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Abstract

In this thesis, we present numerical techniques to solve higher order differential
equations based on the implicit Hybrid method. In these methods, we use the
collocation and interpolating methods. Then, we derive the main schemes and their
block methods. We investigate some theoretical results such as order of the method,
consistency, convergence, and region of absolute stability. Some numerical results and
simulations are provided to show the efficiency of the proposed methods using

Mathematica.

Keywords: Differential equations, Order of the method, Collocation, Interpolating,
Taylor Expansion, Region of absolute stability, Error, consistency, Zero stability,

Convergence.
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Chapter 1: Introduction

Differential equations have several applications in physics, engineering,
chemistry, medicine, biology, economic, and others such as Blasius equation [1],
which describes the boundary layer flow over a moving plate with velocity zero, Lane-
Emden type singular equation [2], and cubic free undamped Duffing oscillator
equation [3]. Several numerical methods to solve such problems can be found in [4]-
[16]. In this thesis, we derive numerical methods based on the implicit hybrid method.
We use collocation and interpolation techniques on the power series approximate
solution to derive them. The proposed methods have high order which are very
accurate comparing with other methods such as the one-offstep methods. In one-
offstep methods such as Euler method or Runge-Kutta methods, we have to convert
the higher order differential equations into system of first order differential equations.
This makes the method is costly in terms of function evaluations. Other methods which
can be used to solve such problems are the Adam Bashforth method and Adam Multon
method. They need more than one initial condition which forces us to generate them

using the one-offstep method. This will effect on the accuracy of the method.

Implicit hybrid methods comparing with other method is cheaper and more
efficient methods. We derive these methods for first, second, and third order
differential equations. However, we can use the same technique to derive methods for
higher derivatives. We investigate the consistency, zero stable, convergence, the order,
error constant, and region of absolute stability of the proposed method. In addition, we
study the zero stability, the order, and the error constant of the block methods which
are generated from the proposed methods. Numerical results are presented to show the

efficiency of the proposed method. Now, we review the preliminaries of the implicit
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hybrid methods as well as some definitions related to these methods. Let {ty, t;, ..., tm}

be a uniform partition of [0,1] with t; =i€,i=0,1,..,M,and € = ﬁ

Definition 1.1: A k-step hybrid formula is defined by

k 1
Z ajUp4i t Z An+viUn+v; = €P
0 i=0 i

i= i= i

1
bihn+i + €P Z bn+vihn+vi

k
where a, = 1, a5 and b, are nonzeros, v € {0,1, ...,Kk}, uy4; = u(t, +ie€) and

hpyy, = h(tn+vi, tn+vi). For more details, see [17].

Definition 1.2: Let

1
bihn+i —€P Z bn+vihn+vi

k

k 1
L[u[tn]; €|l = Z ajUp+i T Z AntviUntv; — €P
i=0 i=0 i

- Coun + Clu;l + s,

Ifco =0,¢; =0,...,¢cp1 = 0,¢p41 # 0, then the order of the method is r and

the error constant is ¢ 44, see [17].

Definition 1.3 [17]: A linear multistep method is said to be consistent if it has

order at least one.

Definition 1.4 [17]: If no zeros of the first characteristic polynomial have
modulus greater than one and every root of modulus one has multiplicity not greater

than one, then it is called zero stable.

Definition 1.5 [17]: If the method is consistent and zero stable, it is convergent.



Chapter 2: First Order Initial Value Problems

In this chapter, we derive the one-offstep and two-offstep implicit hybrid methods to
solve the first order initial value problems. We investigate some theoretical results that
are related to these methods. Numerical results are presented to show the efficiency of

the proposed methods.

2.1 One-offstep method

Consider the following first order initial value problem of the form

y'@) =1ty (2.1.1)
subject to
y(0) =y, (2.1.2)

where y, is constant.

2.1.1 Method of solution

In this section, we derive the proposed method using one-offstep hybrid method. The

solution is approximated by

3

y(t) = z a;t! (2.1.1.1)

i=0
and its derivative by
3

y'(6) = z Pa;tt (2.1.1.2)

i=1
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Let {t, =0,t; = A, ...,tyy = MA=T} be a uniform partition of [0,T] where t; =

iA,i =0:M and A= % Interpolate Eqn. (2.1.1.1) at t_ .1 and collocate Eqn. (2.1.1.2)

1
2

att j,j =012, toget the following linear system
2
Aa =R (2.1.1.3)
where
2 3
1 n+s tn+— tn+— a, Y+l
2 f
Am 0 1 2t, 3t,21 a= g; R= fn1
0 1 Ztn% 3tn+% a, fn+5
0 1 2tn+1 3t121+1 mH
Let

A
tn+1:t_As+E,

Then, using the above change of variables and solving System (2.1.1.3), we get

aO(S) = 1 9

2 3
ay(s) = =+,
4As3

a,(s) = As — ,

3
As? 2As3
a3(s) = T + 3 .

Whent = t,,4,t 1=ty —As. Thus,
2



fer —hil A2 1

STTa  TTaA 77

. -1 1 . -
Similarly, when t = t,,t 1, tp41,5 = B 0, 5 respectively. Thus, at s = 55 e
2

get
f 1
—f, n+=  5f, .4
— A 2 nt d.1.
Yn+1 yn+%+ (24"‘ 3 + 24 ); (2.1.14)
f 1
_an fn+1 n+-—
yn:yn+§+A( 4 + Y 32 : (2.1.1.5)
Let
Y. .1 1
Yin :< n+2):Y2,n: On ) Fin = (fn)'FZ,n:< n+2>'
Yn+1 fn+1
—A A 5A
(-1 1 (0 | 2 [ 3 24
Al_(—1 0)"42_(—1)"43_ s [Ae=\ o2 )
24 3 24

Then, System (2.1.1.4) and (2.1.1.5) can be written in the matrix form as

AYin =AY, + AFy + ALFo . (2.1.1.6)
Multiply both sides of Eqn. (2.1.1.6) by A7? to get

ByYin = ByY, 4 + B3Fy + ByF, (2.1.1.7)
where B; = I,,

-A
24



Then, we solve System (2.1.1.7) iteratively to find the unknowns.

2.1.2 Analysis of the proposed method

In this section, we investigate the consistency, zero stable, convergence, order, error

constant, and region of absolute stability of main equation

1

f
—f, = n+3  5f,
Vsl = Ynsd + A <Z +=° 2+ —24“>. (2.1.2.1)

In addition, we study the zero stability, the order, and the error constant of the block

method (2.1.1.7). The first and second characteristic functions are given by

1
T,(z) =z—22

and
- 1 1
T,(2) = £ + S22 + §Z§.
Then,
1. (1) =0,
2. () =7

3. U@ =10 =1

4. The roots of 7;(z) for which |z| = 1 are simple.
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Thus, Eqn. (2.1.2.1) is consistent and zero stable. Therefore, it is convergent. To find

the region of absolute stability, let

71(2)
7,(2)

u(z) = ,z=e? ¢ el02nr].

Then, the interval of absolute stability is (0.370153,2.73029) and the region of

absolute stability is given in Figure 2.1.2.1.

1.5+ T T T T T —

0.5 -
0.0 - -
-0.5 -

1.0k i

_157 L L L L L L L L L L L L L L L L L L L L H

Figure 2.1.2.1: Region of absolute stability, first order IVP, one offstep-point

Normalize B, in Eqn. (2.1.1.7) to get

)
[\]
Il

(o 1)
Thus,

det(sB; — B,) = s(s — 1).
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Since the roots of the above equation have modulus less thanl is, the block method is

zero stable as A— 0. Using the Taylor series, Eqn. (2.1.2.1) becomes

et 5fn+1>_ Ay

—_— 2
y”+1_yn+§+A<24+ 3 T 384

4
Thus, the order of Eqn. (2.1.2.1) is 3 and the error constant is — ia. Similarly, the

Taylor expansion of System (2.1.1.7) is give as
Blyl,n - BZYZ,n - B3F1,n - B4F2,n

A* vy

384

My
384

+ -

Thus, the block method (2.1.1.7) has the following order
337"

A4—

- 4
with error constant ii

384

2.2 Two-offstep hybrid method
2.2.1 Method of solution

In this section, we derive the proposed method. Approximate the solution of Eqn.
(2.1.1) by

4

y(@) = z a;t'. (2.2.1.1)

i=0



Then, the first derivative of the solution of Eqn. (2.2.1.1) is given by

4

y'(6) = z ia;t' ", (2.2.1.2)

i=1
Let {t, =0,t; = A, ...,tyy = MA=T} be a uniform partition of [0,T] where t; =

iA,i =0:Mand A= % Interpolate Eqn. (2.2.1.1) at ¢ 1 and collocate Eqn. (2.2.1.2)

1
3

att j,j=0,..,3toget the following linear system
3

Aa =R (2.2.1.3)
where

2 3 4
1 t 1 t +l t +1 t +l y 1
n+s  M¥3 Ay Ty n+

0 1 2t, 3t2 4t
A=|o0 1 2t,: 3t2. 463 s | a=]az | R=| fos?
3 3

Tl+§

asz
0 1 2,2 3t2 . 4t3, a, L

n+§ n+§

0 1 2tnyy 3thy 4ty
Let

2A
tn%:t—As,th =t—As+?,

A A
tn+§—t—AS+g,tn —t—AS—g.

Then, using the above change of variables, we get

ap(s) =1,

a,(s) = %(—s2 + 653 — 95%),



a,(s) = 2(85 — 6s% — 2453 + 27s%),
A 2 3 4
as(s) = 5(125 +12s° — 27s%),

A
a,(s) = Z(_SZ + 9s%).

Whent =t,,4,t 1 =1t,,1 —As. Thus,

1
n+=
3

b1~ 6l 2p73 2
A A 3

S =

w |-

_ -1 2 )
Similarly, whent = t,,t .1,t .2,t,.1,S =—,0, =, —respectively. Thus, at s =
y n Tl+§ n.|_E n+1 3 3 p y

-1 1 2
?,E,E,Eqn. (2.1.2.1) becomes
A
Yn+1 = yn+§ + 9 (fn+§ + 4fn+§ + fn+1)'
. A
Vst Yt 5 <_fn +136,0 4131, 0 - an),
A
Yo = Vyui + 55 (—9fn 196, 1456, fn+1).
Let

-1 0 1 Vsl 0
A1 =|-1 1 0}, Yl.n = yn+§ 1A2 = 0 :Yz,n = (yn);
-1.00 Yn+1 -1
Bl (4
Fl,n = (fn)'FZ,n = fn+3 ’ A3: 72
3 —9A

10
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9

13A 13A -A
72 72 72
—19A 5A -A

o | >

4A A
9

72 72 72
Then, it can be written in the matrix form as
AYin =AY + AsFy + AyFy . (2.1.24)

Multiply both sides of Eqn. (2.1.2.4) by A7? to get

B\Yin = ByYo 5 + B3Fy + ByFy (2.1.2.5)
4 14 =544
1 8 72 72 72
where By = I3, B, = (1>, B; = % By = % %
1 A 338 2
8 8 8 8

Then, we solve System (2.1.2.5) iteratively.

2.2.2 Analysis of the proposed method

In this section, we investigate the consistency, zero stable, convergence, order, error

constant, and region of absolute stability of main equation
A
Y+t =Yt (fn% + 4fn+§ + fn+1), (2.2.2.1)
3

In addition, we study the zero stability, the order, and the error constant of the block

method (2.1.2.5). The first and second characteristic functions are given by
1
7,(z) =z—2z3

and
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Then,
. 7,(1) =0,
2. () =3,
3. 11,(1) = § = 7{(D),
4. The roots of 7;(z) for which |z| = 1 are simple.

Thus, Eqn. (2.2.2.1) is consistent and zero stable. Therefore, it is convergent. To find

the region of absolute stability, let

,z=¢e% ¢ el02nr].

ue) =22

(2)

Then, the region of absolute stability is ( —3.62406,0.317404) and the region of

absolute stability is given in Figure 2.2.2.1.

1.5¢

1.0+

0.5}

0.0

-0.5¢

-1.0¢

-1.5}! ‘ ‘ ‘ ‘ !
-4 -3 -2 -1 0 1

Figure 2.2.2.1: Region of absolute stability, first order IVP, two offstep-point
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Normalize B, in Eqn. (2.2.1.5) to get

Thus,
det(sB; — B,) = (s — D)s?.

Since the roots of the above equation which has modulus 1 is simple, the block

method is zero stable as A— 0. Using the Taylor series, Eqn. (2.2.1.5) becomes

1 4 1 1945 y®
et =Ynt +(Ghs #5102+ 5he1). = ~T7ages

9 n+3 9 n+§

5
Thus, the order of Eqn. (2.2.2.1) is 4 and the error constant is — %. Similarly,

the Taylor expansion of System (2.2.1.5) is give as
Blyl,n - BZYZ,n - B3F1,n - B4F2,n

1945 y¥

174960

A%y

21870 T

A5 vy

6480

Thus, the block method (2.2.1.5) has the following order

19A5
174960

(4,4,4)Twith error constant | —
21870




2.3 Numerical results

In this section, we present two of our examples to show the efficiency of the

proposed methods in the previous sections.

Example 2.3.1 Consider the following first order initial value problem

Then, the exact solution is y(t) = i Let A= 0.1. Then, the absolute error at t =

y®)=y41=2t>0,

y(0) = —1.

0,0.1, ...,1 are given in Table 2.3.2.

Table 2.3.1: The absoluter errors for Example 2.3.1

14

t One-offstep method Two-offstep method
0 0 0

0.1 1.1x107° 2.2x1078
0.2 1.5x107° 2.6x1078
0.3 1.9x107° 2.9x1078
0.4 2.2x107¢ 3.3x1078
0.5 2.6x10°° 3.4x1078
0.6 3.1x107° 3.8x1078
0.7 3.7x107¢ 4.4%x1078
0.8 4.2x107° 4.7x1078
0.9 5.0x107¢ 5.1x1078
1 5.8x107° 5.7x1078




Example 2.3.2 Consider the following first order initial value problem

Then, the exact solution is y(t) = %

1
y'(t) = s+ y)H1=t=0,

y(0) = 1.

t
es5

T
es5
-5

0,0.1, ...,1 are given in Table 2.3.2.

Table 2.3.2: The absoluter errors for Example 2.3

15

Let A= 0.1. Then, the absolute error at t =

t One-offstep method Two-offstep method
0 0 0

0.1 2.1x107°° 1.7x1078
0.2 2.3x107°° 2.1x10°8
0.3 2.5x107° 2.3x1078
0.4 2.6x10°° 2.6x1078
0.5 2.8x107° 2.7x1078
0.6 3.0x10°° 2.9x1078
0.7 3.1x10°° 3.2x1078
0.8 3.3x107¢ 3.5x1078
0.9 3.4x107° 3.7x1078
1 3.6x107° 3.9x1078
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Chapter 3: Second Order Initial Value Problem

In this chapter, we derive the two-offstep and three-offstep implicit hybrid methods
to solve the second order initial value problems. We investigate some theoretical
results that are related to these methods. Numerical results are presented to show the

efficiency of the proposed methods.

3.1 Two-offstep hybrid method

Consider

y'@©)=9tyy)0<t<T (3.1.1)
subject to

y(0) = ao,y'(0) = ay. (3.1.2)

3.1.1. Method of solution

In this section, we derive the proposed method. Approximate the solution of Eqn.

(3.1.1) by
5
y(t) = z a;tt. (3.1.1.1)
i=0

Then, the first and second derivatives of the solution of Eqn. (3.1.1.1) are given by

5

y'() = z fa;t't. (3.1.1.2)

=1
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and
5
y'(t) = z i(i — 1)a;ti=2. (3.1.1.3)
i=2

Let{t, =0,t; = A, ...,tyy = MA= T} be a uniform partition of [0, T] where t; =

iA,i =0:M and A= % Interpolate Eqn. (3.1.1.1) at tn%, tn+§ and collocate Eqn.

(3.1.1.3) at t inj= 0,1,2,3, to get the following linear system
3
2 3 4 5
1 tn+— tn+§ tn+— tn+% tn+— yn+_
2 3 4 5 a,
1 n+= tn+— tn+— tn+§ tn+§ a; yn+§
0o 0 2 6t 12t2  20t3 || a f
n o e 1= " (3.1.1.4)
0 o0 2 6t 1 12t 20t 4 || @3 n+
n+g n+ n+: a, f 3
0 0 2 6t 12t%2, 20t%, | \ag nt
n+s n+- n+=- f
0 0 2 6ty 12t%,, 208 i
n+1 n+1 n+1
Let
A
tn% =t—As,thyq = t—As+§,
A 24
byl = t—As—Z,ty=t—As——.

Then, using the above change of variables and solving System (3.1.1.4), we get

ay(s) = —3s,

a;(s) =1+ 3s,

A%s(7-90s%+2435%)
1080

a(s) = —

b

1
as(s) = %AZS(ZZ — 180s? + 13553 + 243s%),
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1
a,(s) = %A25(43 + 180s + 90s? — 270s3 — 243s*),

A%s(—8 + 180s% + 405s> + 243s*)
as(s) = 1080 '

Whent = t,1,t 2 =tyhy; —As. Thus,
3

ST 3A
. 1 2 ) 1 2
Similarly, when t = tn%, tn%, t,s=0,— 3y respectively. Thus, at s = 33
Eqn. (3.1.1.1) becomes
f 1 5f 2
n+s n+s  f
- _ 2 Az —= Eiaey 3.1.1.5
Yne1 = “Vnyd FEVp 2 ¥ (108 52 108 ( )
5 1 f 2
f n+s  on+s
=2y ,1- A% | = : 2.
Yn = Ynat T Yna2 ¥ (108 TEg T 108)
Using the change of variable t .2 =t — A's, we have
3
dy _dyds _1dy
dt  dsdt Ads’
Hence,
2 6
dy 1 , ,
FTERN Z ai—1(s)yn+§i + Z ai—1(5)fn+i—T3 . (3.1.1.6)
i=1 i=3

Ats ==,0,—7,—2 Eqn. (3.1.1.2) implies that

-3 +3 f 23f
Ynsl yn+z < fn n+l n+§ 127fn+1>
b



-3y 113y 2 f 1 23f »
, n+z On+g fn n+z ntz  127fp4q

2
yn+§ A 135 12

-3y . 1+3y_ 2 11f ¢ 43f
y' L = 3 *3 +Al=7 frn nt3 + ntz  fpta
n+g A 1080 180 360 135 )’

J = _?’yr1+§-l_3yn+§+A f, _43fn+§_ 11fn+§+7fn+1
n A 135 360 180 ' 1080 /)
Let
Vsl
1 -2 10 0 0 V.2
-2 1 0 0 0 0 .
4|3 3000 A, _ n+l
! 3 =30 0 A 0[] |Vl
3 -3 0 A 0 0 '
y
3 =300 0 0 n+s
Vn+1
0 0
_01 8 y Fuss
A, = 0 0 'YZ,n:(yZ)rFl,n:(fn)rFZ,n: fn+§ ’
0 0 fa+1
0 -A
0 A2 5A2 A2
A2 108 54 108
- 2 2
108 WA,
A2 54 108
e A2 23A% 12742
120 60 1080
A; = 70 |, A, =
— ’ 11A%2 4342 A2
1080 3 _
A2 180 360 135
- 2 2 2
EE 4307 11A7 7
— 2302 AZ A2
1080 _ —
60 120 135
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Then, Systems (3.1.1.5) and (3.1.1.7) can be written in the matrix form as

AYin =AY + AsFy + AyFy . (3.1.1.8)

Multiply both sides of Eqn. (3.1.1.8) by A7? to get

BiYin = ByYon + BaFy + BuFpp (3.1.1.9)

where B; = I,

972 19A2  13A% A2

3240 540 1080 405

A 28A2 222 202 2A2

L3 405 135 135 405

) 2A 13A2 302 3A%2 A2

B, = 3 |,B,=| 120 |, =| 10 40 60

1 A A 19A 50 A

0 1 8 72 72 72
0 1 A 4A A

0 1 ) 5 g

A 3A 3A A

8 8 8 8

Then, we solve System (3.1.1.9) iteratively.

3.1.2 Analysis of the proposed method

In this section, we investigate the consistency, zero stable, convergence, order, error

constant, and region of absolute stability of main equation

f 1 5f o
- _ 2 "3 nt3 | fhia
Yna1 = "Y1 ¥ 2¥,, 2+ A < Py +—108>. (3.1.2.1)

In addition, we study the zero stability, the order, and the error constant of the block

method. The first and second characteristic functions are given by
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7,(2) = 213 = 2223 4 ¢

and
( )_21/3 +522/3+ z
2 =708 " 54 108
Then,
1. 7,(1) =0,
2. (1) =0,

3. 17 (1) -2lt,(1) =0,

4. The roots of 7;(z) for which |z| = 1 are simple.

Thus, Eqn. (3.1.2.1) is consistent and zero stable. Therefore, it is convergent. To find

the region of absolute stability, let

u(z) = :g; ,z=¢e? ¢ el02nr].

Then, the interval of absolute stability is (0.728797, 1.42445) and the region of

absolute stability is given in Figure 3.1.2.1.



¥}

Figure 3.1.2.1: Region of absolute stability, second order IVP, two offstep-point

Normalize B, in Eqn. (3.1.1.9) to get

001000
001000
g |00 1000
2 000 0 0O
0000 0O
0000 00

Thus,

det(sB; — B,) = (s — 1)s°®.

Since the roots of the above equation which has modulus 1 is simple, the block

method is zero stable as A— 0. Using the Taylor series, Eqn. (3.1.2.1) becomes

£ .1 5fn+§ fn+1> 76y(®

_ 2 _ AZ — 3 = — ce.
Yn+1 T Yl T Vnal ( 108 + 54 + 108 174960 *

22



Thus, the order of Eqn. (3.1.2.1) is 4 and the error constant is —0.000005715A°.

Similarly, the Taylor expansion of System (3.1.1.9) is give as

Blyl,n - BZYZ,n - B3F1,n - B4F2,n

—0.0000200047 ASy©+..
—0.00004572473 ASy® +
—0.000077160493 A6yr(,6)

—0.0001085962505 Ay’
—0.0000457247370 A6yn
—0.0001543209876 A®y® +

Thus, the block method (3.1.1.9) has the following order

(4,4,4,4,4,4)T

with error constant

—0.0000200047

—0.00004572473
—0.000077160493 6
—0.0001085962505
—0.0000457247370
—0.0001543209876

3.2 Three-offstep hybrid method

3.2.1 Method of solution

In this section, we derive the proposed method. Approximate the solution of Eqn.

(3.1.1) by

6

23

y(t) = z a;t'. (3.2.1.1)

i=0
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Then, the first derivative of the solution of Eqn. (3.2.1.1) is given by

6
y'(t) = z ia;t" ", (3.2.1.2)
i=1
and
6
Y'(t) = z i(i — 1)a;ti=2. (3.2.1.3)
i=2

Let {t, =0,t; = A, ...,tyy = MA= T} be a uniform partition of [0, T] where

t; =1iA,i=0:Mand A= % Interpolate Eqn. (3.2.1.1) at tn+§' tn% and collocate Eqn.
(3.2.1.3) at t nj= 0,1,2,3, to get the following linear system
4
1t 2, 63 t? t> t°
n+; n+- n+- n+- n+- n+-
2 3 4 5 6
1 tn+— tn+— tn+— tn+1 tn+3 tn+% Qo
o 0 2 et, 12t2 20t3 30t Z;
2 3 4
0 O 2 6tn+% 12tn+% 20tn+% 3Ot"+i 33
2 3 4 4
0 O 2 6tn+% 12tn+% ZOtn% 30tn+% as
0 0 2 6t.s 12t%, 2063, 30t .| %
Tl+4 TL+Z n+— Tl+z

0 0 2 6ty 12t3,, 20t3,, 30ti .,

Yol

Yol

fr
— | fus (3.2.1.4)
Fost
Fos2

5'_”
+
[y
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Let

A 3A
tn+%=t—As+E,tn+1=t—As+T,tn:t—As——.

Then, using the above change of variables and solving System (3.2.1.4), we

get
ag(s) =1—4s,
a,(s) = 4s,
a,(s) = AZS(Z1_96052"‘35;322—4—60854+204855),
() = _7710A25(59 — 360s + 40052 + 800s° — 1920s* + 1024s°),

1
a,(s) = %Azs(—SS + 960s? + 32053 — 3072s* + 2048s°),

1
as(s) = —mAzs(—‘) + 240s% — 16053 — 1152s* + 1024s°),

A%s(—11 + 320s? — 320s% — 1536s* + 2048s°>)

a6(s) = 5760

Whent = t,4,t 1=ty —As. Thus,
4

tn+1 - tn+l
4

5= 4
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13f 1+ 67f 1 21f 3
f n+- n+= n+> 17f
cl — 4 2 4 2+l (3.2.1.5
+A ( 1280+ 960 + 640 + 320 + 3840 )' ( )

fo £ 97fn+% fn+% fos1
3840 160 1920 160 3840/

— _ 2| 4 —
yn+%_ yn+%+2yn+%+A( + + +

2

3840 * 320 * 1920 * 960 3840

, 19, 17fn+% 7l fn+% |
yn=2yn+%—yn+%+A .

Using the change of variable t .1 =t — A's, we have
4

dy _dyds _ 1dy

dt  dsdt Ads

Hence,

i=1

2 7
dy 1 , ,
22 (Z O RN fn+%3>. (3.2.1.6)
Y=

311 ) .

Ats = L 0,—1/4, Eqn. (3.2.1.2) implies that

-4y 1+4y 1 71f 1 161f 1 53f 3
, _ n+y n+3 _ 11fy n+z + n+5 + n+z  95fn4
Yn+1 A 1920 1440 960 160 1152 )’
—4y 1+4y 1 f 1 83f 1 77f 3
y a=—a M Ao My Meg % S (3.2.1.7)
n+; A 1152 80 320 720 640 |’ e

—4 +4 11f 97f 19f
’ yn+% yn+1 17f, n+% n+% n+% + 11fh41
5760 288 960 1440 5760 |’
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_ _4yn+% + 4yn+% LA 7fn B 59fn+% B 11fn+% N fn+; B 11f,41
Ynst A 1920 720 192 ' 80 5760 )

_4yn+% + 4yn+% ( 481f, _ 4-9fn+% 11fn+% 7fn+% 3fn+1>

Yn = A 5760 160 | 320 288 | 640
Let
2 -3 010 0 0 0
1 =2 1.0 0 0 0 0 Yol
-2 1 000 O0O0TUO Y. 1
4 4 n+y
F —3 000001 Va2
4 4 Yn+1
— —— 000010 !
A1: 2 2 'Yl,n: yn+l
4
A ~3 000100 Vs
4 4 )
1 —3 001000 Vs
4 4 Vn+1
— —— 0 00 0 O0O0
A A
0 0
_01 8 f”'*%
0 0 Y, fo.1
Azz 0 0 :YZ,n:(yZ)’Fl,n:(fn)'FZ,n: fn+z ’
O O n+z
0 0 fo+1
0 -1
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A? 13A%  67A% 21A? 17A?
1280 960 640 320 3840
A? A? 97A? A? A?
3840 160 1920 160 3840
19A? 1742 702 A? A?
3840 320 1920 960 3840
11A 71A  161A 53A 95A
As = 1920 [ 4, =| 1440 960 160 1152
A A 83A 77A 3A
1152 80 320 720 640
17A 11A 97A 19A 11A
5760 288 960 1440 5760
7A 59A 11A A 11A
1920 720 192 80 5760
481A 49A  11A 7A 3A
5760 160 320 288 640

Then, Systems (3.2.1.5) and (3.2.1.7) can be written in the matrix form as
AYin =AY, + AFy + ALFo . (3.2.1.8)
Multiply both sides of Eqn. (3.2.1.8) by A7? to get
BiYin = ByYo, + B3Fy, + ByF, (3.2.1.9)

where B; = Ig,
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367A% 3A? 47A%  29A? 7A?
23040 128 3840 5760 7680

A 53A? A? A? A? A?

1 - 1440 10 48 90 480
i 147A? 117A%  27A? 3A? 9A?
1 > 2560 640 1280 128 2560
3A 70 4N A? 42 0

B,=|1 2 |.Bs=| 90 |.B,=]| 15 15 45

1 A 251A 323A 11A 53A 19A
0 1 2880 1440 120 1440 2880
0o 1 29A 31A A A A
0o 1 360 90 15 90 360
o 1 274 514 9A  21A  3A
320 160 40 160 320

7A 16A 2A 16A 7A

90 45 15 45 90

Then, we solve System (3.2.1.9) iteratively.

3.2.2 Analysis of the proposed method

In this section, we investigate the consistency, zero stable, convergence, the order,

error constant, and region of absolute stability of main equation

13f 67f
fn n+% n+%

- _ 2( _ 4
Ynt1 = 2yn+i+3yn+§+A < 1280+ 960 + 640 + 320 + 3840 ) (3:22.1)

In addition, we study the zero stability, the order, and the error constant of the

block method (3.2.1.9). The first and second characteristic functions are given by
7,(2) =22* —3Jz + z
and

1 N 13z1/4 N 67z N 212374 N 17z
1280 ' 960 640 320 ' 3840

7,(2) =
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Then,
1. 7,(1) =0,
2. 11(1) =0,

3. 17 (1) —-2lt,(1) =0,

4. The roots of 7;(z) for which |z| = 1 are simple.

Thus, Eqn. (3.2.2.1) is consistent and zero stable. Therefore, it is convergent. To find

the region of absolute stability, let

Then, the interval of absolute stability is (0.666405,2.27469) and the region of

absolute stability is given in Figure 3.2.2.1.

-10} 4

-15 C " " " " " " P A r— A - " " " " A " A " P 7

= T = = z
0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.2.2.1: Region of absolute stability , second order IVP, three offstep-point



Normalize B, in Eqn. (3.2.1.9) to get

@

Il
Socoocoococooco o
eNeloNoloNoYoNe
cCocoocococ oo o
C OO0 OR RRE, R
eNeloNoloNoYoNe!
cCococococ oo o
cococoocococo o
el eloNoloNoYoNe!

Thus,

det(sB; — B,) = (s — 1)s”.

Since the roots of the above equation which has modulus 1 is simple, the block

method is zero stable as A— 0. Using the Taylor series, Eqn. (3.2.2.1) becomes

n+

£ %ﬁ
-2 Sy VY Q- .
yn+14'yn+§ yn+§ ( 108-+ 54 + 108)

@) 4.

n

= 6.478930%x1077A”y

Thus, the order of Eqn. (3.2.2.1) is 5 and the error constant is 6.478930x1077.

Similarly, the Taylor expansion of System (3.2.1.9) is give as

Blyl,n - BZYZ,n - B3F1,n - B4F2,n

6.478930276537699x10~7A7y"
0.000001550099206349206A7y "
0.000002452305385044643A7y "
0.000003100198412698412A7y("
0.00000457763671875A7y("
0.00000271267361111111147y(”
0.00000457763671875A7y "
—5.166997354497355x10~7A7y("

Thus, the block method (3.2.1.9) has the following order

31
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(5,5,5,5,5,5,5,5)T

with error constant

6.478930276537699%x1077
0.000001550099206349206
0.000002452305385044643
0.000003100198412698412
0.00000457763671875
0.000002712673611111111
0.00000457763671875
—5.166997354497355%x1077

3.3 Numerical results

In this section, we present some of our numerical results to show the efficiency of the

proposed method, which is described in the previous sections.

Example 3.3.1. Consider the following linear Lane-Emden equation
y"'(t) +%y’(t) +y@®) =t3+t*+12t+6,0<t <1,
subject to
y(0) = y'(0) = 0.

The exact solution is y(t) = t3 + t2. Let A= 6% . Then, the absolute error using the

two-offstep method and reproducing Kernel method (RKM) [18] are given in Table

3.3.1.
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Table 3.3.1: The absolute Error of Example 3.3.1

t; Abs. Error (Proposed method) | Abs. Error (RKM)
0.16 1.23124 x 107° 5.31280 x 1077
0.32 2.22167 x 107° 6.28587 x 1077
0.48 3.00125% 107° 9.55642 x 1077
0.64 3.98747 x 107° 1.72184 x 10°°
0.80 441836 x 107° 3.18416 x 10°°
0.96 5.46519 x 107° 5.62569 x 107°

Example 3.3.2. Consider the following nonlinear Lane-Emden equation
2 (®)
y"(t) +;y’(t) +42e?® + ey =00<t <1,
subject to
y(0) =y'(0) = 0.

The exact solution is y(t) = —21n(t? + 1). Let A= 6% . Then, the absolute error using

the three-offstep method and reproducing Kernel method (RKM) [18] are given in

Table 3.3.2.

Table 3.3.2: The Abs. Error of Example 3.3.2

t; Abs. Error (Proposed method) | Abs. Error (RKM)
0.16 2.22367 x 10711 6.58372x 1077
0.32 3.98120 x 10~ 1.49700 x 1077
0.48 4.23188x 10711 2.80293 x 1077
0.64 498021 x 10711 3.84449 x 10~°
0.80 5.52472 x 10711 422148 x 107°
0.96 6.33758 x 10~ 1 3.98444 x 10~°
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Chapter 4: Third Order Initial Value Problems

In this chapter, we derive four-offstep implicit hybrid methods to solve the third
order initial value problems. We investigate some theoretical results that are related
to these methods. Numerical results are presented to show the efficiency of the

proposed methods.

4.1 Method of solution

Consider

y'@®) =gy, y,y"),0<t<T (4.1.1)
subject to

y(0) = a4,y (0) = a;,¥"(0) = a,. (4.1.2)

In this section, we derive the proposed method. Approximate the solution of Eqn.

(4.1.1) by
8
y() = z a;t'. (4.1.3)
i=0

Then, the first, the second, and the third derivative of the solution of Eqn. (4.1.3) are

given by
8
y'(©) = z ia;t'?, (4.1.4)
i=1
8
or z i(i — 1a;ti2, (4.1.5)

i=2
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8

Y(E) = z i(i — 1)(@i — 2)a;ti3. (4.1.6)

i=2

Let {t, =0,t; = A, ...,tyy = MA=T} be a uniform partition of [0,T] where t; =

iA,i =0:M and A= % Interpolate Eqn. (4.1.3) at tn%, tn+§, tn+§ and collocate Eqn.

(4.1.1.6) at t inj= 0,1, ...,5, to get the following linear system
5

Aa =R (4.1.7)
where
t]:li, i=1:3,j=109,
nal
A= s -
G-1DG-2)G-3)t"", i=4:9j=1:9,
n+?
y(tn+£), i=1:3,

5
i

Py () ¥ (Epics) ¥/ i), 0= 420,

5

Let

A
t, gzt—As,tn+1=t—As+E,

Then, using the above change of variables and solving System (4.1.7), we get



36

2
ag(s) =1 +% +2525 ,

a,(s) = =3 — 20s — 25s2,

2
a,(s) =3 +222+2525 ,

a3(5)
_ A3(84 4 320s — 17255 + 52500s* + 87500s° — 2187505° — 6250005 — 3906255°)
B 5040000 ’
a,(s) = mm(—zsz + 180s 4+ 1562552 — 350000s* — 525000s°
+ 1531250s° + 375000057 + 1953125s8),
as(s) = mﬁ(mlm + 73640s + 10057552 + 525000s* + 612500s°
— 2406250s° — 437500057 — 1953125s8),
ag(s) = 2523000 A3(10164 + 103700s + 30052552 — 1050000s* — 175000s° +
3718750s° + 5000000s” + 1953125s8),
a,(s) = — 504;000A3(252 — 14640s — 19857552 — 840000s3 — 1137500s* +
1312500s> + 5468750s° + 562500057 + 1953125s8),
ag(s)
_ A3(2 + 55)2(21 —160s — 1000s2 + 6000s3 + 28750s* + 37500s° + 1562556)

5040000

Whent = t;4,t, 4 =ty —As. Thus,
5
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1 2 3 4

Similarly, when t = tn+§, tn%, tn%, tn%, t,,s =0, T T : respectively.
Thus, at s = %, 0,— g, Eqn. (4.1.3) becomes
yﬂ.+1 = 3yn+% - 8yn+§ + 6yn+g
3 £, B fn+§ N 59fn+§ N 247fn+§ N 109fn+§ N £
30000 30000 5000 15000 30000 10000/
f 4 121f ,  121f 3 f 4
_ . 3 fh _ n+z ntg n+§_ ntg
yn+§ - yr1+§ 3yn+§ t 3yn+§ +A <60000 20000 + 30000 t 30000 20000
fn+1 418
60000 /’ (4.1.8)

e £, _227fn+§_131fn+§+ 3fn+§ B 7fn+§ N £,01
20000 60000 30000 10000 60000 60000 /)

Using the change of variable t  + =t — A's, we have
5

dy dyds _1dy d?y _ 1d2%y

dt  dsdt Ads’dtZ Az ds?’

Hence,
3 9
dy 1 , ,
a A Z ai—1(s)yn+_i + Z ai—1(s)fn+"—_4 (4.1.9)
i=1 > i=a >
and

3

d’y 1 . 2 .
d2 - A2 z a;_1 ()Y, i + z ai—1(S)f iz |- (4.1.10)
° o i=a >

i=1



Ats = %, 0, —%, T g, Eqn. (4.1.5) and Eqn. (4.1.6) imply that

38

25 —-60 +35 83f 1431f 19849f
’ _ yn+% yn+§ y % + AZ 127f, n+% n+§ n+% +
Yn+1 = 2A 504000 100800 28000 252000
593f
n+§ 479fp 41
14400 168000 /’
f 263f 1037f
, 15yn+% 20 N 25yn+§ Y i n+% 63 n+% 03 n+§ 61fn+§
= 2 _— —_
yn+§ 2A A yn+g 2A 15750 = 28000 9000 25200 21000
11fn44
252000 /)’
- f 2437f f
, 5yn+% 20yn+§+15yn+% N A2 £ 53 n+% 3 n+§ 353 n+% 271fn %
3@1+§ - 2A 24000 504000 252000 84000 504000
31fn+1
504000 /’
- 13f 247f 13f
’ 5yn+%+5yn+% + AZ fn 3 n % n+§ 3 n % fn+%
3G1+— - 2A 50400 31500 42000 31500 = 50400
-25 +40 —-15 551f 2747f 37f
’ yn+% yn+§ yn+§ 2 17fn n % n % n %
Yy 1= + A — +
n4+- 2A 100800 168000 252000 36000
23f
n+% _ 31fp4q
56000 504000 /)’
-15 420 -5 301f 893f 20f f
, yn+% y % yn+% 2 37fh n+% n+§ n % %
Yn = +A -
2A 14000 7200 31500 42000 5040
11f,
—nii (4.1.11)

252000 /)’



100800

33600

1

In =

89fn+1
33600

“

“

39

b

25 =50 +25 599f 7397f 143f 9307f
yn+% yn+§ yn+% + A 103f, . n+% n+§ n+§ n+%
A? 33600 33600 50400 1120 33600
b
- 25f 447f 4007f
25yn+% 50yn+§+25yn+% A 231, 5 n+% n+§ 00 n+§ 7943fn+% B
A? 33600 4032 5600 16800 100800
25yn+%—50yn+§+25yn+% 176, 151fn+% 1943fn+§ 4867fn+% 13fn+§
+A - - +
A? 20160 33600 16800 50400 1344
25 -50 +25 283f 43f 83f 109f
Yn+% yn+§ yn+% +Al = 23f, n+% n % _ n+§ n+§ _
A? 33600 33600 10080 5600 33600
25yn+%—50yn+§+25yn+% 103f,, 8069fn+% 771fn+§ 353fn+% 751fn %
+A - - - +
A? 33600 100800 5600 16800 100800
25 =50 +25 9349f 451f 463f 557f
yn+% yn+§ yn+% +al = 6341f, n+% _ n+§ _ n+% n+% _
AZ? 100800 33600 16800 10080 33600
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A3 59A3 24743 109A3 A3
30000 5000 15000 30000 10000
A3 12143 12143 A3 A3
20000 30000 30000 20000 60000
22743 13143 343 7403 A3
60000 30000 10000 60000 60000
83A3 1431A% 1984943 59343 479A3
100800 28000 252000 14400 168000
A3 263A3 103743 61A3 1143
28000 9000 25200 21000 252000
53A3 243773 353A3 27143 31A3
504000 252000 84000 504000 504000

13Ah3 24743 1343 A3 0
31500 42000 31500 50400
55143 2747473 37A3 23A3 31A3
168000 252000 36000 56000 504000
30143 89343 29A3 A3 11A3
7200 31500 42000 5040 252000
599A% 739743 143A3 9307A3 6383A3
33600 50400 1120 33600 100800
25A3 4473 400743 7943A3 89A3
4032 5600 16800 100800 33600
151A%  1943A%  4867A3 1343 37A3
33600 16800 50400 1344 33600
28343 43A3 83A3 10943 4343
33600 10080 5600 33600 100800
8069A3 771A% 35343 75143 37A3
100800 5600 16800 100800 33600
9349A3 45143 46343 55743 89A3
33600 16800 10080 33600 33600

Then, Systems (4.1.8) and (4.1.11) can be written in the matrix form as

A1Y1,n = Azyz,n + A3F1,n + A4F2,n-

Multiply both sides of Eqn. (4.1.1.12) by A7 to get

B1Y1,n = Bzyz,n + BsFLn + B4F2,n

where B; = 5,

42

(4.1.12)

(4.1.13)
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8753A3

5040000

14143

140000
3761A3

1680000
5051A3

630000
261A3

16000
431A?

28000
239A2

24000
1137142

504000
1772342

504000
8053A2

168000
19A

288
14A

225
51A

800
14A

225
19A

288
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5111943 463743 3419A3 245943 7943
5040000 2520000 2520000 5040000 1008000
2329A3 4393A3 12143 2473 43A3
180000 630000 210000 1260000 1260000
2579A3 308943 49A3 1743 1343
560000 280000 24000 22400 112000
932943 629A3 3317A3 152943 703
630000 63000 315000 630000 18000
4578143 208143 98343 103343 84143
1008000 504000 33600 1008000 1008000
5933A2 23A 2294 989A2 A?
63000 1008 21000 252000 1575
967A? 1039A% 97A? 223A% 7A?
72000 36000 12000 72000 14400
B, = 11657A2 66772 1103A2 117142 181A2
168000 84000 50400 168000 168000
63089A? 4279A? 171414 3449/ 757 A%
504000 252000 252000 504000 504000
90703A? 11147A% 643A2 1417142 2483A?
504000 252000 5600 504000 504000
1427A 133A 241A 173A 3A
7200 1200 3600 7200 800
43A 7A 7A A A
150 225 225 75 450
219A 57A 57A 21A 3A
800 400 400 800 800
64A 8A 64A 14A 0
225 75 225 225
25A 25A 25A 25A 19A
96 144 144 96 288

Then, we solve System (4.1.13) iteratively.

4.2 Analysis of the proposed method

In this section, we investigate the consistency, zero stable, convergence, order, error

constant, and region of absolute stability of main equation
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¢ fn+l 59fn+3 247fn+§ 109fn+i
=3y .1—8y 2+6y s+ A3 i — —>5 4 >+ o 2 4
Yn+1 yn+g yn+§ yn+§ 30000 30000 5000 15000 30000

10000

f”—“) (4.2.1)

In addition, we study the zero stability, the order, and the error constant of the block

method (4.1.13).The first and second characteristic functions are given by

1 2 3
7,(z) = z— 325 + 825 — 625
and

1 1 1 59 : 247 3 109 1

= — _+ _+ + + -
72(%) = 35000 ~ 300002 T 50007 T 150002 *30000%° T 10000~

Then,
1. 7,(1) =0,
2. 11(1) =0,
3. /(1) =0,

4. 77"(1) -3!1,(1) =0,

5. The roots of 7, (z) for which |z| = 1 are simple.

Thus, Eqn. (4.2.1) is consistent and zero stable. Therefore, it is convergent. To find

the region of absolute stability, let

Then, the region of absolute stability is (0.6665,2.27471) and the region of absolute

stability is given in Figure 4.2.1.
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Figure 4.2.1: Region of absolute stability, four order IVP, three offstep-point

Normalize B, in Eqn. (4.1.13) to get

0 0001 00O OO0OOUOUOTGO0OTO
0 0001 00O0OO0OO0OO0OUOUO0OTO0OTO 0
0 0001 O0O0OO0ODO0ODO0ODO0OO0OO0OTO0TOUO
0 0001 00O O0OO0OO0OUOUO0OTO0OTO
0 0o 001 0 O0OO0OOO0OO0OUOUOO0OTO 0
0 000O0OOOOOOTO0OTGO0OTGO0OT®GO0OO
0O 0o 000 OOOUOOOUOUOTGO0OTO
0 0o 000 O OOOOOUOUOO OO
0O 0 00O OOOUOOTOUOUOTG OO
0 0o 000 O OOUOOOUOUOTO0OTO 0
0 000OO0OOOOOOTO0OTO0OTGO0OTO OO
0 0o 000 O OOOOOUOUOTO0OTO
0 0o 000 OOOOOOUOUOO OO0
0O 0 00OO OOOUOOTOUOUOTO0OTO
0 0o 000 OOOUOOOUOUOTO0OTO

32:
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Thus,

det(sB, — B,) = (s — 1)s**,

Since the roots of the above equation which has modulus 1 is simple, the block

method is zero stable as A— 0. Using the Taylor series, Eqn. (4.2.1) becomes

yn+1 - 3yn+% + 8yn+§ - 6yn+§

o £ B fn+§ N 59fn+§ N 247fn+§ N 109fn+§ N £
30000 30000 5000 15000 30000 10000

_ __102994500000%;”
~  7441875000000000000 '

Thus, the order of Eqn. (4.2.1) is 6 and the error constant is 1.38399x107°.

Similarly, the Taylor expansion of System (4.1.13) is give as

Blyl,n - BZYZ,n - B3F1,n - B4F2,n



~1.38399x1079A% + ...

—8.86744x1079A% + ...

—2.19086x1078A% + ...
—4.10322x1078A% ) + ...
—6.56966x1078A% ) + ...
—2.10582x1078A% + ...
—5.14709%1078A% + ...
—8.05714x1078A% + ...

—1.0836x10"7A%y? + ...
—1.45503%x10"7A% ) + ...
—1.82646x10"7A% ) + ...
—1.25291x10"7A% + ...
—1.65714x10"7 A% + ...
—1.0836x1077A%y? + ...
—2.91005%x10"7A% + ...

Thus, the block method (4.1.13) has the following order

with error constant

(6,6,6,6,6,6,6,6,6,6,6,6,6,6,6)T

—1.38399x107°A?
—8.86744x107°A°
—2.19086x1078A°
—4.10322x1078A°
—6.56966x1078A°
—2.10582x1078A°
—5.14709x1078A°
—8.05714x1078A°
—1.0836x1077A°
—1.45503x1077A°
—1.82646x1077A°
—1.25291x1077A°
—1.65714x1077A°
—1.0836x1077A°
—2.91005x1077A°
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4.3 Numerical results

In this section, we present our numerical results to show the efficiency of the
proposed method which is described in the previous sections. Consider the following
Blasius equation of the form

d3y 1 d?%

ETERI A T

subject to
y(0) =y'(0) =0,y'(0) = 1.

The condition at infinity is replaced by y"'(0) = 6. Then, we find the value of 6 by
satisfying the condition y’(0) = 1. We study the Blasius equation on the interval
[0,8]. Using the procedure described in the previous Sections with h = 0.25, we get
6 = 0.33206. Then, the graphs of y, y’, y"" are given in Figures 4.3.1, 4.3.2, and

4.3.3.

(8]
b
[
=]

Figure 4.3.1: The graph of y
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Figure 4.3.3: The graph of y"’

It is worth to mention that we get the same value of 8 as in [19].

=3

50



51

Chapter 5: Conclusions

In this thesis, we investigate the solution of first, second, and third order initial

value problems based on the hybrid block method. Several applications are

investigated such as Blasius and the nonlinear Lane-Emden equations. In addition, we

study the consistency, zero stable, convergence, order, error constant, and region of

absolute stability of the proposed methods. We notice the following:

The proposed methods are consistent.

They are zero stable.

They are convergent.

They have high orders.

We found the region of absolute stability and the interval of stability for them.
Our numerical results show that the proposed methods are very accurate and
compete other methods such as RKM and homotopy analysis methods.

We generalize this technique to solve higher order differential initial value
problems.

We can combine this approach with the simple shooting method to solve
boundary value problems as we did in Section 4.3.

We can use this approach to solve more applications in Physics and

Engineering.
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