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Abstract

In this thesis, we present a computational method for solving a class of
fractional singularly perturbed Volterra integro-differential boundary-value problems
with a boundary layer at one end. The implemented technique consists of solving two
problems which are a reduced problem and a boundary layer correction problem. The
reproducing kernel method is used to the second problem. Pade’ approximation
technique is used to satisfy the conditions at infinity. Existence and uniformly
convergence for the approximate solution are also investigated. Numerical results

provided to show the efficiency of the proposed method.

Keywords: Singularly perturbed Volterra integro-differential, Caputo fractional

derivative, nonlinear initial value problem
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Chapter 1: Introduction

1.1 Fractional Derivative

In 1695, a French mathematician called L’hopital stopped in an important

question and decided to send a message to asked a German mathematician named
Leibnitz to find the solution of the following question, if the order n = % how | can

find the derivative for this function;

f(x) =x.
Leibnitz’s answer was "This is an apparent paradox from which, one day, useful
consequences will be drawn™ [1]. As a result of this, the fractional calculus started to
appear in the world by the question of L’hopital. The date September 30, 1695 is
considered as the exact birthday of the fractional Calculus. Later, numerous of
mathematicians studied the question of L hopital like Euler in 1738, Lagrange in 1772,
Laplace in 1812, Lacroix in 1819, Fourier in 1822, Abel in 1826, Liouville in 1832,
Riemann in 1847, Greer in 1859, Holmgren in 1865, Griinwald in 1867, Letnikov in
1868, Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in
1917. Each mathematician used their own notation and methodology and they found
many concepts of the functional integral and derivative [2].
The most important achievements in this regard are, in [3], as follow:

1. In 1822, Fourier proposed an integral representation in order to determine the
derivative, and his proposition can be considered as the first definition for the
derivative of positive order.

2. In 1826, Abel solved an integral equation related to the tautochrone problem

which is count to be the first application of Fractional Calculus.
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3. In 1832, Liouville suggested a definition based on the formula for
differentiating of the exponential function. The definition considered as the
first definition of Liouville. The second definition formulated by Liouville was
written in terms of an integral and is now known as the version of the
integration of noninteger order.
4. Weyl defined a derivative to circumvent a problem including a particular class
of functions, name is the periodic functions.
The story of fractional derivative and integral is more than 300 years old; however in
the modern decades the applied scientists and the engineers realized that the fractional
derivative and integral supplied better processes to describe the complicated
phenomena in nature. For examples, non-Brownian motion, systems identification,
control, viscoelastic materials, and polymers. We can use the non-local property of the
fractional derivative to describe those complex systems which involve long-memory
in time in a better way. Accordingly, the numerical process has become a very required
method to analyze the experimental data which is described in a fractional way [4].
Moreover, the applications of fractional derivative and integral are varied and diffuse
in engineering and science. For instance, electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, biological population models, optics, signals processing,
qguantum mechanics, electricity, and ecological systems [5].
In this section, we introduce several definitions for the fractional derivative and

integral.

Definition 1.1.1 The Riemann-—Liouville fractional derivative of y is defined as

1 dan
I'n—-a)dx™

rDEy(E) = [t—D" % y()dr, t>a n—1<x<nez*

Definition 1.1.2 The Grunwald-Letnikov fractional derivative of y is defined as



t—a —«x N-1

['(j—x) (t—a
r(— oc) £ r(;+1)y(t_]<T>)}'

Dgy(t) = hm {(

t>a n—1l<x<neZ".

Definition 1.1.3 The Weyl fractional derivative defined as

d
Daslf ()] = DX[f(x)] = (—1)’"(E)"[xW£‘[f 1]
Definition 1.1.4 The Riemann-Liouville definition of fractional integral of a function

y reads as

1 t
Jary (@) = m[ (t —T)a_ly(‘f)d‘f, a > 0.

Definition 1.1.5 The Weyl definition of fractional integral

1 [oe]
DI = s f (£ — 0% f()de.

Definition 1.1.6 The Local fractional Yang integral

1 b
SUON = e | FO@

In this thesis, we use the Caputo derivative which is given as follows.
Definition 1.1.7 The Caputo derivative of fractional order of function x(t) is defined

as

[ _ p—(m-x) <—
DEx(t) = Dy Wx(t) oc)f (t — 7)™ <" 1xM (1),

t< T.n whichm — 1 <«x< meZ*.
Caputo derivative has many properties for examples:
L 1[pDgx ()] (s) = s%x(s) — Xy s<7* 1% M (0),
where x(s) = l[x](s),m — 1 <x< meZ*.

2. -Df.c =0, where c is any constant.
cVort



Theorem 1.1.1 If x(t)e C™[0,T] for T > 0and m — 1 <x< meZ*.
Then, :Dgx(0) = 0.
Proof. By using the definition of Caputo derivative, one has

— 1 (Y — pym—x—1,.(m)
D§x(®) = T fo (t —o)™ " xM()dr, t<T.

Put
M = maxe[o,q|x™ (t)|, where M is a positive constant,
Then,
[ M ‘ —x—1 M -
Dax(t) < ’mj; (t—7o)™ dt = mtm

which follows that -Dg'x(0) = 0. m

Remark 1.1.1

1. If x(t)eC®[0,T]for T > 0 and o> 0, then

—x _ 1t saq _
D*x(0) = 0 or ltl_IB ) J,(t = D* x(r)dz = 0.

2. Theorem 1.1.1 does not hold for the Riemann-Liouville derivative.

Theorem 1.1.2 Let f € (",,m € N,. Then the Caputo fractional derivative
Dy f,0 < u < m, is well defined and the inclusion

D {C—p m—1<u<m
Dof e C*=1[0,00) c C_4, m—k—-1l<u<m-kk=1,.......m-—1
holds true.

Proof. In the case m — 1 < p <m, the inclusion under consideration follows from the

definition of the Caputo derivative (D, m > 1, and the corresponding mapping
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properties of the Riemann-Liouville fractional integral give us the inclusion .D{ €
- 0,0)form—k—-1<u<m-kk=1,.....,m—1.

The inclusion C¥~1[0,00) c C_;. m
From now on, we use D*f as the Caputo derivative of f.

Example 1.1.1 Let a = %and f(t) = t. Then, for n = 1, by applying the previous

definition of Caputo derivative we get:

t

1 1 1
D /2t = 1 f ——dt.
ry =%

Taking into account the properties of the Gamma function and using the substitution
u = t — 1, the final result for the Caputo fractional derivative of the function

f(t) =t is obtained as:

11t 1
b zt_\/ﬁf0 A

fo

1
AN

_ 1 (Vtdu
Vrly Vu
2
=—(+/t—=0).
—(E-0)
Thus, it holds

2
D2t = %

Lemmal.l.lLletn—1<x<n,n €N,



a € Rand f(t) be such that D§ f (t) exists. Then, the following properties for the

Caputo operator hold
lim DEF(t) = fF™(t),
a-n
lim D§f(t) = fOD(e) — fT(0).
a-n—1

Proof. Let’s proof it by using integration by parts.

R B L0
DO f(t) - F(n - (X) 0 (t — ‘[)a+1—n dr

( ) t (t-7)n~@
= e ("W L - [0 ar)

m(f"(o)t" “t fy FOI@(E - M dr)).

Now, by taking the limit for « - n and @ —» n — 1, respectively, it follows

lim DF'f () = (f(n)(o) + f(n)(T)) |T i )= £

and

lim D§ $F) = (F™ Ot + ™)t - 1) | —ft—f(”)(r) drt
0

_f(n Y@ |‘L'_O

= D) - f"D(0). m
For the Riemann—Liouville fractional differential operator, the corresponding

interop-lotion property reads
lim DUf(t) = f™(v),
a-n

Jim DEf(e) = f7D().

Corollary 1.11 Lett > 0,a e R,n —1 <x<n € N.



If f(t) and g(7) and all its derivative are continuous in [0, t], then the following
holds
DE(f(©)g®))
a

= Z (Z) (D“—kf(t)) g(k) (t) — Z ﬁ ((f(t)g(t))k(o))'
= k=0

0

We called this Property as Leibniz Rule.

Proof. Applying the Leibniz Rule for the Riemann-Liouville

D*(f@9®) = ) (1) (01 () g% (®),
k=0

Then, the Leibniz rule for the Caputo derivative is obtained

a

n-1 k—
DE(F©9®) = D(F9(©) = ) == (FO9®) ©)
k=0

> () (e rr®) g®® - % ((F(O9©©).m
= k=0

k=0

At the end of this section, some important properties of fractional integral operators
should be mentioned [6]:

1. Semi-Group Property L: ,D;° ,D;%u = ,D;° %u.

2. Semi-Group Property R: ,.D; %Dy %u = D, ° .

3. Adjoint Property: (oDx%u, v)2(qp) = (W xDp 7 V)12 (a,p)-

4. Commutative Property L. ,D;°Du = D ,D;°u.

5. Commutative Property R: ,D,°Du = D D, °u.



1.2 Volterra Integro-Differential Equations

Volterra integral equations considered as type of integral equations. In 1913,
Volterra published the first book talk about Volterra integral equations with title
“Lecons sur les équations intégrales et les €quations intégro-différentielles”. In 1884,
Volterra began working on integral equations, but his important study began in 1896.
However, the name Volterra integral equation was first called by Lalesco in 1908.
Since then, Volterra integral equations have been a major source of research work.
Many application in science and engineering that used Volterra integral equations such
as elasticity, semi-conductors, scattering theory, seismology, heat conduction,
metallurgy, fluid flow, chemical reactions, population dynamics, and spread of
epidemics [7]

Volterra integral equations have growingly been recognized as useful tools for
problems in science and engineering. In [8], they proposed and examined a spectral
Jacobi-collocation approximation for fractional order integro-differential equations.
According to Suha and Ray [9], they used Legendre wavelet method to find the
solutions of system of nonlinear Volterra integro-differential equations. In [10], they
used Laguerre polynomials which depended on the collocation method to solve the
pantograph-type Volterra integro-differential equations under the initial conditions.

Yang, Tang, and Zhang [11], discussed about the blow-up of Volterra integro-
differential equations with a dissipative linear term to beat the differences of the
solutions. In [12], they solved a non-linear system of higher order Volterra integro-
differential equations by using the Single Term Walsh Series (STWS) method. Also
in [13], they solved the fractional Fredholem—Volterra integro-differential equations

by defining the new fractional-order functions based on the Bernoulli polynomials. We
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also indicate the interested reader to [14, 15, 16, 17, 18, and 19] for more research
works on Volterra integro-differential equations.

Volterra integro-differential equations divided into two groups referred to as the first
and the second kind.

The first kind, [20], is

f(x) = f XK(x, t)u(t) dt
0

where u(x) is the unknown function and it occurs only under the integral sign.

The second kind, [21],

ux) = f(x) + A f XK(X, t)u(t) dt.
0

where u(x) is the unknown function and it is occurs inside and outside the integral
sign. K(x,t) is the kernel and the function f(x) are given real-valued functions, and A
is a parameter.

In this section, we will present some example of Volterra integro-differential

equations.

Example 1.2.1u"(x) = —x+ [y (x—u(®dt, u(0) =0, u'(0) =1,
Example 1.22u'(x) = —sinx— 1+ fOXu(t)dt, u(0) =1,

Example 1.2.3 Show that u(x) = e* is the solution of the Volterra integral equation

ux) = 1+ fxu(t) dt.

0

Substituting u(x) = e* in the left hand side to get

X
1+ f et dt
0
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1.3 Non-linear Singularly Perturbed

In 1904, A German physicist called Ludwig Prandtl revolutionized fluid
dynamics with his concept. He noted that “the influence of friction is experienced only
very near an object moving through a fluid”. In one of his paper [22], he presented, in
the Third International Mathematics Congress in Heidelberg, the idea of the boundary
layer and its significance for drag and streamlining and the title of his paper was "Fluid
Flow in Very Little Friction™. In his paper, Ludwig Prandtl assumed that the impact of
friction was to cause the fluid instantly adjacent to the surface to stick to the surface.
This boundary-layer notion has been the basis stone for the new fluid dynamics.
Schlichting was one of the most famous books on boundary layer theory [23]. The
scientific justification of boundary layer theory gave us a more general hypothesis to
determine asymptotic expansions of the solutions to the complete equations of the
motion. Singular perturbation problem was the result of reduced the problem which is
then solved by the method of matched asymptotic expansions. In 1946, Friedrichs and
Wasow were the first time used the expression ‘singular perturbation” [24].

The differential equations of singularly perturbed indicate to the study of a group of
differential equations including an asymptotically small parameter where the character
of the limiting solution was totally various than the solutions acquired at finite values
of the parameter. The singularly perturbed problem is very important to both applied

and pure mathematicians, physicists and engineers because of the fact that the
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solutions exhibit some interesting behavior, for example, boundary layer, interior
layer, and resonance phenomena [25].

There are a lot of applications of singularly perturbed problem such as Chou Huan-
wen discussed the nonlinear problems of plates and shells by means of the singular
perturbation method [26], Petar discussed typical applications of singular perturbation
techniques to control problems in the last fifteen years [27], Kokotovic, O'malley and
Sannuti, showed recent results on singular perturbations surveyed as a tool for model
order reduction and separation of time scales in control system design [28], Ghorbel
and Spong, reviewed results of integral manifolds of singularly perturbed non-linear
differential equations and outlined the basic elements of the integral manifold
method in the context of control system design [29], Fridman, studied the H,, control
problem for an affine nonlinear singularly perturbed system [30], Fridman, studied
the infinite horizon nonlinear quadratic optimal control problem for a singularly

perturbed system [31].

1.4 Perturbed Problem

Definition 1.4.1 When the problem does not include any small parameter is

defined as unperturbed problem [26].

Py Sdy o2 _ dy oy _
Example 141 $2 422 4y = 2x? — 8x+4, y(0) =3, Z(0) =3,

Definition 1.4.2 When the problem include a small parameter is defined as perturbed

problem [26].
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Example 1.4.2 % +y=¢ey? y(0)=1.
The perturbed problem can be divided into two groups and that depending onto the
nature of the perturbed problem. The two groups are

1. Regularly perturbed.

2. Singularly perturbed.

Definition 1.4.3 A regular perturbation problem P.(y.) = 0 depends on its small
parameter ¢ in such a way that its solution y,(x) converges as € — 0 (uniformly with
respect to the independent variable x in the relevant domain) to the solution y,(x) of
the limiting problem P,(y,) = 0. In general, the parameter presented at lower order

terms [32].

Example 143 ¥ 4y =ey2 y0) =1, ¥ (0)= -1
A e TYTE Y ' '

Example 1.4.4 % +y=-¢ey? y(0)=1.

Definition 1.4.4 A singular perturbation is said to be occur whenever the order of the
problem is reduced when we set € = 0. In general, the parameter presented at higher

order terms and the lower order terms start to dominate [33].

Example 145 ¢ 22 + ¥ — 2v 41, y(0) =1, y(0) =4
Y e T dx Y Y '

d?y | dy _ _ _
Example 1.4.6 e+, V=0 y(0) =0, y()=1.
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Example 1.4.7 ex? —x + 1 = 0.

d’y | dy
Example 1.4.8 eSSt = 1+2x y(0)=0, y()=1.

2

1.5 Fractional Perturbed Problem

It is clear that the fractional-order models of the integration and the derivative
are more satisfactory than formerly integer-order models. Specially, they have been
confirmed that fractional integrals and derivatives give a phenomenal instrument for
the depiction of memory and hereditary properties of different materials and
procedures, impacts neglected in traditional integer-order models. In 1998, Podlubny
discussed the history of the Fractional differential equations, applications, and a
scanning of a literature of fractional integrals and derivative models [34].

One of the uses of singular perturbation techniques is to find the solution of the
problems of numerous sections of applied sciences and to have a successful
approximation. Excessive use of fractional order models in physical processes impacts
the necessity to have appropriate corresponding singular perturbation techniques
available. The reason for this fundamentally because in the process of modeling, one
is properly to end up with a singularly perturbed problem. In [35], [36], and [37], the
method of additive decomposition was used successfully to build asymptotic solutions
of nonlinear singularly perturbed Volterra integral equations with smooth kernels, to
the main and higher order terms.

One of the significant points of singularly perturbed problems is to obtain asymptotic

solutions of the problem to all orders since in most problems the singularness of the
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problem is reveal only in the higher order adjustment terms of the perturbation
extension. Furthermore, the higher order of the asymptotic solutions are given as far
as the linear equations and it's solvable.

There are some examples of singularly perturbed fractional order models and this

motivated the current research:
1) Problem with order % explaining the process of cooling of a semi-infinite body

by radiation

1
geDZy () ={ap —y(®)}*t>0,0<e K 1,y(0) =0,

and here a, is a given constant such that x(t) = a, — y(t), where x(t) is the
surface temperature to be determined.
2) In[38], the author considered a class of fractional singularly perturbed two
boundary-value problems with Dirichlet boundary conditions of the form
—eD%y(x) + ulx, y)y'(x) + v(x.y)y(x) =0,

x€l :=[01], 1<x<2,

subject to
y(0) =By, y(1) =By,

where € > 0 is a small positive parameter, ;, S, are given constant, u(x,y),

v(x, y) are sufficiently smooth function such that

u(x,y(x)) #0forall x e I,and y € L,[a, b] := {Z : [a,b] -

R |f: z(t)dt < oo}. Here, D* denoted the left-sided Caputo fractional

derivative, defined as follows

1
I(k—x)

D%y(x) = fox(x — t)k=<=1y ) (7)dr, where keN

where the definition left-sided Caputo fractional derivative is
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n

1 x d
Do [f(0)] = r(n——a)f (x— f)"_a_ld—@[f(f)]df’ xza

3) In [39], the author presents analysis and computational experiments for the
singularly perturbed fractional advection—dispersion equation in one spatial
dimension:

—eD(piDE2 + qiDF?)Du —u, = f, inf
u=0, on df),
where 2 is the real interval (a,b),1 <x< 2 is the order of the fractional
dispersion operator. With skewness parameters define by p, q satisfying

p+qg=1ande K 1.
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Chapter 2: First Order Fractional Initial Value Problems

In this chapter, we study the first order fractional initial value problems. In

the next section, we presented Kernel method for first order initial value problems.

2.1 Reproducing Kernel Method for First Order Initial Value Problems

Definition 2.1.1 Let E be a nonempty abstract set. A function M:E X E = C isa
reproducing Kernel of the Hilbert space H if and inly if
e M(.,x)€Hforall x €E,
o (¢()M(,x)) =¢(x)forall x € Eand ¢ € H.
The second condition is called the reproducing property and a Hilbert space which
possesses a reproducing kernel is called a reproducing kernel Hilbert space.
Consider the first order nonlinear fractional equation of the form
D*yvy+g(y)=c¢, x€[01],0<a<1 (2.1.1)
subject to
y(0) =6 (2.1.2)
where ¢ and 6 are constants. First, we study the linear case where g(y) = a(x)y. To
homogenize the initial condition, we assume u = y — 6. Thus, Problem 2.1.1-2.1.2
can be written as
D*u+h(u) =c,x€[0,1,0<a<1 (2.1.3)
subject to
u(0) = 0. (2.1.4)
In order to solve the linear Problem 2.1.3-2.1.4, we construct the kernel Hilbert spaces
W[0,1] and W2[0,1] in which every function satisfy the initial condition 2.1.4.

Let W3[0,1] = {u(s):u is absolutely continuous real value function, u’ € L2[0,1]}.



17

The inner product in W}[0,1] is defined as

1

) vODip01) = WOV + [ w60 Gy,

0

and the norm ||u||W21[0,1] IS given by

lelhyio = \/(u(y),u@))wzlm,ﬂ

where u, v € W2[0,1].

Theorem 2.1.1 The space W,[0,1] is a reproducing Kernel Hilbert space, i, e.; there
exist R(s,y) € W;[0,1] and its second partial derivative with respect to y exists such
that for any u € W,}[0,1] and each fixed y, s € [0,1], we have

(w®),R(s, Y))Wzl[o,ﬂ = u(s).
In this case, R(s,y) is given by

1+y, ySS}

R(s,y) =
(5,7) {1+s,y>s

Proof. Using integration by parts, one can get

1

OR
(U0, RG Y Dugion = wWORE0) + [ w0 (5.9)dy
0

= w(O)R(s, 0)+ (D 5 (5, 1) = u(0) 32 (5,0) — [ u() 55 (5,)dy.
Since R(s, y) is a reproducing kernel of W.1[0,1],
W), R(s, ¥ w01 = uls)
which implies that

aZ
S ICHERICED) (2.1.5)

R(s, 0) —3—§(s, 0) =0, (2.1.6)
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and

Z—i(s, 1) =0, 2.1.7)

2
Since the characteristic equation of —g—; (s,y) =6(y—s)isA? = 0andits

characteristic value is A = 0 with 2, multiplicity roots, we write R(s, y) as

co(s) +ci1(s)y, y<s

R(s.y) = {do(s) +di(s)y, y> s

Since ZZTZ(S’y) = —6(y —s), we have
R(s,s +0) —R(s,s+0) =0, (2.1.8)
Riss+0)—L(s,5+0)=—-1 (2.1.9)
3y S,S 3y S, S = . .

Using the conditions 2.1.6-2.1.9, we get the following system of equations
co(s) —c1(s) =0, (2.1.10)
di(s) =0,
co(s) + ¢1(s)s = do(s) + dy1(8)s,
d,(s) —c,(s) = -1,
which implies that
co(s) =1, ci(s) =1,dy(s) =1+s,d,(s) =0
which completes the proof of the theorem. Next, we study the space W2[0,1].
Let
W£[0,1] = {f(s): f is absolutely continuous real value function, f, f', f"
€ 12[0,1], £(0) = 0}.

The inner product in W.2[0,1] is defined as

1

WO P00 = wOVO) +uDp) + [ @)@ G)dy

0
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and the norm ||u||W22[0’1] is given by

lelly 210 = \/(u(y),u(y))wzz[o,ﬂ

where u, v € W2[0,1].

Theorem 2.1.2 The space W.2[0,1] is a reproducing Kernel Hilbert space, i, e. ; there
exist K(s,y) € W£[0,1] which has its six partial derivative with respect to y such
that for any u € W2[0,1] and each fixed y, s € [0,1], we have

(), K(s, y))WZZ[O,l] = u(s).
In this case, K (s, y) is given by

Yoy, y< S}

K(s,y) = { .
Y 3 di(s)yl, y> s

where

1 ) ) 1
co =0, 6128(85—38 +5%),¢c, =0, 6326(8_1)'

s3 s s

1
do = _Z, d1 =g(85+53),d2 = _E, d3 = —g

Proof: Using integration by parts, one can get

(u(y),K(s, J’))sz[o,ﬂ =u(0)K(s,0) + u(1K(s, 1) + u' (1K, (s, 1)

"(0 0 1 AL 1 0 L 0 'K d
— 00Ky (5,0) = u(D 5z (5, 1)+ u(0) 35 >+Ofu(y)a—y4(s,y> y.

Since u(y) and K(s,y) € W2[0,1],
u(0) =0
and

K(s,0) = 0. (2.1.11)
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Thus,

(u(y), K(S' y))WZZ[O,l] = U(l)K(S, 1) + u,(l)Kyy(Sr 1) - u,(O)Kyy(Sr 0)

03K 0*K
—u() 55 () + j u() 57 (5, )dy.

Since K (s,y) is a reproducing kernel of W2[0,1]
(u), K (s, y))wzz[o,ﬂ = u(s)

which implies that

64-
ﬁ (s,9) = 6(y — s) (2.1.12)

where § is the Dirac-delta function and

K(s,1) — ZTK (s,1) = 0, (2.1.13)
K,,(s,1) =0, (2.1.14)
K,y (s,0) = 0. (2.1.15)
Since the characteristic equation of (;3715 (s,y) =6(s—y)isA* = 0and its

characteristic value is A = 0 with 4 multiplicity roots, we write K (s, y) as

i3=0ci(s)yi' y < S}

K(s, )={ ;
Y o di(S)yt, y>s

Since 237[; (s,y) = (s —y), we have

amK amK
ay—m(s,s +0) = ay—m(s,s —-0),m=0,1,2. (2.1.16)

On the other hand, integrating ‘;671; (s,y) = 6(s —y) froms —etos + e with

respect to y and letting e — 0 to get

23713((5,5 +0)— 2371;(5,5 —-0)=1. (2.1.17)



Using the conditions 2.1.11 and 2.1.13-2.1.17, we get the following system of

equations

3
Co = o,z d;(s) — 6ds(s) = 0,
i=0

6d;(s) + 2d,(s) = 0,c,(s) =0,

3 3

D aldsi = ) di(s)st,
= =
i ic;(s)si™1 = i id;(s)s*"1,
Z (i = 1)e(s)si=2 = Zl i(i — Ddi(s)s"2,

3ld;(s) —3lc3(s) = 1.

We solved the last system using Mathematica to get

1 ) ) 1
co =0, cl=g(8s—3s +5%),¢c, =0, C3=€(S—1),

s3 s

dy= = dy =~ (Bs +53),dy = =2, dy = —>
6 6 2 6
which completes the proof of the theorem.
Now, we present how to solve Problem 2.1.3-2.1.4
0i(s) = R(s;,s)
Fori = 1,2, -- where {s;};2, is dense on [0,1]. Let L(0;(s)) = D%0;(s) +
a(s)o;(s). Itis clear that L: W.2[0,1] - W,}[0,1] is bounded linear operator. Let
Yi(s) = Loy(s)

where L* is the adjoint operator of L. Using Gram-Schmidt orthonormalization to

generate orthonormal set of function {Jl (s)}i1 where
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Y,(s) = T ai(s) (2.1.18)
and a;; are coefficients of Gram-Schmidt orthonormalization. In the next theorem,

we show the existence of the solution of Problem (2.1.3-2.1.4).

Theorem 2.1.3 If {s;};2, is dense on [0,1], then
u(s) = c 324 Loy ayp,(s) (2.1.19)
Proof: First, we want to prove that {1;(s)}2, is complete system of W?[0,1] and
¥i(s) = L(k(s,s)). Itis clear that y;(s) € W2[0,1] for i = 1,2,--- Simple
calculations imply that
Yi(s) = Loy(s) = (L70y(s), K (5, ¥)wz[0,11

= (0;(s), LK (s, ¥)Dwzo1) = L(K(s,57)).
For each fixed u(s) € W2[0,1], let

(s), Yi(sNwzpoa) = 0,0 = 1,2,
Then

(), YeNwzro1) = U, L01() 200,

= (LF(),0:)) 210

= Lu(s;) = 0.
Since {s;}72, is dense on [0,1], Lu(s) = 0. Since L1 exists, u(s) = 0. Thus,
{;(s)}2, is the complete system of W2[0,1].

Second, we prove Equation 2.1.19. Simple calculations implies that

u(s) = ) ()b () wz o Bi()
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= Z a;j (u(s),L* (K(s, s,-))) w2 1011 %i(5)
- Z Aij (Lf(s)’K(s' Sj)) Wi [0,1]1/ji(5)

= z aij (c,K(s, Sj)) w2 (01 Pi(S)

and the proof is complete.

Let the approximation solution of Problem 2.1.3-2.1.4 be given by

uy(s) =c ZIiV=1Z§'=1 Qij Pi(s). (2.1.20)

m
In the next theorem, we show the uniformly convergence of the { d d’;‘,’l(s) }N=1 tO

YO form = 0,1,2.
ds

Theorem 2.1.4 If u(s) and uy(s) are given as in (2.1.19) and (2.1.20), then

{dm fN(S)

ds™m

} ¥=1 converges uniformly to % form =0,1.
Proof: First, we prove the theorem for m = 0. Forany s € [0,1],
| u(s) —uy(s) |l 3‘,5[0‘1] = (u(s) — uy(s),u(s) — uN(S)) w2[0,1]

— i (u(s)’lﬁi(s)) W22[0,1]1/;i(5)
i=N+1 ’(u(s)"/;i(s)) W22[0,1]1/ji(5)

w#[0,1]
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z (u(s), P(s)) a/zz [0,1]"

i=N+1

Thus,

Subse(o,1lluls) — uy Il W2[0,1] = Supsefo,1] Z (w(s), Pi(s)) 5/22[0,1]'

i=N+1

From Theorem (2.1.3), one can see that Y22, (u(s), ¥;(s)) sz[o’l]l/;i(s) converges
uniformly to u(s). Thus,

1\}1—{20 Supse[O,l] llus) —un ()l w[01] = 0

which implies that {uy (s)} y=; converges uniformly to u(s).

am K(y)

Second, we prove the uniformly convergence for m = 1. Since is bounded
function on [0,1] x [0,1] ,
d™ K (s,
” ( Y)” wzfo1] = Xm, m=
Thus, forany s € [0,1],
d™K(s,y)
u™(s) = uf" ()| = |@ls) — uy (), ToSBy oo |
dm K(s y)
< luls) = un (O wzpoa [ weio

< XmlluCs) = un ()l wzpoq
< XmSUPsel0,1] lus) — uy(s)l w2[0,1]"
Hence,
SuPsefo,1] ”u(m)(s) - u1(vm)(5)|| w$[0,1]

< Xmpy, Supse[o,ﬂ”u(s) — uy(s)l w£[0,1]
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which implies that

1\lll—r>rc}o Supseo] ”u(m)(s) - uz(vm)(s)” w2[01] = 0.

d™ u(s)
ds™m

Therefore, {dmu’v (S)} 0

—m j N=1 COnverges uniformly to form = 1.

Now, we discuss how to solve Problem (2.1.1) — (2.1.2). Let £(y(x)) = D* y(x) — ¢

and N(y(x)) = g(y) are the linear and nonlinear parts of Problem 2.1.1, respectively.

We construct the homotopy as follows:

Hy,2) = Ly(x)) + AN(y(x)) =0 (2.1.21)

where A € [0,1] is an embedding parameter. If 1 = 0, we get a linear equation
D% (x)—c=0

xa
r'l+a)

which implies that y(x) = ¢ . If A =1, we turn out to be Problem 2.1.1.

Following the Homotopy Perturbation method [40], we expand the solution in term
of the Homotopy parameter A as
y=yo+ Ay; + 12y, + ABy; + - (2.1.22)
Substitute Equation 2.1.22 into Equation 2.1.21 and equating the coefficient of the
identical power of A to get the following system
A% D%yo(x) = c,y,(0) = 6,

2 D%, () = -N(T2, Ai}’i(x))lazo' y1(0) =0,

AN (2320 Aly;(x)
2 DYy, () = ~LEEIN@)| 0y =0,

d?N E;ﬁ Al i
13 D%y,(x) = — ( diz yi(x)) |,1=0’ y5(0) = 0,

d*IN(ER 0 Ay i(x)
i Dy, () = — TNCEIY@) | (0) = 0.
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To solve the above equations, we use the RKM which is described above and we
obtain
ye(x) = B2, 50 _q ayj b (%) (), k = 0,1, (2.1.23)
where
ho(s) =c

h,(s) = —N(Z?io li)’i (x)) |/1=o

dk TN (E20 Ayi(0)
hie(s) = - (dlkﬂl )| _ k>

From Equation 2.1.23, it is easy to see the solution to Problem 2.1.1-2.1.2 is giving
by

y(s) = X5 ¥i(x) = Xio (2?11 Yio @y hk(xj)l/;i(x)) . (21.24)
We approximate the solution of Problem 2.1.1-2.1.2 by

Ynm () = Zizo (Z621 Ty iy e (31 (). (2.1.25)

2.2 Analytical Results

In this section, three important theorems are presented which are the maximum
principle, the stability theorem, and the uniqueness theorem. Firstly Eqgs. 2.2.1-2.2.2
are transformed into an equivalent problem as follows:

Py: eD%y +u(x,y) + fOxK(x, v(t,y)dt = f(x),x € (0,1),0<a <1, (221)
subject to

y(0) = yo (22.2)
The following conditions are needed in order to guarantee that Eqs. 2.2.1-2.2.2 does

not have turning-point problem;
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—k, > ulx,y) = —kq, (2.2.3)
0=>v(x,y) = —ks, (2.2.4)
K(x,t) =k, =0, (2.2.5)

for all x € [0,1], where ky, k,, ks, and k, are positive constants and y € €1(0,1) U

C[0,1].

Theorem 2.2.1 (Maximum Principle). Consider the initial value problem 2.2.1-2.2.2
with conditions 2.2.3-2.2.5. Assume that P¢p = 0 and ¢(0) > 0. Then ¢(x) = 0 in
[0,1].

Proof: Assume that the conclusion is false, then ¢ (x) < 0 for some x € [0,1]. Then,
¢ (x) has a local minimum at x, for some x, € (0, 1]. Simple calculations and using
(2.2.5) implies that

P (x0) = €D“P(x0) + u(xo, §) + [, ° K (2o, t)v(t, p)dt

xg“

SE€ ri-o)

(¢ (x0) — #(0)) +ulxo, @) + J, ° K (xo, ) (t, p)dt
<0.

This a contradiction. Therefore, ¢(x) = 0in[0,1]. m

In the next theorem, the stability result is presented.

Theorem 2.2.2 (Stability Result). Consider Egs. 2.2.1-2.2.2 with conditions u = u(x)

and v = v(x). If y(x) is a smooth function, then

1 1
Iyll = ~max{ly()l: x € [0,1]} < ~max{|yol, maxyejo | Py1}.
Proof: Let

Ky = max{lyol,maxxe[o‘l]lpyl} = max{lyol,maxxe[o,l]|f(X)|}

and let
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st (x) ?(1 e a)) +y(x), x € [0,1].
Then,
K a :
Pst(x) = eD® (f (1 + ﬁ) + y(x)) +u(x) + f K(x,t)v(t)dt

0
= e%i Py(x) =Ky + Py(x) =0

for all x € [0,1] Also,
+ Ko
sT(0) =?iy(0) >Kyty,=0

since 0 < € « 1. From Theorem 3.2.1, we can see that s*(x) > 0 for all x € [0,1].
Therefore,

K, x@ K, 1
Iyl < max,efo,1 {? (1 - m)} <—= Emax{U’Ol'maxxe[O,l]|P3’|}- n

€

Theorem 2.2.3 (Uniqueness Theorem). Consider Eqgs. 2.2.1-2.2.2 under the conditions
2.2.3-2.2.5 with conditions u = u(x) and v = v(x). If y; and y, are two solutions to
Egs. 2.2.1-2.2.2, then y, (x) = y,(x) forall x € [0,1].
Proof: Let w(x) = y,(x) — y,(x). Then,

Pw =0, w(0) =0,

P(—w) =0,—w(0) = 0.
Using Theorem 2.2.2, it follows that w(x) = 0 and w(x) < 0 for all x € [0,1] which

implies that y, (x) = y,(x) forall x € [0,1]. m

2.3 Method of Solution
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Consider the following of class of fractional nonlinear Volterra integro-differential
type of singularly perturbed problems of the form
eDy +u(x,y) + [T KCxe, )v(t,y)dt = f(x),x € (0,1),0 <a <1, (2.3.1)
subject to
y(0) = yo (2.3.2)
where € > 0 is a small positive parameter, y, is constant, and K (x,t) and f(x) are
smooth functions. To solve Egs. 2.3.1-2.3.2, we use the following steps.
Step 1: A reduced problem is obtained by setting e = 0 in Egs. 2.3.1 to get
u(x,y1) + f, Ko, )v(t, y)dt = f(x),x € [0,1]. (2.3.3)
On most of the interval, the solution of Eq. 2.3.3 behaves like the solution of Egs.
2.3.1-2.3.2. However, there is small interval around x = 0 in which the solution of
problem 2.3.1-2.3.2 does not agree with the solution of Problem 2.3.1-2.3.2 to handle

this situation, the boundary layer correction problem is introduced in step 2.

1 1
Step 2: Choose x = €asa to get

a — 1 * —-a ! d
DY) = gy | -0y e

11 —a
1 st o1t ,
:mf .S'Uf——1 y (t)dt.
0 =

1
Letr = L1 Then, dt = e=dr and

ea

dy dydr 1dy
dt drdt ldr
€a

Thus,
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1
= a — —ca
y(x e sa—r T, €adr
ca
1

__ 1 Sa<1 >_ad3’d

efr1—a)J, SETT)

1 1
= 2D (sa). (2.3.4)

Hence, Eq. 2.3.1 becomes

1
D%y +u (eés“,y) + fOEESaK (eis“s, t) v(t,y)dt = f (e%s“s). (2.3.5)

Setting € = 0 in Egs. 2.3.5 implies that

D%y +u(0,y) = f(0). (2.3.6)
Since the solution of the reduced problem in step 1 does not satisfy the initial condition
at x = 0, then the solution of the above equation should satisfy it. This means, its
solution has the form y, (0) + y,(x). Substitute

y(x) = y1(0) + y,(x)

in Eq. 2.3.6 to get the boundary layer correction equation

D%y, (si) +u <0, y1(0) + y, (s%)> = f(0). (2.3.7)

The solution of Eq. 2.3.1 will be expressed in the form as

y(x) =y1(x) +y; (é) (2.3.8)

and the initial condition 2.3.2 must be satisfied by expression 2.3.8. When x = 0,
the condition will be

Yo = ¥(0) = y,(0) + y,(0)

or

¥2(0) = yo — ¥1(0), (2.3.9)
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The solution of Egs. 2.3.1-2.3.2 can be produced using the RKM as described in the

previous section. More details can be found in [41]-[43].

2.3 Numerical Results

In this section, we present two of our examples to show the efficiency of the
proposed method.

Example 2.3.1: Consider the following problem

eD%y(x) +y(x) + f(jcy(t)dt =f(x),0<x<1,0<e«K1, (2.3.1)
subject to
y(0) =2 (2.3.2)
where

2 —xy  x?
f(x) = —=x2 — x2E, 5, (?) o2+ 2-ee ™+ (1+e¢)

Vr

and E, , (x) is the Mittag-Leffler function. When € — 0,
x x?
1)+ [yy@®dt ==>+2x+1 (2.3.3)

since lim Ey 5/, (—?x) = 0. Thus,
y1(x) +y,(x) = x+ 2.
Hence,
y1(x) =1+ x+ce™™. (2.3.4)
Substitute Eq. 2.3.4 into Eq. 2.3.3 to get
DY2y,(s) +1+y,(s?) =1

or
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Dl/z)’z(sz) +¥,(s*) =0

subject to
x? x?
1+x+ce‘x+7+x—ce_x+c=7+2x+1
which implies that ¢ = 0 and
yi(x) =x+1.

Using the change of variable x = €252, we get

y2(0) =y, —¥1(0) = 1,

L6

1.4

| L I I | L I I | | I L |

: : * - * : X
L \_"02 04 06 08 10

Figure 2.1: Approximate solution of Example 2.3.1 for e = 0.1

Using the RKM, we get

u s s? s3
Ya(s9) =1—g+r -+

_NCEDRE

_Z kI

k=0

Thus,
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y(x) =y:(x) +y, <g>

Vx

=x+1+4+e €.
In Figure 2.1-2.3, we plot the approximate solution for € = 0.1,0.01 and 0.001,

respectively.

Example 2.3.2: Consider the following problem

eD%y(x) — %yz + foxy(t)dt =0,0<x<1 0<eK1, (2.3.5)
subject to
y(0) =1. (2.3.6)
Whene - 0,
—~Y2() + [7 y(®)dt = 0 (2.3.7)

and E, , (x) is the Mittag-Leffler function. When € — 0,
x x?
y1(x) + [y (O)dt = —+2x+1 (2.3.8)
- . —-X _
since lel_r)ré Eiz/2 (?) = 0. Thus,

y1(x) +y1(x) = x + 2.
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Figure 2.2: Approximate solution of Example 2.3.2 for e = 0.01
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Figure 2.3: Approximate solution of Example 2.3.2for € = 0.001

y1(x) =c+x. (2.3.9)



Substitute Eq. 2.3.9 into Eq. 2.3.8 to get

1 1 1
-_ = 2 - 2——2:
2(c+x) +2(c+x) ok 0

which implies that ¢ = 0 and
y1(x) = x.

Using the change of variable x = e*s*, we get

1
DYy, (s*) — 5 y3(s*) = 0
subject to

¥2(0) = yo —»:1(0) = 1.
Using the RKM, we get
2 S3

S
4=1 — 4 ...
y2(s*) totgptgt

=

_iSk_ 12
- -
k=02 1_7 2—Xx

Thus,
y(x) =y1(x) + y; (g)
2€
2¢ — x

=x+

In figure 2.4-2.6, we plot the approximate solution for € = 0.1,0.01, and 0.001,

respectively.

35
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Figure 2.4: Approximate solution of Example 2.3.2 for e = 0.1

Figure 2.5: Approximate solution of Example 2.3.2 for e = 0.01
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1.0

Figure 2.6: Approximate solution of Example 2.3.2 for e = 0.001
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Chapter 3: Second Order Fractional Initial Value Problems

In this chapter, we study the second order fractional initial value problems. In
the next section, we presented Kernel method for fractional second order initial value

problems.

3.1 Reproducing Kernel Method for Fractional Second Order Initial Value

Problems

Consider the second order nonlinear fractional equation of the form
D%+ g(x,y)y' =0, x€[01],1<a <2 (3.1.2)
subject to
y(0)=0,y(1)=¢ (3.1.2)
where 8 and ¢ are constants. First, we study the linear case where g(y) = a(x). To
homogenize the initial condition, we assume u = y — ¢x — 8(1 — x). Thus, Problems
3.1.1-3.1.2 can be written as
D*u+ax)y’ = (—¢ +0)a(x) =h(x),x€[01,0<a<1 (3.1.3)
subject to
u(0) = 0,u(1) = 0. (3.1.4)
In order to solve the linear Problem 3.1.3-3.1.4, we construct the kernel Hilbert
spaces W, [0,1] and W;3[0,1] in which every function satisfies the initial condition
3.1.4.
Let W;[0,1] = {u(s):u is absolutely continuous real value function, u'€
L?[0,1]}.

The inner product in W,[0,1] is defined as



1

W PODugian = 1OPO) + [ GGy,
0

and the norm ||u||W21[0,1] is given by

lelly g0 = \/(u()’)'u()’))wzl[o,ﬂ

where u, v € W;[0,1].
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Theorem 3.1.1 The space W.}[0,1] is a reproducing Kernel Hilbert space, i, e. ; there

exist R(s,y) € W}[0,1] and its second partial derivative with respect to y exists such

that for any u € W,'[0,1] and each fixed y, s € [0,1], we have
(u(®),R(s, y))wzl[o,ﬂ = u(s).
In this case, R(s,y) is given by

1+y, ySs}

R =
(s,7) {1+s, y>s

Proof. Using integration by parts, one can get

R
(O, RG Y Dugion = ORGS0 + [ w05 (5.3)dy
0

= u(OR(s, 0+ u(D 3 (5, 1) — u(®) 5 (5,0) = [, u3) 5% (5,9)dy.

Since R(s, y) is a reproducing kernel of W.1[0,1],
(), R(s, }’))Wzl[o,ﬂ = u(s)

which implies that
9°R .
—a—yz(s,}’) =8(y —s),
R _
R(s,0) —a(s, 0)=0

and

(3.1.5)

(3.1.6)
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Z—i(s, 1) =0, (3.1.7)

Since the characteristic equation of —gi; (s,y) =6(y—s)isA? = 0andits

characteristic value is A = 0 with 2, multiplicity roots, we write R(s, y) as

co(s) +ci(s)y, y<s

R(s.y) = {do(s) +d()y, y>s

Since ZZTIE(S, y) = —8(y — s), we have

R(s,s+0) —R(s,s+0) =0, (3.1.8)

g—i(s,s+0) —g—’;(s,s+0) =-1. (3.1.9)
Using the conditions 3.1.6-3.1.9, we get the following system of equation

co(s) —c1(s) =0, (3.1.10)
d;(s) =0,
co(s) + c1(s)s = dy(s) + di(s)s,
d,(s) —c,(s) = -1,
which implies that
co(s) =1, ci(s) =1,dy(s) =1+s,d,(s) =0
which completes the proof of the theorem. Next, we study the space W;3[0,1].
Let
W3[0,1] = {f(s): f is absolutely continuous real value function, f, f’, f", f""'

€ 12[0,1], f(0) = 0, f(1) = 0}.
The inner product in W3[0,1] is defined as
(u®, V(y))w;[o,u = u(0)v(0) +u'(0)v'(0) + u(Dw(1) +u'()v'(1)

1

+ f u® v H)dy

0
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and the norm ||u||W23[0,1] is given by

nw%mﬂ;ﬁmwmwnwmﬂ

Where u, v € W2[0,1].

Theorem 3.1.2 The space W,[0,1] is a reproducing Kernel Hilbert space, i, e. ; there
exist K (s,y) € W2[0,1] which has its six partial derivative with respect to y such that
for any u € W;[0,1] and each fixed y, s € [0,1], we have

(), K(s, y))W23[0,1] = u(s).

In this case, K (s, y) is given by

Y2, ci(s)y', y<s
K@w={;°‘ i
—odi(s)yt, y>s
where
co=0¢c,=0,c =i(554—11152—1053—55)c — 0, cp = ——
0T TR 27120 3T T 24’
= = (1459
=120
s> s* 1 52
=" _ d=—"—d, =—(55*— 1115255 - - d, =0,
do =500 1= ~5z 42 =155 (58 $7=5%), ds = — 15, d,
g ==
57120

Proof: Using integration by parts, one can get
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W), K (s, ¥)w3[04)

=u(0)K(s,0) +u(DK(s, 1) + u'(0)K,(s,0) + u' (DK, (s, 1)

+ u"(1Kyyy(s,1) — u""(0)Kyy,(s,0) — u (1)—(5 1)

+ 0@ 2K 5,0+ u) 2K (6,1 = w0y K (5,09
u 5 s, u I s, u 35 s,

1 6K
ju@) " (5,)dy.

0

Since u(y) and K (s, y) € W2[0,1],
1(0) = 0,u(1) = 0
and
K(s,0) = 0,K(s,1) = 0. (3.1.11)
Thus,
W), K (s, ¥)ws[o.1)

= u'(0)K,(s,0) + u' (DK, (s, 1)

+ u"(DK,yy (s, 1) — u"(0)K,,,(s,0) — u (1) (s 1)

4 6

0°K
F U5 @m+fmw - (5,)dy.
0

Since K (s,y) is a reproducing kernel of W;[0,1]
W), K($, ¥ wgo,17 = uls)
which implies that
ay6 (s y) =46y —5s) (3.1.12)

where ¢ is the dirac-delta function and
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5K
K(S, 1) —a—yS(S, 0) =0, (3113)
0K
Ky(S, 1) _8_3/'4(5' 1) = 0, (3114)
Kyyy(s,1) = 0, (3.1.15)
Kyyyy(s,0) = 0. (3.1.16)

6
Since the characteristic equation of ZTIZ(s,y) =8(s—y) is 2*=0 and its

characteristic value is A = 0 with 6 multiplicity roots, we write K (s, y) as

?=0Ci(5)yi, y < S}

K(s, )={ ,
Y o di(s)yt, y>'s

. 95K
Since 3% (s,y) = 6(s —y), we have

™MK oMK
ay—m(s,s +0) = ay—m(s,s -0),m=0,1,:--,4. (3.1.17)

On the other hand, integrating 2571: (s,y) = 6(s —y) from s — e to s + € with

respect to y and letting e — 0 to get

95K

Cr(s5+0) —giy’g(s,s—O) -1 (3.1.18)

Using the conditions 3.1.11 and 3.1.13-3.1.18, we get the following system of
equations

co(s) =0,c1(s) =0,c3(s) =0,

5
6ds(s) + 24d,(s) + 60ds(s) = O'Z d;(s) — 120ds(s) = 0,

=0

5

5
> al)st = ZO di(s)st,

i=0

5 5

Z ic;(s)st™1 = Z id;(s)s' 1,

i=1 i=1
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5 5
i(i—1c;(s)s"2 =) i(i — 1d;(s)s*?,
Z (i = Dey(s) Z (i — Di(s)
5 5
z i(i = 1)(i — 2)c;(s)s'™3 = Z i(i — 1)(i — 2)d;(s)s'3,
i=1 i=1
5 5
Z i(i = 1)(i = 2)(i — 3)¢y(s)si™ = Z i(i = 1)(i — 2)(i — 3)dy(s)s"*,
i=1 i=1

5!/ds(s) —5!cs(s) = —1.

We solved the last system using Mathematica to get

1 4 2 3 5 S
co=0,¢=0,c :EO(SS —1115“—10s°—s>),c3 =0, ¢, = ~ow

1 5
cs = ——(1+s>),

120
s> s?* 1 s2
dg=—— dy = —— . d, = —(55* — 1115%—55), ds = ——,d, = 0,
0= Tz’ h1= " = 1558 §7=5%), ds = —75.ds
P
57120

which completes the proof of the theorem.
Now, we present how to solve Problem 3.1.3-3.1.4
0i(s) = R(sy, 5).
Fori =1,2,--- where {s;};2, is dense on [0,1]. Let L(0;(s)) = D%0;(s) + a(s)o;(s).
It is clear that L: W} [0,1] —» W,[0,1] is bounded linear operator. Let
Yi(s) = Loy(s)

where L* is the adjoint operator of L. Using Gram-Schmidt orthonormalization to

generate orthonormal set of function {%l (s)}jo=1 where

P,(s) = Xh_; aipi(s) (3.1.19)
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and a;; are coefficients of Gram-Schmidt orthonormalization. In the next theorem,

we show the existence of the solution of Problem (3.1.3-3.1.4).

Theorem 3.1.3 If {s;};2, is dense on [0,1], then
u(s) = X324 Thoq aijh(s),(s) (3.1.20)
Proof: First, we want to prove that {i;(s)}2, is complete system of W;[0,1] and
¥i(s) = L(k(s,s). Itis clear that ;(s) € W3[0,1] for i = 1,2,--- Simple
calculations imply that
Yi(s) = L'oi(s) = (L0;(s), K(5, ¥)w3(0,1)
= (0:(), LK (5, ) Dw30) = L(K (s, 50).
For each fixed u(s) € W;[0,1], let
(u(s),zpi(s))wza[o,l] =0,i=1,2,--
Then,
(), Yi(Nwspo) = (), L0y (s)),, 5 3l0.1]
= (LF(),0:)) 310
= Lu(s;) = 0.
Since {s;}72, is dense on [0,1], Lu(s) = 0. Since L1 exists, u(s) = 0. Thus,
{;(s)}2, is the complete system of W;[0,1].

Second, we prove Equation 3.1.20. Simple calculations implies that

u(s) = ) (), B () wgro Pi(s)

i . aij (u(s) L K(s s]))> wio i (s)

i=1j=1
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@y (LF () K(5,57)) wpto,ubi(s)

I
M g

~
1l

[y
~.
1l

=

~

@i (¢, K(5.5)) wioabi(s)

v

~
1l
=
~.
1l
[y

a;; Pi(s)

M8

i

1l
Juy

j=1

and the proof is complete.

Let the approximation solution of Problem 3.1.3-3.1.4 be given by

uy(s) = XLy Xy aijh(s) ¥ (s). (3.1.21)

am fN(S)

In the next theorem, we show the uniformly convergence of the { ————1} ¥, to

E) form = 0,1,2.
ds

Theorem 3.1.4 If u(s) and uy(s) are given as in (3.1.20) and (3.1.21), then

{dm fN(S)

oo iformly to -9 for m = 0,1,2
—=1} =1 converges uniformly to —== for m = 0,1,2.

Proof: First, we prove the theorem for m = 0. Forany s € [0,1],

| u(s) —uy(s) |l 12/1/23[0,1] = (u(s) — uy(s),u(s) — uN(S)) w3[o,1]

w3[0,1]

i (u(s)'l/_)i(s)) w301 Pi(s),
i=N+1 (u(s)'l/_)i(s)) W23[o,1]l/_)i(5)

= Z (w(s), Pi(s)) ;/23[0,1]'

i=N+1
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Thus,

Subse[0,1]”u(s) —uy(s)ll 3,23[0,1] = Supse[o,l] Z (u(s),l/;i(s)) 5V23[0,1]-

i=N+1

From Theorem (3.1.3), one can see that Y22, (u(s), ¥;(s)) WZ3[O’1]1/71-(S) converges
uniformly to u(s). Thus,
1\}1_{20 SupsE[O,l] ”u(s) - uN(S)” w3[0,1] =0

which implies that {uy (s)} y=; converges uniformly to u(s).

d™K(s)y)

Second, we prove the uniformly convergence for m = 1,2 . Since Tm’ §
bounded function on [0,1] x [0,1],
[ watom < %o, m =
Thus, forany s € [0,1],
u™(s) = uf ()] = |uls) — uy(s), Loss2y o]
< ul) = O wion ||| witon

< K llu(s) = un ()l wgpony
< XmSubseqoq luls) — un ()l weio,1-
Hence,
Supsero) [T () = uTP®) || wpi01] < Xomy SUPsero11(S) = un ()l wipo

which implies that

Jim  Supseqoq) ”u(m) (s) — ul™ (s)” w31 = 0.

am u(s)

form = 1,2.

Therefore, {d ;’;(S)} %__ converges uniformly to

Now, we discuss how to solve Problem (3.1.1) — (3.1.2). Let L(y(x)) = D* y(x) and

N(y(x)) = g(x,¥)y" are the linear and nonlinear parts of Problem 3.1.1, respectively.
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We construct the homotopy as follows:
Hiy,2) = L(y(x)) + AN(y(x)) =0 (3.1.22)
where 1 € [0,1] is an embedding parameter. If A = 0, we get a linear equation
D%y(x) =0
which implies that y(x) = 0. If A = 1, we turn out to be Problem 3.1.1. Following the
Homotopy Perturbation method [40], we expand the solution in term of the Homotopy
parameter A as
y=yo+ Ay, + 22y, + BBy; + - (3.1.23)
Substitute Equation 3.1.23 into Equation 3.1.22 and equating the coefficient of the
identical power of A to get the following system
A%: D%yo(x) = 0,y,(0) = 6,
At Dy (x) = —N(X72o A'yi(x))] ;-0 ¥1(0) = 0,

_ AN (327202

/12 : DayZ(x) = da (X)) |/1=0,3’2(0) = 0;

d?N Zz Al i
A3 Day3(x) - _ ( d;z yi(x)) |/1=0’ yB(O) =0,

d*IN(E82 Ay (x)
i Dy, () = — T NCEIN@) | (0) = 0.

To solve the above equations, we use the RKM which is described above and we
obtain
V() = X2 Xioy aij hie(x)Pi(s), k = 0,1, -+ (3.1.24)
where
ho(x) =c¢

hy(x) = —N(Z(i)o:o Aiy'i (x))lzzo
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d*IN(ER, Aty (x)
hi(x) = — ENCE A sy

From Equation 3.1.24, it is easy to see the solution to Problem 3.1.1-3.1.2 is giving
by

y(s) = X5 ¥k (x) =Xi=o (Zfil 23':1 aij hk(xj)llji(x)) . (3.1.25)
We approximate the solution of Problem 3.1.1-3.1.2 by

Ym0 = B (220 Ty gy he (), () ). (3.1.26)

3.2 Analytical Results

In this section, three important theorems are presented which are the maximum
principle, the stability theorem, and the uniqueness theorem. Firstly Egs. 3.2.1-3.2.2
are transformed into an equivalent problem as follows
Py:—eD%y +u(x,y)y' + f;CK(x, Hv(t,y)dt = f(x),x € (0,1),0 < a <1,(3.2.1)

y(0) = yo,y(1) =1 (3.2.2)
The following conditions are needed in order to guarantee that Eqgs. 3.2.1-3.2.2 does

not have turning-point problem;

—ky =2 u(x,y) = —ky, (3.2.3)
0=>v(x,y) = —ks, (3.2.4)
K(x,t) 2 ky 20, (3.2.5)

for all x € [0,1], where ky, k,, k3, and k, are positive constants and y € €2(0,1) U
c[o,1].
Lemma 3.2.1 [44] Let y € C?[0,1] attains its minimum at x, € (0,1). Then, ¥'(x,) <

0 and D%y (x,) = 0 for 1 <x< 2.
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Theorem 3.2.2 (Maximum Principle). Consider the initial value problem 3.2.6-3.2.7
with conditions 3.2.3-3.2.5. Assume that Py > 0 and y(0) = 0. Then y(1) = 0 in
[0,1].
eDy + u(x,y)y' + fox K(x,t)v(t,y)dt = f(x),x € (0,1),1<a <2, (3.26)
subject to
y(0) = yo,y(1) =y (3.2.7)
Proof: Assume that the conclusion is false, then ¢ (x) < 0 for some x € [0,1]. Then,
y(x) has a local minimum at x, for some x, € (0, 1]. Simple calculations and using
Lemma (3.2.1) implies that
Py(xo) = eD%y(xo) + ulxo, ¥)y'(xo) + f:o K (xo, t)v(t, y)dt
<0.
This a contradiction. Therefore, y(x) = 0in[0,1]. m

In the next theorem, the stability result is presented.

Theorem 3.2.3 (Stability Result). Consider Egs. 3.2.6-3.2.7 with conditions u = u(x)

and v = v(x). If y(x) is a smooth function, then

Iyl = max{ly(x)|: x € [0,11} < 2¢ max{|yol, [y1], maxzefo Py}
Where¢ =1 + kiz
Proof: Let

Ky = max{lyol, |y1|,maxxe[011]|Py|} = max{lyol, |y1|,maxxe[0,1]|f(x)|}

and let
st(x) = 2¢ K, (1 — ;) + y(x),x € [0,1].

Then,



o1

Pst(x) = —eD® <2g K, (1 — ;) + y(x)) + u(x) <2g K, (1 — g) + y(x)>

X

+ f K(x,t)v(t)dt = 2¢ Kyu(x) £ Py(x) > K, £ Py(x) = 0.

0

forall x € [0,1]. Also,
s¥(0) =2¢ Ky, +y(0) > Ky + v, = 0,x € [0,1]
and
sT() =¢Ky+y, > Koty =0,x€[0,1].
From Theorem 3.2.2, we can see that s*(x) > 0 for all x € [0,1].

Therefore,

Iyl = max{ly(x)|: x € [0,1] < 2¢ max{|y,l, [y1], maxsefo 1] |Py!}. m

Theorem 3.2.4 (Uniqueness Theorem). Consider Egs. 3.2.6-3.2.7 under the conditions
3.2.3-3.2.5 with conditions u = u(x) and v = v(x). If y; and y, are two solutions to
Egs. 3.2.6-3.2.7, then y; (x) = y,(x) forall x € [0,1].
Proof: Let w(x) = y,(x) — y,(x). Then,
Pw =0, w(0) =0,w(1)=0
P(—w)=0,-w(0) =0,—w(1) =0.
Using Theorem 3.2.2, it follows that w(x) = 0 and w(x) < 0 for all x € [0,1] which

implies that y, (x) = y,(x) forall x € [0,1]. m

3.3 Method of Solution

Consider the following of class of fractional nonlinear Volterra integro-

differential type of singularly perturbed problems of the form
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—eD% +u(x,y)y' + foxK(x, Hv(t,y)dt = f(x),x € (0,1),1<a <2
subject to
y(0) = yo,y(1) =y
where € > 0 is a small positive parameter, y, and y; are constant, and K(x,t) and
f (x) are smooth functions. To solve Eqgs. 3.2.6-3.2.7, we use the following steps.

Step 1: A reduced problem is obtained by setting e = 0 in Egs. 3.3.6 to get

u(x, y)y' + [, Ko, O)v(t,y)dt = f(x),x € [0,1]. (3.3.1)
On most of the interval, the solution of Eqg. 3.3.1 behaves like the solution of Egs.
3.2.6-3.2.7. However, there is small interval around x = 0 in which the solution of
problem 3.2.6-3.2.7 does not agree with the solution of Problem 3.2.6-3.2.7 to handle

this situation, the boundary layer correction problem is introduced in step 2.

1
Step 2: Choose x = ea-15 t0 get

D% — 1 * 1-a ,,1 d
Y0 = sy | 0Ty e

1 Eﬁs 1 1-a
= mf <6m5 - t) y’,(t)dt
0

1

—-a 11 —-a
ca-1 f6“5“< t ) .
e ——— S — " y” t)dt.
ra-ol, caT

1
Letr = tl . Then, dt = e=—1dr and

ea—1

dy dydr 1 dy
dt  drdt ELdr'

a—1

dy
d*y d(E)fiT_( 1 )Zdy

acz ~ dr dat \ L] ar

a—1

Thus,
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1-a
DY) = T f ot Pty
= —_ a—
y(x eEA s—r € r

( )dr
ca—-1
-

eca—1
F(l—a)f (s—1r)” —dr

= e«;_—alD“y(s). (3.3.2)

Hence, Eq. 3.2.6 becomes

1

(6F555) 24 (K () st =  (5) @3

—eeﬁD“y(s) +

ea—1

or
—D% +u (Ea 1s, y) + €a- 1f (eﬁs, t) v(t,y)dt = eﬁf (eﬁs) (3.3.4)
Setting € = 0 in Eqgs. 3.3.3 implies that

~D%y(s) +u(0,y) 2 = 0. (3.3.5)
Since the solution of the reduced problem in step 1 does not satisfy the initial condition

at x = 0, then the solution of the above equation should satisfy it. This means, its
solution has the form y, (0) + y,(x). Substitute
y(x) = 1(0) + y2(x)
in Eq. 3.3.5 to get the boundary layer correction equation
—D%yy(s) +u(0,y1(0) + y2(s)) == = £(0). (3.3.6)

The solution of Eq. 3.2.6 will be expressed in the form as

x ) (33.7)

ea—1

y(@) =3 + 7, (

and the initial condition must be satisfied by expression 3.3.7. When x = 0, the

condition will be

Yo = ¥(0) = y,(0) + y,(0)
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or

y2(0) = yo — ¥1(0), (3.3.8)

The solution of Egs. 3.2.6-3.2.7 can be produced using the RKM as described in the

previous section. More details can be found in [41]-[43].

3.4 Numerical Results

In this section, we present two of our examples to show the efficiency of the

proposed method.

Example 3.4.1: Consider the following problem
3
—eD2y(x) — 2y'(x) — [, e?Wdt =x? —2x - —,0<x < 1,0<e < 1, (34.1)

subject to
y(0) = 0,y(1) = 0. (3.4.2)

When € = 0,
_ 9! _ o (X oy®O gy — 2 _
2y'(x) =2 [, e?Pdt = =2In(x + 1) + —7 vy =0 (3.4.3)
We discretized the interval [0,1] by x; = ih,h = %n € N.Lety, = y(x;) fork =
0 : n. Using the backward finite difference method to approximate y'(x;) and the

trapezoidal quadrature to approximate the integral fox" eY®dt, we get

k-1
Yk — Vk-1 . .
—ZT— hzo(eyl + e¥it1) = —21In(x, + 1) +Xk n 1 %n = 0.
]:

Thus, we get the following system

AY + Be' =F
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Where

1 1 0 0 0 110 8 0
0 -1 1 0 0 121 0
2 121 -0 0
A=-y o -11 o [[B=h |
0 ; ) 2 2 1/
_ 202 2 5 5

f(x1) yo

f(x1)

\f(xn ) / \yn : /
f(xn)
Using Mathematica, one can see that the solution of the above system for n = 12 is

giving in Figure 3.1. Using the change of variable x = €2s, we get

dy,
—D2 —2—===
yz(S) ds 0

subject to
y2(0) = yo — ¥1(0) = —0.694147,y,(0) = 6.

Using the RKM, we get

20s 252+8955/2 32953+16957/2 640s*
3 Vr 5 T 7 15v7

Using the Pade’ approximation of order [2,2], we have 8 = —0.694147. In figures

v,(s) = —0.694147 +

3.2-3.4, we plot the approximate solution for e = 0.0001,0.00001, 0.000001

respectively.
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Y1
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0.2 04 0.6 0.8 1.0

X

Figure 3.1: The approximate of Example 3.4.1 solution y,

1 L 1 1 1 L L ! 1 1 L 1 1

: E— X
0.2 04 0.6 0.8 1.0

Figure 3.2: The approximate solution y of Example 3.4.1 for ¢ = 0.0001
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0.2 04 0.6 0.8 1.0

X

Figure 3.3: The approximate solution y of Example 3.4.1 for e = 0.00001

X

0.2 04 0.6 0.8 1.0

Figure 3.4: The approximate solution y of Example 3.4.1 for e = 0.000001

Example 3.4.2: Consider the following problem

S7

3
—eDzy(x) —yy' — fox(x —)y?()dt = f(x),0<x<1,0<eK 1, (3.4.4)

Subject to

y(0) = —1,y(1) = 6. (3.4.5)
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where
o _,_25.3_5.4_2x°
fO)==5-x—Tx—=x*——
When e = 0,
—yy' — [ (x = O)y*(O)dt = f(x),y(1) = 6. (3.4.6)

We discretized the interval [0,1] by x; = ih,h = L neN. Let Vi = y(xy) for

Tn
k = 0 : n. Using the backward finite difference method to approximate y’(x; ) and the

trapezoidal quadrature to approximate the integral fox “(x — t)y?(t)dt, we get

k-1

D (Goe=20)90 + (i = )77) = FGx, 9 = 6

j=0

o Yk=Yk-1_ h
Ye ™ T3

Using Mathematics, one can see that the solution of the above system for n = 12 is

giving in Figure 3.5. Using the change of variable x = ¢2s, we get

3 dy,
—D2y,(s) — (y2(s) + S)d_ =0
S
subject to
¥2(0) = yo — ¥:1(0) = —6,;(0) = 6.
Using the RKM, we get

()~ —6+0 9 3 0, 86> 5 767 3+7er3 \
S) =~ — S ———S§ —ST — Sz — S S .
2 Nl 15vn 12 48

Using the Pade’ approximation of order [2,2], we have 6 = 0.0927388622769557.
In figures 3.5-3.8, we plot the approximate solution for

€ = 0.001,0.0001, and 0.00001, respectively.



Y1

6.0

5.8

5.6

54

52
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Figure 3.5: The approximate solution of Example 3.4.2 for y,

0.2 0.4 0.6 0.8 1.0
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Figure 3.6: Approximate solution of Example 3.4.2 for for e = 0.001
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0.2 0.4 0.6 0.8 1.0

Figure 3.7: The approximate solution y of Example 3.4.2 for for e = 0.0001

0.2 0.4 0.6 0.8 1.0

Figure 3.8: The approximate solution y of Example 3.4.2 for for e = 0.00001
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Chapter 4: Conclusion

In this thesis we study two classes of fractional nonlinear Volterra integro-
differential type of singularly perturbed problems which are the first order and the

second order. The first order class has the form
eD% + u(x,y) + foxK(x, Hv(t,y)dt = f(x),x € (0,1),0<a <1,

subject to

y(0) = yo

while the second order class has the form
eDy + u(x,y)y' + f(jCK(x, Hv(t,y)dt = f(x),x € (0,1),01 < a < 2,

subject to

y(0) = yo,¥(1) =y,
where € >0 is a small positive parameter, y, is constant, and K(x,t) and
f(x),ulx,t),v(x,t) are smooth functions.

In chapter one, we study the classes of first order and second order fractional
nonlinear Volterra integro-differential type of singularly perturbed problems. We
present some preliminaries which we used in this thesis such as definition of Caputo
derivative and its properties. In addition, we present the main definitions of the
nonlinear Volterra integro-differential type and the singularly perturbed problems.

In chapter two, we present some theoretical results such as the maximum
principle, stability of the numerical scheme, and the uniqueness of the proposed
problem. We derive the necessary kernel to be able to implement the reproducing

kernel method. Also, we derive the reproducing kernel method for the proposed
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problem. Two numerical examples are presented to show the efficiency of the
numerical scheme.

In Chapter three, we study the classes of second order fractional nonlinear
Volterra integro-differential type of singularly perturbed problems. We present some
theoretical results such as the maximum principle, stability of the numerical scheme,
and the uniqueness of the second order problem. We derive the necessary kernel to be
able to implement the reproducing kernel method. Also, we derive the reproducing
kernel method for the proposed problem. Two numerical examples are presented to
show the efficiency of the numerical scheme.

Theoretical and numerical results show that the reproducing kernel method is
working very efficiently especially when e very small. We believe that this technique
will work very efficiently for the higher order problem. However, we leave it for the

future work.
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