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Abstract 

 

Financial derivatives are very important tools in risk management since they decrease 

uncertainty. Moreover, if used effectively, they can grow the income and save the cost. 

There are many types of financial derivatives, for instance: futures/forwards, options, 

and swaps. The present thesis deals with the pricing problem for Asian options.  

The main aim of the thesis is to generalize the Asian option pricing Partial Differential 

Equation (PDE) in order to handle post-crash markets where the volatility is high. In 

other words, we seek to extend the work on the Asian option pricing PDE under the 

well-known Black-Scholes model to a high volatility model. To this end, we first set 

up a model that accounts for high volatile situations and we solve the Stochastic 

Differential Equation (SDE) of the underlying asset price. Our illustrations confirm 

the high volatile behavior of the model. We then derive the Asian option PDE for the 

suggested model. The resulting PDE is reduced from two-dimensional space to one-

dimensional space using a change of variable. Moreover, we derive a relationship 

between the Asian option prices of the Black-Scholes model and our high volatility 

model where the increase in volatility is a deterministic function of the interest rate. 

 

Keywords: PDE; stochastic calculus; financial derivatives; Asian option; financial 

crisis. 
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Title and Abstract (in Arabic) 

 

الجزئية التفاضلية لمعادلاتا بواسطة الآسيوية المالية الخيارات عقود تسعير  

 الملخص

لى ع المالية المشتقات من العديد يوجد. المالية المخاطر إدارة في جدا هامة أداة المالية المشتقات تعد

 من معين لنوع التسعير مشاكل مع يتعامل البحث هذا. والمبادلة الخيارات، الآجلة،/ المستقبل عقود: المثال سبيل

 هي لماليةا الخيارات لتقييم الطرق إحدى. للانهيار تتعرض التي للأسواق الآسيوية الخيارات: الغريبة الخيارات

 خلال الياع يكون الاسعار في التذبذب أن المعلوم من فإنه أخرى، ناحية من. الجزئية التفاضلية المعادلات طريقة

 والتي يةالآسيو الخيارات لتقييم الجزئية التفاضلية المعادلة في التوسع هو العمل هذا من الهدف. المالية الازمات

 نضع ولاا العمل، لهذا نصل لكي. شولز لتشمل الاسواق المالية ذات التذبذب العالي-نموذج بلاك باستخدام اشتقت

 ةطريق نفس نتبع ثم. المالية الأزمة ذات الاسواق في التذبذب مع يوائم والذي شولز-بلاك من المعدل نموذجنا

 الجزئية ليةالتفاض المعادلة نوجد وبالتالي. الآسيوية للخيارات الجزئية التفاضلية المعادلة اشتقاق في المتبعة

 إلى يراتثلاثة متغ من الجديدة الجزئية التفاضلية المعادلة نخفض البحث من الثاني الجزء في. المعدل لنموذجنا

الأصول  لأسعار الرقمية الحلول توفير رسوم يتم .المخفضة للمعادلة رقمي حل على نحصل النهاية في. متغيرين

 كبلا نموذج للنموذجين، الآسيوية الخيارات أسعار بين علاقة نوجد ذلك، على وعلاوة. لنموذجنا مواتية وهي

 .الفائدة سعر معدل هي التقلب في الزيادة حيث ولكن ونموذجنا ،شولز

 ;المشتقات الآسيوية ;المشتقات المالية ;التفاضل والتكامل العشوائي ;معادلات تفاضلية جزئية الكلمات المفتاحية:

  الأزمات المالية.
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Chapter 1:  Introduction  

Asian options are options in which the underlying variable is the average price over a 

period of time. They were originally used in 1987 when Banker's Trust Tokyo office 

used them for pricing average options on crude oil contracts; and hence the name 

"Asian" option, see [25].   

Asian options are very important on products with low trading volumes (e.g. crude 

oil). The price of an Asian option depends essentially on the “average” of the 

underlying asset prices. Therefore, we need to find a “good” model to the underlying 

asset price in order to obtain a “fair” price to the Asian option. Since the pioneer work 

of ([1]), many asset price models have been suggested in the literature. One of the most 

popular model is the Black-Scholes model ([3]) which suffers from several 

shortcomings. Other types of models1 were suggested to improve the Black-Scholes 

model, such as: stochastic volatility models (see [8]), and jump-diffusion models (see 

[16]). However, most of the existing asset pricing models do not reflect the financial 

crises aspects. In this thesis, we intend to consider a model that accounts for high 

volatility periods for Asian options. There are many empirical studies on markets 

under stress. For instance, in [22], the author concludes by experiment that asset prices 

follow a converging oscillatory motion during post-crash. On the other hand, in [15], 

the authors prove that financial markets follow power-law relaxation decay. According 

to [7], a closed form pricing formula of the option for the high volatile model is 

obtained for European Options. Here in, we address the pricing problem of Asian 

                                                           
1 The list is not exhaustive. 
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options for high volatile market, where the model is similar to the model presented in 

[7].  

Since there is no available closed form solution to the pricing of the arithmetic Asian 

Option, this pricing problem becomes highly interesting. In general, to find the price 

of an option, we can use one of the following methods: 

 Probabilistic method, where the price of an option can be expressed as an 

expected value of the discounted payoff. 

 Partial Differential Equation (PDE) approach, where we use the Ito formula 

and the martingale properties of the discounted prices to derive the PDE of the 

option. 

If a closed solution for the option-pricing problem is not possible then researchers 

suggest numerical solutions using different numerical methods. For instance, many 

studies utilize Monte Carlo simulations to find the price of an arithmetic Asian option 

(see [11]). 

Most of the research works on pricing Asian options considers the PDE approach. The 

price of an Asian option can be expressed as solution of a PDE in two space dimensions 

(see [10]). However, [21] reduced the Asian option PDE to a one-space dimension 

PDE. The thesis objective is to find the price of the Asian option in high volatile market 

by deriving its PDE. We obtain the option price PDE and we reduce it. On other words, 

this work aims at generalizing the “existing” Asian option PDE to a situation where 

we have an increased volatility. The thesis intends to: 

1. Suggest a model for high volatile situations. 

2. Solve the Stochastic Differential Equation (SDE) of the underlying asset price 

of the suggested model. 
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3. Derive the PDE of the Asian option price under the suggested model. 

4. Reduce the obtained PDE from two space-dimensions to one-space dimension. 

5. Compare the Black-Scholes and the modified Asian option prices when the 

volatility increase is a deterministic function of the interest rate. 

The thesis is organized as follows, in chapter 2, we provide an introduction to the 

financial products, and markets. Additionally, we present a brief discussion about 

financial derivatives, options and Asian Options. Chapter 3 is devoted to the stochastic 

calculus. The highlight is on the brownian motion, and Itô formula. Several 

applications to modeling financial asset prices are provided. In chapter 4, the reader 

can find our main contribution and results. We start the chapter by several important  

results from the literature on Black and Scholes model and the derivation of the PDE 

for European and Asian options. Then, we propose the high volatile model by adding 

a parameter  α > 0 to the volatility part of the stochastic differential equation of the 

underlying asset price. We derive the PDE for the Asian option price under the 

suggested model. We, then, use the separation of variables to reduce the PDE from 

two space dimensions to one-space dimension. Moreover, we derive a relation between 

the Asian option prices of the Black-Scholes and the high volatile models. We 

conclude the thesis by some remarks and propositions for further research.   
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Chapter 2: Financial derivatives  

Financial derivatives play an essential role in the risk management. “Risk 

management” does not mean necessarily the complete elimination of the risk. Instead, 

it means managing the risk by choosing the “acceptable” risks and reducing the 

undesirable ones. Actually, financial derivatives decrease the uncertainty but do not 

eliminate it completely. Nevertheless, if “properly” handled, derivatives can help 

controlling the risk in a better way. Moreover, they can serve the accomplishment of 

the companies risk-management goals. In general, they are utilized in two main ways: 

to hedge the risks or to speculate by taking a position in anticipation of a market 

movement. If they are used in the right way they help growing the income and also 

saving money.  

There exists several types of financial derivatives among others: futures, options and 

swaps. Our study focuses on options, more precisely on the Asian ones, which are part 

of the exotic options. In this chapter, we provide a brief introduction on financial 

markets, products and derivatives. Moreover, a presentation on the different types of 

Asian options is given.  

2.1 Financial markets, underlying assets, and derivatives 

Financial markets are very important to the economy of any nation. They exist almost 

in every country in the world.  

A financial market is a place where buyers and sellers meet to exchange goods and 

services. The location of a financial market can be physical or virtual (for example, the 

Internet). Financial products are the goods for sale (sellers) or for purchase (buyers). 
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They can be equities such as stocks (shares), commodities (crude oil), currencies 

(foreign currency) or derivatives (futures and options), etc.  

2.1.1 Financial derivatives  

In this context, the word “derivatives” does not follow the traditional meaning in 

Mathematics. A formal definition of a financial derivative is given below:  

Definition 2.1 ([18]) A financial derivative is an instrument derived from the value of 

some other financial instruments called the underlying assets. 

In general, the underlying assets can be:  

- Stocks-bonds. 

- Commodities: meat, wheat, oil, etc. 

- Currencies: these are liabilities of governments or sometimes banks. They are 

not direct claims on real assets e.g. exchange between Euro, Dollar, and 

Dirham.  

Moreover, derivatives with other types of underlying assets exist and are traded in 

derivatives markets. For instance, we can find derivatives that are built on the weather.  

Historically, financial derivatives were designed to manage the risk, to speculate, to 

gain from arbitrage between markets, or to change the nature of a liability, for more 

details on financial derivatives we refer the reader to [9]. 
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2.2 Major categories of the financial derivatives  

2.2.1 Futures and forwards 

Definition 2.2 ([9]) A forward, or a forward contract, is an agreement between a buyer 

and a seller to exchange a commodity or a financial instrument for a prespecified 

amount of cash on a prearranged future date. 

 An example of forward contract is the interest rate forwards. If a forward purchase is 

made, then the holder of such a contract is said to be long in the underlying asset. If at 

expiration the cash price is higher than the forward price, the long position makes a 

profit, otherwise there is a loss. For more details (see [18]). 

Definition 2.3 ([20]) A futures contract is an agreement between two parties to buy or 

sell at a certain time in the future for a certain price. Unlike forward contracts, futures 

contracts are normally traded on an exchange. 

To make trading possible, the exchange specifies certain standardized features of the 

contract. As the two parties to the contract do not necessarily know each other, the 

exchange also provides a mechanism that gives the two parties a guarantee that the 

contract will be honored. 

2.2.2 Swap  

A swap represents another important type of derivatives. It is used to exchange two 

financial instruments between two different organizations. 

Definition 2.4 ([9])  A swap is a derivative in which counterparties exchange cash 

flows of one party’s financial instrument for those of the other party’s financial 

instrument. 
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Currency and interest rate are two basic types of swaps. Swaps on commodities are 

also available. For example, a company that consumes 200,000 barrels of oil per 

annum may pay $12,000,000 per year for the next five years and in return receive 

200,000𝑆, where 𝑆 is the prevailing market price of oil per barrel. This transaction 

locks in the price for oil at $60 per barrel (see [12]). 

2.2.3 Options 

The meaning of options comes from the right for the option holder (buyer), but not the 

obligation, to either buy or sell a specified quantity of an underlying asset, on or before 

an agreed date at a predetermined price from or to the writer (seller).  

Both futures and options allow the holder to buy or sell the underlying asset in the 

future. The main difference between the two is that the option buyer has the right to 

buy or sell the underlying asset (e.g. the equity), but no obligation to do so. With a 

future, both parties are obliged to participate in the final movement of the underlying 

asset, unless they trade out of their position beforehand. Investors use derivatives for 

speculation, arbitrage and/ or for hedging an existing position (e.g. if they own a share). 

Investors should be sure they fully understand a derivative before trading. As 

leveraged products derivatives can offer high rewards, but also high risks; for example 

it is possible to lose a greater amount of money on a derivatives contract than is initially 

spent to enter into it. 

Definition 2.5 ([9]) Options are contracts giving the right to buy (or to sell) a certain 

financial asset (with price 𝑆) for a pre-specified price (Strike price 𝐾) at a 

predetermined time (Maturity 𝑇). 

The literature reveals several types of options:  
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 European: give the right to exercise at the maturity only. 

 American: can be exercised before or at the expiration date. 

  Exotic, such as path-dependent options. 

2.3 Asian options 

In brief, the Asian option is a contract giving the holder the right to buy or sell an 

underlying asset for its average price over a prescribed period of time. In other words, 

they are options where the payoff depends on the average price of the underlying asset 

during at least some part of the life of the option.  

Let 𝐾 denote the strike and 𝑆̅ is the average price of the underlying asset. Then, the 

payoff from the average call is max(0, 𝑆̅ − 𝐾), and that from an average price put is 

max (0, 𝐾 − 𝑆̅). The average price options are less expensive than regular options and 

are arguably more appropriate than regular options for meeting some of the needs of 

corporate treasurers.  

Another type of Asian option is an average strike option. An average strike call payoff 

is max (0, 𝑆𝑇 − 𝑆̅), and an average strike put payoff is max (0, 𝑆̅ − 𝑆𝑇), where 𝑆𝑇 is the 

underlying asset price at expiration date. Notice that, average strike options can 

guarantee that the average price paid for an asset in frequent trading over a period of 

time is not greater than the final price. Alternatively, it can guarantee that the average 

price received for an asset in frequent trading over a period of time is not less than the 

final price. It is well-known that using Asian options has many advantages like: 

1) Insurance against average price changes. 

2) Counterpart has no incentive to influence prices at expiration. 
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Asian options are similar to European options but with different strike. While the strike 

in the European options is constant, the strike in an Asian option depends on the 

underlying asset price trajectory. There are several types of Asian options depending 

on the method used to compute the average of the stock prices or the final condition 

(the payoff). An example of the Asian call option strike is the continuous arithmetic 

average 

𝐴(𝑇) =
1

𝑇
∫ 𝑆𝑡𝑑𝑡,

𝑇

0

 

 where (𝑆𝑡)𝑡𝜖[0,𝑇] represents the underlying asset price. In this case the final condition 

(the payoff) takes the form, max (𝑆𝑇 − 𝐴(𝑇), 0). Below are some other examples: 

1) Discrete arithmetic average: 

𝐴 =
1

𝑛
∑ 𝑆𝑡𝑖

𝑛
𝑖=1 . 

2) Discrete Geometric average: 

𝐺 = (∏ 𝑆𝑡𝑖

𝑛
𝑖=1 )

1

𝑛. 

3) Continuous Geometric average: 

𝐺 = exp (
1

𝑇
∫ ln 𝑆𝑡𝑑𝑡

𝑇

0

). 

The price of any option is given by: 

𝐶(𝑆𝑇 , 𝐾, 𝑇) = 𝐸[𝐻(𝑆𝑇)]𝑒−𝑟𝑇. 

where 𝑆𝑇 represents the underlying asset price, 𝐶(𝑆𝑇 , 𝐾, 𝑇) is the Asian option price, 

𝐻(𝑆𝑇) is the payoff, 𝐾 is the strike, and 𝑟 is the interest rate. 

Note that the pricing problem for an arithmetic Asian option does not have an 

analytical solution since 𝐴(𝑇) does not have a known density. Many works on pricing 
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arithmetic Asian options use numerical methods such as Monte Carlo simulations or 

the binomial methods. Nevertheless, an important approach is to find the PDE for the 

price of an arithmetic Asian option.  

In this thesis, we extend the PDE approach from the Black-Scholes model to a model 

with an increased volatility for an arithmetic Asian option with payoff given by:  

                                                    𝐻(𝑆𝑇) = max(𝐴(𝑇) − 𝐾, 0).                                        

Thus the price of the Asian option is given by: 

                                       𝐶(𝑆𝑇 , 𝐾, 𝑇) = 𝐸[max (𝐴(𝑇) − 𝐾, 0)]𝑒−𝑟𝑇 .                               
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Chapter 3: Stochastic Calculus  

Stochastic calculus is the branch of mathematics that is most identified with financial 

engineering and mathematical finance. We work on a probability space (𝛺, ℱ, 𝑃) 

where 𝑃 is the probability measure, 𝛺 is the universe of possible outcomes. We use 

𝜔 ∈ 𝛺 to represent a generic outcome, and the set ℱ is a 𝜎-Algebra and it represents 

the set of possible events where an event is a subset of 𝛺. There is also a filtration, 

(ℱ𝑡)𝑡∈ℝ+
, that models the evolution of information through time. If we are working 

with a finite horizon, [0, 𝑇], then we can take ℱ = ℱ𝑇.  

We also say that a stochastic process, (𝑋𝑡)𝑡∈ℝ+
, is ℱ𝑡-adapted if the value of 𝑋𝑡 is 

known at time t when the information represented by ℱ𝑡 is known. All the processes 

we consider will be (ℱ𝑡)𝑡∈ℝ+
-adapted so we will not bother to state this in the 

consequence. 

In the continuous-time models that we are study, it is understood that the filtration 

(ℱ𝑡)𝑡∈ℝ+
 is the filtration generated by the stochastic processes (usually a Brownian 

motion, (𝑊𝑡)𝑡∈ℝ+
, that are specified in the model description). For more details refer 

to [13].  

3.1 Martingales and Brownian motion 

3.1.1 Brownian motion 

Robert Brown, a botanist, first observed the movement of pollen particles as described 

in his 1827 paper “A brief account of microscopical observations” (see [20]).  

Brownian motion is the random motion of particles suspended in a fluid (a liquid or a 

gas) resulting from their collision with the quick atoms or molecules in the gas or liquid 

(see Figure 1, below). The term "Brownian motion" can also refer to the mathematical 
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model used to describe such random movements, which is often called a particle 

theory. For more details refer to [17]. 

 

 

 

 

Figure 1: Pollen particles movement 

Definition 3.1 ([19]) The standard Brownian motion is a stochastic process(𝑊𝑡)𝑡∈ℝ+
  

satisfying the following properties:  

i. 𝑊0 = 0 almost surly. 

ii. The sample trajectories 𝑡 ↦ 𝑊 are continuous, with probability 1. 

iii. For any finite sequence of times 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛, the increments 𝑊𝑡1
−

𝑊𝑡0
, 𝑊𝑡2

− 𝑊𝑡1
, 𝑊𝑡3

− 𝑊𝑡2
, … , 𝑊𝑡𝑛

− 𝑊𝑡𝑛−1
 are independent.  

iv. For any times 0 ≤ 𝑠 < 𝑡, 𝑊𝑡 − 𝑊𝑠   is normally distributed with mean zero and 

variance 𝑡 − 𝑠, (𝑖. 𝑒  𝑊𝑡 − 𝑊𝑠~𝑁(0, 𝑡 − 𝑠)), thus 𝐸[𝑊𝑡 − 𝑊0] = 0 ⇒

𝐸[𝑊𝑡] = 0 for any 𝑡. 

3.1.2 Martingale 

In probability theory, a martingale is a model of a fair game where knowledge of past 

events never helps predict the mean of the future winnings. In particular, a martingale 

is a sequence of random variables (i.e. a stochastic process) for which, at a particular 

time in the realized sequence, the expectation of the next value in the sequence is equal 

to the present observed value even given knowledge of all prior observed values. 
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Definition 3.2 ([18]) Let  (𝑀𝑡 )0≤𝑡≤𝑇 be a stochastic process, then 𝑀𝑡 is said to be a 

martingale if :  

𝑀𝑡 = 𝑀0 + ∫ 𝑈𝑠𝑑𝑊𝑠.
𝑡

0

 

3.2 Stochastic Integral 

Consider a partition of the time interval, [0, 𝑇] given by: 

0 = 𝑡0 <  𝑡1  < 𝑡2  < ⋯  <  𝑡𝑛  =  𝑇. 

Let 𝑋𝑡 be a Brownian motion and consider the sum of squared changes 

𝑄𝑛(𝑇) ∶= ∑[∆𝑋𝑡𝑖
]

2
,

𝑛

𝑖=1

 

where ∆𝑋𝑡𝑖
≔ 𝑋𝑡𝑖

− 𝑋𝑡𝑖−1
. 

Definition 3.3 ([19]) (Quadratic Variation) The quadratic variation of a stochastic 

process, 𝑋𝑡, is equal to the limit of 𝑄𝑛(𝑇) as ∆𝑡 ∶=  𝑚𝑎𝑥𝑖(𝑡𝑖 − 𝑡𝑖−1) → 0. 

Definition 3.4 ([19]) We say a process, ℎ𝑡(𝜔), is elementary if it is piece-wise constant 

so that there exist a sequence of stopping times 0 = 𝑡0 <  𝑡1  < 𝑡2  < ⋯  <  𝑡𝑛  =  𝑇,  

and a set of ℱ𝑡𝑖
-measurable (a function 𝑓(𝜔)𝑖𝑠 ℱ𝑡𝑖

-measurable if its value is known 

by time t) functions, 𝑒𝑖(𝜔), such that:  

ℎ𝑡(𝜔) = ∑ 𝑒𝑖(𝜔)𝐼[𝑡𝑖,𝑡𝑖+1)

𝑖

(𝑡), 

where 𝐼[𝑡𝑖,𝑡𝑖+1)(𝑡) = 1 if 𝑡 ∈ 𝐼[𝑡𝑖,𝑡𝑖+1) and 0 otherwise. 

Definition 3.5 The stochastic integral of an elementary function, ℎ𝑡(𝜔),  with respect 

to a Brownian motion, 𝑊𝑡, is defined as: 
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∫ ℎ𝑡(𝜔)𝑑𝑊𝑡(𝜔)
𝑇

0
≔ ∑ 𝑒𝑖(𝜔) (𝑊𝑡𝑖+1

(𝜔) − 𝑊𝑡𝑖
(𝜔))𝑛−1

𝑖=0 . 

For a more general process, 𝑋𝑡(𝜔), we have: 

∫ 𝑋𝑡(𝜔)𝑑𝑊𝑡(𝜔) ∶= 𝑙𝑖𝑚
𝑛→∞

∫ 𝑋𝑛,𝑡(𝜔)𝑑𝑊𝑡(𝜔)
𝑇

0

𝑇

0
, 

where 𝑋𝑛,𝑡 is a sequence of elementary processes that converges (in an appropriate 

manner) to 𝑋𝑡. 

Example 3.1 We want to compute ∫ 𝑊𝑡𝑑𝑊𝑡
𝑇

0
. To reach this end, let  

𝑋𝑛,𝑡 ≔ ∑ 𝑊𝑡𝑛,𝑖

𝑛−1

𝑖=0

𝐼[𝑡𝑛,𝑖,𝑡𝑛,𝑖+1)(𝑡), 

where 0 = 𝑡𝑛,0 < 𝑡𝑛,1 < 𝑡𝑛,2 < ⋯ < 𝑡𝑛,𝑛 = 𝑇 and 𝐼[𝑡𝑛,𝑖,𝑡𝑛,𝑖+1)(𝑡) = 1 if  

 𝑡 ∈ [𝑡𝑛,𝑖, 𝑡𝑛,𝑖+1) and 0 otherwise. Then 𝑋𝑛,𝑡 is an adapted elementary process and, by 

continuity of Brownian motion, satisfies lim
𝑛→∞

𝑋𝑛,𝑡 = 𝑊𝑡  almost surely as 

𝑚𝑎𝑥𝑖|𝑡𝑛,𝑖, 𝑡𝑛,𝑖+1| → 0. The It�̂� integral of 𝑋𝑛,𝑡 is given by: 

∫ 𝑋𝑛,𝑡𝑑𝑊𝑡

𝑇

0

= ∑ 𝑊𝑡𝑛,𝑖

𝑛−1

𝑖=0

(𝑊𝑡𝑛,𝑖+1
− 𝑊𝑡𝑛,𝑖

) 

                                                =
1

2
∑ (𝑊𝑡𝑛,𝑖+1

2 − 𝑊𝑡𝑛,𝑖

2 − (𝑊𝑡𝑛,𝑖+1
− 𝑊𝑡𝑛,𝑖

)
2

)

𝑛−1

𝑖=0

. 

Thus we have: 

                           ∫ 𝑋𝑛,𝑡𝑑𝑊𝑡

𝑇

0

  =
1

2
𝑊𝑇

2 −
1

2
𝑊0

2 −
1

2
∑(𝑊𝑡𝑛,𝑖+1

− 𝑊𝑡𝑛,𝑖
)

2
.

𝑛−1

𝑖=0

               (3.1) 
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By the definition of quadratic variation the sum on the right-hand-side of equation 

(3.1) converges in probability to T. And since 𝑊0 = 0 we obtain: 

              ∫ 𝑊𝑡𝑑𝑊𝑡

𝑇

0

= lim
𝑛→∞

∫ 𝑋𝑛,𝑡

𝑇

0

𝑑𝑊𝑡 =
1

2
𝑊𝑇

2 −
1

2
𝑇. ∎ 

Definition 3.6 ([19]) We define the space 𝐿2[0, 𝑇] to be the space of processes, 𝑋𝑡(𝜔), 

such that: 

𝐸 [∫ 𝑋𝑡
2𝑑𝑡

𝑇

0
] < ∞. 

Theorem 3.1([19]) (It�̂�’s Isometry) For any 𝑋𝑡(𝜔) ∈ 𝐿2[0, 𝑇] we have 

𝐸 [(∫ 𝑋𝑡𝑑𝑊𝑡

𝑇

0

)

2

] = 𝐸 [∫ 𝑋𝑡
2𝑑𝑡

𝑇

0

]. 

3.3 Stochastic Differential Equations 

Definition 3.7 ([20]) An 𝑛-dimensional It�̂� process, 𝑋𝑡, is a process that can be 

represented as: 

                                 𝑋𝑡 = 𝑋0 + ∫ 𝑉𝑡𝑑𝑠 + ∫ 𝑈𝑡𝑑𝑊𝑠

𝑡

0

𝑡

0

;     𝑡 ∈ ℝ+,                                 (3.2) 

where 𝑊 is an 𝑚 −dimensional standard Brownian motion, and 𝑉 and 𝑈 are 

𝑛 −dimensional and 𝑛 × 𝑚 −dimensional ℱ𝑡 −adapted processes, respectively. We 

often use the following notation as shorthand of equation (3.2): 

                                                  𝑑𝑋𝑡 = 𝑉𝑡𝑑𝑡 + 𝑈𝑡𝑑𝑊𝑡 ,                                                      (3.3) 

where (𝑈𝑡)𝑡∈ℝ+
 and (𝑉𝑡)𝑡∈ℝ+

 are square-integrable adapted processes  

An 𝑛-dimensional Stochastic Differential Equation (SDE) has the form: 

                                    𝑑𝑋𝑡 = 𝑉(𝑋𝑡, 𝑡)𝑑𝑡 + 𝑈(𝑋𝑡, 𝑡)𝑑𝑊𝑡 ;      𝑋0 = 𝑥 ,                          (3.4) 
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where as stated before, 𝑊𝑡 is an 𝑚 −dimensional standard Brownian motion, and 𝑉 

and 𝑈 are 𝑛 −dimensional and 𝑛 × 𝑚 −dimensional ℱ𝑡 −adapted processes, 

respectively. Equation (3.4) is shorthand for:  

                              𝑋𝑡 = 𝑥 + ∫ 𝑉(𝑋𝑠, 𝑠)𝑑𝑠 + ∫ 𝑈(𝑋𝑠, 𝑠)𝑑𝑊𝑠 

𝑡

0

𝑡

0

.                                   (3.5) 

While we do not discuss the issue here, various conditions exist to guarantee existence 

and uniqueness of solutions to equation (3.5). A useful tool for solving SDE's is Itôs’ 

lemma, which we discuss in the next section: 

3.3.1 It�̂�’s formula and its applications 

Theorem 3.2 ([18]) For any It�̂� process (𝑿𝒕)𝒕∈ℝ+
 of the form of equation (3.2) and 

any 𝑓 ∈ ∁1,2(ℝ+ × ℝ) we have:  

(𝑓(𝑡, 𝑋𝑡) =  𝑓(0, 𝑋0) +  ∫ 𝑣𝑠

𝜕𝑓

𝜕𝑥

𝑡

0

(𝑠, 𝑋𝑠)𝑑𝑠 + ∫ 𝑢𝑠

𝜕𝑓

𝜕𝑥

𝑡

0

(𝑠, 𝑋𝑠)𝑑𝑊𝑠         

+ ∫
𝜕𝑓

𝜕𝑠

𝑡

0

(𝑠, 𝑋𝑠)𝑑𝑠 +
1

2
∫ |𝑢𝑠|2

𝜕2𝑓

𝜕𝑥2

𝑡

0

(𝑠, 𝑋𝑠)𝑑𝑠),                               (3.6) 

where 𝑓(𝑡, 𝑋𝑡) is a smooth function of two variables. 

  

If 𝑓 is function of two variables 𝑓(𝑡, 𝑥, 𝑦), then the Itô formula in differential form is 

given by: 

       𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦 +
1

2
[𝑓𝑥𝑥𝑑〈𝑥, 𝑥〉 + 2𝑓𝑥𝑦𝑑〈𝑥, 𝑦〉 + 𝑓𝑦𝑦𝑑〈𝑦, 𝑦〉].        (3.7) 

 Consider, two processes (𝑋𝑡)𝑡∈ℝ+
 and (𝑌𝑡)𝑡∈ℝ+

 following the dynamics of: 
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𝑋𝑡 = 𝑋0 + ∫ 𝑣𝑠𝑑𝑠 + ∫ 𝑢𝑠𝑑𝑊𝑠,
𝑡

0

𝑡

0
 𝑡 ∈ ℝ+, and 𝑌𝑡 = 𝑌0 + ∫ 𝑏𝑠𝑑𝑠 + ∫ 𝑎𝑠𝑑𝑊𝑠,

𝑡

0

𝑡

0
  

then Itô formula leads to: 

𝑑(𝑋𝑡 𝑌𝑡) = 𝑋𝑡𝑑𝑌𝑡 + 𝑌𝑡𝑑𝑋𝑡 + 𝑑𝑋𝑡𝑑𝑌𝑡, 

where the product 𝑑𝑋𝑡𝑑𝑌𝑡 is computed according to the Itô rule as follow:  

                                          (𝑑𝑡)2 = 0, 𝑑𝑡 ∙ 𝑑𝑊𝑡 = 0, (𝑑𝑊𝑡)2 = 𝑑𝑡.                               (3.8) 

Example 3.2 Consider a martingale 𝑍 = (𝑍𝑡 )𝑡∈[0,𝑇] and process 𝑌 = (𝑌𝑡 )𝑡∈[0,𝑇] 

satisfying 𝑑𝑌𝑡 = 3𝑡𝑑𝑡 + 𝑌𝑡𝑑𝑊𝑡, and a function 𝑓(𝑡, 𝑦). If 𝑍𝑡 = 𝑓(𝑡, 𝑌𝑡), then 𝑓 is a 

solution to the following PDE:  

                                                   
𝜕𝑓

𝜕𝑡
+

1

2
𝑦2 𝜕2𝑓

𝜕𝑦2 + 3𝑡
𝜕𝑓

𝜕𝑦
= 0.                                    (3.9) 

Proof: By applying  Itô’s formula (3.6) to the process 𝑓(𝑡, 𝑌𝑡), we obtain: 

Zt = 𝑓(𝑡, 𝑌𝑡) = 𝑓(0, 𝑌0) + ∫ 3𝜏
𝜕𝑓

𝜕𝑦

𝑡

0

𝑑𝜏 + ∫ 𝑌𝑡

𝜕𝑓

𝜕𝑦

𝑡

0

𝑑𝑊𝜏 + ∫
𝜕𝑓

𝜕𝜏

𝑡

0

𝑑𝜏

+
1

2
∫ 𝑦𝜏

2
𝜕2𝑓

𝜕𝑦2

𝑡

0

𝑑𝜏. 

After simplyfying terms, we get  

Z𝑡 = 𝑓(0, 𝑌0) + [∫ (3𝜏
𝜕𝑓

𝜕𝑦

𝑡

0

+
𝜕𝑓

𝜕𝜏
+

1

2
𝑌𝜏

2 𝜕2𝑓

𝜕𝑦2
)𝑑𝜏] + ∫ 𝑌𝜏

𝜕𝑓

𝜕𝑦

𝑡

0

𝑑𝑊𝜏. 

Since (𝑍𝑡)𝑡≥0 is a martingale, thus the drift process in the above equation is a null 

process. Hence, If  we let 𝑦 ≔ 𝑌𝜏, we obtain the PDE in (3.9).∎ 
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Example 3.3 (Black-Scholes Model) Suppose a stock price process, 𝑆 = (𝑆𝑡)𝑡∈[0,𝑇], 

satisfies the Stochastic Differential Equation (SDE):  

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑊𝑡, 

then the process 𝑆 is given by  

                                𝑆𝑡 = 𝑆0exp (∫ (𝜇𝑠 −
𝜎𝑠

2

2
) 𝑑𝑠 + ∫ 𝜎𝑠𝑑𝑊𝑠

𝑡

0

𝑡

0

).                            (3.10) 

Proof: We apply Itô’s formula to 𝑌𝑡  =  ln(𝑆𝑡), we derive:  

𝑑𝑌𝑡  =
1

𝑆𝑡
 𝑑𝑆𝑡 −

1

2

1

𝑆𝑡
2 𝑑(𝑆𝑡) 

           𝑑𝑌𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 −
𝜎𝑡

2

2𝑆𝑡
2 𝑆𝑡

2𝑑𝑡 

𝑑𝑌𝑡 = (𝜇𝑡 −
𝜎𝑡

2

2
) 𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡. 

As a result, we get the explicit solution to the SDE in equation (3.10). 

In particular if 𝜎𝑠 = 𝜎 and 𝜇𝑠 = 𝜇, then we obtain  

                                𝑆𝑡 = 𝜇0exp ((𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑑𝑊𝑡),                                           (3.11) 

and hence ln(𝑆𝑡)~𝑁((𝜇 − 𝜎2/2)𝑡, 𝜎2𝑡).∎ 

Example 3.4 (Vasicek model)  

Another application of Itô’s formula lies in solving the Vasicek’s model. The Vasicek 

model was designed to predict the trajectory of interest rates. It was introduced in 1977 
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by Oldřich Vašíček and can be also seen as a stochastic investment model, for more 

information refer to [23].  

Consider the Vasick Stochastic Differential Equation (VSDE): 

𝑑𝑟𝑡 = 𝑎(𝑏 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Here 𝑊𝑡 is the Brownien motion, then the process 𝑟 is given by 

 𝑟𝑡 = 𝑏 + (𝑟0 − 𝑏)𝑒−𝑎𝑡 + 𝜎𝑒−𝑎𝑡 ∫ 𝑒𝑎𝑠𝑑𝑊𝑠
𝑡

0
. 

Proof: By applying Itô’s formula to 𝑌𝑡 = 𝑒𝑎𝑡𝑟𝑡 and using (VSDE), we derive: 

𝑑𝑌𝑡 = 𝑒𝑎𝑡𝑑𝑟𝑡 + 𝑎𝑟𝑡𝑒𝑎𝑡𝑑𝑡 

            = 𝑏𝑎𝑒𝑎𝑡𝑑𝑡 + 𝑒𝑎𝑡𝜎𝑑𝑊𝑡 

            = 𝑏𝑑(𝑒𝑎𝑡) + 𝑒𝑎𝑡𝜎𝑑𝑊𝑡. 

Thus, we get  

𝑌𝑡 = 𝑟0 + 𝑏(𝑒𝑎𝑡 − 1) + 𝜎 ∫ 𝑒𝑎𝑠𝑑𝑊𝑠
𝑡

0
. 

Hence and after simplifications, 

            𝑟𝑡 = 𝑏 + (𝑟0 − 𝑏)𝑒−𝑎𝑡 + 𝜎𝑒−𝑎𝑡 ∫ 𝑒𝑎𝑠𝑑𝑊𝑠
𝑡

0
. ∎ 
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Chapter 4: Derivation of the Asian Options PDE under the high 

volatility model 

Asian options are path dependent options. Their payoff depends on either geometric 

or arithmetic average of the underlying asset price. They have several advantages. For 

instance, they are often cheaper than European options. In addition, an Asian option 

on a commodity reduces the price risk nearby the maturity. However, the downside is 

that they are in general difficult to value since the distribution of the payoff is usually 

unknown. In fact, at the present, no closed-form solution is available for pricing the 

arithmetic Asian options.   

This chapter constitutes our main contribution in which we address the Asian options 

PDE for model with high volatility. This extends the case where model follows a 

Black-Scholes model. 

The chapter is organized as follows, we first introduce the Black Sholes Model and the 

valuation of European options by PDE approach. Section 2 provides details on 

deriving the PDE for Asian options under the Black-Scholes framework. Our 

contribution starts in section 3 where we present the suggested high volatility model. 

We then solve the model, we perform numerical simulations, and we give some figures 

that are supportive to the model. In section 4, we find the PDE for the Asian option 

price. Then, we reduce it from two space-dimensions to one-space dimension. In 

addition, we show that one can obtain the modified Asian option price from the Black-

Scholes Asian option value when the parameter of increase is equal to the interest rate. 

4.1 The Black-Scholes Model 

We work on a probability space (𝛺, ℱ, 𝑃) where 𝑃 is the probability measure, 𝛺 is the 

universe of possible outcomes. The set ℱ is a 𝜎-Algebra and it represents the set of 
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possible events where an event is a subset of 𝛺. The time is varying from 𝑡 = 0  to the 

expiration date 𝑇. In addition, we consider a standard Brownian motion (𝑊𝑡)𝑡∈[0,𝑇], its 

natural filtration (ℱ𝑡)𝑡∈[0,𝑇] that models the evolution of information through time and 

we suppose that ℱ = ℱ𝑇 .  

Let us consider an option and assume the market has two assets, a risky underlying 

asset with price (𝑆𝑡)𝑡∈[0,𝑇], and a risk-free asset with price (𝐴𝑡)𝑡∈[0,𝑇]. The Black - 

Schols model supposes that the percentage change in the stock price in a short period 

of time are normally distributed. Moreover, it imposes the following conditions:  

 The stock price follows a process with 𝑁(𝜇, 𝜎) where 𝜇 and 𝜎 are constants.  

 The short selling of securities with full use of proceeds is permitted.  

 There are no transactions costs or taxes. All securities are perfectly divisible.  

 There are no dividends during the life of the derivative.  

 There are no riskless arbitrage opportunities.  

 Security trading is continuous.  

 The risk-free rate of interest, 𝑟, is constant and the same for all maturities. The 

reader can refer to [9] for more details. 

From now on, we denote by 𝑉(𝑆𝑡, 𝑡) the option price. The dynamic of the underlying 

asset price is given by  

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡,     

where 𝑡 ∈ [0, 𝑇], and 𝑆0 is a positive constant. It should noticed that,  𝑊𝑡~𝑁(0, 𝑡 − 𝑠), 

so 𝑆𝑡 is lognormal. The Black-Scholes formula for European call options is given in 

the following theorem. 
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Theroem 1 ([3]) The price 𝑉(𝑆𝑡, 𝑡) of an European call option on a stock 𝑆𝑡 with 

strike 𝐾 and maturity 𝑇is given by  

𝑉(𝑆𝑡, 𝑡) = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2), 

 where  

𝑑1 =
𝑙𝑛 (

𝑆𝑡

𝐾) + (𝑟 +
𝜎2

2 ) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
,          𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡, 

and 𝑁(𝑑) =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
𝑑

−∞
 is the standard normal distribution function, 𝜎 is the 

volatility and 𝑟 is the interest rate. 

The previous formula is the solution of a partial differential equation as it is stated in 

the following proposition.  

Proposition 1 ([3]) The price 𝑉(𝑆𝑡, 𝑡) of an European call option on a stock 𝑆𝑡 with 

strike 𝐾 and maturity 𝑇 satisfies the following PDE 

𝜕𝑉(𝑆, 𝑡)

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉(𝑆, 𝑡)

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉(𝑆, 𝑡)

𝜕𝑆
− 𝑟𝑉(𝑆, 𝑡) = 0,      

𝑆 ∈]0, ∞[,   0 ≤ 𝑡 ≤ 𝑇,                                       

with the terminal condition 𝑉(𝑆, 𝑇) = 𝑚𝑎𝑥 (𝑆 − 𝐾, 0). 

Proof: Define 𝜋 as the value of the portfolio, 𝜋 = 𝑉𝑡 − 𝛥𝑆𝑡  where Δ is the hedging 

factor. For shortly, we will use the notation 𝑆 instead of 𝑆𝑡 and 𝑉 instead of 𝑉𝑡  

                                                                    𝑑𝜋 = 𝑑𝑉 − 𝛥𝑑𝑆.                                              (4.1) 

Apply Itô’s lemma to 𝑉 (noting that 𝑉 is a function of 𝑆 and 𝑡): 
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𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

𝜕𝑉

𝜕𝑡
𝑑𝑡 +

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 𝑑𝑡. 

Substitute in (4.1) gives: 

𝑑𝜋 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

𝜕𝑉

𝜕𝑡
𝑑𝑡 +

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
𝑑𝑡 − 𝛥𝑑𝑆. 

Combine the like terms:  

𝑑𝜋 = (
𝜕𝑉

𝜕𝑆
− 𝛥) 𝑑𝑠 + (

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
) 𝑑𝑡. 

where (
𝜕𝑉

𝜕𝑆
− Δ) is the stochastic random part and (

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2) is the 

deterministic part. Choose Δ =
𝜕𝑉

𝜕𝑆
. This implies: 

𝑑𝜋 = (
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
) 𝑑𝑡. 

The assumption (No arbitrage argument) is that we are trading in a perfectly liquid 

market with no transaction costs (i.e) if we have cash flows in the bank , then they 

have to be equal. Pick the money in the bank we get: 

𝑑𝜋 = 𝑟𝜋𝑑𝑡 = 𝑟(𝑉 − ΔS)dt = r (V − S
𝜕𝑉

𝜕𝑆
) 𝑑𝑡. 

Comparing the last two equations yields: 

(
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
) 𝑑𝑡 = (rV − rS

𝜕𝑉

𝜕𝑆
) 𝑑𝑡. 

Hence 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
= 𝑟𝑉 − 𝑟𝑆

𝜕𝑉

𝜕𝑆
. 

Therefore the Black–Schols PDE for the European option price is as follows: 

                                         
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0,                                    (4.2) 
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where 0 ≤ 𝑆, and 0 ≤ 𝑡 ≤ 𝑇.∎ 

The above proof can be found in many references, we cite for instance [18]. 

4.2 Deriving the PDE for Asian Option under the Black and Scholes model 

In this section we are going to derive the Asian Option PDE under the Black Sholes 

Model. An Asian option depends on two things 𝑆𝑡 and 𝑌𝑡 where:   

𝑌𝑡 = ∫ 𝑆𝜏𝑑𝜏.
𝑡

0

 

We consider an arithmetic Asian call option with payoff given by 

                                                𝐻(𝑆𝑡) = (
1

𝑇
∫ 𝑆𝜏𝑑𝜏 − 𝐾

𝑇

0

)

+

.                                            (4.3) 

Next, we define the self financing condition which is needed in deriving the PDE of 

the Asian Option. 

Definition 4.1 ([2]) A portfolio is self-financing if there is no exogenous infusion or 

withdrawal of money; the purchase of a new asset must be financed by the sale of an 

old one. 

Let 𝑉 be the value of the portfolio, ∆(𝑡) be the number of units invested at time 𝑡, 𝑟 be 

the interest rate, and 𝑆𝑡 be the price of the underlying asset at time 𝑡. Then the self 

financing condition can be represented by the following equation: 

𝑑𝑉 = ∆(𝑡)𝑑𝑆𝑡 + (𝑉 − ∆(𝑡)𝑆𝑡)𝑟𝑑𝑡. 

Throughout we work within the Black-Sholes model 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡, 

where 𝑡 ∈ [0, 𝑇], and 𝑆0 is a positive constant. We assume that the Asian call is 

replicable (attainable). Denote by 𝑉(𝑡, 𝑥, 𝑦), the time 𝑡 option value/replicating 
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portfolio value under the assumption that 𝑆𝑡 = 𝑥, and 𝑌𝑡 = 𝑦. The following 

proposition gives the PDE of the Asian call option price. 

Proposition 2 ([21]) The price 𝑉(𝑆𝑡, 𝑡) of a Asian call option on a stock 𝑆𝑡 with 

strike 𝐾 and maturity 𝑇 satisfies the following PDE 

𝑉𝑡(𝑡, 𝑥, 𝑦) + 𝑥𝑉𝑦(𝑡, 𝑥, 𝑦) + 𝑟𝑥𝑉𝑥(𝑡, 𝑥, 𝑦) +
1

2
𝜎2𝑥2𝑉𝑥𝑥(𝑡, 𝑥, 𝑦) − 𝑟𝑉(𝑡, 𝑥, 𝑦) = 0   

0 ≤ 𝑡 ≤ 𝑇, 𝑥 > 0, 𝑦 ∈ ℝ. 

with the terminal condition 𝑉(𝑆, 𝑇) = (
1

𝑇
∫ 𝑆𝜏𝑑𝜏 − 𝐾

𝑇

0
)

+

.        

Proof.  For shortly, from now we will use the notation 𝑉 instead of 𝑉(𝑡, 𝑥, 𝑦). 

By applying Itô formula Equation (3.3) to 𝑉 implies 

𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑥𝑑𝑥 + 𝑉𝑦𝑑𝑦 +
1

2
[𝑉𝑥𝑥𝑑〈𝑥, 𝑥〉 + 2𝑉𝑥𝑦𝑑〈𝑥, 𝑦〉 + 𝑉𝑦𝑦𝑑〈𝑦, 𝑦〉]. 

Simplifying yields             

𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑥𝑑𝑥 + 𝑉𝑦𝑑𝑦 +
1

2
𝑉𝑥𝑥𝑑〈𝑥, 𝑥〉. 

Substituting by the values of 𝑑𝑥, 𝑑𝑦, and 𝑑〈𝑥, 𝑥〉 gives 

𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑥(𝜇𝑥𝑑𝑡 + 𝜎𝑥𝑑𝑊𝑡) + 𝑥𝑉𝑦𝑑𝑡 +
1

2
𝜎2𝑥2𝑉𝑥𝑥𝑑𝑡, 

and 

𝑑𝑉 = [𝑉𝑡 + 𝜇𝑥𝑉𝑥 + 𝑥𝑉𝑦 +
1

2
𝜎2𝑥2𝑉𝑥𝑥] 𝑑𝑡 + 𝜎𝑥𝑉𝑥𝑑𝑊𝑡 

The self-financing condition yields 

𝑑𝑉 = ∆(𝑡)𝑑𝑆𝑡 + (𝑉 − ∆(𝑡)𝑆𝑡)𝑟𝑑𝑡. 

Therefore 
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𝑑𝑉 = ∆(𝑡)(𝜇𝑥𝑑𝑡 + 𝜎𝑥𝑑𝑊𝑡) + (𝑉 − ∆(𝑡)𝑥)𝑟𝑑𝑡. 

and 

𝑑𝑉 = [∆(𝑡)𝜇𝑥 + 𝑉𝑟 − ∆(𝑡)𝑥𝑟]𝑑𝑡 + ∆(𝑡)𝜎𝑥𝑑𝑊𝑡. 

Matching the coefficients, we obtain  

𝑉𝑥 = ∆(𝑡) 

and 

𝑉𝑡 + 𝜇𝑥𝑉𝑥 + 𝑥𝑉𝑦 +
1

2
𝜎2𝑥2𝑉𝑥𝑥 = 𝜇𝑥𝑉𝑥 + 𝑉𝑟 − 𝑥𝑟𝑉𝑥. 

Therefore the PDE of the Asian option is:  

𝑉𝑡(𝑡, 𝑥, 𝑦) + 𝑥𝑉𝑦(𝑡, 𝑥, 𝑦) + 𝑟𝑥𝑉𝑥(𝑡, 𝑥, 𝑦) +
1

2
𝜎2𝑥2𝑉𝑥𝑥(𝑡, 𝑥, 𝑦) − 𝑟𝑉(𝑡, 𝑥, 𝑦) = 0, 

To not stuck in the notation I’ll re-write the last equation as follow: 

                               𝑉𝑡 + 𝑥𝑉𝑦 + 𝑟𝑥𝑉𝑥 +
1

2
𝜎2𝑥2𝑉𝑥𝑥 − 𝑟𝑉 = 0.                                       (4.4)  

 This is a second-order partial differential equation (PDE) with two space variables 

and one time variable. Moveover, the second order partial derivative with respect to x 

is degenerate. Numerical solutions of this partial differential equation is possible but 

cumbersome as well as time-consuming. We now introduce the variable reduction 

method which transforms equation (4.4) into a PDE with only one state variable and 

one time variable.  

Proposition 3 ([5]) The PDE of the Asian call option price on a stock 𝑆𝑡 = 𝑥 with 

strike 𝐾 and maturity 𝑇  given by (4.4) can be reduced to 

𝑓𝑡 − (
1

𝑇
+ 𝑟𝑥) 𝑓𝑥 +

1

2
𝜎2𝑥2𝑓𝑥𝑥 = 0,           0 ≤ 𝑡 ≤ 𝑇, 𝑥 > 0, 
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with the terminal condition 𝑓(𝑆, 𝑇) = (
1

𝑇
∫ 𝑆𝜏𝑑𝜏 − 𝐾

𝑇

0
)

+

.        

Proof. Let 𝜂 =
𝐾−

𝑦
𝑇⁄

𝑥
 , and 𝑉(𝑡, 𝑥, 𝑦) = 𝑥𝑓(𝑡, 𝜂), 𝐾 is the strike price and 𝑇 is the 

maturity time [5]. Now deriving 𝑉 with respect to 𝑡: 𝑉𝑡 = 𝑥𝑓𝑡 + 0 ∙ 𝑓. Thus 𝑉𝑡 = 𝑥𝑓𝑡. 

We derive 𝑉 with respect to 𝑥: 𝑉𝑥 = 𝑓(𝑡, 𝜂) + 𝑥𝑓𝑥(𝑡, 𝜂). 

𝑉𝑥 = 𝑓(𝑡, 𝜂) + 𝑥
𝜕𝑓

𝜕𝜂
∙

𝜕𝜂

𝜕𝑥
= 𝑓(𝑡, 𝜂) + 𝑥 (𝑓𝜂 ∙

−(𝐾 − 𝑦 𝑇⁄ )

𝑥2
) , 

notice that 𝜂𝑥 =
−𝜂

𝑥
, therefore 𝑉𝑥 = 𝑓(𝑡, 𝜂) − 𝜂𝑓𝜂(𝑡, 𝜂). Now we find the second 

derivative of 𝑉   𝑉𝑥𝑥 =
𝜕(𝑉𝑥)

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑓(𝑡, 𝜂) − 𝜂𝑓𝜂(𝑡, 𝜂)]. 

𝑉𝑥𝑥 =
𝜕

𝜕𝜂
[𝑓(𝑡, 𝜂) − 𝜂𝑓𝜂(𝑡, 𝜂)] ∙

𝜕𝜂

𝜕𝑥
= (𝑓𝜂(𝑡, 𝜂) − 𝑓𝜂(𝑡, 𝜂) − 𝜂𝑓𝜂𝜂(𝑡, 𝜂)) ∙

−𝜂

𝑥
=

𝜂2

𝑥
𝑓𝜂𝜂 .  

Moreover, we derive 𝑉 with respect to 𝑦:  

𝑉𝑦 =
𝜕𝑉

𝜕𝑦
= 𝑥𝑓𝑦(𝑡, 𝜂) = 𝑥 ∙

𝜕𝑓(𝑡, 𝜂)

𝜕𝜂
∙

𝜕𝜂

𝜕𝑦
= 𝑥 ∙ 𝑓𝜂(𝑡, 𝜂) ∙

−1

𝑇𝑥
=

−1

𝑇
𝑓𝜂(𝑡, 𝜂). 

 Now we substitute in equation (4.4): 

𝑥𝑓𝑡 + 𝑥 (
−1

𝑇
𝑓𝜂) + 𝑟𝑥(𝑓 − 𝜂𝑓𝜂 +

1

2
𝜎2𝑥2 (

𝜂2

𝑥
𝑓𝜂𝜂) − 𝑟𝑥𝑓 = 0. 

Then 

𝑓𝑡 −
1

𝑇
𝑓𝜂 + 𝑟(𝑓 − 𝜂𝑓𝜂) +

1

2
𝜎2𝜂2𝑓𝜂𝜂 − 𝑟𝑓 = 0. 

Therefore                𝑓𝑡 −
1

𝑇
𝑓𝜂 + 𝑟𝑓 − 𝑟𝜂𝑓𝜂 +

1

2
𝜎2𝜂2𝑓𝜂𝜂 − 𝑟𝑓 = 0. 

Thus                                  𝑓𝑡 − (
1

𝑇
+ 𝑟𝜂) 𝑓𝜂 +

1

2
𝜎2𝜂2𝑓𝜂𝜂 = 0. 

For sake of clarity, we use 𝑥 instead of 𝜂: 
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                                         𝑓𝑡 − (
1

𝑇
+ 𝑟𝑥) 𝑓𝑥 +

1

2
𝜎2𝑥2𝑓𝑥𝑥 = 0.  ∎                                  (4.5) 

 

4.3 The high volatility model 

We assume that the market is suffering from an increased volatility. We suggest the 

stock price to be driven by the SDE: 

                      𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + (𝜎𝑆𝑡 + 𝛼)𝑑𝑊𝑡,         0 ≤ 𝑡 ≤ 𝑇, 𝑥 > 0.                 (4.6) 

It is a stylized fact that during financial crisis the volatility is higher than normal 

situations. The suggested model can be seen as a stochastic volatility model in a 

complete market (contingent claims are attainable). The above model is a 

generalization of the Black-Scholes model. 

Proposition 4 ([7]) Consider a time 𝑡 ∈ [0, 𝑇] and the process (𝜉𝑡)0≤𝑡≤𝑇 defined by 

𝜉𝑡 ≔ 𝑒𝑥𝑝 [(𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊𝑡].   Then the solution of the stochastic differential 

equation (4.6) of the high volatile model is given by: 

𝑆𝑡 = (𝑥 +
𝛼

𝜎
) 𝜉𝑡 −

𝛼

𝜎
(1 + 𝜇 ∫

𝜉𝑡

𝜉𝑠

𝑡

0

𝑑𝑠). 

Proof: The solution is obtained by finding first a particular solution when 𝛼 = 0, then 

using the variation of the constants method. For more information see [7].∎ 

4.4 Simulation of price trajectories for the high volatility model 

In this section, we perform numerical simulations for the asset price trajectories for 

our high volatility model. Several figures are provided below showing that our model 

accounts for high volatility situations. We first introduce to the methods for simulating 

stochastic differential equations. 
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4.4.1 Numerical methods for solving a stochastic differential equation 

Most models of asset can be expressed in terms of a stochastic differential equation 

(SDE). Consider the following SDE: 

                                      𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝑡)𝑑𝑡 + 𝜎(𝑋𝑡, 𝑡)𝑑𝑊𝑡,      𝑡0 ≤ 𝑡 ≤ 𝑇                  (4.7) 

                                𝑋(𝑡0) = 𝑋0, 

where 𝑊 = (𝑊𝑡)𝑡∈[0,𝑇] is a standard Brownian motion, 𝜇 (the drift) and 𝜎 (the 

diffusion coefficient) are defined and measurable.  

We have according to the It�̂�- Taylor expansion 

𝑋𝑡 = 𝑋𝑡0
+ 𝜇(𝑋𝑡0

) ∫ 𝑑𝑠 + 𝜎(𝑋𝑡0
)

𝑡

𝑡0

∫ 𝑑𝑊(𝑠)                           
𝑡

𝑡0

+  
1

2
𝜎(𝑋𝑡0

)𝜎′(𝑋𝑡0
)([𝑊(𝑡) − 𝑊(𝑡0)]2 − (𝑡 − 𝑡0)) + 𝑅,                (4.8) 

where 𝑅  is the remainder. We simulate the SDE (4.7) by generating samples of the 

discretized version at a finite number of point: 𝑋∆𝑡, 𝑋2∆𝑡, … , 𝑋𝑚∆𝑡, where 𝑚 is the 

number of time steps and ∆𝑡 is the time step assuming equidistant subinterval, ∆𝑡 =

𝑇

𝑚
. To write it more formally:  

�̂�𝑡1
, �̂�𝑡2

, … , �̂�𝑡𝑗
, … , �̂�𝑡𝑚

. 

Where 𝑡𝑗 = 𝑡0 + 𝑗∆𝑡 = 𝑗∆𝑡 for 𝑗 = 1, … , 𝑚.  

∆𝑡 = 𝑡𝑗+1 − 𝑡𝑗,     ∆𝑊𝑗 = 𝑊(𝑡𝑗+1) − 𝑊(𝑡𝑗). 

We get the following expression for equation (4.8):  

𝑋𝑡𝑗+1
= 𝑋𝑡𝑗

+ 𝜇 (𝑋𝑡𝑗
) ∆𝑡 + 𝜎 (𝑋𝑡𝑗

) ∆𝑊𝑗 +  
1

2
𝜎 (𝑋𝑡𝑗

) 𝜎′ (𝑋𝑡𝑗
) ((∆𝑊𝑗)

2
− ∆𝑡) + 𝑅. 

There are several schemes for simulating SDEs of this form. The most common 

schemes are: Euler-Maruyama, Milstein, and Runge-Kutta schemes. Below, we present the 

algorithm of Euler-Maruyama scheme [14] 
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Algorithm. Let ∆𝑡 ≔
𝑇

𝑚
 for a given 𝑚. Then approximate the SDE (4.7) via: 

1. Set 𝑌𝑚(0) = 𝑋(0) = 𝑥0. 

2. For 𝑗 = 0  to  𝑚 − 1 do 

a. Simulate a standard normally distributed random number 𝑍𝑗. 

b. Set ∆𝑊(𝑗∆𝑡) = √∆𝑡𝑍𝑗 and  

𝑌𝑚((𝑗 + 1)∆𝑡) = 𝑌𝑚(𝑗∆𝑡) + 𝜇(𝑌𝑚(𝑗∆𝑡), 𝑗∆𝑡)∆𝑡 

                  +𝜎(𝑌𝑚(𝑗∆𝑡), 𝑗∆𝑡)∆𝑊(𝑗∆𝑡). 

4.4.2 Illustrations of the underlying asset prices and the high volatility 

We provide here some figures for the underlying asset price with high volatility. We 

have used Euler scheme to simulate the trajectory of the asset price for the both 

cases: high volatility and Black-Scholes. We provide additional figures when we take 

𝑆0 = 7, 𝜎 = 0.5, 𝜇 = 0.02, 𝑇 = 1, and the time step ∆𝑡 = 0.001. 

 

Figure 2: Underlying asset price in high volatility and Black-Scholes for  α=0.5 
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Figure 3: The increased in the volatility for our suggested model (α=1). 

 

4.5 The modified Asian option: The PDE approach 

In this section, we will consider the modified model described in equation (4.6). We 

believe that this model catch the financial crisis features. For this model, we will 

characterize the Asian option price using PDEs. To this end, for the reader’s 

convenience, we recall the dynamic of the modified model given in equation (4.6): 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + (𝜎𝑆𝑡 + 𝛼)𝑑𝑊𝑡, 

where α is a constant arising from an increase in the volatility.  

Proposition 5 Suppose that the price process for the Asian option is given by 

𝑉(𝑡, 𝑆𝑡, 𝑌𝑡). Here 𝑌𝑡 = ∫ 𝑆𝜏𝑑𝜏
𝑡

0
 and 𝑉(𝑡, 𝑥, 𝑦) is a function. Then 𝑉(𝑡, 𝑥, 𝑦) is a solution 

to the following PDE 

𝑉𝑡 + 𝑥𝑉𝑦 + 𝑟𝑥𝑉𝑥 +
1

2
(𝜎𝑥 + 𝛼)2𝑉𝑥𝑥 − 𝑟𝑉 = 0. 

  Proof: We can wrie 𝑆𝑡 = 𝑥 and 𝑌𝑡 = 𝑦. Hence equation (4.6) becomes:  

𝑑𝑥 = 𝜇𝑥𝑑𝑡 + (𝜎𝑥 + 𝛼)𝑑𝑊𝑡. 

𝑉 is an 𝐼𝑡�̂�  Process in two variables. 𝐼𝑡�̂� formula equation (3.7) implies: 
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𝑑𝑉(𝑡, 𝑥, 𝑦) = 𝑉𝑡𝑑𝑡 + 𝑉𝑥𝑑𝑥 + 𝑉𝑦𝑑𝑦 +
1

2
[𝑉𝑥𝑥𝑑〈𝑥, 𝑥〉 + 2𝑉𝑥𝑦𝑑〈𝑥, 𝑦〉 + 𝑉𝑦𝑦𝑑〈𝑦, 𝑦〉]. 

Notice that 𝑑〈𝑥, 𝑦〉 = 𝑑〈𝑦, 𝑦〉 = 0  , 𝑑〈𝑥, 𝑥〉 = (𝜎𝑥 + 𝛼)2𝑑𝑡, and 𝑑𝑦 = 𝑥𝑑𝑡. 

Thus 𝑑𝑉 = 𝑉𝑡𝑑𝑡 + 𝑉𝑥[𝜇𝑥𝑑𝑡 + (𝜎𝑥 + 𝛼)𝑑𝑊𝑡] + 𝑉𝑦𝑥𝑑𝑡 +
1

2
𝑉𝑥𝑥(𝜎𝑥 + 𝛼)2𝑑𝑡. 

Therefore we get 

            𝑑𝑉 = [𝑉𝑡 + 𝜇𝑥𝑉𝑥 + 𝑥𝑉𝑦 +
1

2
𝑉𝑥𝑥(𝜎𝑥 + 𝛼)2] 𝑑𝑡 + (𝜎𝑥 + 𝛼)𝑉𝑥𝑑𝑊𝑡.             (4.9) 

The Self financing condition yields: 

𝑑𝑉(𝑡, 𝑥, 𝑦) = ∆(𝑡)𝑑𝑥 + (𝑉(𝑡, 𝑥, 𝑦) − ∆(𝑡)𝑥)𝑟𝑑𝑡. 

Substituting by the value of 𝑑𝑥: 

𝑑𝑉 = ∆(𝑡)(𝜇𝑥𝑑𝑡 + (𝜎𝑥 + 𝛼)𝑑𝑊𝑡) + (𝑉 − ∆(𝑡)𝑥)𝑟𝑑𝑡. 

Combining the like terms gives: 

                𝑑𝑉 = [∆(𝑡)𝜇𝑥 + 𝑉𝑟 − ∆(𝑡)𝑥𝑟]𝑑𝑡 + [∆(𝑡)𝜎𝑥 + ∆(𝑡)𝛼]𝑑𝑊𝑡.                (4.10) 

Matching the coefficients in equations (4.9) and (4.10) gives:  

𝑉𝑥 = ∆(𝑡), 

and 

𝑉𝑡 + 𝜇𝑥𝑉𝑥 + 𝑥𝑉𝑦 +
1

2
(𝜎𝑥 + 𝛼)2𝑉𝑥𝑥 = 𝜇𝑥𝑉𝑥 + 𝑉𝑟 − 𝑥𝑟𝑉𝑥. 

Thus we get the PDE for the modified Asian Option. 

                        𝑉𝑡 + 𝑥𝑉𝑦 + 𝑟𝑥𝑉𝑥 +
1

2
(𝜎𝑥 + 𝛼)2𝑉𝑥𝑥 − 𝑟𝑉 = 0. ∎                               (4.11) 
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The previous equation can be reduced to two variables. 

4.5.1 Reduction of the PDE 

The following proposition gives the reduced PDE. 

Proposition 6 The PDE for the Modified Asian Options, which is given by 

𝑉𝑡 + 𝑥𝑉𝑦 + 𝑟𝑥𝑉𝑥 +
1

2
(𝜎𝑥 + 𝛼)2𝑉𝑥𝑥 − 𝑟𝑉 = 0, 

where 0 ≤ 𝑡 ≤ 𝑇, and 𝑉(𝑡, 𝑥, 𝑦) = 𝑉 is the price of the Asian option, can be reduced 

to 

𝑓𝑡(𝑡, 𝑥) + 𝑟𝑥𝑓𝑥(𝑡, 𝑥) +
(𝜎𝑥 + 𝛼)2

2
𝑓𝑥𝑥(𝑡, 𝑥) − (𝑟 + 𝑎𝑥)𝑓(𝑡, 𝑥) = 0, 

 where  𝑉(𝑡, 𝑥, 𝑦) = 𝑐𝑓(𝑡, 𝑥)𝑒𝑏𝑦 ,  𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are constant.  

Proof: We have from proposition 5: 

                        𝑉𝑡 + 𝑥𝑉𝑦 + 𝑟𝑥𝑉𝑥 +
1

2
(𝜎𝑥 + 𝛼)2𝑉𝑥𝑥 − 𝑟𝑉 = 0.                                   (4.11) 

We use a separation of variables method. Assume 𝑉(𝑡, 𝑥, 𝑦) = 𝑓(𝑡, 𝑥)Φ(𝑦) 

Thus 𝑉𝑡 =
𝜕𝑓(𝑡,𝑥)

𝜕𝑡
Φ(𝑦),     𝑉𝑦 = 𝑓(𝑡, 𝑥)Φ′(𝑦) ,        𝑉𝑥 = 𝑓𝑥(𝑡, 𝑥)Φ(𝑦). 

And 𝑉𝑥𝑥 = 𝑓𝑥𝑥(𝑡, 𝑥)Φ(𝑦). 

Substituting in (4.11) yields:  

(Φ(𝑦)𝑓𝑡(𝑡, 𝑥) + 𝑥𝑓(𝑡, 𝑥)Φ′(𝑦) + 𝑟𝑥𝑓𝑥(𝑡, 𝑥)Φ(𝑦) +
1

2
(𝜎𝑥 + 𝛼)2Φ(𝑦)𝑓𝑥𝑥(𝑡, 𝑥) −

𝑟𝑓(𝑡, 𝑥)Φ(𝑦) = 0). 
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Dividing by 𝑥𝑓(𝑡, 𝑥)Φ(𝑦): 

𝑓𝑡(𝑡, 𝑥)

𝑥𝑓(𝑡, 𝑥)
+

Φ′(𝑦)

Φ(𝑦)
+

𝑟𝑓𝑥(𝑡, 𝑥)

𝑓(𝑡, 𝑥)
+

(𝜎𝑥 + 𝛼)2

2𝑥𝑓(𝑡, 𝑥)
𝑓𝑥𝑥(𝑡, 𝑥) −

𝑟

𝑥
= 0, 

and 

−
Φ′(𝑦)

Φ(𝑦)
=

𝑓𝑡(𝑡, 𝑥)

𝑥𝑓(𝑡, 𝑥)
+

𝑟𝑓𝑥(𝑡, 𝑥)

𝑓(𝑡, 𝑥)
+

(𝜎𝑥 + 𝛼)2

2𝑥𝑓(𝑡, 𝑥)
𝑓𝑥𝑥(𝑡, 𝑥) −

𝑟

𝑥
= 𝑎. 

We know that Φ′(𝑦) =
𝑑Φ(𝑦)

𝑑𝑦
 ,    so 

𝑑Φ(𝑦)

Φ(𝑦)𝑑𝑦
= −𝑎 ⟹     

𝑑Φ(𝑦)

Φ(𝑦)
= −𝑎𝑑𝑦. Then 

ln|Φ(𝑦)| = −𝑎𝑦 + 𝑐1. 

So Φ(𝑦) = 𝑐𝑒−𝑎𝑦,    where 𝑐 = 𝑒𝑐1. The solution of the equation (4.11) is: 

𝑉(𝑡, 𝑥, 𝑦) = 𝑓(𝑡, 𝑥)𝑐𝑒−𝑎𝑦 . 

Where 𝑓(𝑡, 𝑥)  satisfies: 

𝑓𝑡(𝑡, 𝑥)

𝑥𝑓(𝑡, 𝑥)
+

𝑟𝑓𝑥(𝑡, 𝑥)

𝑓(𝑡, 𝑥)
+

(𝜎𝑥 + 𝛼)2

2𝑥𝑓(𝑡, 𝑥)
𝑓𝑥𝑥(𝑡, 𝑥) −

𝑟

𝑥
= 𝑎. 

Multiplying by 𝑥𝑓(𝑡, 𝑥) gives: 

   𝑓𝑡(𝑡, 𝑥) + 𝑟𝑥𝑓𝑥(𝑡, 𝑥) +
(𝜎𝑥 + 𝛼)2

2
𝑓𝑥𝑥(𝑡, 𝑥) − (𝑟 + 𝑎𝑥)𝑓(𝑡, 𝑥) = 0. ∎             (4.12) 

4.6 Asian option with an increased volatility is deterministic 𝒈(𝒕) = 𝜷𝒆𝒓𝒕 

In this subsection we assume that the increase in the volatility is a deterministic 

function of the interest rate 𝑟. The underlying asset price SDE is given by 

                  𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + (𝜎𝑋𝑡 + 𝛽𝑒𝑟𝑡)𝑑𝑊𝑡,       𝑡 ∈ [0, 𝑇],        𝑋0 > 0.            (4.13)   
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where 𝑡 ∈ [0, 𝑇], and 𝑋0 is a positive constant. The solution of the above equation is 

then  given by 

                                        𝑋𝑡 = (𝑋0 +
𝛽

𝜎
) 𝑒

[(𝑟−
𝜎2

2
)𝑡+𝜎𝑊𝑡]  

−
𝛽

𝜎
𝑒𝑟𝑡.                              (4.14) 

Proposition 7 ([7]) Consider a time 𝑡 ∈ [0, 𝑇] and let 𝛽 be a real number such that 

𝛽 ≤ 𝑥𝜎𝑒
−(

𝜎2

2
𝑇+3𝜎√𝑇)

. Then the value of 𝑋𝑡  given by equation (4.14) is stricktly 

positive with 99% probability. 

For the proof see [7].  

Now, we can state the relationship between the modified and the Black-Scholes 

Asian option prices.  

Proposition 8 Let 𝐶(𝑆, 𝐾, 𝑇) be the price of an arithmetic Asian call option with strike 

𝐾, and we assume that the underlying asset price follows the Black-Scholes dynamic 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇],      𝑆0 > 0.  

 And let 𝐶𝛽(𝑋, 𝐾, 𝑇) be the price of an arithmetic Asian call option with strike 𝐾 and 

where the underlying asset follows the SDE (4.13), with 𝑋0 = 𝑆0 −
𝛽

𝜎
 then 

𝐶𝛽(𝑋, 𝐾, 𝑇) = 𝐶 (𝑆, 𝐾 −
𝛽

𝑇𝑟𝜎
𝑒𝑟𝑇 , 𝑇). 

  Proof. Notice that the price of the Asian call option with underlying asset price 𝑋 is 

  𝐶𝛽(𝑋, 𝐾, 𝑇) = 𝑒−𝑟𝑇𝐸 [𝑚𝑎𝑥 (
1

𝑇
∫ 𝑋𝑡𝑑𝑡

𝑇

𝑜

− 𝐾, 0)]                                                                

                     = 𝑒−𝑟𝑇𝐸 [𝑚𝑎𝑥 (
1

𝑇
∫ [(𝑋0 +

𝛽

𝜎
) 𝑒

[(𝜇−
𝜎2

2
)𝑡+𝜎𝑊𝑡]  

−
𝛽

𝜎
𝑒𝑟𝑡] 𝑑𝑡

𝑇

𝑜

− 𝐾, 0)] 

                    = 𝑒−𝑟𝑇𝐸 [𝑚𝑎𝑥 (
1

𝑇
∫ 𝑆0𝑒

[(𝜇−
𝜎2

2
)𝑡+𝜎𝑊𝑡]  

𝑑𝑡 −
1

𝑇
∫

𝛽

𝜎
𝑒𝑟𝑡𝑑𝑡

𝑇

0

𝑇

𝑜

− 𝐾, 0)]     

                         = 𝑒−𝑟𝑇𝐸 [𝑚𝑎𝑥 (
1

𝑇
∫ 𝑆𝑡𝑑𝑡

𝑇

𝑜

−
𝛽

𝑇𝑟𝜎
(𝑒𝑟𝑇 − 1) − 𝐾, 0)]       
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                        = 𝑒−𝑟𝑇𝐸 [𝑚𝑎𝑥 (
1

𝑇
∫ 𝑆𝑡𝑑𝑡

𝑇

𝑜

− (
𝛽

𝑇𝑟𝜎
(𝑒𝑟𝑇 − 1) + 𝐾) , 0)] 

Thus   𝐶𝛽(𝑋, 𝐾, 𝑇)  = 𝐶 (𝑆,
𝛽

𝑇𝑟𝜎
(𝑒𝑟𝑇 − 1) + 𝐾, 𝑇) . ∎ 

The previous proposition is important since it provides a relation between the two 

Asian option prices: the option price under the Black-Scholes model and the option 

price under our high volatile model. If we know the premium of the Asian option in 

the Black-Scholes model for a given strike 𝐾, it is sufficient to replace 𝐾 by 
𝛽

𝑇𝑟𝜎
(𝑒𝑟𝑇 −

1) + 𝐾 in order to obtain the price of the Asian option under the high volatile model.  
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Chapter 5: Conclusion 

Asian options are interesting financial derivatives that are extensively utilized in 

commodity, currency, energy, interest rate, equity and insurance markets. There is no 

closed form solution for pricing arithmetic Asian options. Nevertheless, most of the 

work on valuing such products, proves the existence of a partial differential equation 

for the option price. In this thesis, we derived the partial differential equation for the 

price of an Asian option under a high volatile model. An abundance of literature on 

modeling the underlying asset price is available in various places, but one with high 

volatility is rare to find. In this work, we propose a modified Black-Scholes model for 

the underlying asset price that handles increased volatilities. The suggested model is 

important, since it can be used to describe asset prices during a crisis. Another 

interesting advantage of the suggested model, is that it is a stochastic volatility model, 

ensuring completeness of the market. We solve the stochastic differential equation of 

the underlying asset price. Moreover, numerical simulations and figures are provided, 

and are favorable for the suggested model. Then, we found the Asian option price PDE 

for the modified model. In addition, we prove a formula that allows us to find the 

modified Asian option price from the Black-Scholes option price when the increase in 

volatility is a deterministic function of the interest rate.  

As a future direction of research, it would be interesting to investigate how we can 

implement the model to be useful in practice. We need to calibrate the model, in other 

words, to find a “good” value for the increased volatility parameter “𝛼”. 
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