS pores. 

Future work will hopefully eliminate this problem with the perfection of reaction conditions 

involving papain, the development of an in-liquid imaging technique compatible with this 

protein-protein interaction, and potentially the use of a different ICP mutant. Forcing the 

orientation of ICP within the MPTMS pore to change may give better exposure of ICP's binding 

site and allow for the complexation with papain. 
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CHAPTER 5: MICROSCOPY BASICS AND THE STUDY OF ACTIN–ACTIN-

BINDING PROTEIN INTERACTIONS 

5.1. Introduction

Actin is a protein that is found in all eukaryotic cells. It is highly conserved, with no more 

than 20% amino acid sequence difference between species. (1) Actin is 42 kDa in size and has a 

globular shape. Monomer units of actin polymerize into filamentous actin (F-actin) in the 

presence of adenosine triphosphate (ATP), facilitated in vitro by a divalent cation (Ca2+ or Mg2+) 

and dithiothreitol. F-actin participates in many important cellular processes, such as cell motility, 

cargo transport, muscle contraction, and the formation of microfilaments to aid in structure and 

support of cells and muscle tissue. (1)  

Proteins that interact with actin are called actin-binding proteins (ABPs). Due to 

variations in the definition of ABPs, there are between 60 and 100 known ABPs, which perform 

various functions and bind either globular actin or F-actin. (2) ABPs can be categorized into 

classes based on function: regulators of F-actin assembly and disassembly, regulators of higher-

order F-actin structures, and proteins that use F-actin as a mechanical framework. (3) Many 

ABPs bind actin through two calponin homology domains, each approximately 100 residues with 

a conserved amino acid sequence. (4,5) 

Binding studies of F-actin and ABPs are typically performed using ultracentrifugation 

and polyacrylamide gel electrophoresis (PAGE) or affinity chromatography. (6) F-actin and the 

ABP are centrifuged at high speeds to pellet F-actin and any ABP bound to it. The supernatant 

and pellet are analyzed with PAGE, and the relative concentrations in the supernatant and pellet 

are determined densitometrically. Binding is confirmed when the concentration of ABP in the 
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supernatant is lower than the concentration in the pellet. Affinity chromatography is another 

method that can be used to identify ABPs. Columns with F-actin immobilized on the stationary 

phase were invented in 1989 by Miller et al. (7) ABPs from complex mixtures, such as cell 

extracts, are selectively retained and separated from other proteins. Results from these methods 

are useful to identify ABPs and may indicate a role of the ABP in polymerization or 

depolymerization of F-actin, but to understand the binding mechanism, more sophisticated 

methods, such as microscopy, are needed. 

Microscopy is used to image and analyze objects at the nm - µm scale. Biological 

samples can be studied with microscopy at the cellular and subcellular levels, including imaging 

individual organelles and protein networks like F-actin. Recent advances in the areas of 

fluorescence microscopy, atomic force microscopy, and cryo-electron microscopy have greatly 

improved our ability to study processes such as cell motility, filament assembly, and protein-

protein interactions. The application of these methods to the study of actin filaments and ABPs 

has led to important discoveries concerning the behavior of F-actin in biological systems. This 

review describes the basics of these techniques and highlights recent microscopy studies that 

visualize F-actin and its interaction with various ABPs.  

5.2. Fluorescence Microscopy 

In fluorescence microscopy, the fluorescence emission from a sample is imaged. If a 

sample does not autofluoresce, then the sample is prepared for microscopy by labelling with a 

fluorescent marker or stain. A common method to study proteins, like actin and ABPs, is to 

express a recombinant fluorescent-fusion protein. Another option is to use fluorescent dyes, such 

as x-rhodamine, which specifically bind to the analyte. There have been two derivatives of 
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fluorescence microscopy used to study the binding dynamics of actin and ABPs: fluorescent 

speckle microscopy and total internal reflection fluorescence microscopy.  

5.2.1 Fluorescent Speckle Microscopy 

Developed in the 1990s by Waterman-Storer et al., (8) fluorescent speckle microscopy 

(FSM) was originally used to investigate macromolecular assembly dynamics both in vivo and in 

vitro. (9) It is a derivative of fluorescent analog cytochemistry, in which fluorophore-labeled 

proteins are expressed or microinjected in vivo and are incorporated into macromolecular 

structures. (10-12) F-actin filaments were imaged using FSM by injecting x-rodamine-lableled 

actin into cells (Figure 5.1 (13)). As the labeled actin was incorporated into the filaments, the 

filaments appeared “speckled” due to the distribution of fluorescently labeled actin among 

unmodified-actin. (8) 

 
Figure 5.1: (13) Speckle formation of x-rhodamine-labeled actin filaments injected into an 
epithelial cell, fixed and then stained with Alexa-488 phalloidin. (e) The organization of F-actin 
in amorphous networks and bundles can be seen. (f) A single FSM image of actin filaments. 
Structural information appears to be lost, but time-lapse FSM series rectifies this loss and 
provides further motility and structure information. 
 

Speckles can be visualized only if the ratio between labeled and endogenous molecules is 

low because a lower concentration results in the appropriate contrast between neighboring 
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diffraction-limited image regions. This contrast is only achieved via microinjection of the protein 

or a low level of expression. Speckle contrast can therefore be increased by decreasing the 

fraction of labeled molecules, but only to a point. Noise obscures speckle signals at very low 

concentrations. It has been found that optimal conditions for speckle fluorescence occur when 

the ratio of fluorophore-labeled molecules is between 0.5% and 2.0%. (9)  

The behavior, turnover, and movement of biopolymers in filamentous forms, such as 

actin, can be observed using speckle fluorescence time-lapse microscopy. More recently, the use 

of FSM has been expanded from a single spectral channel to multispectral FSM. (14) This 

advancement has led to an emergence of studies in focal adhesion proteins, such ABPs, and their 

interactions with filamentous biomolecules, such as F-actin. (13)  

5.2.2. Advantages of FSM 

The low fraction of fluorescent subunits strongly reduces background fluorescence that 

may arise from unincorporated fluorescent molecules or those that may be out of focus. The 

distribution of speckles also allows for detection of movement and turnover of molecules when 

imaged over time. This dynamic process is impossible to see in the case of uniformly labeled 

filaments.  

5.2.3. Study: Correlation of Actin Assembly with a GFP-p34 Signal 

In biological systems, Arp2/3 is a protein complex that is thought to promote 

polymerization of networking filaments by aiding new filament creation from preexisting ones. 

This protein has been described in the literature as a mediator of actin, helping to regulate 

processes of polymerization and depolymerization in tandem. (15-17) It has been shown that 

Arp2/3 is present along the lamellipodium, the cytoskeletal protein actin at the mobile edge of 

cells. Interestingly, Arp2/3, detected with fluorescent stain, was also present in punctate patterns 
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within the lamella, a dense structure formed by the cell at the leading edge for cell motility and 

migration. These observations led to speculation that Arp2/3 was clustering in areas of F-actin 

assembly.  

Figure 5.2: (18) Correlation between F-actin network assembly and the signal of GFP-p34 
component of the Arp2/3 complex. (a-i) F-actin assembly, as measured by qFSM. Arrows 
indicate locations of higher assembly. (a-ii) Arp2/3 distribution, as shown by GFP-p34 signal. 
Arrows indicate higher populations of Arp2/3, which coincide with areas of higher F-actin 
network assembly. (b) Cross-correlations between GFP-p34 signal and F-actin assembly in the 
lamellipodium (solid line) and in the lamella (dark dashed line), and finally the cross-correlation 
between GFP-p34 signal and F-actin disassembly in the lamella (light dashed line).  

Time-resolved quantitative FSM (qFSM) F-actin assembly and disassembly maps were 

correlated with time-lapse images of the green fluorescent protein (GFP)-p34 component of the 

Arp2/3 complex. (17) Figure 5.2 shows the correlation found between F-actin network assembly, 
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measured with qFSM, and the signal from the GFP-p34 component of the Arp2/3 complex. 

Pockets of higher F-actin network assembly, as seen by the bright spots in figure 5.2a-i, appeared 

to coincide with bright pockets of GFP-p34 signal as seen in 2a-ii; however, cross-correlation of 

the two maps over time produced an average correlation coefficient of 0.22, as shown in figure 

5.2b (dark dashed line). The same, low correlation was observed between GFP-p34 and the 

disassembly map (shown in the supplemental material within (17)) of the F-actin network (light 

dashed line), indicating a correlation in space but not in time between F-actin 

assembly/disassembly and Arp2/3 complex.  

These data illustrate the importance of nonsteady-state measurements and time-lapse 

qFSM. The processes of network assembly and disassembly and the accumulation of Arp2/3 in 

certain “hotspot” areas are both important observations that suggest a role for Arp2/3 in network 

organization. However, with dynamic analysis using time-lapse qFSM, the network processes 

and Arp2/3 accumulation were found to be independent of each other in time. Additionally, the 

correlation of qFSM data with image cues, such as accumulation or sudden lack of fluorescent 

signal or the apparent relocation of speckles, allows for the examination of functional 

relationships between proteins.  

5.2.4. Total Internal Reflection Fluorescence Microscopy 

Studying processes on surfaces with fluorescence microscopy can be a challenge with 

conventional techniques because of noise from fluorophores that have bound to the surface or are 

present in the surrounding medium. To circumvent this problem, Daniel Axelrod combined total 

internal reflection with microscopy as a tool to study surfaces and called the new method total 

internal reflection fluorescence microscopy (TIRFM). (19) In TIRFM, an evanescent wave is 

generated from light that, at a given incident angle, is internally reflected along the glass-sample 
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interface. It is a technique for studying occurrences at surfaces, such as cell surfaces and 

membranes, because the evanescent wave only penetrates to a depth of approximately 100 nm 

into the sample. This thin layer is called the “evanescent field,” and it exponentially decays in 

intensity with increasing distance from the surface.  

 TIRFM has been in use longer than other microscopy methods, so F-actin and ABPs have 

been extensively studied using this method both in vitro and in vivo. Some recent studies of actin 

and ABPs with TIRFM include studies on the stabilization of actin, (20) the adhesion of actin to 

surfaces via ABPs, (21)the properties of ABPs, (22) and the visualization of actin assembly. (23)  

5.2.5. Advantages of TIRFM  

TIRFM allows for direct observations of biochemical and biological processes at the 

surface of a sample. Without perturbing the system, TIRFM allows for the study of protein 

functions involved in actin polymerization and related regulatory processes within the cell. It is 

also a method that does not require stabilization of the actin filaments, so observations can be 

made in native conditions.  

5.2.6. Study: Assembly of F-actin Barbed Ends in Association with Formins 

 Formin proteins are a family of proteins known to act as actin assembly aids. Each 

contains a formin homology 2 (FH2) domain that promotes F-actin assembly by assisting and 

accelerating elongation at the barbed end of the filament. The FH2 domain is approximately 400 

residues in length and, in all known cases, forms a dimer. (24) 

 TIRFM was used to observe the polymerization of F-actin in the presence of formin 

proteins. Glass slides were preincubated with NEM myosin-II, which bound to actin filaments 

and anchored them to the slide, leaving both the barbed end and the pointed end of the filaments 

free (figure 5.3a). The actin filaments were exposed to formins in solution to observe 
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polymerization. TIFRM images (figure 5.4) show that the barbed end of the filament elongates 

while the pointed end does not. This observation confirms that formin-aided F-actin 

polymerization occurs at the barbed end of the filament. 

 
Figure 5.3: (22) A schematic of F-actin attachment on slides coated with NEM-myosin II (a), 
formin or GST-formin (b), and NEM-myosin II and formin (c). 
  

 
Figure 5.4: (22) The growth of F-actin bound to a glass slide by NEM myosin-II. White cirlces 
are the point of binding. Red arrows point to the pointed end of the filament. Green arrows point 
to the barbed end. Scale bar = 5 µm. The graph shows the length from the point of binding to 
each end of the filament.  

In a second set-up, F-actin was exposed to glass slides preincubated with formins, and 

bound to the anchored formins by the barbed end of the filament (figure 5.3b). (22) Elongating 

filaments did not appear to dissociate from the immobilized formin, as seen in the TIFRM 

images (figure 5.5). Since polymerization occurs at the barbed end of the filament, it follows that 

insertional polymerization must be occurring. This conclusion was confirmed by the observation 

that filaments grow even when bound by NEM myosin-II and the barbed end was bound by 

formin (schematic in figure 5.3c).  



54 

F-actin was polymerized on slides preincubated with both a formin and NEM-myosin II, 

which provided a second attachment point for the filament (figure 5.3c). When tethered by 

NEM-myosin II, growth of the F-actin caused it to buckle, which appears in the TIRFM image as 

a loop between the two points of attachment. The force of polymerization that caused buckling 

was calculated in this study using a derivation of the Euler equation for maximum axial load on a 

column (27). Forces ranging from 0.25 – 1.3 pN were measured, with smaller filaments of actin 

producing higher forces. 

Figure 5.5: (22)The growth of F-actin on the slide at its barbed end is observed with TIRFM. 
White circles indicate the points at which filaments are attached at their barbed end to formin. 
The free filaments of actin grow linearly, while the filaments with the bound barbed end buckle 
in the middle during growth. Scale bar = 5 µm. The graph shows the length of the filaments as 
they increase over time.  

5.2.7. Fluorescence – Conclusion

Fluorescence microscopy is a powerful and versatile tool for the study of actin filaments 

and APBs. The impact that an ABP can have on the structure, polymerization, motility, or 

stability of actin can be viewed in native conditions. Time-lapse FSM proves beneficial for the 

study of actin filament dynamics, providing visual evidence of movement and structural changes 

over time. TIRFM is useful for studies at surfaces and cell membranes, providing high-contrast 

and high-resolution images of biochemical processes that answer questions about the molecular 

nature of proteins and their interactions.  
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While the dynamic behavior of proteins can be studied using fluorescence microscopy, 

the resolution of the technique is limited to 0.5 µm. (28) Atomic force microscopy (AFM) is a 

molecular imaging method that can produce images of biological samples in aqueous solutions 

with lateral resolution of 1 nm and height resolution of less than 1 Å, (29-31) making it suitable 

for studying the structural properties of actin and ABPs. Sample imaging with AFM involves the 

acquisition of sample height information across many points of a sample surface. Resolution is 

limited by the number of data points and the speed is limited by the imaging rate.  

High-speed AFM (HS-AFM) in tapping mode was developed by the Hansma and the 

Ando research groups to increase the imaging rate of AFM. (32,33) HS-AFM has been used to 

capture an image of a protein molecule within 100 ms without disturbing the structure or the 

function of the protein. (34) This technique makes ms – s dynamic measurements with AFM 

possible. Recent imaging studies with HS-AFM have captured images of F-actin remodeling (35) 

and time-lapse videos of actin/ABP interaction. (34) 

5.3.1. Advantages of AFM 

AFM can provide higher resolution images of proteins compared to fluorescence 

microscopy. The technique does not disturb the integrity or motility of the protein. There is no 

need for fluorescent markers or staining of the sample to be imaged by AFM. The molecules 

themselves are imaged, as opposed to imaging the fluorophores in fluorescence microscopy. 

5.3.2. Study: AFM of F-Actin Remodeling when Bound by Drebrin A 

High-resolution AFM was used by Sharma et al. to analyze the interaction between 

drebrin A, a major neuronal ABP, and F-actin. (35) Figure 5.6 shows AFM images of actin 

filaments alone (A, C) and with bound drebrin (B, D) over a mica substrate, at both low and high 

resolution. F-actin alone was shown to have a helical pitch of 36 ± 2 nm, consistent with 

5.3. Atomic Force Microscopy
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previous studies. (36) Drebrin binds to actin with regular periodicity along the filament, giving 

an image described as a “pearl necklace” like morphology. Height and periodicity variations 

across the F-actin backbone (both bound and unbound) can be seen in the graphs of Figure 5.6E 

and 5.6F. The peak periodicity profile of the F-actin filaments increases from 36 nm to 40 nm 

when bound to drebrin, demonstrating that the helical pitch of F-actin increases as a result of 

binding drebrin. 

Figure 5.6. (37)Drebrin–F-actin complex. AFM images of unbound F-actin (A, C) and drebrin-
bound F-actin (B, D) at lower (A, B) and higher (C, D) resolution. E and F display periodicity 
and height profiles obtained from arrowed areas in A and B. 
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AFM was also used to determine the helical pitch of F-actin bound with cofilin. Cofilin is 

a 16 kDa ABP that severs “overtwisted” F-actin by means of capturing and stabilizing. (38) 

Unlike drebrin, cofilin decreases the helical pitch of F-actin when bound. (38) AFM images of F-

actin filaments bound with cofilin confirmed a significantly lower helical pitch (average 28.7 

nm) (Table 1). While drebrin modifies F-actin by increasing the helical pitch and persistence 

length of filaments, cofilin has the opposite effect.  

Table 1. [38] Comparison of ABP-bound F-actin Filaments. a: (39) and (40), b: (41), c: (42) 

5.3.3. Study: Hand-Over-Hand Motion of Myosin V on F-actin 

Double-headed myosin V (M5) homodimer is a member of the myosin superfamily of 

proteins. Its primary function in cells is cargo transportation. It has been shown to progressively 

move along an actin filament, 36 nm at a time, (43) as it binds and unbinds itself along the way. 

(44) This motion is described as “hand-over-hand”, meaning that the two heads, the N-terminal 

domains, of the M5 homodimer alternately step ahead of each other as though it were “crawling” 

or “walking” forward. While this behavior has been accepted and implied in studies using single-

molecule fluorescence microscopy, (45-47) it was not visualized until recently when the Ando 

group obtained high-resolution HS-AFM images of M5 “walking” across F-actin. (34,48)  

To obtain the HS-AFM images of M5 “walking”, actin filaments were immobilized on a 

surface through partial biotinylation of the actin followed by interaction with an electrically 
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neutral biotin-lipid bilayer surface formed on mica. Tail-truncated M5 (M5-HMM) was added in 

solution, and movement of M5-HMM homodimer was visualized at 7 frames per second (fps), as 

shown in figure 5.7a. Steps appeared to be approximately 36 nm in size, and unique structural 

features were observed. First, the area at the junction of the motor domain of the leading head 

appears to be smooth, while that at the trailing head has a V-shape (schematic in figure 5.7b). 

Second, the coiled tail of M5-HMM tilts towards the minus end of F-actin. Since these features 

occurred universally and reproducibly, they provide a marker of the polarity of the actin filament 

when bound M5-HMM is stationary. A third observation is that M5-HMM appears to bind at the 

groove between actin filaments, taking step sizes based on the pitch of the helix.  

Figure 5.7. (49) Walking M5-HMM imaged by HS-AFM in 1µM ATP. (a) AFM images were 
taken over time (frame rate 7 fps) to show the movement of M5-HlMM across F-actin. (b) An 
illustration of M5-HMM bound to F-actin at both heads. (c) AFM images were taken over time 
(frame rate 7 fps) to show hand-over-hand movement. The swinging point is shown by a white 
line marker. (d) An illustration of the images in c.  
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 Step movement of M5-HMM along F-actin occurs very quickly, and the process was 

complete within a frame. In order to slow down the steps for imaging, streptavidin molecules 

were placed on the substrate surface. These molecules served as obstacles to binding, which 

slowed the rate of movement enough for imaging, as seen in figure 5.7c and illustrated in figure 

5.7d. The trailing head detaches from F-actin and the leading head appears to rotate in order to 

pull the molecule forward. After bypassing the streptavidin molecules, the leading head 

completes its rotation and the trailing head moves onward to bind at a location farther up the F-

actin chain. During this “walk,” the trailing head does not interact with the F-actin molecule until 

it binds and becomes the new leading head. The rotation of the leading head serves as a fulcrum 

point, in agreement with a proposed mechanism in the literature. (50) 

5.3.4. AFM – Conclusion 

AFM imaging of ABPs and their interactions with F-actin is a powerful method to study 

the binding process at the molecular level. With advances in speed and resolution, AFM can 

provide dynamic and structural information simultaneously. 

5.4. Transmission Electron Microscopy 

 Transmission electron microscopy (TEM) is an imaging technique in which a beam of 

electrons is transmitted through a sample. After the electrons interact and pass through the 

sample, they are focused onto a capture device, such as a charge-coupled device, to produce an 

image. TEM has higher resolution than light microscopes due to the small de Broglie wavelength 

of electrons, making it an attractive method for studying proteins. Cryogenic freezing is used for 

biological samples for immobilization and protection from radiation and high vacuum during 

analysis. (51) Focused ion beam is a milling technique that uses a beam of gallium or helium 

ions to cut a portion of the specimen for analysis and can be used in sample preparation. (52,53) 
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Two TEM methods, cryo-electron microscopy and cryo-electron tomography, can be used to 

study actin and ABPs.   

5.4.1 Cryo-Electron Microscopy  

Cryo-electron microscopy (cryoEM) is a form of TEM useful to the field of structural 

biology. Samples are cooled to cryogenic temperatures, usually below -150 °C (123 K). The 

frozen sample is subjected to a high voltage electron beam that is used to illuminate the specimen 

and produce an image. In order to obtain the highest resolution possible, distortions inherent 

from the electron microscope (the contrast transfer function, CTF) are corrected. (54,55) 3D 

surface maps of an object can be constructed from TEM images taken at varying defoci. (56,57) 

 
Figure 5.8: (58) High-contrast cryoEM image of F-actin filaments. Scale bar = 100nm.  
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 Before the development of a superfluid helium stage, cryoEM images were limited to a 

resolution of 13 Å, and (59-61) thin (100 Å diameter), flexible structures like F-actin were 

difficult to image because of inaccurate image alignment. The superfluid helium stage allows for 

continuous cooling of samples (62) and improves CTF correction of the electron diffraction 

pattern. (63) This advancement has allowed for structural analysis of helical, biomolecular 

assemblies, like F-actin, at near atomic-level resolution. (63-65) In 2010, Takashi Fujii et al. 

used cryoEM to generate a 3D image model of F-actin at 6.6 Å resolution. (66) This study 

demonstrated the potential of cryoEM to image the secondary structure of smaller, thinner 

species than had previously been achieved and paved the way for studies of F-actin complexes 

with ABPs. 

5.4.2. Advantages of CryoEM.  

Unlike fluorescence microscopic methods, cryoEM samples do not need to be stained or 

marked in order to be imaged, which allows for species to be viewed directly. Of the methods 

covered in this review, cryoEM is capable of the highest resolution images of filaments, nearing 

atomic resolution.  

5.4.3. Study: Remodeling of Actin Filaments by ADF/Cofilin Proteins 

  Using cryoEM, Vitold Gakin et al. generated a high-resolution (9 Å) image of F-actin 

filaments with and without bound cofilin-2. Cofilin/ADF proteins are known modifiers of actin 

in cells. They regulate actin assembly, including the formation of actin-cofilin rods during 

neurodegeneration (67) and depolymerization and severing of actin filaments. (68)  
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Figure 5.9. (69) CryoEM images of (a) pure F-actin and (b) F-actin decorated with cofilin-2. 
Scale bar = 500 Å. (c) 3D reconstructed models of F-actin decorated with cofilin-2 (translucent 
surface). Cofilin molecules are shown in red.  

The cryoEM images of F-actin bound with cofilin-2 were used to construct 3D models of the 

cofilin-decorated F-actin as shown in figure 5.8. Using the models, it was shown that the change 

in the helical twist of F-actin as induced by cofilin-2 is due to a unique conformation of the F-

actin itself. This observation suggests that other ABPs may also cause conformational changes 

on the same scale, though perhaps in different manners. 

5.4.4. Cryo-Electron Tomography 

Electron tomography (ET) is a derivative of TEM in which the high voltage electron 

beam applied to the sample is rotated at various angles about the sample. This technique allows 

for the construction of 3D images from sectional analysis using many images of the same 

structure, in contrast to cryoEM, which generates a model from imaging multiple structures. 

Currently, ET is capable of producing images of biological samples with resolutions in the 5-10 

nm range. (70) The technique is also capable of imaging flexible structures and unique features 

of single particles in a sample. These advantages make ET an appealing candidate for imaging 
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actin filament networks and actin-ABP complexes. In cryo-electron tomography (cryoET), as in 

cryo-electron microscopy, the sample is cooled to cryogenic temperatures for analysis. 

5.4.5. Speculation: CryoET for the Study of Actin-ABP Complexes  

CryoET has already been used extensively for the study of actin filaments and networks, 

but no studies of actin-ABP interactions were found. The Hanein lab has performed numerous 

studies of actin using cryoET and written several good reviews on the subject. (71,72) CryoET 

would be useful for studying actin-ABP complexes because 3D volumes can be produced for 

unique features such as branching, cross-linking, and overlapping of filaments in networks. (73) 

The primary limitation of cryoET compared to cryoEM for the study of protein complexes is the 

relatively low resolution. A new approach to improving the final resolution is sub-volume 

averaging, where multiple structures are imaged, aligned, and averaged. (74,75) Actin-ABP 

complexes should be a good candidate for sub-volume averaging since multiple ABP molecules 

can bind along one F-actin filament. 

5.4.6 TEM – Conclusion   

Recent advances have made cryoEM a viable method to study thin filaments in biological 

systems. CryoEM paired with 3D reconstruction software has been used to visualize the structure 

of F-actin and its complex with cofilin-2. Future studies will aid our understanding of F-actin 

structural changes in the presence of ABPs. CryoET’s ability to analyze sections of sample at 

varying rotations and construct a 3D image from the data collected make it a powerful tool. 

However, a major disadvantage of TEM methods, especially of cryoET, is the poor signal-to-

noise ratio, which is difficult to overcome when there is a need to minimize radiation damage to 

the sample. (76) It is possible that as higher resolution electron microscopy and tomography 
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methods become available, it will be possible to obtain “snapshots” of structural processes such 

as binding, polymerization, or depolymerization of actin filaments. 

5.5. Looking Forward: Correlative Light/Electron Microscopy 

 In the past decade, there has been an increased interest in combining both light and 

electron microscopy methods in order to exploit the advantages of both techniques. Light 

microscopy allows for rapid screening of a large area, and electron microscopy produces images 

at a higher resolution than light microscopy methods. Correlative light/electron microscopy 

(CLEM) was first used in the 1970s to study stained cells in tissue samples by coupling light 

immunohistological cell staining with electron microscopy. (77) With CLEM, the sample is 

cooled to cryogenic temperatures, aligned to a grid, and imaged with light microscopy, typically 

fluorescence microscopy. Areas of interest are identified and their coordinates on the sample grid 

are recorded and relayed to the electron microscope for imaging. Since navigation to the areas of 

interest is streamlined, pre-irradiation and damage of the sample are minimized. (76) CLEM also 

allows for a direct correlation between data collected using both methods, which aids in image 

interpretation. The primary limitation of CLEM is the specialized nature of the technique, which 

requires multiple, expensive instruments and the software and expertise to interface them.  

CLEM has not been used to study actin-ABP complexes, but has advantages specific to 

such systems. In particular, CLEM is well-suited for cryoET sub-volume averaging approaches. 

With a fluorescently labeled ABP, CLEM could be used to quickly identify bound ABP and 

direct cryoET imaging of multiple complexes.   

5.6. Discussion 

 Images of F-actin and ABP interactions provide information about the binding process, 

such as alteration of the helical twist, ABP dynamics, physical bending of filaments, and network 
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assembly dynamics. These mechanistic details of actin and ABPs are crucial to understand the 

function of the F-actin networks within cells. 

Fluorescence microscopy (FSM and TIRFM) and atomic force microscopy can be used to 

generate time-lapse images of binding and dynamics. Visual data can be easily interpreted and 

explain physical occurrences within the sample. Additionally, both methods can be quantitative, 

providing numerical data to supplement visual evidence. While fluorescence microscopy is 

widespread, cheaper, and very efficient for the study of structural proteins, F-actin does not 

autofluoresce and requires sample preparation. Since only fluorescent molecules are imaged, 

fluorescence microscopy provides a level of specificity in imaging that is difficult to obtain with 

other forms of microscopy. AFM does not require sample preparation beyond immobilization, 

but the high cost of AFM remains a limitation to study F-actin. 

 Advances in cryo-electron microscopy and tomography now allow for detailed 

visualization of actin filaments. There is also no need for marking, staining, or dyeing of the 

sample. Electron microscopy methods are the highest resolution techniques available to image F-

actin and its complexes. We anticipate that cryo-ET sub-volume averaging, possibly 

implemented as a CLEM technique, will improve the 3D resolution imaging of actin-ABP 

complexes and advance our knowledge about the role of ABP’s in cells. 
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A2. Supplementary Figures: Biacore SPR Screenshots (Chapter 2) 

 

 
Figure A2.1: Screenshot of the curve fit and “Quality Control” window for SPR analysis of 
unmodified papain with ICP K27C. Despite high bulk contributions, a unique fit was determined 
for the curve. The evaluation software used for this and all other SPR analyses was the on-board 
software provided by Biacore with instrument installation. 
 

 
Figure A2.2:  Screenshot of the “Report” window for SPR analysis of unmodified papain with 
ICP K27C. Displayed is the determined ka and kd values, from which the software provides a 
calculated KD: 2.565x10-8. Chi2 and U-values are also reported, which are measures of data 
quality and specificity.  
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Figure A2.3: Screenshot of the curve fit and “Quality Control” window for SPR analysis of 
reductively methylated papain (RM-papain) with ICP K27C. No significant bulk contributions 
were found for this curve.  
 

 
Figure A2.4: Screenshot of the “Report” window for SPR analysis of RM-papain with ICP 
K27C. Displayed is the determined ka and kd values, from which the software provides a 
calculated KD: 9.43x10-9 M. Chi2 and U-values are also reported, which are measures of data 
quality and specificity.  
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A3. Supplementary Figures: AFM Images (Chapter 4)  

 

 
Figure A3.1: Topography images of ICP anchored in MPTMS pores in PEG-silane, before (a) 
and after (c) substrates were rinsed with the reducing agent, TCEP. The corresponding cursor 
profiles (b, d) are derived from the line as seen in the topography images. These profiles show 
the return of nanopores on the surface when the substrate is rinsed. TCEP must reduce the 
disulfide bond between the cysteine residue of ICP and the free thiol within the MPTMS pores.  
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Figure A3.2: All 10 images used for the determination of average height of ICP on an ultraflat 
mica thin film. Each image is 3.0x3.0 µm area. Images were processed using Gwyddion software 
and a golden false color scale for height was applied. Lighter regions are monomers of ICP on 
the surface, and cursor profiles were taken for each, for a total of 100 cursor profiles. 
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