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Abstract

[n this thesis, we introduce a new series solutions for multi-term fractional differential
equations of Caputo’s type. The idea is similar to the well-known Taylor Series method,
but we overcome the difficulty of computing iterated fractional derivatives, which do not
commuted in general. To illustrate the efficiency of the new algorithm, we apply it for
several types of multi-term fractional differential equations and compare the results with

the ones obtained by the well-known Adomian decomposition method (ADM).

Keywords: Fractional differential equations, Caputo fractional derivative, Series Solu-

tions, Adomian decomposition method.
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Chapter 1: Fractional Calculus

Fractional calculus is a generalization of integrals and derivatives to non integer orders,
see [1]. The idea of fractional calculus goes back to 1695, when L’ Hopital (1661-1704)
wrote a letter to Leibniz (1 646-1716) discussing the half order derivative. After that a
lot of contributions have been achieved by many mathematicians in the field of fractional
calculus. The well-known mathematicians L. Euler (1707-1783), J. Fourier (1768-1830),
G. Riemann (1826-1866), J. Liouville (1809-1882) among others, have contributed to
this field, and the reader is referred to [2] for the development and literature of fractional

calculus.

1.1 Basic Functions

In this section, we introduce several functions that will appear in the thesis. These func-

tions play an important role in the definition of fractional derivatives.

1.1.1 The Gamma and Beta Functions

The Euler Gamma function I'(z) is one of the basic functions in fractional calculus, and it

is a generalization of the factorial function to non integer values.

Definition 1.1.1. The Gamma function I'(2) is defined
F(:):/ e—’I:_la't, Vz e R. (1.1)
JO

The improper integral defined in (1.1) converges for all z € R, except for non positive
integers. For positive integer z, we have I'(z) = (z—1)".

The main property of the Gamma function is the recursion relation

C(z+1)=2zl(2),
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Figure 1.1: The graph of the Gamma function

which follows by integrating Eq. (1.1) by parts. Figure 1.1 depicts the Gamma function

on its real domain.
Proposition 1.1.1. The following properties of the Ganuna function hold true.

() T©Q})=frSd=/n

7

(2) Fr(1-z) = mfm, for non integer .
Ix3IxSx...x(2n—1 2n)! .. 3
(3) C(n+ %) -, XZ,,X( Z )\/E = %\/ﬁ for any positive integer n.

(4) F(% — ;I)F(% +n) = (=1)"nr, for any positive integer n.

For the proof the reader is referred to [1. 3].
A very related function to the Gamma function is the Beta function. The Beta function
is used to prove some properties of the Gamma function and it has been used in the

computations of the fractional integrals and derivatives [ 1, 2].

Definition 1.1.2. The Beta function 3(z.w) is defined

I
B(z.w) = / I (1—1)""dt, where z,w> 0. (1.2)
0

The Gamma function is connected with the Beta function via the relation

[(z)C(w)

B(z,w) =B(w.2) = Cletw)



1.1.2  The Mittag-Leffler Function

The Mittag-Leffler function is a generalization of the Exponential function [1]. The
Swedish mathematician Magnus Gustaf Mittag-Leffler (1846-1927), has introduced the

one parameter Mittag-Leffler function, which is defined by

o0 K

Az;,r(ak+l)'

Ea(:, a > 0.
Later on, Agarwal in 1953, has defined the two parameters Mittag-Leffler function Eq g(z).

see |4, 5], as a generalization to the one parameter Mittag-Leffler function

oo -k

Eyg(z) =) ———,
a.p l‘;) l“(ak+B)

a.pB > 0. (1.4)

The following properties of the two parameters Mittag-Leffler function hold true and the

proof can be obtained directly from the definition of the Mittag-Letffler function.
(1) Ea‘ﬁ(O)zﬁﬁ?. forall a, 8 > 0.
(2)  Ea)(2) =Eal(2).
- & .
3y Ep(z)=X; 0 ke — ¢

= oo :“ | oo :k*] — <
@) E20) =Liomim = : Mko T = z (€ — 1)

k A+2

(5) E\3(z) =Lg oﬁ::igzzo_()m::l:(ez—l—:).

3 m—2 X
(6) E]_m:-m]——l(‘”_ztro_ﬁ>. m € N.

(7)  Ex1(2)) TR = bkeo ”.vy = cosh(z).

~2k

2y __ ywee 1 e 2k+1 sinh(z)
®)  E22(2) =Eiorprg = s Lk=0DEI — =

Figures 1.2 and 1.3 depict the Mittag-Leffler functions for different parameters on their

real domain. We have the following important recursions of the Mittag-Leftler function.
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Figure 1.3: Two parameters Mittag-Leffler function for different values of a and f3.

Proposition 1.1.2. For a.3 > 0 and for z € R, the following hold true.

(1) Ea.ﬁ(i) = %B)“FZEa.a-fﬁ(Z)-

(2)  Eqp(z) =PBEapi(2)+0zkEqp1(2)



Proof. (1) We have

which proves the result.

(2)  We start with the right hand side,

d

BEqp+1(z)+0z v

- ¢ = kz
upa) =Pl L F
k=( -

and the proof is completed.
O

Remark 1.1.1. It is worth mentioning that the power series expansion of the Mittag-

Leffler function converges uniformly on R. The proof can be obtained directly using the



Ratio test and the Weierstrass M-Test.

1.2 The Riemann-Liouville Fractional Integral

The Riemann-Liouville fractional integral is a natural extension of the following well-

known Cauchy Formula for n-folds integral, see [1, 6).

- { Tn-1 T 1 t
I(’,’f(t):/_l/a - [ r@dras..de, =m/ (t — 7)™ f(r)dz. (1.5)

The above Cauchy formula valid for n € N, and a,r € R. The new approach was intro-
duced by replacing n by a non integer number o and I'(a) instead of (a — 1)!.
Definition 1.2.1. For a > 0,1 > a, and a,t € R, the Riemann-Liouville fractional integral
of order & is defined by

= ﬁ / (t—0)* f(e)dz, 1€ [ab) (1.6)

provided that the integral exists.

If f(r) € L'[a,b), then the product (¢ — 7)*~! (1) € L'[a,b], and the above integral

exists.
Proposition 1.2.1. Let f, g be two continuous functions,

hold true.
(1) P50 = ).
(2) I% (le(t) +C3g(t)) =c% f(t) +c20% g(t), where ci,c2 € R.

() 1% (Br0) =18 (18 10) =15 £0).

For the proof the reader is referred to ([1], p.65-67).



Proposition 1.2.2. For g > —1 and t > 0, it holds that

Ia

0+ (1“) = —r(r(’l+l) §ETR

oa+u+1)

Proof. We have

] {
I"i(z“) :—/ t—1)% ghdr
0 r(a) 0( )
I 3 Tia—1,a-1_pu
= — - = ttdt
F(a)A( r)
By substituting = £, we have
a [ u goe | a-1,u
I,,(I) = / 1 —w)” "udu
0 r(a) 0( )
(a+H
=, 15368, |
Blo,pu+ )F(a)

~ T(o)l(p+1) 1 *+H
S T(u+a+1) C(a)
 T(u+1) G

Fp+o+1)

and the result is proved.

(1.7)

a

Before discussing the properties of the Riemann-Liouville fractional integral, we need the

following theorems.

Theorem 1.2.3 ([7], Theorem 8.2.4, pp.237). Let (f,) be a sequence of Riemann inte-

grable functions on (a,b), and suppose (f,) converges uniformly on [a,b] to f. Then f is

Riemann integrable and

n—eco

- /abf,,df: /abfdf.

Theorem 1.2.4 ([7], Theorem 9.4.3, pp.267). Suppose that the sequence of real-valued

functions f, .n € N, are Riemann integrable on [a,b]. If the series Y f, converges to f



uniformly on [a,b), then f is Riemann integrable and

Y/ ’ fdf = / " par.

Theorem 1.2.5 ([7], Theorem 9.4.12, pp.270). A power series can be differ

by-term within the interval of convergence. In fact, if

f(x) = X2 ganx”, converges for |x| < p. then f'(x) = Lo nax" ! converges for |x| < p.
That is, both series have the same radius of convergence p.

Theorem 1.2.6. Let };°  fi be a series of integrable functions that converges uniformly.
Let a e RY, n—1<a<n andt > a. Then

L?r(iii]&) :ZE:Iﬁhﬂr (1.8)

k=0 k=0

Proof. For a¢ > 0, we have
o0 ] ! ©o
I% e :_—/ ) (1)dT,
; (Z.n) ey J, €97 LA

l (=]

_ _/' Y (1— )% fi(t)dr.
a {20

Because of the uniform convergence of f, then Y;” o(r — )%~ fi(7) is also uniformly

convergent, and using Theorems 1.2.3 and 1.2.4, we have

B A) =pg L ) -0
: (l\;) ) r(a)kgo a
::Z:Lghﬂa
k=0
which completes the proof. a

Under certain conditions, the above result valid for fractional differential operators, as



we will see later on the Riemann-Liouville and Caputo fractional derivatives.

Proposition 1.2.7. Let a,a,be Rt . ne N.n—1 < a <n, and t > 0. Then
8 (7 Eap(As®)) = =140, o (A1%). (1.9)
Proof. Since f(1) = 1?71 E, (A1) can be represented by the convergent power series

. oo ,’{'k("“‘*”"'
1§ (P Eap@)) =\ ¥ ey )
k=0

then using Theorem 1.2.6, we have

- I, (lktuuh I)
1 ( h IE( : A.fa )
i 2 ; I'(ak+b)
Applying Proposition 1.2.2, we have
- Ak,ak+b—l+a
B (P Ea) = § A
? ab(AL°) A;) [(ak+b+a)
fb i Eab+a(’1ta)v
and the proof is completed. O

The recursion in Eq. (1.9) is of interests, as we can apply it to compute the fractional

integrals and derivatives of many functions. Below are some examples.

(1)  Consider f(1) = €' = E| (1). Applying Eq. (1.9) witha = 1,b= 1, we have
p

1§ (¢) = I8Er1(0) = 1°Er14alt). (1.10)



(2)

(4)

(5

1.3

10

Consider f (1) = cosh(r) = E2(t?). Applying Eq. (1.9) witha = 2. b= 1. we have

I (COSh(I)) = I§. B> 1 (1) =t°Ep 1 1 (t?).

(1.11)

Consider f(1) = sinh(r) =1£22(r?). Applying Eq. (1.9) witha =2, b= 2. we have

b 5

I (sinh(r)) = I8 tEy5(1%) = t* By a(1?).

Consider f(r) = sin(r). The Mittag-Leftler representation of sin(t) is,

E it) — Ey (—it
il 1,1(ir) L 11( 1).
el

Applying Eq. (1.9), we have

‘ I Eva(it) — I Er i (—it)
a " 0+ . O+ 3
Ig+ (sm(r)) = 5
_tYEyy4alit) —19Ey j4a(—it)
= T .

Consider f(r) = cos(r). Following analogous steps in (4), we have

19 it) +1t%E —it
Igi(cos(t)) _ Li+alit) > L+l l)_

The Riemann-Liouville Fractional Derivative

(1.12)

(1.13)

(1.14)

The Riemann-Liouville fractional derivative is defined as the inverse operator to the

Riemann-Liouville fractional integral /% .

Definition 1.3.1. Suppose that c = n— a, where 0 < ¢ < | and n is the smallest pos-

itive integer greater than «. Let f(t) € C"[0,T],



11

derivative of f(t) of order a is defined by

xDE, (t):D"(I&f(t)):—r(n—l_a—)D" (/0' U_ig%dr), (1.15)

. . . lh . . . . . . . . .
where D" is the normal n'" derivative and I(‘)’+ is Riemann-Liouville fractional integral of
order ©.

It is clear that for « =k € Z, then n =k + 1, and
_ 1 i

Dy, f(t :—D“'(/ rdr):D‘”z'.

¥DG(0) = ey () 70 £

which is the normal derivative of f(1), see[l, 2, 6].

In the following, we present some basic results of the Riemann-Liouville frac-

tional derivatives.

Proposition 1.3.1. Forn—1 <o <n,c =n—a, andt > 0, we have

Cla+1) = g
a By H—a
RDO+<1 > —F(u—a+l)’ .

Proof. Since

N

F(p+1)
o () _ p+o
1°+(t ) F(,u+c7+l)t

then

08 (%) =07 (50) =0 (o)

_ _Mp+1) Te+o+l) uic-n
FMu+o+1)I(u+o+1-n)

_ C(u+1) H-a
Nu—a+1)

9

which completes the proof. U



Remark 1.3.1. For u =0, we have

d" -
Da ( ) C / Il a-—1 Ir: S T
o [(n—a)dt" (r= : N—a+1)’

that is the Riemann-Liouville fractional derivative of a constant function is not zero.

Proposition 1.3.2. Suppose that a,a,b >0, andn—1 < a < n, then fort >0

o (1""[5 (/lr")) =g o (A1) (1.16)
Proof. Forn—1< a <n,0c =n— o, we have

kD (7 Eqp(Ae®)) = D" (1907 Egp(Aa)).
Using Eq. (1.9), we have

RDE (1171 Eqp (1)) = D" (740 E s (A7)

Since the Mittag-Leffler function is written in the form of power series, using Theorem

1.2.5, we have

Akpak+b-1+0 )

Dn(h l+0’Eab o-(/‘{.la) — (Z

i T'(ak+b+0)
oo ( A kpak+b— l+o)
- k;, r ak+b+0)

i F(ak+b+ G) tak+b+0’—l—n.
= ak+b+0') ['(ak+b+0—n)
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Since & = n — o, then

and the proof is completed.

(1)

(2)

A3)

(4

& e o Aktak+b—a—l ! |
D —E = E —_— =7~ a
k=0t (I ap(At )) = T(ak+b—a) ! Eap-alA15),

As a direct implementation of the above result, the following hold true.

For a,t >0.a=1,b=1,A = 1, we have

rRDG: (e’) =g D+ Er,1(t) =1t %E11-a(0).

Fora,t >0,a=2,b=1,A =1, we have

RD(()1+ (COSh(t)) =5 DngEg'[(Iz) = t_aEg_I_a(Iz).

Fora,t >0.a=2,b=2.A =1, we have

rRDG: (Siﬂh(I)) =g D+ (tE22(r*)) = 1" “Ez_a(?).

For a,t > 0.,a=1,b=1, we have
. rRDGE\
RD3+(51n(t)) =0 :
2i
B [—aEl‘
- 2i ’
and

17 %E) 1_alit)+1t %E 1 _o(—it
RDg+(cos(t))= 11-alit) . 11-afl )'
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1.4 The Caputo Fractional Derivative

Some physical problems, especially in the theory of viscoelasticity and in hereditary solid
mechanics, are modelled by fractional differential equations. Modelling by the Riemann-
Liouville fractional derivative requires boundary and initial conditions of fractional order,
which doesn’t fit with the physical meaning of the problem. Therefore, M. Caputo has

introduced a new definition of fractional derivative that requires natural boundary and
initial conditions [ 1,2, 8]. In this thesis we are interested in the Caputo fractional operator,

and we denote the Caputo fractional derivative of order a by D, f(r).
Definition 1.4.1. The Caputo fractional derivative of order . >0, n—1 < a <nofa
function f(t) € C"(0,T] is defined by

d"
N ORE E70)

drm
r(r—wl a) =t f0(t)dt, ifn—1<a<n (1.17)
f(n)’ ifa=neN.

The Caputo fractional derivative is connected with the Riemann-Liouville fractional

derivative through the following relation.

Theorem 1.4.1. Suppose that f € C"[0,T].t >0,a € R*, andn—1 < a <n€N, then

zkfa

n—1
RDGf (1) = DG S () + X 1 7910). (1.18)
k=0

k+1-—a)

Proof. We have



Integrating by parts (1 — 1) times, one can verify that

-1 4n a+kf(k)( ) 1 1 X ’
#D, ¥(t) = ():: ,z-a+k+1)+r(zn_a)/o("” " (t)dr | .

Thus,

DY (1) "Z:l (n—a+k+1) =2+ sk)(0)
s Fn—a+k—n+1)T(n—a+k+1)

F2n—a) I ¢ .
' [(n—a) l"(2n—a)/0([_r) ) (1)t

_n—l —a+/\'f(k( ) | ! n—o—1 £(n)
- +r(71— )/0 =1 s

o T(k+1-a)
n—1 —a—H\f(l\)(())
= /\— + ()+f( )
o Tk+ 1 )
which completes the proof. ]

Remark 1.4.1. If fX)(0) =0, for k =0....,n — 1, then the Riemann-Liouville fractional

derivative is equivalent to the Caputo fractional derivative.

1.4.1 Properties of the Caputo Fractional Derivative

In the following, we present some properties of the Caputo fractional derivative. The
first property is the linearity property which can be verified through the definition. For

ci.cc€Rand ¢ € R", we have
Dg: (le(t) +czg(t)) = c1D§, f(t) + 2D g(t).

Proposition 1.4.2. Letn—1 <o <n,n€N, o € R*, f(1) € C"1[0,T), then the follow-

ing properties hold true

lim DE, f(1) = f™ (), (1.19)

a—n



im DE, f(r) = £V (0) - £ D(0).

Proof. Forn—1 < a < n, we have

. LG
DB.F0) = e b 7 T)‘EH it

Integrating by parts with u = fU) (1) and dv = (t — )" % 'd1, yields

1 f(n)(o) N ] /1 f("+l)(1')
0

O [(n—a) 1" T'(n-oa)to (r—r1)2"

For a¢ — n, we have

DESW) = 100)+ [ F (e

= £)

For ¢ — n— 1, we have

and the result is followed.

Proposition 1.4.3. For m € N, > 0, we have

D& D™ f(1) = D&™ (1)

16

(1.20)
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Proof. Forn— 1< a<n,ox € R",m,n € N, we have

a ym g . ! ! (Dmf(‘
for el 9 r(n—a)./o (= yari=9"
- 1 /l f("+'")(f)

Fi—a) Jo (="

Sincen—1 <o <n thenm+n—1<oa+m<n+m.Let3B=a+m, N=n+m. then

/el

r (N)
Df.f(e) = D) = s || L5

“T(N-B {—7)B+I-N"

Now, N—B=m+n—-a-m=n—aandB+1-N=a+m+l—-m—-n=a+1-n,

thus

] o (n+m)
D™ £(1) [ de= 08,0750,
0

[(n—a)lo (t—r1)ati-n
which complete the proof. O

Remark 1.4.2. In general the Caputo fractional derivatives is not commutative, i.e,
Dgf’" (t) # D™Dg, f ().

As a counter example, we consider f (1) =1,

We have
&
o+ N2 _
D™ (t) =D+ (t) =0,

while

: I'(2 1 -
D(D(‘),,(t)):D (3)15 = —— 3 £0.
I'(3) I'(3)
The following result concerning the composition between the Riemann-Lioville
fractional integral and the Caputo fractional derivative, will be used in solving fractional

differential equations.



Proposition 1.4.4. For a,f >0,n—1 < <neNand f € C"0.T],

" = T(k+1)  kraeBrk
10+<D§+f(r))= g SCETETTE) k!f 2 (1.21)

Proof. From the definition of the Caputo fractional derivative, we have

0+f )‘_I":ﬁan(t)

Applying [, for both sides, and using the fact that the Riemann-Liouville integral is

commutative, we have

1808, 7 (6) = 18072 D p (1) = P (1 D £ ().

Since
n=l (k (k)(o)
S+D"f(t) = f(t) ™ Z ik—,—a
k=0 ¥
we have
N n—1 fk (k) 0
@obr) =iPro- Y 22
k=0 :
h n—1 tk (k) 0
1P 018 (z )
k=0
' = T(a—pf+k+1) k!
and the proof is completed. U

1.4.2 Computations of the Caputo Fractional Derivatives

In the following, we present the Caputo fractional derivatives of some well-known func-

tions.
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Proposition 1.4.5. Forn—1 < a <n,

0 ifuef{o,l,...n—1}
Dg. (1) = (1.22)

Cut+l) pu— : _
mf“ & IfH >n l.

=0 fork=0,..n—1, and Theorem 1.4.1
1=0

Proof. For u > n— 1, we have (‘117’; (t“)

yields

[(u+1) o =
D% (#) =p DEH = Fu—ar S foru>n=1,

It is clear that for the case u =0, 1,...,n— 1,
D" (1) =0, and thus D () =0

which completes the proof. O

Remark 1.4.3. For a > 0,u <n— 1, where u is non integer number, the Caputo fractional

derivative of f(r) = t* does not exist. Since of any order & > 0, we have

C(p+1) R
a () — [ioOHn
Do (I ) D(u—n+1)°

and the function r*#~" is not integrable.

Proposition 1.4.6. Let f(t) = E} 1(At). For a,t > 0, we have
DS, f(t) = A"t"*"E} 1 _qin(At). (1.23)
Proof. Using Proposition 1.3.2, we have

RDg+f(I) = t_aE]’l_a(lt).
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Applying Theorem 1.4.1, we have

n—1 tkf a

a _ _ : (k)
Dy f(1) =1 %Ey 1—a(Al) k);()l“(kJr l —a)f( (0).

Since f()(

» ca Aktk—a
De f)=Y% 2L
0+f () E;,r(kﬂ—a)

Shifting the index to zero, yields

oo Ak+n[k~a+n
& o —

/1”’_0+"E1 J—a+n (lt)

the proof is completed. O]

Remark 1.4.4. Unlike the Riemann-Liouville fractional derivative, the Caputo fractional
derivative of the Mittag-Leffler function does not always exist.

Proposition 1.4.7. Forn—1 <a<n,a=2,b=1andt >0, we have

/

" ®%Ey i1 —a(r?) if n is even number

D% Ey (1) :Dg+<cosh(t)) =4 (1.24)

"Ry o o(t?)  ifnis odd number:

\

Proof. Using Theorem 1.4.1, and for n — | < @ < n, we have

tk—a

n—1
DO B () =g DE.E; (i2) = Y, =————1%)(0).



Since
f(k) ] ( )k+1
2 b}
and
RD§Ep i (%) =17 %Ep y_o(t?),
we have
. . oo IZk—a n—1 rk—a
D +E I" — o T = < -~ . D N .
0 21() A;F(2k+1—a) k;)l"(k-’rl—a)
k even

Case 1: It nis even, then n — 1 1s odd, and thus

" 3 o0 [2k—a
Do, Ep 1(t7) = : :
o-E2,1() S T(2k+1-a)
=
Shifting the index to zero, we have
) t2k+n—a

DS E» (1)

- = FRk+n+1-a)

5

= [”_aEZ,n+ |-« (’b)-

Case 2: If nis odd, then n — 1 is even, and thus

& j2k-at
D& Ey (1*) =
s L:Z"'%l F(2k+1-a)

Shifting the index to zero, we have

oo [2k+n+l—a

D&.E (2 =
0t 2,1( ) k:()r(zk_'_”_'_z_a)

=1"1CEy i o(i%),



and the proof is completed. 0
Proposition 1.4.8. Forn—1 <o <n a=2,b=2andt > 0, we have

2

1- 2 . .
"By nia—a(t?)  ifn is even number

D, (r Eg_g(t2)> =D, (sinh(z)) = { (1.25)

= 2 . 0
% E i i—alt?) if n is odd number.

\

Proof. Using Theorem 1.4.1, and forn—1 < o < n, we have

Dg+ (tEZ 2(1 )) =R D()+ ([ E" 7([2)) — nil Ik_-a f(/\)(o)
i Tk+1-a)
Since
: 1—(=1)
f““(O) = (7 )
and
RD3+(’52.1(’2))=11 Eyalf’),
we have
o ) 00 ,2A+l—a n—1 t/\_a
D (fE t ) = e Seiiw FF-S e
0+ 22(1) Agf) N2k+2-a) kl\%zjr(k+ | —a)
O

Case 1: If nis even, then n — 1 is odd, and thus

o0 I2k+l—a

D& (1E22()) = L Gia-a)
(=3



Shifting the index to zero, we have

oo ,2k+n+l -«

a 2 —
D (1£22%) = L;) T2k +n+2—a)

n+l-a

<

= 2ns2—a(t?).

Case 2: If nis odd, then n — 1 is even, and thus

. f o (21—«
D (rE 2 ) = .
o (P E22(1%) ~ T(2%k+2—a)
Shifting the index to zero, we have
[2k+n—a

a 2 — -
Do ('EZ*Z(t )> _LZ;) C2k+n+1-a)

= I"_aE2.n+1 —a(’z)w

which completes the proof. U

Proposition 1.4.9. Forn—1 <a <nandt > 0, we have

D8’+(sin(r) = =1 t Bl P 0 g, | a(—1t) g,

and

1 ; _ J
Dg. (cos(t)) = 31" (™ Ert—atalit) + (~1)" " Erasn(~i)).

Proof. We represent f(r) = sin(r) by the Mittag-leffler function
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Thus, forn— 1 < o0 < n, we have

1

D§f(1) =5D" (El,. (it) — El,l(—n))

] a
= (1) E,

Applying the result in Proposition 1.4.6, yields

]
Dg+ (Si[](f)) — Z (i”[_a"'"El' . - n —o4n ‘ )
]
- iin-J (,_a+nEL -~ (it) Sis (—I)n+11_a+nE1_| a+,,(_,'t)).

Applying analogous steps for f(z) = cos(r) and using the relation

B (i '
oalyTe= |.|(11)+251,1( 1’),

yields
1
Dg. (cos(1)) = 3" (17" En—auen(it) + (=1)"t " F"ELi—acn(—i1)),

which completes the proof. O
1.5 Fractional Differential Equations (FDE’s)

Fractional differential equations are a generalization of differential equations to non in-
teger orders. In this thesis, we are concerned with the fractional differential equations in
the Caputo’s sense.

The following initial value problems of the first and the second order,

"ty =Ay(r) =0, >0,
y (1) = Ay(r) e

y(0) =a, a€R,



and

V() =Av(t) =0, 1>0,1>0,
(1.27)
y&0)  =a, a€eRk=0,1,

possesses the exact solutions

and

y(t) = % sinh (VA1) +agcosh (VAr),

respectively.
A natural question is, what about if we replace the integer derivatives by fractional ones?

Then we have new fractional (I.V.P’s) of the following forms

D§.y(t)—Ay(r) =0, O<oa<l,t>0,A>0,
(1.28)
v(0) =a, a€R,

and

Dg.y(1) = Axy(t) =0, l<a<2,6>0,A>0,
(1.29)

_\'(k)(()) = ay, a € R k=0,1.

To find the solutions of the above (I.V.P’s), we use the Laplace transform method. We

have the following facts about the Laplace transformation method.
Definition 1.5.1. Ler f(r) be an integrable function on [0,0). The Laplace transform of

[ is the function F defined by the integral
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Proposition 1.5.1. The Laplace transformation of the convolution of f(t) and g(1) is

where

/ft—‘L' T)dT.

Proposition 1.5.2. Let f(1) € C"[0, 1], then

1. The Laplace transformation of the n'" derivative of f(t) is

n—1

L") =s"F(s)= Y s F=5=D(0).

k=0
2. The Laplace transformation of the Caputo fractional derivative of order a of
f(0)is
n—1 - ]
L(Dg. f(1)) — L

wheren—1 < o < n.

The reader is referred to [9, 10] for more details and proofs.

The problems (1.28) and (1.29) can be solved using the Laplace transformation method.

Applying the Laplace transform for the [.V.P (1.28), we have

2(Dgy(1) - AL (1) =0,

which implies that

s%Y (s) — s F(0) =AY (s5) = 0,



where Y (s) = Z(y(t)). Thus

which is the Laplace transform of

y(t) =aEq 1 (At%),

and the exact solution is obtained.

Applying analogous steps for solving the fractional 1.V.P (1.29), yield

a)

VA

¥(t) = ag Eq,1 (At%) + tEq(At%),

which is the exact solution.

Since

lim ag Eq 1 (At%) = ag Ey 1 (At) = age™

a—1

and

a)

VA
L)

VA

lim {I()Ea‘|(lia)+a—lea.g(llla) 211052’1(112)4- 152_2(112)
a—2

v

=aqy cosh(ﬂt)+ s'mh(\/Xl).

The solutions of the fractional 1.V.P’s (1.28) and (1.29) converge to the solutions of the

[.V.P’s (1.26) and (1.27) with integer orders as & approaches to 1 and 2, respectively.

1.6 The Adomian Decomposition Method (ADM)

In this thesis, we are interested in the Series solution of (FDE’s). The (ADM) is one of
the common methods in solving (FDE’s). In the following, we present the idea of the
(ADM).

Consider the following differential equation £, = f, where

Fy=Ly+Ry+Ny=f. (1.30)
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Here L 1s the linear part of F', which is invertible, R is the linear operator for the remainder
of the linear part, and N is the nonlinear operator for the nonlinear term of F. From

Eq.(1.30), we have
Ly= f—Ry—Ny. (1.31)
Applying the inverse operator L~! for Eq.(1.31), we have

y(t) =g(t) — L 'Ry — L~ 'Ny, (1.32)

where g(t) = L~ f(1).

The Adomian decomposition method represents the solution by an infinite series
)’([) = Z )’n(’)
n=0
and the nonlinear term Ny i1s decomposed by
N.v 5 Z All(’)1
n=0

where A,,’s are the well-known Adomian polynomials that can be obtained by the formula,

see [11],

1 4" oo x
= & _ . 1.33
An= (N <L§’Ol )’A(l)>> 3 (1.33)
Thus,
on0) =g =R £ nln) -7 L )
n=0 n=0 n=0

()= Y LROW) L' Y An(r)

n= n=0



Then,

yn 18 determined sequentially as follows

vo(r)  =g(r)
(1.34)
yn+l([) _—L_lR(y,,(I))—L_I(A,,(t)),n>O
Thus,
Y walt) =g() = Y L7'R(w(1)) - ZOL—I (An(r)-
n=0 n=0 n=

It is worth to mention that, in most cases, we choose L to be the linear part. In this cage,

R = 0 and y, can be determined by

yo(r)  =g(r)

_\"n+l(t) =-L! (A,,([)), n>0.

Also, we use to choose yq so that it satisfies the initial conditions given in the problem.
The remaining y;, i > |, satisfy the homogeneous initial conditions. For more details and
several applications of the (ADM) the reader is referred to (11, 12, 13, 14, 15, 16].

To explore the idea, we apply the (ADM) for a first order nonlinear (IVP).

Example 1.6.1. Consider the I.V.P

(1.35)

subiect to y(0) =1.

In this case, L(y) = “Tily,N(y) = —y?(t) and f(1) = 0.

The inverse operator of L = 4 is L= = [j(.)dT.

Applying the inverse operator to the above (1.V.P), we have

y(r) =1+ L1y
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% _\‘(I) = z:;:()_\'n (I)

The Adomian polynomials obtained by the formula (1.33) are

Ap = (k;/lk.\’k(’)> 2

= '\YO’
A=0
= 2
(1 k
Ay = I Z Af¥e(1) = 2vo¥1,
2
Ay =2yov2+7,
Az =2yoy3+2y1y2,
2
Ay =2yoys +2¥1)3+ 2,
Now, let yo =1 and y,4y =L~ 1A, then
vi =L'"Ag=L"Wi=L"1=1,
_g=ba _ p=l _ 2
y» =LA =L" 2y =15,
N == 13,
Ya = i,
Continuing with this process, we have
y(iy=) 1" (1.36)

which is the Taylor series expansion of the exact solution

y(t) = ﬁ



Chapter 2: Multi-Term Fractional Differential Equations

There are several analytical and numerical techniques for solving fractional differential
equations. One of theses techniques is the series solution, where the terms of the series
are determined sequentially. Such solutions can be obtained by the Adomain decompo-
sition method and the differential transformation method, for more details about these
methods the reader is referred to (12, 13, 14, 17, 18, 19]. Recently Dr. Al-Refai et all (20]
have introduced a simple algorithm to obtain the series solutions of one-term fractional
differential equation without the need of computing iterated fractional derivative, which
do not commute in general. In this thesis, we generalize this algorithm to solve multi-
term fractional differential equations of several types. We start with two-term fractional

ditferential equations.

2.1 Two-Term Fractional Differential Equations
We consider the nwo-term fractional initial value problems of the form

(44
L

1Dy oru(r) = f(t,u(t)), t>0 (2.1)

(1) + 2Dy

with
u(0) = b, (2.2)

where 0 < ay < a; < 1, ¢; and ¢, are nonzero constants. We assume that f(r,u(r)) is

continuous with respect to r and smooth with respect to u(r). We also assume that a; and

o are rational numbers with oy = 2~ and op = qﬂf, P1,P2,41,92 € N. Let g = Icm(q; ,q2),

q1

we have ¢ = sq) = rgp for some s, r € N.
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We expand the solution of the problem (2.1)-(2.2) in an infinite series of the form
= Z an’s )
n=0

where the coefficients a,, n > 0, have to be determined sequentially in the following
manner. From the initial condition (2.2) we have u(0) = b = ay.

For n > |, we have

) = n=spy
()+“ Z ApSp 19 9 Z apSpt 9 (2.3)
n=1 ne=
and
()‘“ 1) = Z Anly tq—;; — Z Aphp 1 " ; (2.4)
n=1 n=1
n n_
r( +1) '(2+1)

where s, = I

M-+ 2047 =z

—h+1)"

By substituting Eq.’s (2.3) and (2.4) in Eq.(2.1) we have

n—spy n—rpy

= ﬂ
cy Z apspt 9 +¢3 Z Anfut 7 Z ant9). (2.5)

n=1 n=1

Applying the well-known Taylor series method to compute the coefficients {a,;n > 1},
will lead to computing iterated fractional derivatives, which do not commute in general.

To avoid this difficulty, let 1 = w9, we have

cq Z sy P 4 ) Z apraW P2 = f(1, Z apw'"). (2.6)
n=1 n=1 n=0

Shifting the index to zero, yields

oo

—$ 1 n—rpa+1 __ g
Cl Z a,,+|s,,+1w" Pt +c2 Z Anp 1 Tp+1W roE = f(Wq) Z apw ) (2.7)
n=0 n=0 n=0
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To avoid the singularity at w = 0, we multiply Eq. (2.7) by w*”1~! we have

(o =]
1 n . n—rpr+s
Cl Z Ap1Sp+ W +C2 Z Ap+1rp+1W L

=w' f(we, Z apw'"). (2.8)
n=0 n=0

Now, since ) = 5—: = f% > —g— (% = @, thus spy —rp2 > 0, and the Eq.(2.8) has no

singularity at w = 0.
Letk=spy—rp2—12>0,and g(w) = f(w9, ;_gaw"), then Eq.(2.8) can be written as
k

o M . < It . .
C\ Z Apy | S W =i Z (( 1dn+18n+1 aF Cza,,_kr,,_k)w )
n=0 n=k+1

kErp2g (1), (2.9)

We first determine the coefficients a, for n < k. By performing the nth derivative of

Eq.(2.9) with respect to w and substituting w = 0, we have

(!n
cinllng) Sny1 = dn'"( A28 (w))|w=0

which yields

1 i
Anpl = ————=— | W Arrp2 |y Z apw” (2.10)
ci sy dw w=0
Since k+rpy > n+ 1 forn <k and f is smooth then
dn ]\ o0
= HTP2 A N _
o w | wi Z apW 0.
w=0

for n < k, and hence a,+; =0 for n < k.
For n > k+ 1, by performing the nth derivative of Eq.(2.9) with respect to w and substi-
tuting w = 0, we have

dn

d" k+r, v
2 (wk+’p2g(w)) |w=0 = w pzf wq, Z aan
dwh dw" =0

n!(Cl Ap41 Sn+11TC20n—k rn—k) =
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Using the well-known Leibniz rule for differentiating the products, we have

([" ( /(+rp2g “ i (H,k+rpz) ﬂ( (".))
dw” dwl dwi—1 8 :

Since

0 ifj#k+rps

dj k+rps
& mian®
J! if j=k+rpa,

we have

l dn J
ClAni|Spy1 T C2Ay_f 1yt = (n = ) dw— jg(w)

, where j=k+rpy. (2.11)
w=0

From the last equation we can determine a, : n > k+ | and thus the solution

n

= i a,,ts =agp+ i a,ta.

n=0 n=k+1

Remark 2.1.1. The coefficients a,,+|,n < k, are not necessary zeros if f is not smooth.
This case will be discussed later in Example 2.3.2.

To illustrate the idea we consider the following problems.

Example 2.1.1. Consider the two-term fractional initial value problem

3A0(3/4)%  6I(3/4)3
Ir'(1/4) SI(5/8)

0+u(t)+D0+u( 1) = (2.12)

with

u(0) = 0. (2.13)



(9%
N

q 5 3
The exact solution is u(t) =13.

Wehaveqy =3 =B oy =} = S—f, g=1.con(q1,q2) =8.s=4and r = 1. We expand
the solution in an infinite series of the form u(r) = ):;,”Zoa,,rg. The initial condition in
(2.13) yields ap = 0.

“'2 VS
We have 1 = w9 = w® and f(w9,u(w)) = 3rr((3 1//44)) gr 615892) :

Since f(w4.u(w)) is continuous with respect to w and smooth with respect to u, we have
ny1 =0, forn<k=spi—rpp—1=2.

Thus @) = a» = az = 0. The function f(w?,u(w)) satisties the assumption of the proposed
algorithm, and it holds that
{ 3

21x3r(3)

i if m=2,

am ‘ ‘ %
yq. it = S.Xr( ) X .
T (fw?,u(w)) [w=0= { _J—r(g) if m=S5,

0 otherwise.

For n > 3, Eq.(2.12) together with the last equation yield

) if n=29,
1 " rd) .
An41Sp+1 +an—2rn—2= (n — 3)| (dw,,_g,f(qu“(w))) 5 =3 j I’t—g% if n=28,
s w= 8
0 otherwise,
L

(51 +1)

where s — Lsil__ and r, — w
T T T T IR
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We now apply the last recursion together with ag = @) = ay = a3 =0, to compute a4
for n > 3. For n = 3, we have a4 54 +a; r, =0, and thus ay = 0.

For n = 4, we have asss + az ry =0, and thus as = 0.

For n = 5. we have ags¢ + a3y ry = 31"((1 /:')) which yield

1 3r(3/4) I(5/4) 3[(3/4)

6 TU/4) DM ST/ "

ag =

Applying analogous argument yields to, a7 = ag = 0.

r(3/4) o
For n = 8, we have ags9 + a6 16 = 3 558; Since ag = 1, we have

59

. <6r(3/4) _,_6> o (23%;;) F(l4/8)> I <6F(3/4) 6F(3/4)>

SI(5/8) ) T(13/8)

Since ag = ag = 0, we have a,,| =0forn > 7.
Thus u(r) = a(,t% — 12 and the exact solution of the problem (2.12)-(2.13) is obtained.
We compare our result with the solution obtained by the (ADM). Applying the Riemann-

1
Liouville fractional integral operator /j, for both sides of Eq.(2.12) and using the fact

that
i PO _ 4.
I D(§+ll( ) :lg+ll(t) — Wl—) = IS+ll(l),
we have

ool

u(r) :11(0)+I§+ <3[I:((3l//t))ﬂ o j

3

—

3}
N[~
o0 |~

> 1. u(r)
2.14)

9]
=)
—~
~— | =

— 13 4+0.867482 13

We expand the solution in an infinite series of the form u(r) = Y~ un(t). We set

3 9
up(t) =134 +0.867482 18,



then w,,n > 1, are determined sequentially from
3
Upp1 = —lg un(r), n>0.

We have

wo(r) = 13 +0.867482 1%
(1) = —0.867482 1§ — 0.69136712
w2 (1) = 0.691367 13 +0.5141 ¢ ¥,

15 9
w3(t) = —0.5141 15 —0.360522 13,
us(r) = 0.360522 13 +0.240312 13,

us(r) = —0.240312 ¢ —0.153177 1

wo(r) = 0.0175585 17 +0.00946594 ¢+ .

It is noted that we end with a telescoping sum and

10
1io(r) = Y n = 13 4+0.00946594 1 ¥ . (2.15)
n=0

Figure 2.1 depicts the approximate solution obtained in Eq.(2.15) by the Adomian de-

composition method together with the exact solution obtained by the proposed algorithm.

Example 2.1.2. Consider the two-term nonlinear fractional initial value problem

! 1 1 3
2D, u(t) +2F(£)D3+u(1) =I(2) (u2+tm — 4 1) . (2.16)

with

u(0) =0. (2.17)
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Figure 2.1: Comparison between the exact and approximate solutions obtained bythe (ADM) for
Example 2.1.1.

o) —

The exact solution is u(r) =13.

We have

] ) | )5
—I—l. o = =l—". qg=1lcm(qg;.q2) =10, s=5andr=2.

a == —
T2 ¢ S ¢

We expand the solution in an infinite series of the form u(r) = ¥°° ,a,116. The initial
P 1=0

condition in (2.17) yields ap = 0. We have t = w9 = w!0 and

9

g(w) = f(wlo.u(w)) = r(%) <z a,,w”) +wd =), (2.18)

n=—~_)

Since g(w) is continuous with respect to w and smooth with respect to u, we have
a4 =0, forn<k=sp,—rpp—1=2.

Thus a; = a> = a3 = 0. The function g(w) satisties the assumption of the proposed algo-

rithm, applying Mathematica 9, we have
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:
1 m=20
3! m=3
6! a:‘; m==6
d& | 2 % asay m=7
== (80)) [v—0 = T(3) ; (2.19)
8!(13-{-2)(8!(13(15 m=28
2!(aqas + azas) m=9
—10!+ 10! a§+2x 10! (agae + azar) m=10
%

Forn > 3, substituting Eq.(2.19) in Eq.(2.11) yields

13 I >
2an+l Sp+1+ 2 r(m)an—2 Ur=n) = (” _4)! dwn—4 (g(“'))|w=0a (2.20)
r(n+l+]) r("‘3+|)
where s,41 = —2— % and ry_y = =%~
U+ T T )

We now apply the last recursion together with a; = a> = a3 = 0, to compute a,,; for
n > 3. For n = 3, we have 2a4S4+2r(%)a1 rp =0, thus ag = 0.

For n =4, we have 2asss+2 F(%)az g = F(%) Since az =0, then

Applying analogous arguments yield ag = a7 = 0.

Forn =7, we have 2(13S3+2F(%)a5 rg = F(%) Since as = 1, then

1 13, I(3) 1
ag = <F(§)—2F(m)xm%—)> xz—sg—O.

Applying analogous arguments yield ag = ajo = 0.

For n = 10, we have

13 1
2a11 811 +2F(E)agrg = F(i) a%.
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Since ag = a3 =0, then a;, = 0.
Applying the same arguments forn=11,12,13, yield a)2 = a3 = a4 = 0.
For n = 14, we have

13

2ay5515+ 2T (=) aari2 =I(

= )(—10!+ 101a3 +2 x 10!(ag ag + a3 a)).

N -

Since as = |1 and a3 = a4 = ag = a7 = a2 =0, thus a5 = 0.
Following similar process we have a,4+; =0 forn > 6.

Thus

9=

=

u(t) =ast™ =1

and the exact solution of the problem (2.16)-(2.17) is obtained.
We now apply the (ADM) to solve the proplem (2.16)-(2.17). Since f(z,u(t)) is nonlinear

function with respect to u(t), we need to compute the Adomian polynomials for

f(t,u) =u?(1).

Applying the well-known formula for Adomian polynomials, we have

(= =]

(1) = Z An

n=0

where
Ay = ll(z),
A =2ugu,
Ay =2ugiur +u%,
2.21)
A3 =2uguz+2uuy,

Ay =2ugus+2u;uz+ ug,
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. . . . . . l
Applying the Riemann-Liouville fractional integral operator I5. 10 Eq.(2.16) and substi-

tuting
_li 1 3
16+D(§+“(’) = Ioniu(t),

we have

r) 1 3 13, .3 r(3) 1

u(t) = 22 IS, (1 + 110 —t) - l"(ﬁ)l(}?u(t)+ %Ig,,uz(t) )
(2.
1 4 3 13, 3 i % 1
=12 +40.85395815 — 0.66666712 — I‘(m)lo‘iiu(t) + %Ioiul(z).

Let u(t) =Y gun(t) and u?(t) = Yooy Ay, and set

o =17 +0.85395815 — 0.66666712 .

Then

3 1
U1 = —1Ou, +12A,

Evaluating wu; (1), uz(t),u3(2),u4(1), we have

ug(t)  =19940.2579981% + —2.798359:%7 — 1.4545223 + 8.855605 1>+ +9.799202 137
+2.3179361% — 11.599906¢*' —22.429449** — 11.273123+*7 + 6.685081 13
—1.388180° +23.109057 1> +20.278401 174 — 1.404129° + 5.3052381°7
—11.0709051>% +0.2786051% — 17.334122:5' — 7.918245/5* +2.012699 53
—0.8856741%7 +7.156236/58 +5.827855:7-! + 1.140180¢"* — 1.153180¢7

—2.127835:78 —0.74261 13" +0.309488 8 +0.244589:%8 — 0.032578:°
(2.23)

Figure 2.2 depicts the approximate solution obtained in Eq.(2.23) by the Adomian de-

composition method together with the exact solution obtained by the proposed algorithm.
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Figure 2.2: Comparison between the exact and approximate solutions obtained by the (ADM) for
Example 2.1.2.

Example 2.1.3. Consider the nvo-term nonlinear fractional initial value problem

4 1 r)sin(t
DS,u(I)+D6,u(1) — % (2.24)

Because of the non linearity of the problem, the exact solution is not available in closed
form. We apply the proposed algorithm to obtain a numerical solution and then analyse
the obtained solution. This example has been discussed in [21], where the problem is
transformed to a fractional integral equation, then the Adams-Bashforth-Moulton
method is used with step size h = %). At the end, the obtained numerical solution has

been presented graphically.

Applying the proposed algorithm, we have
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We expand the solution in an infinite series of the form u(r) = Z;,"’:Oa,,rﬁi. Applying the

proposed series algorithm, we have ag = a; = ... = ¢7, and
1 dn_7 10 C 1
Api1Sp+1 +ap-2Mp-2 = _7f Wy 2 anpw for n>7, (2.26)
(n—=T7)! \ dw" fomar w=0 -
where

. sin (w!?) ():;":0 a,,n”)
f wl(), z (l,;W" r > '
n=0 ( Z:T:O an W") =

From the initial condition (2.25), we have ag = 1. We apply Eq. (2.26) to compute the
first 6 nonzero coefticients a, for n > 7. These coetficients are ag,a) .d24,a27,d3g,A33.

The obtained truncated series solution 1s

u3z(t) = 140.2982421'%-0.227519:>' +0.1677171%*

(2.27)
—0.119885:>7 +0.08333331% — 0.0564631 13
To test the accuracy of the obtained solution we consider
4 1 1)sin(t)
Pult) = Diu(r) + Dru(ry— X300 _ o
“( ) “( )+ “( ) “2([)+]
and define the error
1; g
Ex(t;) = / (P(un(1))°dt, t€][0,1]. (2.28)
0

Table 2.1 presents the error E33(t;) for 0 <; < 1, and Table 2.2 presents the error Ex(1)
for different values of N. The presented results show the efficiency of the proposed algo-
rithm and more accuracy can be achieved by computing more terms in the power series

solution.



Table 2.1: The error to Example 2.1.3.

1 E3(1;)
0.1 ] 1.1671 x 10719
0.2 | 8.3567 x107°
0.3 ]9.63673 x 10~8
0.4 | 5.28145x 1077
0.5]1.93041 x10°©
0.6 | 5.47587 x 10~
0.7 | 0.0000130817
0.8 | 0.0000276595
0.9 | 0.0000534847

I | 0.0000967815

Table 2.2: The errors to Example 2.1.3 atr = 1.

N En(1)

5 0.0681689
10 0.0681689
15 0.0681689
20 0.067155
25 0.0248829
30 | 0.00882027
33 | 0.0000967893

Remark 2.1.2. In order to solve the problem (2.24)-(2.25) with the (ADM), we face

a problem with Mathematica in computing the Adomian polynomials for the analytic

function

u(r)sin(r)
W)+ 1

fltu(o) =

2.2 Three-Term Fractional Differential Equations

We consider the three-tern fractional initial value problem of the form

c1 Dytu(t) +c2 Dyiu(t) +e3 Dgiu(t) = f(1,y(1)),

lli(O) =u;.i=0,1,...,n—1,

(2.29)

(2.30)

where 0 < a3 < oz < o < n, and ¢}, 2, c3 and b are constants. Assume that f(r,y(r))

is continuous with respect to and smooth with respect to u(r). We also assume that a;, a2
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and o are rational numbers with @) = Z_: L0 = % and o3 = % where p, p2,p3.q1.92.93 €
N. Let ¢ = lem(qy,92,93), we have g = sq) = rq2 = vq3 for s, rand v € N.
Let

ki =spy—rpp—land ko =spy—vp3— 1.

. ’ . . : - n
We expand the solution «(t) in an infinite series of the form u(r) = ¥ ja,?7, we have

ky ks

. »
Z Cldpt S,H_]W” = z (Cl Apy) Sp+1 02 An—ky "'n—k, ) W
n=0

ll=k|+l
oo [o0)
+ Z (Cl Ant| Sp+1 +C24y —ky 'n—k, +c3 Ap—ky V:rkg) W' = “'Spl_lf wi, z anwn
n=ky+1 n=0

(2.31)

Following analogous steps to the case of the two-term fractional differential equation, we

have

e case |: Forn <k,

n

oo
sp1—1 b n
C1Sn+18n+1 = w'P! f “‘qv Z GnW
n=>0

dw"
w=0

e case 2: Fork;+1 <n<kjp,

a
dw"

; — spr—1 N n
C1An+1Sn+1 +C2a0n—k; Tn—ky = w'f fiwe 2 anpW
n=0

w=0
e case 3: Forn > ky and sp; — | = j, we have

1 i o B
— 4 N
C1Aui1Sp+1+C2an—k Tn—ky TC38n—k, Vn—ky = (n — ) dw"-jf(n ) 2 W )

Remark 2.2.1. The identify (2.32) holds true under the continuity and smoothness as-

sumption of the function f(r,u(r)).
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The general case happen under the assumptions continuity and smoothness for n > ky,

which is represent in Eq.(2.32).

Example 2.2.1. Consider the Bagely-Torvik initial value problem

3 2 5
Dg,u(t) + Dgeu(t) — 2ﬁDﬁ+tl(t) +4u(r) = f(1). 1 €0,1], (2.33)
u(0) = ' (0) =" (0) =0, (2.34)
where
131072 12 49152 3
1) =47 — 1T +721° T,
U 12155 1 T T inyE

The exact solution is u(r) = t°.

This example has been discussed in [22] using a Chebyshev spectral method, where the
solution has been approximated by the shifted Chebyshev polynomials with different
degrees. The exact solution was obtained by considering the shifted Chebyshev

polynomial of degree 9.

Applying the proposed series method we have,

5 D1 2 1 73
% =5 = L,Olz=2:p—,053 = =1—-f1:/€m((h~(h-ﬁl3)=2-

2 qi g3 3 q¢3
s=1Lr=2v=1k=spi—rpp—1=0and k =sp;—vp3 —1 =3.

. ., T . o n L ah T .
We expand the solution in infinite series of the form u(r) = Y»_ga,t2. The initial condi-

tion in (2.34) yields ag = 0. Lett = w? then

131072 49152 =
18 _ w7 72w wi?—4a <Z a, w") . (2.35)
n=0

f(wzﬂl(W)) =4w

12155 1437

Since f(w?,u(w)) is continuous with respect to w, and smooth with respect to «, we have

apty) =0, forn < hky; =3.
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Thus a; = as = a3 = ag = 0. The function (w2, u(w)) satisfies the assumptions of algo-

rithm for three-terms (FDE), and it holds that

—4 x5'as ifm=>5

—4 x 6'ag ifm==6

I3!(|4493]\5/27—r—4a|3) ifm=13

14!(72 — 4ay4) ifm=14

dl”

d“_‘,,,f(wz.,u(w))lw=o =4 —4x15'as ifm=15 (2.36)
—4x16'ae ifm=16

174 = 1132l1(;752 —dap7) ifm=17

18!(4 —4ay3) ifm=18

—4lag 1fm=19

For n > 5. using Equations (2.11), (2.33) and (2.36) yields

1 dn~—4 e
2 n
Qn+1Sn+1 +@pTn—2V/Tap_3Vp—3 = (n _4)' : __4f(W ) Z w")

p \ =3
(&l +1) n(n=2) I'{%5=<t1)
wh = —s Iy = ,and Vn=3 — a3 .
ere Sp41 I“('”Z’l—%) n 4 n—3 N +%)

We now apply the last recursion together with a) = ay = a3 =aq4 = 0, to compute a4 |

for n > 4. For n = 4, we have

asSs+agry—2ayvy = f(O’ "(0)) =0,
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thus as = 0.
Applying analogous arguments yield ag = a7 = ag = ag = 0.
Forn =09,

ayos10 +agrg — 2\/mag ve = —4as.

Since as = ag = ag = 0, then a;p = 0.
Applying analogous arguments yield ajy = aj2 = a3 =aj3s =ays = ajg = a;7 = 0.
Forn = 17, we have
% - 49152 4
a|gs18 +a17r7 —«VRNaA14V14 = —— 7= —4d)3.
143/
Since a;7 =ayy =a;3 =0,thena;g = 1.
For n = 18, we have a;9 = 0.

Proceeding in the same manner, we have a,4+; = 0 for n > 18. Thus

8
ll(t) = a|3t|7 = 19,

and the exact solution of the problem (2.33)-(2.34) is obtained.

2.3 Fractional Differential Equations with Non Constant Coefficients

In the previous sections, we discussed only multi-term fractional differential equations
with constant coefficients. In this section, we discuss a more general case with non con-
stant coefficients. We follow the same algorithm in the problem (2.29)-(2.30), with minor

changes in computing a,’s.

Example 2.3.1. Consider the initial fractional value problem (Cauchy problem)

D‘fu(t) + 2 Dg+u(t) + 3\/I_D8'+5u(t) + (1 —1)u(r) = g(1), (2.38)
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1(0) = u'(0) = 0. (2.39)

0.5 2
where g(t) = FZ(ITST +4r + [(4+5) + (1 —1)1%. and the exact solution of this problem is
u(t) =12

This example has been discussed in [23] using the spline collocation method.

For ¢ = 2, we expand the solution in an infinite series of the form u(r) = ):‘,’,":Oa,,tg. Let

w =193 then Eq.(2.38) reduces to

2 o
a;s) + Z((I,,.H Sne1 Fnap)w" + z (apy1 Spe1 Fnap+3ay—avp_2)w" = wzf(wz.u(w)),
[

n=3

where

n=0
_I(0.5n+1.5) L, A ['(0.51)
4= TTR(0.50) "2 7 (051 —-0.5)

From the initial condition (2.3.1), we have ag = 0. Since f(w?,u(w)) is continuous with

respect to w and smooth with respect u(w), we have

apy =0, forn < 2.

For n = 2, we have

Apy)| Spyl +na, = f(O,ll(O)).

Since a; = 0, yields a3 = 0.

For n > 3, we have

1 s 2

('1—_2)“!W(f(w2a“(w))|w=0a (2.40)

Qp+1Sp+1 TG+ 3ap_2vp-2=



where

(

2

s — 4
8—2a
2!'(a) — a3)

4!(#5—)+|)+4!(a2—a4)

5'(az —as)
6!+ 6!((14 — 06)
7!((15 - (17)

if m=1
ifm=2
ifm=3
ifm=4
ifm=>5
fm=6
ifm=17

(2.41)

we apply recursion (2.40) together with ag = a; = a» = a3 =0, to compute a, 4 for n > 3.

For n = 3, we have

o

assq+3ay+3avy = (i 5).

Since a; = a3 =0, thenay = 1.

For n = 4, we have

asss+4as+3ava =4 —as.

Since a =0 and a4 = 1, yield as = 0.

Forn =5, we have ag = 0.

Forn = 6, we have

a1s7+6ag+3asvy = (=———+1)+ (a2 — as).

Since a; = ag =0 and ay = 1, we have a7 = 0.

For n =7, we have ag = 0.

Forn = 8, we have

agso+8ag+3agve = —1+as.



Since ag =ag =0 and ay = 1, we have ag = 0.
Following this process, we have a,,, =0 for n > 5.

Then the solution of the problem (2.38)-(2.3.1) is u(r) = 2, which is the exact solution of

Cauchy problem.

Example 2.3.2. Consider the non linear initial fractional value problem

8
$ 33¢3 1296 1> (1)
tD}, ul(t +D u(t —HFD o + : 2.42
0 ( ) 0 ‘() 0 ”( ) 4F(§) 935r(%) ( )
with
u(0) =u'(0) = 0. (2.43)

The exuct solution for this problem is u(t) =

As the same criterion in the previous example, we apply the proposed series method with
g = 6. We expand the solution in an infinite series of the form u(r) = Y5 a,té. Let

W= 16, then Eq.(2.42) produce the following summation

19 o
Z (@n+1Sn+1 + Qnat Fugy )" + Z (Qn+1Sn41 + Qa1 Fng +an—19Vp—19)w"
n=0 "=f° (2.44)
33w!7 N 1296 (Yo g anw")”
= w
4ar(%) 935I(2)
_ IGg+y)  _ L+ . = D+l
where s, = ra-l) ¥, = re+d) and v, = SEEE
It is clear that forn < 17, a, = 0.
Forn =17, we have
- 33
aigs aigrig = 3
18918 8 4F(§)
which yields ajg = 1.
For n = 37, we have
324

asg s3g +asgrig +aigvis = — g
I(3)

L oo
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then azg = 0.

Following analogous steps, we have a, = 0 for n > 37. Thus

which is the exact solution.

2.4 Conclusion

In this thesis, we present a new algorithm for obtaining a series solution for multi-term
fractional differential equations of Caputo’s type. The terms of the series are obtained
sequentially, and the idea is analogous to the Taylor series method, but we overcome
the difficulty of computing iterated fractional derivatives, which do not commute in gen-
eral. We applied the new algorithm to several types of multi-term fractional differential
equations, where accurate solutions as well as exact solutions in closed forms have been
obtained. We also compared our results with the ones obtained by the Adomian decompo-
sition method (ADM) for the two-term fractional differential equations. It is noted from
the solved examples that, the new algorithm is more efficient than the (ADM), as it gives
the exact solution in closed form while the (ADM) does not, it produces more accurate
solutions, and it can be applied for some problems where we can not do them with the

(ADM).
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