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Abstract 

 

We study two families of functions over finite fields; the Multivalued Threshold 

Functions and the Multivariate Polynomials. Recent advances made in our 

conception and our understanding of Boolean Threshold Functions and Multivalued 

Threshold Functions have considerably increased the importance of the role that they 

play in our days in areas like cryptography, circuit complexity, learning theory, 

social choice, quantum complexity, and in many other areas. Theoretical aspects of 

Threshold Functions were first studied by Bovdi and Geche who gave an algebraic 

approach of Boolean Threshold Functions using group ring theory. We will present 

some algabric properties of Boolean threshold functions. For the family of 

Multivariate Polynomials, it was first used by Matsumoto and Imai to design a 

cryptosystem. Many others researchers followed their steps with a design of new post 

quantum multivariate cryptosystems. Unfortunately, many of them have been proven 

insecure. We introduce in this thesis a new multivariate cryptosystem that supposes 

to resist quantum computers attacks. 

 

Keywords: Multivalued Threshold Functions, Boolean Threshold Functions, 

Cryptosystem. 
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Title and Abstract (in Arabic) 

 

ا على المجموعا المحد يقات تط ري   بعض الجوانب الج

 صالمل

ف      تين ند س ائف من عائ عا ع ال ج حد ال ا. ال تعد العت ائف أ  ال
خرا. الحد كثيرا القيم نا في م ا ت قي ف  ائف القيم متعد عت ائف ل
تفعت عت ل ا ح بش ي ع م ا في به تق ال الد أه  مثل مجاا في ه أيام

م، نظري التعقيد، ائر التشفير، اعي اختيا التع ي، التعقيد ااجت  من العديد في ال
جاا  .اأخر ال

ت  انب اس ت ظري الج ا عت ائف من ال في من أ ج قد ال  Geche ب ر ن  ج
قي عت ائف من دا م ع نظري باست ج ف. ال ا بعض نقد س  ائف ل نتائج
، متعد العائ. القيم متعد عت تغيرا ا تم قد ال دام ل من مر أ است ت ق م  ماتس

ا يم اي ع. تشفير نظا لت احثين من العديد يت م اآخرين ال ات يم مع خ  الترمي نظم ت
تغيرا متعد الجديد ن. ال م كثيرا لأسف، ل ت قد م ا اث ا في نقد نحن. آم غير ان  ه
ل تغيرا متعد تشفير نظا الع ا تقا أ يفتر التي الجديد ال ج تر أج ال ي  . ال

 

حث الرئيسيمفاهيم  عا: ال ج عا، حدلا ال ج ر.، التشفيالحد كثيرا ال  
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Chapter 1: Introduction

Let p be a prime, q = pe for some integer e, Fq the �nite �eld with q ele-

ments, and Fqn an extension of degree n of Fq. It is well-known that any function

f : Fqn �! Fq is a polynomial function. More precisely, every function from Fqn to

Fq ( or from F
n
q to Fq ) can be uniquely represented as a polynomial in Fq [x1; ::::; xn]

in which the degree of each xi is at most q � 1. In particular, every function from

Fqn to Fq is uniquely represented by a polynomial of degree q � 1 in Fq [X]. Func-

tions or polynomials over �nite �elds have many important applications in today�s

life. In this thesis, we will study two families of functions or polynomials over �nite

�elds: the multivariates polynomials and the threshold functions. Both families of

polynomials play a very important role in nowadays in area like cryptography, circuit

complexity leaning theory, and many other areas.

The �rst part (section 3) of this thesis deals with the family of multivariate

polynomials over �nite �elds and their applications to cryptography known as Mul-

tivariate Quadratic Cryptosystem. This family of cryptosystem was �rst introduced

in 1988 by Matsumoto and Imai with their milestone scheme named MI or C�[14]

cryptosystem. MI was known to be very e¢cient with a lot of potential practical

applications and an alternative to number theory based cryptosystems such as RSA,

El Gamal, and others. Unfortunately, it was broken by Patarin linearization equa-

tions attack in 1995. But the ideas used in designing MI and its good potentiality

for storage and e¢ciency attracted many researchers to explore this new family of

cryptosystems. That is how, shortly after proving the insecurity of MI, Patarin

designed a new scheme called Hidden Field Equation cryptosystem (HFE) [15] in

1996. Unluckily, HFE was also proven insecure by the Kipnis-Shamir method [12].

In 1997 Patarin explored the idea of linearization equations attack to design a signa-

ture algorithm named (balanced) Oil-Vinegar scheme (OV) [16]. But in 1998 Kipnis

and Shamir introduced the separation method to prove OV insecure and soon after,

in 1999 they proposed a modi�ed scheme of OV called Unbalanced Oil-Vinegar sig-

nature scheme (UOV) [13]. UOV is still considered today secure if parameters are
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chosen carefully. It is proven very vulnerable to some attacks for many choices of

parameters. Many other schemes obtained by modifying the UOV, MI and HFE

were after proposed. We can name S�ash [1], C[18], PMI [4], PMI+ [5], HFE[15],

IPHFE [7], HFEv [7, 18] and Quartz [17] among this family of cryptosystems.

The most important thing of building Multivariate Public Key Cryptosystem

(MPKC) is how to �nd a good polynomial system F that makes the cryptosystem

secure and e¢cient. The security of MPKC is based on the knowledge that solving

a set of multivariate polynomial equations over �nite �eld is in general proven to

be an NP-hard problem. However, this fact does not guarantee the security and

most of these schemes based on Multivariable Quadratic Equations (MQE) over �-

nite �elds suggested in the last three decades were broken (see [25]). Apparently,

the broken systems were based on some hidden structure, which on one hand en-

abled the e¢cient invertibility of the system, but on the other hand was found to

be vulnerable to algebraic attacks. Almost all the MQE based encryption schemes

proved to be insecure share the common defect that some quadratic forms associated

to their central maps have low rank (see [20]) and therefore are vulnerable to the

Min-Rank Attack (see [11]). On the other hand, the belief that random quadratic

systems are hard to solve on average (see [1], [14] and references therein), points to

wards designing trap-door primitives based on randomness, which raises di¢culties

in designing immune invertible primitives. Little was done in this direction in the

context of asymmetric public-key cryptography (see [14]).

Recently, researchers propose some new multivariate cryptosystems, such as Huang-

Liu-Yang-2012 scheme [11], Yasuda-Takagi-Sakurai-2013 scheme [23], Gao-Heindl-

2013 scheme [22], ABC [20], matrix-based Rainbow [21], Zhang-Tan-2014 scheme

[26], NT-Rainbow [23], Yasuda-Takagi-Sakurai-2014 scheme [24], cubic-ABC [6] and

ZHFE [19]. However, we need more time to verify their securities.

In this thesis, we introduce a polynomial type of the OV schemes which has a much

higher security as its construction is completely based on randomly chosen multi-

variate polynomials. In general, Multivariate Public Key Cryptosystems have the

following structure. Let k be a �nite �eld with q elements. A public key is a map
�

F :
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kn �! kn constructed as
�

F=L 1 � F � L2, where L1 and L2 are two random invert-

ible transformations over km and kn respectively. The central map F : kn �! km

is nonlinear multivariate polynomial map that has the property of being invertible

computation-wise.

In the second part of this thesis (section 4), we will study the family of

threshold functions over a �nite �eld. It was initially studied by Bovdi and Geche

who gave an algebraic approach of boolean threshold functions using group ring

theory. A threshold function is a Boolean function f : {0,1}�!{0,1} such that there

exist real numbers w1; w2; :::; wn and A, satisfying:

f(x1; x2; :::; xn) = 1 if and only if
nP

i=1

wixi � A.

vector
�!
w =< w1; w2; :::; wn > is called weight vector and A is the threshold value. A

threshold function can be easily extended to multivalue threshold functions

follows: f : Znp �! Zp

f(x) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 X � wT < A1

1 A1 � X � w
T < A2

: :

: :

p� 1 X � wT > Ap�1

Di¤erent aspects of threshold functions have been studied extensively, many

but the �rst algebraic approach was done in [13], where the outhrs established a

connection between threshold functions and fundamental ideals of group rings. Then

in [13], the authors determine the invariance groups of threshold functions and in

some lattices induced by threshold functions are introduced. We will revisit these

�ndings for boolean threshold functions in chapter 3.
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Chapter 2: Preliminaries

2.1 Finite Field

2.1.1 De�nitions and Examples

De�nition 2.1.1 Let F be a set with two binary operations, addition denoted by +

and multiplication denoted by �; F is called a �eld with respect to the addition and

the multiplication if the following hold:

F1 (F;+) is an abelian group.

F2 (F �; �) is an abelian group, where F � = F r f0g and 0 is the zero of the

group (F;+).

F3 a(b+ c) = ab+ ac for all a; b; c 2 F .

We also say that (F ; +; � ) is a �eld. (F;+) is called the additive group of the

�eld and (F �; �) is called the multiplicative group of F .

A �eld with �nitely many elements is called a �nite �eld. We denote a �nite

�eld with q elements by Fq:

The identity of (F;+) is denoted by 0 and the identity of (F �; �) by 1:

Example 2.1.2 Zp, where p is prime, consists of p residue classes

�a = a+ pZp = fa+ pk : k 2 Zg; a = 0; 1; 2; ::::; p� 1:

The addition and the multiplication are de�ned by: for any �a;�b; �c 2 Zp, we have

�
a +

�

b = a+ b;

�a � �b = ab

(Zp;+) and (Z
�
p ; � ) are both abelian groups and for any �a;

�b; �c 2 Zp, we have

�a(�b+ �c) = �a(b+ c) = a(b+ c)

= ab+ ac = �a�b+ �a�c:

Thus, F1; F2, and F3 are satis�ed and Zp is a �nite �eld.
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2.1.2 Basic Properties of Finite Fields

The proof of the following theorem can be found in [30].

Theorem 2.1.3 Let Fq be a �nite �eld with q elements. Then a
q�1 = 1 for all a

2 F �q :

Corollary 2.1.4 Let Fq be a �nite �eld with q elements and E be a �nite �eld

wich contains Fq as a sub�eld. Then a
q = a for all a 2 Fq and moreover, for any

� 2 E;�q = � implies � 2 Fq:

Proof. It follows from Theorem 2.1.3 that aq = a for all a 2 Fq: Since x
q�x

has at most q roots in E; the q elements of Fq are all the roots of x
q�x in E: Now if

�q = � for all � 2 E; � is a root of xq � x. Therefore � must be one of the elements

of Fq, i.e., � 2 Fq:

Theorem 2.1.5 The multiplicative group F �q of any �nite �eld Fq is cyclic. A gen-

erator of F �q is called a primitive element of Fq:

Proof. Let Fq be a �nite �eld with q elements and F
�
q be its multiplicative

group. F �q is of order q�1:We know that the order of every element of F
�
q is a divisior

of q�1: Let d be a positive divisior of q�1. Denote by '(d) the number of elements of

order d in F �q : Clearly,

X

dj(q-1), d > 0

'(d) = q � 1: (1)

Assume that '(d) > 0, then there is an element of order d in F �q . Let a be

such an element, then the cyclic group hai generated by a is of order d and every

element in hai satis�es the polynomial xd � 1 = 0. Let b be any element of order d

in F �q ; then b satis�es also x
d � 1. Since the number of distinct roots of xd � 1 in Fq

is at most d, we must have b = ai for some i; 1 � i � d� 1. Thus b 2 hai. Since the

number of elements of order d in hai is �(d), where � is the Euler function. We have
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proved that

'(d) = 0 or �(d): (2)

By Theorem 2.1.5,

X

dj(q-1)

�(d) = q � 1: (3)

From (1) (2) and (3) we deduce '(d) = �(d) for all positive divisiors d of q � 1. In

particular, '(q � 1) = �(q � 1) > 0. That is, there is an element of order q � 1 in

F �q : Hence F
�
q is cyclic.

De�nition 2.1.6 Let F be a �eld and n be a positive integer such that nx = 0 for all

x 2 F , we call the least such integer the characteristic of F and we write CharF = n,

and we say F has positive characteristic. On the other hand if nx 6= 0 for all n, we

say that CharF = 0:

The proof of the next theorem can be found in [30 ].

Theorem 2.1.7 Let Fq be a �nite �eld of characteristic p, then the number of ele-

ments of F must be a power of p.

Theorem 2.1.8 Let F be a �nite �eld which contains a sub�eld Fq with q elements,

then the number of elements of F must be a power of q.

Proof. Rewrite Fq as F1: If F = F1; then F is a �nite �eld contaning

exactly q elements. Hence our theorem holds. If F 6= F1, then F will contain e2 and

e2 =2 F1. Let F2 = fa1 + a2e2 : a1; a2 2 F1g. We will prove: if a1 + a2e2 = b1 + b2e2

with a1; a2; b1; b2 2 F1, then a1 = b1; a2 = b2: In fact, from this equation it follows

that (a2 � b2)e2 = b1 � a1: If a2 6= b2 then e2 = (a2 � b2)
�1(b1 � a1) 2 F . A

contradiction follows. Hence we must have a1 = b1 and a2 = b2. Therefore F2

contains exactly q2 distinct elements. If F = F2, then F is a �nite �eld with exactly
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q2 elements. So our theorem holds. If F 6= F2, then F will contain e3 and e3 =2 F2:

Let F3 = fa1 + a2e2 + a3e3 : a1; a2; a3 2 F1g: Assume that

a1 + a2e2 + a3e3 = b1 + b2e2 + b3e3 with a1; a2; a3; b1; b2; b3 2 F1:

Then

(a3 � b3)e3 = (b1 � a1) + (b2 � a2)e2:

If a3 6= b3, then

e3 = (a3 � b3)
�1(b1 � a1) + (a3 � b3)

�1(b2 � a2)e2 2 F2:

This is contradiction. Hence we must have a3 = b3: Then we have a1+a2e2 = b1+b2e2;

which, by the above proof, yields a1 = b1; a2 = b2: Therefore, we conclude that

F3 contains exactly q
3 distinct elements. If F = F3; then F is a �nite �eld with

exactly q3 elements. So our theorem holds. If F 6= F3, then F will contain e4 and

e4 =2 F3: Let F4 = fa1 + a2e2 + a3e3 + a4e4 : a1; a2; a3; a4 2 F1g: Similary it can be

proved that F4 contains exactly q
4 distinct elements. Continue in this way. If the

number of elements in F is N and qn � N < qn+1; then a sequence of subset F

F1; F2; F3; :::; Fn is obtained, where Fi = fa1+ a2e2+ :::+ aiei : a1; a2; :::; ai 2 F1g:

e2 =2 F1; e3 =2 F2; :::; en =2 Fn�1; and Fi(1 � i � n) contains exactly qi distinct

elements. If F 6= Fn, then F will contain an element en+1 and en+1 =2 F2. Let

Fn+1 = fa1 + a2e2 + ::: + anen : a1; a2; :::; an 2 Fng: In similar way one can prove

that Fn+1 contains exactly q
n+1 distinct elements. But Fn+1 � F , the number of

elements in F is N , and N<qn+1: this is impossible. Hence F = Fn: So F is a �nite

�eld which contains exactly qn elements.

Theorem 2.1.9 Let p be a prime number and n be a positive integer, then there

exists a �nite �eld which contains exactly pn elements.

Proof. Let �p;n be the product of all monic irreducible polynomials of degree

n in Fq[x]: If p is a prime number and n a positive integer, then �p;n > 0. Thus

there always exists a monic irreducible polynomial of degree n over the prime �eld
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Zp with p elements. Let p(x) be one of them. Then Zp [x] /(p(x)) is a �nite �eld

with pn elements.

Let q be a power of a prime p and n a positiveinteger. We may view Fq as

a sub�eld of Fqn. The map � : � 7�! �q from Fqn to itself is an automorphism,

which leaves every element of Fq �xed, i.e., �(�) = � for every � 2 Fq: We call �

the Frobenius automorphism of Fqn over Fq. If we denote by �
2 the composition

� � �; then �n = 1; �k 6= 1 for 1� k < n; and �0 = 1; �1 = �; :::; �n�1 are n distinct

automorphism of Fqn over Fq:

Theorem 2.1.10 Let � be the Frobenius automorphism of Fqn over Fq and
�
� be an

extended automorphism of � to the polynomial ring Fqn [x]. Let f(x) 2 Fqn [x] : If

�
�(f(x)) = f(x), then f(x) 2 Fq [x] :

Proof. Let f(x) = �0 + �1x + �2x
2 + ::: + �mx

m: Then
�
�(f(x)) = �(�0) +

�(�1)x + �(�2)x
2 + ::::: + �(�m)x

m: From
�
�(f(x)) = f(x): We deduce �(�i) = �i

for i = 0; 1; 2; :::;m: But we also have �(�i) = �
q
i : Therefore �

q
i = �i: and �i 2 Fq

for i = 0; 1; 2; :::;m: Hence f(x) 2 Fq [x] :

Theorem 2.1.11 Gal(Fqn=Fq) = h�i. More precisely, �
0 = 1; �1 = �; :::; �n�1 are

all automorphisms of Fqn over Fq:

Proof. Let � be a primitive element of Fqn and let

f(x) = (x� �)((x� �(�)):::(x� �n�1(�))

= xn + a1x
n�1 + ::::+ an�1x+ a;

Clearly,

�
�(x� �i(�)) = x� �i+1(�) for i = 0; 1; 2; :::; n� 2

and
�
�(x � �n�1(�)) = x � �n(�) = x � �: Thus

�
�(f(x)) = f(x): From the above

theorem, f(x) 2 Fq; i:e:; ak 2 Fq for k = 0; 1; 2; :::; n.

Let � be an automorphism of Fqn over Fq and suppose that �(�) = �
i where

1� i � qn � 2: Clearly, f(�) = 0; i:e:; �n + a1�
n�1 + ::: + an�1� + an = 0: Applying
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the automorphism � to the above equation we obtain

(�i)n + a1(�
i)n�1 + :::+ an�1�

i + an = 0;

i.e., f(�i) = 0: But f(x) has n roots �; �(�); :::; �n�1(�) in Fqn : Thus �
i must be one

of them. Say �i = �j(�); 0 � j � n � 1, then �(�) = �i = �j(�); which implies

�(�) = �j(�) for all � 2 Fqn : Hence � = �
j:

2.1.3 Construction of Finite Fields

Theorem 2.1.12 Let E be a �eld, F be a sub�eld of E, and � be any element of E:

Then F [�] is a subring of E and is an integral domain; moreover, F (�) is a sub�eld

of E:

Proof. Let f(x); g(x) 2 F [x], then f(x)� g(x); f(x)g(x) 2 F [x]. It follows

that f(�)� g(�); f(�)g(�) 2 F [�] : Clearly, 1 2 F [�] : Therefore F [�] is a subring

of E: Since F is a sub�eld of E, F [�] is an integral domain. Similary, we can show

that F (�) is a sub�eld of E.

The proof of the following theorm can be found in [30 ]

Theorem 2.1.13 Let E be a �eld, F be a sub�eld of E, and � be any element of

E: If p(x) is an irreducible polynomial of degree n over F satisfying p(�) = 0: Then

F (�) is a sub�eld of E:

Theorem 2.1.14 Let F be a �eld and p(x) is an irreducible polynomial of degree n

over F: If we denote the residue class of x mod p(x) by �. Then

F [x] =(p(x)) �= F [�] = F (�)

Moreover, if F is a �nite �eld with q elements then jF [x] =(p(x))j = qn:
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Example 2.1.15 Consider F2 = f0; 1g, and f(x) = x
2 + x+ 1. Since the degree of

f is 2 and since f(0) = 1 6= 0 and f(1) = 1 6= 0; f has no root in F2: Therefore f

is irreducible in F2: So F2 [x] =(f(x)) is a �eld. If � is a root of f we know that

F2 [x] =(f(x)) is isomorphic to F2(�) and the degree [F2(�) : F2] = deg f = 2 . We

have F2 [x] =(f(x)) = F2(�) = fa + b� : a; b 2 F2g = { 0, 1, �; �2 = 1 + �gwhich

is a �eld of 4 elements. We can identify it with F4; i.e., F2(�) �= F4: The tables of

addition and multiplication are as follows:

+ 0 1 � � + 1

0 0 1 � � + 1

1 1 0 � + 1 �

� � � + 1 0 1

� + 1 � + 1 � 1 0

� 0 1 � � + 1

0 0 0 0 0

1 0 1 � � + 1

� 0 � � + 1 1

� + 1 0 � + 1 1 �

2.2 Functions from F nq to Fq

Let n � 0 be an integer and let z(F nq ; Fq) denote the set of all functions from

F nq to Fq. Clearly, z(F
n
q ; Fq) is an Fq-algebra . A property particular to �nite �elds is

that every function in z(F nq ; Fq) is a ploynomial function. Let Fq [X1; ::::; Xn] be the

polynomial ring in X1; :::; Xn over Fq: Each element f (X1; ::::; Xn) 2 Fq [X1; ::::; Xn]

gives rise to a function
�

f : F nq �! Fq

( a1; ::::an) �! f(a1; ::::an)

Clearly,
�

() : f 7�!
�

f is an Fq-algebra homomorphism from Fq [X1; ::::; Xn]

to z(F nq ; Fq): The homomorphism
�

() : Fq [X1; ::::; Xn] �! z(F nq ; Fq) is onto. This

claim follows from the Lagrange interpolation. For each ( a1; ::::an) 2 F
n
q , de�ne

f(a1; ::::an) =
n

�
i=1

�
b2Fqrfaig

Xi�b
ai�b

2 Fq [X1; ::::; Xn] :
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�

f (a1;::::an)(b1; ::::; bn) =

8
><

>:

1 if (b1; ::::; bn) = (a1; ::::an);

0 if (b1; ::::; bn) = (a1; ::::an);

So,
�

f (a1;::::an); (a1; ::::an) 2 F
n
q , form a basis of z(F nq ; Fq). Consequently,

�

() :

Fq [X1; ::::; Xn] �! z(F nq ; Fq) is onto.

Theorem 2.2.1 The homomorphism
�

() : Fq [X1; ::::; Xn] �! z(F nq ; Fq) induces an

Fq�algebra isomorphism Fq [X1; ::::; Xn] =(X
q
i �Xi; ::::; X

q
n�Xn) �= z(F

n
q ; Fq), where

(Xq
i�Xi; ::::; X

q
n�Xn) is the ideal of Fq [X1; ::::; Xn] generated byX

q
i�Xi; ::::; X

q
n�Xn:

Proof. Since aq�a = 0 for all a 2 Fq , it is clear that (X
q
i �Xi; ::::; X

q
n�Xn) �

Ker
�

(): Thus
�

() induces an onto homomorphism

� : Fq [X1; ::::; Xn] =(X
q
i �Xi; ::::; X

q
n �Xn) �! z(F nq ; Fq):

However, dimFqFq [X1; ::::; Xn] =(X
q
i �Xi; :::; X

q
n�Xn) = q

n = dimFqz(F
n
q ; Fq): (The

�rst equal sign holds in the above sinceXe1
1 :::::X

en
n ; 0 � ei � q�1; 1 � i � n; form

a basis of Fq [X1; ::::; Xn] =(X
q
i �Xi; ::::; X

q
n �Xn): Therefore � is an isomorphism.

The concrete meaning of the theorem is that every function from F nq to Fq

can be uniquely represented as a polynomial in Fq [X1; ::::; Xn] in which the degree

of each Xi is at most q � 1 . In particular, every function from Fq to Fq is uniquely

represented by a polynomial of degree q � 1; in Fq [X] :

2.3 Multivariate Cryptosystems

The �rst such new idea was proposed by Matsumoto and Imai [Matsumoto

and Imai, 1988]. Their key idea was to utilize both the vector space and the hidden

�eld structure of kn, where k is a �nite �eld. More speci�cally, instead of searching

for invertible maps over the vector space kn directly, they looked for invertible maps

on a �eld K, a degree n �eld extension of k, which can also be identi�ed as an n di-

mensional vector space over k: This map could then be transformed into an invertible
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map over kn. This cryptosystem, known as C� or MI, attracted a lot of attention

due to its high e¢ciency and potential use in practical applications. Unfortunately,

MI was broken later in 1995 by Jacques Patarin using an algebraic attack that uti-

lizes linearization equations. This method takes advantage of certain speci�c hidden

algebraic structures in MI: But the new ideas used in its design opened the door to

researchers to exlpore a new family of cryptosystem called Multivariate Quadratic

Cryptosystems (MQC). Many new variants of the MI cryptosystems including the

S�ash signature scheme [Akkar et al., 2003; Patarin et al., 2001], which was accepted

in 2004 as one of the �nal selections for the New European Schemes for Signatures,

Integrity, and Encryption project [NESSIE, 1999] for use in low cost smart cards were

then proposed. Indeed, the work of Matsumoto and Imai has played a critical role

as a catalyst in this new area and has stimulated the subsequent development. In

this chapter, we will present the MI cryptosystem in detail, Patarin�s cryptanalysis

of MI; the family Oil-Vinegar signature scheme and some potential attacks.We will

also introduce a new cryptosystem called Polynomial Type Oil Vinegar signature

scheme; which can be conrideved as a generalization of the the OV schemes.

2.4 The Matsumoto-Imai Cryptosystem

Let k be a �nite �eld with 2e elements, for some positive integer e: Let g(x)

be an irreducible polynomial of degree n over k. Then K = k[x]=g(x) is an extension

of degree n of k. If we write

p(x) =
n�1X

i=0

aix
i and � � x mod p(x),

then, as a vector space over k, K consists of all polynomials of degree � n� 1 in �

with coe¢cients in k; i:e:;

K = f
n�1X

i=0

�i�
ij�0; �1; :::; �n�1 2 kg

Lemma 2.4.1 The mapK �! K de�ned by X 7�! X2e� is k�linear: And therefore
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the map X 7�! X2e�+1 is quadratic.

Proof. Let X and Y be two elements of K; and a and b be teo elements of

k: Since jkj = 2q; a2
q

= a and b2
q

= b. Therefore

(aX + bY)2
q�

= (aX)2
q�

+(bY)2
q�

= a(X)2
q�

+b(Y)2
q�

:

Let � : K ! kn be de�ned by

�(
n�1X

i=0

�i�
i) = (�0; �1; :::; �n�1)

Note that �(a) = �(a; 0; :::::::; 0) 8a 2 k and � is a k- linear map if we treat k as a

sub�eld in K. Now choose � such that 0 < � < n and gcd(q� + 1; qn � 1) = 1 where

gcd(a; b) represents the greatest common divisor of a and b, and let F : K ! K be

de�ned by

F (X) = X2e�+1:

F is called the Matsumoto-Imai function. F is invertible if and only if

gcd(2q� + 1; 2qn � 1) = 1: In this case, F�1 : K ! K is de�ned by

F�1(X) = X t

where t satis�es

t(2q� + 1) � 1 mod (2qn � 1):

We de�ne
s

F : kn ! kn by

s

F = � � F � ��1 = (f1; ::::; fn); where f1; ::::; fn 2 k[x1; ::::; xn]:

To �nish the description of the construction of MI; let

�

F (x1; :::; xn) = L1 � F � L2(x1; :::; xn) = (
�

f1(x1; :::; xn); :::;
�

fn(x1; :::; xn));
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where
�

f1; :::;
�

fn 2 k[x1; ::::; xn] and L1; L2 are invertible transformations over k
n:We

can summarize the construction of MI with the following diagram.

kn
L2�! kn

��1

�! K
s

F
�! K

�
�! kn

L1�! kn:

The Public Key

The public key of the MI consists of the following:

1. The �eld k including its additive and multiplicative structure

2. The n polynomials
�

f1; :::;
�

fn 2 k[x1; ::::; xn]

The Private key

The private key of the MI consists of the following:

1. L1 and L2:

2. �:

To encrypt a plaintext �(X) = (x1; x2; :::; xn); we apply
�

f1; :::;
�

fn and obtain

the ciphertext �(Y ) = (y1; y2; :::; yn): To decrypt, we use the two a¢ne linear maps

L1 and L2; and we invert the composition map above and apply it to the ciphertext

�(Y ) = (y1; y2; :::; yn) to get the plaintext �(X) = (x1; x2; :::; xn): If the 2 a¢ne linear

maps L1 and L2; are unknown, one must solve a system of n quadratic equations

in n unknowns (x1; x2; :::; xn): Since solving a system of n quadratic equations in

n variables is believed to be an NP-hard problem, we conclude that for a large

n encryption is an easy and fast process, while decryption without the secret key

seems to be extremely hard. Therefore, the MI scheme was assumed to be a secure

crpytosystem. Unfortunately, Patarin proved that this scheme is insecure under an

algebraic attack [P] using the notion of linearization equations. We can summarize

the encryption and decryption processes as follows:
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Encryption

Take the plaintext message (x1; :::; xn) and �nd the associated ciphertext

(y1; ::::; yn) =
�

fi(x1; ::::; xn); for i = 1; :::; n

Decryption

We can decrypt the ciphertext (y1; ::::; yn) by executing the following steps:

1. First compute (z1; :::; zn) = L
�1
1 (y1; :::; yn);

2. Second compute (
�
z1; ::::;

�
zn) = � �

s

F � ��1(z1; :::; zn);

3. Finally compute (x1; :::; xn) = L
�1
2 (

�
z1; ::::;

�
zn):

Encryption

x1; :::; xn

#
�

F

#

y1; :::; yn

Decryption

y1; :::; yn

#

L�11

#

F�1

#

L�12

#

x1; :::; xn

Example 2.4.2 Let Fq = F22 = f0; 1; �; �
2g; and n=3 an irreducible polynomial

f(x) = x3+x+1 over F22 : Let � be a root of f =) �3+�+1 = 0:

Next we choose � such that (2�+1; 2n� 1) = 1: We may choose � = 2: which implies

(2�+1; 23�1) = (5; 7) = 1:

map
�

F and its inverse are given by

�

F (X) = X1+42 and
�

F
�1

(X) = X26:
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Let L1 and L2 be given by

L1(x1; x2; x3) =

0

BBBB
@

�2 � �

� 1 0

1 0 1

1

CCCC
A

0

BBBB
@

x1

x2

x3

1

CCCC
A
+

0

BBBB
@

0

1

�

1

CCCC
A

L2(x1; x2; x3) =

0

BBBB
@

1 0 �

0 1 �

1 � 0

1

CCCC
A

0

BBBB
@

x1

x2

x3

1

CCCC
A
+

0

BBBB
@

�

�2

�2

1

CCCC
A

To derive the public key polynomial using the plaintext message variables

x1; x2; x3 we begin by computing �
�1 � L2(x1; x2; x3); which we �nd to be (� + x1 +

�x3) + (�
2 + x2 + �x3)� + (�

2 + x1 + �x2)�
2: If we denote this epression by X

=(x2 + x3 + 1)+(x1 + x3 + 1)�+(x1+x2+x3+1)�
2. Then we compute

�

F (X) = X17,

where X17 = [(x2 + x3 + 1) + (x1 + x3 + 1)� + (x1 + x2 + x3 + 1)�
2]
17
.
�

F (X) = 1+

�2x1+�x2+x3+x1x2+�x1x3+�
2x2x3+(�+�x1+x2+�

2x3+x
2
1+�

2x1x2+x
2
2+x2x3)x+

(�2+�2x1+�x2+�x2+�x3+x
2
1+x1x2+�x1x3+�

2x22+�x2x3+�
2x23)x

2:

we compute L1 � �(X) to get the public key polynomials
�

f 1(x1; x2; x3) = 1 + x3+�x1x3+�
2x22+�

2x22+�
2x2x3+x

2
3

�

f 2(x1; x2; x3) = 1 + �
2x1+�x2+x3+x

2
1+x1x2+�

2x1x3+x
2
2

�

f 3(x1; x2; x3) = �
2x3+x

2
1+�

2x22+x2x3+�
2x23;

Now, for the plaintext (x
0

1; x
0
2; x

0
3) = (1; �; �

2); we have

y01=
�

f 1(1; �; �
2) = 0

y02=
�

f 2(1; �; �
2) = 0

y03=
�

f3(1; �; �
2) = 1

Therefore, the corresponding ciphertext is (0, 0, 1).

To decrypt, we �rst compute L�11 (y
0
1; y

0
2; y

0
3) and

�

F
�1

(X). In deed, we have

L�11 (y
0
1; y

0
2; y

0
3) =

0

BBBB
@

�2 1 1

1 �2 �

�2 1 0

1

CCCC
A

0

BBBB
@

y01 � 0

y02 � 1

y03 � �

1

CCCC
A
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Now if we apply the decryption algorithm, we obtain:

L�11 (0; 0; 1) =

0

BBBB
@

�

�

1

1

CCCC
A

X = � + �x + x2

and
�

F
�1

(X) = X t = X26 = � + x2

Now we have (
�
z1;

�
z2;

�
z3) = (�; 0; 1)

L�12 (y1; y2; y2) =

0

BBBB
@

�2 �2 �

� � �

1 � 1

1

CCCC
A

0

BBBB
@

y01 � �

y02 � �
2

y03 � �
2

1

CCCC
A

L�12 (�; 0; 1) = (1; �; �
2)T which is the plaintext X:

2.5 Patarin Linearization Equations Attack on the MI Cryptosystem

Recall that forX =
n�1X

i=0

aix
i; the central map of MI is given byM : K �! K

de�ned by X 7�! X2e� . Assume that M(X) = Y =
n�1X

i=0

biy
i; then we have

Y = X2e�+1.

By composing on each side of this equation with g : X 7�! X2e��1; we obtain

Y 2
e��1 = X22e��1.

Multiplying both sides by XY yield

XY 2
e�

= Y X22e� .

XY 2
e�

� Y X22e� = 0.
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Now using �(X) = (x1; x2; :::; xn); and �(Y ) = (y1; y2; :::; yn); and the fact that

X 7�! X2e� and Y 7�! Y 2
e�

are linear, we obtain

n�1X

i=0

aixi+
n�1X

i=0

biyi+
n�1X

i=0

n�1X

j=0

cijxiyj+d = 0

De�nition 2.5.1 For X =
n�1X

i=0

aix
i and M : K �! K de�ned by X 7�! X2e� , If

M(X) = Y =
n�1X

i=0

biy
i; with �(X) = (x1; x2; :::; xn); and �(Y ) = (y1; y2; :::; yn); an

equation of the form

n�1X

i=0

aixi +

n�1X

i=0

biyi +

n�1X

i=0

n�1X

j=0

cixiyj + d = 0;

where ai; bi; cij; and d are in k is called a linearization equation for the y
0
is:

If enough plaintext-ciphertext (X; Y ) are substituted in the linearization

equations, we obtain a system of linear equations in (n+ 1)2 variables ai; bi; cij; and

d that can be solved using Gaussian elimination to �nd the coe¢cients ai; bi; cij; and

d. Knowing these coe¢cients, we can �nd any plaintext X given a ciphertext Y:

2.6 Oil-Vinegar Scheme

After defeating the proposed MI cryptosystem, Patarin exploited in 1997

the structure of the linearization equations attack to design a new signature scheme

called Oil-Vinegar signature (OV). The basic building blog for an OV scheme is

the Oil-Vinegar polynomial. An Oil-Vinegar polynomial is a quadratic multivariate

polynomial having o + v = n variables, where o represents the number of oil

variables and v the number of vinegar variables. The nonlinear terms occur only in

the following two cases: between vinegar variables, or with one vinegar variable and

one oil variable. In another words, there is no quadratic term with oil variables only.

More precisely, we have the following de�nition.

De�nition 2.6.1 Let k be a fnite feld with q elements, x1; x2; :::; xo be the o oil

variables and x01; x
0
2; :::; x

0
v the v vinegar variables. An Oil-Vinegar polynomial is
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any total degree two polynomial f 2 k[x1; x2; :::; xo; x
0
1; x

0
2; :::; x

0
v] of the form

f =
oX

i=1

vX

j=1

aijxix
0
j +

vX

i=1

vX

j=1

bijx
0
ix
0
j +

oX

i=1

cixi +
vX

j=1

djx
0
j + e

where aij; bij; ci; dj; e 2 k:

Example 2.6.2 f(x; y; z) = xy+2xz+3y2+4yz+5z2+6x+7y+8z+9

is an oil and vinegar polynomial over the �nite �eld F11 with the oil variable x and

vinegar variables y; z: In this case, o = 1; v = 2 and n = o + v = 3: There is no

quadratic term of the form x2. The nonlinear terms are xy; 2xz; 3y2; 4yz and 5z2:

For these nonlinear terms, 3y2; 4yz; 5z2 are among the �rst case with only with vine-

gar variable related. The remaining xy; 2xz are among the second case with one

vinegar variable and one oil variable. We can also represent f in a matricial form

as following, Let

A =

0

BBBBBBB
@

0 1 2 6

0 3 4 7

0 0 5 8

0 0 0 9

1

CCCCCCC
A

; X =

0

BBBBBBB
@

x

y

z

1

1

CCCCCCC
A

the polynomial f(x; y; z) can be rewritten as XTAX:

Note 1: it is also called an unbalanced oil and vinegar polynomial over F11;

as o < v.

Note 2: it also can be viewed as an oil and vinegar polynomial over the real

�eld

De�nition 2.6.3 A polynomial map F : kn �! ko of the form

F (x1; :::; xo; x
0
1; :::; x

0
v) = (f1; f2; ::::fo);

where f1; f2; ::::fo 2 k[x1; x2; :::; xo; x
0
1; x

0
2; :::; x

0
v] are Oil-Vinegar polynomials is called

an Oil-Vinegar map.
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The public key for the OV schemes is a map F = F � L; where F is an

Oil-Vinegar map and L is an invertible linear map. The composition by L is done in

order to mix the oil and the vinegar variables together. The private key is L: There

is no need to compose with a second linear transformation on the left for the OV.

These schemes are designed only for signature. They are not suitable for encryption.

To sign a message Y = (y1; y2; ::::; yo); we need to �nd a vectorW = (w1; w2; :::; wn)

such that F (W ) = Y: To do so, we �rst choose v random values for the vinegar vari-

ables x01; x
0
2; :::; x

0
v; and we substitute in the system to get o linear equations in the o

variables x1; x2; :::; xo: This linear system has a high probability of having a solution.

If it does not, we change the values of the vinegar variables x01; x
0
2; :::; x

0
v and we try

again until a solution in ko is found. Then we apply L�1: To verify if W is a signature

for Y , it su¢ces to check if F (W ) = Y:

Example 2.6.4 Let k = F2 = (f0; 1g; +;�);

o = 2; v = 2

The polynomial mapping F = (f1; f2; f3; f4) is the following,

f1(x1; x2;
�
x1;

�
x2) =

�
x1
2

+
�
x1
�
x2 +

�
x2
2

+ x1
�
x1 + x2

�
x1 + x2

�
x2 + x1 +

�
x2

f2(x1; x2;
�
x1;

�
x2) =

�
x1
2

+ x1
�
x1 + x2

�
x1 + x1 + x2 +

�
x1 + 1

f3(x1; x2;
�
x1;

�
x2) =

�
x1
2

+
�
x1
�
x2 + x1

�
x1 + x2 + x1 + x2

�
x2

f4(x1; x2;
�
x1;

�
x2) =

�
x1 + x1

�
x1 +

�
x2 + x2 +

�
x2
2

The public key is {f1; f2; f3; f4g: To sign a document (y1; y2; y3; y4) we need

to assign to vinegar variable arbitrary value (
�
x1 = 0;

�
x2 = 1); and solve the linear

system8
>>>>>>><

>>>>>>>:

x1 + x2 = y1

x2 + 1 = y2

x1 = y3

x2 = y4
The solution of the system is x1 = 1; x2 = 1

Therefore the signature of the massege (0; 0; 1; 1); is (1; 1):
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2.7 Polynomial Type of Oil-Vinegar

In this section, we introduced a new multivariate signature called polynomial

oil-vinegar. It can be viewed as generalization of the OV schemes. Let n;m; s 2 Z be

positive integers satisying m = s2 and n = 2m. For a given integer s, let ks denote

the set of all s-tuples of elements of k. We denote the plaintext by (x1; x2; : : : ; xn) 2

kn and the ciphertext by (y1; y2; : : : ; ym) 2 k
m. The polynomial ring with n variables

in k will be denoted by k[x1; : : : ; xn]. Let L1 : k
n ! kn and L2 : k

m ! km be two

linear transformations, i.e.

L1(x) = L1x and L2(y) = L2y;

where L1 and L2 are respectively an n�nmatrix and anm�mmatrix with entries in

k, x = (x1; x2; : : : ; xn)
t, y = (y1; y2; : : : ; ym)

t, and t denote the matrix transposition.

The Central map Let

P =

0

B
@

p1(x)p01(x) p2(x)p02(x) ::: ps(x)p0s(x)

ps+1(x)p0s+1(x) ps+2(x)p0s+2(x) ::: p2s(x)p02s(x)

...
...

...
...

p(s�1)s+1(x)p
0

(s�1)s+1
(x) p(s�1)s+2(x)p

0

(s�1)s+2
(x) ::: p

s2 (x)p
0

s2
(x)

1

C
A ; M =

�
A2�2 B2�k
Cl�2 Dl�k

�
;

and N =

 n1 ::: ns
ns+1 n2s

...
...

...
...

n(s�1)s+1 n(s�1)s+2 ::: n
s2

!

be three s� s matrices,

where pi; p
0
i 2 k[x1; : : : ; xn] are a¢ne and are randomly chosen, N is an invertible

matrix with scalar entries, and M is a block matrix such that B and C have

only scalar entries and A and D have multivariate polynomials linear a¢ne entries.

Furthermore, A is invertible.

Assume that

A =
�
A1 A2
A3 A4

�
;

with A1A4 � A2A3 = a 2 k

Let D = CA�1B + E; where E is an invertible matrix with entries in k:

De�ne H = MPN , and let fij 2 k[x1; : : : ; xn] be the (i; j) element of H.
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Then we obtain with this notation s2 = m polynomials

f11; f12; : : : ; f1s; f21; f22; : : : f2s; : : : fs1; fs2; : : : fss that can be renumerated as

f1; f2; : : : ; fm. We de�ne the central map to be

F(x1; : : : ; xn) = (f1(x1; x2; : : : ; xn); : : : ; fm(x1; x2; : : : ; xn))

and

�F = L2 � F � L1 = ( �f1; �f2; : : : ; �fm);

where L1 : k
n ! kn and L2 : k

m ! km are as above, �fi 2 k[x1; : : : ; xn] are m

multivariate polynomials of degree three. The secret key and the public key are

given by:

Secret Key The secret key is made of the following two parts:

1) The invertible linear transformations L1; L2.

2) The matrices M;N; and P .

Public Key The public key is made of the following two parts:

1) The �eld k, including the additive and multiplicative structure;

2) The maps �F or equivalently, its m total degree two components

�f1(x1; x2; : : : ; xn); : : : ; �fm(x1; x2; : : : ; xn) 2 k[x1; : : : ; xn]:

Signing A signer will sign a message y1; :::; ym with x1; :::; xn satisfying

(y1; y2; : : : ; ym) =
�F(x1; x2; : : : ; xn):

To �nd x1; :::; xn,

1 Compute (�y1; �y2; : : : ; �yn) = L
�1
2 (y1; y2; : : : ; ym).

2 Put H =

0

@
�y1 �y2 ::: �ys
�ys+1 �ys+2 ::: �y2s
...

...
...

...
�y(s�1)s+1 �y(s�1)s+2 ::: �y

s2

1

A ;
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Since H = MPN , we have P = M�1HN�1. Notice here that M and N are

invertible polynomial matrices and M�1 and N�1 can be easily found.

3 Assign arbitrary value to each p0i(x); i = 1; 2; :::; s
2:

4 Solve the new linear system P = M�1HN�1 for x1; :::; xn. If there is no

solution, we choose new values for the p0i(x); i = 1; 2; :::; s
2 and we repeat step

4. Let (�x1; �x2; : : : ; �xn) be the solution.

5 Compute (x1; x2; : : : ; xn) = L
�1
1 (�x1; �x2; : : : ; �xn). The signature is (x1; x2; : : : ; xn)

Veri�cation

Anyone can verify the signature by computing (y1; y2; : : : ; ym) = �F (x1; x2; : : : ; xn):

If true we accept. Otherwise we reject.

Example 2.7.1 let m = s2; n = 2m; and s = 3; so m = 9; n = 18:

Let Central map be

P =

0

BBBB
@

p1(x)p
0
1(x) p2(x)p

0
2(x) p3(x)p

0
3(x)

p4(x)p
0
4(x) p5(x)p

0
5(x) p6(x)p

0
6(x)

p7(x)p
0
7(x) p8(x)p

0
8(x) p9(x)p

0
9(x)

1

CCCC
A

where pi; p
0
i 2 k [x1; ::::; x18] ; i = 1; :::; 9 are a¢ne. We can assume

p1= x1+x5; p01= x1+x6;

p2= x3+x5+1; p02= x2+x5; p3= x1+1; p03= x12+x13;

p4= x13+1; p04= x13+x17;

p5= x5+x16+1; p05= x5+1;

p6= x13+x14+x15; p06= x2+x4+x13;

p7= x17+1; p07= x16+x17;

p8= x15+x18; p08= x18+1;

p9= x1+1; p09= x1+x18:
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We can write P as

P =

0

BBBB
@

A B C

D E F

G H I

1

CCCC
A

where

A = p1(x)p
0
1(x) = x

2
1 + x1x6 + x1x5 + x5x6.

B = p2(x)p
0
2(x) = x2x3 + x3x5 + x2x5 + x

2
5 + x2 + x5.

C = p3(x)p
0
3(x) = x1x12 + x1x13 + x12 + x13.

D = p4(x)p
0
4(x) = x

2
13 + x13x17 + x13 + x17.

E = p5(x)p
0
5(x) = x

2
5 + x5x16 + x16.

F = p6(x)p
0
6(x) = x2x13+x4x13+x

2
13+x2x14+x4x14+x13x14

+x2x15 + x4x15 + x13x15.

G = p7(x)p
0
7(x) = x16x17 + x

2
17 + x16 + x17.

H = p8(x)p
0
8(x) = x15 + x18 + x15 + x

2
18 + x18.

I = p9(x)p
0
9(x) = x

2
1 + x1x18 + x1 + x18.

Choose

N =

0

BBBB
@

1 0 0

1 0 1

1 1 1

1

CCCC
A

and M =

0

B
@
A2x2 B2xk

CLx2 DLxk

1

C
A ;

Where C;B are 1 � 1 matrices and A and D are multivariate a¢ne polynomials

given by

A =

0

B
@

x1 + x3 x1 + x3 + 1

x3 + x1 + 1 x3 + x1

1

C
A ;

Note that (x1 + x3)(x3 + x1)� (x1 + x3 + 1)(x3 + x1 + 1) = 1 6= 0.

And

B =

0

B
@
1

0

1

C
A ;
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C =

�
1 1

�
;

D = (x3 + x2):

We can rewrite M as:

M =

0

BBBB
@

A1 B1 C1

D1 E1 F1

G1 H1 I1

1

CCCC
A
;

where A1 = x1 + x3; B1 = x1 + x3 + 1; C1 = 1; D1 = x3 + x1 + 1; E1 =

x3 + 1; F1 = 0; G1 = 1; H1 = 1; I1 = x3 + x2:

De�ne H =MPN . To calculate H, we �rst compute MP and obtain

MP =

0

BBBB
@

A0 B0 C 0

D0 E 0 F 0

G0 H 0 I 0

1

CCCC
A
;

where

A0= x31+x
2
1x6+x

2
1x5+x1x6+x

2
1x3+x1x3x6+x3x6+x2x

2
3+x

2
3x5+x2x3x5+x3x

2
5

+x1x2x3+x1x2x5+x1x
2
5+x1x2+x1x5+x2x5+x

2
5+x2+x5:

B0= x1x2x3+x1x3x5+x1x2x5+x1x
2
5+x1x2+x1x5+x1x12+x1x13+x12x13:

C0= x21+x1x6+x1x5+x6+x1x3x12+x1x3x13+x3x12+x3x13+x1x2x12+

x1x2x13+x2x12+x2x13:

D0= x1x
2
13+x1x13x17+x1x13+x1x17+x3x

2
13+x3x13x17+x3x13+x3x17+x3x

2
5

+x3x5x16+x3x16+x3+x1x
2
5+x1x5x16+x1x16+x1+x

2
5+x5x16+x16+1:

E0= x1x
2
13+x1x13x17+x1x13+x1x17+x3x

2
13+x3x13x17+x3x13+x3x17+x

2
13+

x13x17+x13+x17+x3x
2
5+x3x5x16+x3x16+x3+x

2
5+x5x16+x16+1+

x2x13+x4x13+x
2
13+x2x14+x4x14+x13x14+x2x15+x4x15+x13x15:

F0= x213+x13x17+x13+x17+x2x3x13+x3x4x13+x3x
2
13+x2x3x14+x3x4x14+

x3x13x14+x2x3x15+x3x4x15+x3x13x15+x
2
2x13+x2x4x13+x2x

2
13+x

2
2x14+

x2x4x14+x2x13x14+x
2
2x15+x2x4x15+x2x13x15:

G0= x1x16x17+x1x
2
17+x1x16+x1x17+x3x16x17+x3x

2
17+x3x16+x3x17+
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x3x15x18+x3x15+x3x
2
18+x3x18+x1x15x18+x1x15+x1x

2
18+x1x18+

x15x18+x15+x
2
18+x18:

H0= x1x16x17+x1x
2
17+x1x16+x1x17+x3x16x17+x3x

2
17+x3x16+x3x17+

x16x17+x16+x3x15x18+x3x15+x3x
2
18+x3x18+x15x18+x15+x

2
18+

x218+x
2
1+x1x18+x1+x18:

I0= x16x17+x
2
17+x16+x17+x

2
1x3+x1x3x18+x1x3+x3x18+x

2
1x2+

x1x2x18+x1x2+x2x18:

Next, we compute H =MPN to obtain

H = MPN =

0

BBBB
@

A0 B0 C 0

D0 E 0 F 0

G0 H 0 I 0

1

CCCC
A

0

BBBB
@

1 0 0

1 0 1

1 1 1

1

CCCC
A

So

H =

0

BBBB
@

A0 +B0 + C 0 C 0 B0 + C 0

D0 + E 0 + F 0 F 0 E 0 + F 0

G0 +H 0 + I 0 I 0 H 0 + I 0

1

CCCC
A
;

where

f1= A
0+B0+C0

= x31+x
2
1x6+x

2
1x5++ x

2
1x3+x1x3x6+x3x6+x2x

2
3+x

2
3x5+x2x3x5+x3x

2
5+

x1x
2
5+x1x2++ x2x5+x

2
5+x2+x5+x1x3x5+x1x

2
5+

x1x2+x1x12+x1x13+x12x13+x
2
1++ x1x5+x6+x1x3x12+x1x3x13+x3x12+

x3x13+x1x2x12+x1x2x13+x2x12+x2x13:

f2= C
0

= x21+x1x6+x1x5+x6+x1x3x12+x1x3x13+x3x12+x3x13+x1x2x12+

x1x2x13+x2x12+x2x13:

f3= B
0+C0

= x1x2x3+x1x3x5+x1x2x5+x1x
2
5+x1x2++ x1x12+x1x13+x12x13+

x21+x1x6+x6+x1x3x12+x1x3x13+x3x12+x3x13+x1x2x12+x1x2x13+

x2x12+x2x13:
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f4= D
0+E0+F0

= x3x
2
5+x3x5x16+x3x16+x1x

2
5+x1x5x16+x1x16+x1+x5x16+x16+x3x

2
5+

x3x5x16+x3x16+x5x16+x16+x2x13+x4x13+x2x14+x4x14+ x13x14+x2x15+

x4x15+x13x15+x
2
13+x2x3x13+x3x4x13+x3x

2
13+x2x3x14+x3x4x14+x3x13x14+

x3x4x15+x3x13x15+x
2
2x13+x2x4x13+x2x

2
13+x

2
2x14+x2x4x14+x2x13x14+

x22x15+x2x4x15:

f5= F
0

= x213+x13x17+x13+x17+x2x3x13+x3x4x13+x3x
2
13+x2x3x14+x3x4x14+

x3x13x14+x2x3x15+x3x4x15+x3x13x15+x
2
2x13+x2x4x13+x2x

2
13+x

2
2x14+

x2x4x14+x2x13x14+x
2
2x15+x2x4x15+x2x13x15:

f6= E
0+F0

= x1x
2
13+x1x13x17+x1x13+x1x17+x3x

2
13+x3x13x17+x3x13+x3x17+x13x17+

x3x
2
5+x3x5x16+x3x16+x3+x

2
5+x5x16+

x16+1 + x2x13+x4x13+x
2
13+x2x14+x4x14++ x13x17+x2x3x13+x3x4x13+x3x

2
13+

x2x3x14+x3x4x14+x3x13x14+x2x3x15+

x3x4x15+x3x13x15+x
2
2x13+x2x4x13+x2x

2
13+x

2
2x14+x2x4x14+x2x13x14+

x22x15+x2x4x15+x2x13x15:

f7= G
0+H0+I0

= x3x15x18+x3x15+x3x18+x1x15x18+x1x15+x1x
2
18+x1x18+x15x18+x15+x

2
18+

x16x17+x16+x3x15x18+x3x15+x15x18+x15+

x21+x1x18+x1+x16x17+x
2
17+x16+x17+x

2
1x3+x1x3x18+x1x3+x

2
1x2+x1x2x18+

x1x2+x2x18:

f8= I
0

= x16x17+x
2
17+x16+x17+x

2
1x3+x1x3x18+x1x3+x3x18+x

2
1x2+x1x2x18+x1x2+

x2x18:

f9= H
0+I0

=x1x16x17+x1x
2
17+x1x16+x1x17+x3x16x17+x3x

2
17+x3x16+x3x17+x16x17+

x3x15x18+x3x15+x3x
2
18+x15x18+x15+x

2
1+x1x18+x1+x18+x16x17+x

2
17+x17

+x21x3+x1x3x18+x1x3+x
2
1x2+x1x2x18+x1x2+x2x18:

To complete the construction, we have de�ne the cental map to be :



28

F(x1; : : : ; x18) = (f1(x1; x2; : : : ; x18); : : : ; f9(x1; x2; : : : ; x18))

Finally the pablic key
�

F will be obtained by performing the composition
�

F=L2�

F � L1;where L2 and L1 are any two linear a¤ain maps.
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Chapter 3: Some Algebraic Aspects of Threshold Functions

In this chapter, we use the theory of group ring to derive some algebraic

properties of threshold functions.

3.1 Group Ring

De�nition 3.1.1 Let K be a �eld and G be an abelian group. We de�ne the group

ring KG to be the set of all formal sums of the form
P

�2G a� � � with a� 2 K: The

addition, the scalar multiplication, and the multiplication in KG are respectively

de�ned as follow:

(
X

a���) + (
X

b���) =
X

(a�+b�)�;

b(
X

a���) =
X

(ba�) � �;

(
X

a���)_(
X

b���) =
X

(a�b�) � �:

The associative law in G guarantees the associativity of multiplication inKG.

So KG is a ring.

3.2 Threshold Functions

In this section, we look in detail of the family to threshold functions from

F np to Fp:

De�nition 3.2.1 Let Zp = {0 , 1,2,......,p-1} and Znn the Cartesian power of Zp

which Znp = {a1; a2; ::::::::::; an } , where a1; a2; ::::::::; an 2 Zp: A threshold function

f : Znp ! Zp is a

f(x)=

8
>>>>>>>>>><

>>>>>>>>>>:

0 X � wT < A1

1 A1 � X � w
T < A2

: :

: :

p� 1 X � wT > Ap�1
where
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1. w = (w1; :::::::; wn) 2 R
n; is called weight.

2. A1; A2; :::; Ap are a real numbers de�ning and satifying the threshold ,and A1 <

A2 < ::: < Ap:

3. T is the matrix transposition .

Example 3.2.2 Let Z2 = {0 , 1} and Zn2 the Cartesian power of Z2 which Zn2

= {(a1; a2; ::::::::::; an), where a1; a2; ::::::::; an 2 Z2g: And f : Z
n
2 ! Z2 we de�ne by

f(X)=

8
><

>:

0 X:wT < A1

1 A1 � X:w
T

:

Let G be a �nite group, and R be a �eld, or ring then

RG = fu =
P

g2G

�gg :g 2 G, and �g 2 Rg is a group ring.

Example 3.2.3 Let G = fa; b; cg and R = F2= {
�

0 ,
�

1 }

then RG = fu =
P

g2G

�gg = �aa+ �bb+ �cc : where �i = 0 or 1g

If we choose G=Z2 � ::: � Z2 and RG to be the group ring over the real

number R; then every element g 2 G can be uniquely represented in the form g =

ax11 :::a
xn
n ; where (x1; x2; :::; xn) 2 Z

n
2 and the ai are such that G =< a1 > � < a2 >

�::::::::� < an >. Therefore each element g = ax11 :::a
xn
n 2 G canbe identi�ed with

the corresponding vector (x1; x2; :::; xn) 2 Z
n
2 :

De�nition 3.2.4 Let u =
P

g2G

�gg 2 RG: For g = a
x1
1 :::a

xn
n ; we de�ne fu : G ! R

by f(g) = f(x1; x2; :::; xn) = �g:Denoted by F the set of all elements in RG whose

coe¢cients are restricted to Z2:then F is one-to-one correspondance with the set of

all boolean functions. The correspondance is given by: f  ! u.

Remark 3.2.5 An element u of the RG is called P -element if f corresponding to u

is threshold function.

Remark 3.2.6 If u1 6= u2 =) 9g 2 G;�g(u1) 6= �g(u2) =) fu1 6= fu2 :
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let 
 = {w =< w1; w2; ::::; wn >: X , Y 2 Zn2 and X 6= Y where X =<

x1; x2; ::::; xn >; Y =< y1; y2; ::::; yn >.Then X:w 6= Y :wg:

�(w) = f(X; Y ) : X =< x1; x2; ::::; xn >; Y =< y1; y2; ::::; yn >;and X:w
T >

Y :wTg:

De�nition 3.2.7 for w1 and w2 2 
 , we say w1 is equivalent to w2 if �(w1) =

�(w2):we will say denote by Q(w) the class of all threshold functions that can be

realized with the vector w:

Now we consider three operations conserving threshold property of Boolean

function:

A- again we know u=
P

g2G

�gg 2 GR ( group ring ), let fu be a threshold

function corresponding to u . And fu(g) = f(x1; x2; :::; xi; :::; xn) = �g:Then we get

a new threshold function: f 1(x1; x2; :::;
�
xi; :::; xn); if u $ fu. If f

1 is obtained from

fu (by inverting the i
th coordinate), then f 1 is a new threshold function associated

to uai (f
1 $ uai = u1);where u1 = aiu = ai

P

g2G

�gg =
P

g2G

(�gai)g: The mapping

u! aiu is automorphsim of the addition group of the group ring.

B- let ' be an automorphsim of G. (i; e ' : G ! G;'(ak) = ak 8k 6= i; j)

and fu(g) = f(x1; x2; :::; xi; :::; xj; :::; xn) = �g. We get another threshold function:

f 2(x1; x2; :::; xj; :::; xi; :::; xn); if u$ fu, and f
2 $ fu; is obtained from the threshold

function f by interchanging two input variables xi; xj: So '(ai) = aj and '(aj) = ai:

C- Again fu(g) = f(x1; x2; :::; xi; :::; xj; :::; xn). Assume f  ! u; and u =
P

g2G

�gg . We get another threshold function:

f 4(x1; x2;::::; xn) =xj � f(x1 � xj; x2 � xj; ::::xj�1 � xj; xj+1 � xj;::::; xn � xj

where � is addition mod p. And let Hj = < a1 > �:::::� < aj�1 > � <

aj+1 > �:::::� < an > :Then f
4  ! � with � = (

P

g2Hj

�gg)(a1a2:::::aj�1aj+1::::an) +
P

g2Hj

g +
P

g2ajHj

�gg:
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Lemma 3.2.8 Let f be a Boolean function, and assume that f is a threshold

function with w1 2 
 and real number A. And if w1 s w2, then 9A 2 R such that

w2 and A can realize also f:

Proof. We have f(x)=

8
><

>:

0 X � wT < A

1 X � wT � A

Let X = ff�1(0)g = fX : f(X) = 0gandX1 = fX : X �wT is the maximum}.

Assume w1 s w2 =) �(w1) = �(w2), �(w1) = f(X; Y ) : X � w1
T > Y � w1

Tg

= �(w2) since �(w1) = �(w2) =) X1 = fX : X � w1
T is the maximum}

={X : X:w2
T is the maximum}. Let X 2 X1 =) X:w1

T = B < A =)

X � w2
T = B1 < A consider the interval

�
B1;minfx:w2

T : f(X) = 1g
�
= C1

and let A be any number between B1 and C1. Then for any X such that

X �wT2 < B1 =) X �wT2 < A;and any X such thatX �wT2 � C1 =) X �wT2 � A

=) f(x)=

8
><

>:

0 X � wT < A

1 X � wT � A
=) [w2; A] realize f as a threshold function.

Example 3.2.9 Let n= 3, and f : Z32 �! Z2:

since Z32 = fx1 = (0; 0; 0); x2 = (0; 0; 1); x3 = (0; 1; 0); x4 = (0; 1; 1)

x5= (1; 0; 0); x6= (1; 0; 1); x7= (1; 1; 0); x8= (1; 1; 1)g:

Choose w1 = (1; 3; 5) and A = 5:

Find - �(w1) = f(X; Y ) : X:w1
T > Y :w1

Tg;where X; Y 2 Z32:

The values of xi � w1
T are given by:

x1:w
T
1 = (0 0 0)(1 3 5)

T = 0

x2:w
T
1 = (0 0 1)(1 3 5)

T = 5

x3:w
T
1 = (0 1 0)(1 3 5)

T = 3

x4:w
T
1 = (0 1 1)(1 3 5)

T = 8

x5:w
T
1 = (1 0 0)(1 3 5)

T = 1

x6:w
T
1 = (1 0 1)(1 3 5)

T = 6

x7:w
T
1 = (1 1 0)(1 3 5)

T = 4

x8:w
T
1 = (1 1 1)(1 3 5)

T = 9
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Using the de�nition of �(w) we obtain;

�(w1) = f(x2; x1); (x3;x1); (x4; x1); (x5; x1); (x6; x1); (x7; x1); (x8; x1)

(x2; x3); (x4; x2); (x2; x5); (x6; x2); (x8; x2); (x4; x3); (x3; x5); (x6; x3)

(x7; x3); (x8; x3); (x4; x5); (x4; x6); (x4; x7); (x8; x4); (x6; x5); (x7; x5)

(x8; x5); (x6; x7),(x8; x6); (x8; x7)g

If we choose w2 = (2; 3; 4), then the xi:w
T
2 are given by:

x2:w
T
2 = (0 0 0)(2 3 4)

T = 0

x2:w
T
2 = (0 0 1)(2 3 4)

T = 4

x3:w
T
2 = (0 1 0)(2 3 4)

T = 3

x4:w
T
2 = (0 1 1)(2 3 4)

T = 7

x5:w
T
2 = (1 0 0)(2 3 4)

T = 2

x6:w
T
2 = (1 0 1)(2 3 4)

T = 6

x7:w
T
2 = (1 1 0)(2 3 4)

T = 5

x8:w
T
2 = (1 1 1)(2 3 4)

T = 9

Therefore �(w2) = f(x2; x1); (x3;x1); (x4; x1); (x5; x1); (x6; x1); (x7; x1); (x8; x1)

(x2; x3); (x4; x2); (x2; x5); (x6; x2); (x8; x2); (x4; x3); (x3; x5); (x6; x3)

(x7; x3); (x8; x3); (x4; x5); (x4; x6); (x4; x7); (x8; x4); (x6; x5); (x7; x5)

(x8; x5); (x6; x7),(x8; x6); (x8; x7)g

Notice that �(w1) = �(w2):

Now we �nd X = fx 2 Z32 : f(x) = 0g such that f(x)=

8
><

>:

0 x:wT1 < A1

1 x:wT1 � A1

;

for A1 = 5;to �nd A2we �rst compute:

X1 = fx 2 X : x:wT is maximum}, i:e:X1 = x6:

Then, we haveB1 = fx6:w
T
2 is also the maximum}, i:e: B1 = 6:

Also C1 = min { x:wT2 : f(x)=1}. Choose A2 such that B1 < A2 � C1; we

can choose A = 6:

f(x1)=

8
><

>:

0 x:wT2 < A2

1 x:wT2 � A2

; X2 = fx 2 Z
3
2 : f(x1) = 0g;

so X2 = fx1; x2; x3; x5; x6; x7g: Hence w1 v w2:
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Chapter 4: Conclusion

We conducted the analysis of Multivalued threshold function and the Multi-

variate polynomials which present the two main families over �nite �elds that have

been studied over this thesis. Both of these families play essential role in present

areas such as cryptography, circuit complexity, learning theory, social choice, quan-

tum complexity, and many other aspects. Many other researchers had worked on

establishing in new design of quantum multivariate cryptosystems which most of

them seem to be insecure. The aim of this thesis is to introduce new cryptosystem

that suppose to resist quantum computers attacks. In this thesis four chapters have

been presented. The �rst chapter describes an introduction about the �nite �eld

and cryptosystem include their histories. De�nition, properties, and construction

in addition to multivariate cryptosystem and oil-vinegar have been discussed in the

second chapter of this thesis. the third chapter include description to some aspects

of threshold function and group ring.
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