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Abstract

Wavelets has been a popular tool, since the late 1980s in many areas of engineering and

mathematics. A major contribution of wavelets is their adaptation in the JPEG2000

picture format standard in 2000 and in the compression and storage of finger print

scans. Since then wide applications of wavelets in different areas have emerged. Pop-

ular wavelets are the compactly-supported wavelets constructed by I. Daubechies. In

this work, we use Daubechies’ wavelets to develop multistep algorithms for the solu-

tion of initial value problems (IVPs) in the context of Galerkin method. Though, such

wavelet basis functions have good approximation property, they do not have explicit

formulae, making finding inner products a challange. This work tackles this point and

uses the order of approximation of the wavelets to derive implicit multistep methods

with comparable stability property to other methods. The derived methods are tested

on linear and non-linear test equations.

Keywords: Wavelet Basis, Daubechies’ Wavelets, Multiresolution Analysis, Multi-

step methods, Initial Value Problems, Galerkin Method.
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Chapter 1: Introduction

Wavelets are special mathematical functions that satisfy certain mathematical

requirements. Wavelets were developed in the fields of mathematics, physics, engi-

neering, and seismic geology. This led to a various applications as in numerical anal-

ysis, image and video compression, fingerprints, speech recognition and earthquakes

predictions [13].

The historical origins of the wavelets date back to the beginning of the 20th

century, when Haar [2] constructed the first and simplest wavelet function in 1901.

In 1986, Mallat [3] and Meyer [4] introduced the concept of a multiresolution analysis

(MRA) which give a natural framework of wavelet approximation and the construction

of orthonormal wavelet basis .

In 1987, Daubachies [5, 6] constructed the first ever known family of orthog-

onal wavelets with compact support. Since then numerous applications of wavelets

were found. One of the successes of wavelets has been in signal processing [7, 8].

Wavelets have also been used in the numerical solution of differential equations. For

example, Chen and Hsiao [9] had derived an operational matrix of integration based

on Haar wavelet, Lepik [10] had used Haar wavelets to solve higher order as well as

nonlinear ODEs. Xu and Shann [12] have used wavelet-based Galerkin methods to

solve two-point boundary problems.

Differential equations are one of the most mathematical tools that have a wide

range of applications in physics, biology and engineering, in particular initial value

problems which generally describe the evolution in time of the state of a system. It

is well-known that many initial value problems do not admit exact solutions. Over

the past decades, many numerical methods to approximate the solution of initial value

problems have been constructed. Popular numerical methods are Euler method, the

finite difference methods and Rung-Kutta methods [1]. Other methods known as spec-

tral methods have been developed as well and are widely used [14–19]. As mentioned
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above wavelets have also been used for the numerical solution of differential equations

However, many of these works use either the Haar wavelets [10,20,21], or polynomial

like wavelets [22–25].

In this thesis we use Daubechies’ wavelets [5] in a Galerkin setting to derive

multistep methods to solve first order initial value problems y′ = f (t,y). Daubechies

wavelets are known for their good approximation of order p in the sense that polynomi-

als of degree p−1 are exactly generated by linear combination of the integral translates

of the scaling functions. This nice property will be used throughout to guarantee that

the order of the derived method is O(hp). The resolution, m, of the approximation

spaces will determine the step size of the method, h = 2−m.

The thesis is organized as follows. In Chapter 2, an overview of wavelet theory

is provided a long with needed results pertaining to the derivation of the multistep

methods. We first introduce the wavelet transform and comparison with the Fourier

transform. Next , we give the definition of the multiresolution analysis (MRA) and the

scaling functions, review the main ingredients of orthonormal wavelet bases and point

out the properties used later in this work. Using the multiresolution analysis concept,

we highlight the construction of Daubechies’ compactly-supported wavelets. In the

end of Chapter 2, we describe an algorithm which can be used to compute the exact

values of Daubechies’ compactly-supported scaling and wavelets functions as well as

quadratures approximations for the scaling coefficients of a function.

In Chapter 3, we describe the derivation of implicit wavelet-based multistep

schemes for the numerical solution of first-order initial value problems y′= f (t,y), y(t0)=

y0. First, we describe the general approach to derive the wavelet Galerkin method

(WGM). Then, based on the approximation property of Daubechies wavelets, a mod-

ification of this WGM, is described leading the modified wavelet Galerkin method of

order p (MWGMp). We will modify the WGM in three different ways leading to three

different stable multistep methods.
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In Chapter 4, we discuss the order of convergence and the stability of the three

different modified wavelet Galerkin multistep methods. In Chapter 5, we present some

numerical examples to verify the accuracy of the derived methods. Finally, in Chapter

6, a conclusion is drawn and future work is suggested.
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Chapter 2: An Overview of Wavelets

In this Chapter, we present an overview of wavelet theory. In particular, we

present results pertaining to compactly-supported wavelets constructed by I. Daubechies

[5]. We present results and properties of such wavelets that are needed in later chapters

dealing with the construction of multistep methods for solving initial value problems.

There are many references in the literature about wavelets and the reader can refer to

for example [26–33] and references therein.

2.1 From Fourier Transform to Wavelet Transform

Wavelets are a special mathematical functions that are used to represent and

to analyse other functions (or data) at different scales. Essentially, wavelets take a

function and break it down into pieces, each piece “lives" at a certain scale. The

analysis of of the original function is done on each piece and then reconstruction of the

original function is performed.

In fact, Approximation using the superposition of functions is not new idea.

Many techniques are used to express a function as a linear combination of other basis

functions such as Taylor series, the Fourier series and the Fourier transform. The

latter is a popular transform used in signal analysis, where signals are transformed into

frequency domain.

For any function f ∈ L1(R), the continuous Fourier transform and its inverse

are define by

(F f )(w) = f̂ (w) =
∫

∞

−∞

f (t)e−itwdt, (2.1)

(F−1 f )(t) = f (t) =
∫

∞

−∞

f̂ (w)eitwdt, (2.2)

where w is the frequency variable. Note that the Fourier transform of f (t) is a complex

function. It gives the information of to what extent a certain frequency w is present
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in the signal f (t). This is examined by looking at the modulus | f̂ (w)|. If | f̂ (w)| = 0

(or very small), this means that frequency w is not present in the signal (or has very

small contribution to the signal). On the other hand, if | f̂ (w)| is large, this means that

frequency w is present in the signal and has considerable contribution. The Fourier

transform is a representation of the original function as a superposition of sines and

cosines (eiwt = cos(wt)+ isin(wt)). For more information about the Fourier transform,

the reader can refer to [34–37].

The Fourier transform as defined in (2.1) has two main problems. First, it is

unable to localise in time when a ceratin frequency happened, i.e., even if | f̂ (w∗)|

is large, we would not know at what time the frequency w∗ occurred. This is due

to the non-compact support of the trigonometric functions sine and cosine. Another

inconvenience is that we require f (t) for all t to compute f̂ (w) at a particular w. To

partially overcome these two drawbacks, the windowed-Fourier transform (WFT ) was

defined as a solution to localize frequency in time [38, 39].

The WFT of a function f (t) is defined by

(W F f )(w, t) =
∫

∞

−∞

f (s)g(s− t)e−iwtds, (2.3)

where g(x) is called the window function, a function with compact support. For exam-

ple,

g(t) =

 1, 0≤ t ≤ ∆,

0, otherwise,
(2.4)

where ∆ is the width of the window. The WFT computes the frequency content of the

signal function f (t) in a neighborhood of a point in time t. Precisely, (W F f )(w, t)

gives the frequency content of the signal in the interval in time [t, t +∆]. It chops up

the function f (t) into pieces, each piece defined on [t, t +∆], and then analyzes each
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piece for its frequency content by taking the Fourier transform. We can see that the

WFT solves the time-frequency localization problem. However, the WFT still has a

disadvantage which is in its window function g(s, t). It can be seen that g(s, t) always

has the same width ∆.

This problem of constant width of the window function g(t) is solved by the in-

troduction of another transform called the wavelet transform. The continuous wavelet

transform of a function f (x) ∈ L2(R) is defined by

(W f )(a,b) =
∫

∞

−∞

f (x)ψa,b(t)dt, (2.5)

where the doubly-indexed functions ψa,b(t) are defined by

ψa,b(t) =
1√
a

ψ

(
t−b

a

)
, a,b ∈ R, a 6= 0, (2.6)

and ψ(t) is the mother wavelet. It can be seen that all the functions ψa,b)(t), called

wavelet functions, are derived from the mother wavelet ψ(t) by means of dilation and

translation. The variable b in (W f )(a,b) no longer represents frequency. It represents

“scale". The variable a is a time localization variable. For the wavelet transform

(2.5) to be invertible, the mother wavelet function ψ(t) has to satisfy the admissibility

condition [6].

Cψ := 2π

∫
∞

−∞

|ψ̂(ξ )|2

ξ
dξ < ∞, (2.7)

where ψ̂(ξ ) is the Fourier transform of ψ(t).

If ψ(t) satisfies equation (2.7), then the wavelet transform (2.5) is invertible on

its range,and f (t) can be recovered by

f (t) =
1

Cψ

∫
∞

−∞

(W f )(a,b)ψa,b(t)
dadb

a2 (2.8)
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The admissibility condition (2.7) implies the necessary condition that ψ̂(0) = 0 which

means that
∫

∞

−∞
ψ(t)dt = 0. Thus, ψ(t) is oscillating and decays to zero at ±∞. This

oscillation property, together with the decay property, has given ψ(t) the name wavelet.

In practice, a discrete version of (2.5) is used, the discrete wavelet transform

(DWT ). In the DWT , the dilation and translation parameters a and b are restricted

to discrete values a = a− j
0 , b = kb0a− j

0 , k, j ∈ Z, with a0 > 1,b0 > 0. The resulting

discrete transform of (2.5) is then

(W f )( j,k) := a j/2
0

∫
∞

−∞

f (t)ψ(a j
0t− kb0)dt. (2.9)

For the particular values a0 = 2 and b0 = 1, the widely used DWT is

(W f )( j,k) := 2 j/2
∫

∞

−∞

f (t)ψ(2 jt− k)dt. (2.10)

In concluding this section, it is worth noting that the wavelet transform is sim-

ilar to WFT in that they both provide a time-frequency analysis of the function f (t).

The difference between them is that in WFT the support of the window functions

g(s− t) remain fixed for all frequencies. However, for the wavelet transform, the win-

dow functions are ψa,b = 1√
a

(x−b
a

)
which have support depending on the scale (fre-

quency) a. This type of dependence makes the wavelet transform better in detecting

short-lived high variations (high frequency) in the function f (t). Another approach to

understand wavelets is through the concept of multiresolution analysis [3] discussed in

the next section.

2.2 The Multiresolution Analysis and Wavelets

In this section, we introduce wavelets (the discrete wavelet transform) through

the concept of multiresolution analysis (MRA). We will see how orthonormal wavelet

basis of L2(R) are constructed using the MRA. In the first subsection, we define the
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MRA and the construction of the scaling function φ(x). In the second subsection, we

define the wavelet spaces and the mother wavelet function ψ(x).

2.2.1 The Multiresolution Analysis

The multiresolution analysis is defined as follows.

Definition 2.2.1. A one-dimensional orthonormal multiresolution analysis (1−D MRA)

of L2(R) is defined as increasing sequence of closed subspaces Vj of L2(R), j ∈ Z, such

that

0⊂ . . .⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂ . . .⊂ L2(R) (2.11)

with the following properties.

1.
⋂
j∈Z

Vj = 0 and
⋃
j∈Z

Vj is dense in L2(R) .

2. f (x) ∈Vj i f f f (2x) ∈Vj+1, for all j ∈ Z .

3. f (x) ∈Vj i f f f (x−2− jk) ∈Vj , for all k ∈ Z.

4. There exist a function φ(x) ∈ V0 with non-vanishing integral such that the set

{φ0,k(x) = φ(x− k),k ∈ Z} is an orthonormal basis of V0.

The function φ(x) is called the mother scaling function. From the definition, it

is easy to see that for any j ∈ Z, the family

φ j,k(x) = 2
j
2 φ(2 jx− k), k ∈ Z, (2.12)

is an orthonormal basis of Vj. Since φ(x) ∈V0 ⊂V1, there exist a sequence {hk,k ∈ Z}

such that

φ(x) = ∑
k∈Z

hkφ1,k(x) =
√

2 ∑
k∈Z

hkφ(2x− k). (2.13)
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The equation (2.13) is known by different names such as the dilation equation, the two-

scale difference equation, or the refinement equation. The coefficients hk, in engineer-

ing applications, are called the low pass filter coefficients. They satisfy the following

properties whose proofs can be found in many wavelet textbooks such as [6].

(P1) ∑
k∈Z

hk =
√

2. (2.14)

(P2) ∑
k∈Z

h2
k = 1. (2.15)

(P3) ∑
k∈Z

(−1)khk = 0. (2.16)

(P4) ∑
k

h2k =

√
2

2
= ∑

k
h2k+1. (2.17)

The scaling function φ(x) is uniquely defined by its refinement equation (2.13)

and the normalization ∫
∞

−∞

φ(x)dx = c, (a constant).

The MRA spaces Vj are called the approximation spaces and are used to approximate

functions of L2(R). Given a function f (x)∈ L2(R), it is approximated by its orthogonal

projection, f j, onto Vj,

f (x)≈ Pj( f )(x) = f j(x) = ∑
k∈Z

s j,kφ j,k(x), (2.18)

with the coefficients s j,k, called the scaling coefficients, are given by

s j,k =
∫

∞

−∞

f (x)φ j,k(x)dx. (2.19)

To be able to express the simplest constant functions f (x)= c as a linear combi-

nation of the collection φ(x− l), l ∈ Z, it can be easily verified that the scaling function

φ(x) satisfies

∑
l

φ(x− l) = constant. (2.20)
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If the normalization is
∫

∞

−∞
φ(x)dx = 1, we have ∑

l
φ(x− l) = 1. In many cases, there

is no available explicit expression for φ(x), it is defined by its refinement equation

(2.13) and the normalization (2.20). However, as we will see in Section 2.4, there

is an algorithm to compute the values of the scaling functions φ(x) at dyadics points

{x = k
2 j , j,k ∈ Z}.

Although φ(x) does not have an explicit expression in x domain, its Fourier

transform φ̂(ψ) can be expressed formally in a compact form as follows. Taking the

Fourier transform of (2.13), we obtain

φ̂(ξ ) = m0(ξ/2)φ̂(ξ/2), (2.21)

where

m0(ξ ) =
1√
2 ∑

k
hke−ikξ (2.22)

is a 2π-periodic trigonometric function, the discrete Fourier transform of the filter

coefficients hk. Repeated application of (2.21), gives the formal expression for φ̂(ξ ):

φ̂(ξ ) =
∞

∏
j=1

m0(ξ/2 j). (2.23)

The infinite product converges if and only if m0(0) = 1 which means that ∑
k

hk =
√

2,

a property we mentioned before. Moreover, the orthonormality of {φ(x−k), k ∈ Z} is

equivalent to

|m0(ξ )|2 + |m0(ξ +π)|2 = 1, ∀ ξ . (2.24)

2.2.2 The Detail Spaces and The Wavelet Functions

In this section we will introduce the wavelets functions and the wavelet basis

for L2(R). Given an multiresolution analysis, as defined in the previous subsection, for
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each j ∈ Z, let Wj be the orthogonal complement of Vj in Vj +1. Then we have

Vj+1 =Vj⊕Wj and Wj⊥Wj′ j 6= j′ (2.25)

where the symbol ⊕ denote the direct sum. Equation (2.25) means that each elements

in Vj+1 can be written uniquely as a sum of an element of Vj and an element of Wj. The

spaces Wj contain the information that we need to move from a given approximation

space Vj with a resolution j to another approximation space Vj+1. These spaces are

referred to the “detail spaces" or wavelet spaces.

The idea behind the multiresolution analysis is that whenever we have a scaling

function φ(x) associated with a multiresolution analysis, there exist a wavelet function

ψ(x) ∈W0, called the mother wavelet function, such that the set {ψ0,k = ψ(x− k),k ∈

Z} is an orthonormal basis of the detail space W0, and the family

ψ j,k = 2 j/2
ψ(2 jx− k), k ∈ Z, (2.26)

is an orthonormal basis for Wj. The set {ψ j,k, j,k ∈ Z} is the orthonormal wavelet

basis of L2(R) associated with the multiresolution analysis. The mother wavelet ψ(x)

is given by [5, 6]

ψ(x) =
√

2∑
k

gkφ(2x− k), (2.27)

with gk = (−1)kh1−k.

2.3 Daubechies’ Compactly-Supported Wavelets

The wavelet bases discussed in previous section consist of functions that are

supported on the entire real line. However, in many applications, it is desirable to work

with wavelets with compact support. In this section, we shall describe the construction

of I. Daubechies [5,6]. These wavelets are not only compactly supported but they have

good approximation property.
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As we saw in the previous section, all depend on the scaling function φ(x),

which is a solution of the refinement equation

φ(x) =
√

2∑
k

hkφ(2x− k). (2.28)

In her construction of compactly supported φ , Daubechies seeked a solution of the

finite refinement equation:

φ(x) =
√

2
N−1

∑
k=0

hkφ(2x− k). (2.29)

such that {φ(x− k), k ∈ Z} is an orthonormal basis for V0. This orthonormality prop-

erty as we saw in the previous section is equivalent to

|m0(ξ )|2 + |m0(ξ +π)|2 = 1, (2.30)

where m0(ξ ) be comes the 2π-periodic trigonometric polynomial

m0(ξ ) =
1√
2

N−1

∑
k=0

hke−ikξ . (2.31)

Daubechies solved for m0(ξ ) satisfying the orthonormality condition (2.30) and having

the form

m0(ξ ) =

(
eiξ +1

2

)p

L (ξ ), p≥ 1, (2.32)

where L (ξ ) is a trigonometric polynomial. For more details on Daubechies’ com-

struction, the reader is encouraged to see [6].

It has been proven in [6] that φ(x) in (2.29) is compactly-supported in [0,N−1]

and the corresponding mother wavelet function ψ(x), after translation, is given by

ψ(x) =
√

2
N−1

∑
k=0

gkφ(2x− k), (2.33)
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and is also compactly-supported in [0,N−1], where gk are given by

gk = (−1)khN−k−1, k = 0,1, . . . ,N−1. (2.34)

The construction of m0(ξ ) satisfying (2.32) implies that φ(x) has pth order

approximation property, in the sense that any polynomial, Pr(x), of degree less r than

or equal to p−1 can be generated exactly by integral translates of φ(x), i.e.,

Pr(x) = ∑
k

ckφ(x− k), 0≤ r ≤ p−1. (2.35)

This property translates to the wavelet function ψ(x) satisfying p vanishing moments:

∫
∞

−∞

xr
ψ(x)dx = 0, 0≤ r ≤ p−1. (2.36)

The above mentioned approximation property of the scaling function φ(x) will

be very useful in the next chapter in constructing the multistep algorithm for solving

initial value problems. As we saw, Daubechies’ scaling function does not have a closed

form expression. In numerical calculations, one needs the values of φ j,k(x). In the next

section, we describe an algorithm, described in details in [40], by which φ(x) can be

calculated at dyadic points x = k
2 j , k, j ∈ Z.

2.4 The Scaling and Wavelet Functions Values

In this section we will describe an algorithm [40] to compute the exact values

of a compactly supported scaling functions φ j,k(x) and ψ j,k(x). Since all of the scaling

and wavelet functions φ j,k(x) and ψ j,k(x) are given in terms of the mother scaling

function φ(x) (see Eqs. (2.29) and (2.33)), it suffices to consider φ(x) at dyadic points

x = k
2 j , k, j ∈ Z.

Let φ(x) be a compactly supported scaling function satisfying the refinement
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equation

φ(x) =
√

2
N−1

∑
k=0

hkφ(2x− k) (2.37)

with

N−1

∑
k=0

hk =
√

2. (2.38)

φ at the integers x = 1,2, . . . ,N−2

Since φ(x) is compactly supported in [0,N−1], φ(x) = 0 for x≤ 0 and for x≥ N−1.

Let ~φ (0) = [φ(1) φ(2) · · · φ(N−2)]t be the column vector containing φ at the integers

x = 1,2, . . . ,N−2. Then evaluating (2.37) at the integers, we obtain the system

~φ (0) = A~φ (0) (2.39)

where A is an (N−2)× (N−2) matrix with entries ai j given by ai j =
√

2h2i− j, if 0≤ (2i− j)≤ N−1,

0, otherwise,
(2.40)

Equation (2.39) suggests that ~φ (0) is an eigenvector of A corresponding to the

eigenvalue λ = 1. The existence of λ = 1 as an eigenvalue of A has been shown in [40].

Since φ(x) satisfies the normalization

∑
l

φ(x− l) = 1, ∀ x, (2.41)

we have that ∑
l∈Z

φ(l) =
N−2
∑

l=1
φ(l) = 1. Therefore, the vector ~φ (0) is equal to the nor-

malised eigenvector of A corresponding to the eigenvalue λ = 1. This gives the values

of φ(x) at the integers x = 1,2, . . . ,N−2.

φ at the half- integers x = n/2 n ∈ Z

Once the values of φ(x) at the integers are known, we apply the refinement equation
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(2.37) with x = n/2, n ∈ Z, to find the values of φ(x) at the half integers,

φ(n/2) =
√

2
N−1

∑
k=0

hkφ(n− k), n = 1,2, . . . ,2(L−2)+1. (2.42)

Equation (2.42) can be viewed as a convolution of the vector h =
√

2[h0,h1, . . . ,hN−1]

with the vector φ (0) = [φ(1),φ(2), . . . ,φ(N−2)]. The convolution of two vectors x =

[x1,x2, . . . ,xn] and y = [y1,y2, . . . ,ym] , denoted by z = x ? y, is defined by the vector

z = [z1,z2, . . . ,zn+m−1] of length n+m−1 given by

zk =
min(n,k)

∑
l=max(1,k−m+1)

xlyk−l+1 =
min(m,k)

∑
l=max(1,k−n+1)

xk−l+1yl. (2.43)

φ at the odd dyadic values x = n/2 j n ∈ Z,odd.

Let φ ( j), j
 1, be the vector of length 2 j−1(N−1) containing the values of the scaling

function at the odd j-level dyadics, i.e.,

φ
( j) = [φ(1/2 j),φ(3/2 j), . . . ,φ((2 j(N−1)−1)/2 j)]t . (2.44)

From the refinement equation (2.37), we get

φ
( j) = conv(h̃ j,φ ( j−1)), j 
 2, (2.45)

where h̃ j is given by h̃ j
k =
√

2hm, if k = m2 j−2, 0� m� N−1,

0, otherwise.
(2.46)

The length of the vector h̃ j is equal to 2 j−2(L−1)+1.

The algorithm is summarized as follows.

1. Compute the vector φ (0) containing the values of φ at the integers as the normal-

ized eigenvector of A corresponding to the eigenvalue λ = 1.

2. Convolve φ (0) with the vector h . This gives the values of φ at the half integers.
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3. For j 
 2, compute the values of φ at the odd j-level dyadics by convolving of

the vector h̃ j with the vector φ j−1, where φ j−1 is the vector containing only the

values of φ at the odd ( j−1)-dyadics.

The above algorithm has been used to plot Daubechies’ scaling and wavelet

functions for different various of p, the number of vanishing moments of the wavelet,

where N = 2p. Figures 2.1-2.4 display φ and ψ for p = 3,5,7 and 9.
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Figure 2.1: Daubechies φ (top) and ψ (bottom) for p = 3
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Figure 2.2: Daubechies φ (top) and ψ (bottom) for p = 5
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Figure 2.3: Daubechies φ (top) and ψ (bottom) for p = 7
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Figure 2.4: Daubechies φ (top) and ψ (bottom) for p = 9

2.5 Functions Approximation

In this section, we show how functions of L2(R) are approximated in the ap-

proximation spaces Vj. In particular, we show how one can approximate the scaling

coefficients s j,k.

Let f (x)∈L2(R) and let Vj be an approximation space and Wj be the orthogonal

complement of Vj in Vj+1. The function f is approximated by its orthogonal projection
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onto Vj:

f (x)≈ (Pj f ) = ∑
k∈Z

s j,kφ j,k(x), (2.47)

with the scaling coefficients s j,k are given by

s j,k = 〈 f ,φn,k(x)〉=
∫

∞

−∞

f (x)φ j,k(x)dx. (2.48)

As φ j,k(x) do not have an exact formula, one needs to approximate the integrals (2.48).

In subsections 2.5.2 and 2.5.3, we present two ways to approximate s j,k, one using

a one point-quadrature (Subsection 2.5.2) and another using a multi-point quadrature

(Subsection 2.5.3). In the next subsection, we present a formula for the calculation of

the scaling function moments, needed later in subsections 2.5.2 and 2.5.3.

2.5.1 Moments of the Scaling Functions

In this section, we discuss the exact computation of the so-called the kth mo-

ments, µk
j , of the scaling functions φ(x− j). These moments will be very important in

the approximation of the scaling coefficients as well as in the derivation of the schemes

in Chapter 3.

The kth moment of the scaling function φ(x− j) is defined by

µ
k
j = 〈xk,φ(x− j)〉=

∫
∞

−∞

xk
φ(x− j)dx. (2.49)

Making the change of variable x→ x− j, we get

µ
k
j =

∫
∞

−∞

(x+ j)k
φ(x)dx =

k

∑
i=0

(
k
i

)
jk−i

∫
∞

−∞

xi
φ(x)dx =

k

∑
i=0

(
k
i

)
jk−i

µ
i
0. (2.50)

Equation (2.50) gives a formula for calculating µk
j in terms of µ i

0, i = 0,1, . . . ,k. It

remains to find a formula to compute µ i
0.
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First, note that µ
0
0 =

∫
∞

−∞

φ(x)dx = 1. For n≥ 1, we have

µ
n
0 =

∫
∞

−∞

xn
φ(x)dx. (2.51)

Using the definition of φ(x), φ(x) =
√

2∑
k

hkφ(2x− k), we have

µ
n
0 =

√
2∑

k
hk

[∫
∞

−∞

xn
φ(2x− k)

]
dx

= 2−n−1/2
∑
k

hk

[∫
∞

−∞

(x+ k)n
φ(x)

]
dx

= 2−n−1/2
n

∑
i=0

(
n
i

)
∑
k

hkki
[∫

∞

−∞

xn−i
φ(x)

]
dx.

= 2−n−1/2
n

∑
i=0

(
n
i

)
miµ

n−i
0 , (2.52)

where mi = ∑
k

hkki, the ith moment of the filter coefficients hk. Writing down the first

term of the right-hand side of (2.52), we obtain

µ
n
0 = 2−n−1/2m0µ

n
0 +2−n−1/2

n

∑
i=1

(
n
i

)
miµ

n−i
0 ,

and solving for µn
0 , using the fact that m0 = ∑

k
hk =

√
2, we obtain the recursive for-

mula for the moments µn
0 :

µ
n
0 =

1
(2n−1)

√
2

n

∑
i=1

(
n
i

)
miµ

n−i
0 , n≥ 1, (2.53)

with µ0
0 = 1.

In the next two subsections, the moments µk
j are used to approximate the scal-

ing coefficients s j,k.
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2.5.2 One-Point Quadratures

Here, we approximate s j,k using a one-point quadrature. Since φ j,k(x)= 2 j/2φ(2 jx−

k), equation (2.48) becomes

s j,k = 2 j/2
∫

∞

−∞

f (x)φ(2 jx− k)dx.

With the change of variable x→ 2 jx− k, we get

s j,k = 2− j/2
∫

∞

−∞

f (2− j(x+ k))φ(x)dx. (2.54)

Expanding f (x) into a Taylor series around 2− jk,

f (x) = f (2− jk)+
∞

∑
n=1

f (n)(2− jk)
n!

(x−2− jk)n,

and substituting in (2.54), using the fact that
∫

∞

−∞
φ(x)dx = 1, we get

s j,k = 2− j/2 f (2− jk)+2− j/2
∞

∑
n=1

f (n)(2− jk)
n!

2− jn
∫

∞

−∞

xn
φ(x)dx (2.55)

If we retain only to the first term of (2.55), we obtain a one-point quadrature approxi-

mation formula of s j,k, i.e.,

s j,k ≈ 2− j/2 f (2− jk). (2.56)

which has an approximation order of O(2−3 j/2).

For more accurate approximation, we can retain higher order term and truncate

the series in (2.55) at some level, say m, to obtain the approximation

s j,k ≈
m

∑
n=0

[
2− j(n+1/2)

n!
f (n)(2− jk)µn

0

]
, (2.57)

where µn
0 is the nth moment of the scaling function φ(x). The approximation order of
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(2.57) is O(2− j(m+3/2)).

The quadrature (2.57) is more accurate than (2.56), however, it has the incon-

venience that we have to evaluate the derivative of f as well upto m, in addition to the

computation of the nth moments, µn
0 , of the scaling function φ(x) . In many applica-

tion, where only samples of the function f (x) are known, quadrature (2.57) would not

be of any use because we do not know the samples of the derivatives of f (x). This

issue is considered in the next subsection, where we present a multi-point quadrature

to approximate s j,k without using the derivatives of f (x).

2.5.3 A Multi-Point Quadrature

As mentioned above, the one-point quadrature (2.57), though can be made as

accurate as wanted by increasing m, it has the drawback that it needs samples of the

function and of its derivatives, which may not available. To overcome this point, we

present a multi-point quadrature as accurate as (2.57), which uses only samples of

f (x).

The multi-point quadrature approximation of the coefficients s j,k is given by

s j,k ≈ 2− j/2
M

∑
l=0

wl f (2− j(l + k)), (2.58)

where M is a positive integer and wl some weights to be determined such that the

approximation (2.58) is exact for all polynomials of degree less or equal to M.

Let f (x) = xr, 0 ≤ r ≤M, be a monomial of degree r ≤M. Then quadrature

(2.58) is exact for the monomials f (x) = xr,0≤ r ≤M, if and only if

M

∑
l=0

wl(2− j(l + k))r = 2 j/2
∫

∞

−∞

xr
φ(2 jx− k)dx, 0≤ r ≤M. (2.59)

Manipulating (2.59), we obtain

r

∑
i=0

[(
r
i

)
kr−i

( M

∑
l=0

liwl

)]
= 2− j/2

r

∑
i=0

(
r
i

)
kr−i

µ
i
0, 0≤ r ≤M. (2.60)
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or

r

∑
i=0

[(
r
i

)
kr−i

( M

∑
l=0

liwl−2− j/2
µ

i
0

)]
= 0, 0≤ r ≤M. (2.61)

Let Wi =
M
∑

l=0
liwl and ~C = [C0 C1 . . .CM]T , Ci = Wi−2− j/2µ i

0. Let A be the (M+1)×

(M + 1) lower triangular matrix with the (i, j)-entry, 0 ≤ i, j ≤ M, given by Ai, j =

0 if j > i and
( i

j

)
ki− j if i ≥ j. With these notations, (2.61) can be written as the

homogeneous system

A ~C = 0. (2.62)

Since det(A ) =
M
∏
i=0

Ai,i =
M
∏
i=0

(i
i

)
= 1 6= 0, system (2.62) has the only the trivial solu-

tion, Ci = 0 for all 0≤ i≤M. Thus, the weights wl are the solutions of the system

M

∑
l=0

liwl = 2− j/2
µ

i
0, i = 0,1, . . . ,M. (2.63)

Let w = [w0 w1 . . .wM]T and M = [µ0
0 µ1

0 . . .µ
M
0 ]T . Equation (2.63) is a system

of linear equations for the unknown weights w:

Aw = 2− j/2M , (2.64)

where the matrix A is a nonsingular matrix given by

A =



1 1 1 · · · 1 1

0 (1)1 (2)1 · · · (M−1)1 (M)1

0 (1)2 (2)2 · · · (M−1)2 (M)2

...
... . . . . . . ...

...

0 (1)M−1 (2)M−1 · · · (M−1)M−1 (M)M−1

0 (1)M (2)M · · · (M−1)M (M)M


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with determinant

|A|= (−1)dM/2e
M

∏
k=1

k! 6= 0.

Therefore, the weights vector w is given by

w = 2− j/2A−1M . (2.65)
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Chapter 3: Wavelet Time Integration Schemes

In this Chapter, we show how Daubechies’ orthonormal basis are used to repre-

sent the solution of the initial value problem y′(t) = f (t,y), t ∈ [t0, t f ],

y(t0) = y0.
(3.1)

The function f on the right hand side of (3.1) is assumed to be many times differen-

tiable. We represent (approximate) the solution y(t) of (3.1) by its orthogonal projec-

tion onto a wavelet approximation space Vm. The scaling coefficients of the solution

y are determined using Galerkin method. In section 3.1, we describe the standard

wavelet Galerkin method (WGM) to determine the scaling coefficients of y(t). This

WGM will prove to be unstable for any wavelet order p. In section 3.2, we present

a modified stable version of the WGM, which we call MWGMp. In section 3.3, we

describe three ways of approximating the scaling coefficients of the right hand side

function f , giving rise to three different nonlinear implicit multistep schemes for the

scaling coefficients of the solution y(t).

3.1 The Wavelet Galerkin Method (WGM)

In section the general wavelet Galerkin method is described to solve the general

first-order initial-value problem (3.1).

As mentioned before, we use Daubechies’ orthonormal scaling functions φm,k(t)

as the basis functions. Let Vm be the mth level approximation space and φm,k(t) be its

orthonormal bases defined by

φm,k = 2m/2
φ(2mt− k), k ∈ Z, (3.2)

where φ(t) is the Daubechies’ mother scaling function supported in the interval [0,N−

1], where N = 2p and p is the number of vanishing moments of the corresponding
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wavelet ψ(t).

We approximate the solution of (3.1) by its orthogonal projection onto the ap-

proximation space Vm:

y(t)≈ (Pmy)(t) = ∑
k∈Z

c̃kφm,k(t) (3.3)

and determine the expansion coefficients c̃k, using Galerkin approach. Since we are

solving (3.1) for t0 ≤ t ≤ t f and φm,k(t) are compactly supported, we will need a finite

number of coefficients c̃k in (3.3). Precisely, we only need the coefficients c̃k where

the support of φm,k intersects (non-trivially) the interval [t0, t f ]. Since φ is supported in

[0,N−1], the support of φm,k(t) is [ k
2m ,

k+N−1
2m ]. Thus, the range of k is

2mt0−N +1 < k and k < 2mt f ,

or

b2mt0c−N +2≤ k ≤ d2mt f e−1.

To simplify notations, we can assume, without loss of generality, that 2mt0 =

k0, an interger. Then in (3.3) the summation is over k0−N + 2 ≤ k ≤ k1− 1, where

k1 = d2mt f e. The approximation (3.3) becomes

y(t)≈
k1−1

∑
k=k0−N+2

c̃kφm,k =
k1−1

∑
k=k0−N+2

2m/2c̃kφ(2mt− k). (3.4)

Substituting (3.4) into (3.1), we get

k1−1

∑
k=k0−N+2

2m/2c̃k2m
φ
′(2mt− k) = f (t,y(t))+R(t), (3.5)

where R(t) is the residual. The expansion coefficients c̃k are determined by requiring

the residual R(t) to be orthogonal to all regular scaling functions φm, j, j = k0, . . . ,k1−
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1. We refer to φm, j(t) as regular if it is supported to the right of t0. Thus, we have

〈R(t),φm, j(t)〉= 0, j = k0, . . . ,k1−1, (3.6)

where the inner product 〈·, ·〉 is defined as follows. For any two functions f and g,

〈 f ,g〉=
∫ +∞

−∞

f (t)g(t)dt. (3.7)

We make further simplification by scaling the time variable t and letting τ =

2mt. Denote Y (τ) = y(t), F(τ,Y (τ)) = f (t,y(t)), ck = 2m/2c̃k, and E (τ) =R(t). Then

equation (3.4) becomes

Y (τ) =
k1−1

∑
k=k0−N+2

ckφ(τ− k) (3.8)

and (3.5) becomes

2m
k1−1

∑
k=k0−N+2

ck φ
′(τ− k) = F(τ,Y (τ))+E (τ). (3.9)

As mentioned above, to find the coefficients c̃k,k0−N + 2 ≤ k ≤ k1− 1, we

require the error R(t) in (3.5) to be orthogonal to all regular scaling functions φm, j, j =

k0, . . . ,k1− 1. This equivalent to finding ck = 2mc̃k by requiring E (τ) in (3.9) to be

orthogonal to all φ(τ− j), k0 ≤ j ≤ k1−1, i.e.,

〈E (τ),φ(τ− j)〉= 0, k0 ≤ j ≤ k1−1. (3.10)

Substituting E (τ) from (3.9) into (3.10), we obtain, for j = k0, . . . ,k1−1,

k1−1

∑
k=k0−N+2

ck〈φ ′(τ− k),φ(τ− j)〉= 2−m〈F(τ,Y (τ)),φ(τ− j)〉. (3.11)
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The inner products 〈φ ′(τ− k),φ(τ− j)〉 are given by

〈φ ′(τ− k),φ(τ− j)〉 =
∫

∞

−∞

φ
′(τ− k)φ(τ− j)dτ

=
∫

∞

−∞

φ
′(τ)φ(τ− ( j− k))dτ

= 〈φ ′(τ),φ(τ− ( j− k)〉 ≡Ω j−k,

where Ωk = 〈φ ′(x),φ(x−k)〉 are known as the wavelet connection coefficients. Since φ

is supported in [0,N−1], it is easy to see that Ωk = 0 for |k|> N−2. It is also known

that Ω−k = −Ωk, hence Ω0 = 0. Before, we proceed further, we give the following

proposition cencerning the calculation of Ωk whose proof can be found in [29].

Proposition 3.1.1. The coefficients Ωk satisfy the following system of linear equations:

Ωk = 2Ω2k +
N/2

∑
i=1

a2i−1(Ω2k−2i+1 +Ω2k+2i−1) (3.12)

with

∑
k

kΩk =−1, (3.13)

where the coefficients an (known as the autocorrelation of the filter coefficients hk) are

given by

an = 2
N−1−n

∑
i=0

hihi+n, n = 1,2, . . . ,N−1. (3.14)

To use (3.12) and (3.13) to calculate the Ωk, we consider (3.12) only for 1 ≤

k ≤ N− 2, noting that Ω−k = −Ω−k for |k| > N− 2 and Ω0 = 0, and rewrite it as an

eigenvalue problem

B~Ω = ~Ω, ~Ω = (Ω1 Ω2 · · · ΩN−2)
T , (3.15)

where the matrix B is (N− 2)× (N− 2) and its entries are obtained by writing down

(3.12) for every 1≤ k ≤ N−2, and collecting the coefficients of Ωk. It follows that ~Ω
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is the normalized eigenvector of B corresponding to the eigenvalue λ = 1.

Now back to (3.11). Let cF
j = 〈F(τ,Y (τ)),φ(τ− j)〉, j = k0, . . . ,k1−1, be the

scaling coefficients of F(τ,Y (τ)). Then equation (3.11) can be written as the following

rectangular system of (k1− k0) equations in the (k1− k0 +N−2) unknowns ck:

k1−1

∑
k=k0−N+2

Ω j−k ck = 2−mcF
j , j = k0, . . . ,k1−1, (3.16)

or in matrix form

A~c =~cF , (3.17)

where~c = (ck0−N+2 ck0−N+3 · · · ck1−1)
T ,~cF = (cF

k0
cF

k0+1 · · · cF
k1−1)

T , and A the rect-

angular matrix of size (k1−k0)× (k1−k0 +N−2) with entries A j,k = Ω j−k. It can be

seen that few problems arise if (3.16) (or (3.17)) is to be used to determine the coef-

ficients ck. First, the matrix A is not square. More important is that ~cF is not known

because they involve the unknown solution Y (τ) and hence c j. Therefore, as is, (3.16)

cannot be used. Nevertheless, it will be our starting point to construct schemes which

can be used.

Since Ω j−k = 0 for | j− k| > N − 2, the sum in (3.16) runs over k such that

| j− k| ≤ N−2 or j−N +2≤ k ≤ j+N−2. Equation (3.16) then becomes

j+N−2

∑
k= j−N+2

Ω j−k ck = 2−mcF
j , j = k0, . . . ,k1−1, (3.18)

which can be regarded as a multistep method to solve for the coefficients c j+N−2 for

k0 ≤ j ≤ k1−1, via

c j+N−2 =−
j+N−3

∑
k= j−N+2

Ω j−k

Ω−N+2
ck +

2−m

Ω−N+2
cF

j , (3.19)

provided that the initial (2N−4) coefficients, c j, for k0−N +2≤ j ≤ k0 +N−3, and

cF
j for j = k0, . . .k1− 1, are known. We will see in later sections how to approximate

these coefficients. We refer to scheme (3.19) as the wavelet Galerkin method (WGM).
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Before we leave this section, we would like to mention that, eventhough (3.19)

can be used, it is is unstable. This can be seen by considering its characteristic poly-

nomial

P(λ ) =
2N−4

∑
i=0

ΩN−2−iλ
i, (3.20)

which turns out that, for all Daubechies’ wavelets with N ≥ 3, it has roots outside the

unit circle.

To overcome the instability drawback of the presented wavelet Galerkin method

(3.19), we will see in the next section how it can be modified to obtain a stable scheme.

This new scheme will be called the modified wavelet Galerkin method of order p

(MWGMp), where p is the order of the Daubechies’ wavelet used.

3.2 The Modified Wavelet Galerkin Method of Order p (MWGMp)

In this section, we will modify the wavelet Galerkin method presented in the

previous section to obtain a stable implicit multistep scheme.

Our starting point is (3.18), namely,

j+N−2

∑
k= j−N+2

Ω j−k ck = 2−mcF
j , j = k0, . . . ,k1−1. (3.21)

Suppose that we want to solve for a particular c j for some k0 ≤ j ≤ k1− 1. This

requires the knowledge of c j−N+2, . . . ,c j−1 and c j+1, . . . ,c j+N−2, in addition to cF
j .

For now suppose that we know cF
j . The idea here is to approximate c j+1, . . . ,c j+N−2

in terms of previous c j−k for some range of k ≥ 0. This will transform (3.21) into a

multistep method for c j in terms of c j−k. Since j starts from k0, in order to use (3.21),

we need to have available ck0−k for k = 1, . . . ,N− 2, as initial values. The derivation

of the MWGMp proceeds as follows.

1. Approminate c j+1, . . . ,c j+N−2 by polynomial extrapolation in terms of c j−k for

k = 0, . . . , p−1, where p is the order of the wavelet used.



32

2. Approximate ck0−N+2, . . . ,ck0−1 needed to start (3.21).

The above two approximation steps rely on the nice property of Daubechies’ wavelet of

order p that any polynomial of degree p−1 is exactly generated by integral translates

of φ .

3.2.1 Approximation of c j+1, . . . ,c j+N−2.

In this subsection, we show how to approximate c j+1, . . . ,c j+N−2 by expressing

them in terms of c j−k, k = 0, . . . , p−1.

Approximate the solution

Y (τ) =
k1−1

∑
k=k0−N+2

ck φ(τ− k)

by a polynomial expansion of degree p−1, PY (τ) , around τ = j+1:

Y (τ)≈ PY (τ) =
p−1

∑
l=0

λl(τ− j−1)l, (3.22)

with coefficients λl , l = 0,1, . . . , p−1, to be determined.

Since any polynomial of degree less than or equal to p−1 is exactly generated

by integral translates of φ(τ), we can write

PY (τ) = ∑
k

cPY
k φ(τ− k), (3.23)

where cPY
k are the scaling coefficients of PY (τ) and are given by

cPY
k = 〈PY (τ),φ(τ− k)〉 =

p−1

∑
l=0

λl〈(τ− j−1)l,φ(τ− k)〉

=
p−1

∑
l=0

λl〈τ l,φ(τ− (k− j−1))〉

=
p−1

∑
l=0

λlµ
l
k− j−1, (3.24)
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where µ l
k− j−1 is the lth moment of the scaling function φ(τ − (k− j− 1)), discussed

in Chapter 2, which can be computed exactly using equations (2.50) and (2.53).

Now, we use (3.24) to find the polynomial coefficients λl, l = 0,1, . . . , p− 1,

by requiring that cPY
k = ck for j− p+1≤ k ≤ j . This gives the following system



c j−p+1

c j−p+2

...

c j−1

c j


︸ ︷︷ ︸

C1

=



µ0
−p µ1

−p · · · µ
p−1
−p

µ0
−p+1 µ1

−p+1 · · · µ
p−1
−p+1

...
... . . . ...

µ0
0 µ1

0 · · · µ
p−1
0

µ0
−1 µ1

−1 · · · µ
p−1
−1


︸ ︷︷ ︸

M1



λ0

λ1

· · ·

λp−2

λp−1


︸ ︷︷ ︸

Λ

(3.25)

from which we solve for Λ to obtain

Λ = M−1
1 C1. (3.26)

Then using the solution for Λ in (3.26), we approximate c j+1, . . . ,c j+N−2 by cPY
j+1, . . .,

cPY
j+N−2. From (3.24), we obtain



c j+1

c j+2

...

c j+N−3

c j+N−2


︸ ︷︷ ︸

C2

≈



cPY
j+1

cPY
j+2
...

cPY
j+N−3

cPY
j+N−2


=



µ0
0 µ1

0 · · · µ
p−1
0

µ0
1 µ1

1 · · · µ
p−1
1

...
... . . . ...

µ0
N−4 µ1

N−4 · · · µ
p−1
N−4

µ0
N−3 µ1

N−3 · · · µ
p−1
N−3


︸ ︷︷ ︸

M2



λ0

λ1

...

λp−2

λp−1


︸ ︷︷ ︸

Λ

,

or in matrix form,

C2 = M2M−1
1 C1. (3.27)
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Therefore, we have the following approximation to c j+k for k = 1, . . . ,N−2:

c j+k = (M2M−1
1 C1)k =

p

∑
i=1

(M2M−1
1 )k,ic j−p+i,

where (M2M−1
1 )k,i is the (k, i) entry of M2M−1

1 . This completes the first step. In the

next subsection, we show how to approximate ck0−N+2, . . . ,ck0−1.

3.2.2 Initialization Procedure

In this subsection we will present an initialization procedure to approximate the

coefficients ck0−N+2, . . . ,ck0−1, needed to start (3.21).

Approximate the solution Y (τ) by a polynomial, QY (τ), of degree (p− 1)

around j = k0,

Y (τ) =
k1−1

∑
k=k0−N+2

ckφ(τ− k)≈ QY (τ) =
p−1

∑
l=0

λl(τ− k0)
l. (3.28)

Since QY (τ) ∈ span({φ(τ − k), k ∈ Z}) (a polynomial of degree p− 1), the scaling

coefficients of QY (τ), cQY
k = 〈QY (τ),φ(τ− k)〉, are given by

cQY
k =

p−1

∑
l=0

λlµ
l
k−k0

. (3.29)

We approximate ck by cQY
k for k = k0−N +2, . . . ,k0−1. From (3.29), we obtain



ck0−N+2

ck0−N+3

...

ck0−2

ck0−1


︸ ︷︷ ︸

~C0

=



µ0
−N+2 µ1

−N+2 · · · µ
p−1
−N+2

µ0
−N+3 µ1

−N+3 · · · µ
p−1
−N+3

...
... . . . ...

µ0
−2 µ1

−2 · · · µ
p−1
−2

µ0
−1 µ1

−1 · · · µ
p−1
−1


︸ ︷︷ ︸

M3



λ0

λ1

· · ·

λp−2

λp−1


︸ ︷︷ ︸

Λ

. (3.30)

The coefficients λl, l = 0,1, . . . , p−1, are found as follows. Let t0, t1, . . . , tp−1, be in-

stances of time, and suppose that we have the solution at theses instances yi = y(ti), i=

0,1, . . . , p− 1. Note that y(t0) = y0 is given. We let y(ti) = QY (τi), τi = 2mti. From
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(3.28), we obtain



y0

y1

...

yp−2

yp−1


︸ ︷︷ ︸

~Y0

=



1 0 · · · 0

1 (2mt1− k0) · · · (2mt1− k0)
p−1

...
... . . . ...

1 (2mtp−2− k0) · · · (2mtp−2− k0)
p−1

1 (2mtp−1− k0) · · · (2mtp−1− k0)
p−1


︸ ︷︷ ︸

M4



λ0

λ1

· · ·

λp−2

λp−1


︸ ︷︷ ︸

Λ

.(3.31)

If we let ti = t0 + ih, where h = 2−m is the time step size, then 2mti− k0 = i, and the

matrix M4 reduces to

M4 =



1 0 0 · · · 0

1 1 1 · · · 1

1 2 22 · · · 2p−1

...
...

... . . . ...

1 (p−2) (p−2)2 · · · (p−2)p−1

1 (p−1) (p−1)2 · · · (p−1)p−1


. (3.32)

From Eq. (3.31), we solve for Λ,

Λ = M−1
4
~Y0. (3.33)

Then from (3.30), ck0−N+2, . . . ,ck0−1 are given by

~C0 = M3M−1
4
~Y0. (3.34)

We note that yi = y(ti), i = 1, . . . , p−1, can be obtained by integrating (3.1) using any

other one step method such as RK4. This completes the second step in approximating

ck0−k for k = 1, . . . ,N−2, needed to start the algorithm (3.21).
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3.2.3 The MWGMp

In this Subsection, we combine the results of Sections 3.2.1 and 3.2.2 to write

down the modified wavelet Galerkin method of order p (MWGMp).

Recall that our starting point is equation (3.21),

j+N−2

∑
k= j−N+2

Ω j−k ck = 2−mcF
j , j = k0, . . . ,k1−1. (3.35)

First we rewrite it as

N−2

∑
k=1

Ωk c j−k +Ω0c j +
N−2

∑
k=1

Ω−kc j+k = 2−mcF
j , j = k0, . . . ,k1−1. (3.36)

Substituting for c j+k from (3.28), we obtain, for j = k0, . . . ,k1−1,

N−2

∑
k=1

Ωk c j−k +Ω0c j +
N−2

∑
k=1

Ω−k

(
p

∑
i=1

(M2M−1
1 )k,ic j−p+i

)
= 2−mcF

j

=⇒
N−2

∑
k=1

Ωk c j−k +Ω0c j +
p

∑
i=1

[
N−2

∑
s=1

Ω−s(M2M−1
1 )s,i

]
c j−(p−i) = 2−mcF

j

=⇒
N−2

∑
k=1

Ωk c j−k +Ω0c j +
p−1

∑
k=0

[
N−2

∑
s=1

Ω−s(M2M−1
1 )s,p−k

]
c j−k = 2−mcF

j . (3.37)

Define Θ = (Θ0 Θ1 · · · Θp−1) = (Ω−1 Ω−2 · · · Ω−(N−2))M2M−1
1 . Then (3.37) be-

comes

N−2

∑
k=1

Ωk c j−k +Ω0c j +
p−1

∑
k=0

Θp−k−1c j−k = 2−mcF
j . (3.38)

If we further define

ρi =

 Ωi +Θp−i−1, i = 0,1, . . . , p−1,

Ωi, i = p, . . . ,N−2,
(3.39)

we can rewrite (3.38) as

N−2

∑
k=0

ρkc j−k = 2−mcF
j , j = k0, . . . ,k1−1. (3.40)
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The algorithm in (3.40) is a (N−2)-multistep method that can be used to calculate the

coefficients c j for j = k0, . . . ,k1−1, with initial starting values ck0−k, k = 1, . . . ,N−2,

given by (3.34) as explained in subsection 3.2.2. Algorithm (3.40) is referred to as

the modified wavelet Galerkin method of order p (MWGMp), where p refers to the

order of the wavelet used. Before we leave this section, we should mention that (3.40)

assumes knowing cF
j , which are not available. The next section deals with three ways

to approximate the scaling coefficients, cF
j , of the right hand side function f (t,y(t)) =

F(τ,Y (τ)), thereby completing the MWGMp.

3.3 The MWGMp-PY, the MWGMp-PF, and the MWGMp-MP

In this section, we present three different approaches to approximate cF
j in terms

of c j−k. The first approach uses a polynomial expansion of Y (τ) and the resulting

complete MWGMp will be referred to as the MWGMp-PY. The second approach uses

polynomial expansion of F(τ,Y (τ)), and the resulting complete MWGMp will be re-

ferred to as the MWGMp-PF. The third approach uses the multi-point quadrature dis-

cussed in Subsection 2.5.3 (see equations (2.58) and (2.65)), and the resulting complete

MWGMp will be referred to as the MWGMp-MP. The first and the second approaches

start with a simple trapezoidal approximation of the integral defining cF
j . All three

approaches produce implicit multistep methods for the coefficients c j.

Recall that cF
j is defined by

cF
j = 〈F(τ,Y (τ)),φ(τ− j)〉=

∫
∞

−∞

F(τ,Y (τ))φ(τ− j)dτ. (3.41)

Since φ(τ− j) is supported in [ j, j+N−1], we have

cF
j =

∫ j+N−1

j
F(τ,Y (τ))φ(τ− j)dτ. (3.42)
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Approximate the integral in (3.42) by a simple trapezoidal rule to get

cF
j ≈

j+N−1

∑
k= j

F(k,Y (k))φ(k− j) =
j+N−2

∑
k= j+1

F(k,Y (k))φ(k− j)

=
N−2

∑
k=1

F( j+ k,Y ( j+ k))φ(k), (3.43)

where we have used the fact that φ(0) = φ(N−1) = 0.

Based on (3.43), we see that we need F( j+ k,Y ( j+ k)), for k = 1, . . . ,N−2,

in which Y ( j+ k) are the unknown terms. We will approach the problem in two ways:

(i) Approximate Y ( j+ k) in terms of c j−l . This is done in Subsection 3.3.1.

(ii) Approximate F( j + k,Y ( j + k)), all together, in terms of c j−l . This is done in

Subsection 3.3.2.

3.3.1 The MWGMp-PY

In this subsection, we approximate Y ( j+k), k = 1, . . . ,N−2, using a polynomial

approximation of Y (τ) of degree p−1 around τ = j+1. Approximate Y (τ) by

Y (τ)≈ P(τ) =
p−1

∑
l=0

λl(τ− ( j+1))l, (3.44)

where the polynomial cofficients, λl , are to be determined. Using (3.44), we approxi-

mate Y ( j+k)≈P( j+k)=
p−1
∑

l=0
λl(k−1)l , for k = 1, . . . ,N−2. This gives the following

system of equations:

Y ( j+1)

Y ( j+2)

Y ( j+3)
...

Y ( j+N−3)

Y ( j+N−2)


≈



1 0 · · · 0

1 1 · · · 1

1 21 · · · 2p−1

...
... . . . ...

1 (N−4)1 · · · (N−4)p−1

1 (N−3)1 · · · (N−3)p−1


︸ ︷︷ ︸

V



λ0

λ1

λ2

...

λp−2

λp−1


︸ ︷︷ ︸

Λ

. (3.45)
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The coefficients λl are determined by imposing that the scaling coefficients,

ck, of Y (τ) to be equal to the scaling coefficients, cP
k , of P(τ), namely, ck = cP

k , k =

j− (p−1), . . . , j. The scaling coefficients, cP
k , of P(τ) are given by

cP
k = 〈P(τ),φ(τ− k)〉=

p−1

∑
l=0

λlµ
l
k− j−1.

We then have



c j−p+1

c j−p+2

...

c j−1

c j


︸ ︷︷ ︸

CY
1

=



µ0
−p µ1

−p · · · µ
p−1
−p

µ0
−p+1 µ1

−p+1 · · · µ
p−1
−p+1

...
... . . . ...

µ0
0 µ1

0 · · · µ
p−1
0

µ0
−1 µ1

−1 · · · µ
p−1
−1


︸ ︷︷ ︸

M1



λ0

λ1

· · ·

λp−2

λp−1


︸ ︷︷ ︸

Λ

, (3.46)

from which we can solve for Λ:

Λ = M−1
1 CY

1 . (3.47)

Substituting Λ from (3.47) into (3.45), we obtain the approximation

Y ( j+1)

Y ( j+2)
...

Y ( j+N−3)

Y ( j+N−2)


≈V M−1

1 CY
1 .

Let X =V M−1
1 . Then

Y ( j+ k) =
p−1

∑
i=0

Xk,p−ic j−i. (3.48)
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Finally, we obtain the approximation for cF
j as:

cF
j ≈

N−2

∑
k=1

φ(k)F
(

j+ k,
p−1

∑
i=0

Xk,p−ic j−i

)
. (3.49)

Therefore, the MWGMp in (3.40) becomes

ρ0c j +
N−2

∑
k=1

ρkc j−k = 2−m
N−2

∑
k=1

φ(k)F
(

j+ k,
p−1

∑
i=0

Xk,p−ic j−i

)
. (3.50)

Let σPY
k = φ(k), k = 1, . . . ,N−2. Then equation (3.50) is rewritten as

ρ0c j +
N−2

∑
i=1

ρic j−i = 2−m
N−2

∑
k=1

σ
PY
k F

(
j+ k,

p

∑
i=0

Xk,p−ic j−i

)
. (3.51)

Equation (3.51) is referred to as the MWGMp-PY, the modified wavelet Galerkin

method of order p and the “PY" stands for the fact that we used polynomial approxi-

mation of Y (τ). We note that scheme (3.51) is an implicit (N− 2)-multistep scheme.

The next subsection presents a different way of approximating cF
j , thereby leading to

a different implicit multistep scheme.

3.3.2 The MWGMp-PF

In this subsection, we use a different approach to approximate cF
j by approx-

imating all together F( j + k,Y ( j + k)), k = 1, . . . ,N − 2, in (3.43). We do this by

approximating F(τ,Y (τ)) by a polynomial of degree p−2 around τ = j:

F(τ,Y (τ))≈ PF(τ) =
p−2

∑
l=0

λl(τ− j)l. (3.52)

We use (3.52) to approximate F( j+ k,Y ( j+ k))≡ F j
k , for k = 1, . . . ,N−2, by

F j
k ≈ PF( j+ k) =

p−2

∑
l=0

λl kl, (3.53)
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or in matrix form

F j
1

F j
2
...

F j
N−2


︸ ︷︷ ︸

F2

=



1 1 · · · 1

1 2 · · · 2p−2

...
... . . . ...

1 N−2 · · · (N−2)p−2


︸ ︷︷ ︸

V2



λ0

λ1

...

λp−2


︸ ︷︷ ︸

Λ

(3.54)

As before, the coefficients λl are determined by requiring that F(τi,Y (τi)) = PF(τi) at

τi = j− p+3, . . . , j+1. From (3.53), we get

F j
−p+3

F j
−p+4

...

F j
1


︸ ︷︷ ︸

F1

=



1 (−p+3) · · · (−p+3)p−2

1 (−p+4) · · · (−p+4)p−2

.
...

... . . . ...

1 1 · · · 1


︸ ︷︷ ︸

V1



λ0

λ1

· · ·

λp−2


︸ ︷︷ ︸

Λ

, (3.55)

from which we solve for Λ:

Λ =V−1
1 F1. (3.56)

Substituting Λ from (3.56) into (3.54), we obtain the approximation for F j
k = F( j +

k,Y ( j+ k)), k = 1, . . . ,N−2,

F2 =V2V−1
1 F1. (3.57)

Define the (N−2)× (p−1) matrix Y =V2V−1
1 . Then we have

F( j+ k,Y ( j+ k)) ≈
p−1

∑
i=1

Yk,iF( j+ i− p+2,Y ( j+ i− p+2))

=
p−2

∑
i=0

Yk,p−i−1F( j+1− i,Y ( j+1− i)),
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where

Y ( j+1− i) =
k1−1

∑
k=k0−N+2

ckφ( j+1− i− k)

=
j−i

∑
k= j−i−(N−3)

ckφ( j+1− i− k) (k̃ = j+1− i− k)

=
N−2

∑
k̃=1

c( j−i)+1−k̃φ(k̃).

The approximation to cF
j is then

cF
j ≈

N−2

∑
k=1

p−2

∑
i=0

φ(k)Yk,p−i−1F
(

j+1− i,
N−2

∑
k̃=1

c( j−i)+1−k̃φ(k̃)
)

(3.58)

=
p−2

∑
i=0

(N−2

∑
k=1

φ(k)Yk,p−i−1

)
︸ ︷︷ ︸

σPF
i

F
(

j+1− i,
N−2

∑
k̃=1

c( j−i)+1−k̃φ(k̃)
)

(3.59)

=
p−2

∑
i=0

σ
PF
i F

(
j+1− i,

N−2

∑
k̃=1

c( j−i)+1−k̃φ(k̃)
)

(3.60)

Therefore, the MWGMp in (3.40), for j = k0, . . . ,k1−1, becomes

ρ0c j +
N−2

∑
i=1

ρic j−i = 2−m
p−2

∑
i=0

σ
PF
i F

(
j+1− i,

N−2

∑
k=1

c( j−i)+1−kφ(k)
)
. (3.61)

Scheme (3.61) is referred to as the MWGMp-PF, in reference to the fact that we have

used polynomial approximation of the right hand side function F(τ,Y (τ)) in approxi-

mating cF
j .

3.3.3 The MWGMp-MP

In this section, we present another approximation to cF
j by considering a multi-

point approximation formula that is exact for polynomials of degree less than or equal

to p−2.

We have

cF
j =

∫
∞

−∞

F(τ,Y (τ))φ(τ− j)dτ.
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Approximate cF
j by the following multi-point quadrature

cF
j ≈

p−2

∑
l=0

wlF( j+1− l,Y ( j+1− l)), (3.62)

with weights wl to be determined such that the approximation is exact when F(τ,Y (τ))

is monomial of degree ≤ p−2, i.e.,

p−2

∑
l=0

wl( j+1− l)r =
∫

∞

−∞

τ
r
φ(τ− j)dτ, 0≤ r ≤ p−2. (3.63)

Manipulating Equation (3.63), we obtain

r

∑
i=0

jr−i︸︷︷︸
Ar,i

p−2

∑
l=0

wl(1− l)i

︸ ︷︷ ︸
Wi

=
r

∑
i=0

jr−i︸︷︷︸
Ar,i

∫
∞

−∞

τ
i
φ(τ)dτ︸ ︷︷ ︸
µ i

0

, 0≤ r ≤ p−2, (3.64)

which can be written in the following matrix-vector equation

AW = A M , (3.65)

where A is a lower triangular matrix of size (p−1)× (p−1) whose entries are Ar,i =

jr−i, 0≤ r, i≤ p−2, W is a (p−1)-column vector whose entries are Wi =
p−2
∑

l=0
wl(1−

l)i, i = 0, . . . , p−2, and M is a (p−1)-column vector whose entries are Mi = µ i
0, i =

0, . . . , p− 2. Since the matrix A is non-singular, with determinant |A | =
p−2
∏
i=0

Ai,i =

1, we conclude that Wi = Mi, 0 ≤ i ≤ p− 2. Therefore, the weights wl satisfy the

following system

p−2

∑
l=0

wl(1− l)i = µ
i
0, i = 0, . . . , p−2. (3.66)

from which we can solve for the required weights wl to be used in the approximation

(3.62).

From (3.62), we need to know Y ( j+1− l), l = 0, . . . , p−2. We have

Y ( j+1− l) =
k1−1

∑
k=k0−N+2

ckφ( j+1− l− k).
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Using the fact that φ(l) = 0 for l 6∈ {1,2, . . . ,N−2} and using the index shifting k→

j− l +1− k, we have

Y ( j− l +1) =
N−2

∑
k=1

c j−l+1−kφ(k).

It follows that

cF
j ≈

p−2

∑
l=0

wlF
(

j+1− l,
N−2

∑
k=1

c j+1−l−kφ(k)
)
. (3.67)

Finally, with this multi-point approximation of cF
j , the MWGMp in (3.40), for j =

k0, . . . ,k1−1, becomes

ρ0c j +
N−2

∑
i=1

ρic j−i = 2−m
p−2

∑
i=0

σ
MP
i F

(
j+1− i,

N−2

∑
k=1

c( j−i)+1−kφ(k)
)
, (3.68)

which we refer to as the MWGMp-MP, where σMP
i = wi and wi are the solution of

(3.66).

3.4 Summary of the Different MWGMp

In the previous section, three different wavelet-based multistep schemes were

derived. In this section, we summarize the formulae of each scheme. Each of the three

methods gives implicit multi-step scheme for the calculation of the scaling coefficients

c̃k = 2−m/2ck, k = k0−N +2, . . . ,k1−1, of the approximate solution

y(t)≈
k1−1

∑
k=k0−N+2

c̃kφm,k(t)

of the IV.P.

y′(t) = f (t,y), t0 < t < t f ,

y(t0) = y0,

where N = 2p, p is the order of Daubechie wavelet used, and k0 = 2mt0 and k1 = dt f e.
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1. The MWGMp-PY:

ρ0c j +
N−2

∑
k=1

ρkc j−k = h
N−2

∑
k=1

σ
PY
k F

(
j+ k,

p−1

∑
i=0

Xk,p−ic j−i

)
, (3.69)

where h = 2−m, σPY
k = φ(k), and X = V M−1

1 , V and M1 are given as in equa-

tions (3.45) and (3.46), respectively.

2. The MWGMp-PF:

ρ0c j +
N−2

∑
i=1

ρic j−i = h
p−2

∑
i=0

σ
PF
i F

(
j+1− i,

N−2

∑
k=1

c( j−i)+1−kφ(k)
)
, (3.70)

where h = 2−m, σPF
i =

N−2
∑

k=1
φ(k)Yk,p−i−1, Y =V2V−1

1 with V1 and V2 are given

as in equations (3.54) and (3.55), respectively.

3. The MWGMp-MP:

ρ0c j +
N−2

∑
i=1

ρic j−i = h
p−2

∑
i=0

σ
MP
i F

(
j+1− i,

N−2

∑
k=1

c( j−i)+1−kφ(k)
)
, (3.71)

where h = 2−m, σMP
i = wi, wi are the solution of (3.66).

In all above three schemes ρi are given by (3.39).

Remark. 1. Before closing this section, we have three important remarks to mention.

1. We note that the MWGMp-PF and the MWGMp-MP are identical. It turned

out that for all wavelet orders p considered, we found that σPF
i = σMP

i , for all

0≤ i≤ p−2. So we will consider only one of them, the MWGMp-PF.

2. For the MWGMp-PF, equation (3.70), one needs c j−i for i = 1, . . . ,3p− 5. In

order to be able use (3.70) for j≥ k0, it is required that j−(3p−5)≥ k0−N+2

or j− k0 ≥ p− 3. Thus, p must be p ≤ 3. Therefore, if p ≥ 4, we can’t use

(3.70) for j = k0, . . . ,k0 + p− 4. In this case (p ≥ 4), we first use (p− 3) steps

of the MWGMp-PY for j = k0, . . . ,k0 + p−4, and continue with (3.70) for j ≥
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k0 + p−3.

3. All three schemes are implicit. If the function F is nonlinear, we would have a

nonlinear equation for c j. So, to solve for c j, one would need to use a nonlinear

solver or use a predictor-corrector approach. We opt for the latter. The prediction

formula for c j is obtained by the same way as in subsection 3.2.1 to get

c j = (µ0
0 µ

1
0 . . . µ

p−1
0 )



µ0
−p µ1

−p · · · µ
p−1
−p

µ0
−p+1 µ1

−p+1 · · · µ
p−1
−p+1

...
... . . . ...

µ0
0 µ1

0 · · · µ
p−1
0

µ0
−1 µ1

−1 · · · µ
p−1
−1



−1

︸ ︷︷ ︸
M−1

1



c j−p

c j−p+1

...

c j−1


.

(3.72)
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Chapter 4: Order of Convergence and Stability

In this Chapter, we investigate the order of convergence and stability of the three

modified wavelet schemes derived in the previous chapter. First, a brief review of some

definitions and theorems concerning order of convergence and stability analysis of

multistep methods is given in section 4.1. Then in sections 4.2 and 4.3, we investigate

the order of convergence and stability of the different MWGMp derived in the previous

Chapter.

4.1 Multistep Methods, Order of Convergence and Stability Analysis

Definition 4.1.1. A general m-step multistep method for numerically solving initial

value problems

y′ = f (t,y), t0 < t < t f , y(t0) = y0, (4.1)

can be written in the general form

w j +
m

∑
k=1

akw j−k = hF(t j,w j,w j−1, . . . ,w j−m), j ≥ m, (4.2)

where w j ≈ y(t j), t j = t0 + jh, h =
t f−t0

n , and ak, 0 ≤ k ≤ m− 1, are constants that

define the multistep method.

The initial conditions w0, w1, . . . ,wm−1 of (4.2) are usually obtained using one-

step explicit methods, such as Runge Kutta method, except w0 = y0. The most widely

used multistep step methods are the linear ones defined below.

Definition 4.1.2. A linear m-step multistep method has the form

w j +
m

∑
k=1

akw j−k = h
m

∑
k=0

bk f (t j−k,w j−k), j ≥ m. (4.3)
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Note that if b0 = 0 then the method is explicit and if b0 6= 0 the method is implicit.

The following are some examples of widely used linear multistep methods:

• The trapezoid rule, a one-step implicit method (m = 1):

w j = w j−1 +
h
2
[

f (t j−1,w j−1)+ f (t j,w j)
]
, j ≥ 1.

• The 4−step explicit Adam-Bashforth method: (m = 4):

w j = w j−1 +
h
2

[
55 f (t j−1,w j−1)−59 f (t j−2,w j−2)

+37 f (t j−3,w j−3)−9 f (t j−4,w j−4)

]
, j ≥ 4.

• The 3−step implicit Adam-Multoun method (m = 3):

w j = w j−1 +
h

24

[
9 f (t j,w j)+19 f (t j−1,w j−1)

−5 f (t j−2,w j−2)+ f (t j−3,w j−3)

]
, j ≥ 3.

• The general m-step explicit Adam-Bashforth method has the formula

w j = w j−1 +h
m−1

∑
k=0

(−1)k
∇

k f (t j−1,w j−1)
∫ 1

0

(
−s
k

)
ds

• The general m-step implicit Adam-Moulton method has the formula

w j = w j−1 +h
m

∑
k=0

(−1)k
∇

k f (t j,w j)
∫ 1

0

(
s
k

)
ds,

where ∇k f (tn,wn) is defined recursively, by

∇
k f (tn,wn) = ∇(∇k−1 f (tn,wn)), ∇ f (tn,wn)) = f (tn,wn)− f (tn−1,wn−1)
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and (
r
k

)
=

r(r−1)(r−2) · · ·(r− k+1)
k!

.

Definition 4.1.3. The local truncation error, Tj, of an m-step multistep method of the

form (4.2) is defined by

Tj(h) =
y(t j)+

m
∑

k=1
aky(t j−k)

h
−F(t j,y(t j),y(t j−1, . . . ,y(t j−m)). (4.4)

For linear m-step multistep methods (4.3), the truncation error is given by

Tj(h) =
y(t j)+

m
∑

k=1
aky(t j−k)

h
−

m

∑
k=0

bk f (t j−k,y(t j−k)). (4.5)

Definition 4.1.4. A multistep method is order p accurate if Tj(h) = O(hp) as h→ 0.

We say that the order of convergence is O(hp).

Now we turn to talk about stability of multistep methods. We will consider the

zero-stability, absolute stability and A-stability, defined below.

Definition 4.1.5. The characteristic polynomial of an m-step multistep method of the

form (4.2) is the polynomial (of degree m)

P(λ ) = λ
m−

m

∑
k=1

akλ
m−k. (4.6)

Definition 4.1.6. (The root condition) An m-step multistep method is said to satisfy

the root condition if all roots, λi, of its characteristic polynomial (4.6) satisfy |λi| ≤ 1

and all roots with modulus 1 are simple.

The zero stability of an m-step multistep method depends directly on the roots,

λi, of its characteristic polynomial P(λ ) in (4.6). We have the following stability

theorem.
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Theorem 4.1.1. Am m-step multistep method is zero stable (or stable) if and only if it

satisfies the root condition.

An m-step multistep method is classified as strongly stable, weekly stable or

unstable as defined below.

Definition 4.1.7. An m-step multistep method is said to be

(i) strongly stable if it satisfies the root condition and if there is a root with modulus

1 then that root is λ = 1.

(ii) weekly stable if it satisfies the root condition and have two or more distinct roots

with modulus 1.

(iii) unstable if it does not satisfy the root condition, i.e, there exists at least one λi

with |λi|> 1.

Next, we discuss absolute stability. The absolute stability of an m-step multi-

step method is studied by looking at the stability of the method when applied to the

linear model problem

y′(t) = ay(t), y(t0) = y0, (4.7)

where a ∈C, a constant. An m-step multistep method when applied to (4.7) reduces to

the linear multistep method

m

∑
k=0

(ak−ahbk)w j−k = 0, (4.8)

whose characteristic polynomial is

P(λ ) = A(λ )− zB(λ ) = 0, (4.9)

where A(λ ) =
m
∑

k=0
akλ m−k, B(λ ) =

m
∑

k=0
bkλ m−k and z = ah.

Absolute stability and the so-called region of absolute stability and A-stability
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of a multistep method are defined below.

Definition 4.1.8. A multistep method is called absolutely stable in an open set RA

of the complex plane C if for all z = ah ∈ RA, all roots λk of P(λ ) in (4.9) satisfy

|λk| < 1. The set RA is called the region of absolute stability of the multistep . A

multistep method is called A-stable if RA contains all of the left-half plane.

A method called the Boundary Locus Method [41, 42] is one of the methods

for finding RA. The idea of the method is to determine the set of z in the z-complex

plane, call it C , for which the characteristic equation (4.9) has a least one root with

modulus 1. The z-complex plane is the union of RA, C , and RĀ, where RĀ is the set

in the z-complex plane for which (4.9) has at least one root with modulus greater than

1. If C is a closed curve, then RA will be the interior or the exterior of such a curve.

The C is determined by letting λ = eiθ , 0 ≤ θ ≤ 2π , and solving (4.9) for z.

This gives

z(eiθ ) =
A(eiθ )

B(eiθ )
. (4.10)

The curve C can be seen as the mapping of the unit circle of the λ -complex plane

under (4.10).

In the next two sections, we investigate the order of convergence and the stabil-

ity of the three modified wavelet Galerkin methods developed in the previous chapter.

4.2 Order of Convergence of the MWGMp

According to equation (4.4), the order of convergence of a multistep method

is determined by its local truncation error. However, for the three different MWGMp

developed in the previous chapter, we will not use (4.4) to deduce their order of con-

vergence. Since their derivation was based on using the approximation property of

Daubechies’ scaling function φ(x) of order p, in that all polynomials polynomials of

degree p−1 are exactly generated by linear combination of integral translates of φ(x),
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we used this fact.

Suppose that the exact solution of the initial value problem y′(t) = f (t,y),

y(t0) = y0, is a polynomial of degree less than or equal to p−1. Then the orthogonal

projection (Pmy)(t) = y(t), and hence approximating the exact solution by (Pmy)(t)

does not produce any truncation error. We remark that in the remaining derivations

as described in the previous chapter, we always use approximation by polynomials of

degree p−1, hence there are no truncation errors produced. Therefore, we can deduce

that the local truncation error of all three methods is O(hp), where h = 2−m is the step

size.

4.3 Stability Analysis of the MWGMp

In this section, we investigate the zero stability and the absoilute stability of the

MWGMp-PY and the MWGMp-PF.

The zero stability is determined by the roots of the characteristic polynomial

of the method as h→ 0. Since the methods (MWGMp-PY and MWGMp-PF) have the

same form, that is,

N−2

∑
i=0

ρic j−i = hF(t j,c j,c j−1, . . . ,c j−q), (4.11)

where q = 2(p−1) for MWGMp-PY and q = (3p−5) for MWGMp-PF, they have the

same characteristic polynomial (as h→ 0)

P(λ ) =
N−2

∑
k=0

ρkλ
N−2−k. (4.12)

Numerical experiments, reveal that for all considered Daubechies’ wavelets with order

2 ≤ p ≤ 10, P(λ ) in (4.12) has λ = 1 as a simple root and the rest of the roots are

inside the unit circle. Therefore, all three MWGMp are all strongly stable.

For the absolute stability, as described in the previous section, we need to in-

vestigate the characteristic polynomial of the methods as they are applied to the linear



53

model problem (4.7).

For the MWGMp-PY when applied to the linear problem (4.7), it reduces to

the linear multistep method:

N−2

∑
i=0

ρic j−i = ah
p−1

∑
i=0

(
N−2

∑
k=1

σ
PY
k Xk,p−i

)
c j−i, (4.13)

which can be written in the form

N−2

∑
i=0

(ρi−ahσi)c j−i = 0, (4.14)

where ρi as defined before in (3.39) and σi =
N−2
∑

k=1
(σPY

k Xk,p−i) if 0≤ i≤ p−1, and 0,

otherwise. In fact it can be verified (at least numerically) that σi = 1 if i = 0, and 0,

otherwise.

The characteristic polynomial of (4.14) is

P(λ ) = A(λ )− zB(λ ), z = ah, (4.15)

where A(λ ) =
N−2
∑

i=0
ρiλ

N−2−i and B(λ ) =
N−2
∑

i=0
σiλ

N−2−i.

We applied the Boundary Locus Method as described in the previous section,

we find that the regions of absolute stability of the MWGMp-PY method for p =

2, . . . ,5, are as displayed in Figure ?? (left), where the absolute stability region, RA,

is outside the closed curves. We note that as p increases the absolute stability region

shrinks. A zoom around z = 0 of Fig. ?? (left) is displayed in Fig. ?? (right) which

shows that only for p = 2 and p = 3, the method is A-stable.

The MWGMp-PF, when applied to the linear model equation, reduces to a

linear multistep method of the form

N−2

∑
i=0

ρic j−i = z
N+p−5

∑
i=0

σ̃ic j−i, z = ah, (4.16)

where ρi is as defined before in (3.39). The coefficients σ̃i, after simplification, turn
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out to be given by

σ̃i =
min(i,p−2)

∑
l=max(0,i−N+3)

σ
PF
l φ(i+1− l), (4.17)

where σPF
l =

N−2
∑

k=1
φ(k)Yk,p−l−1, Y =V2V−1

1 with V1 and V2 are given as in equations

(3.54) and (3.55), respectively.

The characteristic polynomial of (4.16) is

P(λ ) =

N+p−5

∑
i=0

(ρ̃i− zσ̃i)λ
N+p−5−i, (4.18)

where ρ̃i = ρi for 0≤ i≤ N−2 and 0 for i > N−2.

The Boundary Locus Method has been applied to find the regions of absolute

stability for p = 2,3, . . . ,7, of the MWGMp-PF. The results are displayed in Figures

4.2- 4.4. For p= 2,3,4, and 5 (Figures 4.2 - 4.3), the absolute stability region is outside

the closed curve. For p = 6 and 7 (Figure 4.4), the absolute stability region is inside

the closed curve and to the left of the imaginary axis. We also notice, that only for

p = 2 and p = 3, the MWGMp-PF, is A-stable.

For comparison purposes, the stability region of he Adams-Mouton q-step

method for q= 2,3,4, and 5, are displayed in Figures 4.5 - 4.6, where it can be seen that

none of these methods is A-stable, in contrast to the MWGMp-PF which is A-stable

for p = 2 and 3. The MWGMp-PF is a 2-step method for p = 2 and a (3p− 5)-step

method for p ≥ 3, with local truncation error (order of convergence) O(hp), whereas

the Adams-Mouton q-step method is O(hq+1). The Adams-Mouton q-step method has

a better convergence rate, however the MWGMp-PF has a better stability property.

Similarly, the MWGMp-PY has a better stability property but lower order of conver-

gence as compared to the Adams-Mouton q-step method.
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Figure 4.1: MWGMp-PY stability regions for p = 2, . . . ,5
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Chapter 5: Numerical Examples

In this Chapter, we apply the wavelet-based multistep methods developed in the

previous chapter to a number of linear and nonlinear test problems.

5.1 Introduction

Let y(t) be the exact solution of the I.V.P.

y′(t) = f (t,y), t ∈ [t0, t f ], (5.1)

y(t0) = y0. (5.2)

The solution y(t) is first approximated by its orthogonal projection onto a wavelet

space Vm with orthogonal basis φm,k(t) = 2m/2φ(2m− k), where φ(t) is Daubechies’

scaling function of order p, supported in [0,N−1] with N = 2p, namely

y(t)≈ ym,p(t) = (Pmy)(t) =
k1−1

∑
k=k0−N+2

2m/2c̃kφ(2mt− k). (5.3)

We note here that if the solution y(t) is a polynomial of degree p− 1 or less then

ym,p(t) ≈ y(t). The wavelet-based multistep methods derived in the previous chapter

approximate the scaling coefficients c̃k by solving for ck (c̃k = 2−m/2ck). So when these

ck are substituted into (5.3), we have the approximate solution

ỹm,p(t) =
k1−1

∑
k=k0−N+2

ckφ(2mt− k). (5.4)

At the discrete points ti = t0 + i/2m = 2−m(k0 + i), i = 0, . . . ,k1− k0, we have

ỹm,p(ti) =
k1−1

∑
k=k0−N+2

ckφ(k0 + i− k) =
N−2

∑
k=1

ck−(k0+i)φ(k). (5.5)

To verify the accuracy of the methods, we use both the global error Eg(t) and
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its L2-norm, ‖Eg(t)‖2. The global error is defined by

Eg(t) = |yexact(t)− ỹm,p(t)| (5.6)

and its L2-norm is defined by

‖Eg‖2
2 =

∫ t f

t0
|yexact(t)− ỹm,p(t)|2dt ≈ 2−m

∑
i

E2
g(ti). (5.7)

where yexact(t) is the exact solution of the problem, if it is available. If the exact

solution is not available, Eg(t) is defined using the residual R(t),

Eg(t) := R(t) = |ỹ′m,p(t)− f (t, ỹm,p(t)|,

and its L2-norm is defined by

‖Eg‖2
2 =

∫ t f

t0
R2(t)dt ≈ 2−m

∑
i

R2
i . (5.8)

The derivative of the approximate solution ỹ′m,p(t) is given by

ỹ′m,p(t) =
k1−1

∑
k=k0−N+2

2mckφ
′(2mt− k).

The values of φ ′(t) at the integers 1,2, . . . ,N − 2, are obtained in a similar way as

described in section 2.4 for φ(t), with the coefficients hk in (2.37) becomes = 2hk and

the normalization condition (2.41) becomes
N−2
∑

l=1
µ1
−lφ

′(l) = 1.

The L2-norm of Eg(t), ‖Eg(t)‖2
2, is used as a measure of the global error over

the interval [t0, t f ]. We will use it to approximate the order of the methods. If the

global error Eg(t) of the method is O(hr), i.e., Eg(t) = Khr, where K is a constant

that depends on t, we can use (5.7) or (5.8) to numerically approximate r as follows.

Suppose Eg(t) = Khr. Then from (5.7), we have

‖Eg‖2
2 = 2−m

∑
i

K2
i h2r = K̃h2r+1, K̃ = ∑

i
K2

i , Ki = K(ti).
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Taking the logarithm, ln, we get

ln(‖Eg‖2
2) = ln(K̃)+(2r+1) ln(h).

Thus, the graph of ln(‖Eg‖2
2) versus ln(h) is a straight line with slope α = (2r+ 1),

from which we can solve for r = α−1
2 .

5.2 Linear Examples

In this section, we present the results obtained on different test IVPs.

Example 5.2.1. As a first example, we consider the simple linear problem

y′ =−y, 0≤ t ≤ 2, y(0) = 1, (5.9)

whose exact solution is yexact(t) = e−t .

We solve the problem (5.9) using the MWGMp-PY and the MWGMp-PF. The

results are displayed in Figures 5.1- 5.4, where we plot the global error Eg(t) versus t.

It can be seen that Eg(t) decreases as p and/or m increases, as expected. To numeri-

cally investigate the order of the methods, plots of ‖Eg(t)‖2
2 versus h= 2−m in log− log

scale for p = 2,3,4,5, are displayed in Figures 5.5-5.6. It could be seen that for lower

p values (p = 2,3,4), the slope is approximately 2p−2, from which the order r can be

deduced to be r ≈ p− 3/2, and hence we could numerically conclude that the global

error is O(hp−1). Numerical values for ‖Eg(t)‖2
2 for different values of p and m are

displayed in Table 5.1.

Example 5.2.2. As a second example, we consider the linear problem

y′ =
2− ty
t2 +1

, 0≤ t ≤ 1, y(0) = 1, (5.10)
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whose exact solution is yexact(t) = 2t+1
t2+1 .

For this example, we present the results for the MWGMpPY the results for

MWGMp-PF are similar. The global error Eg(t) for MWGMp-PY for different p and

m values is displayed in Figures 5.7-5.8, where the Eg(t) behavior is similar. Similarly,

plots of ‖Eg(t)‖2
2 versus h = 2−m in log− log scale for p = 2,3,4,5, are displayed in

Figure 5.11. Again, we see that the slopes are approximately 2p− 2, from which the

order r can be deduced to be r ≈ p− 3/2, and hence we could numerically conclude

that the global error is O(hp−1).

5.3 Nonlinear Examples

In this section, we consider a nonlinear example to validate the accuracy of the

MWGMp.

Example 5.3.1. Consider the nonlinear logistic model equation

y′(t) = ry(1− y/L), y(t0) = y0, (5.11)

whose exact solution is yexact(t) =
y0L

y0+(L−y0)e−rt .

The parameters r and L are called the growth parameter and the carrying capac-

ity, respectively. For numerical simulation, we consider the values r = 10 and L = 4,

y0 = 1, and t f = 1. The exact solution is

yexact(t) =
4

1+3e−10t (5.12)

Plots of Eg(t) with different p and m values for the MWGMp-PY are displayed in Fig-

ures 5.9-5.10. Similar numerical results are obtained when the MWGMp-PF is used.
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Table 5.1: MWGMp-PY ‖Eg(t)‖2
2 for Example 5.2.1

m\p 2 3 4 5
2 3.17947×10−3 9.4268×10−5 3.48638×10−6 1.04859×10−7

3 6.72203×10−4 5.79421 ×10−6 5.96729×10−8 5.74887×10−10

4 149645 ×10−4 3.3401 ×10−7 8.4798 ×10−10 2.15185 ×10−12

5 3.4914×10−5 1.96725×10−8 1.21584×10−11 7.7829 ×10−15

6 8.40462×10−6 1.1877×10−9 1.79941×10−13 2.87817×10−17

7 2.05997×10−6 7.28651×10−11 2.72781×10−15 1.08916×10−19

8 5.09802×10−7 4.51051×10−12 4.19475×10−17 4.21585×10−22

9 1.26799×10−7 2.80533×10−13 6.50064×10−19 2.09616×10−24

10 3.16182×10−8 1.74902×10−14 1.01078×10−20 1.86961×10−25
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Figure 5.1: MWGMp-PY, Eg(t) for Example 5.2.1, p = 3
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Figure 5.2: MWGMp-PY, Eg(t) for Example 5.2.1, p = 7
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Figure 5.3: MWGMp-PF, Eg(t) for Example 5.2.1, p = 3
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Figure 5.7: MWGMp-PY, Eg(t) for Example 5.2.2, m = 6
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Chapter 6: Conclusion

In this thesis, we employed Daubechies’ wavelets to derive multistep methods

for the numerical solutions of first-order initial value problems. Three schemes were

derived: the MWGMp-PY, the MWGMp-PF, and the MWGMp-MP. It was observed

that the MWGMp-PF and the MWGMp-MP are the same. The derivation was entirely

based on the good approximation property of Daubechies’ wavelets in that all polyno-

mials of degree less than or equal to p−1 are exactly generated by integral translates

of the scaling functions, where p is the order of the wavelet. This nice property makes

the truncation error of the methods O(hp).

The stability analysis of the multistep methods were investigated and found

that for p = 2 and p = 3 the methods are A-stable. The absolute stability regions of the

derived multistep methods were found to be larger than those of Adam-Multon linear

multistep methods for similar order. However, we found that Adam-Multon linear

multistep methods have a better rate of convergence. The accuracy of the MWGMp-PY

and MWGMp-PF was investigated by applying them to linear and nonlinear examples.

The results show that they are competitive to Adam-Multon linear multistep methods.

A future research direction in this subject is to consider other wavelets such as

coiflets whose scaling functions possess additional number of vanishing moments as

well.
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