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ABSTRACT OF DISSERTATION

HOMOGENIZATION IN PERFORATED DOMAINS AND WITH SOFT
INCLUSIONS

In this dissertation, we first provide a short introduction to qualitative homogeniza-
tion of elliptic equations and systems. We collect relevant and known results regarding
elliptic equations and systems with rapidly oscillating, periodic coe�cients, which is
the classical setting in homogenization of elliptic equations and systems. We ex-
tend several classical results to the so-called case of perforated domains and consider
materials reinforced with soft inclusions. We establish quantitative H1-convergence
rates in both settings, and as a result deduce large-scale Lipschitz estimates and
Liouville-type estimates for solutions to elliptic systems with rapidly oscillating pe-
riodic bounded and measurable coe�cients. Finally, we connect these large-scale
estimates with local regulartity results at the microscopic-level to achieve interior
Lipschitz regularity at every scale.
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Chapter 1 Introduction

This dissertation contains two projects concerning quantitative homogenization of
composite materials periodically perforated or periodically reinforced with soft in-
clusions and regularity results regarding the boundary value problems that model
relatively small elastic deformations of these materials. In particular, for the case of
perforated materials, we obtain the sharp convergence rate in H1 and the optimal
interior Lipschitz regularity. For the case of materials with embedded soft inclusions,
we obtain a suboptimal H1 convergence rate but derive still the optimal interior
regularity.

In Chapter 2, we discuss results in the classical setting, and we derive the boundary
value problem modeling relatively small deformations of elastic composite materials
with a continuum mechanics approach. Variations of the derived boundary value
problem will be studied in later chapters. These variations are explicitly stated in
Section 2.2 following the discussion of the boundary value problem. In Section 2.3,
we provide some history on the classical setting and the problem. In Section 2.4, we
state relevant results that will be referenced throughout our analysis in Chapters 3
and 4. We prove some results, and we provide references for the other results.

In Chapter 3, we prove the quantitative convergence results. These results are
new: in the case of perforated domains, the sharp rate is derived; in the case of soft
inclusions, a suboptimal rate is derived, but the rate is uniform in the magnitude
of the inclusions. Qualitative convergence in both cases has been known for some
time. In Section 3.1, we consider the case of microscopically perforated materials. In
Section 3.2, we consider the case of materials reinforced at the micrscopic level with
soft inclusions. Also, we provide a new proof that the homogenized coe�cients are
uniformly elliptic uniformly in the magnitude of the embedded inclusions.

In Chapter 4, we acheive the optimal interior regularity for the boundary value
problems corresponding to the case of perforated materials and materials reinforced
with soft inclusions. That is, we show that the solutions to the boundary value
problem derived in Chapter 2 are indeed Lipschitz. In Section 4.1, we use the re-
sults of Section 3.1 to obtain large-scale Lipschitz regularity in the case of perforated
materials. Consequences of the results of Section 4.1 are stated and proved in Sec-
tion 4.2. These include a Liouville-type estimate for unbounded perforated materials
and Lipschitz estimates at every scale. In Section 4.3, we use the results of Section 3.2
to obtain Lipschitz regularity in the case of materials reinforced with soft inclusion.
Consequences of the results in Section 3.2 appear next. In Section 4.4, we discuss suf-
ficient conditions to obtain Lipcshitz estimates in interface problems and apply this
to derive small-scale regularity estimates for materials reinforced with soft inclusions.

In Chapter 5, we discuss questions that remain unanswered. In particular, we give
a short summary of what is known regarding W 1,p-estimates and regularity questions
near the boundary of perforated domains and materials reinforced with inclusions.
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Chapter 2 Preliminaries

In this chapter, we first introduce the concept of elastic deformations in materials
with a complex, self-repeating microstructure, e.g., composite materials. Composite
materials are materials consisting of two or more constituents with di↵erent attributes
bound in some cementing matrix and well-mixed. The better the mixture, the more
“homogeneous” the material appears. From filled resin in a dentist’s o�ce to fiber-
glass on an airplane wing, composite materials are used in a variety of ways. We
derive the boundary value problem under consideration through a continuum me-
chanics approach.

Next, we introduce the mathematical formulation of the problem. We modify the
derived boundary value problem to consider elastic deformations of materials rein-
forced at the microscopic levels with periodically placed perforations or soft inclusions.
Perforations are vacuous holes in the material, and soft inclusions are constituents
substantitally weaker than the surrounding, cementing matrix.

Next, we provide some history of the problems to be considered, and finally we
discuss auxiliary results that will be referenced throughout our mathematical analysis.
These include but are not limited to lemmas and theorems from classical texts on the
subject. For each stated lemma or theorem, we provide either a thorough proof or a
reference wherein a rigorous proof may be found.

2.1 Linear elasticity

Suppose a continuum ⌦ ⇢ R3 undergoes a static deformation described by a mapping
x = (x1, x2, x3) : ⌦ ! R3. That is, if X = (X1, X2, X3) 2 ⌦, then x = x(X) denotes
the location in space of the coordinate X after deformation as seen in Figure 2.1. The
deformation gradient rx essentially describes the mapping experienced by infinitesi-
mal line elements in the reference configuration. We define the relative displacement
u of a point X by

u(X) = x(X)�X, (2.1.1)

which explicitly depends on the deformation x (see Figure 2.2).
Given a deformation x, one can define the Eulerian (or referential) strain tensor

e, which essentially describes the elongation undergone by infinitesimal line elements
in the reference. In particular,

e =
1

2
(rxT

rx� id.), (2.1.2)

where id. denotes the identity tensor with 1 on its diagonal and 0 elsewhere, rxT

denotes the transpose of the matrix valued function rx, and r ⌘ rX denotes the
gradient with respect to the referential variable X, i.e, rX = (@/@X1, @/@X2, @/@X3)
If we consider an infinitesimal line element dX in the reference configuration, and let
M denote the unit vector in the same direction, then

dX = MdS,

2



Figure 2.1: The set ⌦ is referred to as the reference configuration, and the set x(⌦) is
referred to as the current configuration.

where dS denotes the infinitesimal length element of the vector dX. Suppose dX is
mapped by the deformation gradient to dx = mds, where m is the unit vector in the
same direction of dx and ds denotes the infinitesimal length of dx (see Figure 2.3).
Note then

(ds)2 � (dS)2 = mds ·mds�MdS ·MdS

= dx · dx� dX · dX

= rxdX ·rxdX � dX · dX

= dX · (rxT
rx� id.)dX

= dX · 2edX.

In particular, if x denotes a rigid displacement (a rotation, translation, or a combi-
nation of these two), then e = 0. Recalling equation (2.1.1), we see

ru = rx� id.,

and so another representation of the Eulerian strain tensor is given by

e =
1

2
(rxT

rx� id.)

=
1

2
([ru+ id.]T [ru+ id.]� id.)

=
1

2
(ru+ruT +ruT

ru),

3



Figure 2.2: The displacement u measures the direction in which a coordinate is displaced
and its distance relative to the original reference configuration.

where ruT denotes the transpose of the tensor ru. Hence, the referential strain
depends explicitly on the displacement u, i.e., e = e(u;X).

Figure 2.3: The Eulerian strain tensor e measures the di↵erence of squares of line elements
in the reference and their image under the deformation x.

For small displacements |ru| << 1, the nonlinear quantity ruT
ru is negligible rela-

4



tive to ru. Hence, for small displacements, we typically consider the linear Eulerian
strain tensor

e =
1

2
(ru+ruT ). (2.1.3)

Elastic materials that experience small displacements exhibit a linear relationship
between the associated stress and strain. That is, for small displacements, the Cauchy
stress tensor � is linearly related to the referential strain, say

� = Ae, (2.1.4)

where the 4-tensor A is commonly referred to as the elasticity tensor for the con-
tinuum. The tensor A may or may not be isotropic and may change depending on
which coordinate in the continuum is under consideration, i.e., A ⌘ A(X). One may
consider each entry of the stress tensor �↵

i (u;X) at a point X as internal forces in the
direction ei along the plane passing through X with normal vector e↵. The vectors
ei and e↵ are the usual basis of R3 with 1 in the ith and ↵th positions, respectively,
and 0 elsewhere.

It is known by conservation of momentum that the Cauchy stress tensor � =
{�↵

i }i,↵ is symmetric, i.e.,

�↵
i = �i

↵, for any 1  i,↵, 3.

Given definition (2.1.3), the linear strain tensor e = {e↵i }i,↵ is also symmetric

e↵i = ei↵, for any 1  i,↵  3.

As a consequence, the elasticity tensor A = {A↵�
ij }i,j,↵,� defined by the relation (2.1.4)

is symmetric in multiple ways

A↵�
ij = A�↵

ji = Ai�
↵j, for any 1  i, j,↵, �  3. (2.1.5)

In three dimensions, this limits the number of independent entries to 36. In practice,
however, the elasticity tensor A has more symmetries limiting the number of indepen-
dent components to 21. Indeed, one defines the strain energy density of the deformed
material as the product of stress and strain, substitutes relation (2.1.4), and relies on
the symmetry of the elasticity tensor. However, in the chapters that follow and our
mathematical analysis, we only use the symmetries shown in (2.1.5). The symmetries
in (2.1.5) are typically referred to as the minor symmetries of the elasticity tensor,
and the symmetries not listed and not used in our analysis are referred to as the
major symmetries of the elasticity tensor.

Suppose the continuum ⌦ is a composite material with some microstructure at
some fixed microscopic scale " (see Figure 2.4), and suppose the elasticity tensor A
encodes at each referential point the elastic properties of a certain constituent.

Generally composite materials are well-mixed, and the constituents are well-
distributed throughout the continuum. For mathematical simplicity, we will assume
that the constituents are periodically distributed and the period coincides with the
microscopic scale. In particular, if A describes the elastic properties of each con-
stituent, and if A is a periodic function, then A(·/") describes the elastic properties
of the composite material.

5



Figure 2.4: Composite materials contain multiple constituents that are bound together
by some matrix material. Each constituent can have distinct elastic properties.

Ignoring inertial e↵ects, given any body forces F and a prescribed boundary dis-
placement f , there exists a unique displacement u" that balances the divergence of
the Cauchy stress tensor with the body forces and has the prescribed boundary con-
figuration. In particular, according to Cauchy’s momentum equation for each " > 0,
there exists a unique displacement u" that solves the boundary value problem

(
�div �(u";X) = F (X) in ⌦,

u"(X) = f(X) on @⌦,
(2.1.6)

where �(u";X) = A(X/")e(u";X). In this dissertation, we consider variations on the
structure of the composite material ⌦ and discuss new results concerning boundary
value problem (2.1.6) as " ! 0.

2.2 The mathematical problem

In this dissertation, we consider variations of the boundary value problem (2.1.6). In
particular, we consider the divergence-form operator

L",� = �div (k"
�A

"
r) = �

@

@xi

✓
k�
⇣
·

"

⌘
a↵�ij

⇣
·

"

⌘ @

@xj

◆
, " > 0, (2.2.1)

where A" = A(·/"), A(y) = {a↵�ij (y)}1i,j,↵,�d for y 2 Rd, d � 2, and k"
� = k�(·/")

denotes a weight depending on a parameter � and the microscopic scale ". Note the

6



Einstein summation convention will be used throughout. That is, repeated indices
will be summed. Write

k�(y) = 1+(y) + �1�(y), (2.2.2)

where 1+ denotes the characteristic function of an unbounded Lipcshitz domain ! ✓

Rd and 1� denotes the characteristic function of Rd
\!. The set ! plays the role of

the cementing matrix discussed in Section 2.1. Note when � = 1, the operator (2.2.1)
appears in the boundary value problem (2.1.6). For reference, consider " to denote the
size of the microstructure, A" as the elasticity tensor for some continuum with a self-
repeating microstructure, and k"

� as the "-periodic displacement of inclusions in the
continuum with some weight � which is considered small relative to its surrounding
cementing matrix ! and its elastic properties. When � = 0, the complement of the
support of k"

� denotes the "-periodic displacement of perforations in the material.
We assume ! has a 1-periodic structure, i.e., we assume the characteristic function

1+ of ! satisfies
1+(y + ei) = 1+(y), y 2 Rd, 1  i  d (2.2.3)

where ei denotes a standard basis vector of Rd with 1 in the ith position and 0
elsewhere. We write "! to denote the "-homothetic set

"! = {x 2 Rd : x/" 2 !}.

We assume ! is connected and that any two connected components of Rd
\! are

separated by some positive distance (to be quantified later). We also assume each
individual connected component of Rd

\! is bounded. Recall that ! is an unbounded
domain, and as " ! 0 the volume of each connected component in Rd

\"! decreases
but the total number of components increases.

As an example, if d = 2, ⌦ = B(0, 1), and we define

! = {(x1, x2) : cos(2⇡x1) sin(2⇡x2) < 0.1},

then for various values of " the set ⌦" := ⌦ \ "! looks as follows.

Figure 2.5: (left) The shaded area is the set ! inside the unit ball. (center) The shaded
area is the set 0.5! inside the unit ball. (right) The shaded area is the set 0.25! inside the
unit ball.

The case � = 1 is in fact the classical setting for homogenization of elliptic systems,
and many authors have worked in this area [7, 12, 6, 24, 20, 11, 2, 26, 27, 28]. The

7



case � = 0, which is considered in Sections 3.1 and 4.1, is referred to as the case of
perforated materials. The set Rd

\! where k0(y) = 0 for each y is commonly referred
to as the “perforations” of the material. The case � 2 (0, 1), which is considered
in Sections 3.2 and 4.3, is referred to as the case of materials reinforced with soft
inclusions. The set Rd

\! where k�(y) = � for all y is commonly referred to as the
“soft inclusions” embedded in the cementing matrix !.

Throughout, we assume the coe�cient matrix A(y) is real, measurable, satisfies
the elasticity symmetry conditions of equation (2.1.5) and an ellipticity condition. To
be specific,

a↵�ij (y) = a↵�ji (y) = ai�↵j(y), (2.2.4)

1|⇠|
2
 a↵�ij (y)⇠

↵
i ⇠

�
j  2|⇠|

2, (2.2.5)

for y 2 Rd, any 1  i, j,↵, �  d, and any symmetric matrix ⇠ = {⇠↵i }1i,↵d, where
1,2 > 0. Assumptions (2.2.4) and (2.2.5) are natural: the former is referred to in
Section 2.1 as the minor symmetries of the elasticity tensor.

As an example, one may consider the tensor A given by

a↵�ij (y) = �(y)�↵i �
�
j + µ(y)

n
�ij�

↵� + ��i �
↵
j

o
, y 2 Rd (2.2.6)

where �(y), µ(y) are scalar valued functions, and � with subscripts and superscripts
denotes the Kronecker delta indicator function, e.g., �↵i = 1 exaclty when i = ↵
and �↵i = 0 otherwise. The functions � and µ are typically referred to as the Lamé
parameters, i.e., µ denotes the shear modulus of the continuum and together with
� defines the bulk modulus of the material. The thing to note, however, is that
if �, µ � C1 > 0 for some constant C1 and are bounded, then (2.2.6) satisfies the
symmetries (2.2.4) and the ellipticity condition (2.2.5) (one may take 1 = C1 and
2 = supy2Rd{3�(y) + 2µ(y)}).

Note by (2.2.5), a↵�ij 2 L1(Rd) for any given indices. That is, if we fix the indices

i, j,↵, � and choose the symmetric tensor ⇠ so that ⇠↵i = ⇠i↵ = ⇠�j = ⇠j� = 1 and ⇠�k = 0
for any other indices k, �, then (2.2.5) reads

a↵�ij (y)  42

for each y 2 Rd. Hence, A is uniformly bounded in Rd.
To ensure the constituents are well-distributed throughout the material (see our

discussion in Section 2.1), we also assume A is 1-periodic in the sense of (2.2.3), i.e.,

A(y) = A(y + z) for y 2 !, z 2 Zd. (2.2.7)

If A satisfies (2.2.7), then the scaled matrix A" satsifies

A"(x+ "z) = A

✓
x+ "z

"

◆
= A

⇣x
"
+ z

⌘
= A"(x),

i.e., A" is "-periodic. Many authors have relaxed assumption (2.2.7) to almost-
periodic [4, 28] or even considered random elastcity tensors [5, 3].

8



As detailed in Section 2.1, the coe�cient matrix of the systems of linear elas-
ticity describes the linear relation between the stress and strain a material experi-
ences during relatively small elastic deformations. Consequently, the elasticity condi-
tions (2.2.4), (2.2.5), and � should be regarded as physical parameters of the system,
whereas " is clearly a geometric parameter.

Let ⌦ be a bounded domain. Boundary value problem (2.1.6) in the absence of
body forces may be generalized as the following Dirichlet boundary value problem

(
L",�(u",�) = 0 in ⌦,

u",� = f on @⌦.
(2.2.8)

We say u",� is a weak solution to (2.2.8) if

Z

⌦

k"
�a

↵�"
ij

@u�
",�

@xj

@w↵

@xi
= 0 for any w = {w↵

}↵ 2 H1
0 (⌦;Rd) (2.2.9)

and u",� � f 2 H1
0 (⌦;Rd). Notice, in the case � = 0, Neumann boundary conditions

are implicit on the boundaries of the perforations. Indeed, for any w 2 H1
0 (⌦;Rd),

integrating by parts gives

0 =

Z

⌦

L",0(u",0)w

=

Z

⌦\@("!)

�n"A
"
ru" ·rw +

Z

⌦\"!

A"
ru" ·rw,

and so to coincide with (2.2.9) we require �n"A"
ru" = 0 on ⌦ \ @("!), where

n" denotes the outward unit vector normal to "!. This is the Neumann boundary
condition on the perforations. That is, when � = 0, (2.2.8) is a mixed boundary
value problem. This is important to note and is revisited in Chapter 5 when we
discuss open problems regarding the boundary regularity of solutions u",0. We should
also note that our construction of ⌦" = ⌦ \ "! does not require the perforations or
inclusions remain in the interior of ⌦. Indeed, @⌦" may be fairly irregular.

As discussed in Section 2.1, the boundary value problem (2.2.8) models relatively
small deformations of perforated elastic materials or elastic materials reinforced with
soft inclusions subject to zero external body forces [12, 20, 24]. Soft inclusions are
substantially “weaker” than the cementing matrix !, but their embedding can be
otherwise advantageous. For example, a material’s compressive strength can be in-
directly proportional with the increasing volume of soft inclusions but the thermal
inertia and energy e�ciency may be directly proportional [16].

For each � 2 (0, 1], the existence and uniqueness of a weak solution u",� 2

H1(⌦;Rd) to (2.2.8) (that is, satisfying (2.2.9)) for f 2 H1/2(@⌦;Rd) follows from
the Lax-Milgram theorem and Korn’s inequality. Indeed, if we define the bilinear
form B",� on H1

0 (⌦;Rd) for a fixed ", � > 0 by

B",�[�, w] =

Z

⌦

k"
�a

↵�"
ij

@��

@xj

@w↵

@xi
,
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then the coercivity and boundedness of B",� follows from the ellipticity of A, the
positivity of �, and Korn’s inequality. Hence, the Lax-Milgram theorem implies there
exists a unique �",� 2 H1

0 (⌦;Rd) satisfying B",�[�",�, w] = 0 for each w 2 H1
0 (⌦;Rd).

For a fixed f 2 H1/2(@⌦;Rd)), define u",� = �",� + f 0, where f 0
2 H1(⌦;Rd) and

f 0 = f on @⌦ (in the trace sense).
For � = 0, the existence and unqieness follows in a similar manner from the Lax-

Milgram theorem but with Korn’s inequality for perforated domains which is stated
in Section 2.4 [11, 24]. In either case, it should be noted that the solution u",� is not
bounded uniformly in H1(⌦;Rd) for � < 1, but rather

kk"
�u",�kL2(⌦) + kk"

�ru",�kL2(⌦)  CkfkH1/2(@⌦),

where C depends on 1, 2.
If � > 0, then the matrix k"

�A
" is uniformly elliptic in Rd (but not uniformly

in �), and so it can be shown that the weak solution to (2.2.8) converges weakly in
H1(⌦;Rd) and consequently strongly in L2(⌦;Rd) as " ! 0 to some u0,� 2 H1(⌦;Rd).
This qualitative convergence is known. The function u0,� is a solution of a constant-
coe�cient equation in the domain ⌦ (see [9, 20, 24] and references therein). Indeed,
we have the following theorem.

Theorem 2.2.1. Suppose ⌦ is a bounded Lipschitz domain and that A satisfies
(2.2.4), (2.2.5), and (2.2.7). Let u",� denote a weak solution L",�(u",�) = 0 in ⌦,
and u",� = f on @⌦ for some fixed � > 0. Then there exists a u0,� 2 H1(⌦;Rd) such
that

u",� * u0,� weakly in H1(⌦;Rd).

Consequently, u",� ! u0,� strongly in L2(⌦;Rd).

For a proof of the previous theorem, see any introdutory text of the subject,
e.g., [11, Section 10.3]. The function u0,� is called the homogenized solution and the
boundary value problem it solves is the homogenized system corresponding to (2.2.8).
For an explicit discussion of the homogenized problem, see either Section 3.1 or
Section 3.2.

2.3 History

In this section, we provide a short history.
In 1977, Luc Tartar essentially proved Theorem 2.2.1 for general elliptic boundary

value problems by introducing his method of oscillating test functions [29]. This
method relies on the variational formulation of 2.2.8 and the adjoint problem for
the correctors. When � = 1, the adjoint problem for the correctors corresponding
to (2.2.8) is given by

8
<

:

L
T
1,1(e�

�
j + P �

j ) = 0 in Q := [0, 1)d,

��
j is 1-periodic,

Z

Q

��
j = 0,

(2.3.1)
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where P �
j (y) = yje� is a linear function, LT

1,1 = �div(AT
r), and AT denotes the

transpose of A. Indeed, w" = "e��
j (·/") + P �

j satisfies L
T
",1(w") = 0 in Rd for each

1  j, �  d. Fixing ' 2 C1

0 (⌦) and considering the weak formulations of (2.2.8)
and (2.3.1), Z

⌦

A"
ru",1 · w"r'+

Z

⌦

A"
ru",1 · 'rw" = 0 (2.3.2)

and Z

⌦

(A")Trw" · u",1r'+

Z

⌦

(A")Trw" · 'ru",1 = 0. (2.3.3)

It is fairly straightforward to show that solutions to (2.2.8) with � = 1 converge
weakly, but the direct identification of the limiting function u0,1 is not immediately
obvious. Considering the di↵erence of (2.3.3) and (2.3.2), the two terms containing
only products of weakly convergent sequences cancel, allowing one to pass to the limit
in the resulting expression. A limitation of Tartar’s method is that it only produces
the qualitative convergence of Theorem 2.2.1.

In 1979, Doina Cioranescu and Jeannine Saint Jean Paulin considered the elas-
tic torsion of a perforated bar by examining cross sections of cylindrical bars with
cylindrical cavities generated parallel to the generator of the bar, i.e., a variation of
boundary value problem (2.2.8) with � = 0. The boundary values on the perfora-
tions they consider are u" ⌘ const. rather than the Neumann conditions implied by
the weak formulation (2.2.9). Nevertheless, they deduce a qualitative convergence
result similar to Theorem 2.2.1 by considering a trivial extension of u",0 (simply take
eu",0 = u",0 in the material domain and eu",0 ⌘ const. throughout each perforation). To
deduce the result, they essentially apply Tartar’s method of oscillating test functions.

A breakthrough in the study of homogenization was achieved in 1987 by Marco
Avellaneda and Fang-hua Lin when they introduced compactness methods to the
theory [6]. In partiuclar, the qualitative convergence allowed the authors to derive
interior and boundary regularity results for (2.2.8) when � = 1 that are uniform in
the parameter ". The method is essentially “proof by contradiction.” For example,
if L",1(u") = 0 in B(0, 1), then u" is uniformly Hölder continuous with exponent ⌧ if
it satisfies the inequality

sup
|x|1/2
0<r1/2

r�⌧

✓
�

Z

B(x,r)

|u" � (u")x,r|
2

◆1/2

 C

for some C independent of ". Suppose to the contrary that such is not true. Then for
every radius rk there exists an operator Lk

1 with coe�cientsAk satsifying (2.2.5), (2.2.7)
and "k > 0 such that Lk

"k
(u"k) = 0 in B(0, 1) but

�

Z

B(0,1)

|u"k � (u"k)0,rk | > r2⌧k .

Given u"k is bounded in L2(B(0, 1)), one may choose a weakly convergent subsequence
and contradict the qualitative convergence of Theorem 2.2.1. Needless to say, the

11



procedure is complicated, and the notation alone is quite cumbersome. Nevertheless,
the authors were able to obtain new results.

In 2014, Scott Armstrong and Charles K. Smart introduced an argument for de-
ducing regularity estimates on energy minimizers in stochastic homogenization [5].
This method applies to linear divergence form elliptic equations with random coef-
ficients. In 2016, Armstrong and Zhongwei Shen modified the scheme of Armstrong
and Smart to deduce optimal regularity estimates in the setting of linear divergence
form elliptic equations with almost-periodic coe�cients [4]. The scheme was further
developed in 2017 by Shen [26]. The method is discussed in detail and essentially
applied in Sections 4.1 and 4.3. We adapt the scheme to deduce interior regularity
estimates for (2.2.8).

Many authors have included the study of periodically perforated domains and the
case � > 0 in their manuscripts, e.g., [20, 24], and it has been of interest to many
others. In particular, Li Ming Yeh in his many works has applied the compactness
methods of Avellaneda and Lin to the cases 0  �  1 and derived Hölder and
Lipschitz estimates uniform in the parameters " and � [30, 32]. He has also derived
uniform W 1,p estimates for solutions in domains with perforations away from the
boundary [31] and quantitative convergence results in L1 [32], both as consequences
of the deduced regularity estimates.

We would like to point out that the results in this dissertation may be similar to
some of the results obtained by Yeh, but the method by which they are obtained is
drastically di↵erent. Our methods are direct and uniquely rely on derived quantitative
convergence estimates.

2.4 Auxiliary results

In this section we collect relevant mathematical results that will be referenced through-
out our analysis. We present each lemma and theorem fully and either provide proofs
or references wherein proofs may be found.

Fix ⇣ 2 C1

0 (B(0, 1)) so that 0  ⇣  1 and
R
Rd ⇣ = 1. Define

K"(g)(x) =

Z

Rd

g(x� y)⇣"(y) dy, g 2 L2(Rd) (2.4.1)

where ⇣"(y) = "�d⇣(y/"). Note per the following lemma, K" is a continuous map from
L2(Rd) to L2(Rd). For any function g, set g"(·) = g(·/").

Lemma 2.4.1. For any g 2 L2(Rd),

kK"(g)kL2(Rd)  kgkL2(Rd),

Proof. Fix g 2 L2(Rd). Write ⇣" = ⇣1/2" ⇣1/2" . By Cauchy-Schwarz and since
R
Rd ⇣ = 1,

kK"(g)k
2
L2(Rd) 

Z

Rd

����
Z

Rd

g(y)⇣"(x� y) dy

����
2

dx



Z

Rd

Z

Rd

|g(y)|2⇣"(x� y) dydx.
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Applying Fubini’s theorem gives the desired result.

Lemma 2.4.2. Let g 2 H1(Rd). Then

kg �K"(g)kL2(Rd)  C"krgkL2(Rd),

where C depends only on d.

Proof. Consider g 2 C1

0 (Rd). Note that since supp(⇣) ⇢ B(0, 1), we have

supp(⇣") ⇢ B(0, ").

Hence, fixing x 2 Rd and applying Cauchy-Schwarz as in the previous lemma gives
����g(x)�

Z

Rd

g(x� y)⇣"(y) dy

���� 
Z

Rd

|g(x)� g(x� y)| ⇣"(y) dy



✓Z

B(0,")

|g(x)� g(x� y)|2⇣"(y) dy

◆1/2

.

Therefore,

kg �K"(g)k
2
L2(Rd) 

Z

Rd

Z

B(0,")

|g(x)� g(x� y)|2⇣"(y) dydx. (2.4.2)

Write G(t) = g(x+ (t� 1)y) for t 2 [0, 1] and fixed x, y 2 Rd. Since g 2 C1

0 (Rd), G
is di↵erentiable on (0,1) and continuous on [0,1]. By the Mean Value Theorem, there
exists a t0 2 (0, 1) such that

G(1)�G(0) =
dG

dt
(t0),

i.e.,
g(x)� g(x� y) = rg(x+ (t0 � 1)y) · y

Thus, by Fubini’s Theorem and (2.4.2),

kg �K"(g)k
2
L2(Rd)  "2

Z

B(0,")

Z

Rd

|rg(x+ (t0 � 1)y)|2⇣"(y) dxdy  "krgkL2(Rd).

By a density argument, the desired result follows.

In the following lemma, let L2
per(Rd) denote the closure of C1

per(Rd) in the L2(Rd)
norm, where C1

per(Rd) denotes the class of infinitely di↵erentiable periodic functions.

Lemma 2.4.3. Let h 2 L2
per(Rd). Then for any g 2 L2(Rd),

kh"K"(g)kL2(Rd)  CkhkL2(Q)kgkL2(Rd),

where Q = [0, 1)d.
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Proof. Consider h 2 C1

per(Rd) and g 2 C1

0 (Rd). By Cauchy-Schwarz,

|h"(x)K"g(x)|
2


����h
⇣x
"

⌘Z

Rd

g(y)⇣"(x� y) dy

����
2



����
Z

Rd

h
⇣x
"

⌘
g(y)[⇣"(x� y)]1/2[⇣"(x� y)]1/2 dy

����
2



Z

Rd

���h
⇣x
"

⌘
g(y)

���
2

⇣"(x� y) dy.

Hence, by Fubini’s theorem,

kh"K"(g)k
2
L2(Rd) 

Z

Rd

|g(y)|2
Z

B(y,")

���h
⇣x
"

⌘���
2

⇣"(x� y) dxdy

 "�d sup
y2Rd

Z

B(y,")

���h
⇣x
"

⌘���
2

dx ·

Z

Rd

|g(y)|2 dy,

 sup
y2Rd

Z

B(y,1)

|h(x)|2 dx ·

Z

Rd

|g(y)|2 dy,

where we’ve made the chamge of variables x 7! "x. Since h is periodic, this gives
the desired result for smooth functions. For arbitrary L2

per(Rd) and L2(Rd) functions,
consider a density argument.

Lemma 2.4.4. Let ⌦ ⇢ Rd be a bounded Lipschitz domain. For any g 2 H1(⌦),

kgkL2(Or)  Cr1/2kgkH1(⌦),

where C depends on d and ⌦, and Or = {x 2 ⌦ : dist(x, @⌦) < r}.

Proof. See [24, Chapter 1.1, Lemma 1.5].

Lemma 2.4.5. Suppose B = {b↵�ij }1i,j,↵,�d is 1-periodic and satisfies b↵�ij 2 L2
loc(Rd)

with
@

@yi
b↵�ij = 0, and

Z

Q

b↵�ij = 0.

There exists ⇡ = {⇡↵�
kij}1i,j,k,↵,�d with ⇡↵�

kij 2 H1
loc(Rd) that is 1-periodic and satisfies

@

@yk
⇡↵�
kij = b↵�ij and ⇡↵�

kij = �⇡↵�
ikj.

Proof. Given b↵�ij 2 L2(Rd), there exist weak solutions �↵�
ij 2 H2(Rd) to the boundary

value problem 8
<

:

���↵�
ij = b↵�ij in Q = [0, 1]d

�↵�
ij is 1-periodic,

Z

Q

�↵�
ij = 0

for 1  i, j,↵, �  d. Set

⇡↵�
kij =

@�↵�
kj

@⇠i
�

@�↵�
kj

@⇠k
,
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and note the anti-symmetry of ⇡↵�
kij follows. Moreover, we have

8
>>><

>>>:

��

 
@�↵�

ij

@⇠i

!
= 0 in Q,

@�↵�
ij

@⇠i
is 1-periodic,

Z

Q

@�↵�
ij

@⇠i
= 0,

(2.4.3)

since
@

@⇠i

⇣
���↵�

ij

⌘
=

@b↵�ij
@⇠i

It follows then from energy estimates of boundary value problem (2.4.3) that @
@⇠i

�↵�
ij

is identically zero. Hence,

@⇡↵�
kij

@⇠k
=

@

@⇠k

 
@�↵�

ij

@⇠i

!
���↵�

ij = b↵�ij ,

which completes the proof.

Theorem 2.4.6 is a classical result in the study of periodically perforated do-
mains. It can be used to prove Korn’s first inequality in perforated domains (see
Lemma 2.4.7), which is needed together with the Lax-Milgram theorem to prove the
existence and uniqueness of weak solutions to (2.2.8) when � = 0. For a proof of
Theorem 2.4.6 when 1 < p < 1, see the work of Acerbi, Chaidó Piat, Dal Maso, and
Percivale [1]. For an alternative proof when p = 2, see [24].

Recall ⌦" = ⌦\"!, where ! ✓ Rd is an unbounded, Lipschitz domain as described
in Section 2.2. Let �" denote the material part of the boundary, i.e., �" = @⌦ \ "!.

Theorem 2.4.6. Fix 0 < "  1. Let ⌦ and ⌦0 be a bounded Lipschitz domains
with ⌦ ⇢ ⌦0 and dist(@⌦0,⌦) > 2. For 1  p < 1, there exists a linear extension
operator P" : W 1,p(⌦",�";Rd) ! W 1,p

0 (⌦0;Rd) such that

kP"wkW 1,p(⌦0)  C1kwkW 1,p(⌦"), (2.4.4)

krP"wkLp(⌦0)  C2krwkLp(⌦"), (2.4.5)

ke(P"w)kLp(⌦0)  C3ke(w)kLp(⌦"), (2.4.6)

for some constants C1, C2, and C3 depending on ⌦ and !, where e(w) denotes the
symmetric part of rw, i.e.,

e(w) =
1

2

⇥
rw + (rw)T

⇤
. (2.4.7)

Korn’s inequalities are classical in the study of linear elasticity. The following
lemma is essentially Korn’s first inequality but formatted for periodically perforated
domains. Lemma 2.4.7 follows from Theorem 2.4.6 and Korn’s first inequality.
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Lemma 2.4.7. Let ⌦ ⇢ Rd be a bounded domain. There exists a constant C depend-
ing on ⌦, !, and d such that

kwkH1(⌦")  Cke(w)kL2(⌦")

for any w 2 H1(⌦",�";Rd), where e(w) is given by (2.4.7).

Proof. Fix w 2 H1(⌦",�";Rd), and let P" : H1(⌦",�";Rd) ! H1
0 (⌦0;Rd) denote the

extension operator in Theorem 2.4.6. By Korn’s first inequality (see [11, Chapter 1.2,
Theorem 2.1]) and (2.4.6) of Theorem 2.4.6,

kwkH1(⌦")  kP"wkH1(⌦")  Cke(P"w)kL2(⌦0)  C1ke(w)kL2(⌦").

Copyright c� Brandon Chase Russell, 2018.
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Chapter 3 Quantitative homogenization

In Section 3.1, we consider weak solutions to the boundary value problem (2.2.8)
with � = 0 and establish a quantitative convergece result for u",0 and its gradient. In
particular, we acheive the optimal O("1/2) convergence rate with an energy method
and prove a theorem first presented by the author of this disseratation in [25]. Let
K" denote the smoothing operator at the microscopic scale " defined by (2.4.1). Let
⌘" 2 C1

0 (⌦) be the cut-o↵ function defined by
8
>>><

>>>:

0  ⌘"(x)  1 for x 2 ⌦,

supp(⌘") ⇢ {x 2 ⌦ : dist(x, @⌦) � 3"},

⌘" = 1 on {x 2 ⌦ : dist(x, @⌦) � 4"},

|r⌘"|  C"�1.

(3.0.1)

for a bounded domain ⌦ ⇢ Rd. Let � denote the first-order corrector associated
with L",0 (see (3.1.3) in Section 3.1) and u0,0 denote the solution to the homogenized
boundary value problem associated with (2.2.8) (see (3.1.1) in Section 3.1).

Theorem 3.0.1. Let ⌦ be a bounded Lipschitz domain and ! be an unbounded Lips-
chitz domain with 1-periodic structure, i.e., the characteristic function 1+ of ! satis-
fies (2.2.3). Suppose A is real, measurable, and satisfies (2.2.4), (2.2.5), and (2.2.7).
Fix f 2 H1(@⌦;Rd). Let u",0 denote the weak solution to L",0(u",0) = 0 in ⌦ with
u",0 � f 2 H1(⌦",�";Rd), where �" = @⌦ \ "! and ⌦" = ⌦ \ "!. There exists a
constant C depending on d, ⌦, !, 1, and 2 such that

ku",0 � u0,0 � "�"K2
" ((ru0,0)⌘")kH1(⌦")  C"1/2kfkH1(@⌦).

From Theorem 3.0.1 follows a sub-optimal L2-convergence rate for u",0. The fol-
lowing corollary will be used in Section 4.1 to prove large-scale Lipschitz estimates.
We reiterate that the convergence rate is suboptimal in L2(⌦).

Corollary 3.0.2. Suppose ⌦, !, A, f , �", and u",0 are as stated in Theorem 3.0.1.
There exists a constant C depending on d, ⌦, !, 1, and 2 such that

ku",0 � u0,0kL2(⌦)  C"1/2kfkH1(@⌦).

In Section 3.2, we consider the boundary value problem (2.2.8) with 0 < �  1
and establish a suboptimal quantitative convergence rate for u",� and its gradient.
The novelty of the result is not necessarily in the rate itself, but rather that the
rate is essentially uniform in �. Indeed, for fixed � > 0, the coe�cients k"

�A
" are

uniformly elliptic in ⌦ (but not in �), and so the optimal H1-convergence rate remains
O("1/2). However, as we will see in Section 4.3, the uniform rate presented is enough
to establish large-scale Lipcshitz estimates for solutions to (2.2.8) with � > 0. Let ��

denote the first-order corrector associated with L",� (see (3.2.1) in Section 3.2) and
u0,� denote the weak solution to the homogenized boundary value problem associated
with (2.2.8) (see (3.2.4) in Section 3.2).
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Theorem 3.0.3. Let ⌦ be a bounded Lipschitz domain and ! be an unbounded Lips-
chitz domain with 1-periodic structure, i.e., the characteristic function 1+ of ! satis-
fies (2.2.3) Suppose A is real, measurable, and satisfies (2.2.4), (2.2.5), and (2.2.7).
Fix f 2 H1(@⌦;Rd). Let u",� denote a weak solution to L",�(u",�) = 0 in ⌦ with
u",� � f 2 H1

0 (⌦;Rd) for some 0  �  1. There exists a constant C depending on
1, 2, d, ⌦, and ! and a µ0 > 0 depending on 1, 2, d, and ⌦ such that

kk"
�r",�kL2(⌦) + kk"

�rr",�kL2(⌦)  C"µ(�)kfkH1(@⌦),

where µ(�) � µ0 > 0 for any 0  �  1, k"
� is defined by (2.2.2), and

r",� = u",� � u0,� � "�"
�K

2
" ((ru0,�)⌘"). (3.0.2)

Note that Theorem 3.0.3 also gives an H1-convergence rate for u",0, but The-
orem 3.0.1 is stronger for the case � = 0. Similar to before, from Theorem 3.0.3
follows a suboptimal L2-convergence rate for u",�. We reiterate that the novelty of
the convergence rates presented are their uniformity in �, i.e., in each statement, the
constant C is completely independent of �. The following corollary will be used in
Section 4.3 to prove a large-scale Lipschitz estimate.

Corollary 3.0.4. Suppose ⌦, !, A, f , and u",� are as stated in Theorem 3.0.3. There
exists a constant C depending on d, ⌦, !, 1, and 2 and a µ0 > 0 depending on 1,
2, d, and ⌦ such that

kk"
�(u",� � u0,�)kL2(⌦)  C"µ(�)kfkH1(@⌦),

where µ(�) � µ0 > 0 for any 0  �  1.

3.1 Perforated domains (� = 0)

In this section, we establish H1(⌦")-convergence rates for solutions to (2.2.8) with
� = 0 by proving Theorem 3.0.1. Throughout this section we use the notation

⌦" = ⌦ \ "!.

If ! = Rd, it can be shown that the weak solution to (2.2.8) with � = 0 converges
weakly in H1(⌦;Rd) and consequently strongly in L2(⌦;Rd) as " ! 0 to some u0,0,
which is a solution of a boundary value problem in the domain ⌦ [11, 20]. Indeed,
we have the known qualitative convergence of Theorem 2.2.1. The function u0,0 is
called the homogenized solution and the boundary value problem it solves is the
homogenized system corresponding to (2.2.8) when � = 0.

If ! ( Rd, then it is di�cult to qualitatively discuss the convergence of u",0,
as H1(⌦";Rd) and L2(⌦";Rd) depend explicitly on ". Qualitative convergence in
this case is discussed by Allaire in [2] with the tools of two-scale convergence and
Cioranescu and Saint Jean Paulin in [12] withinin the context of various extension
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theorems like Theorem 2.4.6. The homogenized system of elasticity corresponding
to (2.2.8) when � = 0 and of which u0,0 is a solution is given by

(
L0,0 (u0,0) = 0 in ⌦

u0,0 = f on @⌦,
(3.1.1)

where

L0,0 = �div( bAr) = �
@

@xi

✓
ba↵�ij

@

@xj

◆
,

bA = {ba↵�ij }1i,j,↵,�d denotes a constant matrix given by

ba↵�ij = �

Z

Q\!

a↵�ik
@X��

j

@yk
, (3.1.2)

and X�
j = {X��

j }1�d denotes the weak solution to the boundary value problem

8
<

:

L1,0(X�
j ) = 0 in Q

��
j := X�

j � P �
j is 1-periodic,

Z

Q\!

��
j = 0.

(3.1.3)

In (3.1.3), P �
j (y) = yje� and e� 2 Rd has a 1 in the �th position and 0 in the remaining

positions. In particular, we say X�
j = ��

j + P �
j is a weak solution to the boundary

value problem (3.1.3) provided ��
j 2 H1

per(Q;Rd) satisfies the integral equality

Z

Q\!

a↵�ik
@

@yk

⇣
���
j + P ��

j

⌘ @M↵

@yi
dy = 0, for any M = {M↵

} 2 H1
per(Q;Rd).

For details on the existence of solutions to (3.1.3), see [24]. The functions ��
j are

referred to as the first-order correctors for the system (2.2.8) when � = 0.
It is assumed throughout that any two connected components of Rd

\! are sepa-
rated by some positive distance. Specifically, if Rd

\! = [
1

k=1Hk whereHk is connected
and bounded for each k, then there exists a constant g! so that

0 < g!  inf
i 6=j

8
<

: inf
xi2Hi
xj2Hj

|xi � xj|

9
=

; . (3.1.4)

Such a constant is guaranteed to exist given the periodic structure of !. With any
weaker assumption, such as almost-periodic or random, the constant g! may not be
positive.

It should be noted that if A satisfies (2.2.4) and (2.2.5), then bA defined by (3.1.2)
satisfies conditions (2.2.4) and (2.2.5) but with possibly di↵erent constants b1 and b2

depending on 1 and 2. In particular, we have the following lemma. For a rigorous
proof, see [24]. Note the following lemma also shows ba↵�ij 2 L1(Rd) for each index
1  i, j,↵, �  d.

19



Lemma 3.1.1. Suppose A satisfies (2.2.4), (2.2.5), and (2.2.7). If X�
j = {X��

j }�

denote the weak solutions to (3.1.3), then bA = {ba↵�ij } defined by (3.1.2) satisfies

ba↵�ij = ba�↵ji = bai�↵j and

b1|⇠|
2
 ba↵�ij ⇠↵i ⇠

�
j  b2|⇠|

2

for some b1, b2 > 0 depending 1, 2, and |Q \ !| and any symmetric matrix ⇠ =
{⇠↵i }i,↵.

Let K" be defined as in Section 2.4.1, and let ⌘" be given by (3.0.1). If P" is the
linear extension operator provided by Theorem 2.4.6, then we write ew = P"w for
w 2 H1(⌦",�";Rd). Throughout, C denotes a harmless constant independent of "
that may change from line to line.

Lemma 3.1.2. Let
r" = u",0 � u0,0 � "�"K2

" ((ru0,0)⌘").

Then
Z

⌦"

A"
rr" ·rw

= |Q \ !|

Z

⌦

bAru0,0 ·r⌘" ew � |Q \ !|

Z

⌦

(1� ⌘") bAru0,0 ·r ew

+

Z

⌦

h
|Q \ !| bA� 1"

+A
"
i ⇥

ru0,0 �K2
" ((ru0,0)⌘")

⇤
·r ew

+

Z

⌦

h
|Q \ !| bA� 1"

+A
"
rX"

i
K2

" ((ru0,0)⌘") ·r ew

� "

Z

⌦"

A"�"
rK2

" ((ru0,0)⌘") ·rw

for any w 2 H1(⌦",�";Rd).

Proof. Fix w 2 H1(⌦",�";Rd), where ⌦" = ⌦\ "! and �" = @⌦\ "!. If ⌘" is defined
by (3.0.1), then ew⌘" 2 H1

0 (⌦;Rd). Since u",0 and u0,0 are weak solutions to (2.2.8)
with � = 0 and (3.1.1), respectively,

Z

⌦"

A"
ru",0 ·rw = 0

and

|Q \ !|

Z

⌦

bAru0,0 ·r( ew⌘") = 0.

20



Therefore,
Z

⌦"

A"
rr" ·rw =

Z

⌦"

A"
ru",0 ·rw �

Z

⌦"

A"
ru0,0 ·rw

�

Z

⌦"

A"
r
⇥
"�"K2

" ((ru0,0)⌘")
⇤
·rw

= |Q \ !|

Z

⌦

bAru0,0 ·r( ew⌘")�
Z

⌦"

A"
ru0,0 ·rw

�

Z

⌦"

A"
r
⇥
"�"K2

" ((ru0,0)⌘")
⇤
·rw

Note the equalities
r( ew⌘") = r⌘" ew �r ew(1� ⌘") +r ew

and

r
⇥
"�"K2

" ((ru0,0)⌘")
⇤
= r�"K2

" ((ru0,0)⌘") + "�"
rK2

" ((ru0,0)⌘")

and so
Z

⌦"

A"
rr" ·rw = |Q \ !|

Z

⌦

bAru0,0 ·r⌘" ew � |Q \ !|

Z

⌦

(1� ⌘") bAru0,0 ·r ew

+ |Q \ !|

Z

⌦

bA
⇥
ru0,0 �K2

" ((ru0,0)⌘")
⇤
·r ew

+ |Q \ !|

Z

⌦

bAK2
" ((ru0,0)⌘") ·r ew �

Z

⌦"

A"
ru0,0 ·rw

�

Z

⌦"

A"
r
⇥
"�"K2

" ((ru0,0)⌘")
⇤
·rw

= |Q \ !|

Z

⌦

bAru0,0 ·r⌘" ew � |Q \ !|

Z

⌦

(1� ⌘") bAru0,0 ·r ew

+

Z

⌦

h
|Q \ !| bA� 1"

+A
"
i ⇥

ru0,0 �K2
" ((ru0,0)⌘")

⇤
·r ew

+

Z

⌦

h
|Q \ !| bA� 1"

+A
"
� 1"

+A
"
r�"

i
K2

" ((ru0,0)⌘") ·r ew

� "

Z

⌦"

A"�"
rK2

" ((ru0,0)⌘") ·rw,

where 1"
+ = 1+(·/") denotes the characteristic function of "!. This is the desired

inequality.

Lemma 3.1.3 presented below is used in the proof of Lemma 3.1.4, which estab-
lishes a Poincaré-type inequality for the perforated domain ⌦". We use the notation
�(x, r) = B(x, r) \ @⌦ to denote a surface ball of @⌦. Essentially, the lemma shows
that for any point along the boundary of ⌦ there exists a ball of fixed radius containing
a consistent size of the material part of the boundary �".
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Lemma 3.1.3. For su�ciently small ", there exist r0, ⇢0 > 0 depending only on !
such that for any x 2 @⌦,

� (y, "⇢0) ⇢ �(x, "r0) and � (y, "⇢0) ⇢ �"

for some y 2 �" = @⌦ \ "!.

Proof. Write Rd
\! = [

1

j=1Hj, where each Hj is connected and bounded by assump-
tion. Since ! is 1-periodic, there exists a constant M < 1 such that

sup
j�1

{diamHj}  M.

Take
r0 = 2max {g!,M} , (3.1.5)

where g! is defined by (3.1.4). Set ⇢0 =
1
16g

!. Let

eHj =

⇢
z 2 Rd : dist(z,Hj) <

1

4
g!
�

for each j,

and fix x 2 @⌦. If x 2 @⌦\([1

j=1" eHj), then take y = x. Indeed, for any z 2

�(y, "⇢0) ⇢ �(x, "r0) and any positive integer k,

dist(z, "Hk) � dist(y, "Hk)� |y � z|

� "
1

4
g! � "⇢0

� "

⇢
1

4
g! �

1

16
g!
�

� "
3

16
g!,

and so �(y, "⇢0) ⇢ �".
Suppose x 2 @⌦\ ([1

j=1" eHj). There exists a positive integer k such that x 2 " eHk.

Moreover, " eHk ⇢ B(x, "r0) since for any z 2 " eHk we have

|x� z|  dist(x, "Hk) + diam ("Hk) + dist(z, "Hk)

 "
1

4
g! + "M + "

1

4
g!

< "g! + "M

< "r0.

In this case, choose y 2 "( eHk\Hk) so that dist(y, "Hk) = "(1/8)g! and y 2 @⌦. Then
for any z 2 �(y, "⇢0) ⇢ [@⌦ \ "( eHk\Hk)] ⇢ �(x, "r0),

dist(z, "Hk) � dist(y, "Hk)� |y � z|

� "
1

8
g! � "

1

16
g!

� "
1

16
g!,

and so �(y, "⇢0) ⇢ �".
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Lemma 3.1.4. For w 2 H1(⌦",�";Rd),

k ewkL2(O4")  C"kr ewkL2(⌦),

where O4" = {x 2 ⌦ : dist(x, @⌦) < 4"} and C depends on d, ⌦, and !.

Proof. We cover @⌦ with the surface balls�(x, "r0) provided in Lemma 3.1.3 and par-
tition the region O4". In particular, let r0 denote the constant given by Lemma 3.1.3,
and note [x2@⌦�(x, "r0) covers @⌦, which is compact. Then there exists {xi}

N
i=1 with

@⌦ ⇢ [
N
i=1�(xi, "r0), where N = N("). Write

O
(i)
4" = {x 2 ⌦ : dist(x,�i) < 4"}, where �i = �(xi, "r0).

Given that ⌦ is a Lipschitz domain, there exists a positive integer M < 1 indepen-
dent of " such that O(i)

4" \ O
(j)
4" 6= ; for at most M positive integers j di↵erent from

i.
Set W (x) = ew("x). Note for each 1  i  N , by Lemma 3.1.4 there exists a

yi 2 O
(i)
4" such that ew ⌘ 0 on �(yi, "⇢0) ⇢ �i. Hence, by Poincaré’s inequality [23,

Theorem 1],  Z

O
(i)
4" /"

|W |
2

!1/2

 C

 Z

O
(i)
4" /"

|rW |
2

!1/2

, (3.1.6)

where C depends on ⌦, r0, and ⇢0 but is independent of " and i. Specifically,

Z

O4"

| ew(x)|2 dx  C"2
NX

i=1

Z

O
(i)
4"

|r ew(x)|2 dx  C1"
2

Z

O4"

|r ew(x)|2 dx

where we’ve made the change of variables "x 7! x in (3.1.6) and C1 is a constant
depending on ⌦, !, and M but independent of ".

Lemma 3.1.5. For any w 2 H1(⌦",�";Rd),

����
Z

⌦"

A"
rr" ·rw

����  C
�
kru0,0kL2(O4") + k(ru0,0)⌘" �K"((ru0,0)⌘")kL2(⌦)

+"kK"

�
(r2u0,0)⌘"

�
kL2(⌦)

 
kwkH1(⌦")

Proof. By Lemma 3.1.2,
Z

⌦"

A"
rr" ·rw = I1 + I2 + I3 + I4 + I5, (3.1.7)
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where

I1 = |Q \ !|

Z

⌦

bAru0,0 ·r⌘" ew,

I2 = �|Q \ !|

Z

⌦

(1� ⌘") bAru0,0 ·r ew,

I3 =

Z

⌦

h
|Q \ !| bA� 1"

+A
"
i ⇥

ru0,0 �K2
" ((ru0,0)⌘")

⇤
·r ew,

I4 =

Z

⌦

h
|Q \ !| bA� 1"

+A
"
rX"

i
K2

" ((ru0,0)⌘") ·r ew,

I5 = �"

Z

⌦"

A"�"
rK2

" ((ru0,0)⌘") ·rw,

and w 2 H1(⌦",�";Rd). According to (3.0.1), supp(r⌘") ⇢ O4", where O4" is defined
in Lemma 3.1.4. Moreover, |r⌘"|  C"�1. Hence, Lemma 3.1.4, Lemma 3.1.1,
Cauchy-Schwarz, and (3.0.1) imply

|I1|  C"�1

Z

O4"

| bAru0,0 · ew|  C"�1
kru0,0kL2(O4")k ewkL2(O4")

 Ckru0,0kL2(O4")kr ewkL2(⌦)

Since supp(1� ⌘") ⇢ O4" and ⌘"  1, Lemma 3.1.1 implies

|I2|  C

Z

O4"

��� bAru0,0 ·r ew
���  Ckru0,0kL2(O4")kr ewkL2(⌦).

By Theorem 2.4.6,

|I1 + I2|  Ckru0,0kL2(O4")kwkH1(⌦"). (3.1.8)

Note

ru0,0 �K2
" ((ru0,0)⌘") = (1� ⌘")ru0,0 + (ru0,0)⌘" �K2

" ((ru0,0)⌘")

= (1� ⌘")ru0,0 + (ru0,0)⌘" �K"((ru0,0)⌘")

�K"((ru0,0)⌘" �K"((ru0,0)⌘"))

Again, since supp(1� ⌘") ⇢ O4" (see (3.0.1)), Lemma 2.4.1 implies

kru0,0 �K2
" ((ru0,0)⌘")kL2(⌦)

 k(1� ⌘")ru0,0kL2(⌦) + k(ru0,0)⌘" �K"((ru0,0)⌘")kL2(⌦)

+ kK"((ru0,0)⌘" �K"((ru0,0)⌘"))kL2(⌦)

 kru0,0kL2(O4") + Ck(ru0,0)⌘" �K"((ru0,0)⌘")kL2(⌦).

Therefore, by (2.2.5), Lemma 3.1.1, and Cauchy-Schwarz,

|I3|  Ckru0,0 �K2
" ((ru0,0)⌘")kL2(⌦)kwkH1(⌦")

 C
�
kru0,0kL2(O4")

+k(ru0,0)⌘" �K"((ru0,0)⌘")kL2(⌦)

 
kwkH1(⌦"). (3.1.9)
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Set B = |Q \ !| bA� 1+ArX. By (3.1.1) and (3.1.3), B satisfies the assumptions
of Lemma 2.4.5. Therefore, there exists ⇡ = {⇡↵�

kij} that is 1-periodic with

@

@yk
⇡↵�
kij = b↵�ij and ⇡↵�

kij = �⇡↵�
ikj,

where y = x/" and

b↵�ij = |Q \ !|ba↵�ij � 1+a
↵�
ik

@

@yk
X��

j .

Moreover, k⇡↵�
ij kH1(Q)  C for some constant C depending on 1, 2, and !. Note

for x 2 Rd,

b↵�ij

⇣x
"

⌘
=

@

@yk
⇡↵�
kij

⇣x
"

⌘
= "

@

@xk
⇡↵�
kij

⇣x
"

⌘
.

Recalling (3.0.1), also notice K2
" ((ru0,0)⌘") 2 H1

0 (⌦;Rd). Hence, integrating by parts
gives

Z

⌦

b↵�"ij K2
"

 
@u�

0,0

@xj
⌘"

!
@ ew↵

@xi
= "

Z

⌦

@

@xk
⇡↵�"
kij K

2
"

 
@u�

0,0

@xj
⌘"

!
@ ew↵

@xi

= �"

Z

⌦

⇡↵�"
kij

@

@xk

"
K2

"

 
@u�

0,0

@xj
⌘"

!
@ ew↵

@xi

#

= �"

Z

⌦

⇡↵�"
kij

@

@xk

"
K2

"

 
@u�

0,0

@xj
⌘"

!#
@ ew↵

@xi
,

since Z

⌦

⇡↵�"
kij K

2
"

 
@u�

0,0

@xj
⌘"

!
@2 ew↵

@xk@xi
= 0

due to the anit-symmetry of ⇡. Thus, by Lemmas 2.4.1, 2.4.3, and 2.4.5,

|I4|  C"k⇡"
rK2

" ((ru0,0)⌘")kL2(⌦)kwkH1(⌦")

 C"k⇡kL2(Q)krK"((ru0,0)⌘")kL2(⌦)kwkH1(⌦")

 CkK"

�
(r2u0,0)⌘"

�
+K"((ru0,0)r⌘")kL2(⌦)kwkH1(⌦")

 C
�
kru0,0kL2(O4") + "kK"

�
(r2u0,0)⌘"

�
kL2(⌦)

 
kwkH1(⌦"), (3.1.10)

where we’ve used (3.0.1) in each step.
Finally, by (2.2.5) and Lemmas 2.4.1, 2.4.2, and 2.4.3,

|I5|  C
�
kru0,0kL2(O4") + "kK"

�
(r2u0,0)⌘"

�
kL2(⌦)

 
kwkH1(⌦") (3.1.11)

The desired estimate follows from (3.1.7)-(3.1.11).

Lemma 3.1.6. For w 2 H1(⌦",�";Rd),
����
Z

⌦"

A"
rr" ·rw

����  C"1/2kfkH1(@⌦)kwkH1(⌦")
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Proof. Recall that u0,0 satisfies L0,0(u0,0) = 0 in ⌦, and so it follows from estimates
for solutions in Lipschitz domains for constant-coe�cient equations that

k(ru0,0)
⇤
kL2(@⌦)  CkfkH1(@⌦), (3.1.12)

where (ru0,0)⇤ denotes the nontangential maximal function of ru0,0 (see [14]). In
particular,

(ru0,0)
⇤(x) = sup

y2T⇢(x)
ru0,0(y), T⇢(x) = {y 2 ⌦ : |y � x|  ⇢ dist(y, @⌦)},

where ⇢ > 0 and x 2 @⌦. By the coarea formula,

kru0,0kL2(O4")  C"1/2k(ru0,0)
⇤
kL2(@⌦)  C"1/2kfkH1(@⌦). (3.1.13)

Notice that if u0,0 solves (2.2.8), then L0,0(ru0,0) = 0 in ⌦, and so we may use an
interior Lipschitz estimate for L0,0. That is,

|r
2u0,0(x)| 

C

�(x)

✓
�

Z

B(x,�(x)/8)

|ru0,0|
2

◆1/2

, (3.1.14)

where �(x) = dist(x, @⌦) (see [18]). By (3.0.1), we have

k(r2u0,0)⌘"kL2(⌦) 

✓Z

⌦\O3"

|r
2u0,0|

2

◆1/2

 C

 Z

⌦\O3"

�

Z

B(x,�(x)/8)

����
ru0,0(y)

�(x)

����
2

dy dx

!1/2

 C

✓Z C0

3"

t�2

Z

@Ot\⌦

�

Z

B(x,t/8)

|ru0,0(y)|
2 dy dS(x) dt

◆1/2

+ C1

 Z

⌦\OC0

|ru0,0|
2

!1/2

 Ck(ru0,0)
⇤
kL2(@⌦)

✓Z C0

3"

t�2 dt

◆1/2

+ C1kru0,0kL2(⌦)

 C
�
"�1/2

kfkH1(@⌦) + kfkH1/2(@⌦)

 

 C"�1/2
kfkH1(@⌦). (3.1.15)

where C0 is a constant depending on the diameter of ⌦, and we’ve used (3.1.12), (3.1.13),
the coarea formula, energy estimates, and (3.1.14). Hence, Lemma 2.4.1 implies

"kK"

�
(r2u0,0)⌘"

�
kL2(⌦)  C"1/2kfkH1(@⌦). (3.1.16)

Finally, by Lemma 2.4.2,

k(ru0,0)⌘" �K"((ru0,0)⌘")kL2(⌦)  C"1/2kfkH1(@⌦). (3.1.17)

where the last inequality follows from (3.1.15) and Lemmas 2.4.4 and 2.4.2. Equations
(3.1.13), (3.1.16), and (3.1.17) together with Lemma 3.1.5 give the desired estimate.
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Proof of Theorem 3.0.1. Note r" as defined in Lemma 3.1.2 satsifies r" 2 H1(⌦",�";Rd),
and so by Lemma 3.1.6 and (2.2.5),

ke(r")k
2
L2(⌦")  C

Z

⌦"

A"
rr" ·rr"

 C"1/2kfkH1(@⌦)kr"kH1(⌦").

Lemma 2.4.7 gives the desired estimate.

Proof of Corollary 3.0.2. With Theorem 3.0.1 at our disposal, Corollary 3.0.2 follows
with the addition of Lemmas 2.4.3, 2.4.1 and energy estimates. Indeed,

ku",0 � u0,0kL2(⌦)  ku",0 � u0,0 � "�"K2
" ((ru0,0)⌘")kL2(⌦) + "k�"K2

" ((ru0,0)⌘")kL2(⌦)

 C"1/2kfkH1(@⌦) + C"kfkH1/2(@⌦)

 C"1/2kfkH1(@⌦)

3.2 Soft inclusions (0 < �  1)

In this section, we quantitatively discuss the convergence of solutions to (2.2.8) as
" ! 0 but � > 0 by proving Theorem 3.0.3. First, we discuss the ellipticity of the
homogenized coe�cients bA� which is shown to be uniform in �. Next, we prove the
theorem.

We now discuss the qualitative convergence of u",�. Indeed, if � > 0, then the
matrix of coe�cients k"

�A
" is positive definite, i.e., satisfies (2.2.4). However, if one

relies only on the positivity of � and the ellipticity of A", the lower-ellipticity constant
(e.g., 1 in (2.2.4)) depends on �. If � is close to zero, then the coe�cients k"

�A
" are ill-

conditioned, which leads to very loose control on the solution u",� and its deriviatives.
Nevertheless, we may deduce the existence of a homogenized solution u0,� and the
convergence of u",� as " ! 0. In particular, we have Theorem 2.2.1. In this section,
we propose a quantitative convergence rate that is essentially uniform in �.

For � � 0, let ��
j,� = {���

j,�}1�d denote the solution to the following variational
problem 8

>><

>>:

Z

Q

k�a
↵�
ik

@X��
j,�

@yk

@�↵

@yi
dy = 0, for any � 2 H1

per(Q;Rd)

��
j,� := X�

j,� � yje� is 1-periodic,

Z

Q

��
j,� = 0,

(3.2.1)

which coincides with (3.1.3) if � = 0, i.e., X�
j,0 ⌘ X�

j and ��
j,0 ⌘ ��

j where ��
j and X�

j

are defined in (3.1.3). To show the existence and uniqueness of the solutions ��
j,�, we

may apply the Lax-Milgram theorem to the space H1
per(Q;Rd). As a consequence,

with the correct choice of test functions one may obtain the bound

kk��
�
j,�kL2(Q) + kk�r��

j,�kL2(Q)  C (3.2.2)
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for some constant C depending on 1, 2, and !.
Define the constant matrix bA� = {a↵�ij,�} by

ba↵�ij,� = �

Z

Q

k�a
↵�
ik

@X��
j,�

@xk
dy, (3.2.3)

where X�
j,� is defined in (3.2.1). Note the e↵ective coe�cients defined by (3.2.1)

coincide with (3.1.2) when � = 0, i.e., bA0 ⌘ bA where bA is defined by (3.1.2). The
constant matrix bA� is uniformly elliptic uniformly in �, which is discussed below. Let
u0,� denote the solution to the homogenized boundary value problem corresponding
to (2.2.8) with � � 0, i.e., u0,� satisfies

(
L0,�(u0,�) = 0 in ⌦

u0,� = f on @⌦,
(3.2.4)

where L0,� = �div( bA�r) and bA� is defined by (3.2.3).

IfA satisfies (2.2.4) and (2.2.5), then bA� defined by (3.2.3) satisfies conditions (2.2.4)
and (2.2.5) but with possibly di↵erent constants e1 and e2 depending on 1 and 2

but not �. In particular, we have the following lemma.

Lemma 3.2.1. Let bA� be defined by (3.2.3) for 0  �  1. Then

ba↵�ij,�(y) = ba�↵ji,�(y) = bai�↵j,�(y)
e1|⇠|

2
 a↵�ij,�(y)⇠

↵
i ⇠

�
j  e2|⇠|

2

for any symmetric matrix ⇠ = {⇠↵i }, where e1, e2 > 0 depend on 1, 2, and |Q \ !|.

Lemma 3.2.1 follows from the following two lemmas. The first discusses the con-
vergence of ��

j,� for each 1  j, �  d as � ! 0, and the second discusses the

convergence of bA� to bA0 as � ! 0. As bA0 is known to be uniformly elliptic (see
Lemma 3.1.1 and note bA0 ⌘

bA), we obtain Lemma 3.2.1.

Lemma 3.2.2. If X0 = {X�
j,0}1j,�d, X� = {X�

j,�}1j,�d are defined by (3.1.3)
and (3.2.1), respectively, then for � > 0 we have the following estimates:

(i) k1+r(X0 � X�)kL2(Q)  C1�1/2,

(ii) k1�rX�kL2(Q)  C2��1/4,

where C1, C2 depend on 1 and 2.

Proof. Set e��
j,0 = P��

j,0 2 H1
per(Q;Rd) for each 1  j, �  d, where P is the linear

extension operator given in [24]. Let

eX�
j,0(y) = yje

� + e��
j,0(y).
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Recall that 1+
eX0 is a weak solution to (3.1.3) and X� satisfies (3.2.1), and so for any

� 2 H1
per(Q;Rd) we have

Z

Q

k�Ar(eX0 � X�) ·r� = �

Z

Q

1�r
eX0 ·r�

Note
eX0 � X� = e�0 � �� 2 H1

per(Q;Rd),

and so by the ellipticity of A (see (2.2.5)) and Cauchy-Schwarz,
Z

Q

k� |r(eX0 � X�)|
2
 C

Z

Q

k�Ar(eX0 � X�) ·r(eX0 � X�)

= C�

Z

Q

1�r
eX0 ·r(eX0 � X�)

= C1�

Z

Q

1+|rX0|
2 + �

Z

Q

1�|r(eX0 � X�)|
2,

where C1 only depends on 1 and 2. This gives (i). For (ii), note

�

Z

Q

1�ArX� ·r�� = �

Z

Q

1+Ar(X0 � X�) ·r��

 C�1/2k1+rX0kL2(Q)k1+r��kL2(Q),

where C only depends on 2. By (i),

�

Z

Q

1�|rX�|
2
 C�1/2k1+rX0k

2
L2(Q),

where C depends on 1, 2.

Lemma 3.2.3. If bA0 and bA� are defined by (3.1.2) and (3.2.3), then
���|Q \ !| bA0 �

bA�

���  C�1/2k1+rX0kL2(Q),

where C depends on 1 and 2.

Proof. Note

|Q \ !| bA0 �
bA� =

Z

Q

1+Ar(X0 � X�)� �

Z

Q

1�rX�,

from which the desired estimate follows by Lemma 3.2.2.

Let K" be defined as in Section 2.4 by (2.4.1), and let ⌘" 2 C1

0 (⌦) be given
by (3.0.1). Recall �" = @⌦ \ "! and H1(⌦,�";Rd) denotes the closure in H1(⌦;Rd)
of C1(Rd;Rd) functions vanishing on �". Let u0,� solve (3.2.4), �� satisfy (3.2.1), and
u",� denote a weak solution to (2.2.8) with � � 0.
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Lemma 3.2.4. Let

r",� = u",� � u0,� � "�"
�K

2
" ((ru0,�)⌘").

Then
Z

⌦

k"
�A

"
rr",� ·rw

=

Z

⌦

(⌘" � 1)k"
�A

"
r [u",� � u0,�] ·rw +

Z

⌦

k"
�A

"
r [u",� � u0,�] · [wr⌘"]

+

Z

⌦

h
bA� � k"

�A
"
i ⇥

ru0,� �K2
" ((ru0,�)⌘")

⇤
·rw

�

Z

⌦

h
bA� � k"

�A
"
rX�

i
K2

" ((ru0,�)⌘") ·rw

� "

Z

⌦

k"
�A

"�"
�rK2

" ((ru0,�)⌘") ·rw

for any w 2 H1(⌦,�";Rd).

Proof. Fix w 2 H1(⌦,�";Rd), and note w⌘" 2 H1
0 (⌦;Rd). Since u0,� solves (3.2.4)

and u",� satisfies (2.2.9), Z

⌦

bA�ru0,� ·r[w⌘"] = 0

and Z

⌦

k"
�A

"
ru",� ·r[w⌘"] = 0,

where ⌘" denotes the cutto↵ function defined by (3.0.1). Note

rw = (1� ⌘")rw � ⌘"rw = (1� ⌘")rw �r[w⌘"] + wr⌘", (3.2.5)

and so
Z

⌦

k"
�A

"
ru",� ·rw =

Z

⌦

(1� ⌘")k
"
�A

"
ru",� ·rw �

Z

⌦

k"
�A

"
ru",� ·r[w⌘"]

+

Z

⌦

k"
�A

"
ru",� · [wr⌘"]

=

Z

⌦

(1� ⌘")k
"
�A

"
ru",� ·rw +

Z

⌦

k"
�A

"
ru",� · [wr⌘"].
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Hence,
Z

⌦

k"
�A

"
rr",� ·rw

=

Z

⌦

k"
�A

"
ru",� ·rw �

Z

⌦

k"
�A

"
ru0,� ·rw

�

Z

⌦

k"
�A

"
r
⇥
"�"

�K
2
" ((ru0,�)⌘")

⇤
·rw

=

Z

⌦

(1� ⌘")k
"
�A

"
ru",� ·rw +

Z

⌦

k"
�A

"
ru",� · [wr⌘"]

+

Z

⌦

k"
�A

"
ru0,� ·rw �

Z

⌦

k"
�A

"
r
⇥
"�"

�K
2
" ((ru0,�)⌘")

⇤
·rw.

Using the fact

r
⇥
"�"

�K
2
" ((ru0,�)⌘")

⇤
= r�"

�K
2
" ((ru0,�)⌘") + "�"

�rK2
" ((ru0,�)⌘"),

we continue with
Z

⌦

k"
�A

"
ru",� ·rw

=

Z

⌦

(1� ⌘")k
"
�A

"
ru",� ·rw +

Z

⌦

k"
�A

"
ru",� · [wr⌘"]

+

Z

⌦

k"
�A

"
ru0,� ·rw �

Z

⌦

k"
�A

"
r�"

�K
2
" ((ru0,�)⌘") ·rw

� "

Z

⌦

k"
�A

"�"
�rK2

" ((ru0,�)⌘") ·rw

=

Z

⌦

(1� ⌘")k
"
�A

"
r [u",� � u0,�] ·rw +

Z

⌦

k"
�A

"
r [u",� � u0,�] · [wr⌘"]

+

Z

⌦

h
bA� � k"

�A
"
i
ru0,� ·rw �

Z

⌦

k"
�A

"
r�"

�K
2
" ((ru0,�)⌘") ·rw

� "

Z

⌦

k"
�A

"�"
�rK2

" ((ru0,�)⌘") ·rw

where we’ve also used the identity
Z

⌦

bA�ru0,� ·rw =

Z

⌦

(1� ⌘") bA�ru0,� ·rw �

Z

⌦

bA�ru0,� ·r[w⌘"]

+

Z

⌦

bA�ru0,� · [wr⌘"]

=

Z

⌦

(1� ⌘") bA�ru0,� ·rw +

Z

⌦

bA�ru0,� · [wr⌘"],

which follows from (3.2.5).
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Finally, continuing from above and combining similar terms,
Z

⌦

k"
�A

"
ru",� ·rw

=

Z

⌦

(1� ⌘")k
"
�A

"
r [u",� � u0,�] ·rw +

Z

⌦

k"
�A

"
r [u",� � u0,�] · [wr⌘"]

+

Z

⌦

h
bA� � k"

�A
"
i ⇥

ru0,� �K2
" ((ru0,�)⌘")

⇤
·rw

�

Z

⌦

h
bA� � k"

�A
"
� k"

�A
"
r�"

�

i
K2

" ((ru0,�)⌘") ·rw

� "

Z

⌦

k"
�A

"�"
�rK2

" ((ru0,�)⌘") ·rw

which is the desired inequality.

Lemma 3.2.5. For w 2 H1(⌦,�";Rd),
����
Z

⌦

k"
�A

"
rr",� ·rw

����  C
�
kru0,�kL2(O4") + k(ru0,�)⌘" �K"((ru0,�)⌘")kL2(⌦)

+"kK"

�
(r2u0,�)⌘"

�
kL2(⌦) + kk"

�ru",�kL2(O4")

 
krwkL2(⌦)

Proof. By Lemma 3.2.4,
Z

⌦

k"
�A

"
rr",� ·rw = I1 + I2 + I3 + I4 + I5, (3.2.6)

where

I1 =

Z

⌦

(1� ⌘")k
"
�A

"
r [u",� � u0,�] ·rw

I2 =

Z

⌦

k"
�A

"
r [u",� � u0,�] · [wr⌘"]

I3 =

Z

⌦

h
bA� � k"

�A
"
i ⇥

ru0,� �K2
" ((ru0,�)⌘")

⇤
·rw

I4 = �

Z

⌦

h
bA� � k"

�A
"
rX�

i
K2

" ((ru0,�)⌘") ·rw

I5 = �"

Z

⌦

k"
�A

"�"
�rK2

" ((ru0,�)⌘") ·rw

and w 2 H1(⌦,�";Rd).
Recall from (3.0.1) that supp(1� ⌘") ⇢ O4", where

O4" = {x 2 ⌦ : dist(x, @⌦) < 4"}.

By Cauchy-Schwarz, (2.2.5), and the assumption �  1, we have

|I1| 

Z

O4"

|k"
�A

"
ru0,� ·rw|+

Z

O4"

|k"
�A

"
ru",� ·rw|

 C
�
kru0,�kL2(O4") + kk"

�ru",�kL2(O4")

 
krwkL2(⌦). (3.2.7)
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Similarly, as supp(r⌘") ⇢ O4", Cauchy-Schwarz, Lemma 3.1.6, and (3.0.1) imply

|I2|  C
�
kru0,�kL2(O4") + kk"

�ru",�kL2(O4")

 
krwkL2(⌦). (3.2.8)

Using (3.0.1) again,

kru0,� �K2
" ((ru0,�)⌘")kL2(⌦)

 k(1� ⌘")ru0,�kL2(⌦) + k(ru0,�)⌘" �K"((ru0,�)⌘")kL2(⌦)

+ kK"((ru0,�)⌘" �K"((ru0,�)⌘"))kL2(⌦)

 kru0,�kL2(O4") + Ck(ru0,�)⌘" �K"((ru0,�)⌘")kL2(⌦).

Therefore, by Cauchy-Schwarz,

|I3|  Ckru0,� �K2
" ((ru0,�)⌘")kL2(⌦)krwkL2(⌦)

 C
�
kru0,�kL2(O4")

+k(ru0,�)⌘" �K"((ru0,�)⌘")kL2(⌦)

 
krwkL2(⌦). (3.2.9)

Set B� = bA� � k�ArX. By (3.2.3) and (3.2.2), B� = {b↵�ij,�} satisfies the as-

sumptions of Lemma 2.4.5. Therefore, there exists ⇡� = {⇡↵�
kij,�} that is 1-periodic

with
@

@yk
⇡↵�
kij,� = b↵�ij,� and ⇡↵�

kij,� = �⇡↵�
ikj,�,

where

b↵�ij,� = ba↵�ij,� � k�a
↵�
ik,�

@

@yk
X��

j,� .

Moreover, k⇡↵�
ij,�kH1(Q)  C for some constant C depending on 1, 2 but not � (see

Lemmas 2.4.5 and 3.2.2). Hence, integrating by parts gives

Z

⌦

b↵�"ij,� K
2
"

 
@u�

0,�

@xj
⌘"

!
@ ew↵

@xi
= �"

Z

⌦

⇡↵�"
kij,�

@

@xk

"
K2

"

 
@u�

0,�

@xj
⌘"

!
@w↵

@xi

#

= �"

Z

⌦

⇡↵�"
kij,�

@

@xk

"
K2

"

 
@u�

0,�

@xj
⌘"

!#
@w↵

@xi
,

since Z

⌦

⇡↵�"
kij,�K

2
"

 
@u�

0,�

@xj
⌘"

!
@2w↵

@xk@xi
= 0

due to the anit-symmetry of ⇡�. Thus, by Lemma 2.4.3, and (3.0.1),

|I4|  C"k⇡"
�rK2

" ((ru0,�)⌘")kL2(⌦)krwkL2(⌦)

 C
�
kru0,�kL2(O4") + "kK"

�
(r2u0,�)⌘"

�
kL2(⌦)

 
krwkL2(⌦). (3.2.10)

Finally, by Lemma 2.4.3 and (3.0.1),

|I5|  C
�
kru0,�kL2(O4") + "kK"

�
(r2u0,�)⌘"

�
kL2(⌦)

 
krwkL2(⌦) (3.2.11)

The desired estimate follows from (3.2.7)–(3.2.11).
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Lemma 3.2.6. For w 2 H1(⌦,�";Rd),

����
Z

⌦

k"
�A

"
rr",� ·rw

����  C"µkfkH1(@⌦)kwkH1(⌦"),

where µ > 0 depends on d, 1, and 2.

Proof. Recall that u0,� satisfies L0,�(u0,�) = 0 in ⌦, and so it follows from estimates
for solutions in Lipschitz domains for constant-coe�cient equations that

k(ru0,�)
⇤
kL2(@⌦)  CkfkH1(@⌦), (3.2.12)

where (ru0,�)⇤ denotes the nontangential maximal function of ru0,� (see [14]). By
the coarea formula,

kru0,�kL2(O4")  C"1/2k(ru0,�)
⇤
kL2(@⌦)  C"1/2kfkH1(@⌦). (3.2.13)

Notice that if u0,� solves (3.2.4), then L0,�(ru0,�) = 0 in ⌦, and so we may use
the interior Lipschitz estimate for L0,�. That is,

|r
2u0,�(x)| 

C

⇢(x)

✓
�

Z

B(x,⇢(x)/8)

|ru0,�|
2

◆1/2

, (3.2.14)

where ⇢(x) = dist(x, @⌦) and C is uniform in � given Lemma 3.2.1. In particular,

k(r2u0,�)⌘"kL2(⌦) 

✓Z

⌦\O3"

|r
2u0,�|

2

◆1/2

 C

 Z

⌦\O3"

�

Z

B(x,⇢(x)/8)

����
ru0,�(y)

⇢(x)

����
2

dy dx

!1/2

 C

✓Z C0

3"

t�2

Z

@Ot\⌦

�

Z

B(x,t/8)

|ru0,�(y)|
2 dy dS(x) dt

◆1/2

+ C1

 Z

⌦\OC0

|ru0,�|
2

!1/2

 Ck(ru0,�)
⇤
kL2(@⌦)

✓Z C0

3"

t�2 dt

◆1/2

+ C1kru0,�kL2(⌦)

 C
�
"�1/2

kfkH1(@⌦) + kfkH1/2(@⌦)

 

 C"�1/2
kfkH1(@⌦).

where C0 is a constant depending on ⌦, and we’ve used (3.0.1), (3.2.12) (3.2.13), the
coarea formula, energy estimates, and (3.2.14). Hence,

"kK"

�
(r2u0,�)⌘"

�
kL2(⌦)  C"1/2kfkH1(@⌦). (3.2.15)
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By Lemma 2.4.2,

k(ru0,�)⌘" �K"((ru0,�)⌘")kL2(⌦)  C"1/2kfkH1(@⌦). (3.2.16)

where the last inequality follows from (3.2.15) and (3.0.1).
Finally, we establish a W 1,p-estimate for some p > 2 for u",� uniform in " and �

by establishing a reverse Hölder inequality. Indeed, if there exists a p > 2 so that
✓Z

⌦

|k"
�ru",�|

p

◆1/p

 CkfkH1(@⌦),

then Hölder’s inequality implies
Z

O4"

|k"
�ru",�|

2
 C"(p�2)/p

kfk2H1(@⌦). (3.2.17)

The existence of such a p follows from the Lemma 3.2.7 below. Equations (3.2.13),
(3.2.15), (3.2.16), and (3.2.17) together with Lemma 3.2.5 give the desired result.

Lemma 3.2.7. There exists a p0 > 2 such that
✓Z

⌦

|k"
�ru",�|

p0

◆1/p0

 CkfkH1(@⌦)

for some constant C depending on 1, 2, d, p0, and ⌦.

Proof. The desired estimate essentially follows from Cacciopoli’s inequality, the Poincaré-
Sobolev inequality, and the self-improving property of reverse Hölder inequalities.
We prove an interior estimate, and the boundary estimate follows with an analogous
proof.

Take B(x0, 2r) ⇢ ⌦, and note that Cacciopoli’s inequality (see Lemma 4.3.1 in
Section 4.3) implies

✓
�

Z

B(x0,r)

|k"
�ru",�|

2

◆1/2


C

r

✓
�

Z

B(x0,2r)

|k"
�u",�|

2

◆1/2


C

r

(
�

✓
�

Z

B(x0,2r)

|u",�|
2

◆1/2

+

✓
�

Z

B(x0,2r)

|P"(1
"
+u",�)|

2

◆1/2
)
,

which is invariant if we subtract any constant vector from u",�. If we consider the
di↵erence in u",� and the average value of u",� over the ball B(x0, 2r), then by the
Poincaré-Sobolev ineqaulity

✓
�

Z

B(x0,r)

|k"
�ru",�|

2

◆1/2

 �

✓
�

Z

B(x0,2r)

|ru",�|
s

◆1/s

+
C

r

✓
�

Z

B(x0,2r)

|P"(1
"
+u",�)|

2

◆1/2

,
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where s = 2d/(d + 2). Similarly, by considering the di↵erence of P"(1"
+u",�) and its

average value over the ball B(x0, 2r) we can show

✓
�

Z

B(x0,r)

|k"
�ru",�|

2

◆1/2

 �

✓
�

Z

B(x0,2r)

|ru",�|
s

◆1/s

+

✓
�

Z

B(x0,2r)

|rP"(1
"
+u",�)|

s

◆1/s

,

which by Lemma 2.4.6 shows

✓
�

Z

B(x0,r)

wq

◆1/q

 C �

Z

B(x0,2r)

w,

where w = |k"
�ru",�|

s and q = 2/s. By the self-improving property of reverse Hölder
inequalities (see [17, Chapter V, Proposition 1.1]),

✓
�

Z

B(x0,r)

wt

◆1/t

 C

✓
�

Z

B(x0,2r)

wq

◆1/q

,

for any t 2 [q, q + ⌫) for some ⌫ > 0 depending on 1, 2, and d. That is,

✓
�

Z

B(x0,r)

|k"
�ru",�|

p

◆1/p

 C

✓
�

Z

B(x0,2r)

|k"
�ru",�|

2

◆1/2

(3.2.18)

for any p 2 [2, 2 + ⌫) and any B(x0, 2r) ⇢ ⌦.
We may show a similar estimate for any ball B(x0, 2r) with x0 2 @⌦. That is, if

F = f on @⌦ and F 2 H3/2(⌦), then the continuous injection H3/2(⌦) ✓ W 1,q(⌦)
for any q � 2d/(d� 1) gives the estimate

✓
�

Z

B(x0,r)\⌦

|k"
�ru",�|

p

◆1/p

 C

✓
�

Z

B(x0,2r)\⌦

|k"
�ru",�|

2

◆1/2

+

✓
�

Z

B(x0,2r)\⌦

|rF |
q

◆1/q

. (3.2.19)

Patching together inequalities (3.2.18) and (3.2.19) gives the desired estimate for
some p0 > 2.

Proof of Theorem 3.0.3. Note �r",� 2 H1
0 (⌦;Rd) ⇢ H1(⌦,�";Rd), and so by Lemma 3.2.6

and (2.2.5),

k�e(r",�)k
2
L2(⌦)  C�

Z

⌦

k"
�A

"
rr",� ·rr",�

 C"µkfkH1(@⌦)k�rr",�kL2(⌦),

where e(r",�) denotes the symmetric part of rr",�. Korn’s first inequality then implies

k�rr",�k
2
L2(⌦)  Ck�e(r",�)k

2
L2(⌦)  C"µkfkH1(@⌦)k�rr",�kL2(⌦),
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and so
k�rr",�kL2(⌦)  C"µkfkH1(@⌦). (3.2.20)

Note also P"(1"
+r",�) 2 H1(⌦,�";Rd), and so by Lemmas 3.2.6 and 2.4.6,

k1"
+e[P"(1

"
+r",�)]k

2
L2(⌦)

 C

Z

⌦

k"
�A

"
rr",� ·rP"(1

"
+r",�)� �

Z

⌦

1"
�
A"

rr",� ·rP"(1
"
+r",�)

 C"µkfkH1(@⌦)k1
"
+rr",�kL2(⌦),

where we’ve used (3.2.20). Korn’s first inequality for periodically perforated domains,
i.e., Lemma 2.4.7, implies

k1"
+rr",�k

2
L2(⌦)  Ck1"

+e[P"(1
"
+r",�)]k

2
L2(⌦)  C"µkfkH1(@⌦)k1

"
+rr",�kL2(⌦),

and so
k1"

+rr",�kL2(⌦)  C"µkfkH1(@⌦). (3.2.21)

Equations (3.2.20) and (3.2.21) give the desired estimate. Indeed,

kk"
�rr",�kL2(⌦)  k1"

+rr",�kL2(⌦) + k�rr",�kL2(⌦)  C"µkfkH1(@⌦)

Proof of Corollary 3.0.4. Using Theorem 3.0.3, we have

kk"
�(u",� � u0,�)kL2(⌦)  Ckk"

�(u",� � u0,� � "�"
�K

2
" ((ru0,�)⌘"))kL2(⌦)

+ C"k�"
�K

2
" ((ru0,�)⌘"))kL2(⌦)

 C"µkfkH1(@⌦) + C"kfkH1/2(@⌦)

 C"µkfkH1(@⌦),

which is the desired result.

Copyright c� Brandon Chase Russell, 2018.
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Chapter 4 Regularity

The other main results of this dissertation are the following theorems which are
basically large-scale interior Lipschitz estimates for solutions to (2.2.8). Theorem 4.0.1
concerns the boundary value problem with � = 0, and Theorem 4.0.3 concerns the
boundary value problem with � � 0.

Theorem 4.0.1. Suppose A satisfies (2.2.4), (2.2.5), and (2.2.7). Let u",0 denote
a weak solution to L",0(u",0) = 0 in B(x0, R) for some x0 2 Rd and R > 0. For
"  r  R, there exists a constant C depending on d, !, 1, and 2 such that

✓
�

Z

B(x0,r)\"!

|ru",0|
2

◆1/2

 C

✓
�

Z

B(x0,R)\"!

|ru",0|
2

◆1/2

. (4.0.1)

The scale-invariant estimate in Theorem 4.0.1 should be regarded as a Lipschitz
estimate for solutions u",0, as under additional smoothness assumptions on the coef-
ficients A we may deduce an interior Lipschitz estimate for solutions to (2.2.8) with
� = 0 from local Lipschitz estimates for L1,0 and a “blow-up argument.” In particular,
if A is Hölder continuous, i.e., there exists a ↵ 2 (0, 1) with

|A(x)� A(y)|  C|x� y|↵ for x, y 2 Rd (4.0.2)

for some constant C uniform in x and y, we may deduce the following corollary.

Corollary 4.0.2. Suppose A satisfies (2.2.4), (2.2.5), (2.2.7), and (4.0.2), and sup-
pose ! is an unbounded C1,↵ domain for some ↵ > 0. Let u",0 denote a weak solution
to L",0(u",0) = 0 in B(x0, R) for some x0 2 Rd and R > 0. Then

kru",0kL1(B(x0,R/3)\"!)  C

✓
�

Z

B(x0,R)\"!

|ru",0|
2

◆1/2

,

where C depends on d, !, 1, 2, and ↵.

Interior Lipschitz estimates for the case ! = Rd were first obtained indirectly
through the method of compactness presented in [6]. Interior Lipschitz estimates for
solutions to a single elliptic equation in the case ! ( Rd were obtained indirectly
in [32] through the same method of compactness. The method of compactness is
essentially a “proof by contradiction” and relies on the qualitative convergence of
solutions u" (see Theorem 2.2.1). The method relies on sequences of operators {Lk

"k
}k

and sequences of functions {uk}k satisfying L
k
"k
(uk) = 0, where L

k
"k

= �div(A"k
k r),

{A"k
k }k satisfies (2.2.4), (2.2.5), and (2.2.7) in !+ sk for sk 2 Rd. In the case ! = Rd,

then !+sk = Rd for any sk 2 Rd, and so it is clear that estimate (4.0.1) is uniform in
a�ne transformations of !. In the case ! ( Rd, a�ne shifts of ! must be considered,
which complicates the general scheme.

Interior Lipschitz estimates for the case ! = Rd were obtained directly in [26]
through a general scheme for establishing Lipschitz estimates at the macroscopic
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scale first presented in [5] and then modified for second-order elliptic systems in [4]
and [26]. We emphasize that our result is unique in that Theorem 4.0.1 extends
estimates presented in [26]—i.e., interior Lipschitz estimates for systems of linear
elasticity—to the case ! ( Rd while completely avoiding the use of compactness
methods. The proof of Theorem 4.0.1 (see Section 4.1) relies on the quantitative
convergence rates of the solutions u",0.

Another main result of this dissertation is Theorem 4.0.3. We reiterate that
no smoothness assumptions are required on the coe�cients A, only the elasticity
conditions (2.2.4), (2.2.5), and the periodicity condition (2.2.7). Theorem 4.0.3 should
be considered as an analog to Theorem 4.0.1 for the case � > 0.

Theorem 4.0.3. Suppose A satisfies (2.2.4), (2.2.5), and (2.2.7). Let u",� denote
a weak solution to L",�(u",�) = 0 in B(x0, R) for some x0 2 Rd and R > 0. For
"  r  R, there exists a constant C depending on d, !, 1, and 2 such that

✓
�

Z

B(x0,r)

|k"
�ru",�|

2

◆1/2

 C

✓
�

Z

B(x0,R)

|k"
�ru",�|

2

◆1/2

.

for any 0  �  1.

The scale-invariant estimate in Theorem 4.0.3 should also be regarded as an in-
terior Lipschitz estimate for (2.2.8) at the large scale but for any � � 0. Indeed, if
Theorem 2.2.8 were to hold also for 0 < r < ", then we would be able to essentially
bounded the gradient of u",� in the interior of ⌦. However, Lipschitz estimates do
not in general hold without more assumptions on the smoothness of the coe�cients
A and the domain !. That is, the periodicity assumptions on A, !, and the elasticity
conditions (2.2.4), (2.2.5) alone contribute to the large-scale average behavior of the
solution.

Under additional assumptions that A is Hölder continuous and the domain !
has a su�ciently regular boundary, an interior Lipschitz estimate at the microscopic
scale for solutions to (2.2.8) follows from local C1,↵-estimates for the operator L1,�2 .
We modify a layer potential argument of Escaurazia, Fabes, and Verchota where
nontangential estimates were obtained for single equation interface problems [15].
Yeh modified this same argument to obtain localW 1,p-estimates and Hölder estimates
for (2.2.8) in the case of single equations with diagonal coe�cients [30, 31]. This is
discussed in Section 4.4.

Corollary 4.0.4. Suppose A satisfies (2.2.4), (2.2.5), (2.2.7), and (4.0.2) for some
↵ 2 (0, 1). Suppose ! is an unbounded C1,↵ domain. Let u",� denote a weak solution
to L",�(u",�) = 0 in B(x0, R) for some x0 2 Rd and R > 0. Then for 0  �  1,

kk"
�ru",�kL1(B(x0,R/3))  C

✓
�

Z

B(x0,R)

|k"
�ru",�|

2

◆1/2

(4.0.3)

some constant C independent of " and �.
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To prove Theorem 4.0.3, we use the sub-optimal quantitative convergence rates
for solutions to (2.2.8) (see Section 3.2) and apply a general scheme of Armstrong
and Smart that has since been adapted by Shen [5, 4, 26].

Hueristically, the scheme is a Campanato-type iteration verifying that on meso-
scopic scales the solution u",� is “flatter.” If P1 denotes the space of a�ne functions
in Rd and H",�(r) defined by

H",�(r) =
1

r

✓
inf
p2P1

�

Z

B(r)

|k"
�(u",� � p)|2

◆1/2

quantifies a weighted L2-“flatness” of the solution in some ball B(r) with radius r,
then we show there exists a ✓ 2 (0, 1) such that

H",�(✓r)  CH",�(r) + error, (4.0.4)

where the “error” term is controllable whenever "  r and the constant 0  C < 1
indicates an improvement in “flatness.” Indeed, (4.0.4) follows from the fact the u",�—
at least in the connected substrate—can be well-approximated in L2 by a solution to a
constant coe�cient system. It is known from classical C2 estimates that solutions to
constant coe�cient systems satisfy (4.0.4) with no error. In contrast to compactness
methods, showing (4.0.4) relies on tractable L2-convergence rates of u",�, which we
will see follows from new results regarding quantitative homogenization in H1.

4.1 Large-scale interior Lipschitz estimates in perforated domains

In this section, we use Theorem 3.0.1 to investigate interior Lipschitz estimates down
to the scale " for the case � = 0. In particular, we prove Theorem 4.0.1. The proof
of Theorem 4.0.1 is based on the scheme used in [26] to prove boundary Lipschitz
estimates for solutions to (2.2.8) in the case ! = Rd, which in turn is based on a more
general scheme for establishing Lipschitz estimates presented in [5] and adapted in [26]
and [4]. For more details, see the introduction to this section.

The following Lemma is essentially Cacciopoli’s inequality in a perforated ball.
The proof is similar to a proof of the classical Cacciopoli’s ineqaulity, but nevertheless
we present a proof for completeness.

Throughout this section, let B"(r) denote the perforated ball of radius r centered
at some x0 2 Rd, i.e., B"(r) = B(x0, r) \ "!. Let S"(r) = @("!) \ B(x0, r) and
�"(r) = "! \ @B(x0, r).

Lemma 4.1.1. Suppose L",0(u") = 0 in B(2). There exists a constant C depending
on 1 and 2 such that

✓
�

Z

B"(1)

|ru"|
2

◆1/2

 C inf
q2Rd

✓
�

Z

B"(2)

|u" � q|2
◆1/2

Proof. Let ' 2 C1

0 (B(2)) satisfy 0  '  1, ' ⌘ 1 on B(1), |r'|  C1 for some
constant C1. Let q 2 Rd, and set w = (u" � q)'2. Note

r[(u" � q)'2] = '2
ru" + 2(u" � q)'r'
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and so by (2.2.9), (2.2.5),

0 =

Z

B"(2)

A"
ru"rw

=

Z

B"(2)

A"'2
ru"ru" + 2

Z

B"(2)

A"(u" � q)'ru"r'

� 1

Z

B"(2)

'2
|e(u")|

2
� C12

Z

B"(2)

|u" � q|'ru"r' (4.1.1)

By Cauchy-Schwarz,
Z

B"(2)

|u" � q|'ru"r'  ��1

Z

B"(2)

|u" � q|2|r'|2 + �

Z

B"(2)

|e(u")|
2'2

for any � > 0. Choose � so that 1 > C12�, and see then

0 � C2

Z

B"(2)

|e(u")|
2'2

� C3

Z

B"(2)

|r'|2|u" � q|2 (4.1.2)

for some constants C2 and C3 depending only 1 and 2. In particular,
Z

B"(2)

|e(u"')|
2
 C

Z

B"(2)

|r'|2|u" � q|2,

where C only depends on 1 and 2. Since ' ⌘ 1 inB(1) and u"' 2 H1(B"(2),�"(2);Rd),
equation (4.1.2) together with Lemma 2.4.7 gives the desired estimate.

We extend Lemma 4.1.1 to hold for a ball B"(r) with r > 0 by a convenient
scaling technique—the so called “blow-up argument”—often used in the study of
homogenization.

Lemma 4.1.2. Suppose L",0(u") = 0 in B(2r) for some r > 0. There exists a
constant C depending on 1 and 2 such that

✓
�

Z

B"(r)

|ru"|
2

◆1/2


C

r
inf
q2Rd

✓
�

Z

B"(2r)

|u" � q|2
◆1/2

Proof. Let U"(x) = u"(rx), and note U" satisfies L"/r,0(U") = 0 in B"(2). By
Lemma 4.1.1,

 
�

Z

B"/r(1)

|rU"|
2

!1/2

 C inf
q2Rd

 
�

Z

B"/r(2)

|U" � q|2
!1/2

for some C independent of " and r. Note rU" = rru", and so

r1�d/2

✓
�

Z

B"(r)

|ru"|
2

◆1/2

 Cr�d/2 inf
q2Rd

✓
�

Z

B"(2r)

|u" � q|2
◆1/2

,

where we’ve made the change of variables rx 7! x. The desired inequality follows.
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The following lemma is a key estimate in the proof of Theorem 4.0.1. Intrinsically,
the following Lemma uses the convergence rate in Theorem 3.0.1 to approximate the
solution u" with a “nice” function. Recall the operator L0,0 is introduced in Section 3.1
by (3.1.1).

Lemma 4.1.3. Suppose L",0(u") = 0 in B"(3r) for some r > 0. There exists a
v 2 H1(B(r);Rd) with L0,0(v) = 0 in B(r) and

✓
�

Z

B"(r)

|u" � v|

◆1/2

 C
⇣"
r

⌘1/2
✓
�

Z

B"(3r)

|u"|
2

◆1/2

for some constant C depending on d, !, 1, and 2

Proof. With rescaling (see the proof of Lemma 4.1.2), we may assume r = 1. By
Lemmas 4.1.2 and 2.4.6,

✓
�

Z

B(3/2)

|eu"|
2

◆1/2

+

✓
�

Z

B(3/2)

|reu"|
2

◆1/2



✓
�

Z

B"(3/2)

|u"|
2

◆1/2

+

✓
�

Z

B"(3/2)

|ru"|
2

◆1/2

 (1 + C1)

✓
�

Z

B"(3)

|u"|
2

◆1/2

where eu" = P"u" 2 H1(B(3);Rd), P" is the linear extension operator provided in
Lemma 2.4.6, and C1 depends only on 1 and 2. Note by the coarea formula

Z 3/2

0

kreu"kL2(@B(t)) + keu"kL2(@B(t)) dt  Cku"kL2(B"(3)),

and so for a.e. t 2 [0, 3/2] we have

kreu"kL2(@B(t)) + keu"kL2(@B(t))  Cku"kL2(B"(3)). (4.1.3)

Choose t 2 [1, 3/2] so that (4.1.3) holds. Let v denote the solution to the Dirichlet
problem L0(v) = 0 in B(t) and v = eu" on @B(t). Note that v = u" = eu" on �"(t). By
Corollary 3.0.2,

ku" � vkL2(B"(t))  C"1/2keu"kH1(@B(t)) (4.1.4)

Hence, (4.1.3) and (4.1.4) give

ku" � vkL2(B"(1))  ku" � vkL2(B"(t))  C"1/2ku"kL2(B"(3)),

which is the desired result.

Lemma 4.1.4. Suppose L0,0(v) = 0 in B(2r). For r � ", there exists a constant C
depending on !,1,2 and d such that

✓
�

Z

B(r)

|v|2
◆1/2

 C

✓
�

Z

B"(2r)

|v|2
◆1/2

(4.1.5)
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Proof. Let
T" = {z 2 Zd : "(Q+ z) \B(r) 6= ;},

and fix z 2 T". Let {Hk}
N
k=1 denote the bounded, connected components of Rd

\!
with Hk \ (Q+ z) 6= ;. Define 'k 2 C1

0 (Q⇤(z)) by

8
><

>:

'k(x) = 1, if x 2 Hk,

'k(x) = 0, if dist(x,Hk) >
1
4g

!,

|r'k|  C,

where C depends on !, g! > 0 as defined in Section 3.1 by (3.1.4), and

Q⇤(z) =
3d[

j=1

(Q+ zj), zj 2 Zd and |z � zj| 
p

d.

Set ' =
PN

k=1 'k 2 C1

0 (Q⇤), where Q⇤ = Q⇤(z). Note by construction ' ⌘ 1 in
Q⇤

\!.
Set V (x) = v("x). Note L0,0(V ) = 0 in Q + z. By Poincaré’s and Cacciopoli’s

inequalities,

Z

(Q+z)\!

|V |
2


NX

k=1

Z

Hk

|V |
2
 C

Z

Q⇤
|r(V ')|2  C

Z

Q⇤
|V |

2
|r'|2,

where C depends on !, 1, 2, and d but is independent of z given the periodic
structure of !. Specifically, since r' = 0 in Q⇤

\! and (Q+ z) ⇢ Q⇤,
Z

(Q+z)\!

|V |
2 +

Z

(Q+z)\!

|V |
2
 C

Z

Q⇤\!

|V |
2,

where C only depends on !, 1, 2, and d. Making the change of variables "x 7! x
gives Z

"(Q+z)

|v|2  C

Z

"(Q⇤\!)

|v|2.

Summing over all z 2 T" gives the desired inequality, since there is a constant M < 1

depending only on d such that Q⇤(z1)\Q⇤(z2) 6= ; for at most M coordinates z2 2 Zd

di↵erent from z1.

For w 2 L2(B"(r);Rd) and ", r > 0, set

H"(r;w) =
1

r
inf

M2Rd⇥d

q2Rd

✓
�

Z

B"(r)

|w �Mx� q|2
◆1/2

, (4.1.6)

and set

H0(r;w) =
1

r
inf

M2Rd⇥d

q2Rd

✓
�

Z

B(r)

|w �Mx� q|2
◆1/2

.
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Lemma 4.1.5. Let v be a solution of L0,0(v) = 0 in B(r). For r � ", there exists a
✓ 2 (0, 1/4) such that

H"(✓r; v) 
1

2
H"(r; v).

The constant ✓ depends on d, 1, and 2.

Proof. By Lemma 3.1.1, there exists a constant C1 depending only d, 1, and 2 such
that

H"(r; v)  C1H0(r; v)

for any r > 0. It follows from interior C2-estimates for elasticity systems with constant
coe�cients that there exists ✓ 2 (0, 1/4) with

H0(✓r; v) 
1

2C2
H0(r/2; v),

where C2 = C3C1 and C3 is the constant in (4.1.5) given in Lemma 4.1.4. By
Lemma 4.1.4, we have the desired inequality.

Lemma 4.1.6. Suppose L",0(u") = 0 in B"(2r). For r � ",

H"(✓r; u") 
1

2
H"(r; u") +

C

r

⇣"
r

⌘1/2

inf
q2Rd

✓
�

Z

B"(3r)

|u" � q|2
◆1/2

Proof. With r fixed, let vr ⌘ v denote the function guaranteed in Lemma 4.1.3.
Observe then

H"(✓r; u") 
1

✓r

✓
�

Z

B"(✓r)

|u" � v|2
◆1/2

+H"(✓r; v)


C

r

✓
�

Z

B"(r)

|u" � v|2
◆1/2

+
1

2
H"(r; v)


C

r

✓
�

Z

B"(r)

|u" � v|2
◆1/2

+
1

2
H"(r; u"),

where we’ve used Lemma 4.1.5 and the constant C may depend on ✓. By Lemma 4.1.3,
we have

H"(✓r; u") 
C

r

⇣"
r

⌘1/2
✓
�

Z

B"(3r)

|u"|
2

◆1/2

+
1

2
H"(r; u").

Since H remains invariant if we subtract a constant from u" (i.e., the same argument
holds for u" � q with q 2 Rd), the desired inequality follows.

Lemma 4.1.7. Let H(r) and h(r) be two nonnegative continous functions on the
interval (0, 1]. Let 0 < " < 1/6. Suppose that there exists a constant C0 with

8
<

:

max
rt3r

H(t)  C0H(3r),

max
rt,s3r

|h(t)� h(s)|  C0H(3r),
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for any r 2 [", 1/3]. We further assume

H(✓r) 
1

2
H(r) + C0

⇣"
r

⌘1/2

{H(3r) + h(3r)}

for any r 2 [", 1/3], where ✓ 2 (0, 1/4). Then

max
"r1

{H(r) + h(r)}  C{H(1) + h(1)},

where C depends on C0 and ✓.

Proof. See [26].

Proof of Theorem 4.0.2. By rescaling, we may assume R = 1. Indeed, we may con-
sider U"(x) = u",0(x/R), which satisfies LR",0(U") = 0 in B"(x0, 1). Moreover, we
assume " 2 (0, 1/6). If " � 1/6, then the desired result follows classical results re-
garding interior estimates for systems of elasticity. Let H(r) ⌘ H"(r; u",0), where
H"(r; u",0) is defined above by (4.1.6). Let h(r) = |Mr|, where Mr 2 Rd⇥d satisfies

H(r) =
1

r
inf
q2Rd

✓
�

Z

B"(r)

|u",0 �Mrx� q|2
◆1/2

.

Note there exists a constant C independent of r so that

H(t)  CH(3r), t 2 [r, 3r]. (4.1.7)

Indeed, for t 2 [r, 3r],

H(t) 
1

r
inf
q2Rd

✓
�

Z

B"(t)

|u",0 �Mx� q|2
◆1/2

 3d+1c1/2d H(3r),

where cd denotes the volume of the unit ball in Rd. Suppose s, t 2 [r, 3r]. We have

|h(t)� h(s)| 
C

r
inf
q2Rd

✓
�

Z

B"(r)

|(Mt �Ms)x� q|2
◆1/2


C

t
inf
q2Rd

✓
�

Z

B"(t)

|u",0 �Mtx� q|2
◆1/2

+
C

s
inf
q2Rd

✓
�

Z

B"(s)

|u",0 �Msx� q|2
◆1/2

 CH(3r),

where we’ve used (4.1.7) for the last inequality. Specifically,

max
rt,s3r

|h(t)� h(s)|  CH(3r). (4.1.8)

Clearly
1

r
inf
q2Rd

✓
�

Z

B"(3r)

|u",0 � q|2
◆1/2

 H(3r) + h(3r), (4.1.9)
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and so Lemma 4.1.6 implies

H(✓r) 
1

2
H(r) + C

⇣"
r

⌘1/2

{H(3r) + h(3r)} (4.1.10)

for any r 2 [", 1/3] and some ✓ 2 (0, 1/4). Note equations (4.1.7), (4.1.8), and (4.1.10)
show thatH(r) and h(r) satisfy the assumptions of Lemma 4.1.7. Consequently, (4.1.9)
and Lemmas 4.1.2 and 4.1.7 imply

✓
�

Z

B"(r)

|ru",0|
2

◆1/2


C

r
inf
q2Rd

✓
�

Z

B"(3r)

|u",0 � q|2
◆1/2

 C {H(3r) + h(3r)}

 C {H(1) + h(1)}

 C

✓
�

Z

B"(1)

|u",0|
2

◆1/2

. (4.1.11)

Since (4.1.11) remains invariant if we subtract a constant from u",0, the desired esti-
mate in Theorem 4.0.1 follows.

4.2 Consequences of Theorem 4.0.1

In this section, we first combine the large-scale estimate Theorem 3.0.1 with local
estimates for mixed boundary value problems to derive interior estimates at both
the macroscopic and microscopic scale. In particular, we prove Corollary 4.0.2. The
proof essentially uses the “blow-up” argument of Lemma 4.1.2 and classical results
regarding elliptic systems in smooth domains with mixed boundary values.

Next, we prove a Liouville-type estimate for systems of elasticity with periodic
coe�cients in unbounded domains with periodic structure. The proof of this estimate
requires only Theorem 3.0.1, and so it requires minimal regularity on the coe�cients
A, i.e., the estimate requires the coe�cients to be measurable, bounded, and periodic.

Proof of Corollary 4.0.2. Under the Hölder continuous condition (4.0.2) and the as-
sumption that ! is an unbounded C1,↵ domain for some ↵ > 0, solutions to the
systems of linear elasticity are known to be locally Lipschitz. That is, if L1,0(u) = 0
in B(y, 1), then

krukL1(B(y,1/3)\!)  C

✓
�

Z

B(y,1)\!

|ru|2
◆1/2

, (4.2.1)

where C depends on d, 1, 2, and !.
By rescaling, we may assume R = 1. To prove the desired estimate, assume

" 2 (0, 1/6). Indeed, if " � 1/6, then (4.0.2) follows from (4.2.1). From (4.2.1), a
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“blow-up argument,” and Theorem 4.0.1 we deduce

kru",0kL1(B(y,")\"!)  C

✓
�

Z

B(y,3")\"!

|ru",0|
2

◆1/2

 C

✓
�

Z

B(x0,1)\"!

|ru",0k
2

◆1/2

for any y 2 B(x0, 1/3). The deisred esitmate readily follows by covering B(x0, 1/3)
with balls B(y, ").

Corollary 4.2.1. Suppose A satisfies (2.2.4), (2.2.5), and (2.2.7), and suppose !
is an unbounded Lipschitz domain with 1-periodic structure. Let u denote a weak
solution of L1,0(u) = 0 in !. Assume

✓
�

Z

B(0,R)\!

|u|2
◆1/2

 CR⌫ , (4.2.2)

for some ⌫ 2 (0, 1), some constant C := C(u) > 0, and for all R > 1. Then u is
constant in !.

Proof of Corollary 4.2.1. Fix r > 0 and let R � r. If u satisfies the growth condi-
tion (4.2.2), then by Lemma 4.1.1 and Theorem 3.0.1,

✓
�

Z

B(x0,r)\!

|ru|2
◆1/2

 C

✓
�

Z

B(x0,R)\!

|ru|2
◆1/2

 CR⌫�1,

where C is independent of R. Take R ! 1 and note ru = 0 for arbitrarily large r.
Since ! is connected, we conclude u is constant.

4.3 Large-scale interior Lipschitz estimates in materials reinforced with
soft inclusions

In this section, we discuss a priori interior estimates for the boundary value prob-
lem (2.2.8) with � > 0 at the macroscopic scale by proving Theorem 4.0.3. By
macroscopic, we refer to the case when "/r � 1. Throughout this section, let
B(r) ⌘ B(x0, r) denote the ball of radius r > 0 centered at some x0 2 Rd.

The following lemma is essentially Cacciopoli’s inequality for the operator L",� de-
fined by (2.2.1). The proof is similar to a proof of the classical Cacciopoli’s inequality,
but nevertheless we present a proof for completeness.

Lemma 4.3.1. Suppose L",�(u",�) = 0 in B(2). Then

✓
�

Z

B(1)

|k"
�ru",�|

2

◆1/2

 C

✓
�

Z

B(2)

|k"
�u",�|

2

◆1/2

where C depends only on 1 and 2.
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Proof. Let ⇣ 2 C1

0 (B(2)). Then

0 = �

Z

B(2)

k"
�A

"
ru ·r(u⇣2)

= �

Z

B(2)

k"
�A

"
ru · (ru)⇣2 + 2�

Z

B(2)

(u⇣)k"
�A

"
ru ·r⇣ (4.3.1)

where u ⌘ u",�. Note since �  1 and Cauchy-Schwarz,

2�

Z

B(2)

(u⇣)k"
�A

"
ru ·r⇣  C

✓Z

B(2)

|k"
�ru|2⇣2

◆1/2✓Z

B(2)

|k"
�u|

2
|r⇣2|

◆1/2

.

Equation (4.3.1) then implies

0 � �1

Z

B(2)

k"
� |ru|2⇣2 � C

✓Z

B(2)

|k"
�ru|2⇣2

◆1/2✓Z

B(2)

|k"
�u|

2
|r⇣2|

◆1/2

,

i.e.,
Z

B(2)

1"
�
|�ru|2⇣2 

C1

�

Z

B(2)

k"
�2 |ru|2⇣2 + �C2

Z

B(2)

k"
�2u

2
|r⇣|2

for any � > 0. Similarly,

0 =

Z

B(2)

k"
�A

"
ru ·r(u⇣2)

implies Z

B(2)

1"
+|ru|2⇣2 

C1

�

Z

B(2)

k"
�2 |ru|2⇣2 + �C2

Z

B(2)

k"
�2u

2
|r⇣|2

Choosing � large enough gives
Z

B(2)

|k"
�ru|2⇣2  C

Z

B(2)

|k"
�u|

2
|r⇣2|

for some constant C depending on 1 and 2. Choose ⇣ so that ⇣ ⌘ 1 in B(1) and
|r⇣|  C. The desired inequality follows.

Lemma 4.3.2. Suppose L",�(u",�) = 0 in B(3r). There exists v 2 H1(B(r);Rd)
satisfying L0,�(v) = 0 in B(r) and

✓
�

Z

B(r)

|k"
�(u",� � v)|2

◆
 C

⇣"
r

⌘µ
✓
�

Z

B(3r)

|k"
�u",�|

2

◆1/2

,

where C depends on 1, 2, and d and µ > 0.
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Proof. First we prove the lemma for r = 1. By Lemma 4.3.1 and Theorem 2.4.6 of
Section 2.4,

✓
�

Z

B(3/2)

|rP"(1
"
+u)|

2

◆1/2

+

✓
�

Z

B(3/2)

|�ru|2
◆1/2

 C

✓
�

Z

B(3)

|k"
�u|

2

◆1/2

,

where u ⌘ u",�. Specifically, there exists a t 2 [1, 5/4] such that

kP"(1
"
+u)kH1(@B(t)) + �kukH1(@B(t))  Ckk"

�ukL2(B(3)). (4.3.2)

Let v denote the weak solution to the Dirichlet problem L0,�(v) = 0 in B(t) and
v = P"(1"

+u) on @B(t). Note v = u = P"(1"
+u) on @B(t) \ "!. By Theorem 3.0.3,

kk"
�(u � v)kL2(B(1))  C"µkP"(1

"
+u)kH1(@B(t))

+ �krP"(1
"
+u)�rukL2(B(t)), (4.3.3)

since

kk"
��

"
�K

2
" ((rv)⌘")kL2(B(t))  CkrvkL2(B(t))

 CkP"(1
"
+u)kH1(@B(t)),

where we’ve used notation consistent with Theorem 3.0.3 and µ � µ0 > 0 for some
µ0 indepedent of �.

By Lemma 4.3.1,

�

Z

B(t)

|k"
�rw|2  �

Z

B(t)

|rP"(1
"
+u)|

2 + C �

Z

B(2t)

|k"
�w|

2, (4.3.4)

where w = P"(1"
+u) � u. Equation (4.3.4) follows from the fact that L",�(w) =

L",�(P"(1"
+u)) in B(3) and t 2 [1, 5/4]. Note by Theorem 2.4.6, w = 0 a.e. in

B(3) \ "!. Hence, Poincaré’s inequality gives

�

Z

B(2t)

|k"
�w| = �2 �

Z

B(2t)

1"
�
|w|2  "2 �

Z

B(3)

|k"
�rw|2. (4.3.5)

Indeed, set W (x) = w("x), and let {Hk}
N(")
k=1 denote the bounded, connected compo-

nents of Rd
\! with "Hk \ B(2t) 6= ;. Then W = 0 on @Hk for each k, and so

Z

B(2t)

|w|2 
NX

k=1

Z

Hk

|W |
2
 C"2

NX

k=1

Z

"Hk

|rw|2  C"2
Z

B(3)

|rw|2,

where C is independent of " since ! is periodic. Theorem 2.4.6 together with (4.3.2), (4.3.3)
and (4.3.5) give the estimate for r = 1.

Now we prove the estimate for arbitrary r > 0. To this end, let U(x) = u(rx), and
note L"/r,�(U) = 0 in B(3). By the above, there exists a V 2 H1(B(1);Rd) satisfying
L0,�(V ) = 0 in B(1) and

✓
�

Z

B(1)

|k"/r
� (U � V )|2

◆
 C

⇣"
r

⌘µ
✓
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B(3)

|k"/r
� U |

2

◆1/2

,

The change of variables rx 7! x gives the desired estimate.
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Lemma 4.3.3. Suppose L0,�(v) = 0 in B(2r). Then for r � ",

✓
�

Z

B(r)

|v|2
◆1/2

 C

✓
�

Z

B(2r)

|k"
�v|

2

◆1/2

(4.3.6)

for a constant C depending on !, 1, 2, and d.

Proof. See Lemma 4.1.5 for a proof when � = 0. The case � > 0 follows with a
similar argument as the coe�cients bA� are uniformly elliptic in Rd uniformly in � (see
Lemma 3.2.1).

For w 2 L2
loc(B(r);Rd), � � 0, and ", r > 0, set

H",�(r;w) =
1

r
inf

M2Rd⇥d

q2Rd

✓
�

Z

B(r)

|k"
�(w �Mx� q)|2

◆1/2

. (4.3.7)

Note this definition is consistent with (4.1.6).

Lemma 4.3.4. Suppose v satisfies L0,�(v) = 0 in B(1). For any r 2 [", 1], � 2 [0, 1],
and ✓ 2 (0, 1/4),

H",�(✓r; v)  C✓H",�(r; v)

for some constant C depending on d, 1, 2, and !.

Proof. It follows from interior C2-estimates for elasticity systems with constant coef-
ficients that for any ✓ 2 (0, 1/4),

H",�(✓r; v)  H",1(✓r; v)  C1✓H",1(r/2; v),

where C1 a constant depending on d, 1, 2. By Lemma 4.3.3, we have the desired
estimate.

Lemma 4.3.5. Suppose L",�(u",�) = 0 in B(1). For any "  r  1/3,

H",�(✓r; u",�)  C1✓H",�(r; u",�) +
C2

r

⇣"
r

⌘µ

inf
q2Rd

✓
�

Z

B(r)

|k"
�(u",� � q)|2

◆1/2

where ✓ 2 (0, 1/4) and µ > 0.

Proof. Fix r � ", and let v ⌘ vr denote the function given by Lemma 4.3.2. We have
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|k"
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◆1/2
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+ C1✓H",�(r; u),
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where we’ve used Lemma 4.3.4 and u ⌘ u",�. By Lemma 4.3.2,

H",�(✓r; u) 
C2
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r

⌘µ
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Z

B(3r)

|k"
�u|

2

◆1/2

+ C1✓H",�(r; u). (4.3.8)

Since (4.3.8) remains invariant if we subtract a constant from u, the desired estimate
follows.

Proof of Theorem 4.0.3. By rescaling, we may assume R = 1. We assume " 2

(0, 1/6), and we let H(r) ⌘ H",�(r; u), where u ⌘ u",� and H",�(r; u) is defined above
by (4.3.7). Let h(r) = r�1

|Mr|, where Mr 2 Rd⇥d satisfies

H(r) =
1

r
inf
q2Rd
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�

Z

B(r)

|k"
�(u�Mrx� q)|2

◆1/2

.

Note there exists a constant C independent of r so that

H(t)  CH(3r), t 2 [r, 3r]. (4.3.9)

Suppose s, t 2 [r, 3r]. We have

|h(t)� h(s)| 
C

r
inf
q2Rd

✓
�

Z

B(r)
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◆1/2

 CH(3r),

where we’ve used (4.3.9) for the last inequality. Specifically,

max
rt,s3r

|h(t)� h(s)|  CH(3r). (4.3.10)

Clearly
1

r
inf
q2Rd

✓
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Z

B(3r)

|k"
�(u� q)|2

◆1/2

 H(3r) + h(3r),

and so Lemma 4.3.5 implies

H(✓r) 
1

2
H(r) + C

⇣"
r

⌘µ

{H(3r) + h(3r)} (4.3.11)
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for any r 2 [", 1/3] and some ✓ 2 (0, 1/4). Note equations (4.3.9), (4.3.10), and (4.3.11)
show that H(r) and h(r) satisfy the assumptions of Lemma 4.1.7. Consequently,
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|k"
�ru|2

◆1/2
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inf
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Z
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|k"
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 C {H(3r) + h(3r)}

 C {H(1) + h(1)}

 C

✓
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|k"
�u|

2

◆1/2

. (4.3.12)

Since (4.3.12) remains invariant if we subtract a constant from u, the desired estimate
in Theorem 4.0.3 follows from Poincaré’s inequality.

4.4 Interior Lipschitz estimates in materials reinforces with soft inclu-
sions at every scale

In this section, we combine the large-scale estimate Theorem 4.0.3 with C1,↵ esti-
mates for interface problems to derive interior estimates at both the macroscopic and
microscopic scale. In particular, we prove Corollary 4.0.4.

To acheive our first goal, we prove the following lemma.

Lemma 4.4.1. Suppose A satisfies (2.2.4), (2.2.5), and is ↵-Hölder continuous for
some ↵ 2 (0, 1), i.e., A satisfies (4.0.2). Suppose ! is an unbounded C1,↵ domain.
Let u1,� denote a weak solution to L1,�(u�) = 0 in B(x0, 1) for some x0 2 Rd. Then

kru�kC0,↵(B(x0,r)\"!) + �kru�kC0,↵(B(x0,r)\"!)  Ckk�ru�kL2(B(x0,1)),

for a constant C independent of � and 0 < r  1/3. In particular,

kk�ru�kL1(B(x0,r))  Ckk�ru�kL2(B(x0,1))

for 0 < r  1/3.

Lemma 4.4.1 was proved for scalar equations with diagonal coe↵cients in smooth
domains in [15, 30, 31]. Lemma 4.4.1 continues to hold for elliptic systems with
coe�cients and domains satisfying the given assumptions. Together, Lemma 4.4.1
and Theorem 4.0.3 give interior Lipschitz estimates for L",� at every scale.

Let �(·, x) denote the matrix-valued fundamental solution associated with L1,1 in
Rd. That is, �(·, x) = {�↵�(·, x)}1↵,�d satisfies

f�(x) =

Z

Rd

a↵�ij (⇠)
@���

@xj
(⇠, x)

@f↵

@xi
(⇠)d�(⇠)

for f = {f�
}1�d 2 C1

0 (Rd;Rd). Indeed, if A is VMO, i.e.,

sup
x2Rd

0<r<R

�

Z

B(x,r)

����A(y)��

Z

B(x,r)

A

���� dy ! 0 as R ! 0+ (4.4.1)
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then �(·, x) 2 W 1,1
loc (Rd

\{x};Rd⇥d) exists uniquely for each x 2 Rd (see work of
Hofmann and Kim [19] for d � 3 and work of Brown, Kim, and Taylor [8] for d = 2).
If A satisfies (4.0.2), then A satisfies (4.4.1).

For a bounded, simply-connected domain H and g 2 L2(@H;Rd), the single-layer
potential Sg = {(Sg)↵}1↵d is given by

(Sg)↵(x) =

Z

@H

�↵�(x, ⇠)g�(⇠) d�(⇠), x 2 Rd
\@H (4.4.2)

and the double-layer potential Dg = {(Dg)↵}1↵d is given by

(Dg)↵(x) =

Z

@H

ni(⇠)a
↵�
ij (⇠)

@���

@xj
(⇠, x)g�(⇠) d�(⇠), x 2 Rd

\@H (4.4.3)

where n(⇠) = {ni(⇠)}1id denotes the unit vector outward normal to H at ⇠ 2 @H.
It is known (see [21, Theorem 4.6]) that if g 2 L2(@H;Rd), then

Dg± = ±
1

2
g +Kg on @H, (4.4.4)

where K is given by

Kg(x) = p.v.

Z

@H

ni(⇠)a
↵�
ij (⇠)

@���

@xj
(⇠, x)g�(⇠) d�(⇠), x 2 @H

and
Dg±(x) = lim

h!0+
Dg(x± hn),

i.e., Dg+ and Dg� denote the traces of Dg on @H from the exterior of H and the
interior of H, respectively. In particular, w = Dg satisfies L1,1(w) = 0 in H and
w = (�1

2 +K)g on @H. It is also known (see [21, Lemma 5.7]) that if H is Lipschitz
and A satisfies (2.2.4) and (2.2.5), then

�
1

2
+K : L2(@H;Rd) ! L2(@H;Rd) (4.4.5)

is bounded and continuously invertible. For single equations, this follows from the
compactness of K and Fredholm theory (see the argument of Yeh in [30, Lemma 3.2]).
For systems with variable coe�cients, the operator K is not compact (see the work of
Kenig and Shen [21]). However, the operator is still boundedly invertible; for a proof
of its invertibility on L2 in this case, see [21]. The following lemma, however, is more
or less known.

Lemma 4.4.2. Suppose A satisfies (2.2.4), (2.2.5) and is ↵-Hölder continous, i.e.,
satisfies (4.0.2), for some ↵ 2 (0, 1). Suppose H is a bounded C1,↵ domain. The
operators

S : C0,↵(@H;Rd) 7! C1,↵(@H;Rd)

and
D : C1,↵(@H;Rd) 7! C1,↵(@H;Rd)

defined by (4.4.2) and (4.4.3), respectively, are bounded.
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From (4.4.4), we have the jump relations

g = w+
� w� and

✓
@w

@n

◆+

=

✓
@w

@n

◆�

, (4.4.6)

where w = Dg and @w/@n = n ·rw denotes the normal derivative of w.
The following lemma essentially follows from the jump relations (4.4.6) and the

regularity problems in C0,↵ for the exterior Neumann and interior Dirichlet problems.

Lemma 4.4.3. There exists a constant C depending on 1, 2 and H such that

kgk1,↵  C

����

✓
�
1

2
+K

◆
g

����
1,↵

for any g 2 C1,↵(@H;Rd), where k · k1,↵ = k · kC1,↵(@H).

For a proof of the following lemma, consult any introductory functional analysis
text (e.g., [13]).

Lemma 4.4.4. Let T : X ! Y be a bounded linear operator between two Banach
spaces X and Y . If kTkX!Y < 1, then there exists a constant C such that

kxkX  Ck(1� T )xkY

for any x 2 X.

As mentioned in Section 3.1, any two connected components of Rd
\! are separated

by some positive distance g!. If Rd
\! = [

1

k=1Hk, write H⇤

k to denote the set

H⇤

k = {x 2 Rd : dist(x,Hk)  g!/4}.

To prove Lemma 4.4.1, it su�ces to show the result holds in each H⇤

k . Indeed, if A
satisfies (4.0.2), the boundedness of ru1,� in the interior of ! follows from classical
results regarding elliptic systems with Hölder continuous coe�cients.

Lemma 4.4.5. Suppose A satisfies (2.2.4), (2.2.5), and is ↵-Hölder continuous for
some ↵ 2 (0, 1). Suppose ! is an unbounded C1,↵ domain. If L1,�(u1,�) = div(f) in
H⇤

k and u1,� = 0 on @H⇤

k , then

kk�ru1,�kC0,↵(H⇤
k)

 C
�
kk�ru1,�kL2(H⇤

k)
+ kk��1fkC0,↵(H⇤

k)

 
,

where C depends only on kAkC↵, ↵, !, 1, 2.

Proof. Note that if �0  �  1, then the result follows from general results regard-
ing divergence form elliptic equations with ↵-Hölder continuous coe�cients in C1,↵

domains. Hence, we may assume 0  �  �0 for some �0 to be determined.
Let u1 satisfy the boundary value problem

8
><

>:

�div(�2Aru1) = div(f) in Hk

�div(Aru1) = div(f) in H⇤

k\Hk

u1 = 0 on @Hk [ @H⇤

k
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By C1,↵ estimates for elliptic systems with ↵-Hölder continuous coe�cients in C1,↵

domains (see [10, Chapter 9, Theorem 2.7]), we have

kk�ru1kC0,↵(H⇤
k)

 Ckk��1fkC0,↵(H⇤
k)
. (4.4.7)

Set u2 = u � u1, where u ⌘ u1,�. Note then u2 satisfies the equation and jump
conditions 8

>>><

>>>:

�div(k�2Aru2) = 0 in H⇤

k

bk�2Aru2c@Hk
· n = �bk�2Aru1c@Hk

· n

bu2c@Hk
= 0,

u2 = 0 on @H⇤

k

(4.4.8)

where bgc@Hk
= g+ � g�, g± = limt!0+ g(· ± tn), and n denotes the unit vector

outward normal to Hk. Hence, for x 2 Hk,

u2(x) = �

Z

@Hk

@�

@nA
(x, y)u(y) d�(y) + �(x, y)

@u2

@nA
(y) d�(y), (4.4.9)

where @g/@nA = Arg · n. For x 2 H⇤

k\Hk,

u2(x) =

Z

@H⇤
k

�(x, y)
@u2

@n⇤

A

(y) d�(y)

�

Z

@Hk

�(x, y)
@u2

@nA
(y) d�(y) +

@�

@nA
(x, y)u(y) d�(y), (4.4.10)

where n⇤ denotes the unit vector outward normal to H⇤

k . Then (4.4.9) and (4.4.10)
imply

u(x) =

⇢
1

2
u(x)�Du(x)

�
+

Z

@Hk

�(x, y)
@u�

2

@nA
(y) d�(y), (4.4.11)

and

u(x) =

Z

@H⇤
k

�(x, y)
@u2

@n⇤

A

(y) d�(y)

�

Z

@Hk

�(x, y)
@u+

2

@nA
(y) d�(y)�

⇢
�
1

2
u(x)�Du(x)

�
, (4.4.12)

for x 2 @Hk (see [22, Chapter 7]), where D ⌘ D@Hk
. Equations (4.4.8), (5.1.1),

and (4.4.12) then imply

⇢
1

2
+D

�
u(x) = S

✓
@u�

2

@nA

◆
(x)

⇢
1

2
�D

�
u(x) =

Z

@H⇤
k

�(x, y)
@u2

@n⇤

A

(y) d�(y)� S

✓
@u+

2

@nA

◆
(x),

55



where S ⌘ S@Hk
. Finally, by (4.4.8),


1� 2

✓
1� �2

1 + �2

◆
D

�
u(x)

=
2

1 + �2

(Z

@H⇤
k

�(x, y)
@u2

@n⇤

A

(y) d�(y) + S (bk�2Aru1c@Hk
· n)

)
.

Choose �0 small enough so that by Lemma 4.4.4 we have

kru2kC0,↵(@Hk)  C
�
kbk�2Aru1c@Hk

kC0,↵(@Hk) + k@u2/@nAkC0,↵(@H⇤
k)

 
,

for 0  �  �0, where C is some constant independent of �. Indeed, it is su�cient to
take �0 so that

4C

✓
�2

1 + �2

◆
< 1 for �  �0,

where C is a constant depending only on the operator norm of D, which is finite by
Lemma (4.4.2). By (4.4.8) and (4.4.7),

kk�ru2kC0,↵(H⇤
k)

 Ckk��1fkC0,↵(H⇤
k)
. (4.4.13)

Equations (4.4.7) and (4.4.13) give the desired estimate.

Now combine the local C1,↵ estimates of Lemma 4.4.1 with the large-scale Lipc-
shitz estimates of Theorem 4.0.3, i.e., we prove Corollary 4.0.4.

Proof of Corollary 4.0.4. By rescaling, we may assume R = 1. To prove the desired
estimate, assume " 2 (0, 1/9). Indeed, if " � 1/9, then (4.0.3) follows from Theo-
rem 4.0.3. From Lemma 4.4.1, Theorem 4.0.3, and a “blow-up argument” (see the
proof of Lemma 4.3.1), we deduce

kk"
�ru",�kL1(B(y,"))  C

✓
�

Z

B(y,3")

|k"
�ru",�|

2

◆1/2

 C

✓
�

Z

B(x0,1)

|k"
�ru",�|

2

◆1/2

for any y 2 B(x0, 1/3). The desired estimate follows by covering B(x0, 1/3) with
balls B(y, ").

Copyright c� Brandon Chase Russell, 2018.
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Chapter 5 Open problems and future research

There are still many questions to be answered with regards to system (2.2.8). In this
chapter, we discuss some open problems.

5.1 Large-scale boundary estimates

In the case � = 1, the solution u",1 is known to be Lipschitz not only in the interior
but also near the boundary [26]. A scheme similar to the one in Section 4.1 can
be used to prove the necessary large-scale estimates. For the small-scale estimates,
one again relies on known results regarding boundary regularity of divergence-form
elliptic systems in smooth domains.

Question 5.1.1. Can uniform Lipschitz estimates for (2.2.8) with � = 0 be es-
tablished in C1,↵ domains? In particular, what is the correct setting for boundary
Lipschitz estimates in perforated domains?

At the large-scale, with a few slight modifications boundary estimates should be
clear. As mentioned above, the same scheme used for the interior should also apply
for the boundary case. However, it is unclear that for systems an estimate such
as (4.0.1) holds at every scale. For the case � = 0, a simple scaling gives rise to a
system with mixed boundary values. Without further assumptions, mixed boundary
value problems are not guaranteed to have solutions that are even C0,↵ for each
0 < ↵ < 1. Hence, one initially should not expect Lipschitz estimates near the
boundary at every scale.

One alternative setup, however, is to consider domains of type II mentioned in [24].
Specifically, type II domains exclude perforations in an "-size boundary layer of ⌦.
Then, upon scaling, one attains a Dirichlet problem near the boundary and one can
again rely on know results regarding divergence-form elliptic operators in smooth
domains.

Similarly, one can ask, “What is the correct setting in the case of materials rein-
forced with soft inclusions?” Issues regarding boundary estimates for interface prob-
lems arise. In particular, the optimal regularity for solutions to interface problems in
smooth domains with interfaces near the boundary is unknown. Of course, by con-
sidering domains of type II, one can rely on known results for small-scale regularity
results.

5.2 W 1,p estimates

Also established for the case � = 1 are W 1,p estimates uniform in " provided A 2

VMO(Rd), i.e., satisfies (4.4.1) [26]. The same Lp gradient estimates for single
constant-coe�cient elliptic equations in smooth domains were established by Yeh
in [31] for 0 < �  1. When � = 1, the result follows from interior W 1,p-estimates at
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the scale ", large-scale interior Lipschitz estimates, and boundary Hölder estimates.
In particular, local microscopic W 1,p estimates together with large-scale interior Lips-
chitz give interiorW 1,p estimates, and interiorW 1,p estimates together with large-scale
boundary Hölder estimates establish boundary W 1,p estimates.

Question 5.2.1. For p 2 (2,1), if L1,�(u1,�) = 0 in B(x0, 2), does the estimate

✓
�

Z

B(x0,1)

|k�ru1,�|
p

◆1/p

 C

✓
�

Z

B(x0,2)

|k�ru1,�|
2

◆1/2

(5.2.1)

hold for a constant C = C(d,1,2, p, [A]VMO)?

If such an estimate were to hold, then an a�rmative answer to Question 5.1.1
would provide the expected Lp-gradient estimates for (2.2.8). Of course, a duality
argument would provide the estimate for p 2 (1, 2). It should be noted that (5.2.1)
is at the scale ", and so this is really a question for interface problems arising in
elasticity, i.e., elliptic systems with discontinuous coe�cients having some piecewise
regularity. If the coe�cients are Hölder continuous, then estimate (5.2.1) follows from
a layer potential argument due to Escauriaza, Fabes, and Verchota [15]. An estimate
like (5.2.1) together with optimal boundary regularity allows one to establish Rellich
type estimates, which are not known to be accessible through compactness methods.

Copyright c� Brandon Chase Russell, 2018.
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