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Abstract (in English)

Although the UAE was certified to be free of local malaria transmission cases in

2007, the increased number of imported malaria cases in recent years required the atten-

tion of the public health professionals. The aim of this work is to study, via mathematical

modeling, the impact of imported malaria cases on the population of the UAE. The na-

ture of the health policies in the UAE imposes on us a model that classifies the living

population of the UAE in two categories. The local population, who represent the perma-

nent residents that do not have any health requirement for their residency, and the non-

local population, which are required to have certain health conditions to maintain their

residency status in the country. Basic reproduction number was computed and stability

analysis and local sensitivity analysis were performed to understand the epidemiological

features of imported malaria in the UAE. The simulation showed that when an infection is

established in the country, it will not be affected by reducing the burden of the endemic on

the locals. Also, the local sensitivity presented the most influential parameter for the in-

fected compartments which will assist in the control measures. My model helped to show

the possible outcomes of such epidemic on both human subpopulation and the control

strategy to maintain lower epidemic size in the UAE.

Keywords: malaria infection in the UAE, basic reproduction number, stability analysis,

local sensitivity analysis.
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Chapter 1: Introduction

The United Arab Emirates (UAE) was certified local malaria free in 2007 by the

World Health Organization (WHO). Since then, the UAE government has made an ex-

ceptional effort to protect the country from any possible malaria outbreak. This effort

includes the establishment of different institutions that monitor the isolated malaria cases

in the country. Moreover, the health authorities implemented health regulations that re-

quired each coming immigrant to be screened for communicable diseases before guaran-

teeing the residency. This screening is also required for residency renewal every three

years.

All this effort paid off to keep the country malaria free, except some reported cases

of malaria imported by immigrants from high risk epidemic areas every year. But, the fight

against malaria in the UAE in not over. There are so many environmental, economical,

and demographical factors that are imposed on us not to rule out the possibility of having

malaria again in the UAE.Therefore, it is important to study the impact of a possibly

imported malaria on the population living in the UAE.

This thesis is a contribution to this effort by presenting an analytical study, via

a mathematical modeling of malaria in the UAE. This model can be described as policy

based because it takes to consideration the nature of the population in the UAE, as local

and non-local, and the nature of the health policy of the country. By doing that, the aim is

to make outcomes of this work accessible to the decision makers and as well as healthcare

policy makers.

This thesis is organized in the following way:

First, in Chapter 2, I will present malaria as a disease and review the historical

facts about malaria in the UAE by looking at all existing data of malaria in the coun-

try. This data is either of the previous local infections or the recent imported cases from

epidemic areas. The goal is to give a clear motivation for this study.
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Second, in Chapter 3, I will give a complete literature review of the different

mathematical approaches to model malaria, starting from the first model by Sir Ronald

Ross in 1911 to the most developed model, that includes different levels of complexity

of the dynamic of the disease. The mathematical approaches are either single strain or

multi-strain, with drug impact or immunity factor, age dependent (age structure) or spatial

dependent, with environment factor or human factor, and deterministic or stochastic.

In chapter 4, I will introduce the threshold that had made the mathematical model

in epidemiology a science that quantify the virulence of an infection in a population. This

threshold is called the basic reproduction number, R0. I will introduce the idea behind

the basic reproduction number. I will present the probabilistic approach to calculate R0

using the survival function equation. I will also introduce the next generation method

approach to calculate R0. For illustration, I will use this method to calculate the basic

reproduction number for a classic mathematical model of malaria.

The main result of this thesis will be presented in Chapter 5, where I will introduce

my model that takes in consideration the nature of the health policies in the UAE. In this

model I have three sets of populations. Local population (nationals), non-local population

(immigrant) and vector-borne population (mosquitoes). I will present my well posed basic

mathematical model by proving boundedness and positivity. I next calculate the basic

reproduction number R0 using the next generation method. I also calculate the basic

reproduction number related to sub-population: locals RL
0 and non-locals RN

0 . Hence

I will find the relationship between three thresholds. Next, I will use very well-known

results of the next generation method to give the stability results. Finally, I will also find

the conditions of existence of possible endemic equilibrium with respect to R0.

To illustrate the outcomes of my analytical study, I will give, in Chapter 6, time

series simulations of my model using existent parameters estimation. The simulation will

confirm the mathematical finding by showing the results of a possible malaria epidemic in

the UAE, depending of the level of the infection in each sub-population. These findings

are discussed in this chapter in detail. Moreover, I will also introduce the sensitivity

analysis of parameters of my model and investigate the impact these sensitivity on my
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variables; particularly on the burden of infection. All the simulations were done with R

software [78] with different open source packages [18, 89].

I will finish this work by a conclusion in which I will try to cover all aspects of

my work. I will also present some possible extension of this work.

All the definitions which will be used in my model will be presented in Appendix

1. All the codes used in this thesis will presented for the reader in Appendix 2.
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Chapter 2: Introduction to Malaria and Malaria in the United Arab
Emirates

2.1 Malaria Disease

All over the globe specialists of infectious diseases including epidemiologists,

public health professionals and ecologists are always concerned about the spread and the

impacts of diseases on human life and ecosystems. Malaria is one of these infectious

diseases with estimated annual mortality rate ranging from 700,000 to 2.7 million people,

with more than 75% children and pregnant women with low immunity [59]. The word

malaria is originally an Italian word which means bad air. It was described as symptoms

in ancient writing, including Chinese, Indian, Greek, and Roman [14]. In 2008, 109

countries, in the tropical and subtropical regions, were declared malaria endemic areas,

whereas some counties like the United Arab Emirates was certified as malaria free since

2007 [30, 59].

Malaria as a vector borne disease needs two hosts to complete the life cycle of

the causing parasite which are the vector (mosquitoes) and the humans [14]. Protozoan

parasite of genus Plasmodium is the main cause for malaria disease which is transmitted

between humans through the bite of mosquitoes [14, 53]. There are four species of this

parasite that cause malaria in humans which are P. falciparum, P. vivax, P. malariae and

P. ovale and other species that cause malaria in animals [14]. P. falciparum which is

responsible for nearly 80% of all recorded malaria cases all over the world and 90% of

deaths is very common in the tropical areas of Africa and South East Asia [59].

Plasmodium species that infect humans with malaria have three main stages in

their life cycle: one is in the mosquito host and the other two are in the human body

specifically in the liver and blood [14]. The completion of Plasmodium parasite life cycle

depends on environmental factors such as temperature and humidity with optimal tem-

perature between 20◦C and 300◦C and relative humidity exceeding 60% [14]. As for
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Figure 2.1: Malaria Parasite Life Cycle

the mosquito life cycle, it develops through four main stages which are egg, larva, pupa

and adult and these stages are temperature and water dependent [14]. The increase in

the mosquito population is the result of warmer temperature and rainfall where the first

speeds up the development of mosquito from egg to adult and the second increases the

breeding sites of mosquitoes [14].

The transmission of malaria to humans is usually by the bite of infected female

Anopheles mosquitoes [14]. However, it can be transmitted directly from humans to

humans in several ways such as blood transfusions, needle sharing and vertically from

mother to child, but these types of transmission are considerably lower than those through

mosquitoes [14]. The malaria disease is divided into two types: uncomplicated malaria

and severe malaria [14]. The symptoms for the uncomplicated malaria include periodic

temperature with headache, shivering, muscle pains, diarrhea and vomiting with attacks

appearing in 2 to 3 days depending on the Plasmodium specie or even after number of

years for some cases [14]. On the other hand, severe malaria can be associated with se-

vere organ failure which happen to people with low or no immunity and the symptoms

are severe anemia with 30% of red blood cells being infected and can be lethal without

transfusion, cerebral malaria which is characterized by abnormal behavior and coma and

can cause 20% mortality even if treated and also kidney failure [14]. Diagnosing patients
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with malaria could be difficult task, since the symptoms of uncomplicated malaria are

similar to other diseases. Hence it is easy to have fault first hand diagnosis. Therefore

several blood smears are needed to confirm the presence of the parasite [14]. The micro-

scopic diagnosis is the main method to diagnosis the disease. Other methods, including

antigen detection and molecular diagnosis, are available but they are expensive and not

very commonly used in the endemic malaria regions [14].

Early diagnosis and efficient treatment of malaria would result in cure or increase

the survival chances for the malaria patients [14]. There is a variety of drugs that elim-

inate the blood-borne parasites, for example: chloroquine, sulfadoxine-pyrimethamine,

mefloquine. Due to higher prices and serious side-effects of the other drugs; chloroquine

is the prime medication for the malaria disease in the endemic regions [14]. The extensive

use this particular drug in these endemic regions led development of drug resistance [14].

The control measure to reduce the burden of malaria can be summarized in the de-

struction of mosquitoes breeding site by regular inspection, indoor residual spraying to in-

crease the chance of killing infected mosquitoes, using insecticide-treated bed nets which

has succeeded in decreasing the number of bites and the transmission of the disease and

other methods as producing drugs and vaccine to eliminate the parasite [14, 53]. These

control strategies are faced with different types of problems such as lack of resources in

the endemic regions affecting the productivity and the poor economy of these countries

due to spending a large proportion of the annual income on the public health system to

cure malaria cases [14, 59]. In addition, there is a continuous increase of the number of

drug-resistant strains of Plasmodium and insecticide-resistant mosquitoes, which repre-

sent other obstacles facing the control of malaria [14]. Human activities, overpopulation,

urbanization and specially climate change are other serious problems related to the spread

of malaria [14, 59].

2.2 Malaria in the UAE

The UAE was one of the endemic areas of malaria disease; however, this small

country battled strongly and came up with different strategies and plans, with the help of
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the citizens, to be the first country to be certified local malaria free in 2007. Singapore

and Australia in the 1980s become certified by the World Health Organization (WHO) and

became the example for other countries [30, 87]. Prior to the early 1970s, the areas of Ras

Al Khaimah, Sharjah, Fujairah, the east along the Omani border and the central plateau

were highly endemic with main Plasmodium parasites being P. falciparum, P. vivax and

P. malariae. However, the other parts of the country, on the coastal line, starting from Abu

Dhabi to Umm Al Quwain and Ajman and including the oasis areas of Al Ain had a low

rate of malaria transmission [30, 87]. As for the mosquitoes vector hosts, two particular

species existed: Anopheles stephensi and Anopheles culicifacies that breed mainly in deep

wells, shallow wells, basins, drums and irrigation channels [30, 87].

Throughout 30 years of applying many antimalarial plans and strategies, the UAE

was able to accomplish the goals of being local malaria transmission free. These strategies

included annual spraying of DDT at the densely populated areas and near the breeding

sites before it was banned in 1975 and reintroduced again as DDT indoor residual spray-

ing (IRS) [87]. Also, distributing chloroquine as part of mass drug administration by the

school health department and other types of drugs and vaccines was one of methods used

to reduce the transmission of malaria disease in the country especially for children [87].

Establishment of the Central Malaria Department (CMD) in the late 1970s in Sharjah with

clinics and laboratories across the country the most important factor that contributed in the

early detection of malaria by understanding the nature of the disease in the UAE and de-

ciding on the the best approach for controlling malaria transmission [30, 87]. In addition,

having the national health budget support for controlling malaria disease in the country

increased yearly made huge difference [30, 87]. Moreover, the introduction of larvivorous

fish (A. dispar and Tilapia) assisted the elimination and reduction of the mosquito popu-

lation from early stages [87]. Other plans were also put in action until the full eradication

of local malaria where the last reported local malaria case was in Masfout in July 1997

[30].

The battle with malaria in the UAE did not end due to the increased number of

yearly reported imported malaria cases. The number of imported malaria cases in recent
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years was between 2000 to 3000 cases yearly due to several reasons or factors [2]. These

reasons include the trade movements, tourism and importing workers from other endemic

counties especially from the Indian subcontinent countries [30]. Another major factor

to consider, is the global climate change, fluctuation in temperatures, change of rainfall

patterns and melting ice that rise the sea level annually, as well as other environmental

factors that may negatively influence the world map of malaria [87]. The UAE govern-

ment is currently concerned with the environmental impacts of continuous development

and destroying the natural habitats in the UAE due to the fact that the UAE has one of

the highest ecological footprints in the world. Therefore, the UAE is continuously alert to

avoid any type of epidemic specially malaria [30].

In order to have a better perspective of the malaria disease history in the UAE, sev-

eral data and figures were collected from the literature and available data and discussed

chronologically. World Health organization (WHO) does an annual assessment of various

diseases for different countries to understand the actual situation and give suitable sug-

gestions and recommendations about certain diseases. One of these studies was done in

1983 to evaluate the burden of the malaria disease in the UAE. The report [24] contained

a detailed information about malaria epidemiological data, the used detection methods,

following procedures, and the difficulties faced in different areas in the UAE. From this

report, two figures were plotted to represent the number of reported malaria cases in 1982

in different areas of the UAE, figure 2.2, and the P. falciparum malaria cases in the same

areas, figure 2.3, since P. falciparum is the parasite causing malaria. Al Ain area had

the largest number of reported malaria cases with highest P. falciparum cases of all other

regions. A main reason for the high number in Al Ain is due to open borders with Oman

and easy mobility. On the other hand, Abu Dhabi had the lowest number of malaria cases

in the UAE. As noticed in the figures 2.2 and 2.3, there are two main peaks in May and

November where the numbers of malaria cases increase rapidly.

Dar et al. [20] showed several data, figures, and tables that described malaria

cases in Al Ain region specifically. It was reported in [20] that the last local transmission

case of malaria in Al Ain district was in 1981. All the UAE nationals’ cases were caused
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Figure 2.2: UAE Reported Malaria Cases in 1982

Figure 2.3: 1982 P. falciparum UAE Malaria Cases

by other means, either by traveling to malaria endemic countries or by getting infected by

infectious mosquitoes. Figure 2.4 shows the steady increase in the number of imported

malaria cases who tested positively in Al Ain between 1988 and 1991. As for table 2.5,

it gives the number and percentage of imported malaria cases with their nationalities.

The Pakistani nationals had the highest percentage of imported malaria cases followed

by Omani and the UAE infected people. However, this does not mean that the origin of

the malaria infection is the same as their nationalities; this needs more investigation to be

determine. For more details see table 3 in [20].

Since there are several parasites responsible for transmitting malaria, figure 2.6

shows the number of imported malaria cases in Al Ain by causing parasite among different

nationalities. It is noticeable that the leading parasite causing malaria in Al Ain is P.

falciparum and then P. vivax among all nationalities except Indians where the second

parasite is contributing more in the transmission of malaria.

Due to the extensive use of the drug (chloroquine) as a treatment for the malaria
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Figure 2.4: Number of Cases Tested Positively for Imported Malaria in Al Ain From 1988 to
1991

Figure 2.5: Imported Malaria Cases of Various Nationalities in Al Ain From 1988 to 1991

Figure 2.6: Display of 1990 Plasmodium Species Diagnosed Amongst the Various Nationalities
in Al Ain
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disease, P. falciparum developed resistance towards it. In 1984, the cases of drug-resistance

started to show up in Al Ain region and the number is on the rise as shown in figure 2.7.

Figure 2.7: Chloroquine-resistant P. falciparum Malaria Cases in Al Ain, UAE From 1984 to
1991

A study was conducted in Rashid Hospital in Dubai from January 2008 to De-

cember 2010. This study examined the epidemiological and clinical characteristics of

imported malaria [67]. The results of this study showed that most malaria cases were

caused by P. vivax mainly coming from the subcontinent countries of Pakistan and India

(90.1%) and 7% from sub-Saharan Africa. The other causing parasites were P. falciparum

and mixed P. falciparum / P. vivax. It stated that clinicians should be aware of P. vivax

since it causes severe malaria and may not be detected for several months. Figure 2.8 dis-

plays the number of imported malaria cases in Rashid Hospital from 2008 to 2010 where

most imported cases were detected in September of each year.

Figure 2.8: Imported Malaria Cases in Rashid Hospital From 2008 to 2010

The following data is on the imported malaria cases in the UAE [101]. These data

were gathered by (WHO), and they clearly show the increase in the number of yearly
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imported malaria cases as in figures 2.9 and 2.11. Top ten countries of imported malaria

cases are shown in figure2.10 where most cases are from the subcontinental countries.

Figure 2.9: Total Imported Malaria Cases in the UAE

Figure 2.10: Imported Malaria Cases (Top 10 contries)

This issue needs to be taken seriously and studied properly; otherwise, there might

be factors that lead to the reintroduction of local malaria transmission or malaria epidemic

due to imported malaria cases.



13

Figure 2.11: Total Confirmed Cases and % of P. falciparum+ Mixed Cases

Figure 2.12: Total Slides Examined and Slide Positivity Rate (SPR)
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Chapter 3: Literature Review

Malaria is an ancient disease that scientists have tried to understand its dynam-

ics for hundreds of years because of its burden on human population all over the world.

The break through happened when the mosquito role in the malaria transmission cycle

was discovered by Grassi and Ross in 1897[53]. Ross was the first to publish a series

of papers including a simple mathematical model that gave a better picture of interac-

tive factors and their role in the eradication of malaria disease. Since then mathematical

epidemiologists have realized the important of mathematical models in infectious dis-

eases and, a lot of models have been built to understand the dynamics of malaria disease.

Prediction of the prevalence of infectious diseases epidemic and guidance for malaria

eradication and control research at the present time are the two main reasons for using

mathematical models in epidemiology [53]. This chapter is an attempt to chronologi-

cally display a brief review of the history of malaria mathematical models. It is not a

trivial task to describe and cover a hundred years of malaria models in one chapter, but

the focus would be on the epidemiological compartment models. The basic methodology

for this approach is based on deterministic differential equations mainly. There are other

methodologies such as the "within hosts" models, parasite and immune cells interaction

in an individual host, and population genetics models where the spread and the growth

of parasite is studied with complex varying factors of human immunity and death, drugs

and mosquito availability. Despite that there were recent modeling papers discussed using

these methodologies and others including individual-based models, habitat-based models

but the infection transmission in human and mosquito population epidemiological com-

partmental models remain the most used method. This chapter consists of two main parts.

The first part presents the three fundamental malaria models of Ross, Macdonald and An-

derson and May used as a basis for better understanding malaria as a disease. On the other

hand, the second part presents the different approaches or factors used in compartmental

malaria modeling based on the three fundamental malaria models mentioned in the first
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part. Some of these factors include age, immunity and environmental factors that will be

introduced in the second part of this chapter.

3.1 Ross Malaria Model

The first foundation of malaria models started in 1911 when Sir Ronald Ross was

working on malaria cases in India [80]. He introduced the first deterministic differen-

tial equation malaria model in which the human population was structured as suscepti-

ble - infected - susceptible (SIS) compartmental model and the mosquito population as

susceptible-infected (SI) model. Ross represented his model, known as the classical Ross

model, as the following [53, 81]:

dIh
dt = abmIm(1− Ih)− rIh

dIm
dt = acIh(1− Im)−µ2Im

(3.1)

The two differential equations are a presentation of the malaria disease compart-

ments in Ross Model. The subscripts h and m are indicators for the human and mosquito

populations, respectively. Different parameters are described in this model that include a

as human biting rate, b is human infection produced by a proportion of bites, m is the ratio

of female mosquitoes number to that of humans and r is human average recovery rate in

the differential equation describing the infected humans. Other parameters contained in

the infected mosquito compartment are c as a proportion of bites that infect mosquito and

µ2 is the per-capita mosquito mortality rate [53]. The basic features of malaria disease

transmission were studied through the simple model of Ross. It concluded that reduc-

ing the number of mosquitoes to a certain level (transmission threshold) would decrease

malaria transmission. This led to first thoughts of mosquitoes control programs. An im-

portant factor which is the survival and the latency period (defined as infection period up

to the starting of infectious state where the parasite is in the exposed compartment) of the

parasite in the mosquito was not considered in Ross model [53].
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3.2 Macdonald Malaria Model

In 1950’s George Macdonald reemphasized the importance of mathematical epi-

demiology and extended Ross model to a model that considered mosquito latency by

adding the exposed compartment in the mosquito population. The human population re-

mained as in the Ross model with susceptible-infected-susceptible (SIS) structure while

the mosquito population was modified as susceptible-exposed-infected (SEI) model. The

disease compartments included three variables that were Ih: infected humans, Em exposed

mosquito and Im infected mosquito. All the parameters described in the Macdonald model

are exactly the same as in Ross model with the addition of τm as the mosquito latent pe-

riod. This model provided a better understanding of malaria cycle and proposed that the

survival of adult mosquito is the weakest link in the cycle. This led to a massive malaria

eradication campaign by the World Health Organization (WHO) by concentrating on the

use of DDT as an insecticide to eliminate mosquito in Africa [49, 53, 71]. Macdonald

model is represented in the following differential equations [48, 49, 50, 53]:

dIh
dt = abmIm(1− Ih)− rIh

dEm
dt = acIh(1−Em− Im)−acIh(t− τm)[1−Em(t− τm)− Im(t− τm)]e−µ2τm−µ2Em

dIm
dt = acIh(t− τm)[1−Em(t− τm)− Im(t− τm)]e−µ2τm−µ2Im

(3.2)

3.3 Derivation of the Basic Reproduction Number R0 as a Transmission Threshold

In 1982, Aron and May [7] described the Ross model and its properties. Also, they

calculated the value of the basic reproduction number, R0, using the simple definition of

Anderson and May of R0 described in chapter 4:

R0 =
ma2bc

rµ2
.

where am is the number of contacts of one human with mosquitoes per unit time, assuming

that the probability of transmission to be c from infectious human to susceptible mosquito

and 1/r is the average duration of human infectious period. Thus, the number of infected
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mosquitoes due to one infectious human over the entire infectious period is (mac/r).

Likewise, a represent the number of contacts of one mosquito with humans per unit time;

b is the transmission probability of infectious mosquito to susceptible human and 1/µ2 the

average duration of female mosquito infectious period. Therefore, (ab/c) is the number

of infected humans due to one infectious mosquito over its infectious lifetime. ma2bc/rµ2

is a product describing the number of infected humans caused by one infectious human,

through a generation of infectious mosquitoes [14].

For Macdonald’s model, the value of R0 is

R0 =
ma2bc

rµ2
e−µ2τm

It is noticeable that if the value of τm is zero, then the reproduction number of Macdonald’s

model is R0 of Ross’s Model.

3.4 Anderson and May Malaria Model

In 1991, Anderson and May also extended Macdonald malaria model naturally by

including infection latency rate of humans that is represented by adding the exposed com-

partment to human population [4, 53]. The model divided both human and mosquito pop-

ulation into three compartments: susceptible S, exposed E and infected I compartments.

SEIS is the model structure for the human population while the mosquito population is

represented in SEI compartmental model. The disease compartments for Anderson and

May malaria model are exposed humans Eh, infected humans Ih, exposed mosquitoes Em

and infected mosquitoes Im. Two parameters; µ1 as a per-capita human mortality rate and

τh as parasite latent period in human; were added to the model with the other parameters

as in the previous models. The representation of Anderson and May model and its basic

reproduction number R0 as follows:
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dEh
dt = abmIm(1−Eh− Ih)−abmIm(t− τh)[1−Eh(t− τh)− Ih(t− τh)]e−(r+µ1)τh

−rEh−µ1Eh

dIh
dt = abmIm(t− τh)[1−Eh(t− τh)− Ih(t− τh)]e−(r+µ1)τh− rIh−µ1Ih

dEm
dt = acIh(1−Em− Im)−acIh(t− τm)[1−Em(t− τm)− Im(t− τm)]e−µ2τm−µ2Em

dIm
dt = acIh(t− τm)[1−Em(t− τm)− Im(t− τm)]e−µ2τm−µ2Im

(3.3)

R0 =
ma2bc

rµ2
e−µ2τme−µ1τh

3.5 Extensions of Malaria Mathematical Models

The three models (3.1),(3.2) and (3.3) are considered the foundation models for

malaria transmission where more detailed models originated from them; see figure 2 in

[53] or figure (3.1). There was a number of mathematicians and epidemiologists who

were interested in modeling malaria disease from different point of views and various

factors. Some of the studied factors were age, immunity, environment, social-economical

factors, host-pathogen variability, resistant strains, migration and visitation factors [53].

These models used different approaches to answer their questions. Some of these models

were designed as deterministic models while other models used stochastic or data based

statistical models depending on the questions asked. The next paragraphs will mention

some papers and their contributions to mathematical modeling of malaria disease.

3.5.1 Age Structure Models

Age and gender play essential roles in the malaria transmission burden. From

early malaria surveys and papers, it was noticeable that most reported mortality cases

were under the age of 5 in malaria endemic regions and the contentious exposure of the

disease, gave the adults some kind of immunity to the disease. On the other hand, humans
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Figure 3.1: Malaria Models History

of different ages were susceptible to malaria in non-endemic areas due to non-continuous

exposure to the malaria disease which led to the increase of malaria burden. This was

studied in several papers such as Aron and May, 1982 [7]; Anderson and May, 1991 [4]

and Tumwiine et al.,2008 [91, 96]. Based on Macdonald model, Aron and May in 1982

were the first to study the influence of human age on the spread of malaria. The model

consisted of three compartments; susceptible humans Sh, infected humans Ih, and intro-

duced the recovered compartment Rh with model structure as SIRS model. The vertical

capacity of infection defined as:"the number of potentially infective contacts an individ-

ual person makes, through the vector population, per unit time" illustrated the effect of

the vector in the model [53]. The partial differential equations variables depend on both

time and age. The number of parasites and immunity level in average human is mea-

sured in this model instead of calculating the number of infected humans and mosquitoes.

This is considered very useful since the difference of parasitemia load in various humans

is ignored in the Macdonald model [14]. The effect of including age structure in basic

Ross model was studied by Anderson and May in 1991 by looking at different control

strategies, considering the effect of vaccine and decreasing malaria rate of transmission

[14]. Their model is represented below 3.4 where the human population density in Ih is

consisted of age and time dependent function. Parameters N(α) and N̂ are denoted as
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human population density at age α and mosquito density, respectively; whereas the def-

inition of the other parameters is the same as in the basic models. The infection in this

model differs depending on time and age, and the inclusion of force of infection that is

defined as "per capita rate of infection acquisition" based on N, N̂, a and b improved the

basic models such that infection is age dependent in human population. This result did

not match the observed trend of malaria prevalence with age and the need of models that

give more explicit interaction between age and immunity is a must [53].

∂ Ih(α,t)
∂ t + ∂ Ih(α,t)

∂α
= abmIm(t)[N(α)− Ih(α, t)]− (r+µ1)Ih(α, t)

dIm(t)
dt = acĨh(t)[N̂− Im(t)]−µ2Im(t)

(3.4)

3.5.2 Immune Class and Immunity Functions Models

The purpose of including immunity in malaria models was specified by Koella in

[45] by two main reasons. The first reason is to increase the realism of malaria models;

the effects of without the immunity factor, it will be less representative of the disease.

Verifying malaria vaccines to predict the findings of vaccination programs is the second

propose of the inclusion of immunity in malaria models [53]. There are two approaches

to include immunity in malaria models which are either adding separate immune humans

class Rh or incorporating an immunity function in malaria models. Many papers included

immunity as a separate Rh class such as [6, 11, 14, 22, 62, 65, 102, 103] while other

models used complex immunity functions to describe immunity like the following: [9,

25, 29, 31, 69]. More derails are mentioned in the next subsections.

• Immune Class Malaria Models: Two papers by Ngwa and Shu in 2000 [65] and

Ngwa in 2004 [62] described malaria compartmental model which classify human

population in SEIRS susceptible-exposed-infected-recovered-susceptible structure

while mosquito population is put in SEI susceptible-exposed-infected compart-

ments. A stable threshold below disease-free equilibrium was established and an-

other above disease-free equilibrium where the disease can persist. Note that popu-

lation size in [65] varies, and it is not constant in comparison to most models. After

that, an extension for the model viewed in [65] and [62] was made by Chitnis et

al. [11] and Chitnis et al. [12]. They modified the model in several ways such as
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generalizing the rate of mosquito bite, including constant human immigration, and

eliminating the direct infectious-to- susceptible human recovery. Paper [11] showed

a bifurcation analysis for the model, calculated the basic reproduction number and

proved the existence and stability of the disease-free and endemic equilibria. On

the other hand, a sensitivity analysis for the reproduction number and the endemic

equilibrium was found in [12] to indicate the importance of parameters in disease

transmission model and prevalence. The representation of both Ngwa-Shu model

(3.5) and Chitnis model (3.6) and their parameters are as follows:

dSh
dt = ghNh + γRh + rIh− (µ ′1 +µ1Nh)Sh−

(
CmhaIm

Nh

)
Sh

dEh
dt =

(
CmhaIm

Nh

)
Sh− (νh +µ ′1 +µ1Nh)Eh

dIh
dt = νhEh− (r+q+µd +µ ′1 +µ1Nh)Ih

dRh
dt = qIh− (γ +µ ′1 +µ1Nh)Rh

dSm
dt = gmNm− (µ ′2 +µ2Nm)Sm−

(
ChmaIh

Nh

)
Sm−

(
C̃hmaRh

Nh

)
Sm

dEm
dt =

(
ChmaIh

Nh

)
Sm +

(
C̃hmaRh

Nh

)
Sm− (νm +µ ′2 +µ2Nm)Em

dIm
dt = νmEm− (µ ′2 +µ2Nm)Im

(3.5)

Parameter Parameter Description

gh/gm birth rate of human/mosquito

γ rate of loss of immunity

νh/νm infectious rate from exposed class for human / mosquito

µ ′1/µ1 density independent / dependent death rate of human

µd disease induced death rate of human

µ ′2/µ2 density independent /dependent death rate of mosquito

q acquire immunity rate

Cmh infectivity of mosquito

Chm infectivity of infected human (Ih)

C̃hm infectivity of immune human (Rh)

a biting rate of mosquito on human

r average recovery rate of human from infectious to susceptible class
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Nh/Nm total number of human/mosquito

Table 3.1: Parameters Description of Ngwa-Shu and Chitnis Models

dSh
dt = Λ+ghNh + γRh + rIh− (µ ′1 +µ1Nh)Sh−

(
CmhaIm

Nh

)
Sh

dEh
dt =

(
CmhaIm

Nh

)
Sh− (νh +µ ′1 +µ1Nh)Eh

dIh
dt = νhEh− (q+µd +µ ′1 +µ1Nh)Ih

dRh
dt = qIh− (γ +µ ′1 +µ1Nh)Rh

(3.6)

Mosquito dynamics equations is the same as Ngwa model, Λ is the immigration

rate of human and all other parameters are the same as in Ngwa-shu model.

• Immunity Functions Malaria Models: The earlier described models do not take into

consideration the immunity acquisition processes, their types, and their role in dis-

ease transmission and progression. A model of SEI structure was introduced by

Filipe et al. with three age specific "immunity-functions" for the infected human

population. These three compartments are: infected with severe disease Ih1, asymp-

tomatic patent infection Ih2 and infected with undetectable parasite density Ih3. The

force of infection h is imposing the effect of mosquito density. Immunity functions

in this model decrease the susceptibility to clinical disease ϕ , accelerate the clear-

ance of detectable parasites rA and rise the tolerance to sub-patent infections ri j. In

addition, they depend on age disease transmission intensity (i.e. Rate of infectious

bites per person is termed as Entomological inoculation rate). More details regard-

ing these immunity functions and their analysis is available in the additional file

2 of [53]. The results of this model indicate that two distinct acquired immunity

processes is needed for the above mentioned three reasons also for explaining the

clinical and parasite immunity duration from the pattern of age prevalence [53].

∂Sh
∂ t + ∂Sh

∂α
=−h(α)Sh +φRDIh1 + rU Ih3

∂Eh
∂ t + ∂Eh

∂α
= h(α)Sh− τ

−1
h Eh

∂ Ih1
∂ t + ∂ Ih1

∂α
= φτ

−1
h Eh +φh(α)Ih2− (RD +µd)Ih1

∂ Ih2
∂ t + ∂ Ih2

∂α
= (1−φ)τ−1

h Eh +(1−φ)RDIh1−φh(α)Ih2− rAIh2

∂ Ih3
∂ t + ∂ Ih3

∂α
= rAIh2− rU Ih3

(3.7)
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with

RD = f rT +(1− f )rD

and

h(α) = (EIR)b(1− e−
α

α0 ) = (maIm)b(1− e−
α

α0 )

Parameter Parameter Description

h(α) force of infection experienced by a person of age

τh latent period of human

φ proportion that developed symptomatic disease

f proportion of symptomatic cases who receive treatment

rT recovery rate with treatment

rD natural recovery rate without treatment

rA rate at which infectious became subpatent

rU rate of clearance of subpatent infection

µd disease induced mortality

α0 age at which half the total increase in exposure is achieved EIR-

entomological inoculation rate

a biting rate of mosquito on human

b proportion of bites that produce infection on humans

m number of female mosquitoes relative to human

Table 3.2: Parameters Description of Filipe et al. Model

3.5.3 Host-Pathogen Variability and Resistant Strain Models

Homogeneity in response to infection in the host and parasite populations is as-

sumed in the basic malaria Model. Malaria related Populations were thought to have equal

chances to developing disease, getting immunity and transmitting infection. However

modern studies discovered the diversity reaction toward infection in hosts and parasite

population. This was due to the extensive use of insecticide (DDT) and drugs (quinine and
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chloroquine) which led to the appearance and the rise of resistance strains toward insecti-

cides and drugs that impacted negatively on malaria control. Population heterogeneity and

resistance is considered in within-host processes [53]. Parameters including variable anti-

genic response, immune selection, and pathogen strain structure were studied in pathogen

population structure and heterogeneous host population models [33, 34, 79]. For better

malaria control strategies, evolution of drug resistance were included with other factors

in several models [5, 16, 23, 35, 43, 44, 51, 76]. Models of resistant-strain were studied

based on the development of drug resistance through the immunity of the host [16, 44]

and the inclusion of many countries adapted artemisionin combination therapy(ACT) drug

policies [76]. Cost of resistance of population genetic Γ defined as "The reduction of a

resistant parasite’s fitness relative to that of a sensitive parasite, when neither parasite is

exposed to the drug" is added to this type of models [8, 43]. The interaction between

various environmental, pharmacological, and genetic factors were illustrated in model [5]

to present the complex processes of drug resistance. This type of models is important

to public health professionals since they address the malaria parasites evolution of drug

resistance.

Resistant-strain mathematical models generally divide the infected human pop-

ulation Ih into two compartments of infected by drug-sensitive strain and drug-resistant

strain of the parasite. A further division of infected human population was introduced

in Koella and Antia model 3.8 by subdividing the drug-sensitive strain into treated and

untreated compartments. Thus, the five human compartments of Koella and Antia model

are: susceptible Sh, sensitive, infected and treated Ih1, sensitive, infected and untreated Ih2,

infected with resistant strain Ih3 and recovered rh. The mosquito vector role is included

in the inoculation rate of sensitive and resistant parasites. The model is presentation and

variables description as below:
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dSh
dt = gh−µ1Sh− (hs +hr)Sh− γRh

dIh1
dt = f hsSh− (rst +µ1)Ih1

dIh2
dt = (1− f )hsSh− (rsu +µ1)Ih2

dIh3
dt = hrSh− (rr +µ1)Ih3

dRh
dt = rstIh1 + rsuIh2 + rrIh3− (γ +µ1)Rh

(3.8)

with

hs = mbsa2e−µ2τ · Ihs

µ2 +a(bsIhs +brIh3)

hr = mbra2e−µ2τ · Ih3

µ2 +a(bsIhs +brIh3)

Ihs = Ih1 + Ih2

Parameter Parameter Description

gh birth rate of human

µ1 natural mortality rate of human

hS inoculation rate for anti malarial sensitive

hr inoculation rate for drug resistant

rst recovery rate from infection for treated

rsu recovery rate from infection for untreated

rr recovery rate from infection for resistant strain

γ rate of loss of immunity

f percentage treated

bs proportion of bites that produces sensitive strain on human

br proportion of bites that produces resistant strain on human

a biting rate of mosquito on human

m number of female mosquitoes relative to human

µ2 mosquito death rate

τm latent period of mosquito

Table 3.3: Parameters Description of Koella and Antia Model
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The basic analysis of the model indicated that there is a threshold proportion of

people fc among Ih1 class, where the resistant cannot spread below it, and eventually it

will be fixed in the population above the threshold. The level of threshold is expressed as:

fc =
1−1/Γ

1−1/ ∈

where the "treatment effectiveness, i.e. the ratio of infection duration for the un-

treated and treated parasites" is denoted as ∈ and the "cost of resistance" is defined as

Γ and these two parameters would determine the domination of the drug sensitive or re-

sistant parasite in the population. Another result from this model is that in the absence

of drug or treatment; with respect to sensitive parasite, there is a reduction in resistant

parasite fitness; or on the other hand, both types of parasites share the same properties, so

it is impossible for them to coexist [53].

3.5.4 Environmental Factors Models

One of the factors that influences the life cycle of host-vector-parasite malaria

dynamics, is the environmental factor. It is known that factors such as temperature, hu-

midity, rainfall, and wind patterns have huge impacts on malaria disease, specially on

the mosquito population density. Temperature for example has a large influence on both

mosquito breeding and parasite sporogony in the vector where an increase in temperature

reduces the days required for their propagation. Also, the increased concern about cli-

mate change or global warming has made more mathematical modelers to include these

factors in their models by modifying the dynamics of mosquito population. The impact

of changes in temperature and humidity on the transformation rate of juveniles to adult

susceptible mosquito class was studied by Li et al. in 2002 [47]. In addition, several

mathematical models simulation were preformed to investigate the environmental vari-

ability effect in the mosquito populations abundance including colour noise form like

random fluctuation in infected mosquito population of Ross Model [10] and periodic or

noisy form of infection force [4, 7, 10]. Various environmental factors were connected

to malaria disease and studied at different aspects to better identify the relationship be-
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tween process of pathogen transmission and climate factors like in the following articles:

[39, 55, 72, 102, 103, 104] and others more. A resent paper by Parham and Michael in

2010 [72] discussed the effect of rainfall and temperature on the mosquito population dy-

namic where human population is structured as (ShIhRh) susceptible-infected-recovered

human with constant latency duration whereas mosquito population is consisted of sus-

ceptible Sm, exposed Em and infected Im compartmental classes. various parameters rep-

resenting environmental factors where related to mosquito. Description of the parameters

are shown in table (3.4). Mosquito birth rate is described as a function of temperature and

rainfall, but other factors like the mortality rate of mosquitoes, rate of biting, sporogonic

cycle duration, and infected mosquito survival probability over the parasite incubation pe-

riod temperature variation dependent. The model concluded that rainfall pattern changes

influence vector abundance as well as on malaria endemicity, invasion and extension.

Moreover, with the existences of sufficient rainfall for vector development and survival

is sustained,and the pathogen life cycle is affected by temperature which influences the

spread of the disease rate [53]

dSh
dt =−a(T )bImSh/Nh

dIh
dt = a(T )bIm(t− τh)Sh(t− τh)/Nh− rh

dSm
dt = λ (R,T )−a(T )cIhSm/Nh−µ2(T )Sm

dEm
dt = a(T )cIhSm/Nh−µ2(T )Sm−a(T )cIh(t− τm(T ))Sm(t− τm(T ))lm(T )/Nh

dTm
dt = a(T )cIh(t− τm(T ))Sm(t− τm(T ))lm(T )/Nh−µ2(T )Im

(3.9)

with

Nh = Sh + Ih +Rh

and

λ (R,T ) = BPE(R)PL(R)PL(T )PP(R)/(τE + τL(T )+ τP)

Parameter Parameter Description

R Rainfall

T Temperature
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λ (R,T ) Adult mosquito birth rate per day

a(T ) biting rate of mosquito on human

b proportion of bites that produce infection on humans

c proportion of bites that produce infection on mosquitoes

µ2(T ) mosquito death rate

r average recovery rate of human from infectious to susceptible class

τm(T ) latent period of mosquito

τm(T ) latent period of human

lm Survival probability of infected mosquitoes over the incubation period

of the parasite

PE ,PL,PP daily survival probabilities of eggs, larvae and pupae

τE ,τL,τP duration of egg, larvae and pupae stages respectively

Table 3.4: Parameters Description of Parham and Michael Model

3.5.5 Social and Economical Factors Models

Social and economical conditions have had enormous effects on the spread of

malaria disease. Observing the world malaria map, one can clearly see that most endemic

malaria countries are among the poorest. Therefore improving social and economical

conditions in human population would definitely lessen the burden of malaria. As a con-

sequence to malaria, economy would be affected on individual and society levels. It has

a direct effect on individual’s monthly incomes, reduces the workforce, decreases the for-

eign investments, trade, and tourism in the endemic malaria countries [59]. Many authors

studied different social and economical factors affecting the burden of malaria. Those

studies [3, 100, 46] include fertility, population growth and misdiagnosis. Most of the

papers incorporate these types of factors as case studies and there are only a few that are

differential equation models [53]. Based on Anderson and May malaria model, Yany in

2000 [103] included both socio-economic factors and the effect of environment in where

the human population was divided into seven compartments as the following:
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dSh
dt = gh−θEh1 + γRh3− [h′Im +µ1]Sh

dEh1
dt = h′ImSh− (θ +νh +µ1 +µd)Eh1

dIh
dt = νhEh1− (q+µ1)Ih

dRh1
dt = qIh +h′ImRh2 +νhEh2− (π1 +µ1)Rh1

dRh2
dt = π1Rh1− [h′Im +π2 +µ1]Rh2

dRh3
dt = π2Rh2 +θEh2− [h′Im + γ +µ1]Rh3

dEh2
dt = h′ImRh3− (θ +νh +µ1)Eh2

dSm
dt = Φ

σ1(T )
σ1(T )+µe(T )

− [ f ′Ih +µ2 +µ ′]Sm

dEM
dt = f ′IhSm− [σ2(T )+µ2 +µ ′]Em

dIm
dt = σ2(T )Em− [µ2 +µ ′]Im

(3.10)

The human compartments are: susceptible Sh, incubating or exposed Eh, infec-

tious Ih, immune Rh1, partially immune Rh2, non-immune but with immunologic memory

Rh3, and incubating after reinfection Eh2. As for the mosquito population, it is struc-

tured as an SEI susceptible-exposed-infected model. Yong model parameters are stated

in 3.5. Several factors like immunity, endemicity, resistance, economic conditions and

temperature dependence of mosquito are development included in the model with three

economic conditions (good, intermediate and poor) with further division into three tem-

perature zones leading to different R0. This implies that the global climate change and

social and economical factors alter the value of the basic reproduction number R0. The

results of the model indicate that social and economical factors have more influence on the

malaria transmission in endemic populations than temperature fluctuation which requires

a better environmental and health care management [53]. The effectiveness of insecticide-

treated nets and indoor residual spraying as a malaria control strategies were studied in

[13] to conclude that the first strategy is more protective from malaria infection.

Parameter Parameter Description

gh Human birth rate

µ1 Human natural mortality rate
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µd Human disease induced mortality rate

θ Natural resistance rate against malaria

h′ Force of infection produced by each infected mosquito

π1 rate of loss of protective immunity

π2 rate of loss of partial immunity

γ rate of loss of immunological memory

νh rate of production of gametocytes

q acquire immunity rate

Φ rate of oviposition

σ1(T ) rate of becoming adult from egg

σ
−1
2 (T ) duration of sporogony in the mosquito

µe(T ) rate at which eggs becoming nonviable

µ2 mosquito natural mortality rate

µ ′ mosquito induced mortality rate

f ′ rate of transmission of susceptible to infectious mosquito

Table 3.5: Parameters Description of Yong Model

3.5.6 Migration / Visitation Factors Models

Malaria as a disease that differs regionally in three main aspects which are trans-

mission vectors, disease causing species and malaria intensity level [26]. One of the

factors affecting the failure of malaria eradication strategies is the negligence of the host

mobility patterns. These movement patterns which are responsible for infection transmis-

sion consist mainly of migration (i.e., human movement from region to another with no

return) and visitation (i.e, returning to the original region after vi malaria intensity but can

be controlled if the effect of both visitation and migration are well studied and understood

[53, 54, 90]. Torres-Soranando and Rodriguez in 1997 were of one the mathematicians

who modified the classical Ross model to include the effect of both visitation and migra-

tion in their multipatch model. Two models were designed to study the effects of both

migration as in the first set of differential equations and visitation as in the second one in
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malaria transmission.

dni
dt = ∑

j 6=i
ei jn j− ∑

j 6=i
ei jni

dIhi
dt = abmImi[ni− Ihi]− rIhi + ∑

j 6=i
e jiIh j− ∑

j 6=i
ei jIh j

dImi
dt = acIhi[

M
A − Imi]−µ2Imi

(3.11)

dIhi
dt = abmImi[ni− Ihi]− rIhi + ∑

j 6=i
abmTi j[ni− Ihi]Im j

dImi
dt = ac(Ihi + ∑

j 6=i
Ih jTji)[

M
A − Imi]−µ2Imi

(3.12)

It is assumed that only humans move between patches and the distribution of

mosquitoes is even. The parameters included in these differential equations are as follows:

a is mosquito biting rate on human, b is proportion of bites that produces infection on

humans and c is proportion of bites that produces infection on mosquitoes. µ2 and µ1 are

mosquito and human death rate, respectively. Human average recovery rate is denoted

as r while M is the total mosquito density, and A is the number of fragmentation of the

total area Migration intensity from ith patch to jth patch and visitation time is given by ei j

and Ti j. It resulted in the enhancement of the persistence of the disease by increasing the

mobility without any changes in prevalence and faster reach to equilibrium with higher

level of migration. In case of visitation, there is an increase in the equilibrium prevalence

in time of increased visitation and a decrease in time reaching the equilibrium with the

rise in the intensity of visitation [53, 95].

3.5.7 Stochastic Models

Despite the facts that most of malaria models are designed as deterministic mod-

els, some recent papers have used stochastic models in order to give different and more

realistic aspects of the dynamics of malaria transmission. This type of models provides

more information for the public health decision makers to illustrate more policies than de-

terministic models. Stochastic models approach solve several drawbacks of deterministic

models by considering integer state values, whereas the fractional state valve is allowed

in deterministic models. Deterministic models are considered as an unrealistic approach
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because of the improbability of half a human. Also, in the deterministic models, the sys-

tem behavior is smoothed such that jumps in state variables as in real life is impossible

to detect as one person gets infected. Deterministic simulation with the same initial con-

ditions will produce the same result every time which is mathematically correct but not

the real representation of epidemic situation [41]. The studies done by Marine in 2008

[52] and Plucinski et al. in 2011 [75] showed, via stochastic models, that for a general

SIS disease model, a population can enter a disease or poverty trap or exist from it with

usage of suitable economical and health motivation. However, essential changes for the

initial conditions and parameters are needed for the deterministic models to be out of

the poverty trap [91]. These models can be used to study malaria transmission with mi-

nor modifications but in general are harder to handle than deterministic ones [91]. Due

to natural complexity of the different factors, interaction in malaria disease cycle, the

stochastic behavior is a more appropriate assumption. In some individual based mod-

els, stochasticity of individual variability was included while keeping the main structure

similar to compartmental differential equation based models such as in [32, 85]. Also,

other models included stochasticity or probability in various variables and parameters to

study the transmission of the disease with different environmental factors [53]. Some of

these models are in [17, 19, 28, 73, 83, 85, 86] discussed stochastic integration with other

factors such as the structure of spatial contact, temporal forcing and presented interesting

malaria transmission features.

3.5.8 Other Types of Malaria Models

The complexity of the malaria disease cycle and its dependency on two hosts:

humans and mosquitoes, made mathematical epidemiologists look at malaria in different

aspects, using different represented mathematical methods, including various factors and

parameters and on different scales and areas. Some models were designed in continuous

time such as in [11, 65, 92, 93] while others, in discrete time [77]. Also, statistical based

malaria models and stochastic based models play an essential role in forecasting malaria

epidemics and public health management as mentioned before. Two of the early malaria

papers based on statistics are [84] and [27] whereas for the stochastic based models [61]
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is considered as one of the earliest papers. Variable human and mosquito population was

shown in some extended models such as [11, 65], while delay inclusion was demonstrated

in [64]. With the rise of anti-malaria drug resistance in malaria endemic regions, this

factor was modeled in several papers like: [16, 70, 76]. Some researchers were motivated

to understand the parasite population dynamics within the human [15, 37, 38, 40, 56, 57,

58, 66]. Vector transmission with the exclusion of the disease was the interesting factor to

be studied in both [63, 68] papers. At the end of reviewing the different types of malaria

mathematical models, I can not say that there is A model that combines all of these factors

and maybe new discovered factors in the future in one set due the complexity of malaria

disease. However, these models have helped much in understanding the disease dynamics

and suggested some successful eradication and control strategies.
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Chapter 4: Basic Reproduction Number R0

The Basic Reproduction Number R0 is one of the most fundamental concepts in

mathematical epidemiology. The origin of R0 concept was to study demographics (Böckh

1886, Sharp and Lotk 1911 and others) [36]. Ross 1911 and MacDonald 1952 began the

study of vector-borne diseases specially malaria and used the concept of R0 with simple

models to investigate the impact of different parameters and to find some control mea-

sures. As R0 concept is used in several other fields such as infectious diseases, ecology

and in-host dynamics, the definition of R0 differs accordingly. A general definition of

R0 is " the expected number of secondary individuals produced by an individual in its

life time" [36]. My main field of interest is epidemiology, so the definition of R0 is as

follows: " the expected number of secondary infection produced by an index case in a

completely susceptible population".

There are arguments regarding the naming of R0; as some researchers use repro-

ductive rate or ratio instead of reproduction number, but both are accepted [99]. As for

differential equation models, R0 is dimensionless number [42]. The basic reproduction

number can be calculated as Anderson and May illustrated in literature as the following:

R0 = τ · c̄ ·d (4.1)

where τ is the transmission probability (i.e., probability of infection given contact

between susceptible and infected individuals), c̄ is the average rate of contact and d = 1
b

is the infectiousness duration (b: infection rate) [42]. This equation is commonly used by

biologists, but it can be applied where there are no background death rates.

R0 is a threshold parameter to determine the spread of the infection in the popula-

tion. When R0 < 1 one infected individual will infect on average less than one susceptible

individual, and the inclination will die out. On the other hand, if R0 > 1 the infection per-

sists in the population and can cause epidemic.

There are several methods to derive R0 from deterministic models. The main two
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methods are survival function and next generation method.

4.1 Survival Function

This method is described as the "gold standard" for determining the value of R0.

It can be applied with different lifetime distributions even if non-constant transmission

probabilities are assumed [36]. As the first principle definition of R0, the survival func-

tion has been extensively used in literature, and it is not restricted to ordinary differential

equations systems (ODEs). Considering a large population, the survival function is de-

scried as follows:

R0 =
∫

∞

0
b(a)F(a)da (4.2)

This formula (4.2) can be used in any model where F(a) and b(a) are definable

for it. F(a) is the survival probability (i.e. the probability that a new infected individ-

ual remains infectious for at least time a) and b(a) is defined as the average number of

new infected individuals which the infectious individual will produce per unit time when

infected for total time a (i.e. infectivity as a time function) [36].

Taking the epidemic malaria model in account, the complete cycle should be con-

sidered where an infected human may infect mosquito that would transmit the infection

to more humans. F(a) in malaria model is the probability of an infected human at time 0

producing an infected mosquito that stays alive at least a time. Since the malaria model

consists of two distinct infectious states - three or more states would become cumbersome

- F(a) can be represented as the integral of the following probabilities product:

F(a) =
∫ a

0 prob(infected human at time 0 exists at time t)

× prob(infected human for total time t infects mosquito)

× prob(infected mosquito lives to be age a− t) dt

b(a) in the malaria model represents the average number of new infected humans,

by a mosquito which has been infected for time a. The derived R0 represents the total

number of infected humans produced by one infected human, and it can be defined in
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the same style for the mosquito. In general cases it is defined as:" the total number of

infectives in the same class produced by a single infective in the class". This definition

has frequently been used by Anderson and May 1991 and others and still is the standard

in epidemiology and immunology. The R0 definition discussed in the survival function

method differs from the definition of R0 in the next generation method that which be

discussed next.

4.2 Next Generation Method

The next generation method is the most common one used in biomathematics. It

is considered as an extension of survival function method where there are more than two

infection classes. It was first introduced by Diekmann et al. (1990) [21].

The heterogeneous population is divided into different distinguishable homoge-

neous compartments, where these compartments can be classified by disease and disease-

free compartments. The disease compartments include both asymptomatic and symp-

tomatic stages of infection. Assume that there are n disease compartments and m disease-

free compartments and let the subpopulation in each compartment be x ∈ Rn and y ∈ Rm.

Also, let Fi denote secondary infections rate increase in the ith disease compartment and

Vi disease progression ,death and recovery rates decrease in the ith compartment. The

compartmental model is formed as the following:

x
′
i = Fi(x,y)−Vi(x,y), i = 1, ......,n,

y
′
j = g j, j = 1, ......,m

The derivation of R0 in the next degeneration method is based on linearization at

the disease-free equilibrium (DFE) for ODE models. In order to ensure that the model

is well posed and the DFE exists, five assumptions were introduced by [99] which differ

slightly from [98] as follows:

1. ∀y≥ 0 and i = 1, ......,n, assume Fi(0,y) = 0 and Vi(0,y) = 0.

There is no immigration of individuals into the disease compartments since all new
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infections are arising from infected hosts as secondary infections.

2. ∀x≥ 0,y≥ 0 and i = 1, ......,n, assume Fi(x,y)≥ 0.

The function F represents new infection therefore cannot be negative.

3. Whenever xi = 0, i = 1, ......,n, assume Vi(x,y)≤ 0.

Each compartment, Vi is considered as a net outflow from compartment i and must

be negative (inflow only) whenever the compartment is empty.

4. ∀x≥ 0,y≥ 0, assume ∑
n
i=1 Vi(x,y)≥ 0.

The sum represents the total outflow from all infected compartments. Terms that

lead to increases in ∑
n
i=1 xi belong to F since it represents secondary infections.

5. let y
′
= g(0,y) be a disease free system that has a unique asymptotically stable

equilibrium(i.e. as t → ∞ all solutions of initial conditions (0,y) goes to (0,y0).

This point is called disease-free equilibrium.

Following the derivation of R0 as in [99], the matrix K = FV−1 is defined as

the next generation matrix for the system at DFE. The (i, j) entry of K is the expected

number of secondary infections in compartment i produced by individuals initially in

compartment j. F = ∂Fi
∂x j

(0,y0) where the (i, j) entry of F is the rate producing secondary

infections in compartment i by index case in compartment j. V = ∂Vi
∂x j

(0,y0) where the

(i, j) entry of V−1 represents the expected time when initial individual introduced into j

disease compartment spends in i disease compartment. Then R0 = ρ(FV−1) where ρ is

the spectral radius of matrix k. For more examples on R0 see [98] and [99].

Definition 4.2.1. Generation in epidemic modes are waves of secondary infection which

flow from each previous infection. In general, Ri is the reproduction number in the ith

generation, R0 is the expected number of secondary infections produced by generation

zero [42]. See the figure below.
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Generation 0

Generation 1

Generation 2

Generation 3

Figure 4.1: Graphical Description of Generation of an Epidemic

Example comparing the two methods for computing R0

As an example, consider the following malaria model is considered, where human

population is considered as SIR model and mosquito population as SI model where S,

I and R stand for susceptible, infected and recovered, respectivily.The malaria model of

both human and mosquito populations is represented as below:

Figure 4.2: Example of Malaria Model

ḢS = Π−βMHMIHS−µHHS

ḢI = βMHMIHS− (µH +α +σ)HI

ḢR = σHI−µHHR

(4.3)
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ṀS = Λ−βHMMSHI−µMMS

ṀI = βHMMSHI−µMMI

(4.4)

where HI and MI are the disease compartments, Π and Λ are recruitment rate for

human and mosquito population, respectively. µ denotes natural death rate; whereas, σ

is the death rate due to infection, β is the infection rate, and α is the recover rate. For this

system at disease free equilibrium, using the next generation method, I have:

F =

 0 βMHHS(0)

βHMMS(0) 0


and

V =

µH +α +σ 0

0 µM


It is clear that V is nonsingular matrix so V−1 can be determined. Therefore, the

value of R0,N is

R0,N =

√
βMHβHMHS(0)MS(0)
(µH +α +σ)µM

The basic reproduction number in the next generation matrix represents the mean

number of new infection per infection in any class per generation. While computing the

basic reproduction number for the survival function method I get:

R0,S =
βMHβHMHS(0)MS(0)
(µH +α +σ)µM

= (R0,N)
2

This reproduction number gives the total number of infections in the same class

produced by a single infection in the class. It is important to note that the value of R0 is

not unique and depends on both mathematical and biological interpretations.
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Chapter 5: Mathematical Model of the Imported Malaria in the UAE

I am investigating a mathematical model of malaria infection with two patches

of population. The local population, which will be represented with the standard SEIRS

model, and the non-local (or immigrant), which will be represented with a simple SEI

model. The I compartment in the SI model of mosquitoes population will be divided into

two sub compartments of infected I1
M and infectious I2

M.

5.1 Presentation of the Model

My model consists of two patches of human population, non-local N and local L,

and the mosquitoes population M. The flowchart (5.1) represents the different compart-

ments of my model. The local population is divided into susceptible SL, infected but not

infectious EL, infectious IL and recovered RL, with L = SL +EL + IL +RL. The non-local

population is divided into susceptible SN , infected but not infectious EN , and infectious

IN , with N = SN +EN + IN . As I mentioned, I did not consider the recovery of the non-

local population model, because once the immigrant is reported infected, she/he will be

isolated from the population and deported from the country . The total human population

is Σ = L+N. The mosquitoes population M is divided into susceptible SM, infected I1
M

and infectious I2
M, with M = SM + I1

M + I2
M.

The local and non-local human populations are infected by the infectious mosquitoes

bites. As a result the bitten person becomes infected and after an incubation period be-

comes infectious. The local population can recover and become susceptible again to pos-

sible infection of different mosquitoes strain. For this purpose and since I are studying im-

ported malaria, which implies that the mosquitoes could have multi-strains, in my study,

that the mosquitoes population is not strain specific. The infectious non-local individu-

als are removed after being screened. The susceptible mosquitoes population becomes

infected after the mosquitoes bite an infectious human and that the mosquito becomes

infectious. Hence, the equations below describe the dynamic of my policy-based malaria
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model. Table 5.1 describes all the parameters used in this model with their units.

SN EN IN- -

I2
M I1

M SM� �

�
��	

�
SL EL IL RL- - -

@
@@I

6

6

Figure 5.1: Flow Chart of the Different Compartments of my Model

The model for local population is as follows:



ṠL = ΛL−dLSL−ac1
SLI2

M
Σ

+βLRL

ĖL = ac1
SLI2

M
Σ
− (νL +dL)EL

İL = νLEL− (γL +dL)IL

ṘL = γLIL− (βL +dL)RL

(5.1)

The non-local population model is


ṠN = ΛN−dNSN−ac2

SNI2
M

Σ

ĖN = ac2
SNI2

M
Σ
− (νN +dN)EN

İN = νNEN− (γN +dN)IN

(5.2)

The mosquitoes population model is given by


˙SM = ΛM−dMSM−ac3

SMIL

Σ
−ac4

SMIN

Σ

˙I1
M = ac3

SMIL

Σ
+ac4

SMIN

Σ
− (νM +d1

M)I1
M

˙I2
M = νMI1

M−d2
MI2

M

(5.3)
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Where

Σ = L+N

Parameters Description and Dimension for the Core Model
ΛL Birth Rate of Locals. Human × Days-1

ΛN Birth Rate of Non-Locals and New Immigration Rate. Human × Days-1

ΛM Birth and Recruitment Rate of Mosquitoes. Mosquitoes × Days-1

dL Death Rate of Locals. Days-1

dN Death Rate of Non-Locals and The Rate of Leaving Immigrants. Days-1

dM Death Rate of Susceptible Mosquitoes. Days-1

ac1 Contact Rate of Susceptible Locals Contact With Infectious Mosquitoes. Days-1.
ac2 Contact Rate of Susceptible Non-Locals Contact With Infectious Mosquitoes. Days-1

ac3 Contact Rate of Susceptible Mosquitoes Contact With Infectious Locals. Days-1

ac4 Contact Rate of Susceptible Mosquitoes Contact With Infectious Non-Locals. Days-1

βL Losing Immunity Rate of Locals. Days-1

νL Rate of Exposed Locals Being Infected. Days-1

νN Rate of Exposed Non-Locals Being Infected. Days-1

γL Recovery Rate of Infected Locals. Days-1

γN Isolation and Deportation Rate of Infected Non-Locals. Days-1

νM Rate of Infected Mosquitoes Becoming Infectious. Days-1

d1
M Death Rate of Infected Mosquitoes. Days-1

d2
M Death Rate of Infectious Mosquitoes. Days-1.

Table 5.1: Parameters Description and Dimension for the Core Model

5.2 Basic Analysis

5.2.1 Boundedness and Positivity

I should first prove that all the variables of the model are non-negative, and they

are biologically acceptable. To this end, I show that all of the solutions of (5.1)-(5.2)-

(5.3), with initial condition in R10
+ , are non-negative and bounded. For the non-negativity,

following the standard argument in [94], I can prove the following:

Proposition 5.2.1.

Let R10
+ = {(s1,s2, ......,sn)∈R10 : si ≥ 0,∀i∈ {1, ......,n}}. Then R10

+ is positively invari-

ant under the flow induced by model (5.1)-(5.2)-(5.3).

Proof. For the boundedness, I have:

L̇ = ΛL−dL(SL +EL + IL +RL)

L̇ = ΛL−dLL
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which leads to

lim
t→∞

supL≤ ΛL

dL

Similarly,

Ṅ = ΛN− γNIN−dNN ≤ ΛN−dNN

Hence,

lim
t→∞

supN ≤ ΛN

dN

Using the same process,

Ṁ = ΛM−dMSM−d1
MI1

M−d2
MI2

M = ΛM−d∗M(SM + I1
M + I2

M)

where

d∗M = (dM +d1
M +d2

M)

Therefore,

lim
t→∞

supM ≤ ΛM

dM

I conclude that my system is bounded.

Proposition 5.2.2.

The variables of my system are bounded and I have

lim
t→∞

supL≤ ΛL

dL
, lim

t→∞
supN ≤ ΛN

dN
and lim

t→∞
supM ≤ ΛM

dM

5.3 The Basic Reproductive Number

To determine the basic reproductive number R0 of the studied model, I use the

next generation method approach developed in [99]. If fact I have:
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F =



ac1
SLI2

M
Σ

0

ac2
SNI2

M
Σ

0

ac3
SMIL

Σ
+ac4

SMIN

Σ

0


and

V =



(νL +dL)EL

−νLEL +(γL +dL)IL

(νN +dN)EN

−νNEN +(γN +dN)IN

(νM +d1
M)I1

M

−νMI1
M +d2

MI2
M


.

The Jacobian matrices of F and V are the following:

DF =



0 0 0 0 0 ac1
SL

Σ

0 0 0 0 0 0

0 0 0 0 0 ac2
SN

Σ

0 0 0 0 0 0

0 ac3
SM

Σ
0 ac4

SM

Σ
0 0

0 0 0 0 0 0


,
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then

DF (x0) = F =



0 0 0 0 0 ac1
ΛL

dLΣ

0 0 0 0 0 0

0 0 0 0 0 ac2
ΛN

dNΣ

0 0 0 0 0 0

0 ac3
ΛM

dMΣ
0 ac4

ΛM

dMΣ
0 0

0 0 0 0 0 0


.

Also

DV =V =



(νL +dL) 0 0 0 0 0

−νL (γL +dL) 0 0 0 0

0 0 (νN +dN) 0 0 0

0 0 −νN (γN +dN) 0 0

0 0 0 0 (νM +d1
M) 0

0 0 0 0 −νM d2
M


.

Then I have to find the inverse of V:

V−1 =



1
(νL+dL)

0 0 0 0 0

νL
(νL+dL)(γL+dL)

1
(γL+dL)

0 0 0 0

0 0 1
(νN+dN)

0 0 0

0 0 νN
(νN+dN)(γN+dN)

1
(γN+dN)

0 0

0 0 0 0 1
(νM+d1

M)
0

0 0 0 0 νM
d2

M (νM+d1
M)

1
d2

M
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F ∗V−1 =



0 0 0 0 νMΘ

(νM+d1
M)

Θ

0 0 0 0 0 0

0 0 0 0 νMΦ

(νM+d1
M)

Φ

0 0 0 0 0 0

νLϒ

(νL+dL)
ϒ

νNΨ

(νN+dN)
Ψ 0 0

0 0 0 0 0 0


With

Θ =
ac1ΛL

dLd2
MΣ

;

Φ =
ac2ΛN

dNd2
MΣ

;

ϒ =
ac3ΛM

dM(γL +dL)Σ
;

and

Ψ =
ac4ΛM

dM(γN +dN)Σ

Now, I find the eigenvalues of F ∗V−1 and then the value of

R0 =

√
νMνLΘϒ

(νM +d1
M)(νL +dL)

+
ΦΨνMνN

(νM +d1
M)(νN +dN)

.

It is easy to see that (5.1)-(5.2)-(5.3) has unique disease free equilibrium E0 de-

fined by

E0 = (
ΛL

dL
,0,0,0,

ΛN

dN
,0,0,

ΛM

dM
,0,0)

Hence, using the result of [99], I have the following result:

Proposition 5.3.1. The disease free equilibrium E0 is locally asymptotically stable if and

only if R0 < 1 and it is unstable if R0 > 1.
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5.3.1 The Value of R0 for the Sub-systems

• Local population with mosquitoes:

F =



ac1
SLI2

M
Σ

0

ac3
SMIL

Σ

0;



and

V =



(νL +dL)EL

−νLEL +(γL +dL)IL

(νM +d1
M)I1

M

−νMI1
M +d2

MI2
M


.

Hence

DF =



0 0 0 ac1
SL

Σ

0 0 0 0

0 ac3
SM

Σ
0 0

0 0 0 0


,

then

DF (x0) = F =



0 0 0 ac1
ΛL

dLΣ

0 0 0 0

0 ac3
ΛM

dMΣ
0 0

0 0 0 0


.

Also

DV =V =



(νL +dL) 0 0 0

−νL (γL +dL) 0 0

0 0 (νM +d1
M) 0

0 0 −νM d2
M


.
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Then I have to find the inverse of V:

V−1 =



1
(νL+dL)

0 0 0

νL
(νL+dL)((γL+dL)

1
γL+dL

0 0

0 0 1
(νM+d1

M)
0

0 0 νM
d2

M (νM+d1
M)

1
d2

M


.

F ∗V−1 =



0 0 νMΘ

(νM+d1
M)

Θ

0 0 0 0

νLϒ

(νL+dL)
ϒ 0 0

0 0 0 0


.

where the values of Θ and ϒ as described in the main model. so the value of RL
0 is

RL
0 =

√
νMνLΘϒ(

νM +d1
M
)
(νL +dL)

.

• Non local populations with mosquitoes:

F =



ac2
SNI2

M
Σ

0

ac4
SMIN

Σ

0



and

V =



(νN +dN)EN

−νNEN +(γN +dN)IN

(νM +d1
M)I1

M

−νMI1
M +d2

MI2
M


.
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Hence

DF =



0 0 0 ac2
SN

Σ

0 0 0 0

0 ac4
SM

Σ
0 0

0 0 0 0


.

then,

DF (x0) = F =



0 0 0 ac2
ΛN

dNΣ

0 0 0 0

0 ac4
ΛM

dMΣ
0 0

0 0 0 0


.

Also

DV =V =



(νN +dN) 0 0 0

−νN (γN +dN) 0 0

0 0 (νM +d1
M) 0

0 0 −νM d2
M


.

Then I have to find the inverse of V:

V−1 =



1
(νN+dN)

0 0 0

νN
(νN+dN)((γN+dN)

1
γN+dN

0 0

0 0 1
(νM+d1

M)
0

0 0 νM
d2

M (νM+d1
M)

1
d2

M


.

F ∗V−1 =



0 0 νMΦ

(νM+d1
M)

Φ

0 0 0 0

νNΨ

(νN+dN)
Ψ 0 0

0 0 0 0


.
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where the values of Φ and Ψ are as noted in the core model.

RN
0 =

√
νMνNΦΨ(

νM +d1
M
)
(νN +dN)

.

It is easy to conclude that

R0 =
√

(RN
0 )

2 +(RL
0 )

2.

Hence, the local stability of disease free equilibrium requires that RN
0 < 1 and

RL
0 < 1, which means that the infection is not endemic in both local and non-local. On

the other hand, I could have max(RN
0 ,R

L
0 )> 1 to have unstable disease free equilibrium.

Moreover, there is also possibility of having RN
0 < 1 and RL

0 < 1 but (RN
0 )

2+(RL
0 )

2 > 1.

which means the disease is not endemic per sub-population but it is endemic in whole the

population.

5.4 Existence of Other Equilibrium Points

Now, I examine existence of possible equilibria point. As I mentioned previously,

if there is no infection, I have a disease free equilibrium

E0 = (
ΛL

dL
,0,0,0,

ΛN

dN
,0,0,

ΛM

dM
,0,0)

If there is a malaria infection in the population, I have IL 6= 0,IN 6= 0 and IM 6= 0.

Then from the equation of local population I get:

RL =
γL

βL +dL
IL (5.4)

EL =
γL +dL

νL
IL (5.5)

ac1
SLI2

M
Σ

= (νL +dL)
γL +dL

νL
IL (5.6)
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Then I use the previous equations (5.4),(5.5) and (5.6) the ṠL equation, it yields:

dLSL = ΛL− (νL +dL)
γL +dL

νL
IL +

βLγL

βL +dL
IL (5.7)

so,

SL =
ΛL

dL
− [(

(νL +dL)(γL +dL)

dLνL
)− βLγL

dL(βL +dL)
]IL (5.8)

Now, from the non-local population:

EN =
γN +dN

νN
IN (5.9)

ac2
SNI2

M
Σ

= (νN +dN)
γN +dN

νN
IN (5.10)

dNSN = ΛN− (νN +dN)
γN +dN

νN
IN (5.11)

Then using the previous equations (5.9), (5.10) and (5.11) and ṠN equation in my

model:

SN =
ΛN

dN
− (

(νN +dN)(γN +dN)

νNdN
))IN (5.12)

Finally, from the mosquitoes population I get:

I1
M =

d2
M

νM
I2
M (5.13)

ac3
SMIL

Σ
+ac4

SMIN

Σ
=

d2
M

νM
(νM +d1

M)I2
M (5.14)

dMSM = ΛM−
d2

M
νM

(νM +d1
M)I2

M (5.15)
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Therefore,

SM =
ΛM

dM
− d2

M
νMdM

(νM +d1
M)I2

M (5.16)

Considering (5.8), (5.12) and (5.16) equations and by substituting them in (5.6),

(5.10) and (5.14), I get the following equations:


ac1
dLΣ
{ΛL− [ (νL+dL)(γL+dL)

νL
− βLγL

(βL+dL)
]IL}I2

M−
(νL+dL)(γL+dL)

νL
IL = 0

ac2
dNΣ
{ΛN− [ (νN+dN)(γN+dN)

νN
]IN}I2

M−
(νN+dN)(γN+dN)

νN
IN = 0

a
dMΣ

(c3IL + c4IN)(ΛM−
d2

M(νM+d1
M)

νM
I2
M)− d2

M(νM+d1
M)

νM
I2
M = 0

(5.17)

Now, let X = IL, Y = IN and Z = I2
M, so substituting the previous system, this

yields:


φ1(ΛL− (α1−β1)X)Z−α1X = 0

φ2(ΛN−α2Y )Z−α2Y = 0

(φ3X +φ4Y )(ΛM−α3Z)−α3Z = 0

(5.18)

With
φ1 =

Θd2
M

ΛL
= ac1

dLΣ

α1 =
(νL+dL)(γL+dL)

νL

β1 =
βLγL

(βL+dL)

φ2 =
Φd2

M
ΛN

= ac2
dNΣ

α2 =
(νN+dN)(γN+dN)

νN

φ3 =
ϒ(γL+dL)

ΛM
= ac3

dMΣ

φ4 =
Ψ(γN+dN)

ΛM
= ac4

dMΣ

α3 =
d2

M(νM+d1
M)

νM

From the above system of polynomial equations, I can define both X and Y and

then substitute them in the third polynomial in order to find the roots for the quadratic

equation
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X =
ΛLφ1Z

φ1(α1−β1)Z +α1

and

Y =
ΛNφ2Z

φ2α2Z +α2

so,

[φ3(ΛLφ1Z(φ2α2Z +α2))+φ4((ΛNφ2Z)(φ1(α1−β1)Z +α1))](ΛM−α3Z)

−α3Z[(φ1(α1−β1)Z +α1)(φ2α2Z +α2)] = 0

by factorizing the Z, I get

[ΛLφ1φ3(φ2α2Z +α2)+ΛNφ2φ4(φ1α1Z−φ1β1Z +α1)] (ΛM−α3Z)

= α3[(φ1α1Z−φ1β1Z +α1)(φ2α2Z +α2)]

I can write this equation in the form of

f (Z) = g(Z), (5.19)

with f and g defined as follows:

f (Z) = [ΛLφ1φ3(φ2α2Z +α2)+ΛNφ2φ4(φ1α1Z−φ1β1Z +α1)] (ΛM−α3Z)

and

g(Z) = α3[(φ1α1Z−φ1β1Z +α1)(φ2α2Z +α2)]

The intersection of these two curves will be the solution of the equation (5.19).

But first I need to investigate the zeros of the functions f and g and the y-intercept. The

function f has two zeros which are
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Z1 =
−ΛLφ1φ3α2−ΛNφ2φ4α1

φ1φ2(ΛLφ3α2 +ΛNφ4(α1−β1))
and Z2 =

ΛM

α3

The function g has also two zeros identified as:

Z3 =
α1

φ1(β1−α1)
and Z4 =

−1
φ2

.

The position of these zeros will dictate the number of solutions of the equation

(5.19). Notice that C2 = α1α2α3 is the y-intercept and it is positive, and since Z3 and

Z4 are negative, I conclude that g is a parabola concave up. On the other hand one zero

of f , Z2, is positive. Therefore, the position of the C1 = (ΛLφ1φ3α2 +ΛNφ2φ4α1)ΛM,

the y-intercept of f , with respect to C2 as well as the positivity of Z1 is needed to be

investigated. I notice that if α1 > β1 then Z1 < 0. In fact, according to the definition of

α1 and β1, I have:

α1 =
(νL +dL)(γL +dL)

νL
and β1 =

βLγL

(βL +dL)
,

and I define

1
RLL

=
(νL +dL)(γL +dL)(βL +dL)

νLγLβL
> 1;

I can see that

RLL =
νL

(νL +dL)
× γL

(γL +dL)
× βL

(βL +dL)
< 1

Hence α1 > β1 and Z1 < 0. This indicate that the only two possible cases as the

following:

1. If C1 <C2, there is no feasible solution.
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Figure 5.2: Case 1 with no Endemic Equilibrium

2. If C1 >C2, there is one solution.

Figure 5.3: Case 2 with One Endemic Equilibrium

Computing the value of C1
C2

=R2
0 , I notice that there is one solution where R2

0 > 1

and no feasible solution in case where R2
0 < 1.

Theorem 5.4.1.

• If R0 < 1, then there is no endemic equilibrium.

• If R0 > 1, then there is unique endemic equilibrium.

Remark. 1. In case of R0 = 1 where C1 = C2, z1 = 0. That is not the case here so it is

not included.
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5.5 Global Stability of the Disease Free Equilibrium

Following the method used in [99], consider that my model of malaria disease

transmission can be written in the following form:

x′ =−Ax− f̂ (x,y),

y′ = g(x,y)
(5.20)

Theorem 5.5.1. If A is nonsingular M-matrix and f̂ ≥ 0, then the disease free equilibrium

of the model is globally asymptotically stable.

Here I use the notation of M-Matrix (see Appendix 1). Using the above theorem

5.5.1, I need to show that:

1. A is nonsingular M-matrix.

2. f̂ ≥ 0.

Proof. Consider that my model follows the assumptions mentioned in [99] which

ensure the well posed definition of my model and the existence of disease free equilibrium.

Define A = (V −F) and

f̂ (x,y) =



ac1
Σ
(SL−SL0)I2

M

0

ac2
Σ
(SN−SN0)I2

M

0

ac3
Σ
(SM−SM0)IL +

ac4
Σ
(SM−SM0)IN

0
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Malaria transmission core model can be viewed as (5.20) as the following:

ẋ = −(V −F)x− f̂ (x,y)

ṠL = ΛL−dLSL−ac1
SLI2

M
Σ

+βLRL

ṘL = γLIL− (βL +dL)RL

ṠN = ΛN−dNSN−ac2
SNI2

M
Σ

˙SM = ΛM−dMSM−ac3
SMIL

Σ
−ac4

SMIN

Σ

(5.21)

From Lemma 1 and Lemma 2 in [99], I know that F ≥ 0 and V is a nonsingular

M-matrix. Then A = (V −F) is nonsingular M-matrix when R0 < 1 as it was proven in

[99] . Thus, in order to satisfy the second condition; it is sufficient to prove that SL ≤ SL0,

SN ≤ SN0 and SM ≤ SM0. This was proven by the boundedness property of the model

where:

SL ≤ limt→∞ supNL ≤ ΛL
dL

= SL0

SN ≤ limt→∞ supNN ≤ ΛN
dN

= SN0

SM ≤ limt→∞ supNM ≤ ΛM
dM

= SM0

(5.22)

Therefore, the disease free equilibrium of the model is globally asymptotically

stable when R0 < 1.
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Chapter 6: Numerical Simulation and Sensitivity Analysis

In this chapter, I will focus on the serial time simulation of my model as well

as the numerical sensitivity of my parameters. All these simulations were done with R

software [78, 82] and the open source packages [18, 88, 89]. The codes are available in

the Appendix 2 of the this thesis.

6.1 Numerical Simulation of the Model

To illustrate the outcomes of my model and the analytical results, I will present,

in the section, the simulation for different values of basic reproduction number R0. First,

I simulate the case R0 < 1. Second, I will simulate the case R0 > 1 depending on the

value of the sub-population basic reproduction numbers RN
0 and RL

0 , since

R0 =
√

(RN
0 )

2 +(RL
0 )

2

I will choose my parameters in way to study mainly the epidemic equilibria which

are:

1. RL
0 < 1 and RN

0 > 1 which is represented in plot by case 1.

2. RL
0 > 1 and RN

0 < 1 which is represented in plot by case 2.

3. RL
0 < 1 and RN

0 < 1 but R0 > 1 which is represented in plot by case 3.

4. RL
0 > 1 and RN

0 > 1 which is represented in plot by case 4.

Some of the parameters were calculated in a way to fit the description of my

model while the others were collected from [12]. ΛL and ΛN for human subpopulations

were calculated in the same matter such that Λ = BR+ IR ∗Σ [12]. BR is the birth rate

taken from [97] and IR is the immigration rate cited from [1]. The death rate for the

human subpopulations is computed similarity where death rate and immigration rate are
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taken in consideration [12]. As for the death rate of infected and infectious mosquitoes,

both normal NDR and induced IDR death rate are included as the following:

dM = NDR+ IDR∗Σ

6.1.1 Simulation of the Disease Free Equilibrium

The simulation below shows the outcomes of my model in the case of R0 < 1 for

the following parameters. The parameters unit are presented before in table 5.1.

Parameter Value Reference
ΛL 0.094 [12]
dL 9×10−6, [12]
ac1 0.022 [12]
βL 0.0027 [12]
νL 0.1 [12]
γL 0.0035 [12]
ΛN 0.113 [12]
dN 1.63×10−5 [12]
ac2 0.022 [12]
νN 0.1 [12]
γN 0.0035 [12]
ΛM 0.13 [12]
dM 0.033 [12]
ac3 0.24 [12]
ac4 0.48 [12]
νM 0.0833 [12]
d1

M 0.1704 [12]
d2

M 0.1704 [12]
Σ 1463 Assumed

Table 6.1: Parameters Used in the Simulation in the Case Disease Free Equilibrium

These time series simulation show that the disease pick around 1000 days (time)

and the exposed compartment does not get to be established. Moreover the recovery of

the population would take more time. The susceptible local population goes down in the

begin of the time course, but gradually converges to the equilibrium point
ΛL

dL
.

For the non-local population, it follow the same patterns as in the local population.
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The simulation of the mosquitoes population shows fast increase of this infected

(infectious and non-infectious ) population and fast decrease. Compared to the human

dynamic this peak occurs before the human peak.

6.1.2 Simulation of the Endemic Equilibrium

To have better understanding of my model in the case of epidemic equilibria, I

plot each figure the four cases per each population as I mentioned previously. They cases

are as follow:

1. RL
0 < 1 and RN

0 > 1 which is represented in plot by case 1.

2. RL
0 > 1 and RN

0 < 1 which is represented in plot by case 2.

3. RL
0 < 1 and RN

0 < 1 but R0 > 1 which is represented in plot by case 3.

4. RL
0 > 1 and RN

0 > 1 which is represented in plot by case 4.

For simplicity, I will give all the parameters without unit since the same parame-

ters were given in the previous table with units.
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In the case 1 I choose the following parameters: ΛL = 0.3, dL = 1.99× 10−4,

ac1 = 0.27, βL = 0.0027,νL = 0.1, γL = 0.0035, ΛN = 0.11,dN = 2× 10−4, ac2 =

0.022, νN = 0.1, γN = 0.0035, ΛM = 0.27, dM = 0.033, ac3 = 0.48, ac4 = 0.24, νM =

0.0833, d1
M = 0.033, d2

M = 0.033, Σ = 1463

For the case 2, I used these parameters : ΛL = 0.094, dL = 9×10−6, ac1 = 0.022,

βL = 0.0027, νL = 0.1, γL = 0.0035, ΛN = 0.2, dN = 1.63× 10−5, ac2 = 0.1, νN =

0.1, γN = 0.0035, ΛM = 0.13, dM = 0.033, ac3 = 0.24, ac4 = 0.64, νM = 0.0833, d1
M =

0.033, d2
M = 0.033, Σ = 1463

For the case 3, I have the following parameters: ΛL = 0.094, dL = 9× 10−6,

ac1 = 0.022, βL = 0.0027, νL = 0.1, γL = 0.0035, ΛN = 0.113, dN = 1.63×10−5, ac2 =

0.022, νN = 0.1, γN = 0.0035, ΛM = 0.13, dM = 0.033, ac3 = 0.24, ac4 = 0.48, νM =

0.0833, d1
M = 0.033, d2

M = 0.033, Σ = 1463

Finally, for the case 4 I have: ΛL = 0.3,dL = 1.99 ∗ 10−4, ac1 = 0.27,βL =

0.0027,νL = 0.1, γL = 0.0035,ΛN = 0.45, dN = 2× 10−4, ac2 = 0.27,νN = 0.1,γN =

0.0035, ΛM = 0.27,dM = 0.01,ac3 = 0.48, ac4 = 0.64,νM = 0.0833,d1
M = 0.05, d2

M =

0.05,Σ = 1463
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Figure 6.4: Local Population Compartments for the 4 Cases of R0 > 1

For the local population when R0 > 1:

The simulation of the model shows similar dynamic if RN
0 > 1 regardless if RL

0 >

1 or RL
0 < 1 ( see cases (6.4a) and (6.4d) in Figure 6.4), which means that if the infection

is very well established in non-local population it will not be affected by the level of the

infection in the local population.

On the other hand, if RN
0 < 1 regardless if RL

0 > 1 or RL
0 < 1 ( see cases (6.4b)

and (6.4c) in Figure 6.4), I can see that, again, the dynamics of model are similar in both

cases with low endemic equilibrium compare to the previous two cases.

I conclude that the non-local population has more impact on the size of the malaria

epidemic in the case of the UAE. More precisely, when there is an endemic equilibrium

( R0 > 1 ), then, if the basic reproduction number of transmission of malaria infection in

non-local population RN
0 > 1, then I have higher endemic equilibria regardless the level

of the infection in the local population. If RN
0 < 1, then I have lower endemic equilibria

regardless the level of the infection in the local population.
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Figure 6.5: Non-Local Population Compartments for the 4 Cases of R0 > 1

For the non-local population when R0 > 1:

By analyzing the four figure corresponding to this case, I see similarity between

the two cases where RL
0 < 1. More precisely, the time series of the variables in the case

RN
0 < 1 is similar to the case RN

0 > 1 ( see cases (6.5a) and (6.5c) in figure (6.5) respec-

tively when RL
0 < 1), but with high endemic equilibrium when the disease is endemic in

non-local sub-population (i.e, RN
0 > 1). That shows that if the level of the infection of

local is low then reduce the size of the epidemic on the non-local.

For the case where RL
0 > 1, again, the dynamic of these two cases are similar, ( see

cases (6.5b) and (6.5d) in figure (6.5) respectively ), with even higher endemic equilibrium

and higher big when the disease is endemic in non-local sub-population (RN
0 > 1 ).

This analysis shows that the infection in local population has positive impact in-

fection of the non-local population. In fact when RL
0 < 1 the endemic equilibria lower

in the non-local population compared to when RL
0 > 1. That shows the protecting the

local population from possible malaria infection is beneficial to the overall infection in
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Figure 6.6: Mosquitoes Population Compartments for the 4 Cases of R0 > 1

the UAE.

The analysis of the time series of the 4 cases of endemic equilibrium for the

mosquitoes compartments display similar dynamics where it is the highest in the fourth

case when RL
0 > 1 and RN

0 > 1

6.2 Sensitivity Analysis of the Model

In [12] two types of sensitivity analysis indices were preformed. The first one is

the sensitivity indices of R0 which is related directly to initial malaria disease transmis-

sion and the other one is sensitivity indices of xee - endemic equilibrium point - which is

connected to the malaria disease prevalence. It discussed the most sensitive parameters of

the model and the possible control strategies of these parameters. Also, the sensitivity in-

dices of both R0 and xee were examined at two areas: one with low malaria transmission

and the other one with high malaria transmission and found out that different parameters

are sensitive at different transmission areas. Mosquito biting rate was the most sensitive
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parameter to reproduction number and endemic equilibrium point of infectious human in

areas with low malaria transmission. On the other hand, high malaria transmission areas’

infectious humans were most sensitive to mosquito biting rate with respect to R0 sensi-

tivity indices while is was human recovery rate of infectious humans, the most sensitive

parameter at endemic equilibrium point.

The next 3 subsections will include a detailed discussion of local sensitivity anal-

ysis of infected population compartments of both humans and mosquitoes. The followed

procedure of results is based on the local sensitivity analysis done in [88, 89]. The global

sensitivity analysis is not preformed in this thesis. All the R commands of the local sensi-

tivity are available in Appendix 2. Each subsection will begin with two figures represent-

ing the local sensitivity of the compartment or variables at two sequence of time which are

from 0 to 1000 and 1 to 100. The second part would be the univariate sensitivity summary

table that include the following:

• L1-norm: ∑

∣∣Si j
∣∣/n.

• L2-norm:
√

∑(S2
i j)/n.

• Mean: The mean value of sensitivity functions.

• Min: The minimal value of sensitivity functions.

• Max: The maximal value of sensitivity functions.

The positive and negative sign of the sensitivity index indicate the dependence of

the variable or compartment quantity on each parameter. Moreover, the absolute value

of the sensitivity index (L1) shows the strength of the parameters affecting the variable

where the larger the value, the more effect on the final size of compartments population.

Bivariate sensitivity is discussed thirdly be calculating the pairwise sensitivity correlation

of parameters and representing them as pairwise plot during the 100 days when most

changes occur . The sensitivity functions pairs are considered to have strong relationship

if r2 > 0.85 and it is important to note that the correlation coefficients is not exactly 1 or

-1 where the largest value of |r| = 0.995[89]. The correlation table of the parameters is

not included but can be produced using the cor command in the Appendix 2. In addition,
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for the infected locals, infected non-locals and infectious mosquitoes compartments, one

more figure was added that described the mean value of the local sensitivity of these

compartments.

6.2.1 IL Local Sensitivity Analysis

By looking at the sensitivity analysis of all parameters of my model with respect

to local infected variable in figures 6.7 and 6.8, I find certain parameters have more impact

on local infection population than others. This impact could be either positive or negative.

The figure 6.7 give long time series of these sensitivity while 6.8 zooms in one ten of the

previous one to better understand these sensitivity. I took another step to determine the

statistical summary of the sensitivity of each parameters in table 6.2.1 by give the mean,

max, min and I plot the mean of these variables in figure 6.9. In this figure, I see that

variables νN ,ac2,dN ,ΛN have almost no effect on IL. The variables νL,γN ,ac3,ac4,dM

have slight effect on IL. More precisely, γL,dM have the same negative sign which means

the increase of the parameter will result a decrease of IL. On the other hand, γL,ac3,ac4

are affecting in positive way IL. That means the increase of theses variables will slightly

increase IL. The remain of the variables are of significance to IL; particularly γL. This

variables has high impact on IL. These effects are described as follows: The variables

Σ,dL,d1
M,d2

M have opposite sign to IL. These are normal because as the death rate in-

crease in each population, I will not have an infected population. The only surprise fact

is that Σ will effect negatively IL. The parameters that have positive effect on IL are

ΛL,ac1,βL,γN ,νM. The first three parameters are the birth rates of local population, in-

fection rate by mosquitoes and lost of immunity of local population. For these parameters

it make sense that the increase will result more infection. For γN , which is isolation of

non-local infected population, I can explain that by the following. As the isolation rate

increase, the mosquitoes will only have the local population to bite and infect which will

increase the infected local population. This explain also the positive effect of νM on IL

since this parameter represent the rate of infected mosquitoes becoming infectious. The

parameter γL has negative effect on IL where it represent the recovery rate of the local

population. Hence this means the more population recover, the less infected pile of local
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will be. This also show that the sensitivity of this variables is very significant. I also look

at the pairwise sensitivity analysis of the parameters as it is given in figure 6.10. I find that

γL has no correlation with any parameter which means emphasize the highest sensitivity.
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parameter value scale L1 L2 Mean Min Max N

ΛL 0.30 0.30 16.00 2.36 16.00 0.00 26.02 51.00

dL 0.00 0.00 18.07 2.61 -18.07 -21.53 0.00 51.00

ac1 0.27 0.27 38.13 7.42 37.02 -7.59 196.38 51.00

βL 0.00 0.00 17.43 2.76 17.43 0.00 28.47 51.00

νL 0.10 0.10 14.41 5.61 2.77 -22.81 233.67 51.00

γL 0.00 0.00 214.08 32.14 -214.08 -322.11 0.00 51.00

ΛN 0.45 0.45 0.50 0.12 0.50 -0.02 2.29 51.00

dN 0.00 0.00 0.16 0.03 -0.15 -0.52 0.02 51.00

ac2 0.27 0.27 1.29 0.37 0.30 -1.87 15.85 51.00

νN 0.10 0.10 1.29 0.45 -0.04 -2.18 17.72 51.00

γN 0.00 0.00 2.28 0.45 -2.23 -6.65 0.19 51.00

ΛM 0.27 0.27 31.67 5.70 31.67 0.00 75.13 51.00

dM 0.01 0.01 3.71 0.73 -3.71 -20.38 0.00 51.00

ac3 0.48 0.48 4.20 1.08 1.96 -4.98 39.96 51.00

ac4 0.64 0.64 7.52 2.67 1.70 -11.70 98.42 51.00

νM 0.08 0.08 17.70 4.17 13.56 -12.68 138.50 51.00

d1
M 0.05 0.05 14.23 2.37 -14.23 -41.50 0.00 51.00

d2
M 0.05 0.05 42.84 6.49 -42.84 -75.10 0.00 51.00

Σ 1463.00 1463.00 48.32 10.76 -40.97 -338.92 25.82 51.00

Table 6.2: IL Local Sensitivity Summary
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6.2.2 IN Local Sensitivity Analysis

Following the approach used for the local sensitivity analysis of infected local

compartment, the analysis of the infected non-local population included figures 6.11 and

6.12. The first figure 6.11 illustrated the local sensitivity of parameters with respect to

infected non-local population in time series of 1000 days while the second figure 6.12

take a closer look on the parameters sensitivity for the first 100 days. Table 6.2.2 shows

the statistical analysis for the local sensitivity of IN which included L1, L2, mean, max,

and min. From this table 6.2.2 I plotted the mean value of parameters local sensitivity

to IN which is shown in 6.13. I can see from this figure that the parameters sensitiv-

ity to IN varies in magnitude and sign where they may have positive or negative effect.

Parameters ΛL,dL,βL,γL are not sensitive at all to infected non-local population. Fur-

thermore, parameters ac1,νN ,ac3,ac4 have slight positive effect on IN and ΛN ,dM have

slight negative effect on IN . All these parameters are not sufficient to change the non-local

population size. This differs for the rest of the parameters where an increase or decrease

will effect the infected non-local population. The four parameters ΛN ,ac2,ΛM,νM are

positively sensitive to IN in descending order where an increase in one of them would rise

the number of infected non-local population. The most sensitive parameter to IN is γN

that has a high negative effect. This parameter represents the isolation and deportation of

infected non-local population which means that increasing the isolation rate would defi-

nitely decrease the infected non-local population. The death rates of infected non-locals

dN , infected mosquitoes d1
M and infectious mosquitoes d2

M have normal negative effect on

IN since increasing these death rates would decrease the number if infected non-locals.

The only surprising parameter is Σ since it is negatively affecting IN . This can be ex-

plained due to the dynamic of my model. I can conclude from the pairwise correlation

plot 6.12 that γNhas no correlation with other parameters. In addition, the pairwise corre-

lation plot can be used to inspect the correlation between different parameters such that if

the value is bigger than 0.85, it shows a strong correlation between the two parameters.
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Figure 6.11: IN Local Sensitivity for 1000 Days
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parameter value scale L1 L2 Mean Min Max N

ΛL 0.30 0.30 0.11 0.02 0.10 -0.01 0.50 51.00

dL 0.00 0.00 0.10 0.02 -0.10 -0.42 0.01 51.00

ac1 0.27 0.27 1.06 0.29 0.17 -1.66 12.04 51.00

βL 0.00 0.00 0.14 0.03 0.14 -0.00 0.60 51.00

νL 0.10 0.10 1.09 0.36 -0.11 -1.99 13.86 51.00

γL 0.00 0.00 1.03 0.21 -1.01 -3.12 0.05 51.00

ΛN 0.45 0.45 22.63 3.31 22.63 0.00 34.67 51.00

dN 0.00 0.00 9.12 1.34 -9.12 -12.72 0.00 51.00

ac2 0.27 0.27 15.14 3.37 14.65 -3.35 108.11 51.00

νN 0.10 0.10 8.70 3.10 0.65 -13.64 128.47 51.00

γN 0.00 0.00 133.32 20.01 -133.32 -199.07 0.00 51.00

ΛM 0.27 0.27 12.28 2.18 12.28 0.00 28.89 51.00

dM 0.01 0.01 1.56 0.33 -1.56 -11.60 0.00 51.00

ac3 0.48 0.48 2.17 0.60 0.59 -3.27 22.56 51.00

ac4 0.64 0.64 4.37 1.51 0.32 -7.61 55.07 51.00

νM 0.08 0.08 7.98 2.18 5.04 -8.05 78.29 51.00

d1
M 0.05 0.05 5.87 0.98 -5.87 -23.58 0.00 51.00

d2
M 0.05 0.05 18.51 2.69 -18.51 -35.17 0.00 51.00

Σ 1463.00 1463.00 20.83 5.46 -15.73 -191.53 15.72 51.00

Table 6.3: IN Local Sensitivity Summary
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6.2.3 I2
M Local Sensitivity Analysis

The local sensitivity analysis for the infectious mosquitoes population was per-

formed in the same style as for the infected locals and infectious non-locals populations.

Figures 6.15 and 6.16 show a general look for the local sensitivity of parameter with re-

spect to infectious mosquitoes population. The first figure 6.15 display the parameters

sensitivity for time series of 1000 day and the second one 6.15 in time series of 100 days.

After that, the table 6.2.3 present a statistical summary for the local sensitivity analysis of

I2
M that include: L1, L2, mean, min, and max. Using the value of parameters mean from

this table 6.2.3, it is illustrated in the figure 6.17. The figure shows the different effects of

parameters on I2
M that may be positive or negative. It is noticeable that the parameter d2

M

has the highest negative impact on infectious mosquitoes population such that an increase

in the value of d2
M would decrease I2

M. Parameters ΛL,dL,βL,ΛN ,dN have no impact on

I2
M. Both γL and γN very small negative effect on I2

M. Four of the parameters have slight

positive effect on infectious mosquitoes population which are ac1,νL,ac2,νN . Also, pa-

rameters νM,ΛM,ΛN ,ac2 have positive effect on I2
M but much higher than the previous

ones. Similar to the infected non-local population, parameters dN ,d1
M,d2

M,Σ have a neg-

ative effect on the infectious mosquitoes population. As for the pairwise correlation plot

6.18, I can see that d2
M has no strong correlation with all parameters except the parameter

d1
M that has a strong correlation with value equal 0.85.
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Figure 6.15: I2
M Local Sensitivity for 1000 Days
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Parameter value scale L1 L2 Mean Min Max N

ΛL 0.30 0.30 0.03 0.01 0.02 -0.12 0.24 51.00

dL 0.00 0.00 0.03 0.01 -0.02 -0.34 0.14 51.00

ac1 0.27 0.27 2.72 1.74 0.67 -26.62 83.27 51.00

βL 0.00 0.00 0.03 0.01 0.03 -0.00 0.08 51.00

νL 0.10 0.10 2.95 1.92 0.68 -27.91 92.57 51.00

γL 0.00 0.00 0.27 0.06 -0.22 -2.16 0.82 51.00

ΛN 0.45 0.45 0.06 0.01 0.05 -0.24 0.48 51.00

dN 0.00 0.00 0.03 0.01 -0.02 -0.48 0.16 51.00

ac2 0.27 0.27 2.01 1.29 0.48 -19.84 61.96 51.00

νN 0.10 0.10 2.13 1.39 0.49 -20.32 66.91 51.00

γN 0.00 0.00 0.34 0.12 -0.21 -5.61 1.64 51.00

ΛM 0.27 0.27 3.03 0.43 3.03 0.00 3.28 51.00

dM 0.01 0.01 6.10 3.25 -6.10 -139.90 0.00 51.00

ac3 0.48 0.48 4.82 3.06 1.23 -46.39 146.66 51.00

ac4 0.64 0.64 9.63 6.17 2.22 -82.28 297.20 51.00

νM 0.08 0.08 15.32 9.98 14.81 -8.40 425.03 51.00

d1
M 0.05 0.05 14.50 7.01 -14.50 -279.93 0.00 51.00

d2
M 0.05 0.05 38.64 16.50 -38.64 -532.44 0.00 51.00

Σ 1463.00 1463.00 19.17 12.25 -4.61 -589.09 175.12 51.00

Table 6.4: I2
M Local Sensitivity Summary
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Chapter 7: Conclusion

Malaria is an infectious disease with estimated annual mortality rates ranging from

700000 to 2.7 million people. It has intense effects on both societies and individuals.

These effects include economical, environmental, and health aspects. Since the discov-

ery of the causing parasite and its connection with the female Anopheles mosquitoes in

transmitting malaria disease to human in late 19th century, epidemiologists, public health

professionals, and even biomathematicians have made efforts the find the optimal control

procedures to decrease and eliminate the transmission of malaria all over the globe.

The early attempts for mathematical models of malaria started with SIR simple

Ross model where he concluded that the reduction of mosquito numbers to certain levels

would decrease the number of malaria cases. After that, both Macdonald model and An-

derson and May model were extensions of the Ross model. They included the mosquito

and human latency period, respectively, which improved the general understanding of

the substantial parameters influencing the transmission of malaria. These were the basic

foundation models of malaria that were modified to include different factors and param-

eters. Age, immunity, environmental factors, social, and economical factors are some of

the elements added to malaria models to study their effects on the malaria disease.

While some countries like Australia and Singapore succeeded in eliminating the

local transmission of malaria, other countries especially in Africa and the Indian subcon-

tinent suffer severely from the high transmission rate of malaria. Like most countries,

the UAE was a malaria endemic region until it was certified free of local malaria in

2007. Despite this huge accomplishment for the UAE, the issue of malaria disease did

not end in the UAE and even for the other countries. This is due to various factors such

as the recruitment of workers from the endemic malaria countries, trade movements, and

tourism. Environmental factors are also essential contributing factors in the transmission

of malaria disease with the variation of temperatures and rainfall patterns. From the con-

ducted malaria studies in the UAE, it is noticeable that there has been a rapid increase
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in the number of imported malaria cases in the UAE in last few years. The number of

imported malaria cases is expected to rise due to the need of more workers to fulfill the

required duties for the preparation of Expo 2020.

The main goal of this thesis is to study the impact of malaria disease on the pop-

ulation of the UAE in non-pharmaceutical approach. The presented mathematical model

is designed to fit the demography of the UAE. The human population is divided into two

subpopulation which are locals and non-locals populations. The definition of locals and

non-locals is based on the neediness of health check up to remain resident in the country.

My model is deterministic model with SEIR structure for local population, SEI compart-

ments for non-locals, and SI structure for mosquito population. The model is also policy

based that takes into consideration the health policies in the UAE since the infected non-

locals are isolated or returned to their countries. In order to study the epidemiological

features of the model, mathematical analysis was conducted. The analysis included the

proof of boundedness, and positivity of the system of ordinary differential equations that

indicate that the model is well posed mathematically and epidemiologically.

The basic reproduction number is defined as the number of secondary infected

individuals caused by infected individual during the infection period in completely sus-

ceptible population. R0 for the entire population was calculated and also the value of the

basic reproduction number of the subpopulation locals RL
0 and non-locals RN

0 . The next

step was the evaluation and proof of local and global stability of the model. The disease

free equilibrium is locally asymptotically stable if R0 < 1 and there is a stable endemic

equilibrium if R0 > 1. As for the endemic equilibrium, it was studied in four different

cases.

After that, the model’s parameters were estimated from the literature reviews and

assumptions. Moreover, the local sensitivity was studied to determine the effect of dif-

ferent parameters on the model dynamics. This was determined through the simulated

figures using the free software R [78]. The simulation for the local and non-local com-

partments showed similar patterns when R0 < 1. The susceptible compartments showed a

decrease in their numbers at first and then they converge to the equilibrium points ΛL
dL

and
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ΛN
dN

. Exposed compartments is not developed, while the infection reaches a peak around

100 days and then decrease. The recovery of locals take more time. On the other hand,

the mosquito infected and infectious compartments displayed a rapid rise and then decline

compared to the human population compartments.

From the preformed simulation for the 4 endemic cases where R0 > 1 , I con-

cluded the infection in non-local population has the most effect on the malaria transmis-

sion in the UAE regardless the value of RL
0 > 1 or RL

0 < 1. In cases of RN
0 < 1, the

country will be endemic with low transmission and endemic with high transmission in

cases of RN
0 > 1. Continuing the analysis for the non-local population, the positive ef-

fects of local population infection on the malaria transmission of non-locals were noticed

such that protecting local population from malaria infection would definitely reduce the

burden of the endemic in the UAE.

I also used the local sensitivity analysis to study the parameters that my model

is sensitive to. My focus is the sensitivity with respect to the variables that measure im-

pact of the disease on the population and more significant to the public health, which are

the infected locals IL and infected non-locals IN . I considered also the sensitivity with

respect to the infectious mosquitoes I2
M to know what parameter could be influential in

mosquitoes dynamics. I found that the recovery rate of the infected locals γL is the most

sensitive parameter for infected locals, hence it has the biggest negative influence on the

size of the burden of the epidemic on the local populations. A similar way, the isolation

and deportation rate of the infected non-locals γN has similar impact of the non-local pop-

ulation. By focusing only on the γL sensitivity, I realize the importance of having a good

estimation of this parameter to validate the outcome of my model. In fact, the recovery

rate of the infected population is parameter that depend on the nature of malaria strain

and its virulence, the efficacy of the drug, the available health resources and personnel

that can handle the possible imported disease. All of these inputs could make the esti-

mation parameter a big challenge. For γN , it is also difficult to estimate this parameter,

because it depends on the policy of the country on isolation and deportation of the patient

and right diagnosis of these patients.
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For the infected mosquitoes, I focus on the most sensitive parameters dM1 and

dM2 , which are the death rate of the two types of infected mosquitoes. No surprise, these

parameters are the most influential because they represent the impact of the death of

the mosquitoes, mainly by pesticides, on the size of the infectious and non infectious

mosquitoes.

This thesis contained what I could call core model for malaria disease in the

UAE. Which means that a lot of possible extensions of the model could be derived from

this model. For example, I could consider the case of multi-malaria strains. In fact, since

the UAE had its local malaria, it should be interesting to investigate the impact of possible

re-emergence of the local malaria in the presence of an imported strain of the disease. The

model could also be extended to consider the non-local population from epidemic malaria

regions and non-epidemic regions. This will help to understand the impact of selective

isolation of non-locals on reducing the size of possible epidemic in the UAE. Moreover,

I can also study the impact of different control measures by considering the policy of the

country in implementing these measures.

My work is an analytical investigation of a hypothetical scenario of imported

malaria in the UAE. Learning form the experience that the country faced before 2007, I

are addressing the impact of such possible disease on the country, via mathematical mod-

eling, in order to understand how we can be prepare for it. The goal is to bring awareness

and to increase the preparedness to deal with Malaria, if it happened in the UAE again, or

any other vector-borne disease.
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Appendix A: Appendix 1

In this Appendix, I will introduce some definitions used in my mathematical anal-

ysis of the model [60].

Definition A.0.1. Let A be n× n matrix with eigenvalues λi, i = 1, ....,n, the maximum

modulus of any eigenvalue λi is called the spectral radius ρ such that ρ(A) = max
1≤i≤n

(|λi|)

Definition A.0.2. Let A be n× n matrix with eigenvalues λi, i = 1, ....,n, the maximum

real part of the eigenvalues λi is called the spectral abscissa s(A) such that

s(A) = max
1≤i≤n

{ℜ(λi)}

Definition A.0.3. A matrix (or vector) A is nonnegative, denoted as A ≥ 0, if every ele-

ment is nonnegative. If every element of A is strictly positive, it is denoted as A > 0.

Definition A.0.4. A nonnegative matrix A is said to be irreducible if it is not the 1× 1

zero matrix and it can not be expressed as

PAP−1 =

A11 A12

0 A22


, such that A11 and A22 are nontrivial square block matrices and P is a permutation matrix.

Definition A.0.5. If A is an n× n matrix such that ai j ≤ 0,∀i 6= j, then A has the Z-sign

pattern.

Definition A.0.6. If A is an n× n matrix such that A = sI − B where s > 0, I is the

n×n identity matrix, B ≥ 0 entry-wise and s ≥ ρ(B), then A is an M-matrix. Moreover,

if s > ρ(B), then A is a nonsingular M-matrix. If s = ρ(B) , then A is a singular M-
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matrix[60].

Note that there are more than 40 equivalent characteristics of nonsingular M-

matrix that were mentioned in [74] and [60].
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Appendix B: Appendix 2

R version 3.1.3 (2015-03-09) [78] was the basic software used to do the numerical

simulations of the model, calculate the value of the Basic reproduction number R0 and

analyze the local sensitivity of the malaria model. Also, RStudio [82] was building editor

for the mentioned tasks with the package FME [89].

B.1 R Commands for the Basic Reproduction Number R0

• Disease free equilibrium R0 < 1, with RL
0 < 1 and RN

0 < 1.

> Lambda_L=0.094;d_L=9*10^(-6);ac_1=0.022;

> beta_L=0.0027;nu_L=0.1;gamma_L=0.0035;

> Lambda_N=0.113;d_N=1.63*10^(-5);ac_2=0.022;

> nu_N=0.1;gamma_N=0.0035;Lambda_M=0.13;

> d_M=0.033;ac_3=0.24;ac_4=0.48;nu_M=0.0833;

> d_M1=0.1704;d_M2=0.1704;Sigma=1463

> R0L <- sqrt((nu_M*nu_L*ac_1*Lambda_L*ac_3*

Lambda_M)/(d_L*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_L+d_L)*(gamma_L+d_L)))

> R0L

0.236073

> R0N <- sqrt((nu_M*nu_N*ac_2*Lambda_N*ac_4*

Lambda_M)/(d_N*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_N+d_N)*(gamma_N+d_N)))

> R0N
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0.2717045

> R0 <- sqrt(R0L^2+R0N^2)

> R0

0.2717045

#Endemic equilibrium:

• R0L > 1, R0N < 1 and R0 > 1 (CASE 1).

> Lambda_L=0.3;d_L=1.99*10^(-4);ac_1=0.27;

> beta_L=0.0027;nu_L=0.1; gamma_L=0.0035;

> Lambda_N=0.11; d_N=2*10^(-4);ac_2=0.022;

> nu_N=0.1;gamma_N=0.0035; Lambda_M=0.27;

> d_M=0.033; ac_3=0.48;ac_4=0.24; nu_M=0.0833;

> d_M1=0.033; d_M2=0.033;Sigma=1463

> R0L <- sqrt((nu_M*nu_L*ac_1*Lambda_L*ac_3*

Lambda_M)/(d_L*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_L+d_L)*(gamma_L+d_L)))

> R0L

2.091313

> R0N <- sqrt((nu_M*nu_N*ac_2*Lambda_N*ac_4*

Lambda_M)/(d_N*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_N+d_N)*(gamma_N+d_N)))

> R0N

0.2549294

> R0 <- sqrt(R0L^2+R0N^2)

> R0
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2.106793

• R0L < 1, R0N > 1 and R0 > 1 (CASE 2)

> Lambda_L=0.094;d_L=9*10^(-6);ac_1=0.022;

> beta_L=0.0027;nu_L=0.1; gamma_L=0.0035;

> Lambda_N=0.2;d_N=1.63*10^(-5);ac_2=0.1;

> nu_N=0.1;gamma_N=0.0035;Lambda_M=0.13;

> d_M=0.033;ac_3=0.24;ac_4=0.64;nu_M=0.0833;

> d_M1=0.033;d_M2=0.033; Sigma=1463

> R0L <- sqrt((nu_M*nu_L*ac_1*Lambda_L*ac_3*

Lambda_M)/(d_L*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_L+d_L)*(gamma_L+d_L)))

> R0L

0.7923088

>R0N <- sqrt((nu_M*nu_N*ac_2*Lambda_N*ac_4*

Lambda_M)/(d_N*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_N+d_N)*(gamma_N+d_N)))

> R0N

2.986613

> R0 <- sqrt(R0L^2+R0N^2)

> R0

3.08992

• R0L < 1, R0N < 1 but R0 > 1 (CASE 3)

>Lambda_L=0.094;d_L=9*10^(-6);ac_1=0.022;

> beta_L=0.0027;nu_L=0.1; gamma_L=0.0035;
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> Lambda_N=0.113;d_N=1.63*10^(-5);ac_2=0.022;

> nu_N=0.1;gamma_N=0.0035;Lambda_M=0.13;

> d_M=0.033;ac_3=0.24; ac_4=0.48;nu_M=0.0833;

> d_M1=0.033;d_M2=0.033;Sigma=1463

> R0L <- sqrt((nu_M*nu_L*ac_1*Lambda_L*ac_3*

Lambda_M)/(d_L*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_L+d_L)*(gamma_L+d_L)))

> R0L

0.7923088

> R0N <- sqrt((nu_M*nu_N*ac_2*Lambda_N*ac_4*

Lambda_M)/(d_N*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_N+d_N)*(gamma_N+d_N)))

> R0N

0.9118955

> R0 <- sqrt(R0L^2+R0N^2)

> R0

1.208018

• R0L > 1, R0N > 1 and R0 > 1 (CASE 4)

> Lambda_L=0.3; d_L=1.99*10^(-4); ac_1=0.27;

> beta_L=0.0027; nu_L=0.1;gamma_L=0.0035;

> Lambda_N=0.45; d_N=2*10^(-4); ac_2=0.27;

> nu_N=0.1;gamma_N=0.0035; Lambda_M=0.27;

> d_M=0.01; ac_3=0.48;ac_4=0.64;nu_M=0.0833;

> d_M1=0.05; d_M2=0.05; Sigma=1463
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> R0L <- sqrt((nu_M*nu_L*ac_1*Lambda_L*ac_3*

Lambda_M)/(d_L*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_L+d_L)*(gamma_L+d_L)))

> 0L

2.882854

> R0N <- sqrt((nu_M*nu_N*ac_2*Lambda_N*ac_4*

Lambda_M)/(d_N*d_M*d_M2*Sigma^2*(nu_M+d_M1)*

(nu_N+d_N)*(gamma_N+d_N)))

> R0N

4.066197

> R0 <- sqrt(R0L^2+R0N^2)

> R0

4.984456

B.2 R Commands for the Graphical Representation of the Model at Various R0

Using the same malaria function with different set of parameters to produce differ-

ent compartments at various values of R0. The primary used package for the simulation

and local sensitivity analysis is FME [89].

> install.packages("FME")

> require(FME)

> pars1 <- list(Lambda_L=0.094,d_L=9*10^(-6),

ac_1=0.022,beta_L=0.0027,nu_L=0.1,gamma_L=0.0035,

Lambda_N=0.113,d_N=1.63*10^(-5),ac_2=0.022,

nu_N=0.1,gamma_N=0.0035,Lambda_M=0.13,d_M=0.033,

ac_3=0.24,ac_4=0.48,nu_M=0.0833,d_M1=0.1704,
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d_M2=0.1704,Sigma=1463)

> pars2 <- list(Lambda_L=0.3, d_L=1.99*10^(-4),

ac_1=0.27, beta_L=0.0027,nu_L=0.1,gamma_L=0.0035,

Lambda_N=0.11,d_N=2*10^(-4),ac_2=0.022,nu_N=0.1,

gamma_N=0.0035, Lambda_M=0.27,d_M=0.033,

ac_3=0.48,ac_4=0.24,nu_M=0.0833, d_M1=0.033,

d_M2=0.033,Sigma=1463)

> pars3 <- list(Lambda_L=0.094,d_L=9*10^(-6),

ac_1=0.022,beta_L=0.0027,nu_L=0.1,gamma_L=0.0035,

Lambda_N=0.2,d_N=1.63*10^(-5),ac_2=0.1,nu_N=0.1,

gamma_N=0.0035,Lambda_M=0.13,d_M=0.033,ac_3=0.24,

ac_4=0.64,nu_M=0.0833,d_M1=0.033,d_M2=0.033,

Sigma=1463)

> pars4 <- list(Lambda_L=0.094,d_L=9*10^(-6),

ac_1=0.022,beta_L=0.0027,nu_L=0.1,gamma_L=0.0035,

Lambda_N=0.113,d_N=1.63*10^(-5),ac_2=0.022,

nu_N=0.1,gamma_N=0.0035,Lambda_M=0.13,d_M=0.033,

ac_3=0.24,ac_4=0.48,nu_M=0.0833,d_M1=0.033,

d_M2=0.033,Sigma=1463)

> pars6 <- list(Lambda_L=0.3, d_L=1.99*10^(-4),

ac_1=0.27,beta_L=0.0027,nu_L=0.1,gamma_L=0.0035,

Lambda_N=0.45,d_N=2*10^(-4), ac_2=0.27,nu_N=0.1,

gamma_N=0.0035, Lambda_M=0.27,d_M=0.01, ac_3=0.48,

ac_4=0.64,nu_M=0.0833, d_M1=0.05, d_M2=0.05,

Sigma=1463)
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> Malaria <-function(pars6,times=seq(0,10000,by=10)){

derivs<-function(t,state,pars6){

with(as.list(c(state,pars6)),{

dS_L<- Lambda_L - (d_L*S_L) - ac_1*((S_L*I_M2)/Sigma)

+ (beta_L*R_L)

dE_L<- ac_1*((S_L*I_M2)/Sigma) - (nu_L+d_L)*E_L

dI_L<- (nu_L*E_L) - (gamma_L+d_L)*I_L

dR_L<- (gamma_L*I_L) - (beta_L+d_L)*R_L

dS_N<- Lambda_N - (d_N*S_N) - ac_2*((S_N*I_M2)/Sigma)

dE_N<- ac_2*((S_N*I_M2)/Sigma) - (nu_N+d_N)*E_N

dI_N<- (nu_N*E_N) - (gamma_N+d_N)*I_N

dS_M<- Lambda_M - (d_M*S_M) - ac_3*((S_M*I_L)/Sigma)

- ac_4*((S_M*I_N)/Sigma)

dI_M1<- ac_3*((S_M*I_L)/Sigma) + ac_4*((S_M*I_N)/Sigma)

- (nu_M+d_M1)*I_M1

dI_M2<- (nu_M*I_M1) - (d_M2*I_M2)

return(list(c(dS_L,dE_L,dI_L,dR_L,dS_N,dE_N,dI_N,dS_M,

dI_M1,dI_M2)))

})

}

state<-c(S_L=900,E_L=20,I_L=3,R_L=0,S_N=500,E_N=10,

I_N=30,S_M=3400,I_M1=30,I_M2=5)

# ode solves the model by integration

return(ode(y=state,times=times,func=derivs,parms=pars6))

}
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> out <- Malaria(pars6)

R commands used to plot the malaria model at R0 = 0.27

# locals compartments

> par(mfrow=c(2,2))

> plot(out[,1],out[,2],main="Susceptible Locals",

ylab="S_L", xlab="time",type="l",col="red")

> plot(out[,1],out[,3],main="Exposed Locals",

ylab="E_L", xlab="time",type="l",col="green")

> plot(out[,1],out[,4],main="Infected Locals",

ylab="I_L", xlab="time",type="l",col="blue")

> plot(out[,1],out[,5],main="Recoved Locals",

ylab="R_L", xlab="time",type="l",col="purple")

> par(mfrow=c(1,1))

# Non-locals compartments

> par(mfrow=c(2,2))

> plot(out[,1],out[,6],main="Susceptible Non-Locals",

ylab="S_N", xlab="time",type="l",col="red")

> plot(out[,1],out[,7],main="Exposed Non-Locals",

ylab="E_N", xlab="time",type="l",col="green")

> plot(out[,1],out[,8],main="Infected Non-Locals",

ylab="I_N", xlab="time",type="l",col="blue")

> par(mfrow=c(1,1))

# Mosquitoes compartments

> par(mfrow=c(2,2))
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> plot(out[,1],out[,9],main="Susceptible Mosquitoes",

ylab="S_M",xlab="time",type="l",col="red")

> plot(out[,1],out[,10],main="Infected Mosquitoes",

ylab="I_M1", xlab="time",type="l",col="green")

> plot(out[,1],out[,11],main="Infectious Mosquitoes",

ylab="I_M2", xlab="time",type="l",col="blue")

> par(mfrow=c(1,1))

R commands for plotting the four cases of R0 > 1

1. Local population compartments plot.

> par(mar=c(5.1, 4.1, 4.1, 6.1), xpd=TRUE)

> SLC<- out[,2]

> ELC<- out[,3]

> ILC<- out[,4]

> RLC<- out[,5]

> COLORS <- rainbow(4)

> LC<- data.frame(SLC=SLC,ELC=ELC,ILC=ILC, RLC=RLC)

> matplot(out[,1],LC, type = "l", xlab="Time",

ylab="", main="Local Compartments",

col = COLORS,lty=1)

> legend("right",c("S_L", "E_L","I_L","R_L"),

bty = "n", col = COLORS,cex = 0.6,lty=1,

inset=c(-0.2,0))

# return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)
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2. Non-Locals population compartments plot.

> par(mar=c(5.1, 4.1, 4.1, 6.1), xpd=TRUE)

> SNC<- out[,6]ENC<- out[,7]

> INC<- out[,8]

> COLORS <- rainbow(3)

> NC<- data.frame(SNC=SNC,ENC=ENC,INC=INC)

> matplot(out[,1],NC, type = "l", xlab="Time",

ylab="", main="Non-Local Compartments",

col = COLORS,lty=1)

> legend("right",c("S_N", "E_N","I_N"),bty ="n",

col = COLORS,cex = 0.6,lty=1,inset=c(-0.2,0))

#return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)

3. Mosquito population compartments plot.

> par(mar=c(5.1, 4.1, 4.1, 6.1), xpd=TRUE)

> SMC<- out[,9]

> IM1C<- out[,10]

> IM2C<- out[,11]

> COLORS <- rainbow(3)

> NC<- data.frame(SMC=SMC,IM1C=IM1C,IM2C=IM2C)

> matplot(out[,1],NC, type = "l", xlab="Time",

ylab="",main="Mosquitoes Compartments",

col = COLORS,lty=1)

> legend("right",c("S_M", "I_M1","I_M2"),bty ="n",
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col = COLORS,cex = 0.6,lty=1,inset=c(-0.2,0))

# return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)

For better viewing of Mosquitoes compartments, the time in the Malaria function

was changed to seq(0,200,by=10)

B.3 R Commands for Local Sensitivity Analysis of Malaria Model

Local sensitivity analysis of the model was conducted at value of R0 = 4.98.

> require(FME)

> pars6 <- list(Lambda_L=0.3, d_L=1.99*10^(-4),

ac_1=0.27, beta_L=0.0027, nu_L=0.1,gamma_L=0.0035,

Lambda_N=0.45, d_N=2*10^(-4), ac_2=0.27,nu_N=0.1,

gamma_N=0.0035,Lambda_M=0.27,d_M=0.01, ac_3=0.48,

ac_4=0.64,nu_M=0.0833,d_M1=0.05, d_M2=0.05,Sigma=1463)

> Malaria2 <-function(pars6,times=seq(0,1000,by=20)){

derivs<-function(t,state,pars6){

with(as.list(c(state,pars6)),{

dS_L<- Lambda_L - (d_L*S_L) - ac_1*((S_L*I_M2)/Sigma)

+ (beta_L*R_L)

dE_L<- ac_1*((S_L*I_M2)/Sigma) - (nu_L+d_L)*E_L

dI_L<- (nu_L*E_L) - (gamma_L+d_L)*I_L

dR_L<- (gamma_L*I_L) - (beta_L+d_L)*R_L

dS_N<- Lambda_N - (d_N*S_N) - ac_2*((S_N*I_M2)/Sigma)

dE_N<- ac_2*((S_N*I_M2)/Sigma) - (nu_N+d_N)*E_N

dI_N<- (nu_N*E_N) - (gamma_N+d_N)*I_N
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dS_M<- Lambda_M - (d_M*S_M) - ac_3*((S_M*I_L)/Sigma)

- ac_4*((S_M*I_N)/Sigma)

dI_M1<- ac_3*((S_M*I_L)/Sigma) + ac_4*((S_M*I_N)/Sigma)

- (nu_M+d_M1)*I_M1

dI_M2<- (nu_M*I_M1) - (d_M2*I_M2)

return(list(c(dS_L,dE_L,dI_L,dR_L,dS_N,dE_N,dI_N,

dS_M,dI_M1,dI_M2)))

})

}

state<-c(S_L=900,E_L=20,I_L=3,R_L=0,S_N=500,E_N=10,

I_N=30,S_M=3400,I_M1=30,I_M2=5)

# ode solves the model by integration

return(ode(y=state,times=times,func=derivs,parms=pars6))

}

> out2 <- Malaria2(pars6)

# Local Sensitivity Analysis

# Local Sensitivity analysis on several variables

> summary(sensFun(Malaria2,pars6,varscale=1),var=TRUE)

# Local sensitivity functions for each variable in

the infected compartments :

# I_L

> SnsI_L<-sensFun(func=Malaria2,parms=pars6,

sensvar="I_L",varscale=1)

> SnsI_L

> par(mar=c(5.1, 4.1, 4.1, 10.1), xpd=TRUE)
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> plot(SnsI_L,legpos="NULL",main="Sensitivity

for Infected Locals")

> legend("right",

legend=c("Lambda_L","d_L","ac_1","beta_L","nu_L",

"gamma_L","Lambda_N","d_N","ac_2","nu_N","gamma_N",

"Lambda_M", "d_M", "ac_3", "ac_4", "nu_M", "d_M1",

"d_M2", "Sigma"),bty = "n",col = rainbow(19),

cex = 0.55,lty=1,inset=c(-0.5,0), ncol=2)

#return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)

#Univariate Sensitivity

> summary(SnsI_L)

# Bivariate Sensitivity

> cor(SnsI_L[,-(1:2)])

> pairs(SnsI_L)

# I_N

> SnsI_N<-sensFun(func=Malaria2,parms=pars6,

sensvar="I_N",varscale=1)

> SnsI_N

> par(mar=c(5.1, 4.1, 4.1, 10.1), xpd=TRUE)

> plot(SnsI_N,legpos="NULL",main="Sensitivity

for Infected Non-Locals")

> legend("right",

legend=c("Lambda_L","d_L","ac_1","beta_L","nu_L",

"gamma_L","Lambda_N","d_N","ac_2","nu_N","gamma_N",
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"Lambda_M", "d_M", "ac_3", "ac_4", "nu_M", "d_M1",

"d_M2", "Sigma"),bty = "n",col = rainbow(19),

cex = 0.55,lty=1,inset=c(-0.5,0), ncol=2)

#return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)

#Univariate Sensitivity

> summary(SnsI_N)

# Bivariate Sensitivity

> cor(SnsI_N[,-(1:2)])

> pairs(SnsI_N)

# I_M2

> SnsI_M2<-sensFun(func=Malaria2,parms=pars6,

sensvar="I_M2", varscale=1)

> SnsI_M2

> par(mar=c(5.1, 4.1, 4.1, 10.1), xpd=TRUE)

> plot(SnsI_M2,legpos="NULL",main="Sensitivity

for Infectious Mosquitoes")

> legend("right",

legend=c("Lambda_L","d_L","ac_1","beta_L","nu_L",

"gamma_L","Lambda_N","d_N","ac_2","nu_N","gamma_N",

"Lambda_M", "d_M", "ac_3", "ac_4", "nu_M", "d_M1",

"d_M2", "Sigma"),bty = "n", col = rainbow(19),

cex = 0.55,lty=1,inset=c(-0.5,0), ncol=2)

#return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)
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#Univariate Sensitivity

> summary(SnsI_M2)

# Bivariate Sensitivity

> cor(SnsI_M2[,-(1:2)])

> pairs(SnsI_M2)

# Mean of I_L.

> yL <- c(16.00,-18.07,37.02,17.43,2.77,-214.08,0.50,

-0.15, 0.30,-0.04,-2.23,31.67,-3.71,1.96,1.70,13.56,

-14.23,-42.84,-40.97)

> par(las=2) # make label text perpendicular to axis

> par(mar=c(5,8,4,2)) # increase y-axis margin.

> barplot(yL,names=c(" Lambda_L", "d_L", "ac_1",

"beta_L", "nu_L", "gamma_L", "Lambda_N","d_N",

"ac_2", "nu_N","gamma_N", "Lambda_M", "d_M",

"ac_3", "ac_4", "nu_M", "d_M1","d_M2", "Sigma"),

col=rainbow(19),xlim=c(-215,40),horiz=TRUE,

cex.names=0.8)

> axis(1, at = c(-220, 40, by = 20))

> #return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)

# Mean of I_N.

> yN <- c(0.10,-0.10,0.17,0.14,-0.11,-1.01,22.63,

-9.12,14.65,0.65,-133.32,12.28,-1.56, 0.59,0.32,

5.04,-5.87,-18.51,-15.73)
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> par(las=2) # make label text perpendicular to axis

> par(mar=c(5,8,4,2)) # increase y-axis margin.

barplot(yN,names=c(" Lambda_L", "d_L", "ac_1",

"beta_L", "nu_L", "gamma_L", "Lambda_N","d_N",

"ac_2", "nu_N" , "gamma_N", "Lambda_M", "d_M",

"ac_3", "ac_4", "nu_M", "d_M1","d_M2", "Sigma"),

col=rainbow(19),xlim=c(-135,25),horiz=TRUE,

cex.names=0.8)

> axis(1, at = c(-135,25, by = 10))

#return the par to original

> par(mar=c(5, 4, 4, 2) + 0.1)

# Mean of I_M2

> yM <- c(0.02,-0.02,0.67,0.03,0.68,-0.22,0.05,

-0.02,0.48,0.49,-0.21,3.03,-6.10,1.23,2.22,

14.81,-14.50,-38.64,-3.61)

> par(las=2) # make label text perpendicular to axis

> par(mar=c(5,8,4,2)) # increase y-axis margin.

> barplot(yM,names=c(" Lambda_L", "d_L", "ac_1",

"beta_L", "nu_L", "gamma_L", "Lambda_N","d_N",

"ac_2", "nu_N" , "gamma_N", "Lambda_M", "d_M",

"ac_3", "ac_4", "nu_M", "d_M1","d_M2", "Sigma"),

col=rainbow(19),xlim=c(-40,15),horiz=TRUE,

cex.names=0.8)

> axis(1, at = c(-40,15, by = 1))

#return the par to original
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> par(mar=c(5, 4, 4, 2) + 0.1)

package (xtable) [18] was used to print R output into tex file.

> install.packages("xtable")

> library(xtable)

> result <-summary(SnsI_L)

> print(xtable(result), type="latex", file="output.tex")

#Note: You can control the number of digits using:

> xtable(result, digits=-3)

# R output to csv file

result<- SnsI_L

write.csv(result, file = "output.csv")


