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Abstract

It is well-known that differential equations (DEs) play an important role in many

sciences. They are mathematical representations of many physical systems. By study-

ing such DEs, one gains a lot of important insights about the physical system. Solutions

of DEs provide information on the physical system behavior. As many physical sys-

tems are nonlinear in nature, this naturally gives rise to nonlinear differential equations

(NLDEs). Such NLDEs are, in most cases, hard or sometimes impossible to solve

analytically. In such situations, we resort to numerical techniques to approximate the

solutions. The purpose of this thesis is to consider nonlinear multi-layer boundary

value problems and seek approximate solutions. Many methods exist in the literature

to numerically solve nonlinear boundary value problems. However, only few papers

dealt with nonlinear multi- layer boundary value problems. In this work, we employ

the homotopy analysis method (HAM) as the method of choice. We consider a real

physical system dealing with the fluid flow in multi-channel porous media whose gov-

erning equations is exactly a nonlinear multi-layer boundary value problem.

Keywords: Boundary value problems, Multi-layer boundary value problems, Finite

difference method, Shooting method, Homotopy analysis method, Porous media.
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Chapter 1: Introduction

Differential equations (DEs) play an important part in many scientific areas of

science and engineering [1, 3]. They are the mathematical representations of many

physical systems [7, 8]. Studying differential equations and in particular seeking solu-

tions to them is of great importance. On one hand, one do not need to run real experi-

ments on the system, which may be costly and time consuming, in order to know the

behavior of the system. Instead, by simulating the differential equations, one achieves

great insights into the behavior of the physical system. Because many physical sys-

tems are naturally nonlinear, the differential equation governing the system would be

nonlinear as well.

The theory of differential equations is well established in the literature [1, 15,

16, 17]. For linear differential equations, the theory is more established than that of

nonlinear ones. Nonlinear differential equations are usually harder to deal with, in

particular nonlinear boundary value problems. Boundary value problems have been

extensively studied theoretically and numerically by many researchers. The theory

of the existence and uniqueness of solutions of various types of differential equations

have been studied and documented well in the literature [19, 15, 16, 17]. For instance,

[19] contains a comprehensive survey.

A lot of research has been conducted to design numerical schemes to approx-

imate the solution of boundary value problems [4]-[5]. Many of these methods use a

finite difference approach by discretization and approximating the derivatives by finite

difference formulas. Other schemes approximate the solution as a linear combination

of some basis functions and then solve for the expansion coefficients. Other methods

solve boundary value problems via solving other initial value problems such as the

nonlinear shooting method [1]. In fact, this approach of considering initial value prob-

lems have been in the proof of prove existence and uniqueness of solutions to boundary
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value problems [13, 15].

In the present work, we are concerned with what is called multi-layer boundary

value problem. In particular, we interested in following second-order problem

y′′ = fi(x,y,y′), x ∈ [xi−1,xi], i = 1,2, . . . ,N, (1.1)

subject to the the following boundary conditions

y(x0) = α, y(xN) = β (1.2)

y(x−i ) = y(x+i ), i = 1,2, . . . ,N, (1.3)

y′(x−i ) = y′(x+i ), i = 1,2, . . . ,N., (1.4)

where is [xi−1,xi] is the ith subdomain and the overall domain is [a,b] = [x0,xN ]. The

functions fi, 1 ≤ i ≤ N, are the functions that define the differential equation in the

ith subdomain. The boundary conditions in (1.3) and (1.4) require the solution y(x)

to be continuous and smooth across the nodes xi. Note that the nodes xi need not be

uniformly distributed in the interval [a,b] as displayed in Figure 1.1.

Figure 1.1: Domain decomposition of [a,b]

It is worth mentioning that although the literature is rich with papers dealing

with boundary value problems defined over a single interval, only few papers dealt with

problems like (1.1)-(1.4). This prompted us to consider such a problem. Moreover,

we found that the boundary value problem (1.1)-(1.4) has many applications. One

application, which we consider in this work, is in fluid flow through different layers

of porous channels in which the boundary conditions (1.2) and (1.3) - (1.4) have real

physical meaning.

The thesis is organized as follows. In Chapter 2, we review regular boundary
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value problems over a single interval and state results found in the literature concerning

the existence and uniqueness of solutions. We also, review some most used numerical

methods, and present some numerical examples. Chapter 3 will be concerned with

the relatively new method, the homotopy analysis method [29], where we give, in

details, its derivation. In Chapter 4, we consider multi-layer boundary problems and

present three possible numerical methods that could be used for such boundary value

problems, namely the finite difference method, the shooting method, and the homotopy

analysis method. In Chapter 5, we apply the homotopy analysis method to solve multi-

layer boundary problems arising in the modelling of fluid flow through multi-layer

porous channels. Finally, concluding remarks and possible future work is mentioned

in Chapter 6.
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Chapter 2: Boundary Value Problems

In this chapter we shall review boundary value problems over a single interval.

In particular, we consider second-order nonlinear boundary value problems. We state

theorems pertaining to the existence and uniqueness of solutions and present some

numerical methods used widely.

A second-order boundary problem has the form

y′′(x) = f (x,y,y′), x ∈Ω, (2.1)

subject to the boundary condition

B(y(x)) = 0, x ∈ ∂Ω, (2.2)

where Ω is the domain of interest and ∂Ω is the boundary of Ω.

2.1 Existence and Uniqueness Theorems

It is well known that many differential equations under boundary conditions

may admit no solutions, a unique solution, or many solutions. The problem of deter-

mining whether a given boundary problem admits a solution (a least one) or admits a

unique solution is not an easy task. For example, the following boundary value prob-

lem [18]

u′′(x)+ sin(u(x)) = 0, a < x < b, (2.3)

u(a) = α, u(b) = β , (2.4)
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admits more than one solution for |b−a|> π . This example shows that existence does

not imply uniqueness. Finding sufficient and/or necessary conditions for the existence

(and uniqueness) of solutions to nonlinear boundary value problems have caught the

attention of many researchers in this field. In the 1960s, a series of papers [9]-[18], and

references therein, have studied the problem. Many of them have given only sufficient

conditions for the existence of unique solution, and others have given necessary and

sufficient conditions.

In this section we limit our discussion about existence and uniqueness by stat-

ing the following theorem which can be found in many books and articles in the litera-

ture [1, 13]. The theorem gives a sufficient condition for a boundary value problem of

the form

y′′(x) = f (x,y,y′), a < x < b, (2.5)

a0y(a)−a1y′(a) = α,

b0y(b)+b1y′(b) = β ,
(2.6)

to have a unique solution, where a0a1 6= 0 and b0b1 6= 0.

Theorem 2.1.1. [35] Suppose that the function f (x,y,y′) in (2.5) and its partial deriva-

tives fy and fy′ are continuous on the set

D = {(x,y,y′)
∣∣a < x < b,−∞ < y,y′ < ∞}.

If

∂ f
∂y

> 0 and
∣∣∣∣ ∂ f
∂y′

∣∣∣∣≤M < ∞, (2.7)

then the BVP (2.5)-(2.6) has a unique solution for any α and β , where ai ≥ 0, i = 0,1

and bi ≥ 0, i = 0,1, with a0 +b0 > 0.

The proof of Theorem 2.1.1 can be found in [35]. For the convenience of the

reader, we provide the proof, in details. The proof is based on the following theorem
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and lemma both of which can be found in [35].

Theorem 2.1.2. Let R = {(t,u1,u2) | t ∈ [a,b],u1,u2 ∈R}. suppose the function f (t,u1,u2)

is a uniformly Lipschitz in u1,u2, i.e.,

| f (t,u1,u2)− f (t,v1,v2)| ≤M1|u1− v1|+M2|u2− v2|,

the initial value problem

y′′ = f (x,y,y′), a < x < b, (2.8)

a0y(a)−a1y′(a) = α,

c0y(a)− c1y′(a) = s,
(2.9)

admits a unique solution, y(x;s), for any s, where a1c0−a0c1 6= 0.

Without loss of generality, we may assume that a1c0−a0c1 = 1.

Lemma 2.1.3. Suppose that a function φ : R→ R is such that φ ′ is bounded away from

0, i.e., φ ′(x) ≥ c > 0 or φ ′(x) ≤ c < 0, for some c, then there exists a unique s∗, such

that φ(s∗) = 0.

Proof of Theorem 2.1.1

The main idea of the proof is to show that there exists only one s such that the solution

y(x;s) of the initial value problem (2.8)–(2.9) satisfied the second boundary condition

(at x = b) in (2.6), since it already satisfies the first boundary condition (at x = a) in

(2.6). This is done by proving that the function

φ(s) = b0y(b;s)+b1y′(b;s)−β = 0 (2.10)

admits only one solution s∗. This is in turn proven, using Lemma 2.1.3, by showing

that φ ′(s) = b0
∂y(b;s)

∂ s + b1
∂y′(b;s)

∂ s is bounded away from zero. To this end, let ζ (x) =
∂y(x;s)

∂ s
. Then by differentiating (2.8) with respect to s, we get

ζ
′′(x) = p(x)ζ ′(x)+q(x)ζ (x), (2.11)
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with

p(x) =
∂ f (x,y,y′)

∂y′
, q(x) =

∂ f (x,y,y′)
∂y

. (2.12)

Similarly, differentiating the initial condition (2.9) with respect to s, we get

a0ζ (a)−a1ζ
′(a) = 0, (2.13)

c0ζ (a)− c1ζ
′(a) = 1. (2.14)

By the assumption a1c0−a0c1 = 1, it is easy to see that ζ (a) = a1 and ζ ′(a) = a0. Now

we have the claim that ζ (x) > 0 for all a ≤ x ≤ b. To prove this, note that if a1 = 0,

then a0 > 0. This means that ζ (a) = 0 and ζ ′(a) > 0 which means that z(x) > 0 in

(a,a+ ε) for some ε . Similarly if a1 > 0 (and thus a0 ≥ 0), also we have z(x) > 0 in

(a,a+ ε) for some ε . Now assume the contrary that ζ (x) 6> 0 for all x ∈ [a,b]. Then

there exists x∗ such that ζ (x∗)≤ 0. This means that ζ (x) have a positive maximum in

(a,x∗). If a0 > 0, then ζ ′(a) = a0 = 0, then the positive maximum cannot occur at a.

If a0 = 0, then and ζ ′(a) = 0 and ζ (a) = a1 > 0 and from (2.11), we have

ζ
′′(a) = p(a)ζ ′(a)+q(a)ζ (a)> q(a)ζ (a), (2.15)

by assumption of Theorem 2.1.1 that q(x) > 0. This means that z′′(a) > 0 and the

positive maximum of ζ (x) cannot occur at a. Therefore, the positive maximum occurs

in the interior of (a,x∗), say at some x0 ∈ (a,x∗), where ζ (x0) > 0, ζ ′(x0) = 0, and

ζ ′′(x0)< 0. But from (2.11), we have

ζ
′′(x0) = p(x0)ζ

′(x0)+q(x0)ζ (x0) = q(x0)ζ (x0)> 0,

which is a contradiction. Therefore there does not exist an x∗ such that ζ (x∗)≤ 0, and

the claim ζ (x)> 0 for all x ∈ [a,b]. Now from (2.11), ζ (x) and q(x)> 0 for x ∈ [a,b],

we have

ζ
′′(x)≥ p(x)ζ ′(x) (2.16)
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Using the positive integrating factor µ(x) = e
∫ x

a p(t)dt , it is easy to see that

ζ (x) = a1 +a0

∫ x

a
e
∫ t

a p(r)drdt (2.17)

Now from the hypothesis of 2.1.1 that |p(x)|=
∣∣∣ ∂ f

∂y′

∣∣∣≤M, we have p(x)≥−M. It can

then be easily deduced that

ζ (x)> a1 +a0

(
1− e−M(x−a)

M

)
> 0 (2.18)

This completes that proof that ζ (x)> 0 and then its is easy to see that

φ
′(s) = b0ζ (b)+b1ζ

′(b)> 0, (2.19)

since ζ (b) > 0, ζ ′(b) ≥ 0, b0 ≥ 0, b1 ≥ 0 with b0b1 6= 0. This proves that φ ′(s) is

bounded away from from zero. Thus, by Lemma 2.1.3,

φ(s) = b0y(b;s)+b1y′(b;s)−β = 0 (2.20)

has only one solution s∗ and consequently y(b,s∗) is the unique solution to (2.5)-(2.6).

This completes the proof of Theorem 2.1.1.

2.2 Method of Solutions

In this section, we shall review two main numerical methods for solving non-

linear boundary value problems with Dirichlet boundary conditions

y′′(x) = f (x,y,y′), a < x < b, (2.21)

subject to

y(a) = α, y(b) = β . (2.22)

Of course, needless to mention that there are many other methods to solve nonlinear

boundary value problems. However, in this thesis, we shall consider the finite dif-

ference method (Section 2.2.1) and the shooting method (Section 2.2.2) as being the



9

most popular methods. It is important to mention that each method has its merits and

disadvantages.

2.2.1 The Finite Difference Method

The finite different method works by discretizing the differential equation us-

ing nodes xi ∈ [a,b] and transforming the boundary value problem into a system of

equations in the unknowns y(xi). Let xi, i = 0,1, . . . ,xn, be a uniform discritization of

the interval [a,b], with

xi = a+hi, i = 0,1, . . . ,n,

where h = b−a
n is the step size and n the number of subintervals. Note that x0 = a and

xn = b.

The first and second derivatives, y′ and y′′, at a node xi, is approximated using

some quadrature. Using central differences, we have

y′(xi)≈
yi+1− yi−1

2h
, i = 1,2, . . . ,n−1,

y′′(xi)≈
yi+1−2yi + yi−1

h2 , i = 1,2, . . . ,n−1.
(2.23)

Discritizing (2.21), we obtain

yi+1−2yi + yi−1

h2 = f (xi,yi,
yi+1− yi−1

2h
), i = 1,2, . . . ,n−1. (2.24)

The boundary conditions (2.22) imply

y0 = α, yn = β . (2.25)

Now (2.24) with (2.25) together give a system of n− 1 equations in the unknowns
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yi, i = 1,2, . . . ,n−1:



y2−2y1−h2 f (x1,y1,
y2−α

2h )+α = 0,

y3−2y2 + y1−h2 f (x2,y2,
y3−y1

2h ) = 0,
...

yn−2−2yn−1−h2 f (xn−1,yn−1,
β−yn−2

2h )+β = 0.

(2.26)

If f is a linear function, then the system is linear and if f is a nonlinear function, the

system is nonlinear. For the linear case, it is easy to solve the system using Gaus-

sian eliminations. However, in the nonlinear case, one resorts to suitable methods for

nonlinear system such as the multidimensional Newton’s method.

It is important to mention that accuracy of the finite difference method depends

on the step size h. The smaller the step size, the more accurate the results. However,

making the step size very small can produce an ill-conditioned system.

Next section reviews another widely used method for boundary value prob-

lems, namely, the shooting method.

2.2.2 The Shooting Method

The shooting method is a method for solving boundary value problems by solv-

ing, iteratively, a sequence of initial value problems whose solution converges to the

solution of the boundary value problem.

Derivation of the shooting method algorithm

Recall that we are interested in solving the Dirichlet boundary value problem

y′′(x) = f (x,y,y′), a < x < b, (2.27)

y(a) = α, y(b) = β . (2.28)
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The idea of the shooting method is to solve the following initial value problem

y′′(x) = f (x,y,y′), a < x < b, (2.29)

y(a) = α, y′(a) = λ , (2.30)

where λ is a parameter to be determined such that the solution of the IVP (2.29)–(2.30)

satisfies the boundary conditions (2.28). Let y(x;λ ) be the solution of (2.29)-(2.30),

where we make clear the dependence of the solution on the parameter λ . Then we

search for the appropriate parameter λ ∗ such y(x;λ ∗) satisfies (2.28). Now y(x;λ )

satisfies (2.28) if and only if

y(b;λ )−β = 0. (2.31)

Equation (2.31) is regarded as a function of λ and we seek its zero λ ∗, i.e., y(b;λ ∗)−

β = 0. A convenient method to solve for λ ∗ is Newton’s method, by solving, itera-

tively,

λk+1 = λk−
y(b;λk)

∂y(b;λk)

∂ t

, k ≥ 0. (2.32)

If Newton’s method converges, then lim
k→∞

λk = λ
∗.

Clearly to operate (2.32), we require
∂y(b;λk)

∂λ
. To this end, let z(x;λ ) =

∂y(x;λ )

∂λ
. Then differentiation of (2.29) with respect to λ , we find that z(x;λ ) sat-

isfies

z′′(x,λ ) =
∂ f
∂y

z(x,λ )+
∂ f
∂y′

z′(x,λ ) (2.33)

with initial conditions

z(a,λ ) = 0, z′(a,λ ) = 1, (2.34)

where the differentiation in (2.33) is with respect to x.

The shooting method algorithm can be summarized as follow:
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1. Choose an initial guess λk.

2. Solve the IVP (2.29)-(2.30) with λ = λk to obtain the solution y(x;λk).

3. Using the solution y(x;λk), solve the IVP (2.33)-(2.34) to obtain the solution

z(x;λk).

4. Using z(b,λk) =
∂y(b;λk)

∂λ
, update λk to get λk+1 from (2.32).

5. Stop when a stopping criteria is achieved, for example |λk+1−λk|< ε , for some

desired accuracy ε .

The accuracy of the solution obtained by the shooting method as described above

clearly depends on two things:

1. The method used to solve the initial value problems (2.29)-(2.30) and (2.33)-

(2.34).

2. The accuracy of Newton’s method.

2.3 Numerical Examples

In this section we apply the finite difference and the shooting methods de-

scribed in the previous section to two examples and compare the results.

Example 2.3.1. Consider the second order boundary value problem

y′′ =−e−2y, 1 < x < 2, (2.35)

y(1) = 0, y(1) = ln(2). (2.36)

It is easy to see that (2.35)–(2.36) has the exact solution yexact(x) = ln(x).

The finite difference method:
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Discretize the interval [1,2] using nodes xi = 1+ ih, where h = 1
n , we obtain the system



y2−2y1−h2e−2y1 = 0,

y3−2y2 + y1−h2e−2y2 = 0,
...

yn−2−2yn−1−h2e−2yn−1 + ln(2) = 0,

(2.37)

where yi ≈ y(xi). This system is nonlinear. Hence, we use the Multidimensional New-

ton’s method, Let Y = [y1 y2 . . .yn−1]
T . Let F(Y) be defined as in the system (2.37),

F(Y) =



y2−2y1−h2e−2y1

y3−2y2 + y1−h2e−2y2

y4−2y3 + y2−h2e−2y3

...

yn−2−2yn−1−h2e−2yn−1 + ln(2)


. (2.38)

From Newton’s method, we have the iterations

Yk+1 = Yk−J−1
k F(Yk) (2.39)

where J is the Jacobian matrix of F, given by

Ji j =
∂Fi

∂y j
, (2.40)

where Fi is the ith component of F(Y). From (2.38), the Jacobian J is the following

triangular matrix

J =



α1 1 0 0 · · · 0

1 α2 1 0 · · · 0

0 1 α3 1 · · · 0
. . . . . . . . .

· · · 0 1 αn−2 1

· · · 0 1 αn−1


(2.41)
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where αi = (−2+2h2)e−2yi .

The shooting method:

Starting with an initial guess λ0, for each k ≥ 0,

1. Solve the IVP

y′′ =−e−2y, y(1) = 0, y′(1) = λk,

to obtain the solution y(x;λk).

2. Using the solution y(x;λk), solve the IVP

z′′ = 2e−2y(x;λk)z, z(1) = 0, z′(1) = 1,

to obtain the solution z(x;λk).

3. Using z(2,λk) =
∂y(2;λk)

∂λ
, update λk to get λk+1 according to

λk+1 = λk−
y(2,λk)− ln(2)

z(2,λk)

4. Stop when |λk+1−λk|< ε = 10−6.

We have implemented, both methods with n = 10 and ε = 10−6 for the finite

difference and λ0 = ln(2) and ε = 10−6 for the shooting method. The numerical so-

lutions along with the exact solution for the finite difference and the shooting method

method are displayed in Figure 2.1. The numerical solutions obtained by both methods

are identical up to six decimal places as can be seen from Table 2.1 which displays the

values of both numerical solutions and the exact solution at xi as well as the absolute

error. It can be seen that the absolute error is of the order if 10−6.
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Figure 2.1: Numerical (red dots) and exact solution (continuous blue) of Example 2.3.1

xi yi (FD and Shooting) yexact(xi) |Error|
1. 0 0. 0.

1.1 0.0952344 0.0953102 0.0000758247
1.2 0.182203 0.182322 0.000118563
1.3 0.262226 0.262364 0.000138723
1.4 0.336329 0.336472 0.000142949
1.5 0.40533 0.405465 0.000135575
1.6 0.469884 0.470004 0.000119499
1.7 0.530532 0.530628 0.0000967084
1.8 0.587718 0.587787 0.0000685864
1.9 0.641818 0.641854 0.0000361151
2.0 0.693147 0.693147 0.

Table 2.1: Numerical solutions of Example 2.3.1 using the finite difference and the shooting
method
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Chapter 3: The Homotopy Analysis Method

In this section, we consider in details a relatively new method for solving non-

linear boundary value problems, the homotopy analysis method (HAM). In Section

3.1, we give an overview of the method. In Section 3.2, we provide in details the

derivation of the HAM algorithm for a general nonlinear operator. In Section 3.3, we

make a note on an important parameter in the HAM. In Section 3.4, we reformulate

the HAM for a particular nonlinear operator suitable for our application in Chapter 5.

3.1 Introduction

The homotopy analysis method (HAM) is an analytic method used to approx-

imate the solutions of nonlinear problems. It was proposed by S. Liao [29] in 1992

(see also [30] and references therein). It is regarded as one of the most efficient ana-

lytic methods for solving nonlinear problems. The idea of the HAM is based on the

concept of homotopy from topology. The HAM consists of a continuous deformation

of an initial guess to the solution until the solution of the problem is reached. The

attractiveness of the HAM is that the continuous deformation is done by solving linear

sub-problems, which makes the method attractable.

Of course, there are many methods for solving nonlinear problems, but the

HAM is favoured over other analytic methods because of many of its advantages.

Some of its advantages is that it is independent of any changes in the parameters of

the problem. It also provides freedom in choosing the initial guess solution and the

linear operator, as we will see in the derivation. In its generality, it also encompasses

other well known methods. For example, it has been proven in [32] that the Adomian

decomposition method [33, 34] is a special case of the HAM. The HAM provides free-

dom in adding convergence control parameters in its derivation [31]. These control

parameters can be used to speed up the convergence of the approximate solution.
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3.2 Derivation of the HAM Iteration Formula

In this section, we provide a detailed derivation of the homotopy analysis

method. Consider the nonlinear equation

A (u(x)) = 0, x ∈Ω, B(u(x)) = 0, x ∈ ∂Ω (3.1)

where A is a general nonlinear operator and B a boundary condition operator. We

will restrict our derivation where A is a differential equation.

Define the homotopy

(1− p)[L (u(x, p))−L (u0(x))] = h̄pA (u(x, p)), (3.2)

where the operator L is a linear differential operator satisfying L (0) = 0, u0(x) is any

initial approximation to the solution, called the base function, and p is the embedding

parameter (0 ≤ p ≤ 1). The constant h̄ is a non-zero auxiliary parameter in some

literature referred to as convergence control parameter [31]. We will see later (Section

3.3) that it has to satisfy −2 < h̄ < 0.

Let u(x, p) be the solution of (3.2), which depends on the homotopy parameter

p (and of course on the parameter h̄). Note that

* When p = 0, we have L (u(x,0))−L (u0(x)) = 0 =⇒ u(x,0) = u0(x).

* When p = 1, we have h̄A (u(x,1)) = 0 and since h̄ 6= 0 =⇒A (u(x,1)) = 0.

Therefore, the desired solution u(x) of (3.1) is u(x) = u(x,1) . Let u(x, p) be written as

u(x, p) = u0(x)+
∞

∑
n=1

un(x)pn (3.3)

so that the sought solution u(x) = u(x,1) is

u(x) = u0(x)+
∞

∑
n=1

un(x), (3.4)
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with u0(x) solution of L (u(x)) = 0 with B(u(x)) = 0 and un(x) are the solution com-

ponents. Since the B.C. B(u(x)) = 0 on ∂Ω is satisfied by u0(x), we impose that

the components un(x), n ≥ 1, satisfy homogeneous B.Cs on ∂Ω, that is for all n ≥ 1,

un(x) = 0 on ∂Ω .

Next we derive an iterative algorithm to determine the components un(x), n≥

1. To this end, substitute (3.3) into (3.2) to obtain

(1− p)

[
L

(
∞

∑
n=0

un(x)pn

)
−L (u0(x))

]
= h̄pA (u(x, p))

=⇒ (1− p)
∞

∑
n=1

L (un(x))pn = h̄pA (u(x, p))

=⇒
∞

∑
n=1

L (un(x))pn−
∞

∑
n=1

L (un(x))pn+1 = h̄pA (u(x, p)). (3.5)

To find the component um, we differentiate (3.5) m times with respect to p, to obtain

∞

∑
n=1

L (un)[n(n−1) . . .(n−m+1)]pn−m

−
∞

∑
n=1

L (un)[(n+1)n(n−1) . . .(n−m+2)]pn+1−m

= h̄
dm

d pm (pA (u(x, p))) = h̄
m

∑
k=0

(
m
k

)
dk

d pk (p)
dm−k

d pm−k (A (u(x, p)))

= h̄
(

m
0

)
d0

d p0 (p)
dm

d pm (A (u(x, p)))+ h̄
(

m
1

)
d

d p
(p)

dm−1

d pm−1 (A (u(x, p)))

= h̄ p
dm

d pm (A (u(x, p)))+ h̄m
dm−1

d pm−1 (A (u(x, p))).

When we substitute p = 0, the first and sums on the left right side are zeros except

when n = m and n = m−1, respectively. The sum on the right hand side is zero except

when k = 1. So we have

m![L (um)−L (um−1)] = h̄m
dm−1

d pm−1 (A (u(x, p)))
∣∣∣∣

p=0
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or

L (um) = L (um−1)+
h̄

(m−1)!
dm−1

d pm−1 (A (u(x, p)))
∣∣∣∣

p=0
, (3.6)

which is the well-known HAM iteration formula to compute the components un(x), n≥

1, given u0(x) as the solution of L (u(x)) = 0.

The iteration formula (3.6) can be written differently, by eliminating the term

L (um−1) on the right hand side, as stated in the following proposition.

Proposition 3.2.1. The HAM iteration formula in (3.6) can be written as

L (um) = h̄

[
m−1

∑
k=0

1
k!

dk

d pk [A (u(x, p)]
∣∣∣∣

p=0

]
, m≥ 1. (3.7)

Proof. Write down (3.6) for k = 1 to k = m, we have

L (u1) = L (u0)︸ ︷︷ ︸
=0

+h̄
1

(0)!
d0

d p0 (A (u(x, p)))
∣∣∣∣

p=0
(3.8)

L (u2) = L (u1)+ h̄
1

(1)!
d1

d p1 (A (u(x, p)))
∣∣∣∣

p=0
(3.9)

...
...

L (um−2) = L (um−3)+ h̄
1

(m−3)!
dm−3

d pm−3 (A (u(x, p)))
∣∣∣∣

p=0
(3.10)

L (um−1) = L (um−2)+ h̄
1

(m−2)!
dm−2

d pm−2 (A (u(x, p)))
∣∣∣∣

p=0
(3.11)

L (um) = L (um−1)+ h̄
1

(m−1)!
dm−1

d pm−1 (A (u(x, p)))
∣∣∣∣

p=0
(3.12)

Adding equations (3.8) to (3.12), we obtain

L (um) = h̄

[
m−1

∑
k=0

1
k!

dk

d pk [A (u(x, p)]
∣∣∣∣

p=0

]
, m≥ 1. (3.13)
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which proves (3.7).

Often the operator A can be written as A = L +N where L is the linear

operator considered in the homotopy (3.2) and N is a nonlinear operator. In this case

the HAM iteration formula (3.6) can be written as

L (um) = (1+ h̄)L (um−1)+
h̄

(m−1)!
dm−1

d pm−1 (N (u(x, p)))
∣∣∣∣

p=0
. (3.14)

3.3 A Note On the Constant h̄

It is has been reported in the literature [29] that the auxiliary parameter h̄ has

satisfy −2 < h̄ < 0. However, we could not find an explicit proof of this. Here, we

provide such a proof. Suppose that we can decompose the general operator A as

A = L +N , where L is the linear operator considered in the homotopy (3.2) and

N is a nonlinear operator. Let A j =
h̄
j!

d j

d p j [N (u(x, p)]
∣∣∣∣

p=0
. Then Equation (3.14)

can be written as

L (um(x)) = (1+ h̄)L (um−1(x))+Am−1

= (1+ h̄)2L (um−2(x))+(1+ h̄)Am−2 +Am−1

= (1+ h̄)3L (um−3(x))+(1+ h̄)2Am−3 +(1+ h̄)Am−2 +Am−1

= (1+ h̄)m L (u0(x))︸ ︷︷ ︸
=0

+(1+ h̄)m−1A0 +(1+ h̄)m−2A1 + · · ·+Am−1.

or

L (um(x)) =
m−1

∑
i=0

(1+ h̄)iAm−1−i. (3.15)
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Now recall that the solution u(x) =
∞

∑
m=0

um(x). Then, formally,

L (u(x)) =
∞

∑
m=0

L (um(x)) =
∞

∑
m=1

m−1

∑
i=0

(1+ h̄)iAm−i−1 =

(
∞

∑
i=0

(1+ h̄)i

)(
∞

∑
m=0

Am

)
(3.16)

We see from (3.16) that a necessary condition for the existence of a solution u(x) is

that
∞

∑
i=0

(1+ h̄)i < ∞ ⇐⇒ |1+ h̄|< 1 ⇐⇒ −2 < h̄ < 0.

3.4 Reformulation of the HAM Iteration Formula Using Bell Polynomials

In this section, we shall reformulate the general HAM iteration formula (3.6)

in terms of Bell polynomials [2] in the case where the nonlinear part of the operator

N in the decomposition A = L +N is a function of u only. The Bell polynomials

are defined below.

Definition 3.4.1. Let n and k be positive integers. The partial (or incomplete) Bell

polynomial, denoted by Bn,k, is a multivariate polynomial in (n− k + 1) variables

x1,x2, . . . ,xn−k+1, defined by

Bn,k(x1,x2, . . . ,xn−k+1) = ∑
n!

j1! j2! · · · jn−k+1!

(x1

1!

) j1 (x2

2!

) j2
· · ·
(

xn−k+1

(n− k+1)!

) jn−k+1

(3.17)

where the sum is over indices ji ≥ 1, i = 1, . . . ,n− k+1, such that

j1 + j2 + · · ·+ jn−k+1 = k,

j1 +2 j2 +3 j3 + · · ·+(n− k+1) jn−k+1 = n.
(3.18)
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Examples of Bell polynomials are

B4,1(x1,x2,x3,x4) = x4

B4,2(x1,x2,x3) = 3x2
2 +4x1x3

B4,3(x1,x2) = 6x2
1x2

B4,4(x1) = x4
1

A key property of Bell polynomials is

Bn,1(x1, . . . ,xn) = xn, Bn,n(x1) = xn
1. (3.19)

We need the following proposition about the nth derivative of the composition of two

functions

Proposition 3.4.1. Given two functions f (x) and g(x), we have for n≥ 1,

dn

dxn f (g(x)) =
n

∑
k=1

f (k)(g(x)) ·Bn,k

(
g′(x),g′′(x), . . . ,g(n−k+1)(x)

)
. (3.20)

The proof of the above proposition can be found in the literature.

Now, from Definition 3.4.1 and Proposition 3.20, we have for m≥ 2,

dm−1

d pm−1 (N (u(x, p))) =
m−1

∑
k=1

N (k)(u)Bm−1,k(∂pu,∂ 2
p u, . . . ,∂ m−k

p u),

where ∂ i
pu(x, p) = ∂ i

∂ pi u(x, p) and N (k)(u(x, p)) = dk

d pk N (u(x, p)).

Since ∂ i
pu(x, p)

∣∣
p=0 = i!ui(x), we have, for m≥ 2,

dm−1

d pm−1 (N (u(x, p)))
∣∣∣∣

p=0

=
m−1

∑
k=1

N (k)(u0(x))Bm−1,k(1!u1(x),2!u2(x), . . . ,(m− k)!um−k(x)),
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It follows that the HAM iteration (3.14) can be written as

L (um) = (1+ h̄)L (um−1) (3.21)

+
h̄

(m−1)!

m−1

∑
k=1

N (k)(u0(x))Bm−1,k(1!u1,2!u2, . . . ,(m− k)!um−k)

= (1+ h̄)L (um−1)+
h̄

(m−1)!

m−1

∑
k=1

N (k)(u0(x))Bm−1,k, (3.22)

where, for easy of notation, we have suppressed the arguments of Bm−1,k. Note that a

special case is when h̄ = −1. In this case, the different forms of the HAM iterations

(3.14) and (3.22) simplify to

L (um(x)) = h̄
1

(m−1)!
dm−1

d pm−1 [N (u(x, p)]
∣∣∣∣

p=0

=
h̄

(m−1)!

m−1

∑
k=1

N (k)(u0)Bm−1,k(1!u1,2!u2, . . . ,(m− k)!um−k).
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Chapter 4: Multi-layer Boundary Value Problem

In this chapter, we will consider multi-layer boundary value problems. We

restrict our study to the second order case.

4.1 Description of the Problem

In this work, a multi-layer boundary value problem consists of the following

boundary value problems:

y′′ = fi(x,y,y′), x ∈ [xi−1,xi], i = 1,2, . . . ,N, (4.1)

subject to the the following boundary conditions

y(x0) = α, y(xN) = β , (4.2)

y(x−i ) = y(x+i ), 1≤ i≤ N−1, (4.3)

y′(x−i ) = y′(x+i ), 1≤ i≤ N−1, (4.4)

where [xi−1,xi] is the ith subdomain of the overall domain [a,b] = [x0,xN ]. The func-

tions fi, 1 ≤ i ≤ N, are the functions that define the differential equation in the ith

subdomain. The boundary conditions in (4.3) and (4.4) require the solution y(x) to

be continuous and smooth across the nodes xi. Note that the nodes xi need not be

uniformly distributed in the interval [a,b] as displayed in Figure 1.1.

We should mention that similar problems have been considered in the literature

but with all functions fi = f are the same [20]. This really amounts to solving a regular

boundary value problem

y′′ = f (x,y,y′), a≤ x≤ b, y(a) = α, y(b) = β ,
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using a domain decomposition, making sure that the solution is smooth across the sub-

domains interface regions. However, in many applications, such as in fluid flow though

porous channels, as we will see in chapter 5, the governing equation have different from

from layer to layer.

There are different approaches one can use to solve such a problem. In the next

section, we shall consider three main methods.

4.2 Method of Solutions of Multi-Layer Boundary Value Problems

In this section, we outline three methods to solve problems of type (4.1)–(4.4).

The simple is the finite difference method. The second method is the shooting method.

The third method is the homotopy analysis method.

4.2.1 The Finite Difference Method

The finite difference method is a straight forward method for solving bound-

ary value problems where the differential equation is discritized to obtain a system of

algebraic equation for the approximate value of the solution at the discrete point xi, as

was discussed Subsection 2.2.1.

To adapt the finite difference method for a single layer boundary value problem

to our problem, one has to take care of the internal boundary conditions (4.3)–(4.4),

carefully. We should mention that [28] has used this approach. The idea in [28] was to

uniformly discritize each subdomain Ii = [xi−1,xi] using a local step size hi. This gives

the discrete points

x(i)k = xi−1 + khi, 1≤ i≤ N, 0≤ k ≤Mi,

where x(1)0 = x0, x(N)
MN

= xN , x(i)Mi
= x(i+1)

0 = xi. This way of discretization was adopted

in oder to guarantee that the interface nodes, xi, are part of the mesh points. Next,

each equation in (4.1) is discretized at its local discrete points x(i)k , excluding the last
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local mesh points x(i)Mi
. This gives the following rectangular system for the unknowns

y(i)k ≈ y(x(i)k ),

y(i)k+1−2y(i)k + y(i)k−1 = h2
i fi

(
x(i)k ,

y(i)k+1− y(i)k−1

2hi

)
,

i = 1,2, . . . ,N,

k = 1,2, . . . ,Mi−1.
(4.5)

which has (M−N) equations and M unknowns, with M =
N
∑

i=1
Mi. The system is then

made square by eliminating y(i)Mi
≈ y(x(i)Mi

) = y(xi) by expressing it in terms of neigh-

bouring points (see [28] for details). The result is a square system in the (M−N)

unknowns y(i)k , i = 1, . . . ,N, k = 1, . . . ,Mi− 1. The system was solve numerically

using the multidimensional version Newton’s method.

4.2.2 The Shooting Method

The shooting method for a single layer boundary value problem as described

in subsection 2.2.2 has been extensively used to solve boundary value problems and

has proven to be efficient. The adaptation of the shooting method to our multi-layer

boundary value problem (4.1)–(4.4) consists of performing, in parallel, N shootings as

illustrated in the Figure 4.1 below.

Figure 4.1: Shooting illustration

According to the suggested shooting strategy, we introduce (2N− 1) parame-
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ters λi, i = 1, . . . ,2N−1, such that

y′(x0) = λ1, (4.6)

y(xi) = λ2i, y′(xi) = λ2i+1, i = 1, . . . ,N−1. (4.7)

Then we solve, in parallel, the following set of initial-value problems:

1. In [x0,x1] solve the IVP

y′′(x) = f1(x,y,y′), y(x0) = α, y′(x0) = λ1. (4.8)

2. In the subintervals [xi,xi+1], i = 1, ..,N−1, solve the IVP

y′′(x) = fi+1(x,y,y′), y(xi) = λ2i, y′(xi) = λ2i+1. (4.9)

The parameters λi, i = 1, . . . ,2N−1, are to be determined such that the bound-

ary conditions (4.2) – (4.4) are satisfied. Let y1(x;λ1), yi+1(x;λ2i,λ2i+1), i = 1, ...,N−

1, be the solutions to (4.8) and (4.9), respectively, where we have explicitly showed the

dependence of the solutions yi on the parameters λ j. Imposing conditions (4.2)–(4.4),

we obtain the set of equations

y1(x1;λ1)− y2(x1;λ2,λ3) = 0,

y′1(x1;λ1)− y′2(x1;λ2,λ3) = 0,

yi+1(xi+1;λ2i,λ2i+1)− yi+2(xi+1;λ2i+2,λ2i+3) = 0, 1≤ i≤ N−2,

y′i+1(xi+1;λ2i,λ2i+1)− y′i+2(xi+1;λ2i+2,λ2i+3) = 0, 1≤ i≤ N−2,

yN(xN ;λ2N−2,λ2N−1)−β = 0.

(4.10)

Using the fact that yi+1(xi;λ2i,λ2i+1) = λ2i and y′i+1(xi;λ2i,λ2i+1) = λ2i+1, the above
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system rewrites as

y1(x1;λ1)−λ2 = 0,

y′1(x1;λ1)−λ3 = 0,

yi+1(xi+1;λ2i,λ2i+1)−λ2i+2 = 0, 1≤ i≤ N−2,

y′i+1(xi+1;λ2i,λ2i+1)−λ2i+3 = 0, 1≤ i≤ N−2,

yN(xN ;λ2N−2,λ2N−1)−β = 0.

(4.11)

System (4.11) can be regarded as a nonlinear homogeneous system in the unknown

parameters λi, 1≤ i≤ 2N−1. Introducing the notation Λ = (λ1,λ2, . . . ,λ2N−1), it can

be written, in vector form, as

F(Λ) = 0,

where F(Λ) = [F1(Λ), ...,F2N−1(Λ)]
T : R2N−1 −→ R2N−1, is a vector valued function

of the parameter vector Λ and Fi(·), i = 1, . . . ,2N− 1, are scalar functions given by

equations (4.11).

A popular method for solving the above system is the well-known multidimen-

sional Newton’s method. Let

Λ
(k) = (λ

(k)
1 ,λ

(k)
2 , . . . ,λ

(k)
2n−1)

T

be the values of the parameters at the kth iteration. The classical multidimensional

Newton’s method calculates new values Λ(k+1) according to

Λ
(k+1) = Λ

(k)−J−1(Λ(k))F(Λ(k)) (4.12)

where F(Λ(k)) = [F1(Λ
(k)), . . . ,F2N−1(Λ

(k))]T and J−1(Λ(k)) is the inverse of the (2N−

1)× (2N−1) Jacobian matrix J evaluated at Λ(k). The entries of the Jacobian matrix
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are given by

Ji j =
∂Fi

∂Λ j
(4.13)

The Jacobian matrix J turn out to be pentadiagonal and has the form:

J1,: =

[
∂y1(x1;λ1)

∂λ1
−1 0 02N−4

]
,

J2,: =

[
∂y′1(x1;λ1)

∂λ1
0 −1 02N−4

]
,

for i = 1,2, . . . ,N−2,

J2i+1,: =

[
02i−1

∂yi+1(xi+1;λ2i,λ2i+1)
∂λ2i

∂yi+1(xi+1;λ2i,λ2i+1)
∂λ2i+1

−1 0 02N−2i−4

]
,

J2i+2,: =

[
02i−1

∂y′i+1(xi+1;λ2i,λ2i+1)

∂λ2i

∂y′i+1(xi+1;λ2i,λ2i+1)

∂λ2i+1
0 −1 02N−2i−4

]
,

and

J2N−1,: =

[
02N−3 1 ∂yN(xN ;λ2N−2,λ2N−1)

∂λ2N−1

]
,

where the notation Jk,: stands for the kth row of J and 0k stands for a row of k zeros.

The calculation of the entries of the Jacobian matrix requires the calculation of

∂yi(x j)

∂λk
and

∂y′i(x j)

∂λk

with the appropriate x j and λk for a given yi. Specifically, we require for i= 1,2, . . . ,N−

2,

∂yi+1(xi+1)

∂λk
,

∂y′i+1(xi+1)

∂λk
, k = 2i,2i+1, (4.14)

∂yi+2(xi+1)

∂λk
,

∂y′i+2(xi+1)

∂λk
, k = 2i+2,2i+3, (4.15)
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and

∂y(k)1 (x1)

∂λ1
,

∂y(k)2 (x1)

∂λ2
,

∂y(k)2 (x1)

∂λ3
,k = 0,1, (4.16)

∂yN(xN)

∂λ2N−2
,

∂yN(xN)

∂λ2N−1
. (4.17)

The quantities in (4.14)–(4.17) are obtained from the solutions of an other set of initial

value problems as explained below.

From equation (4.1), differentiating with respect to λ , we get

∂y′′j
∂λ

=
∂ f j

∂y
∂y j

∂λ
+

∂ f j

∂y′j

∂y′j
∂λ

.

Let z j,k =
∂y j

∂λk
. Assuming we can interchange the order of differentiation, we find that

z j,k satisfies

z′′j,k =
∂ f j(x,y j,y′j)

∂y
z j,k +

∂ f j(x,y j,y′j)

∂y′
z′j,k. (4.18)

Therefore, we have the following I.V.Ps.

1. For z1,1 =
∂y1
∂λ1

satisfies (4.18) for x0 ≤ x≤ x1 with the I.Cs.

z1,1(x0) = 0, z′1,1(x0) = 1. (4.19)

2. For z j,2 j−2 =
∂y j

∂λ2 j−2
and z j,2 j−1 =

∂y j
∂λ2 j−1

, j = 2, . . . ,N−1, satisfy (4.18) with ICs

z j,2 j−2(x j−1) = 1, z′j,2 j−2(x j−1) = 0, (4.20)

z j,2 j−1(x j−1) = 0, z′j,2 j−1(x j−1) = 1, (4.21)

respectively.

3. For j = N, zN,2N−2 =
∂yN

∂λ2N−2
and zN,2N−1 =

∂yN
∂λ2N−1

satisfy (4.18) for xN−1 ≤ x≤
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xN with the I.Cs.

zN,2N−2(xN−1) = 1, z′N,2N−2(xN−1) = 0, (4.22)

zN,2N−1(xN−1) = 0, z′n,2N−1(xN−1) = 1. (4.23)

Once the solutions z j,k of the above IVPs (4.18) with (4.19)–(4.23) are obtained, the

different Jacobian entries (4.14)–(4.17) are given by

∂y j(xi)

∂λk
= z j,k(xi),

∂y′j(xi)

∂λk
= z′j,k(xi).

Finally, the shooting method algorithm to solve the multi-layer boundary value

problem (4.1)–(4.4) can be summarized as follows.

1. At the kth iteration, solve the IVPs (4.8)–(4.9) with parameters Λ(k).

2. Solve the IVPs (4.18) with (4.19)–(4.23) and construct the Jacobian matrix.

3. Use Newton’s formula (4.12) to update the parameters Λ.

4. Repeat the process until a stopping criteria is satisfied. within a desired accuracy.

It is important to mention here that at each step solving the IVPs (4.8)–(4.9) can be

done in parallel. Similarly, solving the IVPs (4.18) with (4.19)–(4.23) can also be

done in parallel. This is an important advantage of shooting method for multi-layer

boundary value problems. Let us consider an example to illustrate the shooting method

for multi-layer boundary value problem.

Example 4.2.1. Consider the following "cooked up" three-layer problem

y′′ =


−(y′)2− 20

9 y′− 100
81 , 0 < x < 1/2,

2x(y′− 14
9 )

2 +3x(y− 14
9 x− ln(3x)+3)2− 2

x , 1/2 < x < 1,

−(y′− 5
9)

2− (y− 5
9x+1)+ ln(3x), 1 < x≤ 2,

(4.24)
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subject to

y(0) = 1/3, y(2) = 1
9 + ln(6),

y(i)(1/2−) = y(i)(1/2+), y(i)(1−) = y(i)(1+), i = 0,1.
(4.25)

It is easy to check that an exact solution to (4.24)–(4.25) is

y(x) =


ln(x+1)− 10x

9 + 1
3 , 0≤ x < 1/2,

14x
9 + 1

x + ln(3x)−3, 1/2 < x < 1,

5x
9 + ln(3x)−1, 1 < x < 2,

(4.26)

We have applied the describe shooting algorithm with and zero initial guess for Λ.

The various IVPs have been solved the NDSolve built in function in Mathematica. We

have used a stopping criteria that ‖Λ(k+1)−Λ(k)‖< ε = 10−6. It took 6 iterations until

the stopping criteria is satisfied. Figure 4.2 displays the solutions versus iterations

and Figure 4.3 displays the absolute error between the approximate and exact solution.

Table 4.1 displays the values of λi as well as |y(x−i )− y(x+i )| and |y′(x−i )− y′(x+i )|

versus iterations.

HH
HHHHλi

Iter.
1 2 3 4 5 6

λ1 0. -0.301427 -0.0968573 -0.110645 -0.111111 -0.111111
λ2 0. 0.122723 0.190511 0.183409 0.183243 0.183243
λ3 0 -0.521395 -0.431105 -0.444209 -0.444444 -0.444444
λ4 0. 0.455019 0.661478 0.654395 0.654168 0.654168
λ5 0 1.06598 1.49869 1.55436 1.55555 1.55556

Table 4.1: Values of λi vs iteration for Example 4.2.1

4.2.3 The Homotopy Analysis Method

In this subsection, we will show how we can use the homotopy analysis method

as described in section 3.2 for a single layer boundary value problem to solve multi-
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Figure 4.2: Numerical solutions vs iterations of Example 4.2.1

layer boundary of the form

y′′ = fi(x,y,y′), x ∈ [xi−1,xi], i = 1,2, . . . ,N, (4.27)

subject to the boundary conditions

y(x0) = α, y(xN) = β , (4.28)

y(x−i ) = y(x+i ), 1≤ i≤ N−1, (4.29)

y′(x−i ) = y′(x+i ), 1≤ i≤ N−1, (4.30)

The main idea in adapting the HAM to multi-layer boundary value problem

consists of
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Figure 4.3: Absolute error between numerical solution and the exact solution of Example 4.2.1

1. Introducing (N−1) parameters, λi, such that

y(xi) = λi, 1≤ i≤ N−1.

2. For each i = 1,2, . . . ,N, use the HAM to solve independently the BVPs

y′′ = fi(x,y,y′), x ∈ [xi−1,xi], y(xi−1) = λi−1 and y(xi) = λi, (4.31)

to get the local solutions yi(x;λi−1,λi) for each subinterval [xi−1,xi]. Here, λ0 =

α and λN = β . Note that we explicitly showed the dependence of yi of λi−1 and

λi by writing yi(x;λi−1,λi).

3. Next satisfy the conditions y′(x−i ) = y′(x+i ) for each 1≤ i≤N−1, since y(x−i ) =

y(x+i ) = λi is already satisfied.

Step 3 produces a system of algebraic equations in the unknowns λi:

y′i(xi;λi−1,λi) = y′i+1(xi;λi,λi+1), i = 1, . . . ,N−1, (4.32)

which can be solve by any suitable method.

We should mention that in our numerical simulations, we used the NSolve

built-in function in Mathematica to solve (4.32) for λi, i = 1,2, . . . ,N−1. We should
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note, here, that the NSolve built-in function in Mathematica gives all possible real

solutions (we can always restrict NSolve to give only real solutions). The question

now is: which set of solution is the right one, if more than one is found? One way is to

choose the solution set that minimizes the residual

N

∑
i=1

∫ xi

xi−1

(y′′i (x)− fi(x,y(x),y′(x))2dx.

In the next Chapter we will apply the HAM to solve for the velocity of the fluid

flow through multi-layer porous media.
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Chapter 5: Application to Fluid Flow Through Multi-layer Porous
Media

In this Chapter, we consider an application of multi-layer boundary value prob-

lems to a physical problem. The physical problem is about fluid flow through multi-

layer porous media. The purpose of the work in this chapter is to apply the homotopy

analysis method to solve for the fluid velocity.

5.1 Introduction

The study of fluid flow through porous media has attracted many researchers

[21]-[28]. This is due to its importance. Examples of such fluid flows are: flow of

underground water through different subsurface layers and the flow of gas though dif-

ferent media. In multi-layer flows, the media consists of a number of porous layers,

each with different characteristics. Each layer is characterized by its porosity. In Fig.

5.1 we display a sample 4 layer porous media for visualisation.

Figure 5.1: Multi-layer porous media

It is assume that the top and bottom layers are bounded by solid walls. The

mathematical governing equations of the flow in each channel is given by either the
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Darcy-Lapwood-Forchheimer-Brinkman (DFB) model [23],

d2u
dy2 = ReC+

u
k
+

ReCd√
k

u2, (5.1)

or by the Darcy-Lapwood-Brinkman (DLB) model,

d2u
dy2 = ReC+

u
k
, (5.2)

where u(y), a≤ y≤ b, is the velocity of the fluid and y = a corresponds to the bottom

solid and y = b corresponds to the top solid wall. The various parameters in Eq. (5.1)

(and in Eq. (5.2)) are physical parameters defined below [23]

1. Re = ρU∞L/µ is the Reynolds number with ρ is the fluid density, U∞ the free-

stream characteristic velocity, µ is the fluid viscosity, and L is the channel char-

acteristic length.

2. k is the permeability of the porous channel.

3. Cd is the drag coefficient.

4. C < 0 is a dimensionless pressure gradient.

For the sake of computations, we assume a = −1 and b = 1. The upper and

lower layers are bounded by solid impermeable wall. This is what is known physically

as the non-slip condition. This implies that u = 0 at the solid boundaries y = −1

and y = 1. At the interface regions yi, between the different layers, the velocity u(y)

satisfies smoothness conditions, i.e.,

u(y−i ) = u(y+i ) and u′(y−i ) = u′(y+i ). (5.3)

Our goal in this chapter to investigate the use of the homotopy analysis method

for multi-layer BVPs to solve for the velocity profile, u(y), of the fluid. In the next
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section, we drive the homotopy solution to the problem for a general number N of

channels. Then in section 5.3, we illustrate the method using a number of settings.

5.2 Derivation of the HAM Solution for Multi-layer Porous Media

Consider a multi-layer porous media consisting of N channels, i = 1,2, . . . ,N.

Each channel, i, situated at yi−1 ≤ y≤ yi, is characterised by its permeability ki and is

governed by the DFB model

d2u
dy2 = ReC+

u
ki
+

ReCd√
ki

u2, yi−1 ≤ y≤ yi, (5.4)

where y = yi is the interface between channel i and channel i+ 1. Note that y0 = −1

and yN = 1, which correspond to the bottom and top solid walls, respectively.

The nonslip-conditions at the outer walls (y = −1 for channel 1 and y = 1 for

channel N ) imply that u(±1) = 0. The multi-layer BVP for the problem becomes

u′′ = ai +biu+ ciu2, yi−1 ≤ y≤ yi, 1≤ i≤ N, (5.5)

with the BCs

u(−1) = 0, u(1) = 0, (Non-slip condition)

u(yi) = u(yi+1),

u′(yi) = u′(yi+1),

1≤ i≤ N, (Smoothness condition)
(5.6)

where we have used the notations ai = ReC, bi =
1
ki

and ci =
ReCd√

ki
.

To derive the HAM solution to problem (5.5)– (5.6), first rewrite (5.5) in oper-

ator form as Ai(u(y)) = 0, we see that

Ai(u) = u′′−ai−biu− ciu2 = 0 (5.7)
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As described in chapter 4, we introduce N−1 parameters λi to represent the velocity

at the interface yi, i.e., u(yi) = λi. Next, we solve (5.7), using HAM, for each channel

i, using the appropriate BCs. For channel 1, we solve (5.7) with BCs u(−1) = 0 and

u(y1) = λ1. For channel N, we solve (5.7) with BCs u(yN−1) = λN−1 and u(1) = 0,

and for other channels, 2 ≤ i ≤ N− 1, we solve (5.7) with BCs u(yi−1) = λi−1 and

u(yi) = λi.

For each channel, we choose the linear operator

Li(u) = u′′−biu. (5.8)

and hence the nonlinear operators Ni(u) =−ai− ciu2.

According to the HAM method, the solution of channel i, denoted here by

u(i)(y), is given by

u(i)(y) = u(i)0 (y)+
∞

∑
m=1

u(i)m (y)

where u(i)0 (y) is the solution of Li(u) = 0 with BCs u0(yi−1) = λi−1 and u0(yi) = λi. It

is easy to see that

u(i)0 (y) =Ci,1e
√

bi y +Ci,2e−
√

bi y,

with

Ci,1 =
λie
√

biyi−λi−1e
√

biyi−1

e2
√

biyi− e2
√

biyi−1
,

Ci,2 =
e
√

biyi+
√

biyi−1

(
λie
√

biyi−1−λi−1e
√

biyi
)

e2
√

biyi−1− e2
√

biyi
.

The other solution components u(i)m (y) are given by

Li(u
(i)
m (y))= (1+ h̄)Li(u

(i)
m−1(y))+

h̄
(m−1)!

dm−1

d pm−1 [Ni(u(i)(y, p)]
∣∣

p=0, m≥ 1, (5.9)

with homogeneous BCs, u(i)m (yi−1) = u(i)m (yi) = 0. In the following, for ease of nota-
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tions, we will suppress the argument y from u(i)m (y) and denote it u(i)m .

Since each Ni in (5.9) is a function of u only, we can rewrite (5.9), for m≥ 2,

using Bell polynomials (see Proposition 3.20 and Eq. (3.22)) as

Li(u
(i)
m ) = (1+ h̄)Li(u

(i)
m−1) (5.10)

+
h̄

(m−1)!

m−1

∑
k=1

N
(k)

i (u(i)0 )Bm−1,k(u
(i)
1 ,2!u(i)1 , . . . ,(m− k)!u(i)m−k), m≥ 2,

In our case, the nonlinear operators Ni(u) = −ai − ciu2 are quadratic in u so that

N ′
i (u) = −2ciu, N ′′

i (u) = −2ci, and N
(k)

i = 0 for k ≥ 3. This simplies the HAM

iteration formula (5.10) as follows:

Li(u
(i)
1 ) = (1+ h̄)Li(u

(i)
0 )︸ ︷︷ ︸

=0

+h̄Ni(u
(i)
0 ) =−h̄(ai + ci(u

(i)
0 )2) (5.11)

Li(u
(i)
2 ) = (1+ h̄)Li(u

(i)
1 )+ h̄N ′

i (u
(i)
0 )B1,1(u

(i)
1 )

= (1+ h̄)Li(u
(i)
1 )−2h̄ciu

(i)
0 u(i)1 (5.12)

and for m≥ 3,

Li(u
(i)
m ) = (1+ h̄)Li(u

(i)
m−1)+ h̄N ′

i (u
(i)
0 )Bm−1,1 + h̄N ′′

i (u(i)0 )Bm−1,2

= (1+ h̄)Li(u
(i)
m−1)−2cih̄u(i)0 u(i)m−1 +−2cih̄Bm−1,2. (5.13)

In our simulations, we used (5.11)–(5.13).

Once all u(i)m have been solve for up to an approximation order M, each solution

u(i) is approximated by

u(i)(y)≈ u(i,M)(y) = u(i)0 (y)+
M

∑
m=1

u(i)m (y). (5.14)

Note that each u(i,M)(y) has the introduced parameters λi−1 and λi which have to be

solved for such that the smoothness conditions across yi are satisfied, that is,

d
dy

u(i,M)(yi) =
d
dy

u(i+1,M)(yi), i = 1, . . . ,N−1. (5.15)
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This gives a system of nonlinear algebraic equations of size N − 1 in the unknown

parameters λi, i = 1, . . . ,N − 1. As mentioned in Chapter 4, we have relied on the

Mathematica built-in function NSolve to find all possible solutions. We should re-

mention here that Mathematica NSolve gives a range of possible positive solutions for

all of which the solution satisfy the boundary condition (5.6).

To pick the suitable solution set for {λi, i = 1, . . . ,N−1}, we used a residual

measure. The residual of each solution u(i,M)(y;λi−1,λi) is taken as

Ri =
∫ yi

yi−1

(
Ai[u(i,M)(y;λi−1,λi)]

)2
dy. (5.16)

The optimal solution set {λ ∗i , i = 1, . . . ,N−1} is then chosen such that

N

∑
i=1

R2
i is the smallest. (5.17)

5.3 Examples

In this section, we apply the homotopy analysis method as described in the

previous section to a two-, three-, four-, and five-channel porous media problems.

5.3.1 Two-Channel Problem

As a first example, we consider the two-channel problem, where both top and

bottom channels are modelled by the DFB. The permeability of the top channel is

set to kt = 1. We consider 4 cases where the permeability of the bottom channel is

kb = 0.01, 0.1, 0.4, and 1. The following parameter values have been used:

Re = 10, C =−1, Cd = 0.055.

The velocity profiles of the fluid flow for all cases is depicted in Figure 5.2 us-

ing order 8 HAM. The velocity, u(0), and shear stress, u′(0), for each case is displayed

in Table 5.1. Table 5.2 displays the residuals of the order HAM approximate solution.
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Figure 5.2: Velocity profile of the two channel problem, kb = 0.01, 0.04, 0.4, 1 and kt = 1 with
order 8 HAM

kb
HAM order 4 HAM order 5 HAM order 6

u(0) u′(0) u(0) u′(0) u(0) u′(0)
0.01 0.467699 3.72726 0.469067 3.74119 0.468905 3.73953
0.04 0.937248 2.9574 0.939343 2.96784 0.938816 2.96513
0.4 2.15714 0.760447 2.15822 0.761982 2.15528 0.762155
1 2.54715 9.05×10−13 2.54697 −5.0×10−10 2.5444 −3.62×10−10

Table 5.1: Values of u(0) and u′(0) vs. HAM order for the two channel example

kb
HAM Residue

Order 4 Order 5 Order 6
0.01 1.52×10−3 9.52×10−5 1.98×10−5

0.04 9.69×10−4 1.71×10−4 8.2×10−6

0.4 2.10×10−4 5.49×10−4 3.05×10−5

1 1.68×10−4 2.45×10−4 1.71×10−5

Table 5.2: Residue of the numerical solution vs. HAM order for the two channel example

It can be seen from the above results of this preliminary example that the HAM

is accurate in resolving the velocity of the fluid as well as the shear stress at the inter-

face, namely u(0) and u′(0). From Table 5.1 we see that u(0) and u′(0) are converging
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as the order increases. From Table 5.2 we see that the residue is decreasing as the order

increases which means that the approximate solution is accurate. Just one remark in

this example is when kb = 0.1, it seems that the residue is not decreasing as fast as the

other three cases.

5.3.2 Four Channel-Problem

We now consider an example of four channels with the following permeability

values:

k1 = 0.01, k2 = 0.16, k3 = 0.49, k4 = 1. (5.18)

We used the same parameter values as in the two channel case Re = 10, C = −1 and

Cd = 0.055. The velocity profile of the fluid is shown in Figure 5.3. The red dots

correspond to the interface points between the channels.

Figure 5.3: Velocity profile of the four channel problem with k1 = 0.01,k2 = 0.16,k3 =
0.49,k4 = 1 with order 5 HAM

The values of the fluid velocity, u(yi), and shear stress,u′(yi), at the interface

points, yi = −1/2, 0, 1/2, are displayed in Table 5.3 for HAM order M=3, 4 and 5.

The residue of the approximate solution for HAM order M = 3,4,5, are also displayed

in Table 5.3. It can be seen from the residue values in Table 5.3 that the HAM can

produce an accurate approximate solution even for low order. In our example for order

M = 5 the residue is of the order 10−7.
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u(−0.5) u′(−0.5) u(0) u′(0) u(0.5) u′(0.5) Residue
M = 3 0.319876 2.23683 1.34 1.59203 1.48568 -0.957193 7.9×10−4

M = 4 0.319661 2.23615 1.33801 1.59161 1.48359 -0.957381 2.4×10−5

M = 5 0.319704 2.23655 1.3384 1.59168 1.48379 -0.958273 1.4×10−7

Table 5.3: Values of u(yi) and u′(yi) for yi =−1/2,0,1/2, vs. HAM order for the four channel
example
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Chapter 6: Conclusion

In this thesis, we examined a number of numerical techniques to solve bound-

ary value problems. We presented mainly three techniques: the finite difference tech-

nique, the shooting method, and the homotopy analysis method (HAM). We consid-

ered in details the homotopy analysis method. We also, consider multi-layer boundary

value problems because of their applicability in fluid flow through porous channels.

We applied the HAM to solve two cases of fluid flow. The results were accurate which

show the efficiency and accuracy of the HAM. We should mention that in some cases,

one has to go for larger number of iteration in the HAM to get an accurate solution. In

our examples, we considered channels with constant permeability k. A future research

problem is to consider channels with variable permeability.
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