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1

Chapter 1: Fractional Calculus: Introduction

1.1 Motivation

Differential equations with fractional order are generalization of ordinary dif-

ferential equations to non-integer order. In recent years, a great interest was devoted

to study fractional differential equations, because of their appearance in various appli-

cations in Engineering and Physical Sciences [ for more details, the reader is referred

to [1, 2] ]. Therefore, numerical and analytical techniques have been developed to

deal with fractional differential equations. The maximum principle and the method

of lower and upper solutions are well established for differential equations of elliptic,

parabolic and hyperbolic types [3, 4]. Recently, there are several studies devoted to

extend, if possible, these results for fractional differential equations [5, 6, 7, 8, 9, 10].

It is noted that the extension is not a straightforward process, due to the difficulties in

the definition and the rules of fractional derivative. Therefore, the theory of fractional

differential equations is not established yet and there are still many open problems

in this area. Unlike, the integer derivative, there are several definitions of fractional

derivatives which are not equivalent in general. However, the most popular ones are

the Caputo and Riemann-Liouville fractional derivatives.

1.2 Basic Definitions and Theorems

In this section, we present basic definitions in fractional calculus and some im-

portant theorems that will be used in this thesis.

1.2.1 Special Functions

In the following, we present the definitions and some properties of the Gamma

function and the Mittag-Leffler function. The Gamma function is a generalization of

the factorial function and it appears in the definition of fractional derivatives, while the
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Mittag-Leffler function is a generalization of the exponential function, and it appears

in the solution of some fractional differential equations.

Definition 1.2.1. The Gamma function is defined by

Γ(x) =
∫

∞

0 tx−1e−t dt,

for all x ∈ R, provided the integral exists.

Here are some common properties of the Gamma function:

1. Γ(x+1) = x Γ(x),

2. Γ(n) = (n−1)!, where n ∈ N.

Figure 1.1 depicts the Gamma function. One can see that the Gamma function ap-

proaches infinity or negative infinity at non-positive integers.

Figure 1.1: The graph of the Gamma function in the real domain.

Definition 1.2.2. The Mittag-Leffler function of one parameter is defined by the power

series

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
, α ∈ R+, z ∈ C. (1.1)

This function was introduced first by Mittag-Leffler [11]. Later on, Agarwal

[12] introduced a generalization of the Mittag-Leffler function of one parameter to the
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two parameters Mittag-Leffler function, which is defined by

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, α, β ∈ R+, z ∈ C. (1.2)

It follows from the definition of Eα,β (z) in (1.2) that

E1,1(z) =
∞

∑
k=0

zk

Γ(k+1)
=

∞

∑
k=0

zk

k!
= ez, and in general

E1,m(z) =
1

zm−1

[
ez−

m−2

∑
k=0

zk

k!

]
, m≥ 2. (1.3)

The following properties hold for the Mittag-Leffler function of two parameters:

Lemma 1.2.1. Eα,β (z) = z Eα,α+β (z)+
1

Γ(β )
.

Proof. We have

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )

=
∞

∑
k=−1

zk+1

Γ(αk+α +β )
=

1
Γ(β )

+
∞

∑
k=0

z.zk

Γ(αk+(α +β ))

=
1

Γ(β )
+ z

∞

∑
k=0

zk

Γ(αk+(α +β ))

=
1

Γ(β )
+ zEα,α+β (z).

Lemma 1.2.2. Eα,β (z) = βEα,β+1(z)+αz
d
dz

(Eα,β+1(z)).

Proof. We have

βEα,β+1(z)+αz
d
dz

(Eα,β+1) = β

∞

∑
k=0

zk

Γ(αk+β +1)
+α z

d
dz

∞

∑
k=0

zk

Γ(αk+β +1)

= β

∞

∑
k=0

zk

Γ(αk+β +1)
+α z

∞

∑
k=1

k zk−1

Γ(αk+β +1)

= β

∞

∑
k=0

zk

Γ(αk+β +1)
+α

∞

∑
k=0

k zk

Γ(αk+β +1)

=
∞

∑
k=0

zk(αk+β )

Γ(αk+β +1)
=

∞

∑
k=0

zk(αk+β )

Γ(αk+β )(αk+β )
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=
∞

∑
k=0

zk

Γ(αk+β )
= Eα,β (z).

1.2.2 The Riemann-Liouville Integral

We start with the Cauchy’s formula for the n-fold repeated integrals [ see [1],

p.64 ],

In f (t) =
∫ t

a

∫ s1

a
. . .
∫ sn−1

a
f (sn)dsn . . . ds2 ds1

=
1

(n−1)!

∫ t

a
(t− s)n−1 f (s)ds.

This formula can be generalized to any positive real number α, using the fact that

(n−1)! = Γ(n), to obtain the left Riemann-Liouville fractional integral.

Definition 1.2.3. The left Riemann-Liouville fractional integral of order α ≥ 0, of a

function f ∈C[0,1] is defined by

Iα f (t) =


1

Γ(α)

∫ t
0(t− s)α−1 f (s)ds, if α > 0 .

f (t), if α = 0 .

The following properties hold true for the Reimann-Liouville fractional integral:

1. The linearity property: Iα(c1 f (t)+c2 g(t))= c1 Iα f (t)+c2 Iα g(t), α ≥ 0, c1, c2 ∈

C.

2. If f (t) is continuous for t ≥ 0, then Iα(Iβ f (t)) = Iβ (Iα f (t)) = Iα+β ( f (t)),

where α,β ∈ R+.

3. Iα(tβ ) =
Γ(β +1)

Γ(β +α +1)
tβ+α , where α, β ∈ R+.

For the proof and more properties of the Riemann-Liouville integral the reader is re-

ferred to [1, 13].
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1.2.3 The Fractional Derivatives

Knowing the definition of the fractional integral enables us to define the frac-

tional derivative for any positive real number. There are several definitions of the frac-

tional derivative. However, the most popular ones are the Riemann-Liouville fractional

derivative and the Caputo fractional derivative.

Definition 1.2.4. Let α ∈R+, and n= [α]+1, the Riemann-Liouville fractional deriva-

tive of order α of function f (t) ∈Cn[0,1] is defined by:

Dα
R f (t)=

dn

dtn (I
n−α f (t))=


1

Γ(n−α)

dn

dtn

∫ t
0(t− s)n−α−1 f (s)ds, if n−1 < α < n ∈ N,

f (n)(t), if α = n ∈ N.

The following properties hold true for Riemann-Liouville fractional derivative:

1. Linearity property: Let n−1 < α < n, n ∈N,α ≥ 0, c1, c2 ∈C and Dα
R f (t) and

Dα
R g(t) exist, then

Dα
R (c1 f (t)+ c2 g(t)) = c1 Dα

R f (t)+ c2 Dα
R g(t).

2. Dα
R C =

C
Γ(1−α)

t−α , for 0 < α < 1 and C is constant.

3. Dα
R (t

β ) =
Γ(β +1)

Γ(β −α +1)
tβ−α , n−1 < α < n, β >−1, β ∈ R.

For the proof the reader is referred to [ [1], p.72].

The following equation holds true for the Riemann-Liouville fractional derivative.

Lemma 1.2.3. Let α ∈R+ and m,n∈N such that n−1<α < n and f (t)∈Cn+m[0,1].

Then Dm(Dα
R f (t)) = Dm+α

R f (t).
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Proof. For n−1 < α < n, we have n+m−1 < α +m < n+m. Therefore

Dα+m
R f (t) =

1
Γ(n+m−α−m)

dn+m

dtn+m

∫ t

0
(t− s)n+m−α−m−1 f (s)ds

=
1

Γ(n−α)

dn+m

dtn+m

∫ t

0
(t− s)n−α−1 f (s)ds. (1.4)

Also, Dm(Dα
R f (t)) = Dm

(
1

Γ(n−α)

dn

dtn

∫ t

0
(t− s)n−α−1 f (s)ds

)
=

1
Γ(n−α)

dn+m

dtn+m

∫ t

0
(t− s)n−α−1 f (s)ds. (1.5)

Compare equations (1.4) and (1.5) to obtain the result.

Definition 1.2.5. The Caputo fractional derivative of order α > 0, n−1<α < n, n∈N

of a function f ∈Cn[0,1] is defined by

Dα
C f (t)= In−α(

dn

dtn f (t))=


1

Γ(n−α)

∫ t
0(t− s)n−α−1 f (n)(s)ds, if n−1 < α < n ∈ N,

f (n)(t), if α = n ∈ N.

The following properties hold true for the Caputo fractional derivative:

1. Linearity property: Let n−1 < α < n,n ∈N,α ≥ 0, c1, c2 ∈C, and Dα
C f (t) and

Dα
C g(t) exist, then

Dα
C(c1 f (t)+ c2 g(t)) = c1 Dα

C f (t)+ c2 Dα
C g(t).

2. Dα
C K = 0,α > 0, where K is a constant.

3. Dα
C (Iα f (t)) = f (t) for α ∈ R+, f (t) ∈Cn[0,1] and n = [α]+1.

4. Iα (Dα
C f (t)) = f (t)−

n−1
∑

k=0

f (k)(0)
k!

tk for α ∈ R+, f (t) ∈Cn[0,1] and n = [α]+1.

For the proof the reader is referred to [ [13], p.95-96 ].

Lemma 1.2.4. Let n−1<α < n,n∈N,α ∈R+ and f (t)∈Cn+1[a,b] such that Dα
C f (t)

exists, then the following hold true

lim
α→n

Dα
C f (t) = f (n)(t), (1.6)

lim
α→n−1

Dα
C f (t) = f (n−1)(t)− f (n−1)(0). (1.7)
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Proof. By using integration by parts, we get

Dα
C f (t) =

1
Γ(n−α)

∫ t

0
f (n)(s)(t− s)n−α−1 ds

=
1

Γ(n−α)

(
− f (n)(s)

n−α
(t− s)n−α |t0 +

∫ t

0

f (n+1)(s)
n−α

(t− s)n−α ds

)

=
1

Γ(n−α +1)

(
f (n)(0)tn−α +

∫ t

0
f (n+1)(s)(t− s)n−α ds

)
.

Taking the limit α → n and α → n−1, respectively, and using the fact that

f (n+1)(s)(t− s)n−α is continuous, we have

lim
α→n

Dα
C f (t) = f (n)(0)+

∫ t

0
f (n+1)(s)ds = f (n)(0)+ f (n)(t)− f (n)(0)

= f (n)(t),

and lim
α→n−1

Dα
C f (t) =

(
f (n)(0)t + f (n)(s)(t− s)|ts=0

)
+
∫ t

0
f (n)(s)ds

= f (n)(0)t− f (n)(0)t +
∫ t

0
f (n)(s)ds

= f (n−1)(s)|ts=0

= f (n−1)(t)− f (n−1)(0).

Lemma 1.2.5. Suppose that n− 1 < α < n,m,n ∈ N,α ∈ R+ and f (t) ∈Cn+m[0,1],

then Dα
C(Dm f (t)) = Dα+m

C f (t).

Proof. From n−1 < α < n, we have n+m−1 < α +m < n+m, therefore

Dα+m
C f (t) =

1
Γ(n+m−α−m)

∫ t

0
(t− s)n+m−α−m−1 f (n+m)(s)ds

=
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f (n+m)(s)ds. (1.8)

Also, Dα
C(Dm f (t)) =

1
Γ(n−α)

∫ t

0
(t− s)n−α−1(Dm f )(n)(s)ds

=
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f (n+m)(s)ds. (1.9)
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Compare equation (1.8) and (1.9) to get the result.

The following lemma presents the well-known relationship between the Caputo frac-

tional derivative and the Riemann-Liouville fractional derivative.

Lemma 1.2.6. If f ∈Cn[0,1], then Dα
C f (t) = Dα

R [ f (t)−
n−1
∑

k=0

tk

k!
f (k)(0) ],

where Dα
R tk =

Γ(k+1)
Γ(k+1−α)

tk−α .

Proof. Applying the Taylor series expansion about t0 = 0, yields;

f (t) =
n−1

∑
k=0

tk

Γ(k+1)
f (k)(0)+Rn−1(t),

where

Rn−1(t) =
∫ t

0

f (n)(s)(t− s)(n−1)

(n−1)!
ds

=
1

Γ(n)

∫ t

0
f (n)(s)(t− s)n−1 ds

= In f (n)(t),

[ see [14], p.217].

Applying the properties of the Riemann-Liouville and Caputo fractional derivatives,

we have

Dα
R f (t) = Dα

R

(
n−1

∑
k=0

tk

Γ(k+1)
f (k)(0)+Rn−1(t)

)

=
n−1

∑
k=0

Dα
R tk

Γ(k+1)
f (k)(0)+Dα

R (Rn−1(t))

=
n−1

∑
k=0

tk−α

Γ(k−α +1)
f (k)(0)+ In−α f (n)(t)

=
n−1

∑
k=0

tk−α

Γ(k−α +1)
f (k)(0)+Dα

C f (t).
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Lemma 1.2.7. If α ∈ R+, n−1 < α < n, n ∈ N, λ ∈ C, then

Dα
R (e

λ t) = t−αE1,1−α(λ t).

Proof. We have

eλ t =
∞

∑
k=0

λ k tk

Γ(k+1)

and Dα
R (eλ t) = Dα

R

(
∞

∑
k=0

λ k tk

Γ(k+1)

)
=

∞

∑
k=0

λ k

Γ(k+1)
Dα

R (tk)

=
∞

∑
k=1

λ k Γ(k+1)
Γ(k+1)Γ(k+1−α)

tk−α

=
∞

∑
k=0

λ k tk−α

Γ(k+1−α)

= t−α
∞

∑
k=0

λ k tk

Γ(k+1−α)
= t−α

∞

∑
k=0

(λ t)k

Γ(k+1−α)

= t−α E1,1−α (λ t).

Lemma 1.2.8. If α ∈ R+, n−1 < α < n, n ∈ N, λ ∈ C, then

Dα
C(e

λ t) =
∞

∑
k=0

λ k+ntk+n−α

Γ(k+1+n−α)
= λ ntn−αE1,n−α+1(λ t).

Proof. We have

Dα
C f (t) = Dα

R f (t)−
n−1
∑

k=0

tk−α

Γ(k+1−α)
f (k)(0).

From Lemma 1.2.7 we get

Dα
C(e

λ t) = Dα
R eλ t−

n−1

∑
k=0

tk−α

Γ(k+1−α)

(
eλ t
)(k)

(0)

= t−αE1,1−α(λ t)−
n−1

∑
k=0

tk−α

Γ(k+1−α)
λ

k, where(eλ t)(k)(t) = λ
keλ t .

=
∞

∑
k=0

λ ktk−α

Γ(k+1−α)
−

n−1

∑
k=0

λ ktk−α

Γ(k+1−α)

=
∞

∑
k=n

λ ktk−α

Γ(k+1−α)
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= λ
ntn−α

∞

∑
k=0

λ ktk

Γ(k+(n+1−α))

= λ
ntn−α

∞

∑
k=0

(λ t)k

Γ(k+(n+1−α))

= λ
ntn−αE1,n+1−α(λ t).

1.2.4 Main Theorems

In this section, we present several results that will be used in this thesis. We start

with some recent results concerning the fractional derivatives at extreme points.

Theorem 1.2.1. [15]. Let f ∈C1[0,1] attain its absolute minimum at t0 ∈ (0,1]. Then

Dα
C f (t0)≤

t−α

0
Γ(1−α)

[ f (t0)− f (0)]≤ 0, for all 0 < α < 1.

Theorem 1.2.2. [16]. If x(t)∈Cm[0,1] and m−1<α <m∈ Z+, then Dα
C x(t)|t=0 = 0.

The next lemma is a special case of the previous theorem, and it is essential in

the proof of the positivity result in Section 2.2.

Lemma 1.2.9. If f (t) ∈C1[0,1], then Dα f (t)|t=0 = 0,0 < α < 1.

Proof. We have Dα f (t) =
1

Γ(1−α)

∫ t
0 f ′(s)(t − s)−α ds. Since f ∈ C1[0,1], then∫ t

0 f ′(s)ds is integrable, with
∫ t

0 f ′(s)ds = c(t), where c(t) = f (t)− f (0). And let

M = max
0≤t≤1

| f ′(t)|. Also, the improper integral
∫ t

0(t− s)−α ds exists because lim
R→t

∫ R
0 (t−

s)−α ds =
t1−α

1−α
, and 1−α > 0. Since the product of two integrable functions is inte-

grable, we have

Dα f (t) =
1

Γ(1−α)

∫ t
0 f ′(s)(t− s)−α ds exists for all t ∈ [0,1], and there holds

|Dα f (t)|= 1
Γ(1−α)

∣∣∣∣∫ t

0
f ′(s)(t− s)−α ds

∣∣∣∣
≤ 1

Γ(1−α)

∫ t

0

∣∣ f ′(s)∣∣ ds
∫ t

0

∣∣(t− s)−α
∣∣ ds

=
M

Γ(1−α)

t1−α

1−α
, 0 < α < 1.
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Therefore, |Dα f (0)| ≤ 0, implies that Dα f (t)|t=0 = 0.

Theorem 1.2.3 (Dominated Convergence Theorem). [ [14], p.304 ] Let { fn} be a

sequence of Riemann integrable on I, and let f (x) = lim
k→∞

fk(x) almost everywhere on I.

If there exist integrable functions α,ω such that α(x)≤ fk(x)≤ ω(x) for almost every

x ∈ I, then f is Riemann integrable and
∫

I f = lim
k→∞

∫
I fk.

Theorem 1.2.4 (Uniform Continuity Theorem). [[14], p.138]. Let I be a closed

bounded interval and let f : I → R be continuous on I. Then f is uniformly contin-

uous on I.

Theorem 1.2.5 (Weighted Mean Value Theorem for Integrals). [17]. Suppose f ∈

C[a,b], the Riemann integral of g exists on [a,b], and g(x) does not change sign on

[a,b]. Then there exists a number c in (a,b) with
∫ b

a f (x)g(x)dx = f (c)
∫ b

a g(x)dx.

Definition 1.2.6 ( Metric Space). Let X be a non-empty set. A metric on X is a function

d : X×X → R such that for x,y,z ∈ X , we have

(i) d(x,y)≥ 0,

(ii) d(x,y) = 0 if and only if x = y,

(iii) d(x,y) = d(y,x),

(iv) d(x,y)≤ d(x,z)+d(z,y).

The pair (X ,d) is called a metric space.

The following are examples of well-known metric spaces.

Example 1.2.1. On Rn = {(x1,x2,x3, . . . ,xn), ∀xi ∈ R}, the Euclidean metric d is de-

fined by

d(x,y) =

√
n

∑
i=1

(xi− yi)2.
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Example 1.2.2. Let C[a,b] denote the set of all continuous real-valued functions on

[a,b]. Define d on C[a,b]×C[a,b] by d(x,y) = max
t∈[a,b]

|x(t)− y(t)|. Then d is a metric

on C[a,b].

Definition 1.2.7 (Cauchy sequence, completeness). A sequence {xn} in a metric space

X = (X ,d) is said to be Cauchy if for every ε > 0, there is an N = N(ε) such that

d(xm,xn)< ε, for every m,n > N. The space X is said to be complete if every Cauchy

sequence in X converges (that is, has a limit which is an element of X).

Theorem 1.2.6. The space C[a,b] with the above metric is a complete metric space.

For the proof the reader is referred to [[18], p.36].

Example 1.2.3. The space C[a,b] with the metric d( f ,g) =
∫ b

a f (x)g(x)dx, where

f (x) and g(x) ∈C[a,b] is non-complete metric space.

Theorem 1.2.7. R with its usual metric is a complete metric space.

Definition 1.2.8 (Normed Space). Let X be a vector space over a field of scalars F . A

norm on X is a function ‖.‖ : X → R such that

(i) ‖x‖ ≥ 0, ∀ x ∈ X ,

(ii) ‖x‖= 0 if and only if x = 0,

(iii) ‖α x‖= |α | ‖x‖ ; ∀α ∈ F,

(iv) ‖x+ y‖ ≤ ‖x‖+‖y‖ , ∀ x,y ∈ X .

Remark 1.2.1. A norm on X defines a metric d on X given by d(x,y) = ‖x− y‖ .

Definition 1.2.9 (Contraction). Let X = (X ,d) be a metric space. A mapping

T : X → X is called a contraction on X if there is a positive real numbers α < 1 such
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that for all x,y ∈ X

d(T x,Ty)≤ α d(x,y).

Theorem 1.2.8 (Banach Fixed Point Theorem). [[18], p.300]. Consider a metric

space X = (X ,d), where X 6= φ , suppose that X is complete and let T : X → X be

a contraction on X . Then T has precisely one fixed point.

Definition 1.2.10 ( Partial Order Set). [[19], p.142]. Let S be a set. A partial order

relation 6 on S is antisymmetric, transitive and reflexive. The pair (S,6) is called a

partially ordered set.

Example 1.2.4. R with the usual ordering is a partially ordered set.

Example 1.2.5. Let F (X) denote the set of real-valued functions on X . Define the

order 6 on F by f 6 g⇐⇒ f (x) 6 g(x); ∀x ∈ X . Then (F (X),6) is a partially

ordered set.

Example 1.2.6. Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) ∈ Rn. We consider the

order 6 on Rn defined by x 6 y if and only if xi 6 yi, ∀i = 1,2, . . . ,n. Then (Rn,6) is

partially ordered set. This ordering is called the simplicial ordering of Rn.

Definition 1.2.11 (Comparable). [[19], p.144]. Let (S,6) be a partially ordered set.

Two members x and y of S are said to be comparable if either x≤ y or y≤ x.

Theorem 1.2.9 (Mean value theorem for function of several variables). [20]. Let

U ⊂ Rn be open, f : U → R be differentiable and the segment [a,b] joining a to b

be contained in U. Then there exists c ∈ (a,b) such that

f (b)− f (a) =5 f (c).(b−a).
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Chapter 2: Boundary Value Problems of Fractional Order

2.1 Introduction

We consider a class of fractional boundary value problems of the form

Dδ y+ f (t,y,y′) = 0, 0 < t < 1, 1 < δ < 2, (2.1)

with boundary conditions y(0) = a, y′(1) = b, (2.2)

where f is continuous with respect to t on [0,1] and smooth with respect to y and

y′, and the fractional derivative is considered in the Caputo’s sense. Several existence

and uniqueness results for various classes of fractional differential equations have been

established using the method of lower and upper solutions and fixed points theorems.

Problem (2.1) with f = f (t,y) and homogeneous boundary conditions u(0)= u(1)= 0,

and Dδ is the standard Riemann-Liouville fractional derivative was discussed by Bai

and Lü [21]. They used some fixed point theorems in a cone to establish the existence

and multiplicity of positive solutions. Problem (2.1) with f = f (t,y) and the boundary

conditions y(0)= a, y(1)= b, and Dδ is the Caputo fractional derivative was studied by

Al-Refai and Hajji [9], where some existence and uniqueness results were established

using the monotone iterative sequences of upper and lower solutions. In addition, prob-

lem (2.1) with f (t,y)= f0(t,y)+ f1(t,y)+ f2(t,y) was studied by Hu, Liu, and Xie [22]

using quasi-lower and quasi-upper solutions and monotone iterative technique. To the

best of our knowledge, the method of monotone iterative sequences of lower and up-

per solutions has not been implemented for problem (2.1) - (2.2), where the nonlinear

term f = f (t,y,y′) depends on the variables y and y′. In order to apply the method

of lower and upper solutions, we need some information about the fractional deriva-

tive of a function at its extreme points, which are difficult for the fractional derivative

1 < δ < 2. While some estimates were obtained by Al-Refai in [15], these estimates

require more information about the function, unlike the case where 0 < δ < 1. There-
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fore, we will transform the problem (2.1)-(2.2) to a system of two equations and then

apply the method of lower and upper solutions to the new system. A similar technique

has been used by Syam and Al-Refai [23] for higher order fractional boundary value

problems of the form Dδ y(x)+ f (x,y,y′′) = 0, 0< x< 1, 3< δ < 4, with the boundary

conditions y(0)= a1, y(1)= b1, y′′(0)−µ1y′′′(0)= a2, y′′(1)+µ2y′′′(1)= b2, where f

is continuous with respect to t on [0,1] and y∈C4[0,1], a1, a2, b1, b2 ∈R, µ1, µ2≥ 0,

and Dδ is the Caputo fractional derivative. They have established an existence result

by using the method of lower and upper solutions. Moreover, the existence of the so-

lutions to the problem (2.1) for f = f (t,y) and t ∈ [0,T ], α ∈ (0,1], and the boundary

condition y(0)+µ
∫ T

0 y(s)ds = y(T ), where Dα is the Caputo fractional derivative has

been studied by Benchohra and Ouaar [24], using the Banach contraction principle and

Schauder’s fixed point theorem.

In the following, we transform problem (2.1) - (2.2) to a system of differential

equations, consisting of a fractional derivative and an integer derivative. Let y1 = y,

and y2 = Dy. Using the fact that Dδ y = Dδ−1(Dy) for 1 < δ < 2, the system (2.1) -

(2.2) is reduced to

Dy1− y2 = 0, 0 < t < 1, (2.3)

Dαy2 + f (t,y1,y2) = 0, 0 < t < 1, 0 < α < 1, (2.4)

with y1(0) = a, y2(1) = b, (2.5)

where α = δ − 1. For the above system we initially require y1,y2 ∈ C1[0,1] and f is

continuous with respect to the variable t and smooth with respect to the variables y1

and y2.

2.2 Definitions and Preliminary Results

Now, we have the following definition of lower and upper solutions for the

system (2.3) - (2.5).
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Definition 2.2.1 (Lower and Upper Solutions). A pair of functions (v1,v2)∈C1[0,1]×

C1[0,1] is called a pair of lower solutions of the problem (2.3) - (2.5), if they satisfy

the following inequalities

Dv1− v2 ≤ 0, 0 < t < 1, (2.6)

and Dαv2 + f (t,v1,v2)≤ 0, 0 < t < 1, 0 < α < 1, (2.7)

with v1(0)≤ a, v2(1)≤ b. (2.8)

Analogously, a pair of functions (w1,w2) ∈C1[0,1]×C1[0,1] is called a pair of upper

solutions of the problem (2.3) - (2.5), if they satisfy the reversed inequalities. In ad-

dition, if v1(t)≤ w1(t) and v2(t)≤ w2(t),∀t ∈ [0,1], we say that (v1,v2) and (w1,w2)

are ordered pairs of lower and upper solutions.

The following new positivity result is essential in this thesis.

Lemma 2.2.1 (Positivity Result). Let ω(t) be in C1[0,1] that satisfies the fractional

inequality

Dα
ω(t)+µ(t)ω(t)≥ 0, 0 < t < 1, 0 < α < 1, (2.9)

where µ(t)≥ 0 and µ(0) 6= 0. Then ω(t)≥ 0, ∀t ∈ [0,1].

Proof. Assume that ω(t) < 0 for some t ∈ [0,1]. Since ω(t) is continuous on [0,1],

then ω(t) attains an absolute minimum value at t0 ∈ [0,1] with ω(t0)< 0. If t0 ∈ (0,1],

then by Theorem 1.2.1, we have

Γ(1−α)Dα
ω(t0)≤ t−α

0 [ω(t0)−ω(0)]< 0.
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Since Γ(1−α)> 0, for 0 < α < 1, we have Dαω(t0)< 0, and hence

Dα
ω(t0)+µ(t0)ω(t0)< 0,

which contradicts (2.9). If t0 = 0, then by Lemma 1.2.9, Dαω(0) = 0, and as µ(0) 6= 0,

we get

Dα
ω(0)+µ(0)ω(0)< 0,

which contradicts (2.9). Thus the assumption made at the beginning of the proof is not

valid and the statement of the lemma is proved.

2.3 The Linear System of Fractional Differential Equations

In this section, we study the existence and uniqueness of solutions to the system

of linear boundary value problems of the form


Dy1(t) = g(t), 0 < t < 1,

Dαy2(t)+µy2(t) = f (t), 0 < t < 1, 0 < α < 1,

y1(0) = a, y2(1) = b,

(2.10)

where µ is a positive constant and Dα is the Caputo fractional derivative. These results

will be used later on to establish the existence and uniqueness of monotone iterative

sequences of the nonlinear system (2.3) - (2.5).

Lemma 2.3.1. Let f (t) and g(t) be in C[0,1]. Then a pair of (y1(t),y2(t)) ∈C1[0,1]×

C1[0,1] is a solution to the system (2.10) if and only if it is a solution to the system of

integral equations:

y1(t) = a+
∫ t

0
g(s)ds, (2.11)
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y2(t) = b+
∫ 1

0
G(t,s) [µy2(s)− f (s)] ds, (2.12)

where

G(t,s) =


(1− s)α−1− (t− s)α−1

Γ(α)
, 0≤ s < t ≤ 1,

(1− s)α−1

Γ(α)
, 0≤ t ≤ s < 1.

(2.13)

Proof. As y1 ∈C1[0,1], it is clear that y1 which satisfies Eq.(2.11) will also satisfy

the first equation in the system (2.10) with y1(0) = a.

Applying the fractional integral operator Iα to the second equation in the system (2.10),

we get

y2(t)− y2(0)+µIαy2(t) = Iα f (t),

which can be written as

y2(t) = y2(0)−
µ

Γ(α)

∫ t

0
(t− s)α−1y2(s)ds+

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds.

Now, at t = 1, we have

b = y2(1) = y2(0)−
µ

Γ(α)

∫ 1

0
(1− s)α−1y2(s)ds+

1
Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds.

Thus,

y2(0) = b+
µ

Γ(α)

∫ 1

0
(1− s)α−1y2(s)ds− 1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds,

and

y2(t) = b+
µ

Γ(α)

∫ 1

0
(1− s)α−1y2(s)ds− 1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds
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− µ

Γ(α)

∫ t

0
(t− s)α−1y2(s)ds+

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds.

= b+
1

Γ(α)

∫ 1

0
(µy2(s)− f (s))(1− s)α−1 ds− 1

Γ(α)

∫ t

0
(µy2(s)− f (s))(t− s)α−1 ds.

(2.14)

The last equation can be written as

y2(t) = b+
∫ 1

0
G(t,s) [µy2(s)− f (s)] ds,

where G(t,s) is defined in (2.13).

Conversely, let y2(t) ∈C1[0,1] satisfy Eq.(2.12), then y2 satisfies Eq.(2.14) which can

be written as

y2(t) = b+
1

Γ(α)

∫ 1

0
(µy2(s)− f (s))(1− s)α−1 ds− Iα(µy2(t)− f (t)).

Applying the fractional derivative operator Dα yields

Dαy2(t) = Dα

(
b+

µ

Γ(α)

∫ 1

0
(1− s)α−1y2(s)ds− 1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds

)
−Dα Iα(µy2(t)− f (t))

=−µy2(t)+ f (t).

Thus, Dαy2(t)+µy2(t) = f (t).

At t = 1, we have

y2(1) = b+
µ

Γ(α)

∫ 1

0
(1− s)αy2(s)ds− 1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds

− µ

Γ(α)

∫ 1

0
(1− s)α−1y2(s)ds+

1
Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds

= b, which completes the proof of the Theorem.
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In the following theorem, we establish the existence and uniqueness result of the system

(2.10), using the Banach Fixed Point Theorem.

Theorem 2.3.1. Suppose that f (t) ∈C[0,1] and the constant µ satisfies

0 <
2µ

Γ(α +1)
< 1, (2.15)

then the system (2.10) has exactly one solution given by the Eq’s.(2.11) - (2.12).

Proof. In Lemma 2.3.1, we proved that the system (2.10) is equivalent to the system

(2.11)-(2.12). Therefore we will prove the existence and uniqueness of solutions for

the system (2.11)-(2.12). The existence and uniqueness of a solution to Eq.(2.11) is

guaranteed as g(t) ∈C[0,1].

To prove the existence and uniqueness of solution to Eq.(2.12), we will use the Banach

Fixed Point Theorem. we define the operator b+
∫ 1

0 G(t,s) [µx(s)− f (s)] ds. For each

x ∈C1[0,1], we prove b+
∫ 1

0 G(t,s) [µx(s)− f (s)] ds ∈C[0,1]. We have

b+
µ

Γ(α)

∫ 1

0
(1− s)α−1x(s)ds− 1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds

− µ

Γ(α)

∫ t

0
(t− s)α−1x(s)ds+

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds.

Since (1− s)α−1 and (t− s)α−1, 0 < α < 1 are integrable, x(s) ∈C1[0,1] and f (s) ∈

C[0,1], then
∫ 1

0 (1− s)α−1 f (s)ds and
∫ 1

0 (1− s)α−1x(s)ds exist.

Applying the Weighted Mean Value Theorem for integrals to
∫ t

0(t− s)α−1x(s)ds and∫ t
0(t− s)α−1 f (s)ds, yields

b+
µ

Γ(α)

∫ 1

0
(1− s)α−1x(s)ds− 1

Γ(α)

∫ 1

0
(1− s)α−1 f (s)ds− µ x(η1)

Γ(α +1)
tα

+
f (η2)

Γ(α +1)
tα ,

for some η1, η2 ∈ (0, t) and 0 < α < 1. Thus b+
∫ 1

0 G(t,s) [µx(s)− f (s)] ds ∈C[0,1].

Now, let T : C[0,1]→C[0,1] with T x = b+
∫ 1

0 G(t,s) [µx(s)− f (s)] ds. To show that
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the system (2.10) has unique solution, we apply the Banach Fixed Point Theorem to T.

Let x1(t) and x2(t) be in C[0,1], then we have

‖T x1−T x2‖=
∥∥∥∥µ

∫ 1

0
G(t,s)(x1− x2)ds

∥∥∥∥
≤ ‖x1− x2‖µ

∥∥∥∥∫ 1

0
G(t,s)ds

∥∥∥∥
≤ ‖x1− x2‖µ max

0≤t≤1

∫ 1

0
|G(t,s)|ds

= ‖x1− x2‖µ max
0≤t,s≤1

|−
∫ t

0

(1− s)α−1− (t− s)α−1

Γ(α)
ds+

∫ 1

t

(1− s)α−1

Γ(α)
ds|

= ‖x1− x2‖
µ

Γ(α +1)
max

0≤t≤1
|−1+ tα +2(1− t)α |

= ‖x1− x2‖
2µ

Γ(α +1)
.

Since
2µ

Γ(α +1)
< 1, we have T is a contraction and by Banach Fixed Point Theorem,

the equation T x = x has a unique solution on C[0,1].

2.4 Monotone Sequences of Lower and Upper Solutions

In this section, we construct monotone iterative sequences of lower and upper

solutions to the system (2.3) - (2.5). Then we use these sequences to establish an

existence and uniqueness result.

Given ordered pairs V = (v(0)1 ,v(0)2 ) and W = (w(0)
1 ,w(0)

2 ) of lower and upper solutions,

respectively, to the problem (2.3) - (2.5), we define the set

[V,W ] = {(h1,h2) ∈C1[0,1]×C1[0,1] : v(0)1 ≤ h1 ≤ w(0)
1 ,v(0)2 ≤ h2 ≤ w(0)

2 }.

We assume that the nonlinear term f (t,y1,y2) satisfies the following conditions on

[V,W ] :

(A1) The function f (t,h1,h2) is decreasing with respect to h1, that is
∂ f
∂h1

(t,h1,h2)≤ 0

for all (h1,h2) ∈ [V,W ], and t ∈ [0,1].

(A2) There exists a positive constant c, such that
∂ f
∂h2

(t,h1,h2) ≤ c, for all (h1,h2) ∈

[V,W ], and t ∈ [0,1].

The following theorem describes the monotone iterative sequences of lower and upper
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pairs of solutions.

Theorem 2.4.1. Assume that the conditions (A1) and (A2) are satisfied and consider

the iterative sequence U (k) = (y(k)1 ,y(k)2 ), k ≥ 0 which is defined by

Dy(k)1 (t) = y(k−1)
2 (t), 0 < t < 1 (2.16)

Dαy(k)2 (t)+ cy(k)2 (t) = cy(k−1)
2 (t)− f (t,y(k−1)

1 ,y(k−1)
2 ), 0 < t < 1, 0 < α < 1,

(2.17)

with y(k)1 (0) = ak, y(k)2 (1) = bk. (2.18)

We have

1. If U (0) =V = (v(0)1 ,v(0)2 ) and ak, bk are increasing sequences with

ak ≤ a, bk ≤ b, then U (k) = (y(k)1 ,y(k)2 ) = (v(k)1 ,v(k)2 ) = V (k) is an increasing se-

quence of lower pairs of solutions to the problem (2.3)-(2.5).

2. If U (0) =W = (w(0)
1 ,w(0)

2 ) and ak, bk are decreasing sequences with

ak ≥ a, bk ≥ b, then U (k) = (y(k)1 ,y(k)2 ) = (w(k)
1 ,w(k)

2 ) = W (k) is a decreasing

sequence of upper pairs of solutions to the problem (2.3) - (2.5).

Moreover,

3. v(k)1 ≤ w(k)
1 and v(k)2 ≤ w(k)

2 , ∀k ≥ 0.

Proof.

1. First, we use mathematical induction to show that U (k) = (v(k)1 ,v(k)2 ) is an in-

creasing sequence. For k = 1, we have

Dv(1)1 (t) = v(0)2 (t), 0 < t < 1 (2.19)

Dαv(1)2 (t)+ cv(1)2 = cv(0)2 − f (t,v(0)1 ,v(0)2 ), 0 < t < 1, 0 < α < 1, (2.20)
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with v(1)1 (0) = a1, v(1)2 (1) = b1. (2.21)

Since V = (v(0)1 ,v(0)2 ) is a pair of lower solution, we have

Dv(0)1 − v(0)2 ≤ 0, 0 < t < 1 (2.22)

Dαv(0)2 + f (t,v(0)1 ,v(0)2 )≤ 0, 0 < t < 1, 0 < α < 1, (2.23)

and v(0)1 (0) = a0 ≤ a,v(0)2 (1) = b0 ≤ b. (2.24)

Let z1 = v(1)1 − v(0)1 and by substituting Eq.(2.19) in Eq.(2.22), we have

0≥ Dv(0)1 −Dv(1)1 =−D(v(1)1 − v(0)1 ) =−Dz1.

Thus Dz1 ≥ 0, with z1(0) = a1− a0 ≥ 0. Since Dz1 ≥ 0, this means z1 is non-

decreasing which together with z1(0)≥ 0 imply that z1 ≥ 0, and hence

v(1)1 ≥ v(0)1 . To prove that v(1)2 ≥ v(0)2 , let z2 = v(1)2 − v(0)2 and by substituting

Eq.(2.20) in Eq.(2.23), we have

0≥ Dαv(0)2 −Dαv(1)2 − cv(1)2 + cv(0)2

=−Dα(v(1)2 − v(0)2 )− c(v(1)2 − v(0)2 )

=−Dαz2− cz2.

Therefore Dαz2 + cz2 ≥ 0. By applying the positivity lemma, we have that

z2 ≥ 0, and hence v(1)2 ≥ v(0)2 . Now, assume that v(k)1 ≥ v(k−1)
1 and v(k)2 ≥ v(k−1)

2 ,

for k = 0,1,2, . . . ,n.

From Equations (2.19) and (2.20), we have

Dv(n)1 = v(n−1)
2 , 0 < t < 1 (2.25)

Dv(n+1)
1 = v(n)2 , 0 < t < 1 (2.26)
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Dαv(n)2 + cv(n)2 = cv(n−1)
2 − f (t,v(n−1)

1 ,v(n−1)
2 ), 0 < α < 1 (2.27)

and Dαv(n+1)
2 + cv(n+1)

2 = cv(n)2 − f (t,v(n)1 ,v(n)2 ), 0 < α < 1. (2.28)

Subtracting Eq.(2.25) from Eq.(2.26), and Eq.(2.28) from Eq.(2.27), we have

D(v(n+1)
1 − v(n)1 ) = v(n)2 − v(n−1)

2 ,

and Dα(v(n+1)
2 − v(n)2 )+ c(v(n+1)

2 − v(n)2 )

= c(v(n)2 − v(n−1)
2 )+ f (t,v(n−1)

1 ,v(n−1)
2 )− f (t,v(n)1 ,v(n)2 ).

Let z1 = v(n+1)
1 − v(n)1 and using the induction hypothesis, we have that

Dz1 = v(n)2 − v(n−1)
2 ≥ 0, with z1(0)≥ 0, which proves that v(n+1)

1 ≥ v(n)1 .

Let z2 = v(n+1)
2 −v(n)2 and applying the induction hypothesis, the conditions (A1)

and (A2) and the Mean Value Theorem, we have

Dαz2 + cz2 = c(v(n)2 − v(n−1)
2 )+(v(n−1)

1 − v(n)1 )
∂ f
∂y1

(ρ1)

+(v(n−1)
2 − v(n)2 )

∂ f
∂y2

(ρ2)

= (v(n−1)
2 − v(n)2 )(

∂ f
∂y2

(ρ2)− c)+(v(n−1)
1 − v(n)1 )

∂ f
∂y1

(ρ1)≥ 0.

where ρ1 = µv(n−1)
1 +(1−µ)v(n)1 ,ρ2 = νv(n−1)

2 +(1−ν)v(n)2 with 0≤ µ,ν ≤ 1.

Again, by the positivity lemma, z2 ≥ 0 and hence v(n+1)
2 ≥ v(n)2 .

Second, we prove that (v(k)1 ,v(k)2 ), for all k ≥ 0 is a pair of lower solutions.

Since the sequence {v(k)2 } is increasing and Dv(k)1 = v(k−1)
2 , we have

Dv(k)1 −v(k)2 = v(k−1)
2 −v(k)2 ≤ 0, which together with v(k)1 (0) = ak ≤ a, prove that

v(k)1 is a lower solution. From Eq.(2.17), we have

Dαv(k)2 + cv(k)2 = cv(k−1)
2 − f (t,v(k−1)

1 ,v(k−1)
2 )

Dαv(k)2 =−cv(k)2 + cv(k−1)
2 − f (t,v(k−1)

1 ,v(k−1)
2 )

=−c(v(k)2 − v(k−1)
2 )− f (t,v(k−1)

1 ,v(k−1)
2 ).



25

By adding f (t,v(k)1 ,v(k)2 ), applying the Mean Value Theorem and using the fact

that the sequences {v(k)1 } and {v(k)2 } are increasing, we have

Dαv(k)2 + f (t,v(k)1 ,v(k)2 ) =−c(v(k)2 − v(k−1)
2 )+ f (t,v(k)1 ,v(k)2 )− f (t,v(k−1)

1 ,v(k−1)
2 )

=−c(v(k)2 − v(k−1)
2 )+

∂ f
∂y1

(ρ1)(v
(k)
1 − v(k−1)

1 )+
∂ f
∂y2

(ρ2)(v
(k)
2 − v(k−1)

2 )

= (−c+
∂ f
∂y2

(ρ2))(v
(k)
2 − v(k−1)

2 )+
∂ f
∂y1

(ρ1)(v
(k)
1 − v(k−1)

1 ),

where ρ1 = ζ1v(k)1 +(1−ζ1)v
(k−1)
1 , ρ2 = ζ2v(k)2 +(1−ζ2)v

(k−1)
2 , and

0≤ ζ1,ζ2 ≤ 1.

Applying the conditions (A1) and (A2), we have Dαv(k)2 + f (t,v(k)1 ,v(k)2 ) ≤ 0,

which together with v(k)2 (1) = bk ≤ b, prove that v(k)2 is a lower solution.

2. Similar to the proof of (1). First, we apply induction arguments to prove that the

two sequences {w(k)
1 } and {w(k)

2 } are decreasing. Then, we use these results to

show that (w(k)
1 ,w(k)

2 ) is a pair of upper solutions for each k ≥ 0.

3. Since V = (v(0)1 ,v(0)2 ) and W = (w(0)
1 ,w(0)

2 ) are ordered pairs of lower and upper

solutions, we have v(0)1 ≤ w(0)
1 and v(0)2 ≤ w(0)

2 . Hence the result is true for n = 0.

Assume that v(k)1 ≤ w(k)
1 and v(k)2 ≤ w(k)

2 , for all k = 0,1,2, . . . ,n.

We have Dv(n+1)
1 = v(n)2 and Dw(n+1)

1 = w(n)
2 . Thus

Dw(n+1)
1 −Dv(n+1)

1 = w(n)
2 − v(n)2 ≥ 0.

Let z1 = w(n+1)
1 − v(n+1)

1 , thus Dz1 ≥ 0, and with w(n+1)
1 (0) ≥ v(n+1)

1 (0) imply

z1 ≥ 0, and hence w(n+1)
1 ≥ v(n+1)

1 . Similarly, we have

Dαv(n+1)
2 + cv(n+1)

2 = cv(n)2 − f (t,v(n)1 ,v(n)2 ), (2.29)

and Dαw(n+1)
2 + cw(n+1)

2 = cw(n)
2 − f (t,w(n)

1 ,w(n)
2 ). (2.30)
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Subtract Eq.(2.29) from Eq.(2.30), we have

Dα(w(n+1)
2 − v(n+1)

2 )+ c(w(n+1)
2 − v(n+1)

2 )

= c(w(n)
2 − v(n)2 )+ f (t,v(n)1 ,v(n)2 )− f (t,w(n)

1 ,w(n)
2 ).

Let z2 = w(n+1)
2 − v(n+1)

2 . Then z2 satisfies

Dαz2 + cz2 = c(w(n)
2 − v(n)2 )+ f (t,v(n)1 ,v(n)2 )− f (t,w(n)

1 ,w(n)
2 ).

Applying the Mean Value Theorem yields

Dαz2 + cz2 = c(w(n)
2 − v(n)2 )+

∂ f
∂y1

(ρ1)(v
(n)
1 −w(n)

1 )+
∂ f
∂y2

(ρ2)(v
(n)
2 −w(n)

2 )

= (v(n)2 −w(n)
2 )(

∂ f
∂y2

(ρ2)− c)+
∂ f
∂y1

(ρ1)(v
(n)
1 −w(n)

1 ),

for some ρ1 = ζ1v(n)1 +(1−ζ1)w
(n)
1 , ρ2 = ζ2v(n)2 − (1−ζ2)w

(n)
2 and

0≤ ζ1,ζ2 ≤ 1.

By the induction hypothesis w(n)
1 ≥ v(n)1 and w(n)

2 ≥ v(n)2 and the conditions (A1)

and (A2), we have Dαz2 + cz2 ≥ 0, which proves that z2 ≥ 0. Therefore,

w(n+1)
2 ≥ v(n+1)

2 , and the proof is completed.

Remark 2.4.1. The existence and uniqueness of solutions to the sequence defined in

(2.16) - (2.18) is guaranteed by Theorem 2.3.1.

Now, we state the convergence results of the two sequences of ordered pairs of lower

and upper solutions described in Theorem 2.4.1.

Theorem 2.4.2. Assume that the conditions (A1) and (A2) are satisfied, and consider

the two iterative sequences V (k) = (v(k)1 ,v(k)2 ) and W (k) = (w(k)
1 ,w(k)

2 ), obtained from

(2.16) - (2.18), with U (0) =V = (v(0)1 ,v(0)2 ) and U (0) =W = (w(0)
1 ,w(0)

2 ), respectively.

Then

(1) The two sequences converge pointwise to V ∗ = (v∗1,v
∗
2) and W ∗ = (w∗1,w

∗
2), respec-

tively with v∗1 ≤ w∗1 and v∗2 ≤ w∗2. Moreover,
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(2) For any solution Y = (y1,y2) ∈ [V,W ] of (2.3) - (2.5), we have v∗1 ≤ y1 ≤ w∗1 and

v∗2 ≤ y2 ≤ w∗2.

Proof. (1) The two sequences v(k)1 and v(k)2 are increasing and bounded above by

w(0)
1 and w(0)

2 , respectively. Hence, they converge pointwise to v∗1 and v∗2, respectively.

By applying similar arguments, the two sequences w(k)
1 and w(k)

2 are decreasing and

bounded below by v(0)1 and v(0)2 , respectively. Hence, they converge pointwise to w∗1

and w∗2, respectively.

Since v(k)1 ≤ w(k)
1 and v(k)2 ≤ w(k)

2 , ∀k ≥ 0, then v∗1 ≤ w∗1 and v∗2 ≤ w∗2.

(2) It is enough to show that v(k)1 ≤ y1 ≤ w(k)
1 and v(k)2 ≤ y2 ≤ w(k)

2 , ∀k ≥ 0. We use

mathematical induction to show that v(k)1 ≤ y1 and v(k)2 ≤ y2, ∀k≥ 0. Similar arguments

can be used to prove that y1 ≤ w(k)
1 and y2 ≤ w(k)

2 , ∀k ≥ 0.

Since Y = (y1,y2) ∈ [V,W ], then the result is true for k = 0.

Assume that v(k)1 ≤ y1 and v(k)2 ≤ y2, ∀k = 0,1, . . . ,n. Then we have

Dv(n+1)
1 = v(n)2 and Dy1− y2 = 0. Therefore, there holds

−Dv(n+1)
1 +Dy1− y2 =−v(n)2 , or

D(y1− v(n+1)
1 ) = y2− v(n)2 .

By induction hypothesis, we have D(y1− v(n+1)
1 ) ≥ 0, which together with y1(0) ≥

v(n+1)
1 (0), prove that y1− v(n+1)

1 ≥ 0, and y1 ≥ v(n+1)
1 .

By subtracting Eq.’s (2.4) and (2.28), we get

Dα(y2− v(n+1)
2 )− cv(n+1)

2 =−cv(n)2 + f (t,v(n)1 ,v(n)2 )− f (t,y1,y2).

Adding c(y2− v(n+1)
2 ) for both sides, we get

Dα(y2− v(n+1)
2 )+ c(y2− v(n+1)

2 )− cv(n+1)
2 =−cv(n)2 + c(y2− v(n+1)

2 )

+ f (t,v(n)1 ,v(n)2 )− f (t,y1,y2)

= cv(n+1)
2 − cv(n)2 + c(y2− v(n+1)

2 )+ f (t,v(n)1 ,v(n)2 )− f (t,y1,y2)

= cv(n+1)
2 − cv(n)2 + cy2− cv(n+1)

2 + f (t,v(n)1 ,v(n)2 )− f (t,y1,y2)
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=−c(v(n)2 − y2)+ f (t,v(n)1 ,v(n)2 )− f (t,y1,y2).

By applying the Mean Value Theorem, we have

Dα(y2− v(n+1)
2 )+ c(y2− v(n+1)

2 ) =−c(v(n)2 − y2)+
∂ f
∂y1

(ρ1)(v
(n)
1 − y1)

+
∂ f
∂y2

(ρ2)(v
(n)
2 − y2)

= (v(n)2 − y2)(
∂ f
∂y2

(ρ2)− c)+
∂ f
∂y1

(ρ1)(v
(n)
1 − y1)≥ 0,

for some ρ1 = µv(n)1 +(1−µy1),ρ2 = βv(n)2 +(1−βy2) and 0≤ µ,β ≤ 1.

Thus Dα(y2− v(n+1)
2 )+ c(y2− v(n+1)

2 )≥ 0,

which proves that y2 ≥ v(n+1)
2 by the positivity lemma. By applying similar argument,

one can show that y1 ≤ w∗1 and y2 ≤ w∗2.

2.5 Existence and Uniqueness of Solutions

In order to establish the existence and uniqueness of solutions to problem (2.3)

- (2.5), we start with the following lemma.

Lemma 2.5.1. A pair of functions (y1(t),y2(t))∈C1[0,1]×C1[0,1] is a solution to the

problem (2.3) - (2.5) if and only if it is a solution to the system of integral equations

y1(t) = a+
∫ t

0
y2(s)ds, 0 < t < 1 (2.31)

and y2(t) = η− 1
Γ(α)

∫ t

0
(t− s)α−1 f (s,y1(s),y2(s))ds, 0 < t < 1, 0 < α < 1,

(2.32)

where η = b+
1

Γ(α)

∫ 1
0 (1− s)α−1 f (s,y1(s),y2(s))ds.
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Proof. Let (y1(t),y2(t)) ∈ C1[0,1]×C1[0,1] be a solution to the boundary value

problem (2.3) - (2.5). Applying the integral operator I for Eq.(2.3), we have

y1(t) = y1(0)+ Iy2(t) = a+
∫ t

0
y2(s)ds, 0 < t < 1,

which proves the result in the Eq.(2.31). Applying the Riemann-Liouville fractional

integral Iα for Eq.(2.4), we have

y2(t) = y2(0)− Iα f (t,y1(t),y2(t)), 0 < t < 1, 0 < α < 1. (2.33)

Since, y2(1) = y2(0)− Iα f (t,y1(t),y2(t))|t=1, we have

y2(0) = y2(1)+
1

Γ(α)

∫ 1

0
(1− s)α−1 f (s,y1(s),y2(s))ds

= b+
1

Γ(α)

∫ 1

0
(1− s)α−1 f (s,y1(s),y2(s))ds.

By substituting the last Eq. in Eq.(2.33) the result is obtained.

Conversely, let y1(t) ∈ C1[0,1] satisfy Eq.(2.31). Applying the derivative operator D

yields Dy1(t) = y2(t).

Similarly, let y2(t) ∈C1[0,1] satisfy Eq.(2.32). Applying the Caputo fractional deriva-

tive operator Dα , and using the fact that Dαη = 0, for any constant η and Dα Iα f (t) =

f (t), we have Dαy2(t)+ f (t,y1,y2) = 0. For the boundary conditions we have,

y1(0) = a+
∫ 0

0
y2(s)ds = a,

and y2(1) = η− 1
Γ(α)

∫ 1

0
(1− s)α−1 f (s,y1(s),y2(s)ds

= b+
1

Γ(α)

∫ 1

0
(1− s)α−1 f (s,y1(s),y2(s)ds

− 1
Γ(α)

∫ 1

0
(1− s)α−1 f (s,y1(s),y2(s)ds

= b, which completes the proof.
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The next theorem proves the existence of solutions of problem (2.31) - (2.32).

Theorem 2.5.1 (Existence Result). Let V ∗ = (v∗1,v
∗
2) and W ∗ = (w∗1,w

∗
2) be the limits

of the two sequences V (k)=(v(k)1 ,v(k)2 ) and W (k)=(w(k)
1 ,w(k)

2 ) defined by (2.16) - (2.18)

with V (0) = (v(0)1 ,v(0)2 ) and W (0) = (w(0)
1 ,w(0)

2 ), respectively. Assume that lim
k→∞

ak = a

and lim
k→∞

bk = b. Then V ∗ and W ∗ are solutions to (2.31) - (2.32).

Proof. We have that

Dv(k)1 = v(k−1)
2 , (2.34)

and Dαv(k)2 + cv(k)2 = cv(k−1)
2 − f (t,v(k−1)

1 ,v(k−1)
2 ). (2.35)

Applying the integral operator I for Eq.(2.34), we have

v(k)1 − v(k)1 (0) = I(v(k−1)
2 ), where v(k)1 (0) = ak. Taking the limit and using the fact that

v(k)1 converges pointwise to v∗1, we have v∗1 = a+ lim
k→∞

I(v(k−1)
2 ).

Since v(k)2 converges pointwise to v∗2, is bounded and Riemann integrable, then by

Theorem 1.2.3, we have

v∗1 = a+ I(v∗2) = a+
∫ t

0
v∗2 ds, 0 < t < 1, (2.36)

which proves that v∗2 is a solution to Eq.(2.31).

Similarly, applying the fractional integral operator Iα for the Eq.(2.35), we have

Iα(Dαv(k)2 )+ cIα(v(k)2 ) = cIα(v(k−1)
2 )− Iα( f (t,v(k−1)

1 ,v(k−1)
2 )),

or

v(k)2 − v(k)2 (0)+ cIα(v(k)2 ) = cIα(v(k−1)
2 )− Iα( f (t,v(k−1)

1 ,v(k−1)
2 )).

Taking the limit and using the facts that v(k)1 and v(k)2 converge pointwise to v∗1 and v∗2,

respectively, they are bounded and Riemann integrable, and f is continuous, we have

v∗2− v∗2(0)+ cIα(v∗2) = cIα(v∗2)− Iα( f (t,v∗1,v
∗
2)). (2.37)

Thus, v∗2(t) = v∗2(0)− Iα( f (t,v∗1,v
∗
2)). (2.38)
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Now, at t = 1 we have v∗2(1) = v∗2(0)− Iα f (t,v∗1,v
∗
2)|t=1 and then

v∗2(0) = b+
1

Γ(α)

∫ 1

0
(1− s)α−1 f (s,v∗1(s),v

∗
2(s))ds. (2.39)

Substitute Eq.(2.39) in Eq.(2.38) to obtain the result. By similar arguments, one can

show that (w∗1,w
∗
2) is also a solution to the problem (2.31) - (2.32).

Remark 2.5.1. Since in general, we don’t guarantee that V ∗,W ∗ ∈C1[0,1]×C1[0,1],V ∗

and W ∗ are called weak solutions of the problem (2.3) - (2.5). In the literature we refer

to V ∗ and W ∗ by the minimal and maximal solutions, respectively.

Before establishing the uniqueness result, we have the following definition of

comparable solutions.

Definition 2.5.1 (Comparable Solutions). Assume that (u1,u2) 6= (v1,v2) are two so-

lutions of the problem (2.3) - (2.5). We say that (u1,u2) and (v1,v2) are comparable

solutions, if either (u1,u2)≤ (v1,v2) or (v1,v2)≤ (u1,u2).

Theorem 2.5.2. Let (y1(t),y2(t)) ∈ C1[0,1]×C1[0,1] and (x1(t),x2(t)) ∈ C1[0,1]×

C1[0,1] be comparable solutions of the problem (2.3) - (2.5), such that the conditions

(A1) and (A2) are satisfied and there exists c1 < 0 such that
∂ f
∂y2

(t,y1,y2) ≤ c1 < 0.

Then (y1,y2) = (x1,x2), for all t ∈ [0,1].

Proof. Since (y1,y2) and (x1,x2) are solutions of problem (2.3)-(2.5), we have

Dy1− y2 = Dx1− x2 = 0, (2.40)

and Dαy2 + f (t,y1,y2) = Dαx2 + f (t,x1,x2) = 0, (2.41)

with y1(0) = x1(0) = a, y2(1) = x2(1) = b. (2.42)
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Equations (2.40) and (2.41) can be written as:

D(x1− y1) = x2− y2, 0 < t < 1,

Dα(x2− y2)+ f (t,x1,x2)− f (t,y1,y2) = 0, 0 < t < 1, 0 < α < 1.

As (y1,y2) are (x1,x2) are comparable solutions we assume without loss of generality

that y1 ≤ x1 and y2 ≤ x2. Let z1 = x1− y1, and z2 = x2− y2. Applying the Mean Value

Theorem for the last equation we obtain

Dz1 = z2, 0 < t < 1, (2.43)

Dαz2 +
∂ f
∂y1

(ρ1)z1 +
∂ f
∂y2

(ρ2)z2 = 0, 0 < t < 1, 0 < α < 1, (2.44)

with z1(0) = 0 and z2(1) = 0, where ρ1 = µx1 +(1−µ)y1,ρ2 = νx2 +(1−ν)y2 and

0≤ µ,ν ≤ 1.

By the continuity of z1(t) and z2(t) for t ∈ [0,1], we have

Dαz2(0)+
∂ f
∂y1

(ρ1)z1(0)+
∂ f
∂y2

(ρ2)z2(0) = 0.

As z2 ∈C1[0,1] by Lemma 1.2.9, Dαz2(0) = 0, and since z1(0) = 0, we have
∂ f
∂y2

(ρ2)z2(0) = 0. Since
∂ f
∂y2

(ρ2) 6= 0, we have z2(0) = 0. Since
∂ f
∂y1

(t,y1,y2) ≤ 0,

and z1 ≥ 0, the Eq.(2.44) leads to

Dαz2 +
∂ f
∂y2

(ρ2)z2 =−
∂ f
∂y1

(ρ1)z1 ≥ 0. (2.45)

Since
∂ f
∂y2

(t,y1,y2) ≤ c1 < 0, and z2 ≥ 0, we have
∂ f
∂y2

(ρ2)z2 ≤ c1z2 ≤ 0, therefore

Inequality (2.45) leads to

0≤ Dαz2 +
∂ f
∂y2

(ρ2)z2 ≤ Dαz2 + c1z2. (2.46)
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Applying the fractional integral operator Iα to the last inequality, we have

0≤ IαDαz2 + c1Iαz2 = z2(t)− z2(0)+ c1Iαz2.

Since z2(0) = 0, we have

0≤ z2(t)+ c1Iαz2(t), ∀t ∈ [0,1]. (2.47)

In the following, we prove that z2(t) = 0, ∀ t ∈ [0,1]. Assume by contradiction that

z2(t) 6= 0 in [0,1]. Since z2(1) = 0, we have at t = 1,

0≤ z2(1)+ c1Iαz2(1) = c1Iαz2(1) = c1
1

Γ(α)

∫ 1

0
(1− s)α−1z2(s)ds. (2.48)

The function z2 satisfies the following: z2(0) = z2(1) = 0, z2 ≥ 0. As z2 6= 0 on [0,1],

there exists t0 ∈ (0,1) such that z2(t0) > 0. By the continuity of z2(t) there exists a

neighborhood of t0, Nδ (t0)= (t0−δ , t0+δ ), such that z2(t)> 0, ∀t ∈Nδ (t0). Therefore

Iαz2(1) =
1

Γ(α)

[∫ t0−δ

0
(1− s)α−1z2(s)ds+

∫ t0+δ

t0−δ

(1− s)α−1z2(s)ds

+
∫ 1

t0+δ

(1− s)α−1z2(s)ds
]
.

The first and last integrals are non-negative since both (1− s)α−1 and z2 are non-

negative. Applying the Weighted Mean Value Theorem for Integrals for the second

integral, we have

1
Γ(α)

∫ t0+δ

t0−δ

(1− s)α−1z2 ds =
z2(µ)

Γ(α)

∫ t0+δ

t0−δ

(1− s)α−1 ds

=
z2(µ)

Γ(α +1)
((1− t0 +δ )α − (1− t0−δ )α)> 0,

for some µ ∈ (t0−δ , t0 +δ ). Therefore Iαz2(1)> 0, which together with c1 < 0, lead

to c1Iαz2(1) < 0, a result that contradicts Eq.(2.48). Hence the assumption made is

not correct and therefore z2(t) = 0, ∀t ∈ [0,1]. Substituting the last result in Eq.(2.43)

yields Dz1 = 0, which together with z1(0) = 0, lead to z1 = 0, ∀ t ∈ [0,1]. Thus, x1 = y1
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and x2 = y2 and the result of the theorem is proved.

Theorem 2.5.3 (Existence and Uniqueness Result). Let V ∗ = (v∗1,v
∗
2) ∈ C1[0,1]×

C1[0,1] and W ∗ = (w∗1,w
∗
2) ∈ C1[0,1]×C1[0,1] be as in Theorem 2.5.1 and assume

that they satisfy the conditions in Theorem 2.5.2 with
∂ f
∂y2

(t,y1,y2)≤ c1 < 0, for some

c1 < 0. Then v∗1 = w∗1 and v∗2 = w∗2 and the problem (2.3) - (2.5) has a unique solution

on [V,W ].

Proof. Since V ∗, W ∗ ∈ C1[0,1]×C1[0,1] and satisfy v∗1 ≤ w∗1 and v∗2 ≤ w∗2, then

(v∗1,v
∗
2) and (w∗1,w

∗
2) are comparable solution for the problem (2.3) - (2.5). As

∂ f
∂y2

(t,y1,y2) ≤ c1 < 0, for some c1 < 0, by Theorem 2.5.2, we have v∗1 = w∗1 and

v∗2 = w∗2.

2.6 Illustrated Examples

In this section, we apply the analysis described in the previous sections for two

examples to illustrate the validity of our result.

Example 2.6.1. Consider the linear fractional boundary value problem

D
5
3 y(t) =

1
4

3
√

t y(t)− 1
4

y′(t), 0 < t < 1, (2.49)

with y(0) = 1, y′(1) = 0. (2.50)

We first transform the problem to the following system

Dy1(t)− y2(t) = 0, 0 < t < 1, (2.51)

D
2
3 y2(t)−

1
4

3
√

t y1(t)+
1
4

y2(t) = 0, 0 < t < 1, (2.52)

with y1(0) = 1, y2(1) = 0, (2.53)
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where y1(t) = y(t) and y2(t) = y′(t). In the following we show that V (0) = (v(0)1 ,v(0)2 ) =

(1,0) and W (0) = (w(0)
1 ,w(0)

2 ) = (t+1, t) are ordered pairs of lower and upper solutions

to the system (2.51) - (2.53). It is clear that V (0) satisfies the definition of the lower

solutions given in Eq’s.(2.6) - (2.8). We now show that W (0) is an upper solution. We

have

D(t +1)− t = 1− t ≥ 0, 0 < t < 1,

and D
2
3 t− 1

4
t

4
3 − 1

4
t

1
3 +

1
4

t =
1

Γ(4
3)

t
1
3 − 1

4
t

4
3 − 1

4
t

1
3 +

1
4

t

= t
1
3

( 1
Γ(4

3)
− 1

4
t− 1

4
+

1
4

t
2
3

)
≥ 0, for 0 < t < 1,

which together with w(0)
1 (0) = 1, w(0)

2 (1) = 1 prove that W (0) = (t + 1, t) is an upper

solution for the system (2.51) - (2.53). In the last equation we use the fact that

1
Γ(4

3)
> 1 and −1

4 t− 1
4 ≥−

1
2 , for 0≤ t ≤ 1. Since v(0)1 = 1≤ 1+ t = w(0)

1 and v(0)2 =

0 ≤ t = w(0)
2 , ∀ t ∈ [0,1], we have V (0) and W (0) are ordered pairs of lower and upper

solutions. Now, from Eq.(2.52), we have f (t,y1,y2) =−1
4

3
√

t y1(t)+ 1
4 y2(t) satisfying

∂ f
∂y1

(t,y1,y2) = −1
4

3
√

t and
∂ f
∂y2

(t,y1,y2) =
1
4 , hence we can choose c = 1

4 and the

result in Theorem 2.5.1 guarantee the existence of solution to the problem.

Example 2.6.2. Consider the non-linear fractional boundary value problem

D
3
2 y(t)− y5(t)− 1

8
y′(t) = 0, 0 < t < 1, (2.54)

with y(0) = 0, y′(1) = 1. (2.55)
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We transform the problem to the following system

Dy1(t)− y2(t) = 0, 0 < t < 1, (2.56)

D
1
2 y2(t)− y5

1(t)−
1
8

y2(t) = 0, 0 < t < 1, (2.57)

with y1(0) = 0, y2(1) = 1, (2.58)

where y1(t) = y(t) and y2(t) = y′(t). In the following we show that V (0) = (v(0)1 ,v(0)2 ) =

(0,0) and W (0) = (w(0)
1 ,w(0)

2 ) = (t2, t) are ordered pairs of lower and upper solutions

to the system (2.56) - (2.58). It is clear that V (0) satisfies the definition of the lower

solutions given in Eq’s.(2.6) - (2.8). We now show that W (0) is an upper solution. We

have

Dt2− t = 2t− t = t ≥ 0, 0 < t < 1,

and D
1
2 t− t10− 1

8
t =

2√
π

t
1
2 − t10− 1

8
t = t

1
2

( 2√
π
− t

19
2 − 1

8
t

1
2

)
≥ 0, 0 < t < 1,

which together with w(0)
1 (0) = 0, w(0)

2 (1) = 1 prove that W (0) = (t2, t) is an upper

solution for the system (2.56) - (2.58). In the last equation we use the fact that 2√
π
> 9

8 .

Since v(0)1 = 0 ≤ w(0)
1 = t2 and v(0)2 = 0 ≤ w(0)

2 = t, ∀ t ∈ [0,1], we have V (0) and

W (0) are ordered pairs of lower and upper solutions. Now, from Eq.(2.57), we have

f (t,y1,y2) =−y5
1(t)−

1
8y2(t) satisfying

∂ f
∂y1

(t,y1,y2) =−5y4
1 and

∂ f
∂y2

(t,y1,y2) =−1
8 ,

hence we can choose c =
1
4

and the result in Theorem 2.5.3 guarantee the existence of

unique solution to the problem in [W (0),V (0)].
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2.7 Conclusion

In this thesis, a class of boundary value problems of fractional order 1 < δ < 2

has been discussed, where the fractional derivative is of Caputo’s type. To establish

an existence and uniqueness results using the method of lower and upper solutions,

we transform the problem to an equivalent system of differential equations including

the fractional and integer derivatives. To establish an existence result, we generate a

decreasing sequence of upper solutions that converges to a maximal solution of the

system, as well as, an increasing sequence of lower solutions that converges to a mini-

mal solution of the system. Under the condition
∂ f
∂y2

(t,y1,y2)≤ c1 < 0, we guarantee

that the maximal and minimal solutions coincide, and hence a uniqueness result is es-

tablished. We apply the Banach Fixed Point Theorem to show that these sequences are

well-defined and have unique solutions provided that 0<
2 c

Γ(α +1)
< 1. The presented

examples illustrate the validity of our result. Because of the non-sufficient information

about the fractional derivative 1 < δ < 2 of a function at its extreme points, the current

results cannot be obtained without transforming the original problem to a system of

fractional derivatives of less order. The problem with general boundary conditions of

Robin type is of interests, and we leave it for a future work.
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