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Abstract  

 

Analytical solutions of differential equations are very important for all 

researchers from different discipline. Obtaining such solutions is difficult in most 

cases, especially if the differential equation is nonlinear. One of the mostly used 

methods are the series methods, where the solution is represented as an infinite series. 

Different methods are available to evaluate the terms of this series. These methods 

include the well-known Taylor series method, the Adomian decomposition method, 

the Homotopy iteration method, and the Homotopy analysis method. 

  In this thesis we give a survey of the different series methods available to solve 

initial and boundary value problems. The methods to be presented are the Taylor series 

method, the Adomina decomposition method, and the Homotopy analysis method. The 

main features of each method will be presented and the error analysis will be discussed 

as well. For the Homotopy analysis method, the error is controlled by introducing the 

parameter known as ℏ, then the error is controlled by monitoring the value of the 

solution at a specific point for different values of ℏ. This produces what is known as 

the ℏ curve. The mathematical foundation of this method is not very well established, 

and the method will not work at all times. The error for the Taylor series and the 

Adomian decomposition method is controlled by adding more terms to the series 

solution which might be costly and difficult to calculate especially if the differential 

equation is nonlinear.  

In this study we will show that the error can be controlled by other means. A 

modified Taylor series method has been developed and will be discussed. The method 

is based on controlling the error through different choices of the point of expansion. 

The mathematical foundation of the method and application of the method to 

differential equations with singularities and eigenvalue problems will be presented.    

 

Keywords: Adomian Decomposition Method, Homotopy Analysis Method, Modified 

Taylor series method. 
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Title and Abstract (in Arabic) 

 

 خطية باستخدام طريقة الهوموتوبي التحليليةلاحل المعادلات التفاضلية الحدية و ال

 الملخص

التحليلية للمعادلات التفاضلية مهمة جدا لجميع الباحثين من مختلف المجالات الحلول  

العلمية و من الصعب الحصول على مثل هذه الحلول في معظم الحالات، خاصة إذا كانت المعادلة 

يل الحل ية, حيث يتم تمثهق المتبعة طريقة المتسلسلات اللامنتائخطية. من هذه ألطرلا ليةالتفاض

المعروفة طريقة سلسلة تايلور، وطريقة  أدوميان  ألطرائقلسلة لا نهاية لها. ومن هذه باعتباره س

 التحليلية ، وطريقة هوموتوبي المتكرره والتحليلية. 

بالاخص طريقة سلسلة  ألطرائقسنقدم عرضا لمجموعة من هذه في هذه الأطروحة  

ية لكل ية. وستعرض السمات الرئيستايلور، وطريقة أدوميان التحليلية وطريقة هوموتوبي التحليل

تحكم بالخطأ هوموتوبي التحليلية ، يتم الالطريقة ل بالنسبة طريقة وسيتم مناقشة تحليل الخطأ أيضا. 

، ثم يتم التحكم بالخطأ من خلال رصد قيمة الحل عند ℏعن طريق إدخال المعلمة المعروفة باسم 

. التعليل  الرياضي ℏينتج عنه ما يعرف بمنحنى  مما، ℏنقطة محددة باستخدام  قيم مختلفة من 

وهذه الطريقة لا تعمل في بعض الحالات. بينما يتم التحكم  لهذه الطريقة ما زال غير مكتمل،

بالخطأ لسلسلة تايلور وطريقة أدوميان التحليلية بإضافة مزيد من الحدود للسلسلة التي قد تكون 

 خطية.لاادلة التفاضلية مكلفة وصعبة الحساب خاصة إذا كانت المع

في هذه الدراسة سوف نظهر أن الخطأ يمكن السيطرة عليه بوسائل أخرى. وقد تم   

تطوير طريقة تعديل سلسلة تايلور وسيتم مناقشتها. وتستند هذه الطريقة على السيطرة على الخطأ 

ه التحليل الرياضي لهذالتي يتم ايجاد السلسله حولها . وسنعرض  من خلال خيارات مختلفة للنقطة

 الطريقة وتطبيقها على المعادلات التفاضليةالحديه والمعادلات التفاضليه ذات القيم الذاتية.
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Chapter 1: Introduction 

 

Many scientific and engineering problems can be modeled by ordinary or partial 

differential equations which are mostly nonlinear differential equations. It is difficult to 

obtain closed form solutions for such problems. In most cases only approximate solutions 

either analytical ones or numerical ones can be obtained. For that reason, the nonlinear 

equations should be solved using special techniques. 

Recently, many researchers have been devoted to new developed methods to 

construct an analytic solution of non-linear equations. Such methods include the Taylor 

series method, the Adomian Decomposition method and the Homotopy Analysis method. 

Review of the solution of the ordinary differential equations with variable 

coefficients by the method of power series was discussed in [17, 39, 44]. Detailed analysis 

of the method and the basic definitions such as the regular and irregular singular points, 

radius of convergence, with some examples will be introduced in chapter two.   

The other widely used method to generate series solution for the differential 

equations is the Adomian Decomposition method. It was introduced first by Adomian in 

the early of 1980’s. It gives the solution as a rapid convergent infinite series with 

components that are elegantly computed. Since then, the method has been applied to wide 

class of equation [6, 7, 8, 9, 40]. A modified version of Adomian method was used to 

derive the analytic solution of ordinary differential equations in [43]. 
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Error analysis and convergence criterion of the method was investigated by many 

authors. In [17] Cherrualt and Adomian investigate the convergence of the method when 

applied to a special class of boundary value problems. However, in [18] it was shown that 

Adomian Decomposition method does not converge in general. In particular, if the method 

is applied to linear equations. 

Recently, many authors tried to modify ADM to accelerate the convergence of the 

series solution, simultaneously reduces the size of the work. Wazwaz proposed an efficient 

modification of the standard Adomian Decomposition method that improve convergence 

and reduce the error [42]. Also Abbasbandy suggested a modification of ADM in [4]. 

More details about the method and examples will be presented in chapter three. 

The third method that will be discussed in this thesis is the Homotopy Analysis 

method (HAM). This method is based on a continuous variation from an initial trial to the 

exact solution. It has been developed by the Chinese mathematician S.J. Liao in his PhD 

thesis in 1992 (see [29] and the reference there in). He derived the method, proved the 

convergence and developed the error criteria for the method. Recently the method has 

been employed by many authors to tackle certain class of initial value problems. For 

example, Liao [26] employed the method to generate an analytical solution for the Blasuis 

equation. He was able to generate 35 terms of the series expansion of the solution and the 

solution was accurate up to 6 decimal numbers. 

In [26], Liao applied the Homotopy analysis method, to study the temperature 

distributions of a laminar viscous flow over a semi-infinite flat plate. He was able to derive 
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up to 30 terms of the series solution of the problem. Allan and Syam [15] used the method 

to solve the non-homogenous Blasuis problem that describes the fluid flow over a moving 

surface. They used it to show that the problem has either no solution or one solution or 

two solutions. The existence and uniqueness of the solution depends on the flat plate 

relative velocity. 

Allan [11] used the Homotopy Analysis method to derive the Adomian 

Decomposition method. He proved that the Adomian Decomposition method is a special 

case of the Homotopy Analysis method. Lately, Allan and Haji [14] employed the same 

method to study the characteristics of nano-fluid flow over a moving flat plate. Liao and 

Chang [24] used the Homotopy Analysis method to derive a solution for the classical 

problem of nonlinear progressive waves in deep water. To further improve the 

convergence, he applied the Pade expansion. As a result, the calculated phase speed at the 

20th order approximation of the solution agrees well with previous perturbation solutions. 

Most of the examples presented are initial value problems, very little is known 

about the application of the method to boundary value problems. Allan and Hajji use the 

method to derive an analytical solution to multi-level boundary value problems derived 

from the flow through multi-channels porous media. 

Analysis of the method, its convergence and error analysis will be presented and 

several examples will be presented in chapter four to demonstrate the validity of the work.  

In chapter five, we will discuss a new method based on a modification of Tylor series 

approach to solve singular initial value problems and boundary value problems. The 
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method is based on expanding the solution at different choices of the expansion point.  

The solution then will be a function of both the independent variable 𝑥 and the expansion 

point 𝑥0. Study of the solution as the expansion point varies will be presented. 

Mathematical analysis of the method and error control will be discussed and several 

examples will be presented. Conclusion remarks are presented in Chapter six. 
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Chapter 2: Series solution about ordinary points 

 

Most differential equations, especially nonlinear ones, do not accept solutions 

which can be implicitly or explicitly defined in terms of elementary functions. However, 

the problem of finding solutions is not difficult. In fact, there are available numerical 

methods, series methods and graphical methods for solving DE’s. 

For certain differential equations, implicit solutions in terms of elementary functions can 

be found. However, it is frequently true that such implicit solutions are less useful than 

numerical or series ones. Implicit solutions are for most differential equations, are difficult 

to find. The subject of this chapter is the use of power series as a method for deriving 

solutions to linear and nonlinear ordinary differential equations. 

2.1 Introduction to a power series 

The basic idea of power series solution is to find the solution of the form 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

∞

𝑛=0

= 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + ⋯ + 𝑎𝑛(𝑥 − 𝑥0)𝑛 + ⋯             (2.1) 

where  𝑎0, 𝑎1, 𝑎2. , , , 𝑎𝑛 are constants to be determined, 𝑥0 is the domain of definition of 

the differential equation and 𝑥 is the independent variable. However, if infinitely many 

values of 𝑎𝑛′𝑠 are non-zeros, then the series is infinite and one should consider the 

convergence of the series. In what follows we will introduce some definitions that will be 

needed in this chapter. 
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2.1.1 Definition of a convergence  

A power series (2.1) is said to converge at a point 𝑥 if lim
𝑚→∞

∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛𝑚
𝑛=0 =

∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛∞
𝑛=0  exists. It is clear that the series converges for 𝑥 = 𝑥0, it may converge 

for all 𝑥, or it may converge for some values of 𝑥 and not for others. 

2.1.2 Definition of absolute convergence 

  The power series ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛∞
𝑛=0  is said to converge absolutely of  

∑ 𝑎𝑛|(𝑥 − 𝑥0)|𝑛∞
𝑛=0   Converges. One of the most useful tests for the absolute convergence 

of a power series is the ratio test. It states that for a fixed value of 𝑥 if 

|𝑥 − 𝑥0| lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = 𝑙,then the power series converges absolutely at that value of 𝑥 if 

𝑙 < 1, and diverges if     𝑙 > 1. If 𝑙 = 1 the test is inconclusive, i.e, the series may either 

converge or diverge. However, there is another method to test the absolute convergence 

that is if a power series converges at 𝑥 = 𝑥1, then it converges absolutely for all 𝑥 such 

that |𝑥 − 𝑥0| < |𝑥1 − 𝑥0|, and if it diverges at 𝑥 = 𝑥1, then it diverges for all 𝑥 such that 

|𝑥 − 𝑥0| > |𝑥1 − 𝑥0|. 

 2.1.3 Definition of radius of convergence 

The radius of convergence of a power series is defined to be the positive constant 

𝜌 such that the power series converges absolutely for |𝑥 − 𝑥0| < 𝜌 and diverges for 

|𝑥 − 𝑥0| > 𝜌. The interval 𝐼 = {𝑥: |𝑥 − 𝑥0| < 𝜌} is called the interval of convergence of 

the series. 
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2.2 Power series method for linear differential equation 

Consider the second-order linear differential equation, 

𝑎2(𝑥)𝑦 ′′(𝑥) + 𝑎1(𝑥)𝑦 ′(𝑥) + 𝑎0(𝑥)𝑦(𝑥) = 0                              (2.2) 

Suppose 𝑎2(𝑥) is nonzero for all x. Then we can divide throughout to obtain 

𝑦 ′′(𝑥) +
𝑎1(𝑥)

𝑎2(𝑥)
𝑦 ′(𝑥) +

𝑎0(𝑥)

𝑎2(𝑥)
𝑦(𝑥) = 0                                                                                      (2.3) 

Suppose that 
𝑎1

𝑎2
⁄  and 

𝑎0
𝑎2

⁄  are analytic functions at 𝑥0 , then we can derive the power 

series solution of the differential equation (2.2)  as follows. 

Let 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛                                                                                                           (2.4)

∞

𝑖=0

 

then  

𝑦′(𝑥) = ∑ 𝑛𝑎𝑛(𝑥 − 𝑥0)𝑛−1                                                                                                   (2.5)

∞

𝑖=1

 

and 

 𝑦′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−2                                                                                  (2.6)

∞

𝑖=2

 

Then replace 𝑦, 𝑦′, 𝑦′′, … in (2.2) one can solve for the coefficients 𝑎𝑖, 𝑖 = 1,2,3, … as it 

will be shown in the next example. 

 

Example [2.1]: Consider the differential equation 

 𝑦 ′′ − 𝑥𝑦 = 0                           (2.7) 
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𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ,     𝑦 ′(𝑥) = ∑ 𝑎𝑛𝑛𝑥𝑛−1∞

𝑛=1 ,      𝑦 ′′(𝑥) = ∑ 𝑎𝑛𝑛(𝑛 − 1)𝑥𝑛−2∞
𝑛=2  

Plugging 𝑦 and 𝑦 ′′ into the Eq (2.7) gives 

∑ 𝑎𝑛𝑛(𝑛 − 1)𝑥𝑛−2

∞

𝑛=2

− 𝑥 ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 0 

By making a shift in the index on the first sum the second sum leads to 

2𝑎2 + ∑(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2𝑥𝑘

∞

𝑘=1

− ∑ 𝑎𝑘−1𝑥𝑘

∞

𝑘=1

= 0 

Collecting powers of the same power of x leads to 

2𝑎2 + ∑[(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2−𝑎𝑘−1]𝑥𝑘

∞

𝑘=1

= 0 

If this series is a solution, then all these coefficients must be zero. Thus 

2𝑎2 = 0, or        𝑎2 = 0 

and 

(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2 − 𝑎𝑘−1 = 0 

or 

𝑎𝑘+2 =
𝑎𝑘−1

(𝑘+2)(𝑘+1)
               (2.8) 

For example, for 𝑘 = 1, 2, 3, … 

𝑎3 =
1

6
𝑎0 

𝑎4 =
1

12
𝑎1 

𝑎5 =
𝑎2

20
= 0 
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𝑎6 =
𝑎3

30
=

1

180
𝑎0 

Substituting these coefficients into the original power series for 𝑦(𝑥) gives 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

which we can break up into the sum of two linearly independent series solutions 

𝑦1(𝑥) = 𝑎0 [1 +
1

6
𝑥3 +

1

180
𝑥6 + ⋯ ] 

𝑦2(𝑥) = 𝑎1 [𝑥 +
1

12
𝑥4 +

1

504
𝑥7 + ⋯ ] 

and 

𝑦(𝑥) = 𝑦1(𝑥) + 𝑦2(𝑥) 

thus 

𝑦(𝑥) = 𝑎0 [1 +
1

6
𝑥3 +

1

180
𝑥6 + ⋯ ] + 𝑎1 [𝑥 +

1

12
𝑥4 +

1

504
𝑥7 + ⋯ ] 

The coefficients a0 and 𝑎1 can be determined using the initial conditions. It is worth 

mentioning that it is always possible to find the recurrence relation similar to (2.8) in all 

cases of linear differential equations.   

 

Example [2.2]: Consider the following IVP, [10] 

𝑒𝑥𝑦′′(𝑥) + 𝑥𝑦(𝑥) = 0                                (2.9) 

with the initial conditions 

𝑦(0) = 𝐴, 𝑦′(0) = 𝐵 

We can introduces the solution of the Taylor series by an infinite series given 
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𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                           (2.10) 

Substituting Eq (2.10) into both sides of Eq (2.9) gives 

𝑒𝑥 (∑ 𝑛(𝑛 − 1)

∞

𝑛=0

𝑎𝑛𝑥𝑛−2) = − ∑ 𝑎𝑛𝑥𝑛+1

∞

𝑛=0

 

or, equivalently 

(1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ ) (2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2+. . )

+ 𝑥(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3+. . ) = 0 

Thus 

2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + ⋯ + 2𝑎2𝑥 + 6𝑎3𝑥2 + 12𝑎4𝑥3 + ⋯ + 𝑎2𝑥2 + 3𝑎3𝑥3 + 6𝑎4𝑥4

+ ⋯ + 𝑎0𝑥 + 𝑎1𝑥2 + 𝑎2𝑥3 + 𝑎3𝑥4 = 0 

The coefficients 𝑎𝑛, 𝑛 ≥ 0, are determined by equating coefficients of like powers of x 

through recurrence relation. It is clear that the recurrence relation is difficult to derive. 

Alternatively, we multiply the series, term by term to find 

2𝑎2 + (6𝑎3 + 2𝑎2 + 𝑎0)𝑥 + (12𝑎4 + 6𝑎3 + 𝑎2 + 𝑎1)𝑥2 + (12𝑎4 + 3𝑎3 + 𝑎2)𝑥3 +

⋯ = 0 

Now 

𝑎0 = 𝐴,       𝑎1 = 𝐵,      𝑎2 = 0,      𝑎3 = −
1

6
𝑎0,        𝑎4 =

1

12
(𝐴 − 𝐵) 

Thus, 𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + ⋯ 

                      = 𝐴 + 𝐵𝑥 +
−1

6
𝐴𝑥3 +

1

12
(𝐴 − 𝐵)𝑥4 + ⋯ 

                      = 𝑦1(𝑥) + 𝑦2(𝑥) 
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where 

𝑦1(𝑥) = [1 −
1

6
𝑥3 +

1

12
𝑥4 + ⋯ ] 𝐴 

and 

𝑦2(𝑥) = [𝑥 −
1

12
𝑥4 + ⋯ ] 𝐵 

2.3 Power series method for nonlinear differential equation 

For the nonlinear differential equations the approach is the same as the linear case. 

However, calculating the coefficients 𝑎𝑛′𝑠 of the series solution is a little bit more 

difficult. In the next examples, we will suggest a new approach to find the coefficients 

that will reduce the calculation time and make it easier for the use of software such as 

Mathematica or Matlab.  

 

Example [2.3]: Consider the nonlinear linear differential equation 

𝑦 ′ + 𝑦2 = 1,          𝑦(0) = 2                     (2.11) 

Which has an exact solution given by 

𝑦(𝑥) =
1 + 3𝑒2𝑥

−1 + 3𝑒2𝑥
    

Now let  𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯      

then, 

 𝑦 ′(𝑥) = ∑ 𝑎𝑛𝑛𝑥𝑛−1∞
𝑛=1  

Plugging 𝑦 and 𝑦 ′ into the Eq (2.11) gives 



12 

 

 

 

 

(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ ) + (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ )(𝑎0 + 𝑎1𝑥 +

𝑎2𝑥2 + ⋯ ) = 1  

And after simplification it becomes 

(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ ) + (𝑎0
2 + 𝑎0𝑎1𝑥 + 𝑎0𝑎2𝑥2 + 𝑎0𝑎3𝑥3 + ⋯ + 𝑎0𝑎1𝑥

+ 𝑎1
2𝑥2 + 𝑎1𝑎2𝑥3 + 𝑎1𝑎3𝑥4 + ⋯ + 𝑎0𝑎2𝑥2 + 𝑎1𝑎2𝑥3 + 𝑎2

2𝑥4 + 𝑎2𝑎3𝑥5

+ ⋯ + 𝑎0𝑎3𝑥3 + 𝑎1𝑎3𝑥4 + 𝑎2𝑎3𝑥5 + 𝑎3
2𝑥6 + ⋯ = 1  

The terms can be rearranged as 

(𝑎1 + 𝑎0
2) + (2𝑎2 + 2𝑎0𝑎1)𝑥 + (3𝑎3 + 2𝑎0𝑎2 + 𝑎1

2)𝑥2 + (4𝑎4 + 2𝑎0𝑎3 + 2𝑎1𝑎2) …

= 1  

This equating the coefficient of each power of x with 0 leads to 

𝑎1 + 𝑎0
2 = 1, or                        𝑎1 = 1 − 𝑎0

2 

2𝑎2 + 2𝑎0𝑎1 = 0, or                𝑎2 = 𝑎0
3 − 𝑎0  

Similarly 

3𝑎3 + 2𝑎0𝑎2 + 𝑎1
2 = 0, or        𝑎3 =

1

3
(−3𝑎0

4 + 4𝑎0
2 − 1)  

Then the solution in a series form will be 

𝑦(𝑥)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

𝑦(𝑥)=𝑎0 + (1 − 𝑎0
2)𝑥 + (𝑎0

3 − 𝑎0)𝑥2 +
1

3
(−3𝑎0

4 + 4𝑎0
2 − 1)𝑥3 + ⋯   

The coefficient 𝑎0 can be found using the initial condition. If for example we assume that 

𝑦(0) = 2, then 𝑎0 = 2,  𝑎1 = −3,… which leads to the power series solution  

𝑦(𝑥)= 2 − 3𝑥 + 6𝑥2 − 11𝑥3 + ⋯   
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As mentioned earlier, the calculations of the coefficients 𝑎𝑛 will more complicated 

and difficult especially if the method is applied to a higher order differential equation with 

sever nonlinear terms. In addition, it will be very difficult to write a computer program to 

evaluate the coefficients using procedures describes above.  This initiates a need to 

develop a new approach to solve for the coefficients. The new approach will be described 

in the next example. 

New approach for evaluating the coefficients 

Consider the nonlinear differential equation described example [2.3] solve the 

ODE using the power series method, we set 

𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0        =𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

and 

𝑦′(𝑥) = ∑ 𝑎𝑛𝑛𝑥𝑛−1∞
𝑛=1 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯   

Plugging 𝑦 and 𝑦′ into the ODE gives 

=(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ ) + (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ )(𝑎0 + 𝑎1𝑥 +

𝑎2𝑥2 + ⋯ ) = 1                     (2.12) 

Setting 𝑥 = 0 in Eq (2.12) gives 

𝑎1 + 𝑎0
2 = 1, then 𝑎1 = 1 − 𝑎0

2 

then differentiate Eq (2.12) with respect to 𝑥 leads to 

(2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + ⋯ ) + (𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 𝑎3𝑥3 + ⋯ )(𝑎0 + 𝑎1𝑥 +

𝑎2𝑥2 + ⋯ ) + (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ )(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 𝑎3𝑥3 +

      … ) = 0                                                                                                                         (2.13) 
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and set 𝑥 = 0 implies 

2𝑎2 + (𝑎1. 𝑎0) + (𝑎0. 𝑎1) = 0  

2𝑎2 + 2𝑎0𝑎1 = 0, then 𝑎2 = −𝑎0𝑎1  

𝑎2 = −𝑎0(1 − 𝑎0
2) 

and 

𝑎2 = (−𝑎0 + 𝑎0
3) 

Differentiate Eq (2.13) with respect to 𝑥 again and set 𝑥 = 0 implies 

6𝑎3 + (2𝑎2. 𝑎0) + (𝑎1. 𝑎1) + (𝑎1. 𝑎1) + (𝑎0. 2𝑎2) = 0 

or 

𝑎3 =
1

3
(4𝑎0

2 − 3𝑎0
4 − 1) 

Then the solution will be 

𝑦(𝑥)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯   

𝑦(𝑥)=𝑎0 + (1 − 𝑎0
2)𝑥 + (𝑎0

3 − 𝑎0)𝑥2 +
1

3
(−3𝑎0

4 + 4𝑎0
2 − 1)𝑥3 + ⋯   

The above mentioned technique can be programed easily using Mathematica to solve the 

nonlinear differential equations in general. The solution of example [2.3] is presented in 

figure 2.1 which shows the series solution and the exact solution together, while figure 

2.2 represents the error over the interval [0, 0.4]. Table 2.1 is the list of error values over 

the same interval for the same example.   
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Figure 2.2: The error solution for the nonlinear differential equation 
 

Figure 2.1: The exact and the power series solution for the nonlinear 

differential equation 
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𝑥𝑖 Exact solution  Error solution  

0 2 0 

0.1 1.75069 1.78913 × 10−6 

0.2 1.57546 5.21129 × 10−12 

0.3 1.44779 1.74146 × 10−7 

0.4 1.35205 0.000276044 

0.5 1.27953 0.0826308 

 

Table 2.1: The exact solution and the error over the interval [0, 0.5] 

 

Example [2.4]: Consider the nonlinear DE  

𝑦′ =
𝑦2

1−𝑥𝑦 
,               𝑦(0) = 1                                                                                      (2.14) 

Substituting Eq (2.10) into Eq (2.14) yields 

∑ 𝑛

∞

𝑛=1

𝑎𝑛𝑥𝑛−1 = (∑ 𝑎𝑛𝑥𝑛+1) (∑ 𝑛

∞

𝑛=1

𝑎𝑛𝑥𝑛−1) + (∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

)

2∞

𝑛=0

 

or, equivalently we can write Eq (2.14) as 

𝑦′ − 𝑥𝑦𝑦′ − 𝑦2 = 0                                  (2.15) 

let 

𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ,          𝑦′(𝑥) = ∑ 𝑎𝑛𝑛𝑥𝑛−1∞

𝑛=1          

Plugging 𝑦 and 𝑦′ into the Eq (2.15) gives 
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=(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ ) − 𝑥(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ )(𝑎1 +

2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎4𝑥3 + ⋯ ) − (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3+. . )(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +

𝑎3𝑥3+. . ) = 0  

Therefore 

𝑎0 = 1,        𝑎1 − 𝑎0
2 = 0,         𝑎1 = 𝑎0

2,          𝑎1 = 1,          𝑎2 =
3

2
,          𝑎3 =

8

3
   

Therefore 

𝑦(𝑥) = 1 + 𝑥 +
3

2
𝑥2 +

8

3
𝑥3 + ⋯ 
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Chapter 3: Adomian Decomposition Method 

3.1 Introduction 

The Adomian decomposition method  has proven to be very efficient in handling 

many problems in various fields of science and engineering such as physical and 

biological problems which can be modeled by differential equations that can be easily 

solved by Adomian’s method. For example Al-Khaled and Allan [22] applied ADM to 

solve Voltera Fredholm equation. Abbasbandy and Darvishi used Adomian 

decomposition method to solve Burger-equation [4]. Other examples of the use of the 

Adomian Decomposition method can be found in [12-15]. 

The method it has been extended by Wazwaz to solve Voltera integral equation, 

Tan and Abbasbandy applied ADM to solve quadratic Riccati differential equation [40], 

recently Kamel Al-Khalid and Fathi Allan [13, 21] developed the ideas of Wazwaz study 

and applied it to high order nonlinear Voltera Fredholm differential equation. 

The basic idea of ADM  consists of splitting the given equation into two parts, 

linear part  and nonlinear part, inverting the operator  of the highest-order derivative 

contained on both sides in the linear operator, identifying the boundary or the initial 

conditions and the terms that involving the independent variables alone as initial 

approximation, decomposition the unknown function into a series whose components are 

to be determined, decomposing the nonlinear function in terms of special polynomials 
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called Adomian’s polynomials, then finding the successive terms of the series solution by 

recurrent relation using Adomian polynomials.   

The Adomian Decomposition method has many advantages. The main advantage 

of the method is that it can be applied directly for all types of differential and integral 

equations linear and nonlinear, homogeneous or inhomogeneous, with constant 

coefficients or with variable coefficients. 

Another advantage is that the method is capable to reduce the size of 

computational work without reducing the high accuracy of the numerical solution. 

Moreover one of the disadvantages of this method is that it gives a good approximation 

only in the neighborhood of the initial time, as it will be shown later. In addition, Allan 

[11] proved that the solution given by ADM is just a special case of the Homotopy 

Analysis method which will be discussed in the next chapter.  

 

3.2 Adomain Decomposition method for nonlinear differential equation 

Consider the differential equation 

𝐹(𝑥, 𝑦(𝑥)) = 0            (3.1) 

which can be split in two components  

  𝐿(𝑦(𝑥)) + 𝑁(𝑦(𝑥)) = 0            (3.2)                                       

where Ν and 𝐿 are the nonlinear and the linear parts of 𝐹. The operator 𝐿 is assumed to be 

an invertible operator. Solving for 𝐿(𝑦) leads to 

𝐿(𝑦) = −𝑁(𝑦)                          (3.3) 
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Applying the inverse operator of Eq (3.3) leads to 

𝑦(𝑥) = −𝐿−1(𝑁(𝑦)) + 𝜗(𝑥)                       (3.4) 

where 𝜗(𝑥) is the constant of integration which satisfies the condition 𝐿(𝜗) = 0. Now 

assuming that the solution 𝑦(𝑥) can be represented as infinite series of the form 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)

∞

𝑛=0

                                                                                                                      (3.5) 

Furthermore, suppose that the nonlinear term 𝑁(𝑦) can be written as infinite series in 

terms of the Adomain polynomials 𝐴𝑛of the form 

𝑁(𝑦) = ∑ 𝐴𝑛

∞

𝑛=0

                                                                                                                           (3.6) 

where the Adomain polynomials 𝐴𝑛 of 𝑁(𝑦) are evaluated using the following formula: 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
𝑁 (∑(𝜆𝑛𝑦𝑛))

∞

𝑛=0

|

𝜆=0

 

Then substituting Eqs (3.5) and (3.6) in Eq (3.4) gives 

∑ 𝑦𝑛(𝑥) = 𝜗(𝑥) − 𝐿−1(∑ 𝐴𝑛) 

∞

𝑛=0

∞

𝑛=0

                                                                                         (3.7) 

Then equating the terms in the linear system of Eq (3.7) gives the recurrent relation 

𝑦0(𝑥) = 𝜗(𝑥)𝑦𝑛+1 = −𝐿−1(𝐴𝑛)        𝑛 ≥ 0  

Then, the solution will be estimated as 𝑦(𝑥) = ∑ 𝑦𝑛(𝑥).𝑁
𝑛=0  In the following sections we 

will provide some application of the ADM to certain class of DEs. 
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3.3 Numerical Results 

Example [3.3a]: Consider the nonlinear DE. 

𝑦′(𝑡) + 𝑦2(𝑡) = −1 

 with initial condition  𝑦(0) = 0  

To solve this problem, the highest degree differential operator (written here as 𝐿) is put 

on the left side, in the following way 

𝐿(𝑦) = −1 − 𝑦2 

with 𝐿 =
𝑑

𝑑𝑡
 and 𝐿−1 = ∫ (. )𝑑𝑥

𝑡

0
 

Assume the solution of the form 

𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ 

Replacing in the previous expression, we obtain 

(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ ) = 𝜗(𝑥) + 𝐿−1[−1 − (𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ )2] 

Now we identify 𝑦0 with some explicit expression on the right, and 𝑦𝑖,  𝑖 = 1, 2, 3, … 

with some expression on the right containing terms of lower order than 𝑖. For instance, 

𝑦0 = 𝑦(0) + 𝐿−1(−1) = −𝑡 

𝑦1 = −𝐿−1(𝐴0) = −𝐿−1(𝑦0
2) = −𝐿−1(𝑡2) = − 𝑡3 3⁄  

𝑦2 = −𝐿−1(𝐴1) = −𝐿−1(2𝑦0𝑦1)   = −2 𝑡5 15⁄  

𝑦3 = −𝐿−1(𝑦1
2 + 2𝑦0𝑦2)     = −17 𝑡7 315 ⁄  

In this way any contribution can be explicity calculated at any order. If we settle for the 

four first terms, the approximant is the following 
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𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ 

   = − [𝑡 +
1

3
𝑡3 +

2

15
𝑡5 +

17

315
𝑡7 + ⋯ ] 

 

Example [3.3b]: Consider the nonlinear differential equation 

𝑦′(𝑡) + 𝑦2(𝑡) = 1 ,                   𝑦(0) = 2  

Solution 

The differential equation can be split into the two parts 𝐿(𝑦) = 𝑦′ − 1 and 𝑁(𝑦) = −𝑦2, 

where 𝐿 =
𝑑

𝑑𝑡
, and 𝐿(𝑦) = −𝑁(𝑦) 

Let 

𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ 

then 

(𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ ) = 𝑦(0) + 𝐿−1[−1 − (𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ )2] 

𝑦0 = 𝑦(0) + 𝐿−1(1) = (2 + 𝑡) 

𝑦1 = −𝐿−1(𝑦0
2) = −(𝐿−1(2 + 𝑡)2) = − (4𝑡 + 2𝑡2 +

𝑡3

3
) 

𝑦2 = −𝐿−1(2𝑦0𝑦1) = − 𝐿−1(2(2 + 𝑡) ( −4𝑡 − 2𝑡2 −
𝑡3

3
)

= − (−8𝑡2 −
16

3
𝑡3 −

4

3
𝑡4 + ⋯ ) 

𝑦3 = −𝐿−1(𝑦1
2 + 2𝑦0𝑦2)   = − (

48

3
𝑡3 +

142

12
𝑡4 + ⋯ ) 

then 
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𝑦 = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + ⋯ 

    = [2 − 3𝑡 + 6𝑡2 − 11𝑡3 + ⋯ ] 

 

Example [3.3c]: Consider the nonlinear ordinary differential equation [11] given by 

𝑦′ =
𝑦2

1−𝑥𝑦
 , 𝑦(0) = 1             (3.8)                             

Using the ADM, Eq (3.8) can be written as  

𝑦′(1 − 𝑥𝑦) = 𝑦2 

𝑦′ = 𝑥𝑦𝑦′ + 𝑦2 

𝐿(𝑦) = 𝑥𝑦𝑦′ + 𝑦2            (3.9) 

Applying 𝐿𝑥
−1 to both sides of Eq (3.9) and using the initial condition we find 

𝑦 = 𝐿−1(−𝑁(𝑦)). Now, let 𝐿(𝑦) = 0. Then 𝐿−1(𝑥𝑦𝑦′) + 𝐿−1(𝑦2) = 0 

thus 

𝑦(𝑥) = 1 + 𝐿−1(𝑥𝑦𝑦′) + 𝐿−1(𝑦2) 

𝑦(𝑥) = 1 + 𝑥𝐿−1(∑ 𝐴𝑛

∞

𝑛=0

) + 𝐿−1 (∑ 𝐵𝑛

∞

𝑛=0

) 

The decomposition method expands each of the nonlinear terms 𝑦𝑦′ and 𝑦2 formally in a 

power series, given by 

𝑦𝑦′ = 𝐴0 + 𝐴1 + 𝐴2 + 𝐴3 + ⋯ = ∑ 𝐴𝑛

∞

𝑛=0

  

𝑦2   = 𝐵0 + 𝐵1 + 𝐵2 + 𝐵3 + ⋯ = ∑ 𝐵𝑛 

∞

𝑛=0
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where 𝐴𝑛 and 𝐵𝑛 are so called Adomian polynomials corresponding to the nonlinear terms 

𝑦𝑦′and 𝑦2, respectively, and 

𝐴0 = 𝑦0𝑦0
′ = 1(0) = 0 

𝐵0 = 𝑦0
2 = (1)2 = 1 

thus 

𝑦1 = 𝐿𝑥
−1(𝑥𝐴0) + 𝐿𝑥

−1(𝐵0) = 𝑥  

𝐴1 =
𝑑

𝑑𝜆
[(𝑦0 + 𝜆𝑦1)(𝑦0 + 𝜆𝑦1)′] 

         = [𝑦1(𝑦0 + 𝜆𝑦1)′ + (𝑦0 + 𝜆𝑦1)𝑦1
′ ]                                                                            (3.10) 

Substitute 𝜆 = 0 in (3.10) implies 

 𝐴1 = [𝑦1(𝑦0)′ + (𝑦0)𝑦1
′ ] 

thus 

𝐵1 =
𝑑

𝑑𝜆
[(𝑦0 + 𝜆𝑦1)2]     = 2(𝑦0 + 𝜆𝑦1)𝑦1                                                                      (3.11) 

substitute 𝜆 = 0, in (3.11) implies 

𝐵1  = 2𝑦0𝑦1 

𝑦2  = 𝐿𝑥
−1(𝑥𝐴1) + 𝐿𝑥

−1(𝐵1) =
3𝑥2

2
 

𝐴2 =
𝑑2

𝑑𝜆2
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)′] 

        = (2𝑦2)(𝑦0
′ + 𝜆𝑦1

′ + 𝜆2𝑦2
′ ) + (𝑦1 + 2𝜆𝑦2)(𝑦1

′ + 2𝜆𝑦2
′ ) + (𝑦1 + 2𝜆𝑦2)  (𝑦1

′ +

               2𝜆𝑦2
′ ) + (𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(2𝑦2

′ )                                                                        (3.12) 

substitute 𝜆 = 0, in (3.12) implies 
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 𝐴2  = 2𝑦2𝑦0
′ + 2𝑦1𝑦1

′ + 2𝑦0𝑦2
′  

 𝐵2  =
𝑑2

𝑑𝜆2
[(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)2] 

 𝐵2  =
𝑑

𝑑𝜆
2(𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(𝑦1 + 2𝜆𝑦2) 

 𝐵2 = 2(𝑦1 + 2𝜆𝑦2)(𝑦1 + 2𝜆𝑦2) + (𝑦0 + 𝜆𝑦1 + 𝜆2𝑦2)(2𝑦2)                                      (3.13) 

Substitute 𝜆 = 0 in (3.13), implies 

𝐵2 = 2𝑦1
2 + 4𝑦0𝑦2 

𝑦3 = 𝐿𝑥
−1(𝑥𝐴2) + 𝐿𝑥

−1(𝐵2) =
8

3
𝑥3 

The solution of Eq (3.8) in a series form is therefore 

𝑦(𝑥) = 1 + 𝑥 +
3

2
𝑥2 +

8

3
𝑥3 + ⋯                                                                                         

From the above discussion we can verified, the components 𝑦0, 𝑦1, 𝑦2, … were determined 

easily in a recurrent way. Only simple integrals were used in the computational work. It 

was indicated that the accuracy can be improved by adding more terms. 
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Chapter 4: Homotopy Analysis Method (HAM) 

4.1 Introduction 

The Homotopy Analysis method , which was first introduce in 1992 by Liao [24, 

26, 28] , is another method used to derive an analytic solution for nonlinear operators. It 

consists of introducing embedding parameters and embedding operators where the 

solution is assumed to depend continuously on these parameters. The method has been 

used by several authors and proved to be very effective in deriving an analytic solution of 

nonlinear differential equations   [1, 2, 25, 29, 30]. 

4.2 The Homotopy Analysis method for the solution of 𝒚(𝒙) = 𝟎 

To explain HAM, consider a nonlinear equation 

𝑦(𝑥) = 0                   (4.1) 

First of all we construct such a Homotopy 

𝜇[𝑥, 𝑞] = (1 − 𝑞)[𝑦(𝑥) − 𝑦(𝑥0)] + 𝑞𝑦(𝑥)                 (4.2) 

where (𝑥0) is an initial guess and (𝑞) is called Homotopy parameter, or including 

parameter. 

Now, at 𝑞 = 0 and 𝑞 = 1, one can get 

𝜇[𝑥, 1] = 𝑦(𝑥), and 𝜇(𝑥, 0) = 𝑦(𝑥) − 𝑦(𝑥0) 

Thus as q increases from 0 to1, 𝜇[𝑥, 𝑞] varies continuously from 𝑦(𝑥) − 𝑦(𝑥0) to 𝑦(𝑥) 

Now let 𝜇(𝑥, 𝑞) = 0 
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(1 − 𝑞)[𝑦(𝑥) − 𝑦(𝑥0)] + 𝑞𝑦(𝑥) = 0       (4.3) 

Since the above family of algebraic equations depends on the Homotopy parameter q, then 

we can set 𝑥 = ∅(𝑞), 

then (4.3) can be written as 

(1 − 𝑞)[𝑦(∅(𝑞)) − 𝑦(𝑥0)] + 𝑞𝑦(∅(𝑞)) = 0       (4.4)    

At 𝑞 = 0 we have 

𝑦(∅(0)) − 𝑦(𝑥0) = 0 

We may take ∅(0) = 𝑥0, then the function ∅(𝑞) agrees with the initial approximation at 

𝑞 = 0 

More over at 𝑞 = 1, we have 𝑦(∅(1)) = 0, then ∅(1) is a solution of the nonlinear 

algebraic equation.  

Therefore, as the Homotopy parameter 𝑞 increases from 0 to 1, ∅(𝑞) varies from initial 

guess (𝑥0) to the solution of 𝑦(𝑥) = 0. 

Equations like (4.4) is called a zeroth-order deformation equation. 

Now, expand ∅(𝑞) as a Maclurian series, gives the Homotopy series 

∅(𝑞) = 𝑥0 + ∑ 𝑥𝑘𝑞𝑘∞
𝑘=1           (4.5) 

Let 𝑥𝑘 = 𝐷𝑘(∅), Where 𝐷𝑘(∅) is called the 𝑘𝑡ℎ-order homotopy derivatives of ∅ 

then, 

 𝑥𝑘 =
1

𝑘!

𝜕𝑘∅(𝑞)

𝜕𝑞𝑘
|

𝑞=0
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According to the theory of Taylor series, this power series is unique as one regards 𝑞 as a 

small parameter. 

If the Homotopy series (4.5) is convergent at 𝑞 = 1, then using the relationship ∅(1) = 𝑥, 

one has the so called Homotopy series solution  

𝑥 = 𝑥0 + ∑ 𝑥𝑘

∞

𝑘=1

 

Now, by taking the first order Homotopy derivative on both sides of the zeroth order 

Homotopy derivative equation (4.4) gives the so called first order deformation equation: 

𝑥1𝑦′(𝑥0) + 𝑦(𝑥0) = 0, then 𝑥1 =
−𝑦(𝑥0)

𝑦′(𝑥0)
 

After that, if we take the second order Homotopy derivative on both sides of the zeroth 

order deformation equation (4.4), which means differentiate twice with respect to 𝑞, then 

divide by 2! and finally set 𝑞 = 0, we get  𝑥2𝑦′(𝑥0) +
1

2
𝑥1

2𝑦′′(𝑥0) = 0 

whose solution is 𝑥2 =
−𝑥1

2𝑦′′(𝑥0)

2𝑦′(𝑥0)
=

−𝑦2(𝑥0)𝑦′′(𝑥0)

2[𝑦′(𝑥0)]3
 

Finally, the first order Homotopy series approximation, 

𝑥 ≅ 𝑥0 + 𝑥1, and the second order Homotopy series approximation 𝑥 ≅ 𝑥0 + 𝑥1 + 𝑥2 

To control the radius of convergence of the series solution, Liao introduced an auxiliary 

parameter ℏ ≠ 0. 

The new kind of zeroth order deformation equation becomes like 

(1 − 𝑞){𝑦(∅(𝑞)) − 𝑦(𝑥0)} = 𝑞ℏ𝑦(∅(𝑞))        (4.6) 
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Now we have the corresponding first order deformation equation by taking first order 

Homotopy derivative on both sides of (4.6) and setting 𝑞 = 0 leads to 

 𝑥1𝑦′(𝑥0) − ℏ𝑦(𝑥0) = 0 

Therefore, 𝑥1 =
ℏ𝑦(𝑥0)

𝑦′(𝑥0)
 

By the same way if we take the second order Homotopy derivative on both sides of (4.4) 

we can have the corresponding second order deformation equation 

𝑥2𝑦′(𝑥0) − (1 + ℏ)𝑥1𝑦′(𝑥0) +
1

2
𝑥1

2𝑦′′(𝑥0) = 0 

On the other hand 𝑥1 and 𝑥2 given by (4.4) are special case of 𝑥1 and 𝑥2 given by (4.6) 

with ℏ = −1. 

4.3 The Homotopy Analysis method for the solution of the nonlinear differential 

equation 

Consider the differential equation 

𝑁[𝑦(𝑥)] + 𝐿[𝑦(𝑥)] = 0 

where 𝑁 is a nonlinear operator, 𝑥 denotes the independent variables and 𝑦 is the unknown 

function. 

By the means of HAM 

(1 − 𝑞)𝐿[(∅(𝑥; 𝑞) − 𝑦0(𝑥)] = 𝑞ℏ[𝑁[∅(𝑥; 𝑞)] + 𝐿[∅(𝑥; 𝑞)]]           (4.7) 
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Where 𝑞 ∈ [0, 1] is the embedding parameter, ℏ ≠ 0 is an auxiliary parameter used to 

control the error, 𝐿 is an auxiliary linear operator, ∅(𝑥, 𝑞) is an unknown function, 𝑦0(𝑥) 

is an initial guess. 

 When the embedding parameter 𝑞 = 0 and 𝑞 = 1, equation (4.7) becomes ∅(𝑥; 0) =

𝑦0(𝑥) and ∅(𝑥; 1) = 𝑦(𝑥). 

Now, as 𝑞 increase from 0 to 1, the solution will be change from the initial guess 𝑦0(𝑥) 

to the solution 𝑦(𝑥). 

By expanding ∅(𝑥; 𝑞) in Taylor series with respect to q,  

∅(𝑥; 𝑞) = 𝑦0(𝑥) + ∑ 𝑦𝑚(𝑥)𝑞𝑚,

∞

𝑚=1

 

where 𝑦𝑚(𝑥) =
1

𝑚!

𝜕𝑚∅(𝑥;𝑞)

𝜕𝑞𝑚
|𝑞=0

 

If the auxiliary parameter ℏ is convergent at 𝑞 = 1, then  

𝑦(𝑥) = 𝑦0(𝑥) + ∑ 𝑦𝑚(𝑥)

∞

𝑚=1

 

which must be the original solution of the nonlinear equation. 

4.4 Examples of HAM 

Example [4.1]: Consider the nonlinear problem 𝑦′ − 𝑦2 = 0,         𝑦(0) = 1 

Let, 𝐿(𝑦) = 𝑦′ 

then, 𝑦0
′ (𝑥) = 0,       𝑦0 = 𝐴,       𝐴 = 1,      𝑦0(𝑥) = 1 

(1 − 𝑞)( 𝑦′(𝑥) − 𝑦0
′ (𝑥)) = ℏ𝑞(𝑦′(𝑥) − 𝑦2(𝑥)) 



31 

 

 

 

 

𝑦 = 𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ 

(1 − 𝑞)(𝑦0
′ + 𝑦1

′ 𝑞 + 𝑦2
′ 𝑞2 + 𝑦3

′ 𝑞3 + ⋯ − 𝑦0
′ (𝑥))

= ℏ𝑞((𝑦0
′ + 𝑦1

′ 𝑞 + 𝑦2
′ 𝑞2 + 𝑦3

′ 𝑞3 + ⋯ )

− (𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ )2) 

From the first derivative 

(−1)(𝑦1
′ 𝑞 + 𝑦2

′ 𝑞2 + 𝑦3
′ 𝑞3 + ⋯ ) + (1 − 𝑞)(𝑦1

′ + 2𝑦2
′ 𝑞 + 3𝑦3

′ 𝑞2 + ⋯ )

= ℏ(𝑦0
′ + 𝑦1

′ 𝑞 + 𝑦2
′ 𝑞2 + 𝑦3

′ 𝑞3 + ⋯ − (𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ )2)

+ ℏ𝑞 (𝑦1
′ + 2𝑦2

′ 𝑞 + 3𝑦3
′ 𝑞2 + ⋯

− 2((𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ ) − (𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2 + ⋯ ))) 

Take 𝑞 = 0, to get 

𝑦1
′ = ℏ𝑦0

′ − ℏ𝑦0
2 

𝑦1
′ = −ℏ𝑦0

2 = −ℏ 

𝑦1 = −ℏ𝑥 + 𝑐             

Since 𝑦1(0) = 0,           𝑐 = 0 

𝑦1 = −ℏ𝑥 

From the second derivative 
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(−1)(𝑦1
′ + 2𝑦2

′ 𝑞 + 3𝑦3
′ 𝑞2 + ⋯ ) + (1 − 𝑞)(2𝑦2

′ + 6𝑦3
′ 𝑞)

+ (−1)(𝑦1
′ + 2𝑦2

′ 𝑞 + 3𝑦3
′ 𝑞2 + ⋯ )

= ℏ((𝑦1
′ + 2𝑦2

′ 𝑞 + 3𝑦3
′ 𝑞2 + ⋯ )

− 2(𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ )(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2 + ⋯ ))

+ ℏ((𝑦1
′ + 2𝑦2

′ 𝑞 + 3𝑦3
′ 𝑞2 + ⋯ )

− 2(𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ )(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2 + ⋯ ))

+ ℏ𝑞(2𝑦2
′ + 6𝑦3

′ 𝑞 + ⋯ ) 

Take 𝑞 = 0 

−𝑦1
′ + 2𝑦2

′ − 𝑦1
′ = ℏ𝑦1

′ − 2𝑦0𝑦1ℏ + ℎ𝑦1
′ − 2𝑦0𝑦1ℏ 

2𝑦2
′ = 2𝑦1

′ + 2ℏ𝑦1
′ − 4𝑦0𝑦1ℏ 

𝑦2
′ = 𝑦1

′ + ℏ𝑦1
′ − 2𝑦0𝑦1ℏ 

𝑦2 = −ℏ𝑥 + 1 + ℏ(−ℏ𝑥) − 2(1)(−ℏ𝑥)ℏ 

𝑦2    = −ℏ𝑥 − ℏ2𝑥 + ℏ2𝑥2 

Then the third derivative 
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(−1)(2𝑦2
′ + 6𝑦3

′ 𝑞 + ⋯ ) + (−1)(2𝑦2
′ + 6𝑦3

′ 𝑞 + ⋯ ) + (1 − 𝑞)(6𝑦3
′ + ⋯ )

+ (−1)(2𝑦2
′ + 6𝑦3

′ 𝑞 + ⋯ )

= ℏ((2𝑦2
′ + ⋯ )

− 2(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞3 + ⋯ )(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2 + ⋯ )

− 2(𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + 𝑦3𝑞3 + ⋯ )(2𝑦2 + 6𝑦3𝑞 + ⋯ ))

+ ℏ((2𝑦2
′ + 6𝑦3

′ 𝑞 + ⋯ )

− 2(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2 + ⋯ )(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2)

− 2(𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + ⋯ )(2𝑦2 + 6𝑦3𝑞 + ⋯ ))

+ ℏ((2𝑦2
′ + 6𝑦3

′ 𝑞 + ⋯ )

− 2(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2 + ⋯ )(𝑦1 + 2𝑦2𝑞 + 3𝑦3𝑞2)

− 2(𝑦0 + 𝑦1𝑞 + 𝑦2𝑞2 + ⋯ )(2𝑦2 + 6𝑦3𝑞 + ⋯ )) + ℏ𝑞(6𝑦3
′ + ⋯ ). 

Take 𝑞 = 0 

𝑦3
′ = 𝑦2

′ + ℏ𝑦2
′ − ℏ𝑦1

2 − 2𝑦0𝑦2ℏ 

𝑦3
′ = −ℏ − 2ℏ2 + 4ℏ2𝑥 − ℏ3 + 4ℏ3𝑥 − 3ℏ3𝑥2 

𝑦3 = −ℏ𝑥 − 2ℏ2𝑥 + 2ℏ2𝑥2 − ℎ3𝑥 + 2ℎ3𝑥2 − ℎ3𝑥3 

Then, 𝑦(𝑥) = 𝑦0 + 𝑦1(𝑥) + 𝑦2(𝑥) + 𝑦3(𝑥) 

Figure 4.1 shows the ℏ curve which is the variation of the value of 𝑦′(0)  as the parameter 

ℏ  varies over the interval [−2, 0]. It shows a horizontal line over specific values of  ℏ . 

So choosing any value of  ℏ on the interval where the curve is horizontal will guarantee 

the convergence of the series.  
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Figure 4.1: The ℏ -curve for 𝑦′(0) by using Homotopy Analysis method 

 

 

 

 

 

 

  

        Figure 4.2: The solution for 𝑥 between [0, 0.8] for  ℏ = −0.9  and ℏ = −0.5 

 

Figure 4.2 shows the series solutions for the two different values of  ℏ  that resulted from 

the Homotopy Analysis method on the interval [0, 0.8]. 

As it is clear, one can find that the solution depends on the parameter ℏ as well. This 

parameter is used to control the error by watching the value of 𝑦′(0) for different values 

            ℏ   = -0.9             ℏ   = -0.5 
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of ℏ. It is clear that the value 𝑦′(0) is stable for all values of ℏ in the interval 

between(−1.5, −0.3). So picking ℏ in the interval should decrease the error. 

 

Example [4.2]: Consider the nonlinear problem 

 𝑦′′ + 𝑦2 = 0,         𝑦(0) = 1      𝑦′(0) = 0 

Using the same procedures described above, one can find the ℏ-curve shown in fig 4.3

 

Figure 4.3: The ℏ-curve for 𝑦′′(0) using the Homotopy Analysis method 

 

Figure 4.3 shows that the horizontal line is not achieved, which means that ℏ cannot be 

used as an error controller for this problem. This initiates the need for a modification of 

the method. This will be achieved in the next chapter.  

2.0 1.5 1.0 0.5

6

5

4

3

2
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Chapter 5: Modified Taylor series solution method 

5.1 Modified Taylor series solution of initial value problems with singularities 

5.1.1 Introduction 

In mathematics, in general a singularity is a point at a given mathematical object 

is not defined, or a point where it fails to be well-behaved of an exceptional set in some 

particular way, such as many problems in various fields give rise to ODE of the form 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),                  𝑎 < 𝑥 < 𝑏              (5.1) 

For some interval of the real line with initial condition. An initial vale problem associated 

to the second order DE (5.1) is singular if one of the following situations occurs. The 

interval (𝑎, 𝑏) infinite if 𝑓(𝑥, 𝑦, 𝑦′) is unbounded at some value of 𝑦′or 𝑦 or 𝑓(𝑥, 𝑦, 𝑦′) is 

unbounded at some  𝑥0 ∈ [0, 1]. 

Consider the 𝑛𝑡ℎ order linear differential equation of the form 

𝑓𝑛(𝑥)𝑦𝑛 + 𝑓𝑛−1(𝑥)𝑦𝑛−1 + ⋯ 𝑓1(𝑥)𝑦′ + 𝑓0(𝑥)𝑦 = 0                   (5.2) 

subject to the initial conditions: 

𝑦(𝑥0) = 𝛼0,  𝑦′(𝑥0) = 𝛼1 , … ,  𝑦𝑛−1(𝑥0) = 𝛼𝑛−1                       (5.3) 

 

The point  𝑥0 is said to be a singular point if  𝑓𝑛(𝑥0) = 0 and it is said to be a 

regular point for the differential equation (5.2) if all functions (𝑥 − 𝑥0)
𝑓𝑛−1

𝑓𝑛
,

(𝑥 − 𝑥0)2 𝑓𝑛−2

𝑓𝑛
 , … . ,     (𝑥 − 𝑥0)𝑛−1 𝑓0

𝑓𝑛
  are analytic at 𝑥0 . Otherwise, the point is said to 

be an irregular singular point.  It is very well known that near the regular singular point 
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one can find the series expansion of the solution using the well-known method of 

Frobenius. For the differential equations with irregular singular points, the series 

expansion of the solution near the irregular singular points is not possible. However, there 

are special treatments for these kinds of problems such that the exponential transformation 

method, where the transformation is given by 

𝑦(𝑥) = 𝐸𝑥𝑝(𝐹(𝑥))𝑌(𝑥)                    (5.4) 

where 

𝐹(𝑥) =
𝐴𝑘

(𝑥 − 𝑥0)𝑘
+

𝐴𝑘−1

(𝑥 − 𝑥0)𝑘−1
+

𝐴𝑘−2

(𝑥 − 𝑥0)𝑘−2
+ ⋯ +

𝐴1

(𝑥 − 𝑥0)1
 

and  

𝑌(𝑥) = ∑ 𝑎𝑖(𝑥 − 𝑥0)𝑖+𝑟

∞

𝑖=0

 

is the Frobenius series. Then finding all derivatives of the function defined by (5.4) and 

plug in the differential equation (5.2) after dividing by the function 𝑓𝑛(𝑥), one can find 

the unknown coefficients  𝐴𝑘 and 𝑎𝑖 and the constant 𝑟. The difficulty associated with this 

approach is that the determination of the coefficients is time consuming and too much 

involved.  

Numerical techniques available for the solution of these kinds of problems also 

face the fact that the initial conditions are given at 𝑥0 and the evaluation of the terms of 

the Taylor series solution at any step requires dividing by 𝑥 − 𝑥0 which results in overflow 

and therefore will fail to obtain the solution.  



38 

 

 

 

 

Taylor series solution of ordinary differential equations is very well known 

practice for many years. Recently it has been proven that Taylor series expansion is very 

efficient in handling special type of differential equations. Huabsomboon et al [20] used 

the Taylor-series expansion methods to solve the second kind integral equations. 

Maleknejad et al [32] obtained numerical solution for the second kind Fredholm integral 

equations system by using a Taylor-series expansion method. Maleknejad and Aghazadeh 

[31] employed the Taylor series expansion to solve numerically the Volterra integral 

equations of the second kind with convolution kernel. Hile Ren et al [38] considered the 

solution of a class of second kind integral equations using simple Taylor series expansion 

method.   

The series terms can be calculated term by term such as the direct Taylor series 

expansion [20, 32, 38] or collectively such as the Adomian Decomposition method [22, 

42] and the Homotopy Analysis method [12, 19, 23, 40]. 

For the Initial value problems, it is well known that the Taylor series expansion 

[24, 31, 41] of the solution will be about the initial point and the error is controlled by 

adding more terms to guarantee the convergence of the solution over a specific interval. 

Sometimes adding more terms might be difficult and time consuming which is the case of 

Adomian Decomposition method [11] and the Homotopy Analysis method [14, 29]. As 

discussed in the previous chapter, to control the error of the Homotopy Analysis method 

an additional parameter, ℏ is used and the behavior of the solution is monitored at one of 

the initial conditions as the parameter ℏ varies. However not much theory is available to 

http://www.sciencedirect.com.ezproxy.uaeu.ac.ae/science/article/pii/S037704271000107X
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support the use of this additional parameter. This idea initiates a new approach to decrease 

the error and increase the convergence of the solution. 

In this chapter we will discuss a new approach to solve initial value problem using 

the series expansion method [33, 34]. The method is based on different choices of the 

expansion point used to expand the solution about. Details properties of the suggested 

method will be discussed and different linear and nonlinear initial value problems will be 

presented to demonstrate the efficiency of the method in the following.  

Example [5.1]: 

Consider the following equation 

𝑥2𝑦′′ − 2𝑦 = 0 

which has a singular point at 𝑥 = 0. 

It can be shown by direct substitution that the following functions are linearly independent 

solutions for 𝑥 ≠ 0 

𝑦1(𝑥) = 𝑥2,                          𝑦2(𝑥) = 𝑥−1 

Thus, in any interval not containing the origin, the general solution is 𝑦(𝑥) = 𝑐1𝑥2 +

𝑐2𝑥−1. Thus, 𝑦 = 𝑐1𝑥2 is bounded and analytic at the origin. 

However, 𝑦 = 𝑐2𝑥−1 does not have a Taylor series expansion about 𝑥 = 0, for that the 

standard numerical techniques will fail, because the use of the standard Taylor series 

expansion of the solution near the irregular singular point will not be possible due to the 

fact that evaluating the series coefficients will  require a division by 0. In what follows, 
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we will develop a new approach to control the error in the Taylor series expansion of 

analytic functions. The approach will be used to solve differential equations with irregular 

singularities and eigenvalue problems. 

5.1.2 The Taylor series expansion of the function 𝒇(𝒙) 

Consider the Taylor series expansion of the function 𝑓(𝑥) about 𝑥0 

𝑓(𝑥) = 𝑇𝑛(𝑥, 𝑥0) + 𝑅𝑛(𝑥, 𝑥0)                 (5.5) 

where 

𝑇𝑛(𝑥, 𝑥0) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛𝑛
0                    

and 

𝑅𝑛(𝑥, 𝑥0) =
𝑓𝑛+1(𝜉)

(𝑛+1)!
(𝑥 − 𝑥0)𝑛+1                                                                                  

The variable 𝜉 is between 𝑥 and 𝑥0.  Let us assume |𝑓𝑛+1(𝜉)| ≤ 𝑀   then for fixed 𝑥0, one 

can control the error and increase the interval of convergence of the series either by adding 

more terms which might be costly in most cases, or one can reduce the error by changing 

the expansion point 𝑥0. 

However, looking at the error term Eq (5.5) one can see that the error is also controlled by 

the quantity (𝑥 − 𝑥0)𝑛. So selecting different 𝑥0 will give different values for the error 

and the closer the point 𝑥0 to the point 𝑥, the less error will be obtained. 

The relation between the interval of convergence and the choice of 𝑥0 for a fixed number 

of terms is given by the following theorem. 
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Theorem (5.1): Let 𝑓(𝑥) be analytic on the interval I and assume that  |𝑓𝑛(𝑥)| ≤ 𝑀 for 

all 𝑥 ∈ 𝐼 and all 𝑛 ∈ 𝑁 then given 𝜀 > 0  and 𝑛0 ∈ 𝑁, there exists an interval [𝑎, 𝑏] ⊆ 𝐼 

such that |𝑇𝑛0
(𝑥, 𝑥0) − 𝑓(𝑥0)| < 𝜀 for all 𝑥0 ∈ [𝑎, 𝑏] and 𝑛 ≥ 𝑛0 . 

Proof  

The proof will be given by finding the interval of convergence directly 

Consider the error term in the Taylor series expansion of the function 𝑓(𝑥), then 

|𝑇𝑛0
(𝑥, 𝑥0) − 𝑓(𝑥0)| = |

𝑓𝑛0+1(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛0+1| < 𝜀 

 and 

|
𝑓𝑛0+1(𝜉)

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛0+1| < |

𝑀

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛0+1| < 𝜀 

then  

|(𝑥 − 𝑥0)𝑛0+1| <
𝜀(𝑛0 + 1)!

𝑀
 

Then solving for 𝑥0 yields  

 

− √
𝜀(𝑛0+1)!

𝑀

𝑛0+1

+ 𝑥 < 𝑥0 < √
𝜀(𝑛0+1)!

𝑀

𝑛0+1

+ 𝑥                                                         (5.6) 

Therefore the required interval is [𝑎, 𝑏] = [− √
𝜀(𝑛0+1)!

𝑀

𝑛0+1

+ 𝑥, √
𝜀(𝑛0+1)!

𝑀

𝑛0+1

+ 𝑥] 

The application of the method to certain examples is presented below. 
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Example [5.2]: 

Consider the Taylor series expansion of the function 𝑓(𝑥) = 𝑒𝑥 on the interval [0,2]. The 

rate of decrease in the error is proportional to the number of terms. The error of  𝑒𝑥 is 

bounded by, 

error =
𝑒𝜁

(𝑛 + 1)!
𝑥𝑛+1 ≤

𝑒2

(𝑛 + 1)!
𝑥𝑛+1 

So it is expected that the error will increase as 𝑥 → 2. Now using Eq (5.6) with            

  𝑁 ≥ 𝑛0 = 8 ,  𝜀 = 0.000001, and 𝑀 = 𝑒2, the new interval will be  

𝑥 − √0.000001 ∗
9!

𝑒2

9

< 𝑥0 < 𝑥 + √0.000001 ∗
9!

𝑒2

9

 

One can reduce the error by taking 𝑥0 in the interval [0,2] provided that 𝑁 ≥ 𝑛0 = 8 

−√0.000001 ∗
9!

𝑒2

9

+ 𝑥 < 𝑥0 < √0.000001 ∗
9!

𝑒2

9

+ 𝑥 

and the lower end is greater than 0 and the upper end less than 2. Figure 5.1 shows the 

variation of the error as 𝑥0 varies in the interval [0, 2]. The error associated with the 

different choices of 𝑥0 is presented in tables 5.1 through 5.4 
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(𝑎) 𝑥0 = 0.5                                                            (𝑏) 𝑥0 = 1.0 

 

 

 

                                 

   

 

(c )  x0 = 1.5                                         (d) x0 = 2.0 

Figure 5.1: The variation of the error as 𝑥0 varies in the interval [0, 2] 
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Table 5.1, 5.2, 5.3 and 5.4 show the error associated with the series estimation of the 

solution of example [5.2]. The error is relatively very small for all 𝑥 ∈ [0,2]. 

 

 

 

Table 5.1: The error obtained for      

example [5.2] where 𝑥0 = 0.5  

 

Modified Taylor series 

Table 5.4: The error obtained for 

example [5.2] where 𝑥0 = 2.0  

 

Table 5.3: The error obtained for 

example [5.2] where 𝑥0 = 1.5  

 

Table 5.2: The error obtained for       

example [5.2] where 𝑥0 = 1.0  
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5.1.3 Solution of initial value problems with irregular singular points 

In what follows we will discuss the use of the Modified Taylor series to solve 

initial value problems [14, 20]. As mentioned earlier, the use of the standard Taylor series 

expansion of the solution near the irregular singular point will not be possible due to the 

fact that evaluating the series coefficients will require a division by 0. In addition the 

standard numerical techniques will fail as well. This initiates the needs for a new method 

to solve these types of problems.  

Consider the second order initial value problem 

𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑟(𝑥) 

Subject to the initial conditions   

𝑦(𝑎) = 𝛼, 𝑦′(𝑎) = 𝛽 

One can assume that the solution is given by the series. 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

𝑁

𝑛=0

+ ℛ𝑁 

with 

ℛ𝑁 =
𝑦𝑁+1(𝜁)

𝑁 + 1
(𝑥 − 𝑥0)𝑁+1 

With the initial choice  

𝑦(𝑥0) = 𝑎0 = 𝛼,           𝑦′(𝑥0) = 𝑎1 = 𝛽 

Then ignoring the error term and using the series in the original differential equations to 

evaluate the rest of the coefficients as we will see in the next example. 
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We present in this section numerical results for three types of initial value problem 

which illustrate the method of Taylor series expansion. 

The first one of these is linear initial value problem, the second one is for initial value 

problem with regular singular point and the last one about initial value problem with  

irregular singular point.  

 

Example [5.3]: Consider the linear second order initial value problem 

𝑦′′ + 𝑦′ − 6𝑦 = 0               

Subject to 

𝑦(0) = 1,       𝑦′(0) = 1 

With exact solution 𝑦(𝑥) =
1

5
𝑒−3𝑥 +

4

5
𝑒2𝑥 

Then using the procedure describe above and assuming that 𝑦(𝑥0) = 𝑎0 = 𝛼 and 

𝑦′(𝑥0) = 𝑎1 = 𝛽, one can find that the rest of the coefficients are given by the following: 

𝑎2 = −
α

2
,  𝑎3 =

−𝛽

6
,  𝑎4 =

𝛼

24
, … , 𝑎2𝑛 =

(−1)𝑛

2𝑛!
𝛼, 𝑎2𝑛+1 =

(−1)𝑛

(2𝑛+1)!
𝛽 

Then the solution 𝑦(𝑥) will be given in terms of 𝑥, 𝑥0, 𝛼  and 𝛽. To find the values of 𝛼  

and 𝛽 as a function of 𝑥0 we need to solve the two equations 𝑦(0) = 1,  and 𝑦′(0) = 1 

for both 𝛼 and 𝛽.  

Assuming that we will take only  5 terms of the series expansion of the solution and 

solving for 𝛼 and 𝛽 leads to the series solution 𝑇𝑛(𝑥, 𝑥0) depends on both 𝑥 and 𝑥0, 

𝑦(𝑥, 𝑥0) = 𝑇5(𝑥, 𝑥0). 
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In order to verify numerically the accuracy of the error produced by the modified Tayler 

series expansion method, the numerical results in figure 5.2, 5.3 and table 5.5, 5.6, 5.7, 

5.8 show a good approximation is achieved by choosing different values of 𝑥0 . 

 

 

 

 

 

 

 

Figure 5.2: The series and the exact solution for the differential equation of         

example [5.3] 
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Figure (5.3): The variation of the error as 𝑥0 varies in the interval [0, 5]. 

 

 

 

 

Figure 5.3: The variation of the error as 𝑥0 varies in the interval [0, 5]. 

 

 

 

Figure 5.3: The variation of the error as 𝑥0 varies in the interval [0, 5] 

 

 

Figure 5.3: The variation of the error as 𝑥0 varies in the interval [0, 5] 
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Table 5.5, 5.6, 5.7 and 5.8 show the error associated with the series estimation of the 

solution of example [5.3]. The error is relatively very small for all 𝑥 ∈ [0,2]. 

Table 5.5: The error obtained for 

example [5.3] where 𝑥0 = 0.3  

 

Table 5.6: The error obtained for 

example [5.3] where 𝑥0 = 0.6  

 

Table 5.8: The error obtained for 

example [5.3] where 𝑥0 = 1.5  

 

Table 5.7: The error obtained for 

example [5.3] where  𝑥0 = 0.9  
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Example [5.4]: Consider the second order initial value problem with regular singular 

point 

𝑥2𝑦′′ − 4𝑥𝑦′ + 6𝑦 = 0,                                𝑦(1) = 1        𝑦′(1) = 0 

With the exact solution given by 𝑦(𝑥) = 3𝑥2 − 2𝑥3 

Now, following the procedure described before, generate the series solution and compare 

the series solution with the exact solution as shown in figure 5.4 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The series and the exact solution for the differential equation of         

example [5.4] 
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The error between the exact solution and the estimated series solution for different value 

of  𝑥0 presented in figure 5.5 

 

 

 

 

 

 

 

 

 

 

Figure (5.5) the variation of the error as 𝑥0 varies in the interval [0, 20]. 

 

 

Figure 5.5: The variation of the error as 𝑥0 varies in the interval [0, 20] 
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Table 5.9, 5.10, 5.11 and 5.12 show the error associated with the series estimation of the 

solution of example [5.4]. The error is relatively very small for all 𝑥 ∈ [0,2]. 

Table 5.9: The error obtained for   

example [5.4] where 𝑥0 = 0.01  

 

Table 5.10: The error obtained for 

example [5.4] where 𝑥0 = 0.1  

 

Table 5.12: The error obtained for 

example [5.4] where 𝑥0 = 1.0  

 

Table 5.11: The error obtained for 

example [5.4] where 𝑥0 = 0.3  
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Example [5.5]: Consider the second order initial value problem with irregular singular 

point 

𝑥3𝑦′′ + 𝑦′ − 𝑦 = 𝑥3𝑒𝑥,       𝑦(0) = 1   𝑦′(0) = 1 

Where the exact solution is given by  𝑦(𝑥) =  𝑒𝑥 

Now, following the procedure described before, one can generate the series solution and 

compare the series solution with the exact solution as shown in figure 5.6 

 

 

 

 

 

 

 

 

 

Figure 5.6: The series and the exact solution of the differential equation of           

example [5.5] 

 

 

 

 



54 

 

 

 

 

The error between the exact solution and the estimated series solution for different value 

of  𝑥0 is  presented in figure 5.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: The variation of the error as 𝑥0 varies in the interval [0, 5] 
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Table 5.13, 5.14, 5.15 and 5.16 show the error associated with the series estimation of the 

solution of example [5.5]. The error is relatively very small for all 𝑥 ∈ [0,2]. 

 

Table 5.16: The error obtained for 

example [5.5] where 𝑥0 = 0.3 

Table 5.1: The error obtained for 

example [5.5] where 𝑥0 = 0.9 

Table 5.13: The error obtained for 

example [5.5] where 𝑥0 = 2.3 
Table 5.14: The error obtained for   

example [5.5] where 𝑥0 = 1.5 
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5.2 Modified Taylor series solution of boundary value problems 

5.2.1 Introduction 

A boundary value problem consists of a differential equation on a given interval 

and an obvious condition that a solution must be known at one or various points. The 

information about a solution to the differential equation may be mostly specified at more 

than one point. Quite often there are two points, which match physically to the boundaries 

of several regions, so that it is a two-point boundary value problem [16]. A simple and 

general form for a two-point boundary value problem is  

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),                       𝑎 < 𝑥 < 𝑏                                                                               (5.7) 

Subject to                                                                        

𝑦(𝑎) = 𝛼1                                    𝑦(𝑏) = 𝛼2       

Where 𝛼1and 𝛼2 are known constants and the known endpoints 𝑎 and 𝑏 may be infinite 

or finite. For the linear case of this BVP, (5.7) takes the simpler form  

𝑦′′(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝑔(𝑥),             𝑎 < 𝑥 < 𝑏          (5.8) 

Several numerical techniques are available to solve boundary value problems. 

These methods include the shooting method and the finite difference method. Very little 

is known in the literature about finding an analytical solution for boundary value 

problems.  

Series method is one way used to estimate the analytical solution for these kinds of 

problems.  In this section we will focus on the series methods of solving those linear and 
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nonlinear boundary value problems whose exact solutions are too difficult to obtain 

analytically. The methods to be discussed are the Homotopy Analysis method and 

Modified Taylor series method. 

5.2.2 Solution of boundary value problem using Homotopy Analysis method 

In this section we will focus on a special kind of BVP which is the class of 

eigenvalue problems. When the Homotopy Analysis method is used, we can get an 

auxiliary linear operator, so we can approximate a nonlinear problem effectively [26, 27]. 

Details about the use of the method have been already discussed in the previous chapter.  

The application of the method to the eigenvalue problem will be present in the following 

two examples. 

Example [5.6]: Consider the linear boundary eigenvalue problem 

 𝑦′′ + 𝜆𝑦 = 0                (5.8) 

with the boundary conditions: 

 𝑦′(0) = 0,           𝑦(1) = 0 

Solution 

If we solve this BVP analytically we will get, for 𝜆 > 0, the exact solution:  

𝑦(𝑥) = 𝐴 𝐶𝑜𝑠(√𝜆𝑥) + 𝐵 𝑆𝑖𝑛(√𝜆𝑥) 

𝑦′(𝑥) = −𝐴 Sin(√𝜆𝑥) + 𝐵 √𝜆Cos (√𝜆𝑥) 

Then using the boundary condition at x = 0 leads to 

𝑦′(0) = 𝛽√𝜆 
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 And the boundary condition at x = 1 leads to  

  𝑦(1) = 𝐴 Cos(√𝜆) = 0 

  If 𝐴 ≠ 0,      𝐶𝑜𝑠(√𝜆) = 0 or,    𝜆𝑛 = (𝜋(
1

2
+ 𝑛)) 

 where, the eigenvalues are: 𝜆𝑛 = (
2𝑛+1

2
)2(𝜋)2,    𝑓𝑜𝑟 𝑛 = 0,1,2, … .. 

 and the corresponding eigenvectors are 𝑦𝑛(𝑥) = 𝐶𝑜𝑠 (
2𝑛+1

2
) 𝜋𝑥,  𝑛 = 0, 1, 2, … 

Abbasbandy et al [5] employed the Homotopy Analysis method and assumed that the 

linear and nonlinear operators are given by 

𝐿[∅(𝑥, 𝑞)] = ∅′′(𝑥, 𝑞),      and 

𝑁[∅(𝑥, 𝑞)] = ∅′′(𝑥, 𝑞) + 𝜆∅(𝑥, 𝑞) 

Subject to the boundary condition and the solution expression 𝐿[∅(𝑥, 𝑞)], we will choose 

the initial approximation as 𝑦0(𝑥) = 1, and we have the zero- order equation with the 

initial condition ∅′(0, 𝑞) = 0, and 

𝑅𝑘(𝑦(𝑥, 𝑞)) = 𝑦′′(𝑥, 𝑞) +  𝜆𝑦(𝑥, 𝑞) 

𝑦𝑘(𝑥) = 𝑦𝑘−1(𝑥) + ℏ ∫ ∫ 𝑅𝑘(𝑦𝑘−1(𝑥))𝑑𝑥𝑑𝑥
𝑥

0

𝑥

0

 

Now, the first three terms of the Homotopy Analysis method series solution are 

𝑦1(𝑥) =
1

2
𝜆ℏ𝑥2 

𝑦2(𝑥) = (
𝜆ℏ2

2
+

𝜆ℏ

2
) 𝑥2 +

1

24
𝜆2ℏ2𝑥4 
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𝑦3(𝑥) = (
𝜆ℏ3

2
+ 𝜆ℏ2 +

𝜆ℏ

2
) 𝑥2 + (

𝜆2ℏ3

12
+

𝜆2ℏ2

12
) 𝑥4 +

1

720
𝜆3ℏ3𝑥6 

According to the 𝑘𝑡ℎ order approximate solution, the Homotopy Analysis method series 

solution will be 

𝑣𝑘(𝑥) = ∑ 𝑦𝑖(𝑥)

𝑘

𝑖=0

 

Which depends on the auxiliary parameter ℏ, and the eigenvalue 𝜆. When we solve 

𝑣𝑘(1) ≅ 0, we get a relation between 𝜆 and ℎ.  The plot of 𝜆 as a function of ℎ gives us 

different plateaus, which matches to an eigenvalues of the DE. 

In the first figure, 𝜆 has been plotted according to the equation 𝑣𝑘(1) = 0 in the 𝜆 

range [2, 125] and ℏ range [-2, 0] for 𝑘 = 25, also four plateaus of 𝜆 can be identified. In 

the second figure, 𝜆 has been plotted according to the equation 𝑣𝑘(1) = 0 in the 𝜆 range 

[125, 300] and ℏ range [-1, 0] for 𝑘 = 25, also three plateaus of 𝜆 can be identified. 
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In the plot of 𝜆 as a function of ℏ, it can be seen that some plateaus occur, which matches 

to an eigenvalue of the DE. 

Table 5.17 shows the first 6 approximated eigenvalues with the exact eigenvalues and the 

absolute error of the original equation which has been approximated by Abbasbandy et al 

[5]. 

 

 

 

 

 

𝜆 𝜆 

ℏ 

ℎ 
Figure 5.8: The ℏ − curve of solution 

for 𝜆 range [2, 125] and 𝑘 = 25 

Figure 5.9: The ℏ − curve of solution 

for 𝜆 range [125, 300] and 𝑘 = 25 

 

ℏ 
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𝑛 Approximated 𝜆𝑛 Exact 𝜆𝑛 Absolute error 𝜆𝑛 

1 2.46740110 2.467401100272 2.7 × 10−10 

2 22.20660990 22.206609902451 2.4 × 10−9 

3 61.68502750 61.685027506808 6.8 × 10−9 

4 120.90266801 120.902653913345 1.5 × 10−5 

5 199.85633513 199.859489122060 3.1 × 10−3 

6 298.31364965 298.555533132953 2.4 × 10−1 

 

Table 5.17: The eigenvalue and absolute error using HAM 

 

The approximated eigenfunction corresponding to the third eigenvalue 𝜆3, and the 

corresponding error  which is used with ℏ = −0.9 is shown below in figures 5.10 and   

5.11  

 

 

 

 

 

 

 

 

 Figure 5.10: The eigenfunction 

corresponding to 𝜆3 

Figure 5.11: The error of eigenfunction 

corresponding to 𝜆3 
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Example [5.7]: Consider the singular eigenvalue problem 

𝑦′′(𝑥) + (𝜆 +
1

𝑥
)𝑦(𝑥) = 0             (5.10) 

with the boundary condition 

 𝑦(0) = 0           𝑦(1) = 0 

Solution 

By following the same procedure described in example [5.7], we can find the first two 

terms of the Homotopy series solution as 

𝑦1(𝑥) =
ℏ𝑥2

2
+

1

6
𝜆ℏ𝑥3 

𝑦2(𝑥) = (
ℏ2

2
+

ℏ

2
) 𝑥2 + (

𝜆ℏ2

6
+

ℏ2

12
+

𝜆ℏ

6
) 𝑥3 +

1

18
𝜆ℏ2𝑥4 +

1

120
𝜆2ℏ2𝑥5 

According to the 𝑘𝑡ℎ order approximate solution, the Homotopy Analysis method series 

solution will be 𝑣𝑘(𝑥) = ∑ 𝑦𝑖(𝑥).𝑘
𝑖=0  

The plot of 𝑣𝑘(𝑥) ≅ 1,  gives 𝜆 as a function of ℎ. The contour plot gives us different 

plateaus, which matches to an eigenvalue of the DE. 

In the figure 5.13, 𝜆 has been plotted according to the equation 𝑣𝑘(1) = 1 in the 𝜆 range 

[7, 8] and ℎ range [-2, 0] for 𝑘 = 25. 

In the figure 5.14, 𝜆 has been plotted according to the equation 𝑣𝑘(1) = 1 in the 𝜆 range 

[36, 36.5] and ℎ range [-1.4, -0.4] for 𝑘 = 25. 
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Figure 5.12: ℏ- curve according to 𝑣𝑘(𝑥) = 1            

and 𝜆 ∈ [0, 36] 

𝜆 

ℎ 

𝜆 

Figure 5.13:  ℏ- curve according 

to 𝑣𝑘(𝑥) = 1 and 𝜆 ∈ [7, 8] 
Figure 5.14:  ℏ- curve according to 

𝑣𝑘(𝑥) = 1 and 𝜆 ∈ [36, 36.5] 

 

ℏ ℏ 

ℏ 

𝜆 
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Table 5.18: The first 6 eigenvalues obtained for example [5.7] of the DE 

The approximated eigenfunction corresponding to the second eigenvalue 𝜆2, and the 

corresponding error  which is used with ℏ = −0.8 is shown below in eigures 5.15 and  

5.16 

 

 

 

 

 

 

 

 

𝑛 Approximated 𝜆𝑛 

1 7.37398501 

2 36.33601851 

3 85.29251075 

4 154.10192997 

5 352.47100980 

6 568.16321224 

 Figure 5.15: The eigenfunction 

corresponding to 𝜆2 

Figure 5.16: The error of eigenfunction 

corresponding to 𝜆2 
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5.2.3 Solution of eigenvalue problem using the Modified Taylor series method 

In this section, we will solve the boundary value problems by using the Modified 

Taylor method. The suggested method is more applicable and accurate than the built in 

methods used in other software packages.  

We will solve several examples for nonlinear BVPs and compared results to those 

obtained using Mathematica program. 

Let us consider the nonlinear Boundary value problem, 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),                𝑎 < 𝑥 < 𝑏             

subject to the conditions 

𝑦(𝑎) = 𝐴,           𝑦(𝑏) = 𝐵 

Let’s assume one type of differential equations, then following some techniques 

in the example, after that we can assume the solution by the series 

𝑦(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛

𝑁

𝑛=0

+ ℛ𝑁 

with 

ℛ𝑁 =
𝑦𝑁+1(𝜁)

𝑁 + 1
(𝑥 − 𝑥0)𝑁+1 

With the initial choice  

𝑦(𝑥0) = 𝑎0 = 𝛼,           𝑦′(𝑥0) = 𝑎1 = 𝛽 

Then ignoring the error term and using the series in the original differential equations to 

evaluate the rest of the coefficients leads to the following values for the first few terms. 
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So, we can write 𝑎2, 𝑎3, 𝑎4, … , 𝑎𝑛 in terms of 𝛼 and 𝛽. To find the values of 𝛼 and 𝛽 as a 

function of 𝑥0 we need to solve 

 𝑦(𝑎) = 𝐴,            𝑦(𝑏) = 𝐵 for  𝛼, 𝛽 

At the end the solution will be in terms of 𝑥0, after that we will sketch 𝑦(𝑥) as a function 

of 𝑥0 to find the minimum error. 

Example [5.8]: Consider the previous nonlinear boundary value problem   

𝑦′′ + 𝜆𝑦 = 0            𝑦′(0) = 0           𝑦(1) = 0 

With exact eigenvalues and its corresponding eigenfunctions given by: 

𝜆𝑛 = (𝜋 (
1

2
+ 𝑛))

2

   are the eigenvalues, 

and    𝑦𝑛(𝑥) = 𝐶𝑜𝑠 ((
𝜋

2
+ 𝑛𝜋) 𝑥)  are the corresponding eigenfunctions 

Solution 

Applying the same techniques used in the first section for initial value problems but with 

arbitrary initial conditions and solving for 𝛼 the first condition at  𝑥 = 0, then solving for 

the second boundary condition 𝑥 = 1 for 𝛽, will give a relation between the expanding 

point 𝑥0 and the eigenvalue 𝜆. Plotting the contour of this relation will result in the 

following figures.   
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Figure 5.17: (𝑥0, 𝜆) curve for                      Figure 5.18: (𝑥0, 𝜆) curve for                                                                  

𝜆 ∈  [0, 100] and 𝑥0 ∈ [0, 1]                           𝜆 ∈ [0, 500] and 𝑥0 ∈ [0, 1] 

 

In the first figure 5.17,  𝜆 has been plotted by using Modified Taylor method in the 𝜆 range 

[0, 100] and 𝑥0 range [0, 1] for 𝑘 = 35, also three plateaus of 𝜆 can be identified. 

In the second figure 5.18, 𝜆 has been plotted by using Modified Taylor method in the 𝜆 

range [0, 500] and 𝑥0 range [0, 1] for 𝑘 = 35, also six plateaus of 𝜆 can be identified. 

For small values of 𝜆, 𝑥0 can be any number between [0, 1], but for larger values of 𝜆, 𝜆 

has to be around the middle of the interval. 

In the plot of 𝜆 as a function of  𝑥0, it can be seen that some plateaus occur, which matches 

to an eigenvalue of the Modified Taylor problem. 

 

𝜆 𝜆 

𝑥0 𝑥0 
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This table shows the first 6 approximated eigenvalues with the exact eigenvalues and the 

absolute error of the original equation which has been approximated by Abbasbandy et al 

[5]. 

𝑛 Approximated𝜆𝑛by 

Homotopy method 

Approximated 𝜆𝑛by 

Modified method 

Exact 𝜆𝑛 

1 2.46740110 2.4674 2.467401100272 

2 22.20660990 22.2066 22.206609902451 

3 61.68502750 61.685 61.685027506808 

4 120.90266801 120.903 120.902653913345 

5 199.85633513 199.863 199.859489122060 

6 298.31364965 298.472 298.555533132953 

 

Table 5.19: The eigenvalues using HAM, Modified Taylor method and the exact error 

 

The approximated eigenfunction corresponding to the third eigenvalue 𝜆3, and the 

corresponding error which is used with 𝑥0 = −0.9  is shown below as 
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Figure (5.19): Eigenfunction corresponding to 𝜆3 

Figure (5.19): The approximated  Eigenfunction corresponding to 𝜆3 

 

Figure 5.19: The approximated eigenfunction corresponding to 𝜆3 

 

 

 

 

 

 

Figure 5.20: The error of eigenfunction corresponding to 𝜆3 

 

Also, the Modified Taylor series method has been used to obtain numerically the 

solutions of eigenvalues of the boundary value problems of the DE. All computational 

work was carried by using Mathematical program. The numerical results show that our 

method is suited for the boundary value problem.  
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Chapter 6: Conclusion 

 

 In this thesis, we have discussed the several series methods available to solve 

initial and boundary value problems. The methods are the Taylor series method where we 

have modified it to control the error by choosing different expansion point. The method 

was applied to differential equations with singular points and to eigenvalue problems. We 

have shown that this modification will help in reducing the error and recover all the 

eigenvalues of the eigenvalue problems. It was shown that the method is reliable to solve 

all kind of boundary value problems as well. 

  In addition, we have discussed the Adomian Decomposition method and how it 

can be used to generate the solution of the initial value problems with the error associated 

with this method.  

 The Homotopy Analysis method was also discussed. The control of this method 

through the use of what is known as the  ℏ curve. It was shown how this curve can be used 

to monitor the error at one point in the domain of definition of the solution. However, it 

was shown that this method is not all the times reliable and the error could be reduced 

using other methods such as the Modified Taylors method described above. 

Different linear and nonlinear examples of ordinary initial and boundary value problems 

have been presented. 

 

 



71 

 

 

 

 

Bibliography 
 

1. Abbasbandy, S. (2006). Iterated He's homotopy pertubation mthod for quadratic Riccati 

differentialequation. Applied Mathematics and Computation , 175(1), 581-589. 

2. Abbasbandy, S. (2006). Modified homotopy pertubation method for nonlinear equations 

and comparison with Adomian decomposition method. Applied Mathematics and 

Computation, 172(1), 431-438. 

3. Abbasbandy, S. (2006). The application of homotopy analysis method to nonlinear 

equations arising in heat transfer. ScienceDirect, 360(1), 109-113. 

4. Abbasbandy, S., & Darvishi, M. (2005). A numerical solution of Burgers equation by 

modified Adomian method. Applied Mathematics and Computation, 31(1), 1265-1272. 

5. Abbasbandy, S., & Shirzadi, A. (2011). A new application of the homotopy analysis 

method: Solving the Sturm-Liouville problems . Nonlinear Sci Numer Simulat, 16(1), 

112-126. 

6. Adomian, G. (1984). Convergent series solution of nonlinear equations. Comutational 

and Applied Mathematics, 11(2), 225-230. 

7. Adomian, G. (1986). A New Approach to the Heat Equation-An Application of the 

Decomposition Method. Mathematical Analysis and Applications, 113(1), 202-209. 

8. Adomian, G. (1988). A Review of the Decomposition Method in Applied Mathematics. 

Jornal of Mathematical analysis and applications, 135(2), 501-544. 

9. Adomian, G. (1990). A Review of the Decomposition method and some recent results, 

Mathematical and Computer Modelling, 17-43.     

10. Ahsan, M., & Farrukh, S. (2013). A new type of Shooting method for nonlinear 

boundary value problems. Alexandria Engineering Journal, 52(4), 801-805. 

11. Allan, F. M. (2007). Derivation of the Adomian decomposition method using the 

homotopy analysis method. Applied Mathematics and Computation, 190(1), 6-14. 

12. Allan, F. M. (2009). Costruction of analytic solution to chaotic dynamical systems using 

the Homotopy analysis method. Chaos Solitons and Fractals, 39(4), 1744-1752. 

13. Allan, F. M., & Al Khaled , K. (2006). An approximation of the analytic solution of the 

shock wave equation. Computational and Mathematics, 192(2), 301-309. 



72 

 

 

 

 

14. Allan, F. M., & Hajii, M. (2012). On the similarity solution of Nano-Fluid Flow over 

moving flat plate using the Homotopy Analysis Method. Numerical nalysis and Applied 

Mathematics, 1833-1837. 

15. Allan, F., & I Syam, M. (2005). On the analytic solutions of the nonhomogeneous 

Blasius problem. Computational and Applied Mathematics, 182(2), 362-371. 

16. Ascher, U. M., Mattheij, R., & Russel, R. (1994). Numerical solution of boundary value 

problems for Ordinary Differential Equations. University of Britch Columbia, 13(1), 56. 

17. Cherruault, Y., & Adomian , G. (1993). Decomposition Methods: A New Proof of 

convergence. Mathl Comput Modelling, 18(12), 103-106. 

18. Golberg, M. A. (1999). A note on the decomposition method for operator equations. 

Appl Math Comput, 106(2), 215-220. 

19. Hajii, M., & Allan, F. (2012). Solving nonlinear boundary value problems using the 

Homotopy Analysis Method. Numerical Analysis and applied Mathematics, 1829-1832. 

20. Huabsomboona, P., Novaprateepa, B., & Kanekob, H. (2010). On Taylor series 

expansion methods for the second kind integral equations. Journal of Computational 

and Applied Mathematics , 234(5), 1466-1472. 

21. Khaled, K. A., & Allan , F. (2005). Decomposition method for solving nonlinear 

Integro-Differential equations. Apple Math and Computing , 19(1), 415-425. 

22. Khaled, K. A., & Allan, F. (2004). Consrtuction of solutions for the shallow water 

equations by the decomposition method . Mathematics and Computer in Simulation, 

66(6), 479-486. 

23. Khaled, K. A., Momani, S., & Alawneh, A. (2005). Approximate wave solutions for 

generalized Benjamin-Bona-Mahony-Burgers equations. Applied Mathematics and 

Computation, 171(1), 281-292. 

24. Liao, S., & Chang , K. (2003). Analytic Solution for the nonlinear Progressive waves in 

deep water. Journal of Engineering Mathematics, 95(2), 105-116. 

25. Liao, S. (1999). An explicit totaly analytic approximate solution for blasius Viscous 

flow problems. international Journal of Nonlinear Mechan, 34(3), 759-778. 

26. Liao, S. (2004). On the homotopy analysis method for nonlinear problems. Applied 

Mathematics and Computation, 147(2), 499-513. 

27. Liao, S. (2009). Series solution of nonlinear eigenvalue problems by means of the 

Homotopy Analysis method. Real world Applications, 10(4), 2455-2470. 



73 

 

 

 

 

28. Liao, S. (2010). An opttimal homotopy analysis approach for strongly nonlinear 

differential equations. Commun Nonlinear Sci Numer Simulat, 15(8), 2003-2016. 

29. Liao, S. (2010). Notes on the homotopy analysis method: Some definition and theorems 

. Commun Nonlinear Sci Numer Simulat, 14(4), 983-997. 

30. Liao, S. (2010). On the relationship between the homotopy analysis method and Euler 

transform. Common Nonlinear Sci Numer Simulat, 15(6), 1421-1431. 

31. Maleknejad, K., & Aghazadeh, N. (2005). Numerical solution of Voltera integral 

equations of the second kind with convolution kernel by using Taylor-series expansion 

method. Applied Mathematics and Computation , 161(3), 915-922. 

32. Maleknejad, K., & Mahmoudi, Y. (2003). Taylor polynomial solution of high order 

nonlinear Voltera-Fredholm integro-differential equations. Journal of Computational 

and Applied Mathematics, 145(2), 641-653. 

33. Maleknejad, K., Aghazadeh, N., & Rabbani, M. (2006). Numerical solution of second 

kind Fredholm integral equations system by using a Taylor-series expansion method. 

Applied Mathematics and Computation, 175(2), 1229-1234. 

34. Maleknejad, K., Aghazadeh, N., & Rabbani, M. (2006). Numerical solution of Voltera 

equations of the second kind with convolution kernel Taylor-series expansion method. 

Applied Mathematics and Computation, 175(1), 1229-1234. 

35. Na, & Yen, T. (1979). Computational Method in Engineering of Boundary Value 

Problems. Journal of Mathematics in Science and Space Engineering. 

36. Rafatimaleki, N. (2004). Approximating the furth order Sturm-Liouville eigenvalue 

problems by Homotopy Analysis Method. Indian Journal of Fundamental and Applied 

life science, 1113-1117. 

37. Rafatimaleki, N., & Mohmoudi, Y. (1996). The Homotopy Analysis Method for Solving 

the Sturm-Liouville Eigenvalue problem. Magnt Research Report, 284-287. 

38. Ren, Y., Zhang, B., & Qiao, H. (1999). A simple Taylor-series expansion method for a 

class of second kind integral equations. Computational and Applied Mathematics, 

110(1), 15-24. 

39. Siegel, R., & Howell, J. (1992). Thermal Radiation Heat Transfer. National Aeronautics 

and Space Administration. 

40. Tan, Y., & Abbasbandy, S. (2008). Homotopy Analysis method for quadratic Ricca 

differential equation. Communications in nonlinear , 539-546. 



74 

 

 

 

 

41. Wazwaz, A. M. (1998). A comparison between Adomian decomposition method and 

Taylor series method in the series solutions. Applied Mathematics and Computation, 

97(1), 37-44. 

42. Wazwaz, A. M. (2006). The modified decomposition method and approximates for a 

boundary layer equation in unbounded domain. Applied Mathematics and Computation, 

177(2), 737-744. 

43. Wazwaz, A. M., & El sayed, S. (2001). a New modification of the Adomian 

decomposition method for linear and nonlinear operators. Applied Mathematics and 

Computation , 122(3), 393-405. 

44. Zill, D. G. (2009). A First course in Differential equation. China: Richard Stratton. 

 

 


	United Arab Emirates University
	Scholarworks@UAEU
	4-2015

	SOLVING NONLINEAR BOUNDARY VALUE PROBLEMS USING THE HOMOTOPY ANALYSIS METHOD
	Ghada Ayed Janem Ayed Janem
	Recommended Citation


	tmp.1447049884.pdf.X2wbm

