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Abstract

We study two families of functions over finite fields; the Multivalued Threshold
Functions and the Multivariate Polynomials. Recent advances made in our
conception and our understanding of Boolean Threshold Functions and Multivalued
Threshold Functions have considerably increased the importance of the role that they
play in our days in areas like cryptography, circuit complexity, learning theory,
social choice, quantum complexity, and in many other areas. Theoretical aspects of
Threshold Functions were first studied by Bovdi and Geche who gave an algebraic
approach of Boolean Threshold Functions using group ring theory. We will present
some algabric properties of Boolean threshold functions. For the family of
Multivariate Polynomials, it was first used by Matsumoto and Imai to design a
cryptosystem. Many others researchers followed their steps with a design of new post
quantum multivariate cryptosystems. Unfortunately, many of them have been proven
insecure. We introduce in this thesis a new multivariate cryptosystem that supposes

to resist quantum computers attacks.

Keywords: Multivalued Threshold Functions, Boolean Threshold Functions,

Cryptosystem.
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Chapter 1: Introduction

Let p be a prime, ¢ = p°® for some integer e, F; the finite field with ¢ ele-
ments, and Fj» an extension of degree n of F|,. It is well-known that any function
f+ Fjpn — Fj is a polynomial function. More precisely, every function from Fin» to
Fy (‘or from F}' to F; ) can be uniquely represented as a polynomial in Fy [v1, ...., 7,]
in which the degree of each z; is at most ¢ — 1. In particular, every function from
Fn to F, is uniquely represented by a polynomial of degree ¢ — 1 in F, [X]|. Func-
tions or polynomials over finite fields have many important applications in today’s
life. In this thesis, we will study two families of functions or polynomials over finite
fields: the multivariates polynomials and the threshold functions. Both families of
polynomials play a very important role in nowadays in area like cryptography, circuit

complexity leaning theory, and many other areas.

The first part (section 3) of this thesis deals with the family of multivariate
polynomials over finite fields and their applications to cryptography known as Mul-
tivariate Quadratic Cryptosystem. This family of cryptosystem was first introduced
in 1988 by Matsumoto and Imai with their milestone scheme named M1 or C*[14]
cryptosystem. M1 was known to be very efficient with a lot of potential practical
applications and an alternative to number theory based cryptosystems such as RSA,
El Gamal, and others. Unfortunately, it was broken by Patarin linearization equa-
tions attack in 1995. But the ideas used in designing M I and its good potentiality
for storage and efficiency attracted many researchers to explore this new family of
cryptosystems. That is how, shortly after proving the insecurity of M1, Patarin
designed a new scheme called Hidden Field Equation cryptosystem (HFE) [15] in
1996. Unluckily, HFE was also proven insecure by the Kipnis-Shamir method [12].
In 1997 Patarin explored the idea of linearization equations attack to design a signa-
ture algorithm named (balanced) Oil-Vinegar scheme (OV) [16]. But in 1998 Kipnis
and Shamir introduced the separation method to prove OV insecure and soon after,
in 1999 they proposed a modified scheme of OV called Unbalanced Oil-Vinegar sig-

nature scheme (UOV) [13]. UOV is still considered today secure if parameters are



chosen carefully. It is proven very vulnerable to some attacks for many choices of
parameters. Many other schemes obtained by modifying the UOV, M and HFE
were after proposed. We can name Sflash [1], C[18], PMI [4], PMI+ [5], HFE[15],
IPHFE [7], HFEv [7, 18] and Quartz [17] among this family of cryptosystems.

The most important thing of building Multivariate Public Key Cryptosystem
(MPKC) is how to find a good polynomial system F' that makes the cryptosystem
secure and efficient. The security of MPKC is based on the knowledge that solving
a set of multivariate polynomial equations over finite field is in general proven to
be an NP-hard problem. However, this fact does not guarantee the security and
most of these schemes based on Multivariable Quadratic Equations (MQE) over fi-
nite fields suggested in the last three decades were broken (see [25]). Apparently,
the broken systems were based on some hidden structure, which on one hand en-
abled the efficient invertibility of the system, but on the other hand was found to
be vulnerable to algebraic attacks. Almost all the MQE based encryption schemes
proved to be insecure share the common defect that some quadratic forms associated
to their central maps have low rank (see [20]) and therefore are vulnerable to the
Min-Rank Attack (see [11]). On the other hand, the belief that random quadratic
systems are hard to solve on average (see [1], [14] and references therein), points to
wards designing trap-door primitives based on randomness, which raises difficulties
in designing immune invertible primitives. Little was done in this direction in the
context of asymmetric public-key cryptography (see [14]).

Recently, researchers propose some new multivariate cryptosystems, such as Huang-
Liu-Yang-2012 scheme [11], Yasuda-Takagi-Sakurai-2013 scheme [23], Gao-Heindl-
2013 scheme [22], ABC [20], matrix-based Rainbow [21], Zhang-Tan-2014 scheme
[26], NT-Rainbow [23], Yasuda-Takagi-Sakurai-2014 scheme [24], cubic-ABC [6] and
ZHFE [19]. However, we need more time to verify their securities.

In this thesis, we introduce a polynomial type of the OV schemes which has a much
higher security as its construction is completely based on randomly chosen multi-
variate polynomials. In general, Multivariate Public Key Cryptosystems have the

following structure. Let & be a finite field with g elements. A public key is a map F:



k™ — k™ constructed as ﬁ’ =L 10 F o Ly, where L; and Ly are two random invert-
ible transformations over £™ and k" respectively. The central map F' : k" — k™
is nonlinear multivariate polynomial map that has the property of being invertible
computation-wise.

In the second part of this thesis (section 4), we will study the family of
threshold functions over a finite field. It was initially studied by Bovdi and Geche
who gave an algebraic approach of boolean threshold functions using group ring
theory. A threshold function is a Boolean function f: {0,1}——{0,1} such that there
exist real numbers wy, wo, ..., w, and A, satisfying:

f(z1, 29, ...,x,) = 1 if and only if zn:l w;x; > A.
vector w =< wi, W, ..., w, > is called weight vector and A is the threshold value. A
threshold function can be easily extended to multivalue threshold functions
follows: f:Z; — Z,

[0 X.w' <4
1 A < X -wl < A,y

( p—1 X-wl'>A4,,

Different aspects of threshold functions have been studied extensively, many
but the first algebraic approach was done in [13], where the outhrs established a
connection between threshold functions and fundamental ideals of group rings. Then
in [13], the authors determine the invariance groups of threshold functions and in
some lattices induced by threshold functions are introduced. We will revisit these

findings for boolean threshold functions in chapter 3.



Chapter 2: Preliminaries

2.1 Finite Field

2.1.1 Definitions and Examples
Definition 2.1.1 Let F be a set with two binary operations, addition denoted by +
and multiplication denoted by -, F' is called a field with respect to the addition and
the multiplication if the following hold:

F1 (F,+) is an abelian group.

F2 (F*,-) is an abelian group, where F* = F ~\. {0} and 0 is the zero of the
group (F,+).

F3 a(b+c)=ab+ ac forall a,b,c € F.

We also say that (F;+,- ) is a field. (F,+) is called the additive group of the
field and (F*,-) is called the multiplicative group of F.

A field with finitely many elements is called a finite field. We denote a finite

field with q elements by Fj,.
The identity of (F,+) is denoted by 0 and the identity of (F™*,-) by 1.

Example 2.1.2 Z,, where p is prime, consists of p residue classes

a=a+pl,={a+pk:keZ}, a=0,1,2,....p—1

The addition and the multiplication are defined by: for any a,b,¢ € Z,, we have

Z,,+) and (Z*,- ) are both abelian groups and for any a,b,¢ € Z,, we have
P P p

a(b+¢)=ab+c)=alb+c)

= ab+ ac = ab + ac.

Thus, F1,F2, and F'3 are satisfied and Z, is a finite field.



2.1.2 Basic Properties of Finite Fields

The proof of the following theorem can be found in [30].

Theorem 2.1.3 Let F, be a finite field with q elements. Then a®' =1 for all a

€ Fr.

Corollary 2.1.4 Let F, be a finite field with q elements and E be a finite field
wich contains F, as a subfield. Then a? = a for all a € F, and moreover, for any

a € B,a? = « implies o € Fy,.

Proof. It follows from Theorem 2.1.3 that a? = a for all a € F},. Since 27 —x
has at most ¢ roots in F, the g elements of F, are all the roots of 27—z in E. Now if
a? = forall € E, « is a root of 29 — x. Therefore a must be one of the elements

of Fy,ie,acF, m

Theorem 2.1.5 The multiplicative group Fy of any finite field F, is cyclic. A gen-

erator of I is called a primitive element of Fy.

Proof. Let I} be a finite field with ¢ elements and F be its multiplicative
group. Fy is of order ¢—1. We know that the order of every element of F is a divisior
of g—1. Let d be a positive divisior of g—1. Denote by ¢(d) the number of elements of

order d in F. Clearly,

Y wed=g-1. (1)

Assume that p(d) > 0, then there is an element of order d in F;. Let a be
such an element, then the cyclic group (a) generated by a is of order d and every
element in (a) satisfies the polynomial 2¢ — 1 = 0. Let b be any element of order d
in ¥, then b satisfies also 2 — 1. Since the number of distinct roots of z¢ — 1 in F,
is at most d, we must have b = a’ for some 7, 1 <4 < d— 1. Thus b € (a). Since the

number of elements of order d in (a) is ¢(d), where ¢ is the Euler function. We have



proved that

p(d) = 0 or ¢(d). (2)

By Theorem 2.1.5,

> od)=q—1. (3)

dl(a-1)

From (1) (2) and (3) we deduce ¢(d) = ¢(d) for all positive divisiors d of ¢ — 1. In
particular, (¢ — 1) = ¢(q¢ — 1) > 0. That is, there is an element of order ¢ — 1 in

Fy. Hence Fy is cyclic. m

Definition 2.1.6 Let I be a field and n be a positive integer such that nx = 0 for all
x € F, we call the least such integer the characteristic of F' and we write CharF = n,

and we say F has positive characteristic. On the other hand if nx # 0 for all n, we

say that CharF = 0.
The proof of the next theorem can be found in [30 |.

Theorem 2.1.7 Let F, be a finite field of characteristic p, then the number of ele-

ments of I must be a power of p.

Theorem 2.1.8 Let F' be a finite field which contains a subfield F, with q elements,

then the number of elements of F' must be a power of q.

Proof. Rewrite F, as Fy. If ' = Fj, then F is a finite field contaning
exactly ¢ elements. Hence our theorem holds. If I’ # F}, then F' will contain e, and
ey & Fy. Let Fyo = {a1 + asey : ay,a2 € Fi}. We will prove: if ay + ages = by + boes
with aq, as, by, by € Fi, then a; = by, ay = by. In fact, from this equation it follows
that (ay — ba)es = by — ay. If ay # by then es = (ay — by) (b —ay) € F. A
contradiction follows. Hence we must have a; = b; and a; = by. Therefore F,

contains exactly ¢? distinct elements. If F' = F,, then F is a finite field with exactly



q? elements. So our theorem holds. If F' # F,, then F will contain e and e3 ¢ F.

Let F5 = {a; + ases + ases : a1, az,a3 € F1}. Assume that

a1 + asey + azes = bl + b2€2 -+ b3€3 with ai, g, as, bl, bg, b3 € Fl-

Then

(CL3 — b3)63 = (bl — 0,1) + (bg — ag)eg.

If a3 # b3, then

€3 = (a3 — bg)il(bl — al) + (&3 — b3)71<b2 — 0,2)62 € FQ.

This is contradiction. Hence we must have a3 = b3. Then we have a;4ase5 = b1 +boea,
which, by the above proof, yields a; = by,as = by. Therefore, we conclude that
F3 contains exactly ¢ distinct elements. If F' = Fj, then F is a finite field with
exactly ¢® elements. So our theorem holds. If F' # F3, then F' will contain e4 and
eq & F3. Let Fy = {a1 + ases + azes + agey : aq,a9,a3,a4 € F1}. Similary it can be
proved that F, contains exactly ¢* distinct elements. Continue in this way. If the
number of elements in F is N and ¢" < N < ¢"*!, then a sequence of subset F'
Fi, Fy, F3, ..., F, is obtained, where F; = {a; +azes + ... + a;e; : a1, as, ..., a; € F1}.
es & Fies ¢ Fy,....e, ¢ F, 1, and F;(1 < i < n) contains exactly ¢' distinct
elements. If F' # F,, then F will contain an element e,.; and e,,; ¢ Fy. Let
Foy1 = {a1 + azes + ... + age, : ay,as,...,a, € F,}. In similar way one can prove
that F,,; contains exactly ¢"*! distinct elements. But F,.; C F, the number of
elements in F' is N, and N<¢"*!. this is impossible. Hence F' = F),. So F is a finite

field which contains exactly ¢" elements. m

Theorem 2.1.9 Let p be a prime number and n be a positive integer, then there

exists a finite field which contains exactly p" elements.

Proof. Let ®,,, be the product of all monic irreducible polynomials of degree
n in F,[z]. If p is a prime number and n a positive integer, then ®,, > 0. Thus

there always exists a monic irreducible polynomial of degree n over the prime field



Z, with p elements. Let p(x) be one of them. Then Z,[z] /(p(z)) is a finite field
with p" elements. m

Let ¢ be a power of a prime p and n a positiveinteger. We may view Fj as
a subfield of Fj». The map o : o« —— af from F» to itself is an automorphism,
which leaves every element of F fixed, i.e., o(a) = « for every a € F,. We call o
the Frobenius automorphism of F,. over F,. If we denote by o2 the composition
goo,then o® = 1,08 41 for 1< k <n,and 0¢° = 1,0' = o,...,0"! are n distinct

automorphism of F» over Fj,.

Theorem 2.1.10 Let o be the Frobenius automorphism of Fyn over I, and o be an

extended automorphism of o to the polynomial ring Fyn [x]. Let f(z) € Fyn [z]. If
o(f(x)) = f(x), then f(z) € F,[2].

Proof. Let f(z) = ap 4+ onx + aox? + ... + apr™. Then o(f(z)) = o(ap) +
o(on)z + o(ag)r? + ... + o(ay)z™. From o(f(x)) = f(z). We deduce o(a;) = oy
for i = 0,1,2,...,m. But we also have o(«a;) = of. Therefore a! = ;. and «o; € F,

fori=0,1,2,...,m. Hence f(z) € F,[zx]. m

Theorem 2.1.11 Gal(F/F,) = (o). More precisely, c° = 1,0 = o,...,c""! are

all automorphisms of Fyn over F.

Proof. Let ¢ be a primitive element of Fj» and let

fl@) = (2 =)z = o (&))..(x — " 71(€))

="+ a2+ .+ a1z +a,

Clearly,

oz —d' () =x -0 fori=0,1,2,...n —2

and o(z — 0" N€)) = x — 0™(€) = x — & Thus o(f(x)) = f(x). From the above
theorem, f(x) € F,,i.e.,a € F, for k=0,1,2,...,n.
Let 7 be an automorphism of Fy» over F, and suppose that 7(§) = ¢" where

1< i < ¢" — 2. Clearly, f(&) = 0,4.e.,&" + a ;&' + ... + ap_1€ + a, = 0. Applying



the automorphism 7 to the above equation we obtain

EV +ar () 4 ot an1& +a, =0,

ie., f(¢) =0. But f(z) has n roots &, 7(€),...,0" (&) in Fn. Thus ¢ must be one
of them. Say & = 07(€),0 < j < n — 1, then 7(¢) = ¢ = ¢7(€), which implies

7(a) = 0’(a) for all @« € Fyn. Hence 7 =07, =

2.1.3 Construction of Finite Fields
Theorem 2.1.12 Let E be a field, F' be a subfield of E, and « be any element of E.

Then F'[a] is a subring of E and is an integral domain; moreover, F(«) is a subfield

of E.

Proof. Let f(x),g(z) € F[z], then f(z) — g(x), f(x)g(x) € F [z]. It follows
that f(a) — g(«), f(a)g(a) € F[a]. Clearly, 1 € F'[a]. Therefore F'[a] is a subring
of E. Since F' is a subfield of E, F'[a] is an integral domain. Similary, we can show

that F'(«) is a subfield of £. m

The proof of the following theorm can be found in [30 |

Theorem 2.1.13 Let E be a field, F' be a subfield of ¥, and o be any element of
E. If p(x) is an irreducible polynomial of degree n over F' satisfying p(a)) = 0. Then
F(a) is a subfield of E.

Theorem 2.1.14 Let F' be a field and p(x) is an irreducible polynomial of degree n

over F. If we denote the residue class of x mod p(x) by o. Then

Moreover, if F is a finite field with q elements then |F [x] /(p(x))]| = ¢".



10

Example 2.1.15 Consider Fy = {0,1}, and f(x) = 2% + x + 1. Since the degree of
f is 2 and since f(0) =1# 0 and f(1) =1#0, f has no root in Fy. Therefore f
is irreducible in Fy. So Fy[z] /(f(x)) is a field. If a is a root of [ we know that
Fy[z] /(f(x)) is isomorphic to Fy(a) and the degree [Fy(a) : Fy] = deg f= 2. We
have Fy [z] /(f(x)) = Fa(a) = {a+ba : a,b € Fy} = {0, 1, a,a® = 1 + a}which
is a field of 4 elements. We can identify it with Fy, i.e., Fo(a) = Fy. The tables of

addition and multiplication are as follows:

+ 0 1 Q@ a+1 * 0 1 o a+1
0 1 o} a+1 0 0 0 0 0

1 1 0 a+1 o 1 0 1 « a+1
o o a+1 0 1 @ 0 Q@ a+1 1
a+1l|a+1 o 1 0 a+1]0|a+1 1 o

2.2 Functions from F}' to F,
Let n > 0 be an integer and let f (F}', ;) denote the set of all functions from

7 to Fy. Clearly, [ (F}, I) is an Fy-algebra . A property particular to finite fields is
that every function in f (F}, F)) is a ploynomial function. Let F; [X, ..., X,] be the
polynomial ring in Xj, ..., X,, over F,. Each element f (X, ...., X,) € F, [X1,...., X;,]

gives rise to a function

|

Fq" — F,

(ai,....an) — f(ay,....ap)

Clearly, () : f — } is an Fj-algebra homomorphism from F, [X7,...., X,,]

to F (Fy, Fy). The homomorphism () : Fy [Xy,...., X,,] — F (F}, Fy) is onto. This

claim follows from the Lagrange interpolation. For each ( ay, ....a,) € F}', define

— . X;—b
f(al, ....Cbn) = il;llbqul_\[{ai} ai—b S Fq [Xl, ceeny Xn} .
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- 1 if (b17....,bn) = (al,....an),
0 if (by,....,bn) = (a1, -...a),

S0, flar...an) (@1, -.an) € F7, form a basis of F (£, Fy;). Consequently, () :
[ X1, o, Xn] — F(F], F) is onto.

Theorem 2.2.1 The homomorphism () : Fy[Xy,...., Xp] — F (F}', Fy) induces an
Fy—algebra isomorphism Fy [ Xy, ...., Xp] /(X = Xi, ..., XI = X)) = F (F}, Fy), where

n

(X7—Xi, ..., X1—X,,) is the ideal of F, [ X1, ...., X,,] generated by X! —X;, ..., X1—X,,.

Proof. Since a?—a = 0 foralla € F,, it is clear that (X! —Xj, ..., X4

n

-X,) C

Ker(). Thus () induces an onto homomorphism

01 Fy (X1, Xo] J(XE = Xyy ooy XE = X)) — [ (F, Fy).

However, dimp, Iy [ X1, ..., Xp] /(X = Xi, ..., X1 = X,)) = ¢" = dimp,F (F]', I). (The
first equal sign holds in the above since X7'.... X" 0<e; <g—1, 1 <i<n, form
a basis of F, [X1,...., X,,] /(X! — Xi, ..., X9 — X,,). Therefore 6 is an isomorphism.

n

The concrete meaning of the theorem is that every function from F}' to Fj
can be uniquely represented as a polynomial in Fj, [X1,...., X,,] in which the degree
of each X; is at most ¢ — 1 . In particular, every function from Fj to F} is uniquely

represented by a polynomial of degree ¢ — 1, in F, [X].
2.3 Multivariate Cryptosystems

The first such new idea was proposed by Matsumoto and Imai [Matsumoto
and Imai, 1988]. Their key idea was to utilize both the vector space and the hidden
field structure of k", where k is a finite field. More specifically, instead of searching
for invertible maps over the vector space k™ directly, they looked for invertible maps
on a field K, a degree n field extension of k, which can also be identified as an n di-

mensional vector space over k. This map could then be transformed into an invertible
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map over k™. This cryptosystem, known as C* or M1, attracted a lot of attention
due to its high efficiency and potential use in practical applications. Unfortunately,
M1 was broken later in 1995 by Jacques Patarin using an algebraic attack that uti-
lizes linearization equations. This method takes advantage of certain specific hidden
algebraic structures in M. But the new ideas used in its design opened the door to
researchers to exlpore a new family of cryptosystem called Multivariate Quadratic
Cryptosystems (MQC). Many new variants of the M I cryptosystems including the
Sflash signature scheme [Akkar et al., 2003; Patarin et al., 2001], which was accepted
in 2004 as one of the final selections for the New European Schemes for Signatures,
Integrity, and Encryption project [NESSIE, 1999] for use in low cost smart cards were
then proposed. Indeed, the work of Matsumoto and Imai has played a critical role
as a catalyst in this new area and has stimulated the subsequent development. In
this chapter, we will present the M cryptosystem in detail, Patarin’s cryptanalysis
of M1, the family Oil-Vinegar signature scheme and some potential attacks.We will
also introduce a new cryptosystem called Polynomial Type Oil Vinegar signature

scheme; which can be conrideved as a generalization of the the OV schemes.

2.4 The Matsumoto-Imai Cryptosystem

Let k be a finite field with 2¢ elements, for some positive integer e. Let g(x)
be an irreducible polynomial of degree n over k. Then K = k[z]/g(x) is an extension

of degree n of k. If we write

p(z) = Zaimi and o=z mod p(x),

then, as a vector space over k, K consists of all polynomials of degree < n — 1 in «

with coefficients in k; 7.e.,
n—1
i
K=/ g |, gy ey g € k)
i=0

Lemma 2.4.1 The map K — K defined by X —— X2 js k—linear. And therefore
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the map X — X 2941 g quadratic.

Proof. Let X and Y be two elements of K, and a and b be teo elements of

k. Since |k| =27, a* =a and b* = b. Therefore

(aX +bY)?" = (aX)2" +(bY)?" = a(X)*" +b(Y)*"
Let ¢ : K — k™ be defined by
n—1
¢(Z ;') = (ag, gy ooy 1)
=0
Note that ¢(a) = ¢(a,0, ....... ,0) Va € k and ¢ is a k- linear map if we treat k as a

subfield in K. Now choose 6 such that 0 < § < n and ged(¢? + 1,¢" — 1) = 1 where
gcd(a, b) represents the greatest common divisor of @ and b, and let F': K — K be
defined by

F(X)=X*"*.

F' is called the Matsumoto-Imai function. F' is invertible if and only if

ged(2% 41,29 — 1) = 1. In this case, F~1 : K — K is defined by
FH(X)=X'

where t satisfies

t2?% +1)=1 mod (2 —1).

We define F : k» — k" by
F= poFod ™t = (fi,.....fn), where fi,.....fn € k21, ..., 2]

To finish the description of the construction of M1, let

F(z1,...;mp) = Lio FoLy(xy,...,xy) = (fi(x1, e, Tn), oory [T, ooy T0)),
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where f1, ..., fn € k[x1,....,x,] and Ly, Ly are invertible transformations over k. We

can summarize the construction of M1 with the following diagram.

g Loy g O e Fpe 8 gn Ly

The Public Key

The public key of the M consists of the following:
1. The field k including its additive and multiplicative structure
2. The n polynomials fl, ,];n € kl[zy,...., )

The Private key

The private key of the M I consists of the following:

—_

. Ll and LQ.

To encrypt a plaintext ¢(X) = (x1, za, ..., x,,), we apply ]?1, . ];n and obtain
the ciphertext ¢(Y) = (y1,y2, ..., Yn). To decrypt, we use the two affine linear maps
Ly and Ls, and we invert the composition map above and apply it to the ciphertext
oY) = (y1, 92, ---, Yn) to get the plaintext ¢(X) = (x1, xa, ..., ,,). If the 2 affine linear
maps L; and Lsy, are unknown, one must solve a system of n quadratic equations
in n unknowns (xi, 3, ...,x,). Since solving a system of n quadratic equations in
n variables is believed to be an NP-hard problem, we conclude that for a large
n encryption is an easy and fast process, while decryption without the secret key
seems to be extremely hard. Therefore, the M I scheme was assumed to be a secure
crpytosystem. Unfortunately, Patarin proved that this scheme is insecure under an
algebraic attack [P] using the notion of linearization equations. We can summarize

the encryption and decryption processes as follows:
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Encryption

Take the plaintext message (21, ...,%,) and find the associated ciphertext

(Y1, ooy Yn) = filT1, oy ), fori=1,...;m

Decryption

We can decrypt the ciphertext (yy, ....,y,) by executing the following steps:
1. First compute (21, ..., z,) = L7 (Y1, oy Yn);

2. Second compute (21, ..., z,) = po Fo ¢ (21, ..., 2n);

3. Finally compute (z1,...,2,) = Ly (21, ..., Zn).
Decryption
Y1, - Yn
Encryption !
T1, ..., Tn, Lt
| !
F P!
l l
Yy s YUn Lgl
!
X1y ey Ty

Example 2.4.2 Let F, = Fy: = {0,1,,0?}, and n=3 an irreducible polynomial
f(x) = 2%+x+1 over Fys. Let o be a root of f = a3+a+1 = 0.

Next we choose 0 such that (2° +1,2" —1) = 1. We may choose 0 = 2. which implies
(2°41,23-1) = (5,7) = 1.

map F' and its inverse are given by

~—1

F(X)= X" and F(X) = X%,
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Let Ly and Lo be given by

a2 a « T 0
Ly (21,22, 23) = a 1 0 T | T | 1
1 0 1 T3 o
1 0 « Ty «
Ly(zy,29,23) = 0 1 « ze |+ | a?
1 a 0 T3 a?

To derive the public key polynomial using the plaintext message variables
T1,Ta, 23 we begin by computing ¢ ' o Ly(xy, x4, x3), which we find to be (o + x1 +
ars) + (0 + zy + axs)a + (a? + 11 + aze)a®. If we denote this epression by X
=(zy + 23 + 1)+ (21 + 23 + 1) a+(x1+29+23+1)®. Then we compute ]?(X) = X7
where X' = [(xy + 3+ 1) + (21 + 23 + 1) a + (21 + 22 + 73 + 1)a?]". ;’(X) =1+
QPr1+ams+ o3+ T+ ar 3+l rers+(atar + T+l T3+ 10l e T+ 13+ Toxs ) T+

(a2+a2X1+CYX2+C¥X2+04X3—i—X%—l—Xng+04X1X3—|—042X%—|—OéX2X3—|—Oé2X§)X2
we compute Ly o ¢(X) to get the public key polynomials
}1(X1,X2,X3) =1 + xg+axixz+a’x3+a?x3+axox3+x3
}Q(Xl, Xq,X3) = 1 4 a’x14-axo+xs+x2+x1X0+02X Xg+X3
fs (X, Xg, X3) = a°xg+X2+0?x3+XoX340x3,

Now, for the plaintext (x),x, x5) = (1,a, a?); we have

yllzJ;l(L «, a2) =0
vh=fa(1,0,0%) =0
Yé:f:’)(l, «, az)
Therefore, the corresponding ciphertext is (0, 0, 1).

~—1

To decrypt, we first compute L7 (v}, v, y5) and F (X). In deed, we have

1

a2 1 1 vy —0
Li'yhveys) =] 1 o « vy — 1

a1 0 ys —
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Now if we apply the decryption algorithm, we obtain:

Q
L70,0,1) = | «

1

X=a+ax+x*
~—1

and F' (X) = X! = X2 = o + 22

Now we have (21, 22, 23) = (a, 0, 1)

a? o « Y —
Ly'(yiy22) =] a a « yh — a?
1 o 1 yh — a?

Ly a,0,1) = (1,a,02)T which is the plaintext X.

2.5 Patarin Linearization Equations Attack on the M Cryptosystem

n—1
Recall that for X = Z a;x', the central map of M1 isgivenby M : K — K
=0 n—1
defined by X — X2, Assume that M(X) =Y = Z biy', then we have
i=0

Y = X2+

By composing on each side of this equation with ¢ : X — X2“~! we obtain

Y2e9 -1 _ XQZEG -1

Multiplying both sides by XY yield

XY269 _ YX22€0_

Xy —yx?™ =,
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Now using ¢(X) = (x1,22,...,2,), and ¢(Y) = (y1,¥y2,..-,Yn), and the fact that

2 6 . .
X +—— X?" and Y —— Y27 are linear, we obtain

n—1 n—1 n—1 n—1
Z a;X;+ Z b, v+ Z cijX;y;+d =0
i=0 i=0 i=0 ;=0
n—1
Definition 2.5.1 For X = Zaixi and M : K — K defined by X — X266, If
i=0

n—1
MX)=Y = Zbiyi, with ¢(X) = (v1, T2, ..., Tn), and ¢(Y) = (Y1,Y2, -, Yn), an

i=0
equation of the form

n—1 n—1 n—1 n—1
Zaixi + Zbi% + Z Zcixiyj +d =0,
=0 =0 =0 j=0

where a;, b;, ¢;;, and d are in k is called a linearization equation for the y;s.

If enough plaintext-ciphertext (X,Y’) are substituted in the linearization
equations, we obtain a system of linear equations in (n + 1)? variables a;, b;, ¢;;, and
d that can be solved using Gaussian elimination to find the coefficients a;, b;, ¢;;, and

d. Knowing these coefficients, we can find any plaintext X given a ciphertext Y.

2.6 OQOil-Vinegar Scheme

After defeating the proposed MI cryptosystem, Patarin exploited in 1997
the structure of the linearization equations attack to design a new signature scheme
called Oil-Vinegar signature (OV). The basic building blog for an OV scheme is
the Oil-Vinegar polynomial. An Oil-Vinegar polynomial is a quadratic multivariate
polynomial having o + v = n variables, where o represents the number of oil
variables and v the number of vinegar variables. The nonlinear terms occur only in
the following two cases: between vinegar variables, or with one vinegar variable and
one oil variable. In another words, there is no quadratic term with oil variables only.
More precisely, we have the following definition.

Definition 2.6.1 Let k be a fnite feld with q elements, x1,xs,...,x, be the o oil

/

! the v winegar variables. An Oil-Vinegar polynomial is

variables and x',x, ...,z
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any total degree two polynomial f € klxy,xa, ..., 20, &, T, ..., x"] of the form

eey v

f= i i T2 + i i bij iy + i cixi + i djz’; +e
i=1 j=1

i=1 j=1 i=1 j=1

where aij,bij,ci,dj, e € k.

Example 2.6.2 f(z,y,2) = vy+2x2+3y>+4yz+522+62+Ty+82+9

s an oil and vinegar polynomial over the finite field Fy, with the oil variable x and
vinegar variables vy, z. In this case, o = 1,v = 2 and n = o+ v = 3. There is no
quadratic term of the form x?. The nonlinear terms are xy,2xz, 3y?, 4yz and 52%.
For these nonlinear terms, 3y?, 4yz,52% are among the first case with only with vine-
gar variable related. The remaining xy,2xz are among the second case with one
vinegar variable and one oil variable. We can also represent f in a matricial form

as following, Let

01 2 6 T
0 3 4 7

A: R X: y
00 5 8 z
00 09 1

the polynomial f(x,y,z) can be rewritten as XTAX.
Note 1: it is also called an unbalanced oil and vinegar polynomial over Fiy,
as o < v.

Note 2: it also can be viewed as an oil and vinegar polynomial over the real

field

Definition 2.6.3 A polynomial map F : k™ — k° of the form

F(x1, oy o, @, oy ) = (1, f2r oo fo),s

where f1, fo, ....fo € k[T1, 29, ..., o, 2, 2, ..., 2] are Oil-Vinegar polynomials is called

ooy v

an Oil-Vinegar map.
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The public key for the OV schemes is a map F = F o L, where F is an
Oil-Vinegar map and L is an invertible linear map. The composition by L is done in
order to mix the oil and the vinegar variables together. The private key is L. There
is no need to compose with a second linear transformation on the left for the OV.
These schemes are designed only for signature. They are not suitable for encryption.

To sign a message Y = (y1, Y2, ----, Yo ), we need to find a vector W = (wy, we, ..., wy,)

such that F(W) =Y. To do so, we first choose v random values for the vinegar vari-
ables x|, z}, ..., 2! and we substitute in the system to get o linear equations in the o
variables x1, xo, ..., z,. This linear system has a high probability of having a solution.
If it does not, we change the values of the vinegar variables x/, 5, ..., . and we try
again until a solution in k° is found. Then we apply L. To verify if W is a signature

for Y, it suffices to check if F(W) =Y.
Example 2.6.4 Let k = F, = ({0;1}; +; %),

0=2,v=2

The polynomial mapping F' = (f1, f2, f3, f1) is the following,
- -2  _ _ _2 _ _ _ _
fl(l’l, T2, T, JIQ) = T + T1T9 + ) + 1T + T2 + oo + T + i)
_2 _ _ _
1 +x1x1+x2x1+$1+x2+$1+1
2

f2(x17372a3?1a§2) =
f3($1,$27$_1,90_2) = X1 + T1Ty + 171 + Ty + Ty + ToTo
( ) =

o _ _ _2
f4 X1,T2,X1,T2 T1+ T1T1 + T + To + T2
The public key is {fi1, fa, f3, fa}. To sign a document (yi, Y2, y3,vys) we need

to assign to vinegar variable arbitrary value ( x; = 0,25 = 1), and solve the linear

System
( T + T2 = U1
To + 1 = 1o
T = Y3
T2 = Y4

\
The solution of the system is 1 = 1,29 = 1

Therefore the signature of the massege (0,0,1,1), is (1, 1).
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2.7 Polynomial Type of Oil-Vinegar

In this section, we introduced a new multivariate signature called polynomial
oil-vinegar. It can be viewed as generalization of the OV schemes. Let n,m,s € Z be
positive integers satisying m = s? and n = 2m. For a given integer s, let k£* denote
the set of all s-tuples of elements of k. We denote the plaintext by (x1,z2,...,x,) €
k™ and the ciphertext by (y1,¥2,.-.,¥m) € k™. The polynomial ring with n variables
in k& will be denoted by k[zy1,...,x,]. Let Ly : kK — k™ and Ly : K™ — k™ be two

linear transformations, i.e.

Li(x) =Lz and Lo(y) = Loy,

where L, and Ly are respectively an n X n matrix and an m x m matrix with entries in
k, x = (x1,29,...,2,)" y = (Y1,Y2, -, Ym)", and ¢ denote the matrix transposition.

The Central map Let

p1(z)p (z) p2(2)ph(z) o ps(2)pl(2)
p_ Ps+1(2)pl 41 (%) Ps+2(2)P 1 2(2) o P2s(2)Ph () Cf = (A2 Baxr )
o : : : ) T\ Cix2 Dixk )
p(sfl)s+1(x)pl(sfl)s+1(x) p(571)5+2(x)p,(5,1)s+2(x) pSQ(I)p;Q(I)
ni ns
Ns4+1 n2s
and N = . . o be three s x s matrices,
n(s—‘l)s-&-l n(s—‘l)s+2 TL;2
where p;, pi € k[z1,...,z,] are affine and are randomly chosen, N is an invertible

matrix with scalar entries, and M is a block matrix such that B and C' have
only scalar entries and A and D have multivariate polynomials linear affine entries.
Furthermore, A is invertible.

Assume that
Ay As ) .
A=(041);

with A1A4 — A2A3 =a€k

Let D = CA™'B + E, where E is an invertible matrix with entries in k.

Define H = MPN, and let f;; € k[z1,...,z,] be the (i,7) element of H.
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2

Then we obtain with this notation s* = m polynomials

fiis fizs ooy fiss for, faz, oo fosy oo fo1, fe2, - - - fss that can be renumerated as

fi, fos .-+, fin. We define the central map to be

and

f:)CQOFOﬁl:(fl)fQ""?fm)7

where L; : k" — k™ and Ly : k™ — k™ are as above, fi € k[zy,...,x,] are m
multivariate polynomials of degree three. The secret key and the public key are
given by:

Secret Key The secret key is made of the following two parts:

1) The invertible linear transformations Ly, L.

2) The matrices M, N, and P.
Public Key The public key is made of the following two parts:

1) The field k, including the additive and multiplicative structure;

2) The maps F or equivalently, its m total degree two components

filzr, e, o @), f(@1, Tay oo ) € KTy, .o 2]

Signing A signer will sign a message v, ..., ¥, With xy, ..., z,, satisfying

(Y1, V2, -+ Vm) = F(Xl,x2, ce X))

To find x4, ..., x,,

1 Compute (glag% s 7@71) = L2_1(91792> s aym)

_gl _:UQ st
Ys+1 Ys+2 e Y2s

2 Put H = : . o]

Y(s—1)s+1 Y(s—1)s+2 - Yg2
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Since H = M PN, we have P = M~*HN~!. Notice here that M and N are

invertible polynomial matrices and M~ and N~! can be easily found.
3 Assign arbitrary value to each pl(x),i =1,2,..., 5%

4 Solve the new linear system P = M-'HN™! for xy,...,x,. If there is no

solution, we choose new values for the pi(z),i = 1,2, ..., s> and we repeat step

4. Let (Z1,Z9,...,%,) be the solution.
5 Compute (z1, s, ...,7,) = L] (Z1, T2, ..., T,). Thesignatureis (z1,zs,...,2,)
Verification
Anyone can verify the signature by computing (y1, ¥z, . . ., ym) = F(x1, 72, ..., 2,).

If true we accept. Otherwise we reject.

Example 2.7.1 let m = s*,n =2m, and s =3, som = 9,n = 18.

Let Central map be

where p;, p; € k[xy,....,x18],i = 1,...,9 are affine. We can assume
p1= X1+X5, D= X1+Xg,
P2= X3+X5+1, Dh= Xo+Xs5,P3= X1+1, DPs= X12+X13,
ps= x13+1, pj= X13+Xy7,
Ps= X5+x16+1, pr= x5+1,
P6= X13+X14+X15, Pg= Xo+X4+X13,
pr=X17+1, pr=Xie+x17,
Ps= X15+X18, DPg= X18+1,

po=x1+1, Py= X1+X1s.
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We can write P as

A B C
P=| D E F

G H I
where
) = 22 + 1176 + 1175 + T5T6.
( (z) = wow3 + 235 + x5 + TF + T3 + T5.
C = p3(v)ps(x) = 1212 + 11213 + 12 + T13.
D = py(2)py(x) = 235 + 213717 + 213 + 217
E = ps(z)pi(x) = 22 + 25716 + T16-
F = pg(x)pg(x) = XoX13+HX4X13+X35+XoX14+X4X14+X13X14

+xoT15 + TaT15 + T13T15.

G = pr(2)py(x) = 16217 + 27 + T16 + T17.
H = ps(z)pi(z) = 215 + 218 + T15 + 215 + T1s.

I = pg(ar)pg(x) = 13% + 1718 + 1 + T18.

Where C, B are 1 x 1 matrices and A and D are multivariate affine polynomials
given by
T+ 23 T+ x3+ 1
A=
T3+ 1+ 1 T3+ X1
Note that (.%'1 + %’3)(1’3 + ZUl) — (331 + 23 + 1)(1‘3 + 1+ 1) =1 # 0.

And
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D = (.T3 + l’g).

We can rewrite M as:

Gy Hy L

where A1:$1+l’3, Blz$1+l’3+1, Cl :]_, D1 :ZE3+£E1+1, E1:
ZL‘3+]., F1:O, Glz]., lel, 11:I3+l’2.
Define H= MPN. To calculate H, we first compute M P and obtain

A B C
MP=| p E F |;
G H T
where
A= x34x2x6+x3x5+X1 X6 +HXX3+X1 X3Xg+X3Xg+XoX5+X5X5+XoX3X5+X3X2
—|—X1X2X3—|—X1X2X5—|—X1Xg+X1X2—|—X1X5—|—X2X5—|—X§+X2—|—X5.
B'= X1X2X3—|—X1X3X5+X1X2X5+X1X§+X1X2+X1X5+X1X12+X1X13+X12X13.
C'= x}4x1X6+X1X5+X6+X1X3X12+X1 X3X13+X3X12HX3X13+X1 XoX19+
X1X2X13+X2oX12+X0oX13.
D'= X1X%3+X1X13X17+X1X13+X1X17+X3X%3+X3X13X17+X3X13+X3X17+X3X§
+X3X5X16+X3X16+X34X1 Xz +X1 X5X16+X1X16+X1 +X5+X5X16+X16+ 1.
E'= x1x35+x1X13X174+X1 X13+X1 X174+ X3X T3 HX3X13X17+X3X13+XsX17+XT5+
X13X17+X13+X17+X3X§+X3X5X16+X3X16+X3+X§+X5X16+X16+1+
XoX13+X4X13+X] 3+ XoX14FX4X14+X13X14F+X0X15+XaX15+X13X15.
FI: X%3+X13X17+X13+X17+X2X3X13+X3X4X13+X3X%3+X2X3X14+X3X4X14+
X3X13X14+HX2X3X15+X3X4X15+X3X13X15+X5X13+XoXaX13+XoXT5+X5X14+
X9X4X14+X0X13X14FX5X15FXoX4X15+X2X13X15.

I__ 2 2
G'= x1X16X17+X1X 7 +X1X16+X1X17+X3X16X17+X3X )7+ X3X16+X3X17+



2 2
X3X15X18+X3X15+X3X g +X3X18 +X1X15X18+X1X15+X1 X (g +X1X18 1
2
X15X18+X15+X]g +X18-
r_ 2 2
H'= xix16X17+X1X77HX1X16 X1 X17+X3X16X17+X3X 7 +X3X16 +X3X17+
2 2
X16X17+X16+X3X15X18 +X3X15+X3X g +X3X18+X15X18 +X15+X |5+
2 2
X1g X7 +X1X18+X1 +X18.
I'= X16X17+X%7+X16+X17+X%X3+X1X3X18+X1X3+X3X18+X%X2+
X1X2X18+X1X2+X2X18g-

Next, we compute H = M PN to obtain

A B 1 00
H=MPN=| D' E F 101
G H T 1 11
So
A+B+C C" B+
H = DI+EI+FI F/ EI+F, ;
G+H+1I' I' HA+T
where
fi=A'+B'+C

= X3 +x2X+X0X5+ + XaX3+X]X3X6+X3Xe+XoXa+X5X5+XoX3X5+X3X2+
X1X§—|—X1X2—|— + X2X5+X§+X2—I—X5+X1X3X5+X1X§+
X1X2+X1X12+X1X13+X12X13+X%+ + X1X5—|—X6+X1X3X12+X1X3X13+X3X12+
X3X13+X1X2X12+X1X2X13+XoX12+X2X13.

fo=C’

= XJ+X1Xg+X1X5+Xg+X1X3X12+HX1X3X13+X3X12+X3X13+X1 XoX12+
X1X2X13+XoX12+X0X13.

fy=B'+C'

= X1XoX3+X1X3X5+X1XoX5 X1 X5 +X1 X2+ + X1X12+X1X13+X12X13+
X741 Xg+Xe+X1X3X12FX1 X3X13FX3X12+X3X13FX1 XoX12+X1 XoX13+

XoX12+X2X13.

26
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f,= D'+E'+F’

= X3X3+X3X5X16+X3X16+X1X5 +X1X5X16+X1X16+X1 +X5X16+X16+X3X5+
X3X5X161+X3X16+X5X16+X16+X2X13+X4X13+X2X14+X4X14+ X13X14+X02X 15+
X4X15+X13X15+X]3+XoX5X13+X3X4X13+HX3X] 3+ XoX3X14+X3XaX14+X3X13X14+
X3X4X15+X3X13X15FX5X13+XoXaX13+Xo XT3 FX5X14+XoXaX14+X0X13X 14+

X§X15 +X9X4X15.

f5: F,

= X75+X13X17+X13+X17+XoX3X 13+ X3X4X13+X3X05+XoX3X14+X3X4X 14+
X3X13X14FX2X3X151+X3X4X15 +X3X13X15+X3X13 +XoX4X13 +X2X%3+X§X14+
XoX4X14+XoX13X14FX5X15+XoX4X15+X0X13X15.

fo= E'+F’

= X1X75HX1X13X17+X1X13+X1X17+X3XT3+X3X13X17+X3X13+XsX17+X13X17+
X3X5 +X3X5X16+X3X16+X3 X2 +X5X16+

X161 4 XoX13+X4X13+X3HXoX14+X4X14+ + X13X17+X0X3X 3 X3X4X13+X3X 5+
XoX3X14TX3X4X141+X3X13X14TX2X3X15+
X3X4X15+X3X13X15+X5X13+XoX4X13+Xo X553+ X5X14+XoX4X14+X2X13X14+
X3X15+X2X4X15FX2X13X15.

f,= G'+H'+T

= X3X15X18+X3X15+X3X18+X1X15X18+X1X15+X1X%8+X1X18+X15X18+X15+X%8+
X16X17TX16TX3X15X18 +X3X15+X15X18 X151

XT+X1X18+X1 +X16X17+X%7+X16 +X17-HX5 X3 X1 X3X18 X1 X3 X3 Xo X1 XoX18+
X1X2+X2X18.-

fo=T

= X16X17HX57+X16TX17+HXTX3+X1X3X18+X1X3+HX3X18 X3 Xo X1 XoX18+X1 X0+
X9X18-

fo= H'4+T'

=T1T16217 + L1237 + 1216 + L1217 + T3T16T17 + T3TT; + T3L16 + T3T17 + T16T17+
X3X15X18 +X3X15+X3X%8 +X15X18+X15 +X%+X1X18+Xl +X18+X16X17+X%7+X17
+X%X3+X1X3X18+X1X3 +X%X2 +X1X2X18 +X1X2+X2X18.

To complete the construction, we have define the cental map to be :
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F(Xl’ e 7X18) — (fl(X17X2’ N 7X18>7 e 7f9(X1,X2’ e 7X18))

Finally the pablic key F will be obtained by performing the composition F =Ly0

F o Li,where Ly and Ly are any two linear affain maps.
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Chapter 3: Some Algebraic Aspects of Threshold Functions

In this chapter, we use the theory of group ring to derive some algebraic

properties of threshold functions.

3.1 Group Ring
Definition 3.1.1 Let K be a field and G be an abelian group. We define the group
ring KG to be the set of all formal sums of the form Y .. aq-a with aq € K. The

addition, the scalar multiplication, and the multiplication in KG are respectively

defined as follow:

(Zaau) + (Zba-a) = Z (a,+ba)a,

b( Z Ao () = Z (ba,) - a,

(Zaaa)(Zba-a) :Z (a,ba) - .

The associative law in G guarantees the associativity of multiplication in KG.
So K@ is a ring.
3.2 Threshold Functions

In this section, we look in detail of the family to threshold functions from

FI? to F},.

Definition 3.2.1 Let Z, = {0, 1,2,...... .p-1} and Z! the Cartesian power of Z,
which Zy = {ay,ag, .......... .y }, where ay,ag, ........ ,Qp € Zy. A threshold function
[1Zy —Zyisa

(
0 X"UJT<A1

1 Ang'U)T<A2

 p—1 X-wl > A4,
where
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1. w= (wy, ... ,wy) € R is called weight.

2. Ay, Ay, ..., A, are a real numbers defining and satifying the threshold ,and A; <

Ay < ... < Ap.

3. T is the matrix transposition .

Example 3.2.2 Let Zy = {0, 1} and Z% the Cartesian power of Zs which 7}

= {(ay,az, .......... ,y), where ay,ag, ........ A € Zo}. And f: ZY — Zsy we define by
0 X.wT < Al

f(X)=
1 Al S X U)T

Let G be a finite group, and R be a field, or ring then

RG={u= ) a,9:9 € G,and oy, € R} is a group ring.
geG

Example 3.2.3 Let G = {a,b,c} and R = Fy= {6 1 }

then RG = {u= ) ay9 = a,a+ apb + a.c: where a; =0 or 1}

If we choose G:gZsz ... X Zs and RG to be the group ring over the real
number R, then every element g € G can be uniquely represented in the form g =
aj*...alr, where (1,9, ...,x,) € Z4 and the a; are such that G =< a3 > x < ag >
Xoiiiinn X < ap >. Therefore each element g = aj'...al" € G canbe identified with
the corresponding vector (z1, za, ..., x,) € Z35.

Definition 3.2.4 Let u = ), «o,9 € RG. For g = ai'...a’", we define f, : G — R
by f(g) = f(x1, 29, ..., 2,) :gezg.Denoted by F' the set of all elements in RG whose

coefficients are restricted to Zo.then F' is one-to-one correspondance with the set of

all boolean functions. The correspondance is given by: f «—— u.

Remark 3.2.5 An element u of the RG is called P-element if f corresponding to u

1s threshold function.

Remark 3.2.6 If u; # uy = 39 € G, ay(u1) # ag(us) = fu, # fus-
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let Q = {W =< wy,wy,....,w, > X ,Y € Z% and X # Y where X =<

L1, X9, ey Ty >, Y =< Y1, Y2,y .., Yn >.Then X # Y W},
p(@) = {(X,Y) : X =< 21,29, ..., >,Y =< Y1, Y2, o, Yn >,and X. w7 >
Y.wT}.

Definition 3.2.7 for wy and w; € Q , we say Wy is equivalent to Wy if p(wy) =
p(w3).we will say denote by Q(w) the class of all threshold functions that can be

realized with the vector w.
Now we consider three operations conserving threshold property of Boolean

function:

A- again we know u=)_ ay9 € GR ( group ring ), let f, be a threshold
geG

function corresponding to w . And f,(9) = f(z1, 22, ..., %, ..., Tn) = y. Then we get
a new threshold function: f!(zy, s, ..., %, ..., 1), if u < f,. If fis obtained from
fu (by inverting the " coordinate), then f! is a new threshold function associated
to ua; (f' < wa; = u'),where u* = a;u = ;> ay,9 = > (@ya;)g. The mapping

geG geG
u — a;u is automorphsim of the addition group of the group ring.

B- let ¢ be an automorphsim of G. (i,e ¢ : G — G,p(ar) = ax Yk # i,))
and f,(9) = f(z1, 29, ..., 24, ..., 2, ..., x,) = y. We get another threshold function:
A1, @2, oo g, ooy @,y ooy Ty, i w > fy, and f? > f,, is obtained from the threshold
function f by interchanging two input variables x;, z;. So ¢(a;) = a; and p(a;) = a;.

C- Again f,(9) = f(z1, 22, ..., T4y .., Tj, ooy ). Assume f — u,and u = )
geG

agg . We get another threshold function:

4 —
f (fL‘l,Iz....,l‘n) =xT; D f({L‘l D Xj,To D Ljyeenilj—1 D Ljy, Tj41 D Ljyereny Ty D Z;

gEHj

Y9+ D g

geH; gEajHj
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Lemma 3.2.8 Let f be a Boolean function, and assume that f is a threshold
function with w7 € Q and real number A. And if wy ~ Wy, then A € R such that

wy and A can realize also f.

0 X -wl'<A
Proof. We have f(z)=
1 X-wl'>A

Let X = {f71(0)} = {X : f(X) =0}and X; = {X : X-w” is the maximum}.
Assume Wy ~ Wy = p(W1) = p(Ws), p(wr) = {(X,Y): X -w" >Y -wi'}
= p(wy) since p(wy) = p(W) = X; = {X : X -w;! is the maximum}

={X : X.w,Tis the maximum}. Let X € X; = Xw;. = B< A =

X -w;" = By < A consider the interval (By, min{z.w;" : f(X) =1}] =
and let A be any number between B; and . Then for any X such that
X-wl < By = X-w! < A,and any X such that X -wl > C, = X.wl > A

0 X -wl <A
= f(x)= = [wy, A] realize f as a threshold function.

Example 3.2.9 Let n= 3, and [ : Z5 — Z».

since Z3 = {z; = (0,0,0), 22 = (0,0,1),z3 = (0,1,0),z4 = (0,1,1)
x5= (1,0,0), 4= (1,0,1),%,= (1,1,0),x,= (1,1,1)}.

Choose w; = (1,3,5) and A = 5.

Find - p(w;) = {(X,Y) : X" > Y.aw;! },where X,Y € Z3.

The values of z; - w;? are given by:
x;.w! = (000)(135)7 =

xp.wl = (001)(135)7 =

xz.w! = (010)(135)T =

xgw! =(011)(135)7 =

xs.wi = (100)(135)7T =

xg.wl = (101)(135)7T =

xrwl = (110)(135)7 =4

xgwi = (111)(135)7T =
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Using the definition of p(w) we obtain;

p(wy) = {(xg: %), (3 x1), (x4 %1)5 (%5, %), (%6, %0)5 (%75 %3)s (X, %7)

(X9, X3), (X4, X3), (X, X5), (Xg, X2), (Xg5 Xa), (X4, X3), (X3, X5), (x4, X3)

(x7,%3), (Xg,X3), (%4, X5), (X4, %6), (%45 X7), (Xg,%4), (X6, X5), (%7, %5)
(

(33‘8, .%’5), (.Tﬁ, .1'7), xs, l‘ﬁ), (.%'8, .T7)}

If we choose wy = (2,3,4), then the z;.w] are given by:
234)T =0
2347 =4

Ig.'w

Therefore p(ws) = {(z2, 21), (z3.21), (x4, 21), (x5, 1), (w6, 1), (27, 1), (Ts, 21)

(X2’X3)7 (X47 X2), (XQ’X5)7 (X67 X2>7 <X87X2)7 <X47 XS)’ (X37X5)7 <X67 XS)

)
(X77X3)> (X87 X3), (X47X5)> (X4> Xg), (X47X7)a <X87 X4), (X6>X5)> <X7? X5)

(z8,7s5), (z6, 77),(78, T6), (T8, 77) }

Notice that p(w;) = p(ws).
— 0 zw! < Ay
Now we find X = {x € Z3 : f(x) = 0} such that f(z)= ,
1 zwi > A

for A; = 5,to find Aywe first compute:

X, ={z € X : z.w? is maximum}, i.e.X; = 6.

Then, we haveB; = {xg.w31 is also the maximum}, i.e. B; = 6.

Also €} = min { x.w! : f(x)=1}. Choose A, such that B; < A, < C}, we

can choose A = 6.

0 zwl <A, —
flx1)= , Xo={z€Z3: f(x,) =0},

1 zwl > Ay

SO XQ = {$17I2,$3,$5,I6,£L’7}. Hence wp « Wa.
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Chapter 4: Conclusion

We conducted the analysis of Multivalued threshold function and the Multi-
variate polynomials which present the two main families over finite fields that have
been studied over this thesis. Both of these families play essential role in present
areas such as cryptography, circuit complexity, learning theory, social choice, quan-
tum complexity, and many other aspects. Many other researchers had worked on
establishing in new design of quantum multivariate cryptosystems which most of
them seem to be insecure. The aim of this thesis is to introduce new cryptosystem
that suppose to resist quantum computers attacks. In this thesis four chapters have
been presented. The first chapter describes an introduction about the finite field
and cryptosystem include their histories. Definition, properties, and construction
in addition to multivariate cryptosystem and oil-vinegar have been discussed in the
second chapter of this thesis. the third chapter include description to some aspects

of threshold function and group ring.
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