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Abstract

Analytical solutions of differential equations are very important for all
researchers from different discipline. Obtaining such solutions is difficult in most
cases, especially if the differential equation is nonlinear. One of the mostly used
methods are the series methods, where the solution is represented as an infinite series.
Different methods are available to evaluate the terms of this series. These methods
include the well-known Taylor series method, the Adomian decomposition method,
the Homotopy iteration method, and the Homotopy analysis method.

In this thesis we give a survey of the different series methods available to solve
initial and boundary value problems. The methods to be presented are the Taylor series
method, the Adomina decomposition method, and the Homotopy analysis method. The
main features of each method will be presented and the error analysis will be discussed
as well. For the Homotopy analysis method, the error is controlled by introducing the
parameter known as h, then the error is controlled by monitoring the value of the
solution at a specific point for different values of x. This produces what is known as
the i curve. The mathematical foundation of this method is not very well established,
and the method will not work at all times. The error for the Taylor series and the
Adomian decomposition method is controlled by adding more terms to the series
solution which might be costly and difficult to calculate especially if the differential
equation is nonlinear.

In this study we will show that the error can be controlled by other means. A
modified Taylor series method has been developed and will be discussed. The method
is based on controlling the error through different choices of the point of expansion.
The mathematical foundation of the method and application of the method to

differential equations with singularities and eigenvalue problems will be presented.

Keywords: Adomian Decomposition Method, Homotopy Analysis Method, Modified

Taylor series method.
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Chapter 1: Introduction

Many scientific and engineering problems can be modeled by ordinary or partial
differential equations which are mostly nonlinear differential equations. It is difficult to
obtain closed form solutions for such problems. In most cases only approximate solutions
either analytical ones or numerical ones can be obtained. For that reason, the nonlinear
equations should be solved using special technigues.

Recently, many researchers have been devoted to new developed methods to
construct an analytic solution of non-linear equations. Such methods include the Taylor
series method, the Adomian Decomposition method and the Homotopy Analysis method.

Review of the solution of the ordinary differential equations with variable
coefficients by the method of power series was discussed in [17, 39, 44]. Detailed analysis
of the method and the basic definitions such as the regular and irregular singular points,
radius of convergence, with some examples will be introduced in chapter two.

The other widely used method to generate series solution for the differential
equations is the Adomian Decomposition method. It was introduced first by Adomian in
the early of 1980’s. It gives the solution as a rapid convergent infinite series with
components that are elegantly computed. Since then, the method has been applied to wide
class of equation [6, 7, 8, 9, 40]. A modified version of Adomian method was used to

derive the analytic solution of ordinary differential equations in [43].



Error analysis and convergence criterion of the method was investigated by many
authors. In [17] Cherrualt and Adomian investigate the convergence of the method when
applied to a special class of boundary value problems. However, in [18] it was shown that
Adomian Decomposition method does not converge in general. In particular, if the method
is applied to linear equations.

Recently, many authors tried to modify ADM to accelerate the convergence of the
series solution, simultaneously reduces the size of the work. Wazwaz proposed an efficient
modification of the standard Adomian Decomposition method that improve convergence
and reduce the error [42]. Also Abbasbandy suggested a modification of ADM in [4].
More details about the method and examples will be presented in chapter three.

The third method that will be discussed in this thesis is the Homotopy Analysis
method (HAM). This method is based on a continuous variation from an initial trial to the
exact solution. It has been developed by the Chinese mathematician S.J. Liao in his PhD
thesis in 1992 (see [29] and the reference there in). He derived the method, proved the
convergence and developed the error criteria for the method. Recently the method has
been employed by many authors to tackle certain class of initial value problems. For
example, Liao [26] employed the method to generate an analytical solution for the Blasuis
equation. He was able to generate 35 terms of the series expansion of the solution and the
solution was accurate up to 6 decimal numbers.

In [26], Liao applied the Homotopy analysis method, to study the temperature

distributions of a laminar viscous flow over a semi-infinite flat plate. He was able to derive



up to 30 terms of the series solution of the problem. Allan and Syam [15] used the method
to solve the non-homogenous Blasuis problem that describes the fluid flow over a moving
surface. They used it to show that the problem has either no solution or one solution or
two solutions. The existence and uniqueness of the solution depends on the flat plate
relative velocity.

Allan [11] used the Homotopy Analysis method to derive the Adomian
Decomposition method. He proved that the Adomian Decomposition method is a special
case of the Homotopy Analysis method. Lately, Allan and Haji [14] employed the same
method to study the characteristics of nano-fluid flow over a moving flat plate. Liao and
Chang [24] used the Homotopy Analysis method to derive a solution for the classical
problem of nonlinear progressive waves in deep water. To further improve the
convergence, he applied the Pade expansion. As a result, the calculated phase speed at the
20" order approximation of the solution agrees well with previous perturbation solutions.

Most of the examples presented are initial value problems, very little is known
about the application of the method to boundary value problems. Allan and Hajji use the
method to derive an analytical solution to multi-level boundary value problems derived
from the flow through multi-channels porous media.

Analysis of the method, its convergence and error analysis will be presented and
several examples will be presented in chapter four to demonstrate the validity of the work.
In chapter five, we will discuss a new method based on a modification of Tylor series

approach to solve singular initial value problems and boundary value problems. The



method is based on expanding the solution at different choices of the expansion point.
The solution then will be a function of both the independent variable x and the expansion
point x,. Study of the solution as the expansion point varies will be presented.
Mathematical analysis of the method and error control will be discussed and several

examples will be presented. Conclusion remarks are presented in Chapter six.



Chapter 2: Series solution about ordinary points

Most differential equations, especially nonlinear ones, do not accept solutions
which can be implicitly or explicitly defined in terms of elementary functions. However,
the problem of finding solutions is not difficult. In fact, there are available numerical
methods, series methods and graphical methods for solving DE’s.

For certain differential equations, implicit solutions in terms of elementary functions can
be found. However, it is frequently true that such implicit solutions are less useful than
numerical or series ones. Implicit solutions are for most differential equations, are difficult
to find. The subject of this chapter is the use of power series as a method for deriving
solutions to linear and nonlinear ordinary differential equations.

2.1 Introduction to a power series

The basic idea of power series solution is to find the solution of the form

[e¢]

y() = ) anlx—xo)"

n=0
=ag+ a,(x —x9) + az(x — x0)2 + - + ap(x — x)™ + - (2.1)
where ay,aq,a,.,,,a, are constants to be determined, x, is the domain of definition of
the differential equation and x is the independent variable. However, if infinitely many
values of a,'s are non-zeros, then the series is infinite and one should consider the
convergence of the series. In what follows we will introduce some definitions that will be

needed in this chapter.



2.1.1 Definition of a convergence

A power series (2.1) is said to converge at a point x if lim Y- a,(x —x)" =
m-—-oo

Yo an(x — x0)™ exists. It is clear that the series converges for x = x,, it may converge
for all x, or it may converge for some values of x and not for others.
2.1.2 Definition of absolute convergence

The power series Yo—oa,(x —xy)™ is said to converge absolutely of
Yim—o an|(x — x¢)|™ Converges. One of the most useful tests for the absolute convergence

of a power series is the ratio test. It states that for a fixed value of x if

an+1

= [,then the power series converges absolutely at that value of x if

lx — xo] Al_fglo a
[ < 1,anddivergesif [> 1.If [ =1 the test is inconclusive, i.e, the series may either
converge or diverge. However, there is another method to test the absolute convergence
that is if a power series converges at x = x,, then it converges absolutely for all x such
that |x — xo| < |x; — x|, and if it diverges at x = x;, then it diverges for all x such that
lx — xo| > |31 — x0].
2.1.3 Definition of radius of convergence

The radius of convergence of a power series is defined to be the positive constant
p such that the power series converges absolutely for |x — x,| < p and diverges for

|x — x| > p. The interval I = {x: |x — x| < p} is called the interval of convergence of

the series.



2.2 Power series method for linear differential equation

Consider the second-order linear differential equation,

a,()y () + a;()y (%) + ag(x)y(x) =0 (2.2)

Suppose a,(x) is nonzero for all x. Then we can divide throughout to obtain

" (x) - (x)
y'(0) + 28y + 2By () = 0 23)

Suppose that al/a2 and ao/a2 are analytic functions at x, , then we can derive the power

series solution of the differential equation (2.2) as follows.

Let
y(x) = i an(x = xo)" (2.4)
i=0
then
y' () = inan(x — xo)" (2.5)
and
y'(x) = i n(n — Da,(x — xo)"? (2.6)
i=2

Then replace y, y',y", ... in (2.2) one can solve for the coefficients a;,i = 1,2,3, ... as it

will be shown in the next example.

Example [2.1]: Consider the differential equation

y' —xy=0 (2.7)



y(x) =Xr-0anx", ¥y (x) =Zioianx™h y ' (x) = Enoann(n — 1)x
Plugging y and y" into the Eq (2.7) gives
Z ann—1)x""2%—x z ax™ =0
n=2 n=0
By making a shift in the index on the first sum the second sum leads to
2a, + Z(k + 2)(k + D ag,x* — z ap_1x% =0

k=1 k=1
Collecting powers of the same power of x leads to
2a, + z[(k +2)(k + Dagsg—ag_Jxk = 0

k=1
If this series is a solution, then all these coefficients must be zero. Thus
2a2 = 0, or a2 = 0
and
(k+2)(k+1Dagsz —ag-1=0
or

_ Ak—1

Ue+2 = Ger2)keD) (2.8)

For example, fork = 1,2, 3, ...

1
as = 6a0
1
a4 Eal
a
asg _2_0



_az 1
%% =30 1807

Substituting these coefficients into the original power series for y(x) gives
y(x) = ag + ar1x + a,x* + azx® + -

which we can break up into the sum of two linearly independent series solutions

1 1
y1(x) = ag [1 + 6x3 + ﬁaﬁ + ]

(x) = [+14+1 7 + ]
yz X —al X 12x 504x

and
y(x) = y1(x) + y,(x)

thus

1 s, 1 & La, 1 5
y(x) =ag 1+6x +ﬁx +--~]+a1[x+ﬁx +50—4x +]

The coefficients a, and a,; can be determined using the initial conditions. It is worth
mentioning that it is always possible to find the recurrence relation similar to (2.8) in all

cases of linear differential equations.

Example [2.2]: Consider the following I\VVP, [10]

e*y"(x) + xy(x) =0 (2.9)
with the initial conditions

y(0)=A4,y'(0) =B

We can introduces the solution of the Taylor series by an infinite series given
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y(x) = Xp=o anx™ (2.10)
Substituting Eq (2.10) into both sides of Eq (2.9) gives

e* <Z n(n—1) anx”_2> = - Z a,x™t1

n=0 n=0

or, equivalently

x? x3

(1 Fx oot > (2a, + 6azx + 12a,x%+..)
+ x(ag + a;x + ayx? + azx3+..) =0

Thus

2a, + 6azx + 12a,x? + -+ 2a,x + 6a3x? + 12a,x3 + -+ + a,x? + 3azx3 + 6a,x*
+ -+ agx + ax? +ax® +az;x* =0

The coefficients a,,n > 0, are determined by equating coefficients of like powers of x

through recurrence relation. It is clear that the recurrence relation is difficult to derive.

Alternatively, we multiply the series, term by term to find

2a, + (6az + 2a, + ag)x + (12a, + 6as + a, + a;)x? + (12a, + 3as + ay)x3 +

1 1
ap, =4, a, =B, a,=0, az = =, a4=E(A—B)

Thus, y(x) = ag + a;x + a,x? + azx3 + a,x* + -

S A4 Bx S AX 4 (A— B)xt +
= X T x

= y1(x) + ¥, (x)



11

where

—[1 Loy Loty ]A

and

y2(x) = [x—%x‘l' + ]B

2.3 Power series method for nonlinear differential equation

For the nonlinear differential equations the approach is the same as the linear case.
However, calculating the coefficients a,,'s of the series solution is a little bit more
difficult. In the next examples, we will suggest a new approach to find the coefficients
that will reduce the calculation time and make it easier for the use of software such as

Mathematica or Matlab.

Example [2.3]: Consider the nonlinear linear differential equation
y+y2=1, y(0)=2 (2.11)
Which has an exact solution given by

1+ 3e?*

X) = ————
y() —1+ 3e%*
Now let y(x) = X0_0anx™ = ag + a;x + ayx? + azx> + -

then,

y’(x) = Yn=1 annxn_1

Plugging y and y " into the Eq (2.11) gives
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(ay + 2a,x + 3azx? + 4a,x® + ) + (ag + ayx + ax?* + azx® + - )(ap + a;x +

ax?+-)=1

And after simplification it becomes

(a; + 2a,x + 3asx? + 4a,x3 + ) + (ag + aga x + aga,x? + agazx® + -+ + aga, x
+ a?x? + aja,x® + ajazx* + - + agayx? + a;a,x3 + aix* + a,azx®
+ -+ agazx® + a;azx* + azazx® + asx®+ - =1

The terms can be rearranged as

(a; + a?) + (2a, + 2apay)x + (3as + 2aya, + a?)x? + (4a* + 2aq4a; + 2a,a;,) ...
=1

This equating the coefficient of each power of x with 0 leads to

a, +a3=1,or a,=1-—a3
2a, + 2aqya;, = 0, or a, =as —ag
Similarly

3a; +2a0a; +af = 0,01 ay =3(~3a} +4aj — 1)

Then the solution in a series form will be

y(x)=ay + a1 x + a;x?* + azx> + -

y(xX)=ay + (1 — ad)x + (a3 — ap)x? + %(—Sag + 4a3 — Dx3 + -

The coefficient a, can be found using the initial condition. If for example we assume that
y(0) = 2, then a, = 2, a; = —3,... which leads to the power series solution

y(x)=2—3x + 6x% — 11x3 + -
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As mentioned earlier, the calculations of the coefficients a,, will more complicated
and difficult especially if the method is applied to a higher order differential equation with
sever nonlinear terms. In addition, it will be very difficult to write a computer program to
evaluate the coefficients using procedures describes above. This initiates a need to
develop a new approach to solve for the coefficients. The new approach will be described
in the next example.

New approach for evaluating the coefficients

Consider the nonlinear differential equation described example [2.3] solve the
ODE using the power series method, we set
y(x) = X0 0a,x™  =ag+ a;x + ayx? + azx3 + -
and
y'(x) =Y janx® = ay + a;x + a;x? + azx3 + -

Plugging y and y' into the ODE gives

=(a; + 2a,x + 3azx? + 4a,x3 + ) + (ag + ay;x + a,x? + azx3 + - )(ap + a1 x +
ax?+--)=1 (2.12)
Setting x = 0 in Eq (2.12) gives

a, +al =1,thena; =1—a3

then differentiate Eq (2.12) with respect to x leads to

(2a, + 6azx + 12a,x? + ) + (a; + 2a,x + 3a3x? + azx3 + -+ )(ay + a;x +

ax? + ) + (ag + ayx + ax? + azx3 + -+ )(a; + 2a,x + 3azx? + azx3 +

) =0 (2.13)
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and set x = 0 implies

2a2 + (al. ao) + (ao.al) = 0

2a2 + 2a0a1 = 0, then az = _aoal
a; = —ao(1 - af)
and

a; = (—aop + ag)
Differentiate Eq (2.13) with respect to x again and set x = 0 implies
6as + (2a,.ay) + (a;.a;) + (a;.a¢) + (ag.2a,) =0
or
1
as = §(4a§ —3ag—1)
Then the solution will be
y(xX)=ay + a;x + a;x? + azx> + -
y(xX)=ay + (1 — ad)x + (a3 — ap)x? + %(—Sag + 4a3 — Dx3 + -
The above mentioned technique can be programed easily using Mathematica to solve the
nonlinear differential equations in general. The solution of example [2.3] is presented in
figure 2.1 which shows the series solution and the exact solution together, while figure

2.2 represents the error over the interval [0, 0.4]. Table 2.1 is the list of error values over

the same interval for the same example.
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Figure 2.1: The exact and the power series solution for the nonlinear

differential equation

_6
-Lx107" |

Ak
-2.x107" |
=3.x107°F

—4.x10"8 F

=5, %10~°

Figure 2.2: The error solution for the nonlinear differential equation

15



X; Exact solution Error solution
0 2 0

0.1 1.75069 1.78913 x 10°¢
0.2 1.57546 5.21129 x 10712
0.3 1.44779 1.74146 x 1077
0.4 1.35205 0.000276044
0.5 1.27953 0.0826308

Table 2.1: The exact solution and the error over the interval [0, 0.5]

Example [2.4]: Consider the nonlinear DE

y==2-,  y0)=1

Substituting Eq (2.10) into Eq (2.14) yields

Z na,x" 1= (Z a,x™th) <Z na,x™" 1) (Z anx">
=1 n=0

or, equivalently we can write Eq (2.14) as

y' —xyy' —y*=0

let

n-1

y(x) = 2nsoanx™,  ¥'(%) = Xnsg annx

Plugging y and y’ into the Eq (2.15) gives

16

(2.14)

(2.15)



=(a; + 2a,x + 3azx? + 4a,x® + ) — x(ag + a;x + ax* + azx® + - )(a; +

2a,x + 3a3x? + 4ax3 + ) — (ag + ayx + a;x? + azx3+..)(ag + a;x + ayx? +

as;x3+..) =0

Therefore

a=1  a,—a3=0, a; = a2, a; = 1, azzg' aszg
Therefore

3 ,.8 3
y(x)=1+x+§x +§x + -
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Chapter 3: Adomian Decomposition Method

3.1 Introduction

The Adomian decomposition method has proven to be very efficient in handling
many problems in various fields of science and engineering such as physical and
biological problems which can be modeled by differential equations that can be easily
solved by Adomian’s method. For example Al-Khaled and Allan [22] applied ADM to
solve Voltera Fredholm equation. Abbasbandy and Darvishi used Adomian
decomposition method to solve Burger-equation [4]. Other examples of the use of the
Adomian Decomposition method can be found in [12-15].

The method it has been extended by Wazwaz to solve Voltera integral equation,
Tan and Abbasbandy applied ADM to solve quadratic Riccati differential equation [40],
recently Kamel Al-Khalid and Fathi Allan [13, 21] developed the ideas of Wazwaz study
and applied it to high order nonlinear Voltera Fredholm differential equation.

The basic idea of ADM consists of splitting the given equation into two parts,
linear part and nonlinear part, inverting the operator of the highest-order derivative
contained on both sides in the linear operator, identifying the boundary or the initial
conditions and the terms that involving the independent variables alone as initial
approximation, decomposition the unknown function into a series whose components are

to be determined, decomposing the nonlinear function in terms of special polynomials
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called Adomian’s polynomials, then finding the successive terms of the series solution by
recurrent relation using Adomian polynomials.

The Adomian Decomposition method has many advantages. The main advantage
of the method is that it can be applied directly for all types of differential and integral
equations linear and nonlinear, homogeneous or inhomogeneous, with constant
coefficients or with variable coefficients.

Another advantage is that the method is capable to reduce the size of
computational work without reducing the high accuracy of the numerical solution.
Moreover one of the disadvantages of this method is that it gives a good approximation
only in the neighborhood of the initial time, as it will be shown later. In addition, Allan
[11] proved that the solution given by ADM is just a special case of the Homotopy

Analysis method which will be discussed in the next chapter.

3.2 Adomain Decomposition method for nonlinear differential equation
Consider the differential equation

F(x,y(x))=0 (3.1)
which can be split in two components

L(y(x)) + N(y(x)) = 0 (32)
where N and L are the nonlinear and the linear parts of F. The operator L is assumed to be

an invertible operator. Solving for L(y) leads to

L(y) = —=N(y) (3.3)



20

Applying the inverse operator of Eq (3.3) leads to

y(x) = =LY (NO)) + 9 (x) (34)
where 9(x) is the constant of integration which satisfies the condition L(9) = 0. Now

assuming that the solution y(x) can be represented as infinite series of the form

Y = ) (@) (35)

Furthermore, suppose that the nonlinear term N(y) can be written as infinite series in

terms of the Adomain polynomials 4,,0f the form

NOY= ) 4y (3:6)
n=0

where the Adomain polynomials A,, of N(y) are evaluated using the following formula:

Ay wﬂ<zwwn

Then substituting Egs (3.5) and (3.6) in Eq (3.4) gives

=0

> @ =9 -1 4y (3.7)
n=0 n=0

Then equating the terms in the linear system of Eq (3.7) gives the recurrent relation
Yo(¥) = 9(X)yns1 = —L7'(4,) n=0
Then, the solution will be estimated as y(x) = XN_; y,,(x). In the following sections we

will provide some application of the ADM to certain class of DEs.
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3.3 Numerical Results

Example [3.3a]: Consider the nonlinear DE.

YO +y*() =-1

with initial condition y(0) =0

To solve this problem, the highest degree differential operator (written here as L) is put
on the left side, in the following way

Ly)=-1-y?

with L = % and L = [(.)dx

Assume the solution of the form

Y=Yotyr+y>+yz3+- -

Replacing in the previous expression, we obtain

Do+ y1+y2+ys+)=09C) +L 7 [-1=Qo+y1+y2 +y3+ )%

Now we identify y, with some explicit expression on the right,and y;, i = 1,2,3, ...
with some expression on the right containing terms of lower order than i. For instance,
Yo=y(0) +L7'(-1) =t

y1=-L"1(A) = -L7'(y§) = —L7'(t?) = —t3/3

Y2 = =L (A1) = =L (2yoy1) = —2t°/15

ys = —L7'(yi + 2y0y2) =-17t7/315

In this way any contribution can be explicity calculated at any order. If we settle for the

four first terms, the approximant is the following
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Y=YotYitY,tys+--

= —t+30 + 25+ 2T 4o
3 15 315

Example [3.3b]: Consider the nonlinear differential equation
y'(®)+yi) =1, y(0) = 2

Solution

The differential equation can be split into the two parts L(y) =y’ — 1 and N(y) = —y?,
where L = %, and L(y) = —N(y)

Let

Y=Yot+ty1+y2+ys+--

then

Go+y1+y2+y3+) =y + L7 [-1-Go+y1+y2+y3+)%

Yo =y(0)+L71(1) = (2+1)
3

y, = —L1y3) =—-(L"12+1)?) = - <4t +2t2 + %)

t3
Y2 = =L QRyoy) = - L' (22 + 1) ( —4t — 2t* — g)

16 . 4
=—|-8t2 ——t3—st*+ )
( 3 3
48 . 142
ys = —L7'(f + 2y0y2) = - (?t3 7t )

then
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Y =Yoo+ Y1ty +yz+ -

=[2-3t+6t%>—11t3 + -]

Example [3.3c]: Consider the nonlinear ordinary differential equation [11] given by

’ y?
Y =15 yO=1 (3.8)

Using the ADM, Eq (3.8) can be written as

y'(1—xy) =y?

Y =xyy' +y°

L(y) = xyy' +y? (3.9)
Applying L3 to both sides of Eq (3.9) and using the initial condition we find

y =L"*(=N()). Now, let L(y) = 0. Then L™ (xyy") + L™*(y*) = 0

thus

y() =1+ L (xyy) + L7 (%)
y(x) =1+ xL_l(z A+ L7t (Z Bn>
n=0 n=0
The decomposition method expands each of the nonlinear terms yy’ and y? formally in a

power series, given by

o)

yy,:AO +A1+A2 +A3+“‘ZZA-”

n=0

y2 =B0+B1+Bz+33+=an
n=0
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where A,, and B,, are so called Adomian polynomials corresponding to the nonlinear terms

yy'and y?, respectively, and
Ay =yoyo=1(0) =0
By=y5=(1)?=1

thus

y1 = Lyt (xAp) + L' (By) = x

d
A = i [(Vo + Ay1) (Yo + Ay1)']

= [y1 (Yo + A1) + o + Ay1)y1]

Substitute A = 0 in (3.10) implies

Ay = [y1(vo)" + o)yl

thus

d
B, = i [(yo + /13’1)2] =2(yo + Ay

substitute A = 0, in (3.11) implies

By =2yoy1

3x?
y2 =Lyt (xA;) + L1 (By) = >
d2

Azzﬁ[

(Vo + Ay1 + 22y,) o + Ayy + 22y,)']

(3.10)

(3.11)

= (2y) (Yo + Ay1 + 22y5) + (y1 + 24y,)(y1 + 24y3) + (1 + 24y,) (y1 +

24y3) + (Vo + Ay1 + 22y,)(2y3)

substitute A = 0, in (3.12) implies

(3.12)
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Ay = 2y,y0 + 2y1y1 + 2Y0Y2

2

B, = FVE [(Vo + Ay1 + 2%y,)?]

d
B, = az()’o + Ay, + /123’2)(3’1 + 21y,)

B, = 2(y; + 22y,)(y1 + 22y2) + (¥o + Ay1 + 22¥2)(2y2) (3.13)
Substitute 4 = 0 in (3.13), implies
B, = 2yf + 4oy,
8

y3 = Lz (xA;) + L' (By) = §x3
The solution of Eq (3.8) in a series form is therefore

_ 3.2,8.3
yx) =14x+-x"+2x7 + -
From the above discussion we can verified, the components y,, y1, 2, ... were determined

easily in a recurrent way. Only simple integrals were used in the computational work. It

was indicated that the accuracy can be improved by adding more terms.
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Chapter 4: Homotopy Analysis Method (HAM)

4.1 Introduction

The Homotopy Analysis method , which was first introduce in 1992 by Liao [24,
26, 28] , is another method used to derive an analytic solution for nonlinear operators. It
consists of introducing embedding parameters and embedding operators where the
solution is assumed to depend continuously on these parameters. The method has been
used by several authors and proved to be very effective in deriving an analytic solution of

nonlinear differential equations [1, 2, 25, 29, 30].

4.2 The Homotopy Analysis method for the solution of y(x) = 0

To explain HAM, consider a nonlinear equation

y(x) =0 (4.1)
First of all we construct such a Homotopy

ulx, gl = (1 = Ply(x) — y(xe)] + qy(x) (4.2)
where (x,) is an initial guess and (q) is called Homotopy parameter, or including
parameter.

Now, at ¢ = 0 and g = 1, one can get

ulx, 1] = y(x), and pu(x, 0) = y(x) — y(xo)

Thus as q increases from 0 to1, u[x, q] varies continuously from y(x) — y(x,) to y(x)

Now let u(x,q) =0
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(1 -ly(x) =y +qy(x) =0 (4.3)
Since the above family of algebraic equations depends on the Homotopy parameter g, then
we can set x = 8(q),

then (4.3) can be written as

(1= [y(2(@) — y(xo)] + qy(8(@)) = 0 (4.4)
At g = 0 we have

y(8(0)) = y(xo) = 0

We may take @(0) = x,, then the function @(q) agrees with the initial approximation at
q=20

More over at g = 1, we have y(@(1)) = 0, then @(1) is a solution of the nonlinear
algebraic equation.

Therefore, as the Homotopy parameter g increases from 0to 1, @(q) varies from initial
guess (x,) to the solution of y(x) = 0.

Equations like (4.4) is called a zeroth-order deformation equation.

Now, expand @(q) as a Maclurian series, gives the Homotopy series

B(q) = xo + Xie1 Xk q" (4.5)
Let x;, = D, (@), Where D, (@) is called the kth-order homotopy derivatives of @

then,

_ 13%(q)

SR TR L PR
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According to the theory of Taylor series, this power series is unique as one regards g as a
small parameter.
If the Homotopy series (4.5) is convergent at g = 1, then using the relationship @(1) = x,
one has the so called Homotopy series solution
X =Xxg+ Z Xk

k=1
Now, by taking the first order Homotopy derivative on both sides of the zeroth order
Homotopy derivative equation (4.4) gives the so called first order deformation equation:

-y (xo)
y1(xo)

x1Y'(x9) + y(xp) = 0, then x; =
After that, if we take the second order Homotopy derivative on both sides of the zeroth
order deformation equation (4.4), which means differentiate twice with respect to g, then
divide by 2! and finally set g = 0, we get x,y’ (xo) +5x%y" (xo) = 0

x5y (x) _ —y2(x0)y" (x0)
2y’ (xo) 2[y' (x0)13

whose solution is x, =

Finally, the first order Homotopy series approximation,

x = x, + x4, and the second order Homotopy series approximation x = x, + x; + x,

To control the radius of convergence of the series solution, Liao introduced an auxiliary
parameter h # 0.

The new kind of zeroth order deformation equation becomes like

(1 - {y(0(@) — y(x)} = qhy((q)) (4.6)
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Now we have the corresponding first order deformation equation by taking first order
Homotopy derivative on both sides of (4.6) and setting g = 0 leads to
x1y' (%) — hy(x) =0

ry (xo)

Therefore, x; = ———
17y (xo)

By the same way if we take the second order Homotopy derivative on both sides of (4.4)

we can have the corresponding second order deformation equation

1
%29 (x0) = (1 + M)xyy"(x0) + Exfy,’(xo) =0
On the other hand x; and x, given by (4.4) are special case of x; and x, given by (4.6)

with h = —1.

4.3 The Homotopy Analysis method for the solution of the nonlinear differential

equation

Consider the differential equation

Nyl +Lly(x)] =0

where N is a nonlinear operator, x denotes the independent variables and y is the unknown
function.

By the means of HAM

(1= L[(BCx q) — yo(x)] = qA[N[B(x; )] + L[ (x; @)]] (4.7)
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Where g € [0,1] is the embedding parameter, & # 0 is an auxiliary parameter used to
control the error, L is an auxiliary linear operator, @(x, q) is an unknown function, y,(x)
Is an initial guess.

When the embedding parameter g = 0 and g = 1, equation (4.7) becomes @(x;0) =
Yo(x) and @(x; 1) = y(x).

Now, as g increase from 0 to 1, the solution will be change from the initial guess y,(x)
to the solution y(x).

By expanding @(x; q) in Taylor series with respect to q,

05 ) = o) + ) ymCO™

1 0™o(xq)

where y,,, (x) = i

lg=0

If the auxiliary parameter # is convergent at ¢ = 1, then

y() =300 + ) ym(@)
m=1

which must be the original solution of the nonlinear equation.

4.4 Examples of HAM

Example [4.1]: Consider the nonlinear problem y’ — y2 = 0, y(0) =1
Let, L(y) =y’

then, yo(x) =0, y,=4, A=1, y,x)=1

1-(y' () —y(x)) = hg(y'(x) — y*(x))
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Y =Yo+¥1q9 + 20> + ¥3¢° + -
(1= (o +y19 + 20> +y3° + - = y5(x))
= hq((vo + y1q + 20> +y3¢° + )
~ Vo +¥1q + ¥20% + y34° +-)?)
From the first derivative
(—Dig +y29* +y3q° + ) + (1 = @) (¥ + 2y;q + 3y3q* + )
= h(yo +y1q +¥20* + y3q° + - — o + ¥1q + ¥20* + y3¢° + )%
+ hq (yi +2y3q + 3y3q° + -
= 2((o + Y10 + Y247 + y30° + ) — (1 + 2y,4 + 3y:¢% + )
Take g = 0, to get

y1 = hyy — hy§

y1 = —hy§ = —h

y1=—hx+c
Since y;(0) =0, c=0
y; = —hx

From the second derivative
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(=D 1 + 2y2q9 + 3y3¢° + ) + (1 — @) (2y; + 6y39)
+ (=D + 2y3q + 3y3q° + )
= (1 + 2y3q + 3y5¢> + )
—2(yo + 19 + 20> + y3¢* + )1 + 2y,q + 3y3q* + )
+ A((1 + 2y5q + 3ysq® + )
—2(Vo + ¥19 + 20> + ¥30° + )1 + 2y,q + 3y34* + )
+hq(2y; + 6y3q + )

Takeqg =0

—y1+ 2y; —y1 = hy; — 2yoy1h + hy; — 2yey,h

2y; = 2y1 + 2hy; — 4yoy1h

Yz = ¥y1+ hy1 — 2yy1h

y, = —hx + 1+ h(—hx) — 2(1)(—hAx)h

y, = —hx—h%x + h%x?

Then the third derivative



33

(=D (2yz + 6y3q + ) + (=1)(2y; + 6y3q + ) + (1 = q)(6y3 + =)
+ (=D (2y; + 6y3q + )
= h(Qy; +-)
—2(y1 + 2y2q + 3y3q° + )1 + 2y2q + 3y3q° + )
= 2(yo + ¥1q + ¥24° + y3q° + ) (2y2 + 6y3q + )
+ 1((2y5 + 6y3q + )
—2(y1 + 229 + 3y3q° + )1 + 2¥2q + 3y3q%)
= 2(yo + ¥1q + ¥24* + ) (2y2 + 6y3q + )
+h((2y; + 6y3q + )
—2(y1 + 229 + 3y3q° + )1 + 2y2q + 3y3q%)
= 2o +y19 + ¥2q* + - )(2y2 + 6y3q + ) + hq(6y3 + ).
Takeqg =0
y3 = y; + hy; — hyi — 2yoy,h
ys = —h — 2h% 4+ 4h%x — h3 + 4h3x — 3A3x?
ys = —hx — 2h%x + 2h%x? — h3x + 2h3x% — h3x3
Then, y(x) = yo + y1(x) + y2(x) + y3(x)
Figure 4.1 shows the A curve which is the variation of the value of y'(0) as the parameter
h varies over the interval [—2, 0]. It shows a horizontal line over specific values of # .
So choosing any value of # on the interval where the curve is horizontal will guarantee

the convergence of the series.
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Figure 4.1: The A -curve for y'(0) by using Homotopy Analysis method

h =-05

Figure 4.2: The solution for x between [0,0.8] for A = —0.9 and A = —0.5

Figure 4.2 shows the series solutions for the two different values of A that resulted from

the Homotopy Analysis method on the interval [0, 0.8].
As it is clear, one can find that the solution depends on the parameter # as well. This

parameter is used to control the error by watching the value of y'(0) for different values
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of A. It is clear that the value y'(0) is stable for all values of & in the interval

between(—1.5, —0.3). So picking & in the interval should decrease the error.

Example [4.2]: Consider the nonlinear problem
y'+y2=0, y0)=1 y'(0)=0

Using the same procedures described above, one can find the i-curve shown in fig 4.3

L L
2.0 - 15 - 1.0 - 05

Figure 4.3: The Aa-curve for y''(0) using the Homotopy Analysis method

Figure 4.3 shows that the horizontal line is not achieved, which means that # cannot be
used as an error controller for this problem. This initiates the need for a modification of

the method. This will be achieved in the next chapter.
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Chapter 5: Modified Taylor series solution method

5.1 Modified Taylor series solution of initial value problems with singularities

5.1.1 Introduction

In mathematics, in general a singularity is a point at a given mathematical object

Is not defined, or a point where it fails to be well-behaved of an exceptional set in some
particular way, such as many problems in various fields give rise to ODE of the form
y'=flyy), a<x<b (5.1)
For some interval of the real line with initial condition. An initial vale problem associated
to the second order DE (5.1) is singular if one of the following situations occurs. The
interval (a, b) infinite if f(x,y,y") is unbounded at some value of y'or y or f(x,y,y') is
unbounded at some x, € [0, 1].
Consider the nt" order linear differential equation of the form

Y™ + faoa Y™+ 1GY + fo(x)y =0 (5.2)
subject to the initial conditions:

y(xp) = ag, y'(xo) =y, ..., yn_l(xo) =0p—1 (5.3)

The point x, is said to be a singular point if f,(x,) = 0 and it is said to be a

regular point for the differential equation (5.2) if all functions (x — x,) f’;‘l,
(x — x0)? f’}—‘z ey (x— xo)”‘l% are analytic at x, . Otherwise, the point is said to

be an irregular singular point. It is very well known that near the regular singular point
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one can find the series expansion of the solution using the well-known method of
Frobenius. For the differential equations with irregular singular points, the series
expansion of the solution near the irregular singular points is not possible. However, there
are special treatments for these kinds of problems such that the exponential transformation

method, where the transformation is given by

y(x) = Exp(F(x))Y (x) (5.4)
where
A Ag—q Ay Ay
F) = o T T T T o x)
and

(o]

V) = ) 4 —x0)"

i=0
is the Frobenius series. Then finding all derivatives of the function defined by (5.4) and
plug in the differential equation (5.2) after dividing by the function f,,(x), one can find
the unknown coefficients A; and a; and the constant r. The difficulty associated with this
approach is that the determination of the coefficients is time consuming and too much
involved.

Numerical techniques available for the solution of these kinds of problems also
face the fact that the initial conditions are given at x, and the evaluation of the terms of
the Taylor series solution at any step requires dividing by x — x, which results in overflow

and therefore will fail to obtain the solution.



38

Taylor series solution of ordinary differential equations is very well known
practice for many years. Recently it has been proven that Taylor series expansion is very
efficient in handling special type of differential equations. Huabsomboon et al [20] used
the Taylor-series expansion methods to solve the second kind integral equations.
Maleknejad et al [32] obtained numerical solution for the second kind Fredholm integral
equations system by using a Taylor-series expansion method. Maleknejad and Aghazadeh
[31] employed the Taylor series expansion to solve numerically the Volterra integral
equations of the second kind with convolution kernel. Hile Ren et al [38] considered the
solution of a class of second kind integral equations using simple Taylor series expansion
method.

The series terms can be calculated term by term such as the direct Taylor series
expansion [20, 32, 38] or collectively such as the Adomian Decomposition method [22,
42] and the Homotopy Analysis method [12, 19, 23, 40].

For the Initial value problems, it is well known that the Taylor series expansion
[24, 31, 41] of the solution will be about the initial point and the error is controlled by
adding more terms to guarantee the convergence of the solution over a specific interval.
Sometimes adding more terms might be difficult and time consuming which is the case of
Adomian Decomposition method [11] and the Homotopy Analysis method [14, 29]. As
discussed in the previous chapter, to control the error of the Homotopy Analysis method
an additional parameter, # is used and the behavior of the solution is monitored at one of

the initial conditions as the parameter A varies. However not much theory is available to


http://www.sciencedirect.com.ezproxy.uaeu.ac.ae/science/article/pii/S037704271000107X
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support the use of this additional parameter. This idea initiates a new approach to decrease
the error and increase the convergence of the solution.

In this chapter we will discuss a new approach to solve initial value problem using
the series expansion method [33, 34]. The method is based on different choices of the
expansion point used to expand the solution about. Details properties of the suggested
method will be discussed and different linear and nonlinear initial value problems will be

presented to demonstrate the efficiency of the method in the following.

Example [5.1]:

Consider the following equation

x%y" =2y=0

which has a singular point at x = 0.

It can be shown by direct substitution that the following functions are linearly independent

solutions for x = 0

y1(x) = x?, y,(x) = x71

Thus, in any interval not containing the origin, the general solution is y(x) = ¢;x? +
c,x~ L. Thus, y = ¢,x? is bounded and analytic at the origin.

However, y = c,x~! does not have a Taylor series expansion about x = 0, for that the
standard numerical techniques will fail, because the use of the standard Taylor series
expansion of the solution near the irregular singular point will not be possible due to the

fact that evaluating the series coefficients will require a division by 0. In what follows,
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we will develop a new approach to control the error in the Taylor series expansion of
analytic functions. The approach will be used to solve differential equations with irregular

singularities and eigenvalue problems.

5.1.2 The Taylor series expansion of the function f(x)

Consider the Taylor series expansion of the function f(x) about x,
f(x) =T (x, x0) + R (x, x0) (5.5)
where
Tn(x,%0) = X an(x — Xx0)"

and

e
R, (x,%0) = (e 1)! (x — xo)n+1

The variable ¢ is between x and x,. Let us assume |f™*1(&)| < M then for fixed x,, one
can control the error and increase the interval of convergence of the series either by adding
more terms which might be costly in most cases, or one can reduce the error by changing
the expansion point x,.

However, looking at the error term Eq (5.5) one can see that the error is also controlled by
the quantity (x — x,)™. So selecting different x, will give different values for the error
and the closer the point x, to the point x, the less error will be obtained.

The relation between the interval of convergence and the choice of x, for a fixed number

of terms is given by the following theorem.
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Theorem (5.1): Let f(x) be analytic on the interval I and assume that |f™(x)| < M for
all x e I and all n € N then given € > 0 and n, € N, there exists an interval [a, b] S I
such that |T;,, (x, xo) — f(xo)| < & forall x, € [a,b] and n = n .

Proof

The proof will be given by finding the interval of convergence directly

Consider the error term in the Taylor series expansion of the function f(x), then

no+1
and
froti(é) . M -
(n +1)|( —xp)™* < (n+1)!(x_x°) o+l < ¢
then

— no+1 <
0 =)ot < S0

Then solving for x, yields

no+1 no+1
™ ,8(n0+1)!+x <xp < 0 ’S(no+1)!+x (5.6)
M M
no+1 no+1
Therefore the required interval is [a, b] l ° /8("0“)' ° /8("0“)' l

The application of the method to certain examples is presented below.
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Example [5.2]:

Consider the Taylor series expansion of the function f(x) = e* on the interval [0,2]. The
rate of decrease in the error is proportional to the number of terms. The error of e* is

bounded by,

4 2
e n+1 < e n+1

m+D" S+

error =

So it is expected that the error will increase as x — 2. Now using Eq (5.6) with

N >ny, =8, € =0.000001, and M = e?, the new interval will be

o 9! 9 9!
x — 10.000001 * — < xy <x+ |0.000001 * —
e e

One can reduce the error by taking x, in the interval [0,2] provided that N > n, = 8

0 9! e ol
— [0.000001 *— +x < %, < [0.000001 *— + x
e e

and the lower end is greater than 0 and the upper end less than 2. Figure 5.1 shows the
variation of the error as x, varies in the interval [0, 2]. The error associated with the

different choices of x, is presented in tables 5.1 through 5.4
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Figure 5.1: The variation of the error as x, varies in the interval [0, 2]



X Error

0 8.44956 x 107°
0.2 8.6817 x 10~ 1
0.4 4.66294 x 1071°
0.6 421885 x 1071°
0.8 9.21867 x 10711
1.0 9.33863 x 1077
1.2 1.97045 x 1077
1.4 1.93264 x 10°°
1.6 0.0000120213
1.8 0.0000552736
2.0 0.000204942

Table 5.1: The error obtained for
example [5.2] where x, = 0.5

Xg Error

0 6.8046 X 107°
0.2 9.30456 x 1077
0.4 7.11964 x 1078
0.6 1.8879 x 1077
0.8 3.75966 x 10712
1.0 0.0

1.2 391331 x 10712
14 2.04519 x 1077
16 8.028 x 1078
1.8 1.0921 x 10°°
2.0 8.31419x10°°

Table 5.2: The error obtained for
example [5.2] where x, = 1.0

Xg Error

0 0.000412194
0.2 0.000115757
0.4 0.0000262114
0.6 438691 x 10°°
0.8 465591 x 1077
1.0 2.29683 x 107°
1.2 2.35993 x 10710
1.4 1.06581 x 10714
1.6 1.24345 x 10714
1.8 2.50588 x 10710
2.0 2.5385 x 1078

Table 5.3: The error obtained for
example [5.2] where x, = 1.5

Table 5.1, 5.2, 5.3 and 5.4 show the error associated with the series estimation of the

Xy Error

0 0.0086648
0.2 0.00341533
0.4 0.0012041
0.6 0.000368514
0.8 0.0000937065
1.0 0.0000184968
1.2 2.52924 x 107°
1.4 1.93532x 1077
1.6 5.13184 x 1077
18 1.02212x 10711
2.0 0.0

Table 5.4: The error obtained for
example [5.2] where x4 = 2.0

solution of example [5.2]. The error is relatively very small for all x € [0,2].
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5.1.3 Solution of initial value problems with irregular singular points

In what follows we will discuss the use of the Modified Taylor series to solve
initial value problems [14, 20]. As mentioned earlier, the use of the standard Taylor series
expansion of the solution near the irregular singular point will not be possible due to the
fact that evaluating the series coefficients will require a division by 0. In addition the
standard numerical techniques will fail as well. This initiates the needs for a new method
to solve these types of problems.

Consider the second order initial value problem
y' +p()y" +q()y =1r(x)

Subject to the initial conditions

y@=a y'(@=p

One can assume that the solution is given by the series.

N
y() = ) an(x = %) + R
n=0
with
N+1
_y @ N+1
Ry = N+1 (x — )

With the initial choice
y(x0) = ap = q, y'(x) =a, =8
Then ignoring the error term and using the series in the original differential equations to

evaluate the rest of the coefficients as we will see in the next example.
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We present in this section numerical results for three types of initial value problem
which illustrate the method of Taylor series expansion.
The first one of these is linear initial value problem, the second one is for initial value
problem with regular singular point and the last one about initial value problem with

irregular singular point.

Example [5.3]: Consider the linear second order initial value problem

y'+y' —6y=0

Subject to

y(0)=1, y'(0)=1

With exact solution y(x) = %e‘3x 4 2g2x

Then using the procedure describe above and assuming that y(x,) = ao = @ and

y'(xo) = a, = B, one can find that the rest of the coefficients are given by the following:
a -8

a2=_5’ a3=—, Ay =

a (=)™ =n"
—, ..., a =—0q,a = -
6 24’ 720 2nl ) 2ntl (2n+1)!'8

Then the solution y(x) will be given in terms of x, x,, a« and . To find the values of a
and g as a function of x, we need to solve the two equations y(0) = 1, and y'(0) =1
for both « and 5.

Assuming that we will take only 5 terms of the series expansion of the solution and

solving for a and S leads to the series solution T, (x, x,) depends on both x and x,,

y(x, x0) = Ts(x, xo).
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In order to verify numerically the accuracy of the error produced by the modified Tayler
series expansion method, the numerical results in figure 5.2, 5.3 and table 5.5, 5.6, 5.7,

5.8 show a good approximation is achieved by choosing different values of x .

Figure 5.2: The series and the exact solution for the differential equation of

example [5.3]
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Figure 5.3: The variation of the error as x,, varies in the interval [0, 5]
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Xg Error

0 0

0.2 2.22045 x 10716
0.4 4.44089 x 10716
0.6 0

0.8 4.44089 x 10718
1.0 1.77636 x 10~1°
1.2 1.77636 x 10°1°
1.4 3.55271 x 10°°
1.6 7.10543 x 10°1°
1.8 0

2.0 6.39488 x 10714

Table 5.5: The error obtained for
example [5.3] where x, = 0.3

Xo

Error

0

6.99441 x 10715

0.2

421885 x 1071%

0.4

1.9984 x 1071°

0.6

1.77636 x 10715

0.8

4.44089 x 1016

1.0

1.2

1.4

1.6

o|o|o|o

1.8

3.55271 x 10715

2.0

1.42109 x 10~ 4

Table 5.7: The error obtained for
example [5.3] where x, = 0.9

Xg Error

0 3.33067 x 10716
0.2 4.44089 x 1071
0.4 8.88178 x 10716
0.6 8.88178 x 1071°
0.8 8.88178 x 1071
1.0 8.88178 x 10716
1.2 1.77636 x 1015
1.4 1.77636 x 10715
1.6 1.06581 x 1074
1.8 0

2.0 2.13163 x 10714

Table 5.6: The error obtained for
example [5.3] where x, = 0.6

Xg Error

0 5.24025 x 10™14
0.2 452971 x 10~ 1*
0.4 3.28626 x 1071
0.6 1.11022 x 107
0.8 8.43769 x 101°
1.0 4.44089 x 1071°
1.2 3.55271 x 10715
1.4 3.55271 x 10715
1.6 7.10543 x 10715
1.8 7.10543 x 10715
2.0 1.42109 x 10714

Table 5.8: The error obtained for
example [5.3] where x, = 1.5
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Table 5.5, 5.6, 5.7 and 5.8 show the error associated with the series estimation of the

solution of example [5.3]. The error is relatively very small for all x € [0,2].
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Example [5.4]: Consider the second order initial value problem with regular singular
point

x%y" —4xy' + 6y =0, y)=1 y'(1)=0

With the exact solution given by y(x) = 3x% — 2x3

Now, following the procedure described before, generate the series solution and compare

the series solution with the exact solution as shown in figure 5.4

P
=300 -
3000

—

(=]

=]

=
T

Figure 5.4: The series and the exact solution for the differential equation of

example [5.4]
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The error between the exact solution and the estimated series solution for different value

of x, presented in figure 5.5

sx10-l0r
f,f” Lxlollf
4x1070F /
/ Ex10m12t
a0 0f !
.
6.x10°1
3 =10
a1
/ ax10mlF
Lxv L ,//
P 110712t
-/
5 10 15 0
(a) xo =0.01
Laxio-IE 3.5x10712
L2x107 M 3.x10712
Lxlo"ME 25%10°12
gxl0ml2f 2.x10°12f
s.x1072f 1sx10712f
4x10°12f Lxl0-12f
107 L s.x10°B |
§ 10 15 2 A
(c)xy =03

5 10 15

(d)xy = 10

Figure 5.5: The variation of the error as x,, varies in the interval [0, 20]



X

Error

0

5.42101 x 102°

0.2

457967 x 107 1°

04

3.77476 x 1071°

0.6

1.31006 x 10714

0.8

3.06422 x 10714

1.0

6.06182 x 10714

1.2

1.03917 x 10713

1.4

1.64313 x 10713

1.6

246914 x 10712

1.8

3.53495 x 1013

2.0

481393 x 10713

Table 5.9: The error obtained for
example [5.4] where x, = 0.01

Xg Error

0 6.93889 x 10718
0.2 1.38778 x 10717
0.4 1.11022 x 1071
0.6 3.33067 x 10716
0.8 8.88178 x 10716
1.0 1.77636 x 1071°
1.2 2.66454 x 1071°
1.4 3.55271 x 1071°
1.6 6.21725 x 107 1°
1.8 8.88178 x 1071°
2.0 1.06581 x 10714

Table 5.10: The error obtained for
example [5.4] where x, = 0.1

Xg

Error

0

555112 x 10717

0.2

1.38778 x 10717

0.4

0

0.6

2.22045 x 10°1¢

0.8

6.66134 x 10°1¢

1.0

1.33227 x 10°1°

1.2

2.66454 x 10~ 1%

1.4

3.9968 x 10715

1.6

6.21725 x 10~ 1°

1.8

7.99361 x 1071°

2.0

1.24345 x 10714

Table 5.11: The error obtained for
example [5.4] where x, = 0.3

Xg Error

0 0

0.2 1.52656 x 10716
0.4 1.66533 x 10716
0.6 0

0.8 0

1.0 0

1.2 1.11022 x 10716
1.4 1.11022 x 10716
1.6 0

1.8 2.22045 x 1071
2.0 0

Table 5.12: The error obtained for
example [5.4] where x5 = 1.0

52

Table 5.9, 5.10, 5.11 and 5.12 show the error associated with the series estimation of the

solution of example [5.4]. The error is relatively very small for all x € [0,2].
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Example [5.5]: Consider the second order initial value problem with irregular singular
point

Py"+y —y=x%* y(0)=1 y'(0)=1

Where the exact solution is given by y(x) = e*

Now, following the procedure described before, one can generate the series solution and

compare the series solution with the exact solution as shown in figure 5.6

Figure 5.6: The series and the exact solution of the differential equation of

example [5.5]
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The error between the exact solution and the estimated series solution for different value

of x, is presented in figure 5.7

1 L L ' 1
1 3 A 5 ! ! !
.|t'-
=5, x107
x1075
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151078 |
1
-15x1078 i I
. - -4 |
X108 $x10 |
|
=4 |
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! . ! 1 1 1 1
1 3 5 1 3 P P
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| -12x108 |
-0.00012 - | |
| ] |
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Figure 5.7: The variation of the error as x, varies in the interval [0, 5]



Xg Error

0 455191 x 10°1°
0.2 450019 x 1078
0.4 1.14729 x 1077
0.6 1.79071 x 1077
0.8 2.38157 x 1077
1.0 2.95589 x 1077
1.2 3.53531 x 1077
1.4 4.12855 x 1077
1.6 4.73799 x 1077
1.8 5.36348 x 1077
2.0 6.00402 x 1077

Table 5.13: The error obtained for
example [5.5] where x, = 2.3

Xg Error

0 4.44089 x 107 1°
0.2 2.75953 x 10”11
0.4 5.43123 x 10711
0.6 7.30915 x 10711
0.8 9.00529 x 10~ 11
1.0 1.07327 x 10710
1.2 1.25344 x 10719
1.4 1.44127 x 10710
1.6 1.63615 x 10719
1.8 1.83734 x 10710
2.0 2.04412 x 10719

Table 5.14: The error obtained for
example [5.5] where x, = 1.5

Xg Error

0 2.72449 x 10713
0.2 8.65974 x 10°1°
0.4 5.10703 x 107 1°
0.6 7.32747 x 107 1°
0.8 8.88178 x 10°1°
1.0 1.02141 x 107
1.2 1.24345 x 107
1.4 1.42109 x 10714
1.6 1.86517 x 10~ 14
1.8 1.6076 x 10713
2.0 3.25162 x 10712

Xg Error

0 7.32641 x 1071°
0.2 8.88178 x 1071°
0.4 6.66134 x 1071°
0.6 1.91836 x 1077
0.8 3.66299 x 1077
1.0 0.000545917
1.2 0.0231008
1.4 0.461156

1.6 5.5859

1.8 47.3746

2.0 307.592

Table 5.1: The error obtained for
example [5.5] where x, = 0.9

Table 5.16: The error obtained for
example [5.5] where x, = 0.3
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Table 5.13, 5.14, 5.15 and 5.16 show the error associated with the series estimation of the

solution of example [5.5]. The error is relatively very small for all x € [0,2].
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5.2 Modified Taylor series solution of boundary value problems

5.2.1 Introduction

A boundary value problem consists of a differential equation on a given interval
and an obvious condition that a solution must be known at one or various points. The
information about a solution to the differential equation may be mostly specified at more
than one point. Quite often there are two points, which match physically to the boundaries
of several regions, so that it is a two-point boundary value problem [16]. A simple and

general form for a two-point boundary value problem is

y'=flyy), a<x<b (5.7)
Subject to
y(@) =a y(b) = a,

Where a;and a, are known constants and the known endpoints a and b may be infinite

or finite. For the linear case of this BVP, (5.7) takes the simpler form

y'(x) + )y (x) + q()y(x) = g(x), a<x<b (5.8)
Several numerical techniques are available to solve boundary value problems.

These methods include the shooting method and the finite difference method. Very little

is known in the literature about finding an analytical solution for boundary value

problems.

Series method is one way used to estimate the analytical solution for these kinds of

problems. In this section we will focus on the series methods of solving those linear and
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nonlinear boundary value problems whose exact solutions are too difficult to obtain
analytically. The methods to be discussed are the Homotopy Analysis method and

Modified Taylor series method.

5.2.2 Solution of boundary value problem using Homotopy Analysis method

In this section we will focus on a special kind of BVP which is the class of
eigenvalue problems. When the Homotopy Analysis method is used, we can get an
auxiliary linear operator, so we can approximate a nonlinear problem effectively [26, 27].
Details about the use of the method have been already discussed in the previous chapter.
The application of the method to the eigenvalue problem will be present in the following
two examples.

Example [5.6]: Consider the linear boundary eigenvalue problem

y'+y=0 (5.8)
with the boundary conditions:

y(@=0  y1)=0

Solution

If we solve this BVP analytically we will get, for A > 0, the exact solution:
y(x) = A Cos(vAx) + B Sin(vVAx)

y'(x) = —ASin(VAx) + B VACos(Vax)

Then using the boundary condition at x = 0 leads to

y'(0) = gV
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And the boundary condition at x = 1 leads to
y(1) = ACos(V2) =0

fA=0, Cos(vA)=0or, 2,=(nG+mn)

2n+1
2

where, the eigenvalues are: 4,, = (—)?(m)?, forn=10,1,2,.....

and the corresponding eigenvectors are y, (x) = Cos (an—“) nx, n=0,1,2,..

Abbasbandy et al [5] employed the Homotopy Analysis method and assumed that the
linear and nonlinear operators are given by

Lo, )] =0"(x,q), and

N[O, @] = 0" (x,q) + 20(x, q)

Subject to the boundary condition and the solution expression L[@(x, q)], we will choose
the initial approximation as y,(x) = 1, and we have the zero- order equation with the

initial condition @'(0,q) = 0, and

R(y(x, @) =y"(x,q) + Ay(x,q)
X X
7 =y r () + | Res ()i
0 YO
Now, the first three terms of the Homotopy Analysis method series solution are
1
y(x) = E/’lhxz

AR AR 1
N - 2 _ 91242,..4
yz(x)—<2 +2>x +24/1hx
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AR3 Ah 2R3 A%h2 1
_ [ 2.7 2 4 .~ 1323.6
y3(x)—<2 +/1h+2)x +<12+12>x +720/1hx

According to the kth order approximate solution, the Homotopy Analysis method series

solution will be

k
v = ) ()
i=0

Which depends on the auxiliary parameter h,and the eigenvalue A. When we solve
v, (1) = 0, we get a relation between A and h. The plot of A as a function of h gives us
different plateaus, which matches to an eigenvalues of the DE.

In the first figure, A has been plotted according to the equation v, (1) = 0 in the A
range [2, 125] and A range [-2, O] for k = 25, also four plateaus of A can be identified. In
the second figure, A has been plotted according to the equation v, (1) = 0 in the A range

[125, 300] and # range [-1, 0] for k = 25, also three plateaus of A can be identified.
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Figure 5.8: The & — curve of solution Figure 5.9: The A — curve of solution

In the plot of A as a function of &, it can be seen that some plateaus occur, which matches

to an eigenvalue of the DE.

Table 5.17 shows the first 6 approximated eigenvalues with the exact eigenvalues and the

absolute error of the original equation which has been approximated by Abbasbandy et al

[5].
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n Approximated 4, Exact 4,, Absolute error 4,,
1 2.46740110 2.467401100272 2.7 x 10710

2 22.20660990 22.206609902451 2.4%x107°

3 61.68502750 61.685027506808 6.8 x107°

4 120.90266801 120.902653913345 1.5%x107°

5 199.85633513 199.859489122060 3.1x1073

6 298.31364965 298.555533132953 24 %1071

Table 5.17: The eigenvalue and absolute error using HAM

The approximated eigenfunction corresponding to the third eigenvalue A5, and the

corresponding error which is used with A = —0.9 is shown below in figures 5.10 and

5.11

0.5

0

-0.5

-2.5x107

-7.5x107

Figure 5.10: The eigenfunction
corresponding to A5

1x10°°

7.5%107
5x107
2.5x107

-5x107

04 086

0.8

Figure 5.11: The error of eigenfunction
corresponding to A
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Example [5.7]: Consider the singular eigenvalue problem

') + A+ )y() =0 (5.10)
with the boundary condition

y(0) =0 y(1) =0

Solution

By following the same procedure described in example [5.7], we can find the first two
terms of the Homotopy series solution as

ax® o1
yl(X) = T + g/lflx

(x) = h2+h 2 4 Ah2+h2+,1h 3+1/1h24+ 1/12h25
2=\ Ty)X 6 "12" 6 )Y T8t Tt MY

According to the kth order approximate solution, the Homotopy Analysis method series
solution will be v, (x) = ¥¥_, y; (x).

The plot of v, (x) = 1, gives A as a function of h. The contour plot gives us different
plateaus, which matches to an eigenvalue of the DE.

In the figure 5.13, 1 has been plotted according to the equation v, (1) = 1 in the 1 range
[7, 8] and h range [-2, 0] for k = 25.

In the figure 5.14, A has been plotted according to the equation v, (1) = 1 in the A range

[36, 36.5] and h range [-1.4, -0.4] for k = 25.
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Figure 5.13: A- curve according Figure 5.14: A- curve according to

tov,(x) =1and 1 € [7,8] vp(x) =1and A € [36,36.5]



n Approximated A,
1 7.37398501

2 36.33601851

3 85.29251075

4 154.10192997
5 352.47100980
6 568.16321224

Table 5.18: The first 6 eigenvalues obtained for example [5.7] of the DE
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The approximated eigenfunction corresponding to the second eigenvalue A,, and the

corresponding error which is used with A = —0.8 is shown below in eigures 5.15 and

5.16
015 - 0.00005 ~ |
/ \\ / \ II-‘
01 / \ / /
/ / 0.00004 /
0.05 f,-f -\l ) ,f \'-., I.-'f
/ \1 0.00003
o \ fx'
0,05 \ 0.00002
/
A /
01 N/ 0.00001 /
015 \/ e ,
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14

Figure 5.15: The eigenfunction
corresponding to A,

Figure 5.16: The error of eigenfunction

corresponding to A,
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5.2.3 Solution of eigenvalue problem using the Modified Taylor series method

In this section, we will solve the boundary value problems by using the Modified
Taylor method. The suggested method is more applicable and accurate than the built in
methods used in other software packages.
We will solve several examples for nonlinear BVPs and compared results to those
obtained using Mathematica program.
Let us consider the nonlinear Boundary value problem,
y'=fGyy), a<x<b
subject to the conditions
y(a) =4, y(b) =B

Let’s assume one type of differential equations, then following some techniques

in the example, after that we can assume the solution by the series

N
y() = ) an(x = %) + R
n=0
with
N+1
_y @ N+1
Ry = N+1 (x — )

With the initial choice
y(x0) = ap = q, y'(x) =a, =8
Then ignoring the error term and using the series in the original differential equations to

evaluate the rest of the coefficients leads to the following values for the first few terms.



66

So, we can write a,, as, ay, ..., a, in terms of @ and S. To find the values of ¢ and 8 as a
function of x, we need to solve

y(a) = A4, y(b) =B for a,pB

At the end the solution will be in terms of x,, after that we will sketch y(x) as a function
of x, to find the minimum error.

Example [5.8]: Consider the previous nonlinear boundary value problem

y'+dy=0 y'(0)=0 y(1)=0

With exact eigenvalues and its corresponding eigenfunctions given by:
1 2
Ap = (n (E + n)) are the eigenvalues,

and y,(x) = Cos ((g + nn) x) are the corresponding eigenfunctions

Solution

Applying the same techniques used in the first section for initial value problems but with
arbitrary initial conditions and solving for « the first condition at x = 0, then solving for
the second boundary condition x = 1 for g, will give a relation between the expanding
point x, and the eigenvalue A. Plotting the contour of this relation will result in the

following figures.
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Figure 5.17: (x,, A) curve for Figure 5.18: (x,, A) curve for

A € [0,100] and x, € [0,1] 2 € [0,500] and x, € [0,1]

In the first figure 5.17, A has been plotted by using Modified Taylor method in the A range
[0, 100] and x, range [0, 1] for k = 35, also three plateaus of A can be identified.

In the second figure 5.18, 1 has been plotted by using Modified Taylor method in the 4
range [0, 500] and x, range [0, 1] for k = 35, also six plateaus of A can be identified.
For small values of A, x, can be any number between [0, 1], but for larger values of 4, 1
has to be around the middle of the interval.

In the plot of A as a function of x,, it can be seen that some plateaus occur, which matches

to an eigenvalue of the Modified Taylor problem.
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This table shows the first 6 approximated eigenvalues with the exact eigenvalues and the

absolute error of the original equation which has been approximated by Abbasbandy et al

[5].
n Approximatedi,by | Approximated A,,by Exact 4,,
Homotopy method Modified method

1 2.46740110 2.4674 2.467401100272
2 22.20660990 22.2066 22.206609902451
3 61.68502750 61.685 61.685027506808
4 120.90266801 120.903 120.902653913345
5 199.85633513 199.863 199.859489122060
6 298.31364965 298.472 298.555533132953

Table 5.19: The eigenvalues using HAM, Modified Taylor method and the exact error

The approximated eigenfunction corresponding to the third eigenvalue A;, and the

corresponding error which is used with x, = —0.9 is shown below as
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Figure 5.19: The approximated eigenfunction corresponding to 453
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Figure 5.20: The error of eigenfunction corresponding to A5

Also, the Modified Taylor series method has been used to obtain numerically the
solutions of eigenvalues of the boundary value problems of the DE. All computational
work was carried by using Mathematical program. The numerical results show that our

method is suited for the boundary value problem.
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Chapter 6: Conclusion

In this thesis, we have discussed the several series methods available to solve
initial and boundary value problems. The methods are the Taylor series method where we
have modified it to control the error by choosing different expansion point. The method
was applied to differential equations with singular points and to eigenvalue problems. We
have shown that this modification will help in reducing the error and recover all the
eigenvalues of the eigenvalue problems. It was shown that the method is reliable to solve
all kind of boundary value problems as well.

In addition, we have discussed the Adomian Decomposition method and how it
can be used to generate the solution of the initial value problems with the error associated
with this method.

The Homotopy Analysis method was also discussed. The control of this method
through the use of what is known as the A curve. It was shown how this curve can be used
to monitor the error at one point in the domain of definition of the solution. However, it
was shown that this method is not all the times reliable and the error could be reduced
using other methods such as the Modified Taylors method described above.

Different linear and nonlinear examples of ordinary initial and boundary value problems

have been presented.
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