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Abstract

In recent years, fractional calculus (the branch of calculus that generalizes the

derivative of a function to non-integer order) has been a subject of numerous investiga-

tions by scientists from mathematics, physics and engineering communities. The interest

in this area of research arises mainly from its applications to many models in the fields

of fluid mechanics, electromagnetic, acoustics, chemistry, biology, physics and material

sciences. In this thesis, we present a numerical algorithm for solving linear and non-

linear fractional initial value problems. This numerical algorithm is based on the spectral

method with fractional Legendre functions as basis. Then the collocation method is imple-

mented to turn the original fractional initial value problem into algebraic system. Several

examples are discussed to illustrate the efficiency and accuracy of the present scheme.

Keywords: Nonlinear Fractional Initial Value Problem, Caputo derivative, Spectral meth-

ods, Collocation method, Fractional Legendre functions, Multidimensional Newton’s method.
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Chapter 1:Introduction

Fractional calculus (the branch of calculus that generalizes the derivative of a function to

non-integer order) isn’t a new subject, it is a natural extension of the traditional calculus

that deals with the integer derivative; i.e. dny
dxn for n ∈ N. Historically, the idea of this

subject appeared in a letter by Leibniz to L’Hospital in 1695 as a question: "What if n be

1/2?" Since there, many theoretical works related to fractional calculus was reported in

the literature to generalize the integer derivative to the fractional one, the reader is referred

to [4] and [15]. It should be noted that, in 1819, Lacroix [3] wrote the first discussion of

fractional derivatives by finding the n-th derivative of xm:

dnxm

dxn =
m!

(m−n)!
xm−n, m,n ∈N, m ≥ n

then setting m = 1 and n = 1
2 to obtain the derivative of order 1

2 of the function x, i.e.

d
1
2

dx
1
2

x =
2
√

x√
π
.

But even with the results of Lacroix, still no clear definition of the fractional derivative.

In fact, after several attempts by many notable mathematicians especially Riemann and

Liouville, the modern scientists were able to define the so-called fractional derivative of

arbitrary order as follows:

Definition 1.0.1. [19] The left sided Riemann-Liouville fractional integral operator of

order α is defined by

Iαy(x) =
1

Γ(α)

∫ x

a
(x− t)α−1y(t)dt, α ∈R+, (1.1)

where y ∈ L1(a,b) :=
{

z : [a,b]→R |
∫ b

a z(t)dt < ∞
}

.
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Notice that Γ(x) generalizes the factorial n! and allows n to take even non-integer

and complex values. The Gamma function is defined by

Γ(x) =
∫ ∞

0
e−ttx−1dt,

for all x ∈ R+, provided that the integral exists. Common properties of the Gamma func-

tion are

1. Γ(x+1) = xΓ(x),

2. Γ(n) = (n−1)!, where n ∈N

The properties of the operator Iα given in (1.1) are summarized in the following lemma

(see [1] and [16]):

Lemma 1.0.1. For any f ,g ∈ L1[0,1],α ,β > 0,c1,c2 ∈ C and γ > −1, the following

properties hold:

1. I0 f (x) = f (x)

2. Iα exist for any x ∈ [0,1],

3. The linearity property: Iα(c1 f (x)+ c2g(x)) = c1Iα f (x)+ c2Iαg(x),

4. If f is continuous then Iα(Iβ f (x)) = Iα+β ( f (x)) = Iβ (Iα( f (x)),x > 0,

5. Iαxγ = Γ(γ+1)
Γ(α+γ+1)x

α+γ .

It is worth mentioning that there are several versions of fractional integral have

been reported in the literature but we will consider the Riemann-Liouville fractional inte-

gral (1.1) in our study. Based on the definition of Iα given in (1.1), the left sided Caputo

fractional derivative, Dαy(x) or y(α) for y ∈ L1[a,b], is originally defined as follows [22]

Dαy(x) = In−αy(n)(x) =
1

Γ(n−α)

∫ x

a
(x− t)n−α−1y(n)(t)dt, (1.2)

where n = ⌈α⌉ is the smallest integer greater than or equal to n and α ∈R+.
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The Caputo fractional derivative satisfies the following properties for f ∈ L1[0,1] α,β >

0 and n = [α ]+1:

1. Dα Iα f (x) = f (x).

2. IαDα = f (x)−∑n−1
k=0 f (k)(0+)(xk/k!).

3. If f is continuous then DαDβ f (x) = Dβ Dα f (x) = Dα+β f (x),x > 0,

4. Dαc = 0, where c is a constant.

5. Dαxγ =

 0 , γ < α, γ ∈ {0,1,2, ...}
Γ(γ+1)

Γ(γ−α+1)x
γ−α , otherwise

 .

6. Dα

(
m

∑
i=0

ci fi(x)

)
=

m

∑
i=0

ciDα fi(x), where c1,c2, ...,cm are constants.

For the proof of these properties, the reader is referred to [19].

The first application on fractional calculus was presented by Niel Henrik Abel in 1823

to find the shape of a fractional wire laying in a vertical plane. Particulary, numerous

researchers in the last few decades pointed out that the fractional derivatives and integrals

are very suitable for describing the properties of various real material such as: polymers

[2], the memory and hereditary properties [5], control engineering [6], [7], signal process

[8], electromagnetism [9], fluid mechanics [10], the dynamics of viscoelastic material

[11], pharmacokinetics [12], diffusion processes [13], and the discerption of the rheolog-

ical properties of rocks [14].

In this thesis, we develop an efficient numerical algorithm for solving a class of fractional

initial value problems of the form:

Dαu(x)+ f (x,u,u′) = 0 x ∈ [0,1], 1 < α ≤ 2, (1.3)
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subject to

u(0) = u0, u′(0) = u1. (1.4)

where u0,u1 ∈R and u ∈ L1(a,b).

The present work is motivated by the desire to find an approximate solution of the prob-

lem (1.3)-(1.4) using an efficient numerical technique based on the spectral method or

more precisely fractional order Legendre Collocation method. The idea of this method is

to write the solution of the (1.3) as a sum of fractional order Legendre functions "basis

functions" and then to choose the coefficients in the sum in order to satisfy the differential

equation as well as possible. It should be noted that this technique is used by several re-

searchers to solve several types of Fractional ordinary differential equations or Fractional

partial differential equations, see for example Kazem et al. [20], Klimek and Agrawal

[24], Bhrawy and Alghamdi [25], Yiming et al. [23], Syam et al. [18], Syam and Al-

Refai [26] and Bhrawy et al.[28].

Kazem et al. [20] constructed a fractional-order Legendre functions based on the well-

known shifted Legendre polynomials. Moreover, they derived product operational ma-

trices which together with the Tau method were utilized to reduce the solution of the

fractional initial value problems to the solution of a system of algebraic equations. In

the same year, Klimek and Agrawal [24] introduced a Fractional Legendre Equation and

discussed its solution. They proved that the Legendre functions resulting from an frac-

tional Legendre equation were the same as those obtained from the integer order Legendre

equation. Bhrawy and Alghamdi [25] utilized the integer Legendre spectral Galerkin and

pseudo-spectral approximations for fractional initial value problems. Yiming et al. [23]

applied a series of fractional-order Legendre functions to discuss the numerical solution

of fractional partial differential equations with variable coefficients given by:

a(x)Dν
x u(x, t)+b(t)Dγ

t u(x, t)+ c(x)ut(x, t)+d(x)u(x, t) = g(x, t),
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subject to

u(0, t) = u(x,0) = 0,

where (x, t) ∈ Ω := [0,h]× [0, l] and Dν
x , Dγ

t are the Caputo’s derivatives with respect to

x and t, respectively. They derived fractional differential operational and product matri-

ces. These matrices were combined with Tau method to transform the fractional partial

problem with variable coefficients to solve system of linear algebraic equations. Syam et

al. [18] developed a numerical technique based on the Tau Legendre and path following

methods to solve the fractional Riccati equation given by:

a(x)Dαy(x)+b(x)y(x)+ c(x)y2(x) = g(x), x ∈ (0,1), where 0 < α ≤ 1.

subject to

y(0) = y0,

Syam and Al-Refai [26] expanded the fractional shifted Legendre functions to solve the

generalized time-fractional diffusion equation of the form

Dα
t u(x, t) = a(x, t)D2

xu(x, t)+ f (x, t), x ∈ (−1,1), t ∈ (0,T ),

subject to the initial and boundary conditions

u(−1, t) = h1(t), u(1, t) = h2(t), u(x,0) = g(x).

where all functions are continuous on the required intervals, T > 0 and 0 < α ≤ 1.

Bataineh et al. [27] derived Legendre operational matrix for obtaining the exact/approximate
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solutions of the singular two-point boundary value proplems of the type

1
p(x)

u′′(x)+
1

q(x)
u′(x)+

1
r(x)

(u(x))n = g(x), 0 < x ≤ 1,

subject to boundary conditions

u(0) = α1, u(1) = β , or u′(0) = α2, u(1) = β

Bhrawy et al. [28] presented a review of the researchers who had constructed and used

Legendre, Chebyshev, Jacobi and Bernstein operational matrices for obtaining the solu-

tion of fractional differential equations. In addition, they implemented a numerical tech-

nique for solving fractional differential equations on finite and semi infinite intervals by

using various spectral methods depending on Laguerre polynomials.

In the next section we present some definitions and preliminary results about the

fractional order Legendre functions that will be used in the entire study.

1.1 Properties of fractional order Legendre polynomials

Definition 1.1.1. The Legendre functions "polynomials" {Pn(x) : n = 0,1,2, · · ·} are the

eigenfunctions of the singular Sturm-Liouville problem

(
(1− x2)P′

n(x)
)′
+n(n+1)Pn(x) = 0, x ∈ [−1,1].

They are given by

Pn(x) = 2n
n

∑
k=0

xk
(

n
k

)(n+k−1
2
n

)
.

Notice that the Legendre functions , Pn, are orthogonal with Legendre weight
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function w(x) = 1 on the interval (−1,1); i.e.

∫ 1

−1
Pn(x)Pm(x)dx =

2
2n+1

δnm,

where δnm is the Kronecker delta defined as

δnm =


0, if n ̸= m

1, if n = m.

In order to use Legendre polynomials on the interval [0,1], the so-called shifted Legendre

polynomials can be defined by setting x = 2t −1. By setting Pn(2t −1) = Ln(t), one may

obtain the following orthogonality property:

∫ 1

0
Ln(x)Lm(x)dx =

1
2n+1

δnm.

The analytical closed form of the shifted Legendre polynomials of degree n is given by

Ln(t) =
n

∑
k=0

(−1)n+k (n+ k)!
(n− k)!(k!)2 xk, x ∈ (0,1). (1.5)

In 2011, Rida and Yousef [21] generated a special type of fractional Legendre functions

by replacing the integer order derivative in Rodrigues’ formula for the Legendre function

by fractional order derivatives; i.e.

Pn(x) =
1

2nn!
dβ

dxβ

[
(x2 −1)n] .

In fact, the resultant functions were very difficult to be used for solving fractional dif-

ferential equations. However, Kazem et al. [20] were able to generate an orthogonal set

of fractional Legendre functions based on shifted Legendre polynomials (1.5) by setting
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x = tβ for β > 0; i.e.

Fβ
n (t) =

n

∑
k=0

(−1)n+k (n+ k)!
(n− k)!(k!)2 tkβ . (1.6)

It can be easily verified that the functions (1.6) are particular solutions of the following

singular Sturm-Liouville problem

(
(x− x1+β )(Fβ

n )′(x)
)′
+β 2n(n+1)xβ−1Fβ

n (x) = 0, x ∈ (0,1).

Moreover, it can be easily seen that Fβ
n (0) = (−1)n and Fnβ (1) = 1. One of the most

interesting property of the fractional Legendre functions (FLFs) is the orthogonality with

respect to the weight function w(x) = xβ−1 in the interval (0,1); i.e.

∫ 1

0
Fβ

n (x)Fβ
m (x)w(x)dx =

1
2n+1

δnm.

The graphs of the first five FLFs at β = 1/2 are displayed in Figure (1.1).

Using properties (4) and (5) of the Caputo fractional derivative; one can easily verify that

Dβ Fβ
n (x) =

n

∑
k=0

(n+ k)!
(n− k)!(k!)2 ×

Γ(kβ +1)
Γ((k−1)β +1)

x(k−1)β .

For more details see [20].
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F0
Β
HxL

F2
Β
HxL

F3
Β
HxL

F1
Β
HxL

F4
Β
HxL

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 1.1: Graphs of the first five fractional Legendre functions at β = 1/2

1.1.1 Main Theorems

In this section, we present some results which are vital to the present work.

Theorem 1.1.1. Let u ∈ C[0,1] and u′(x) be a piecewise continuous function on [0,1].

Then, u(x) can be expressed as infinite series; i.e.

u(x) =
∞

∑
k=0

ukFβ
k (x), (1.7)

where

uk = (2k+1)β
∫ 1

0
u(x)Fβ

k (x)w(x)dx, (1.8)

and w(x) = xβ−1, represents the weight function.

Proof. See Kazem et al. [20] and Syam et al. [18].

Note that any function can be represented by the series (1.7). To illustrate the

accuracy of theorem 1.1.1, we discuss the approximation of the function u(x) = sin(πx)
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for x ∈ [0,1]. According to Theorem 1.1.1, one can approximate u(x) in terms of finite

sum of fractional Legedre functions, i.e.

u(x)≈UN(x) =
N

∑
k=0

ukFβ
k (x),

where uk is defined in 1.8. The graphs of sin(πx) and its approximations, UN for N =

0,2,4,6 are displayed in Figure 1.2. Note the improvement in the approximation with

increasing N.

Figure 1.2: Graphs of sin(πx) (•), U0(x) (blue), U2(x) (Green), U4(x) (Yellow), U6(x) (Red)

The next theorem gives the relation between the coefficients of the series solution of

Dβ u(x) and the coefficients of the series expansion of u(x).

Theorem 1.1.2. Let u ∈ C[0,1] and u′′(x) be a piecewise continuous function on [0,1].

Then, ∑∞
k=0 u(β )k Fβ

k (x) converges uniformly on [0,1] to Dβ u(x), 0 < β < 1, where

u(β )k =
∞

∑
j=k+1

a jku j,

a jk = (2k+1)β
∫ 1

0
Dβ Fβ

j (x)F
β
k (x)w(x)dx
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for k = 0,1,2, ..., j = k+1,k+2, ....

Proof. See Syam et al. [18].

Since the previous theorem doesn’t apply on the coefficients of the series solution

of u′(x), and since the target of our thesis is to use a finite term of the series (1.7), we may

implement the following lemma.

Lemma 1.1.3. Let u ∈ C2[0,1] and u′′′(x) be a piecewise continuous function on [0,1].

Then,

u(1)k =
N

∑
j=k+1

c jku j,

and

c j,k =

[
a jk

]−1[
b jk

]
.

where [a jk] and [b jk] are square matrices defined, respectively, as

a jk =
∫ 1

0
Fβ

k (x)Fβ
j (x)dx,

and

b jk =
∫ 1

0
(Fβ

k (x))′Fβ
j (x).

Proof. For the value of c jk follows from the following definition

u′(x) =
N

∑
k=0

u(1)k Fβ
k (x) =

N

∑
k=0

uk(F
β
k (x))′,

Multiply both sides by Fβ
j (x) and integral from 0 to 1, one obtains

N

∑
k=0

u(1)k

∫ 1

0
Fβ

k (x)Fβ
j (x)dx =

N

∑
k=0

uk

∫ 1

0
(Fβ

k (x))′Fβ
j (x), j = 0 : N (1.9)
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Thus, we can rewrite (1.9) by the matrix forms as:

[
a jk

]
(N+1)(N+1)

U (1) =

[
b jk

]
(N+1)(N+1)

U

where, U (1) = [u(1)0 ,u(1)1 , ...,u(1)N ]T and U = [u0,u1, ...,uN ]
T

Hence u(1)k is given by

u(1)k =
∞

∑
j=k+1

c jku j,

and

c j,k =

[
a jk

]−1[
b jk

]
.

Since the original ordinary boundary problem has a unique solution, a jk is a nonsingular.

The rest of the thesis is organized as follows: In chapter 2, we discuss the first and

second order linear cases; i.e.

a(x)Dαu(x)+b(x)u(x) = g(x), u(0) = u0,

and

a(x)Dβ u(x)+b(x)u′(x)+ c(x)u(x) = g(x), u(0) = u0, u′(0) = u1,

where 0 < α ≤ 1 and 1 < β ≤ 2. In Chapter 3 we extend the study of Chapter two to the

nonlinear first and second order cases; i.e.

Dαu(x) = f (x,u), u(0) = u0, (1.10)
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and

Dβ u(x) = f (x,u,u′), u(0) = u0, u′(0) = u1, (1.11)

where 0 < α ≤ 1 and 1 < β ≤ 2.

A summary and concluding remarks are given in Chapter 4.

It is an established fact that finding the exact solutions of the initial value problems of

fractional order given by (1.10) and (1.11) remains far from trivial. Therefore, during the

past years, several numerical algorithms have been developed to approximate such exact

solutions. These algorithms include the Adomian’s decomposition method [41], the ho-

motopy perturbation method [42], [43], [44], the variational iteration method [45], [46],

the fractional differential transform method [47], operational matrices techniques based

on various orthogonal polynomials and wavelets [40], [39], [38], a nonstandard finite dif-

ference method (FDM) [37], [36], [35], [34], a predictor-corrector approach [33], spectral

methods using fractional Laguerre orthogonal functions [32], collocation method [31],

[30] and the method of lower and upper solutions [29].
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Chapter 2:Numerical Technique for Solving Linear Fractional Initial
Value Problems

In this chapter, we discuss the numerical solution of first and second orders linear frac-

tional initial value problems using spectral method (fractional order Legendre Collocation

method).

2.1 First-Order Linear Fractional Initial Value Problems

In this section, we focus on the numerical solution of the following first-order linear

fractional initial value problem:

a(x)Dαy(x)+b(x)y(x) = g(x), 0 < α ≤ 1,x ∈ [0,1], (2.1)

subject to

y(0) = h1, (2.2)

where h1 is a constant and a(x),b(x) and g(x) are continuous functions. To be able to

apply the fractional-order Legendre -Collocation method to discretize problem (2.1) and

(2.2), we approximate the solution y(x) in terms of the fractional order Legendre functions

as follows:

y(x)≈ Y (x) =
N+1

∑
k=0

ykFα
k (x), (2.3)

where yk is the undetermined Legendre coefficients. Particulary, the αth derivative of

(2.3) is given by

Dαy(x)≈ DαY (x) =
N

∑
k=0

y(α)
k Fα

k (x), (2.4)
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where the relation between y(α)
k and yk are given in Theorem 1.1.2 .

Inserting the series (2.3) in the main equation (2.1), we obtain the following residual

R(x) = a(x)DαY (x)+b(x)Y (x)−g(x). (2.5)

Orthogonalize the residual with respect to the Dirac delta function as follow:

⟨
R(Y (x)),δ (x− x j)

⟩
=

1∫
0

R(Y (x))δ (x− x j)dx = 0, for j = 0 : N +1,

where x j are the collocation points on the interval [0,1]. Within our study, we choose

the collocation points x j to be the nodes x j = jh for j = 0,1,2, ...N +1, where h = 1
N+1 .

The unknown coefficients y j are determined by making the residual R(x) vanishes at the

collocation points x j for j = 1,2, ...N + 1. Therefore, we obtain the following linear

system which leads to the following elementwise equation

a(x j)DαY (x j)+b(x j)Y (x j)−g(x j) := 0, j = 1 : N +1. (2.6)

Inserting the series representations (2.3) and (2.4) into (2.6), one obtains

a(x j)
N

∑
k=0

y(α)
k Fα

k (x j)+b(x j)
N+1

∑
k=0

ykFα
k (x j)−g(x j) := 0, (2.7)

for j = 1 : N +1.

Let

V(α)=



y(α)
0

y(α)
1

.

.

y(α)
N


, V=



y0

y1

.

.

yN+1


, G=



g(x1)

g(x2)

.

.

g(xN+1)


, A=



a(x1) 0 . . 0

0 a(x2) . . 0

0 0 . . 0

. . . . .

0 0 . . a(xN+1)


,
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B=



b(x1) 0 . . 0

0 b(x2) . . 0

0 0 . . 0

. . . . .

0 0 . . b(xN+1)


, F∗=



Fα
0 (x1) Fα

1 (x1) . . Fα
N (x1)

Fα
0 (x2) Fα

1 (x2) . . Fα
N (x2)

. . . . .

. . . . .

Fα
0 (xN+1) Fα

1 (xN+1) . . Fα
N (xN+1)


,

F =



Fα
0 (x1) Fα

1 (x1) . . Fα
N+1(x1)

Fα
0 (x2) Fα

1 (x2) . . Fα
N+1(x2)

. . . . .

. . . . .

Fα
0 (xN+1) Fα

1 (xN+1) . . Fα
N+1(xN+1)


,

where F∗ is (N + 1)× (N + 1), F is (N + 1)× (N + 2), V is (N + 2)× 1, A is (N +

1)× (N + 1), B is (N + 1)× (N + 1), V(α) is (N + 1)× 1, and G is (N + 1)× 1. Notice

that we can rewrite (2.7) in the matrix form as:

A F∗ V(α)+B F V−G = 0. (2.8)

It can be easily seen, from Theorem 1.1.2 and its results that

V(α) = P V,

where P is (N +1)× (N +2) matrix. Consequently, the system (2.8) can be rewritten in

the form

A F∗ P V+B F V−G = 0. (2.9)
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It can be deduced from the initial conditions (2.2) that

Y (0) = h1 =
N+1

∑
k=0

(−1)kyk,

or in the following matrix representations form

ΛV = h1, (2.10)

where Λ =
[
1, −1, · · · ,(−1)N+1].

By combining the systems (2.9) and (2.10), we obtain the following (N + 2)× (N + 2)

system

ΩV = GR (2.11)

where

Ω =

 AF∗P∗+BF

Λ

 , and GR =

 G

h1

 ,
which can be solved easily using Gauss elimination method.

2.1.1 Numerical Results

In this section, the proposed numerical method is implemented to solve two examples in

order to prove its efficiency and accuracy.

Example 2.1.1. Consider the following linear problems

D
1
2 y(x)+ xy(x) = g(x), x ∈ [0,1] (2.12)
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subject to

y(0) = 0

Notice that for g(x) = 8
3
√

π x
3
2 + x3, the exact solution is given by y(x) = x2.

It can easily seen that α = 1/2, a(x) = 1 and b(x) = x. Note that the maximum

number of terms in the Legendre series (2.3) is taken as N = 6, whereas, the step size in

all examples is chosen to be h = 1
N+1 . Therefore, the collocation points are x j = jh for

j = 0 : N +1. Applying the above algorithm with N = 6 gives (8×8) linear system, see

(2.11). The graphs of the approximate solution, y, together with the exact solution Y (x)

are displayed in Figure 2.1.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2.1: Graphs of the approximate solution, y (•), and the exact solution, Y (solid), for Exam-
ple 2.1.1

The error between the exact solution and computed one is shown in Figure 2.2. It is

clearly seen that the two solutions are in excellent agreement. The computed L2 error

norm is given by

∥y(x)−Y (x)∥=
∫ 1

0
(y(x)−Y (x))2dx = 1.05807 10−28,

which proves the high efficiently of our method.
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0.2 0.4 0.6 0.8 1.0

5.´ 10-15

1.´ 10-14

1.5´ 10-14

2.´ 10-14

2.5´ 10-14

3.´ 10-14

Figure 2.2: Computed absolute error between the exact and computed solutions for Example 2.1.1

Example 2.1.2. Consider the following linear problems

e2xD
1
2 y(x)+

x
4

y(x) = g(x), x ∈ [0,1], (2.13)

subject to

y(0) = 0,

where g(x) = 2e2x√x(9+4x)
3
√

π + 1
4x(3x+x2) and the exact solution is given by y(x) = x2+3x.

Notice that α = 1/2, a(x) = e2x and b(x) = x/4. Note that the maximum number

of terms in the Legendre series (2.3) is taken as N = 6, whereas, the step size in all

examples is chosen to be h = 1
N+1 . Therefore, the collocation points are x j = jh for

j = 0 : N +1. Following the methodology discussed in the previous example, we obtain

the following approximate solution, Y :

Y (x) = 1.22682×10−16 +4.16022×10−12√x+3x+9.68819×10−11x3/2

+x2 +1.63156×10−10x5/2 −8.43946×10−11x3 +1.80552×10−11x7/2.

which seems to have very close form to the exact solution y(x). Table 2.1 presents the

absolute error between the approximate solution, Y (x) and the exact solution y(x) over

the interval (0,1) at the points x j = 0.1 j for j = 1 : 9.
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x j |Y (x)− y(x)|
0.1 1.07116×10−13

0.2 6.52117×10−14

0.3 5.09089×10−14

0.4 4.39579×10−14

0.5 3.82125×10−14

0.6 3.39243×10−14

0.7 3.21097×10−14

0.8 2.97321×10−14

0.9 2.80470×10−14

Table 2.1: Computed absolute error between the exact and approxiate solutions for Example 2.1.2

These results presented in Table 2.1 ensures that the present technique is working very

efficiently.

2.2 Second-Linear Fractional Initial Value Problems

In this section, we develop a numerical method for solving the following problem by

using Legendre-Collocation method.

a(x)Dβ y(x)+b(x)y′(x)+ c(x)y(x) = g(x), 1 < β ≤ 2, x ∈ [0,1], (2.14)

subject to

y(0) = h1, y′(0) = h2, (2.15)

where h1,h2 are constants and a(x),b(x),c(x) and g(x) are continuous functions and

a(x)> 0 for all x ∈ (0,1).

In the following, we transform problems (2.14),(2.15) to a system of differential equa-

tions, consisting of a fractional and integer derivatives. Let y1 = y, y2 = y′ and α = β −1.
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Using the fact that Dβ y(x) = Dαy′(x) , the system (2.14)-(2.15) is converted to

y′1 = y2 (2.16)

a(x)Dαy2(x)+b(x)y2(x)+ c(x)y1(x) = g(x) (2.17)

subject to

y1(0) = h1, y2(0) = h2. (2.18)

Approximate the solutions y1(x) ,y′1(x) and y2(x) in terms of the fractional order Legendre

functions as follows:

y1(x)≈ u(x) =
N+1

∑
k=0

ukFα
k (x),

y2(x)≈ v(x) =
N+1

∑
k=0

vkFα
k (x) (2.19)

y′1(x)≈ u′(x) =
N

∑
k=0

u(1)k Fα
k (x)

where uk, vk and u(1)k are the undetermined Legendre coefficients. The residuals for

equations (2.16) and (2.17) are, respectively, given by

R1(x) = u′(x)− v(x). (2.20)

R2(x) = a(x)Dαv(x)+b(x)v(x)+ c(x)u(x)−g(x). (2.21)

Herein we choose the collocation points x j to be the nodes x j = jh for j = 0,1, · · · ,N +

1, where h = 1
N+1 . The unknown coefficients u j and v j are determined by making the

residuals R1(x) and R2(x) vanish at the collocation points x j for j = 1, · · · ,N +1; i.e.

R1(x j) = u′(x j)− v(x j) := 0. (2.22)



22

R2(x j) = a(x j)Dαv(x j)+b(x j)v(x j)+ c(x j)u(x j)−g(x j) := 0. (2.23)

Then, the elementwise equations by (2.19) will be

R1(x j) =
N

∑
k=0

u(1)k Fα
k (x j)−

N+1

∑
k=0

vkFα
k (x j) := 0. (2.24)

R2(x j) = a(x j)
N

∑
k=0

v(α)
k Fα

k (x j)+b(x j)
N+1

∑
k=0

vkFα
k (x j)+c(x j)

N+1

∑
k=0

ukFα
k (x j)−g(x j) := 0.

(2.25)

The expressions (2.24) and (2.25) can be rewritten, respectively, in the following matrices

forms

F∗ U(1)−FV = 0 (2.26)

AF∗V(α)+BFV+CFU−G = 0 (2.27)

where F∗ is (N+1)×(N+1), U(1) is (N+1)×1, F is (N+1)×(N+2), V is (N+2)×1,

A is (N+1)×(N+1), B is (N+1)×(N+1), C is (N+1)×(N+1), V(α) is (N+2)×1,

U is (N +2)×1 and G is (N +1)×1. These matrices are given by

F∗ =



Fα
0 (x1) Fα

1 (x1) . . Fα
N (x1)

Fα
0 (x2) Fα

1 (x2) . . Fα
N (x2)

. . . . .

. . . . .

Fα
0 (xN+1) Fα

1 (xN+1) . . Fα
N (xN+1)


, U(1) =



u(1)0

u(1)1

.

.

u(1)N


,
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F =



Fα
0 (x1) Fα

1 (x1) . . Fα
N+1(x1)

Fα
0 (x2) Fα

1 (x2) . . Fα
N+1(x2)

. . . . .

. . . . .

Fα
0 (xN+1) Fα

1 (xN+1) . . Fα
N+1(xN+1)


, V =



v0

v1

.

.

vN+1


,

A =



a(x1) 0 . . 0

0 a(x2) . . 0

0 0 . . 0

. . . . .

0 0 . . a(xN+1)


, B =



b(x1) 0 . . 0

0 b(x2) . . 0

0 0 . . 0

. . . . .

0 0 . . b(xN+1)


,

C =



c(x1) 0 . . 0

0 c(x2) . . 0

0 0 . . 0

. . . . .

0 0 . . c(xN+1)


, V(α) =



v(α)
0

v(α)
1

.

.

v(α)
N+1


, U =



u0

u1

.

.

uN+1


,

G =



g(x1)

g(x2)

.

.

g(xN+1)


.

It was shown by Lemma (1.1.3) that the fractional Legendre coefficient matrices, U(1)

and U, are related via the following relation

U(1) = P(1)U.

In addition, Theorem (1.1.2) relates that the coefficients, V(α) and V, via the following

relation

V(α) = P(α)V.
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Consequently, the systems (2.26) and (2.27) can be written, respectively, in the following

forms

F∗ P(1)U−FV = 0 (2.28)

AF∗P(α)V+BFV+CFU−G = 0. (2.29)

It can be deduced from the initial conditions (2.18) that

u(0) = h1 =
N+1

∑
k=0

(−1)k uk,

v(0) = h2 =
N+1

∑
k=0

(−1)k vk,

or in the following matrix representations form

ΛU = h1, and ΛV = h2, (2.30)

where Λ =
[
1, −1, · · · ,(−1)N+1] .

By combining the systems (2.28), (2.29) and (2.30), we obtain the following (2N +4)×

(2N +4) linear system



CF AF∗P(α)+BF

F∗ P(1) −F

Λ 0

0 Λ


 U

V

=



G

0

h1

h2


,

which can be solved by using the Gauss elimination technique.
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2.2.1 Numerical Results

In this section, the proposed numerical method is used to solve two examples in order to

prove its efficiency and accuracy.

Example 2.2.1. Consider the following fractional initial value singular linear problem

2xD
3
2 y(x)+ exy′(x)+3x2y(x) = g(x), x ∈ [0,1] (2.31)

subject to

y(0) = 0, y′(0) = 3.

where g(x) =
8x

3
2

√
π
+ 3x3(3+ x)+ ex(3+ 2x). Notice that the exact solution is given by

y(x) = x2 +3x.

Applying the above technique with a(x) = 2x, b(x) = ex and c(x) = 3x2, we trans-

form the initial value problem (2.31) into the following system of first order initial-value

problems

y′1 = y2 (2.32)

2xD
1
2 y2(x)+ exy2(x)+3x2y1(x) = g(x) (2.33)

subject to

y1(0) = 0, y2(0) = 3. (2.34)

The series solutions for y1(x) and y2(x) in terms of the fractional order Legendre functions

are given by

y1(x)≈ u(x) =
N+1

∑
k=0

ukF1/2
k (x), y2(x)≈ v(x) =

N+1

∑
k=0

vkF1/2
k (x), (2.35)
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where the number of terms in the Legendre series (2.35) is fixed at N = 6. Hence, the

collocation points are x j = jh for j = 0 : 7. The graphs of the approximate solution, u,

together with the exact solution y(x) are displayed in Figure 2.3.

0.2 0.4 0.6 0.8 1.0

1

2

3

4

Figure 2.3: Graphs of the approximate solution, u (•), and the exact solution, y (solid), for Example
2.2.1

The error between the exact solution and computed one is shown in Figure 2.4. It is

clearly seen that the two solutions are in excellent agreement.

0.2 0.4 0.6 0.8 1.0

5.´ 10-16

1.´ 10-15

1.5´ 10-15

2.´ 10-15

2.5´ 10-15

Figure 2.4: Computed absolute error between the exact and computed solutions for Example 2.2.1
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Example 2.2.2. Consider the following fractional initial value linear problem

D1.3y(x)+ cos(x)y′(x)+2y(x) = g(x), x ∈ [0,1] (2.36)

subject to

y(0) = 0, y′(0) = 0.

where g(x) = 2x2 +2xcos(x)+ Γ(3)
Γ(1.7)x

0.7 and the exact solution is given by y(x) = x2.

Applying the same methodology of solving the above example, we transform the

initial value problem (2.36) into the following system of first order initial-value problems

as follows

y′1 = y2

D0.3y2(x)+ cos(x)y2(x)+2y1(x) = g(x)

subject to

y1(0) = 0, y2(0) = 0.

The series solutions for y1(x) and y2(x) in terms of the fractional order Legendre functions

are given by

y1(x)≈ u(x) =
N+1

∑
k=0

ukF0.3
k (x), y2(x)≈ v(x) =

N+1

∑
k=0

vkF0.3
k (x),

where N is chosen to be 10. It is worth mentioning that this example was discussed by

Geng and Cui [48] by applying the Kernal method. Table (2.2) illustrates the absolute

values of the error which obtained by the present technique and one which obtained by

applying the Kernal method [48] for this example. It can be concluded that the present

technique is accurate and efficient.
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x j |u(x)− y(x)| (Present Method) |u(x)− y(x)| ([48])
0.1 1.17279×10−6 1.11×10−7

0.2 9.73731×10−7 2.87×10−7

0.3 8.23202×10−7 5.51×10−7

0.4 6.97339×10−7 9.23×10−7

0.5 5.86355×10−7 1.41×10−6

0.6 4.87300×10−7 2.03×10−6

0.7 3.99126×10−7 2.77×10−6

0.8 3.20068×10−7 3.64×10−6

0.9 2.47957×10−7 4.62×10−6

Table 2.2: Comparison of the absolute errors for Example 2.2.2
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Chapter 3:Numerical Technique for Solving Nonlinear Fractional
Initial Value Problems

In this chapter, we discuss the numerical solution of first and second orders nonlinear frac-

tional initial value problems using spectral method (fractional order Legendre Collocation

method) on the company of Newton Methods.

3.1 First-Order Nonlinear Fractional Initial Value Problems

In this section, we focus on the numerical solution of the following first-order non linear

fractional initial value problem:

Dαy(x) = f (x,y), 0 < α ≤ 1, x ∈ [0,1], (3.1)

subject to

y(0) = h1, (3.2)

where h1 is a constant. Following the same methodology presented in chapter two, we

approximate the solution y(x) in terms of the fractional order Legendre functions as fol-

lows

y(x)≈ Y (x) =
N+1

∑
k=0

ykFα
k (x), (3.3)

where yk is the undetermined Legendre coefficients. Particulary, the αth derivative of

(3.3) is given by

Dαy(x)≈ DαY (x) =
N

∑
k=0

ykDαFα
k (x). (3.4)



30

Therefore, we obtain the following residual function from the main equation (3.1)

R(x;yk) = DαY (x)− f (x,Y ), k = 0 : N +1. (3.5)

Orthogonalize the residual with respect to the Dirac delta function as follow

⟨R(x;y0, · · · ,yN+1),δ (x− x j)⟩=
1∫
0

R(x;y0, · · · ,yN+1)δ (x− x j)dx = 0,

for j = 1 : N +1, k = 0 : N +1. Here x j are the collocation points chosen to be the nodes

x j = jh for j = 0 : N + 1 and h = 1
N+1 . The unknown coefficients yk are determined by

making the residual R vanishs at the collocation points x j for j = 1,2, ...,N+1. Therefore,

we obtain the following linear system which leads to the following elementwise equation;

DαY (x j)− f (x j,Y (x j)) = 0, for j = 1 : N +1, (3.6)

Inserting the series (3.3) into (3.6), we obtain the following elementwise equation;

N

∑
k=0

ykDαFα
k (x j)− f (x j,

N+1

∑
k=0

ykFα
k (x j)) := 0. (3.7)

Notice that (3.7) gives N + 1 equations with N + 2 unknowns which requires one more

equation which comes from the initial condition (3.2); i.e.

Y (0) = h1 =⇒
N+1

∑
k=0

(−1)kyk −h1 = 0. (3.8)

combining (3.8) and (3.6) gives the following N + 2 nonlinear equations with N + 2 un-

knowns

F0(y0,y1, ...,yN+1) =
N+1

∑
k=0

(−1)kyk −h1 := 0, (3.9)

Fj(y0,y1, ...,yN+1) =
N

∑
k=0

ykDαFα
k (x j)− f (x j,

N+1

∑
k=0

ykFα
k (x j)) := 0,
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for j = 1 : N +1. Notice that, one may rewrite (3.9) in the following matrix form

F(V) =



F0(V)

F1(V)

.

.

FN+1(V)


,

where V = [y0,y1, · · · ,yN+1]
t . Our main target now is to solve F = 0 which can be solved

by several techniques. In this thesis we used the multidimensional version of Newton’s

method which shows to be an efficient method as we will see later. To apply the multidi-

mensional version of Newton’s method, we differentiate equations (3.9) with respect to yi

for i = 0 : N +1 to construct the Jacobian matrix, J(V), which is defined as

J(V) =



∂F0

∂y0
(V)

∂F0

∂y1
(V) . .

∂F0

∂yN+1
(V)

∂F1

∂y0
(V)

∂F1

∂y1
(V) . .

∂F1

∂yN
(V)

. . . . .

. . . . .

∂FN+1

∂y0
(V)

∂FN+1

∂y1
(V) . .

∂FN+1

∂yN
(V)


,

where

∂
∂yi

Fj(y0,y1, ...,yN) =
∂

∂yi
(

N

∑
k=0

ykDαFα
k (x j))−

∂
∂yi

f (x j,
N

∑
k=0

ykFα
k (x j)) = 0, (3.10)

for i, j = 0 : N +1. Finally we arrived at the functional iteration procedure evolves from

selecting V0 and generating, for s ≥ 1,

Vs = Vs−1 −J(Vs−1)
−1F(Vs−1). (3.11)
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It is worth mentioning that this method generally expected to give quadratic conver-

gence, provided that a sufficiently accurate starting value is known. To avoid computing

J(Vs−1)
−1 at each iteration which is time consuming, we first compute a vector H that

satisfies J(Vs−1)H =−F(Vs−1) using Gauss elimination method. Then the new approx-

imation, Vs, is calculated by Vs = Vs−1 +H. In addition, the interations are repeat until

a stopping criteria is satisfied. A stopping criteria could be ∥Vs −Vs−1∥∞ < ε for some

prescribed ε , where ∥ ∥∞ is the infinity norm. It is important to mention here that the

multidimensional Newton’s method converges quadratically if

(a) ∥J−1
s ∥ ≤ M where M > 0; the norm of the inverse of the Jacobian at V s is bounded.

(b) ∥J(z2)−J(z1)∥ ≤ ∥z2 − z1∥; the Jacobian is Lipschtiz continuous.

3.2 Numerical Results

In this section, the proposed numerical method is implemented to solve two examples

in order to prove its efficiency and accuracy. In the proceeding examples, the stopping

criteria for Newton method is chosen to be ε = 10−10, and the number of iterations < 50.

Example 3.2.1. Consider the following nonlinear problems

Dαy(x)− xey(x) = g(x), x ∈ [0,1] (3.12)

subject to

y(0) = 0

where g(x) = −2xex2
+ 9x

4
3

2Γ( 1
3 )

and α = 2/3. The exact solution for this problem is given

by y(x) = x2.

Note that the number of terms in the Legendre series (3.3) is taken as N = 8,

whereas, the step size in all examples is chosen to be h = 1
9 . Therefore, the collocation

points are x j = jh for j = 0 : 9. Applying the multidimensional version of Newton’s

method which is discussed above after 3 iterations and the initial guess values V0 equal
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0, we obtain the following approximate solution, Y :

Y (x) =−8.98177×10−18 +2.70972×10−12x
2
3 −2.88027×10−11x

4
3

+x2 −4.41651×10−10x
8
3 −8.31209×10−10x

10
3 +9.95315×10−10x4

7.37241×10−10x
14
3 −3.08221×10−10x

16
3 +5.56399×10−11x6

which seems to have very close form to the exact solution y(x). Table 3.1 presents the

absolute error between the approximate solution, Y (x) and the exact solution y(x) over

the interval (0,1) at the points x j = 0.1 j for j = 1 : 9.

x j |Y (x)− y(x)|
0.1 6.83575×10−14

0.2 5.05441×10−14

0.3 5.05441×10−14

0.4 3.95126×10−14

0.5 3.66039×10−14

0.6 3.44300×10−14

0.7 3.26234×10−14

0.8 3.12094×10−14

0.9 3.00239×10−14

Table 3.1: Computed absolute error between the exact and approxiate solutions for Example 3.2.1

These results presented in table (3.1) ensures that the present technique is working very

efficiently.

Example 3.2.2. Consider the following nonlinear problems

Dαy(x)−2y(x)+ y2(x) = g(x), x ∈ [0,1]

subject to

y(0) = 1,

where g(x) =
2
√

x(5+8x2)

5
√

π
− 2(x+ x3)+ (x+ x3)2 and α = 1/2. The exact solution is

given by y(x) = x3 + x.
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Using the maximum number of terms in the Legendre series (3.3) as N = 6, and

the step size h = 1
7 . Following the methodology discussed in the previous example, we

obtain the following approximate solution, Y : The graphs of the approximate solution, Y ,

together with the exact solution y(x) are displayed in Figure 3.1.

Figure 3.1: Graphs of the approximate solution, y (•), and the exact solution, Y (solid), for Exam-
ple 3.2.2

The error between the exact solution and the computed one is shown in Figure 3.2. It

is clearly seen that the two solutions are in excellent agreement. The computed L2 error

norm is given by

∥y(x)−Y (x)∥=
∫ 1

0
(y(x)−Y (x))2dx = 1.10346 ×10−23,

which proves the high efficiently of the present method.
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Figure 3.2: Computed absolute error between the exact and computed solutions for Example 3.2.2

3.3 Second-order Nonlinear Fractional Initial Value Problems

In this section, we discuss the numerical solution of the following second order nonlinear

fractional initial value problem

Dβ y(x) = f (x,y,y′), 1 < β ≤ 2, x ∈ [0,1], (3.13)

subject to

y(0) = h1, y′(0) = h2 (3.14)

where h1,h2 are constants. Following the same methodology used in Section 2.2, we

transform (3.13)-(3.14) to a system of first order differential equations (consisting of a

fractional and integer derivatives), given by

y′1 = y2 (3.15)

Dαy2(x) = f (x,y1,y2), (3.16)
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subject to

y1(0) = h1, y2(0) = h2, (3.17)

where y1 = y, y2 = y′ and α = β −1. Approximate the solutions y1(x) and y2(x) in terms

of the fractional order Legendre functions; one obtains

y1(x)≈ u(x) =
N+1

∑
k=0

ukFα
k (x),

(3.18)

y2(x)≈ v(x) =
N+1

∑
k=0

vkFα
k (x).

where uk, vk are the undetermined Legendre coefficients. The associated residuals to

equations (3.15) and (3.16) are, respectively, given by

R1(x) = u′(x)− v(x), (3.19)

R2(x) = Dαv(x)− f (x,u(x),v(x)). (3.20)

The unknown coefficients uk and vk are determined by making the residuals R1(x) and

R2(x) vanish at the collocation points x j (for j = 1 : N +1); i.e.

R1(x j) = u′(x j)− v(x j) := 0, (3.21)

R2(x j) = a(x j)Dαv(x j)− f (x j,u(x j),v(x j)) := 0. (3.22)

Inserting (3.18) into (3.21) and (3.22), we obtain the following elementwise equations

R1(x j) =
N

∑
k=0

uk(Fα
k )′(x j)−

N+1

∑
k=0

vkFα
k (x j) := 0. (3.23)

R2(x j) =
N+1

∑
k=0

vkDαFα
k (x j)− f ((x j),

N+1

∑
k=0

ukFα
k (x j),

N+1

∑
k=0

vkFα
k (x j)) := 0. (3.24)
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for j = 1 : N +1.

Notice that (3.23) and (3.24) give 2N+2 equations with 2N+4 unknowns which requires

two more equations. Obviously, these two equations should be produced from the initial

conditions (3.17) as follows

y1(0) = h1 =⇒
N+1

∑
k=0

(−1)kuk −h1 := 0, (3.25)

y2(0) = h2 =⇒
N+1

∑
k=0

(−1)kvk −h2 := 0. (3.26)

Combining (3.25), (3.26) together with (3.23), (3.24) gives the following 2N+4 nonlinear

equations with 2N +4 unknowns

F0(V) =
N+1

∑
k=0

(−1)kuk −h1 := 0, (3.27)

Fj(V) =
N

∑
k=0

vkDαFα
k (x j)− f (x j,

N+1

∑
k=0

ukFα
k (x j),

N+1

∑
k=0

vkFα
k (x j)) := 0,

G0(V) =
N+1

∑
k=0

(−1)kvk −h2 := 0,

G j(V) =
N

∑
k=0

uk(Fα
k )′(x j)−

N+1

∑
k=0

vkFα
k (x j) := 0.

for j = 1 : N +1. Here the vector V represents all the unknowns; i.e.

V = [u0,u1, · · · ,uN+1,v0,v1, · · · ,vN+1]
t .

Notice that, one may rewrite (3.27) in the following matrix form

F(V) = 02N+4×1, (3.28)

where F(V) = [F0, · · · ,FN+1,G0, · · · ,GN+1]
t . Notice that we may use the multidimen-

sional version of Newton’s method (described in the previous section) to solve (3.28).
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3.3.1 Numerical Results

In this section, the proposed numerical method is implemented to solve two examples

in order to prove its efficiency and accuracy. In the proceeding examples, the stopping

criteria for Newton method is chosen to be ε = 10−10, and the number of iterations < 50.

The first example is presented for sake of comparison with the Legendre wavelet method

[49].

Example 3.3.1. Consider the following nonlinear initial value problem

Dβ y(x)+ e−2πy2(x) = g(x), x ∈ (0,1), (3.29)

subject to

y(0) = 0, y′(0) = 0,

where β = 3
2 , g(x) = 105

√
πx2

32 + e−2πx7 and the exact solution is given by y(x) = x
7
2 .

Applying the above technique, we transform the initial value problem (3.29) into

the following system of first order initial-value problems

y′1 = y2 (3.30)

D
1
2 y2(x)+ e−2πy2

1(x) = g(x), (3.31)

subject to

y1(0) = 0, y2(0) = 0. (3.32)

The series solutions for y1(x) and y2(x) in terms of the fractional order Legendre functions
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are given by

y1(x)≈ u(x) =
N+1

∑
k=0

ukF1/2
k (x), y2(x)≈ v(x) =

N+1

∑
k=0

vkF1/2
k (x). (3.33)

In the present simulations for this example, we used N = 6, h = 1
7 . The numerical and

exact solutions (after five steps of the multidimensional Newton’s method) are presented

in Figure 3.3.

Figure 3.3: Graphs of the approximate solution, u (•), and the exact solution, y (solid), for Example
3.3.1

In addition, to confirm the accuracy of the present results, Table (3.2) illustrates the abso-

lute values of the error which obtained by the present technique and the one obtained by

applying the Legendre wavelet [49] for this example. The advantages of our scheme is

clearly seen through this table.

x j |u(x)− y(x)| (Present Method) |u(x)− y(x)| [49]
0.1 6.33902×10−12 9.6996×10−5

0.2 6.41703×10−12 9.3927×10−4

0.3 6.46162×10−12 1.5087×10−3

0.4 6.50265×10−12 3.3989×10−4

0.5 6.53773×10−12 2.4163×10−3

0.6 6.56888×10−12 3.1023×10−4

0.7 6.59785×10−12 1.4799×10−3

0.8 6.62460×10−12 6.3407×10−4

0.9 6.64842×10−12 4.6701×10−3

Table 3.2: Comparison of the absolute errors for Example 3.3.1
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Example 3.3.2. Consider the following nonlinear initial value problem

D1.8y(x)−2ey(x) = g(x), x ∈ (0,1), (3.34)

subject to

y(0) =−1
8
, y′(0) =

3
4
,

and g(x) is chosen so that the exact solution y(x) = (x− 1
2)

3.

Initially, We transform the initial value problem (3.34) into the following system

of first order initial-value problems

y′1 = y2 (3.35)

D0.8y2(x) = 2ey1(x)+g(x), 0 < α < 1, (3.36)

subject to

y1(0) =−1
8
, y2(0) =

3
4
. (3.37)

The series solutions for y1(x) and y2(x) in terms of the fractional order Legendre functions

are given by

y1(x)≈ u(x) =
N+1

∑
k=0

ukF0.8
k (x), y2(x)≈ v(x) =

N+1

∑
k=0

vkF0.8
k (x). (3.38)

Notice that we applied the present technique with N = 8 and h = 1
9 . The graphs of the

approximate solutions us, for s= 1, ...,4, together with the exact solutions are displayed in

Figure 3.4. It is clearly seen that the sequence us converges rapidly to the exact solution.
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Figure 3.4: Graphs of the approximate solution, u (dashed), and the exact solution, y (solid), for
Example 3.3.2
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Chapter 4:Summary and Conclusions

The present thesis deals with numerical treatment of classes of linear and nonlinear frac-

tional initial value problems (FIVP’s). Based on the the spectral method with fractional

Legendre functions as basis, we were able to represent the exact solution by a series so-

lution with a finite sum. By a "good choice" of the collocation points, we converted the

original fractional initial value problem into algebraic system which was solved numer-

ically using the powerful multidimensional version of Newton’s method. The present

technique is applied to discuss the solution of first and second orders FIVP’s. The effi-

ciency and accuracy of the present scheme is discussed via solving several examples and

compare with other researchers.
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