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Abstract  

 

Increasing incidence of anticancer and antimicrobial resistance are the most 

common concerns in the medical field. Cancer is a serious disease that can affect 

almost every tissue lineage in the human body and poses great challenges to 

medicinal science. In addition, many antibiotics have a tendency to becoming 

resistant and are prone to severe adverse effects after long term use.  Hence, there is 

an urgent need to discover and develop novel antitumor drug molecules which could 

effectively inhibit proliferative pathways with fewer side effects. Also, increasing 

demand to synthesize novel antimicrobial agents that are active against resistant 

strains. 

This research aimed to design, synthesis, physical studies and biochemical 

evaluated of some novel pyrazolones and their corresponding ribonucleoside, 

deoxyribonucleoside and benzoyl analogues for their in vitro antimicrobial and 

anticancer activities.  

Antimicrobial properties of the title compounds were investigated against 

Gram positive and Gram negative bacterial as well as fungal strains. Anticancer 

activity was performed against HL60 cell lines. Antimicrobial activity results 

revealed that the synthesized azo conpound 113c, and the synthesized nucleosides 

conpounds 116a and 118c were found to be the most effective agents with better 

MIC values, compared to some existing antimicrobial drugs, such as Ceftriaxone and 

Amphotericin B. On the other hand, the results of anticancer study indicated that the 

synthesized nucleosides 117a, 122a,b and 123 were found to be most potent 

anticancer agent against the cancerous HL60 cell line while the synthesized 

nucleosides 117e,f, 122a and the bezoylated compounds 124c,d,f, and 124g showed 
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good affect against the A-549 cell line. Also, pyrazolones derivatives are more 

sensitive against the lung cancer.  

 Binding affinity and selectivity of the synthesized compounds towards ct-

DNA were studied at different conditions of pH and solvents; The results showed 

that compound 118c interact and stabilize the ct-DNA which can be anti-cancer 

agent. 

Therefore, these compounds, open new avenues for the development of anti-

bacterial and anti-cancer therapeutic agents for the treatment of infectious  and  

cancer diseases. Also, these results give an insight into the structure-activity 

relationships, which are tremendously important for the design of further new 

antimicrobial and anticancer agents. 

 

Keywords: Design, Synthesis,  Pyrazolone , Nucleosides, Anti-microbial, Anti-

cancer, ct-DNA. 
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Title and Abstract (in Arabic) 

المكان  ه البنزوايليه بتفاعلات انتقائيةنيكليوزيدات البيرازولين و مشتقاتتصنيع 

 نشاط حيويذات 

صالملخ  

تهدف هذه الدراسة إلى تطوير وتخليق بعض نيوكليسيدات البيرازول الجديدة المحتويه 

ناعية تحدياً، ويرجع ذلك إلى وجود صلوهى تعتبرمن أكثر البروتوكولات اعلى ذرات الفلور 

. مراكز متعددة النشاط على جزيئ السكر والتي تتحكم في التراكيب الفراغية للمنتجات النهائيه

من المتوقع أن يكون لهذه المركبات الجديده نشاط بيولوجى متميز نظراً الى أن إدخال عدة 

ت الى تغيير سلوكها التفاعلى وزادت ذرات من الفلور في أماكن مختلفة من حلقة البيرازولون أد

تم خلال هذه الدراسة تصميم وتخليق عدد من . من تعزيز الأنشطة البيولوجية للمنتجات النهائية

 N-و -(Oالمركبات الجديدة عن طريق تفاعالت انتقائية أدت الى الحصول على متشابهات الصيغ 

 isomers ( ه البنزويليه ثم التأكد من بنائها الجزيئي من كل من نيوكليسيدات البيرازولين ومشتقات

تمت دراسة تأثير المركبات الجديدة كمثبط لسرطان . من خالل استخدام التقنيات الطيفية الحديثه

 و  117a، 122b، 122a اتئج الدراسات المعملية أن المركبأوضحت نتا و. الدم و سرطان الرئة

123a 124بينما المركبات  (اللوكيميا)السرطانيه يا الدم كثر تأثيرا ونشاطا ضد خلاالأ همf, 

124d, 124c, 122a, 117f, 117e   124وf كما تمت . لها تأثير كبيرعلى خلايا سرطان الرئة

المركبات الجديدة على بعض انواع البكتيريا إيجابية الجرام والبكتيريا سالبية ير دراسة تأث

لية أكبر مقارنة مع بعض الها فع 118c و 113c ، 116aالجرام وقد أظهرت النتائج أن المركبات 

  . Bمفوتريسينالأا الموجودة، مثل سيفترياكسون ومضادات البكتيري

 الحمض النووي معدراسة التقارب الملزم والانتقائية للمركبات المصنعة  تتمكما انه 

ارتبط  118c مركبالوأظهرت النتائج أن . في ظروف مختلفة من الرقم الهيدروجيني والمذيبات

نتائج هذه  .عامل مضاد للسرطان يكونأن  نهمكو ساعد على استقرارة مما ي الحمض النوويب

من  ةورام السرطانية وكذلك استحداث مجموعه جديدمعالجات الأ الدراسة قد تؤدي إلى تطوير

في مجال  لاالمضادات البكتيريه في جامعة الإمارات العربية المتحدة والذي قد يساعد مستقب

 .تصميم الأدوية

بيرازولون، نيوكليسيدات، تفاعلات انتقائية، مضادات الخلايا  :مفاهيم البحث الرئيسية

 .السرطانية، مضادات الميكروبات



x 

 

 

 

Acknowledgments 

 

My thanks first go to Allah for this opportunity and for helping me in 

sustaining through these, the best and toughest, years of my life.  

Then I would like to express thanks to my advisor Dr. Ibrahim Abdou, 

Associate Professor, Chemistry Department, College of Science, UAE University, 

thank you for allowing me to grow as a research scientist.  

I am grateful also to my advisory committee members, Professor Alaa Salm, 

and Professor Abdou Adm for their assistance during my Ph.D journey. 

Besides my advisory committee, I would like to thank the member of my 

examination committy for their insightful comments and encouragement.  

I gratefully acknowledge Professor Ahmed Murad, Dean, College of Science 

UAE University, for his tremendous support, enormous help and wise guidance. 

I would like to express my special appreciation and thanks for Dr. Ruwaya 

Al-Kendi, Assistant Dean for Research and Graduate Studies, College of Science, 

UAE University. I would like to thank you for the continuous support of my Ph.D 

study, for your patience and motivation. Your guidance and advices help me in all 

the time. Thank you for believing in me. 

I do greatly appreciate the massive support from Professor Sulaiman Alkaabi, 

Dr. Asma Asma Al Menhali, and Professor Sayed Marzouk 

I am thankful to Professor Fatthi Allan, Math Department, UAEU, for his 

constant encouragement and support (May Allah have mercy on him). 

My sincere thanks also goes to Mr. Ahmed Taha, Main Library, for providing 

me with the relevant reference materials.  



xi 

 

 

 

I am extremely grateful to Professor Salman Ashraf, Dr. Soleiman Hisaindee,  

Professor Abbas Khaleel, Dr. Mohammed Meetani, Dr. Mohamed Khasawneh, Dr. 

Ahmed Alshamsi, Dr. Ismail El-Haty, Dr. Abdelouahid Samadi, Dr. Abdeltawab Ali, 

Dr. Hani Abdul Aziz, Dr. Tony Thomas, Dr. Shaikha Al Neyadi, Mr. Abdullah Al-

Hamyri and Mr. Bassam Hindawy for their stimulating support during the whole 

project. I’m also thankful to Leena Al-Kaabi, Afra Al Blooshi and Khadega 

Abubaker for their help, encouragement and friendship. 

Thanks also go to the faculty, staff, graduate studies committee at College of 

Science, College of Graduate Studies and UAEU for their input which made this 

research possible. 

My deep appreciate also go to Professor Taleb AlTel, Dr. Mohammad Harb, 

Dr. Srinivasulu Vunnam, and Mr. Muath Mousa from College of Pharmacy, 

University of Sharjah, Sharjah, for their help and support. 

I would like to express my sincere gratitude to my sister Dr. Eman Abou-

Khousa and my brother Dr. Mohammed Abou-Khousa for helping in whatever way 

they could during this challenging period and for always being so supportive of my 

work. 

Special thanks go to my mom, my husband Sami, brothers, and sisters for 

encouraging me to follow my dreams and making it possible for me to complete 

what I started.   

https://www.researchgate.net/institution/University_of_Sharjah


xii 

 

 

 

Dedication 

 

 

 

 

To My mom, Bent Abdullah, 

A strong and gentle soul who taught  me to trust in Allah, 

believe in hard work and that so much could be done with little, 

without your support, I would never have finished this endeavor 



xiii 

 

 

 

Table of Contents 

 

Title ..................................................................................................................................... i 

Declaration of Original Work ............................................................................................ ii 

Copyright ..........................................................................................................................iii 

Advisory Committee ......................................................................................................... iv 

Approval of the Doctorate Dissertation ............................................................................. v 

Abstract ............................................................................................................................ vii 

Title and Abstract (in Arabic) ........................................................................................... ix 

Acknowledgments .............................................................................................................. x 

Dedication ........................................................................................................................ xii 

Table of Contents ............................................................................................................xiii 

List of Tables................................................................................................................... xvi 

List of Figures ................................................................................................................ xvii 

List of Schemes ............................................................................................................... xxi 

List of Abbreviations.....................................................................................................xxiii 

Chapter 1: Introduction ...................................................................................................... 1 

1.1 Overview .......................................................................................................... 1 

1.2 Statement of the Problem ................................................................................. 1 

1.3 The Chemistry of Pyrazoles ............................................................................. 3 

1.3.1 Naturally Occurring Pyrazoles ................................................................. 3 

1.4 Synthesis of Pyrazoles ..................................................................................... 4 

1.4.1 Pyrazoles from 1,3-Diketones .................................................................. 4 

1.4.2 Pyrazoles from 1,3-Dipolar Cycloaddition Reactions .............................. 5 

1.4.3 Pyrazoles from α,β-Unsaturated Aldehydes ............................................. 6 

1.4.4 Pyrazoles Catalyzed by Palladium ........................................................... 8 

1.5 Pyrazolone Nucleosides ................................................................................... 8 

1.5.1 Stereoselectivity and Glycosylation Reaction .......................................... 9 

1.5.2 Stereoselectivity and Riboside................................................................ 12 

1.5.3 Synthesis of 2-Deoxynucleosides ........................................................... 21 

1.6 Biological Properties of Pyrazoles ................................................................. 26 

1.6.1 Pyrazoles as Antimicrobials ................................................................... 26 

1.6.2 Pyrazoles as Anticancer Agents ............................................................. 27 

1.6.3 Pyrazole Nucleosides as Anticancer Agents .......................................... 28 

1.7 DNA and Molecular Recognition .................................................................. 29 

1.8 Molecular Docking and Interaction between DNA and Small                              

Molecules ....................................................................................................... 33 



xiv 

 

 

 

Chapter 2: Organic Synthesis and Structural Analysis .................................................... 37 

2.1 Introduction .................................................................................................... 37 

2.2 Experimental Part ........................................................................................... 38 

2.2.1 Synthesis of 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 .............. 38 

2.2.2 General procedure for the synthesis of 4-arylhydrazono-5-

trifluoromethyl-2,4-dihydropyrazolones 113a-i ..................................... 39 

2.2.3 General procedure for the synthesis of 3-(2",3",5''-tri-O-acetyl-β-

ribofuranosyloxy)-4-(araylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 116a,b .................................................................. 42 

2.2.4 General procedure of synthesis 2-(2",3",5''-Tri-O-acetyl-β-

ribofuranosyloxy)-4-(Araylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 117a-g ................................................................. 44 

2.2.5 General procedure for de-protection of compounds 118 a-c .................. 48 

2.2.6 Synthesis of 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 ...................... 50 

2.2.7 General procedure for the synthesis of deoxyribonucleoside 

derivatives 122a-c and 123a-c ................................................................ 51 

2.2.8 Synthesis of O- and N-benzoyl of 5-trifluoromethyl-2,4-

dihydropyrazolone .................................................................................. 55 

2.2.9 Synthesis of (N
2
-Benzoyl)-4-(3'-arylhydrazono)-5-trifluoromethyl 

pyrazolone 127a-d .................................................................................. 58 

2.3 Results and Discussion ................................................................................... 61 

2.3.1 Synthesis of 5-trifluoromethyl-2,4-dihydropyrazol-3-ones 113a-i ........ 61 

2.3.2 Synthesis of Pyrazolinone Ribosides ...................................................... 68 

2.3.3 Solvent and Catalyst Effects ................................................................... 72 

2.3.4 Synthesis of Pure N-isomers 117c-g ....................................................... 77 

2.3.5 Hydrolysis of N-Nucleosides 118a-c ...................................................... 88 

2.3.6 Synthesis of Deoxyribonucleoside Pyrazolones ..................................... 94 

2.3.7 Synthesis of Benzolyated Pyrazolone Derivatives ............................... 111 

2.4 Summary ...................................................................................................... 121 

Chapter 3: Biological Activities ..................................................................................... 123 

3.1 Introduction .................................................................................................. 123 

3.2 Experimental Part ......................................................................................... 124 

3.2.1 Anti-fungal and Anti-bacterial Activities ............................................. 124 

3.2.2 The Anticancer Activities (Viability Test Assay) ................................ 125 

3.3 Results and Discussion ................................................................................. 126 

3.3.1 Antifungal and Antibacterial Activities ................................................ 126 

3.3.2 Anticancer Activities (Viability Test) .................................................. 139 

3.4 Summary ...................................................................................................... 140 

Chapter 4: Physical Studies of Pyrazole and its Derivatives ......................................... 143 

4.1 Introduction .................................................................................................. 143 

4.2 Materials and Reagents ................................................................................ 143 

4.3 Apparatus ..................................................................................................... 144 



xv 

 

 

 

4.4 Small Molecules-DNA Interactions ............................................................. 144 

4.5 Results and Discussion ................................................................................. 146 

4.5.1 Effect of Solvents ................................................................................. 146 

4.5.2 Effect of pH .......................................................................................... 158 

4.5.3 Pyrazolones-DNA Interaction .............................................................. 159 

4.6 Summary ...................................................................................................... 173 

Chapter 5: Conclusion and Recommendations .............................................................. 175 

5.1 Summary ...................................................................................................... 175 

5.2 Research Implications .................................................................................. 177 

5.3 Limitations and Future Scope of the Study .................................................. 178 

References ...................................................................................................................... 180 

 



xvi 

 

 

 

List of Tables 

 

Table 1: The synthesized 4-arylhydrazono-5-trifluoromethyl-                                                       

2,4-dihydropyrazol-3-ones yiels compared with the literature ones ........... 62 
Table 2: Microwave conditions used to synthesized 5-trifluoromethyl-2,4-

dihydropyrazol-3-one 112 ........................................................................... 63 
Table 3: Optimum synthesis conditions for O- and N-ribosides isomers .................. 74 

Table 4: Some the synthesized compounds used in the anti-fungal                                               

and anti-bacterial study ............................................................................. 127 
Table 5: Some of the synthesized compounds used in the anticancer study ............ 128 
Table 6: Inhibition zones values for active pyrazolones with respect                                         

to Yeast, Bacillus and Proteus ................................................................... 130 
Table 7: Inhibition zone values for pyrazoline ribosides with respect                                          

to Yeast, Bacillus and Proteus ................................................................... 131 

Table 8: Inhibition zone values for pyrazoles deoxyriboside derivatives                                     

with respect to Yeast, Bacillus and Proteus .............................................. 133 
Table 9: Inhibition zone values for benzolyated pyrazolines                                                          

for Yeast, Bacillus and Proteus ................................................................. 135 

Table 10: MIC for active pyrazolones against Yeast, Bacillus and Proteus ............ 138 
Table 11: Solvent parameters of the studied solvents and absorption                                       

maxima of the synthesized compounds..................................................... 151 

Table 12: Solvent parameters of the studied solvents and fluorescence                                        

maxima of the synthesized compounds..................................................... 154 

Table 13: Solvent parameters of the studied solvents and fluorescence                                      

intensity of the synthesized compounds .................................................... 156 

Table 14: Drug structures and  ΔTm of drug-DNA complexes                                                  

comparing with the ct-DNA Tm (90.9 
o
C) ................................................. 160 

Table 15: Docking results of test compounds into the                                                                      

ct-DNA major and intercalation binding side ........................................... 171 
 



xvii 

 

 

 

List of Figures 
 

Figure 1: Structure of pyrazoles ............................................................................... 1 
Figure 2: Two examples of naturally occurring  pyrazoles...................................... 4 
Figure 3: Pharmacological and biological activities of Pyrazolone ....................... 26 
Figure 4: Prazolones 103-105 as antibacterial agents ............................................ 27 
Figure 5: Prazolone has anticancer activity ........................................................... 27 
Figure 6: IC50 for some prazolones have anticancer activity ................................. 28 
Figure 7: Some pyrazole nucleosides have anticancer activity .............................. 28 
Figure 8: Thiophenfurin C-nucleoside as anticancer agent.................................... 29 
Figure 9: Hydrogen bonding in the A·T and C·G                                                     

Watson-Crick DNA base pairs .............................................................. 30 
Figure 10: The helical structure A. A-DNA, B. B-DNA and C. Z-DNA .............. 31 
Figure 11: Depiction of high throughput virtual screening: multiple                                           

ligands are docked to a receptor and ranked by energy estimate .......... 35 
Figure 12: Structure of 3-pyrazolone ..................................................................... 37 
Figure 13: 

1
H-NMR Spectrum for 5-trifluoromethyl-2,4-                                         

dihydropyrazol-3-one 112 in DMSO-d6 ................................................ 64 
Figure 14: 

1
H-NMR Spectrum for 5-trifluoromethyl-2,4-                                        

dihydropyrazol-3-one 112 in D2O ......................................................... 64 
Figure 15: IR Spectrum of 4-(3'-fluorophenylhydrazono)-5-                                      

trifluoromethyl-2,4-dihydropyrazol-3-one 113a ................................... 66 
Figure 16: 

1
H-NMR spectrum for 4-(3'-fluorophenylhydrazono)-5-                              

trifluoromethyl-2,4-dihydropyrazol-3-one 113a in DMSO-d6 .............. 67 
Figure 17: 

13
C-NMR Spectrum for 4-(3'-fluorophenylhydrazono)-5-                               

trifluoromethyl-2,4-dihydropyrazol-3-one 113a in DMSO-d6 .............. 67 
Figure 18: 

1
H-NMR Spectrum for 3-(2",3",5''-tri-O-acetyl-β-                                                

D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-                                    

trifluoromethyl-2,4-dihydropyrazoline 116a ......................................... 70 
Figure 19: 

13
C-NMR Spectrum for 3-(2",3",5''-tri-O-acetyl-β-                                                            

D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-                                  

trifluoromethyl-2,4-dihydropyrazoline 116a ......................................... 71 
Figure 20: 2D- gHMBC

 
Spectrum for 3-(2",3",5''-tri-O-acetyl-β-                                                   

D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-                                                            

trifluoromethyl-2,4-dihydropyrazoline 116a ......................................... 72 
Figure 21: Effect of reaction time in controlling the regioselectivity                                                         

in synthesizing 116a and 117a using same catalyst                                                        

and solvent (TMSOTf and CH2Cl2) ....................................................... 74 
Figure 22: Mass fragmentation spectrum for 3-(2",3",5''-tri-O-acetyl-β-                                          

D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-                                  

trifluoromethyl-2,4-dihydropyrazoline 116a ......................................... 75 
Figure 23: IR Spectra for (A) O-riboside 116a, (B) N-riboside 117a .................... 81 
Figure 24: 

1
H-NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β-                                        

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                         

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 82 
Figure 25: 

13
C-NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β-                                     

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                         

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 82 



xviii 

 

 

 

Figure 26: 
19

F-NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β-                                 

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                      

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 83 
Figure 27: 2D-COSY NMR spectrum for 2-(2",3",5''-tri-O-acetyl-β-                           

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                          

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 84 
Figure 28: 2D-HSQC NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β-                           

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                        

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 85 
Figure 29: 2D-gHMBC NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β- 

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                         

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 86 
Figure 30: Mass fragmentation spectrum for 2-(2",3",5''-tri-O-acetyl-β- 

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-                                         

trifluoromethyl-2,4-dihydropyrazol-3-one 117a ................................... 87 
Figure 31: IR Spectrum of 3-(β-D-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-                                 

5-trifluoromethyl-2,4-dihydropyrazol-3-one 118c ................................ 89 
Figure 32: 

1
H-NMR Spectrum for 3-(β-D-ribofuranosyl)-4-                                                            

(3'-nitrophenylhydrazono)-5-trifluoromethyl-                                                               

2,4-dihydropyrazol-3-one 118c ............................................................. 90 
Figure 33: 

13
C-NMR Spectrum for 3-(β-ribofuranosyl)-4-                                                              

(3'-nitrophenylhydrazono)-5-trifluoromethyl-                                                                

2,4-dihydropyrazol-3-one 118c ............................................................. 91 
Figure 34: 2D-HSQC Spectrum for 3-(β-ribofuranosyl)-4-                                                            

(3'-nitrophenylhydrazono)-5-trifluoromethyl-                                                                  

2,4-dihydropyrazol-3-one 118c ............................................................. 92 
Figure 35: Mass fragmentation spectrum for  3-(β-ribofuranosyl)-4-                                               

(3'-nitrophenylhydrazono)-5-trifluoromethyl-                                                                  

2,4-dihydropyrazol-3-one 118c ............................................................. 93 
Figure 36: 

1
H-NMR Spectrum for 1,3,5-tri-O-acetyl-                                                                    

2-deoxyribofuranose 121 ....................................................................... 96 
Figure 37: 

13
C-NMR Spectrum for 1,3,5-tri-O-acetyl-                                                                          

2-deoxy-ribofuranose 121...................................................................... 96 
Figure 38: 2D-gCOSY Spectrum for 1,3,5-tri-O-acetyl-                                                                   

2-deoxyribofuranose 121 ....................................................................... 97 
Figure 39: 

1
H-NMR Spectrum for 3-(3",5''-di-O-acetyl-2"-β-                                                

deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                                

5-trifluoromethyl-2,4-dihydropyrazoline 122a .................................... 101 
Figure 40: 

13
C-NMR Spectrum for 3-(3",5''-di-O-acetyl-2"-β-                                              

deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                              

5-trifluoromethyl-2,4-dihydropyrazoline 122a .................................... 101 
Figure 41: 2D-COSY Spectrum for 3-(3",5''-di-O-acetyl-2"-β-                                                

deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                                     

5-trifluoromethyl-2,4-dihydropyrazoline 122a .................................... 102 
Figure 42: 2D-HSQC Spectrum for 3-(3",5''-di-O-acetyl-2"-β-                                              

deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                                     

5-trifluoromethyl-2,4-dihydropyrazoline 122a .................................... 103 



xix 

 

 

 

Figure 43: Mass fragmentation spectrum for 3-(3",5''-di-O-acetyl-2"-β-                                            

deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                              

5-trifluoromethyl-2,4-dihydropyrazoline 122a .................................... 105 
Figure 44: IR spectra for (A) O-deoxyriboside 122a,                                                                                             

(B) N-deoxyriboside 123a ................................................................... 107 
Figure 45: 

1
H-NMR Spectrum for 2-(3",5''-di-O-acetyl-2"-β-                                                     

deoxy-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-                                                        

5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a .............................. 108 
Figure 46: 

13
C-NMR Spectrum for 2-(3",5''-di-O-acetyl-2"-β-                                                       

deoxy-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-                                                            

5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a .............................. 108 
Figure 47: Mass spectrum for 2-(3",5''-di-O-acetyl-2"-β-                                                              

deoxy-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-                                                                        

5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a .............................. 109 
Figure 48:  IR Spectrum of 4-[2-(3'-nitrophenyl)hydrazono]-                                                      

3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f ............................. 113 
Figure 49:

 1
H-NMR Spectrum for 4-[2-(3'-nitrophenyl)hydrazono]-                                             

3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f ............................. 113 
Figure 50: 

13
C-NMR Spectrum for 4-[2-(3'-nitrophenyl)hydrazono]-                                                

3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f ............................. 114 
Figure 51: Mass spectrum for 4-[2-(3'-nitrophenyl)hydrazono]-                                                    

3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f ............................. 115 
Figure 52: IR Spectrum of N

2
-benzoyl)-4-(3'-nitrophenylhydrazono)-                                             

5-trifluoromethyl-pyrazolone 127c ..................................................... 117 
Figure 53: IR Spectra for (A) O-isomer 124f, (B) N-isomer 127c....................... 118 
Figure 54:

 1
H-NMR Spectrum for N

2
-benzoyl)-4-(3'-nitrophenylhydrazono)-                                

5-trifluoromethyl-pyrazolone 127c ..................................................... 119 
Figure 55: 

13
C-NMR Spectrum for N

2
-benzoyl)-4-(3'-nitrophenylhydrazono)-                           

5-trifluoromethyl-pyrazolone 127c ..................................................... 119 
Figure 56: Mass spectrum for N

2
-benzoyl)-4-(3'-nitrophenylhydrazono)-                                      

5-trifluoromethyl-pyrazolone 127c ..................................................... 120 
Figure 57: Comparison of inhibition zone values of some                                               

pyrazolones against Yeast, Bacillus, and Proteus                                                         

with reference standard (CEF) ............................................................. 130 
Figure 58: Comparison of inhibition zone values of some                                                      

pyrazoline ribosides against Yeast, Bacillus, and Proteus                                               

with reference standard  (CEF) ............................................................ 132 
Figure 59: Comparison of zone of inhibition values pyrazoloes                                        

deoxyribosides against Yeast, Bacillus, and Proteus                                                   

with reference standard (CEF) ............................................................. 133 
Figure 60: Comparison of zone of inhibition values of some                                                

Benzolyated Pyrazolines against Bacillus, Proteus and Yeast                                              

with reference standards ...................................................................... 135 
Figure 61: MIC for some active pyrazolones against Yeast, Bacillus                                           

and Proteus compared to the positive controls .................................... 138 
Figure 62: Cell viability of HL-60 cells with 2.5, 5.0, 10, 20, 30, and 40 μM of the 

synthesized pyrazolone derivatives ..................................................... 141 
Figure 63: Cell viability of A-549 cells with 6.5, 12.5, 25 and 50 μM of the 

synthesized pyrazolone derivatives for 1, 2 and 3 days ...................... 142 



xx 

 

 

 

Figure 64: The absorption spectra for the synthesized compounds ..................... 149 
Figure 65: Solvents dielectric constant versus the absorption                                                          

at λmax of synthesized compounds ....................................................... 150 
Figure 66: Solvents π* constant versus the absorption at λmax                                                            

of synthesized compounds ................................................................... 151 
Figure 67: Solvents β constant versus the absorption at λmax                                                                                  

of synthesized compounds ................................................................... 152 

Figure 68: Solvents normalized polarity parameter (E
 
 

) versus                                                       

the absorption at λmax of synthesized compounds................................ 152 
Figure 69:  Solvents hydrogen-bonding donor (HBD) acidity (α)                                      

versus the absorption at λmax of synthesized compounds ..................... 153 
Figure 70: Fluorescence spectra for the synthesized compounds ........................ 154 
Figure 71: Solvents dielectric constant versus the fluorescence                                                            

at λmax of synthesized compounds ....................................................... 155 

Figure 72: Solvents normalized polarity parameter (E
 
 

) versus                                             

the fluorescence at λmax of synthesized compounds ............................ 156 

Figure 73: Solvents normalized polarity parameter (E
 
 

) versus                                             

fluorescence intensity of the synthesized compounds ......................... 157 
Figure 74: Solvents polarity–polarizability (π*) versus                                                          

fluorescence intensity of the synthesized compounds ......................... 157 
Figure 75: The absorption spectra for effect of pH (3-11) on                                                                  

(1 x 10
-5

 M) of synthesized drug ......................................................... 158 
Figure 76: Melting temperatures’ curves for ct-DNA and                                                              

ct-DNA-ligands complexes ................................................................. 161 
Figure 77: The H-bond-donors-acceptors in the ligands’ structures .................... 162 
Figure 78: UV-visible spectrum of compound of 118c (2.46 x 10

-5
M)                                       

without ct-DNA and with ct-DNA (1.07 x 10
-5

 M ) interaction                                      

(2.0 – 782.0 μL) in 5 % DMSO and Tris-KCl buffer, pH 7.4 ............. 164 
Figure 79: Graph between Ao/(A−Ao) and 1/[DNA] for                                                                   

the calculation of binding constant ...................................................... 165 
Figure 80: Mole-ratio plot showing the interaction of 118c with                                          

ct-DNA at neutral pH .......................................................................... 166 
Figure 81: Fluorescence titration spectra of 118c (5 x 10

-6
 M) in                                                  

Tris-KCl buffer, pH 7.4 with ct-DNA (1.07 x 10
-5 

M)                                                    

(2.0 - 46.0 µL) and 5 % DMSO ........................................................... 168 
Figure 82: CD spectra of ct-DNA (1.07 x 10

-5
 M) in                                                                    

Tris-KCl buffer, pH 7.4 titrated with (1.0 x 10
-3

 M)                                                            

of  118c (1.0 - 20.0 µL) ....................................................................... 169 
Figure 83: Docking results of 118c into the ct-DNA (A) docked pose of                                      

118c in the ct-DNA minor groove, (B) docked pose of 118c                                        

in the ct-DNA intercalation binding side ............................................. 172 
  



xxi 

 

 

 

List of Schemes 
 

Scheme 1: Tautomeric forms of unsubstituted pyrazole ......................................... 3 

Scheme 2: Five tautomeric forms of 3-substituted pyrazole derivative .................. 3 

Scheme 3: Synthesis of  pyrazoles by the reaction between                                                  

1,3-diketones and arylhydrazines .......................................................... 5 

Scheme 4: Synthesis of disubstituted pyarzoles from lithium                                          

enolates and acid chlorides.................................................................... 5 

Scheme 5: Synthesis of  pyrazoles via 1,3-dipolar cycloaddition ........................... 6 

Scheme 6: Synthesis of  pyrazoles from nitroolefines ............................................ 6 

Scheme 7: Synthesis of pyrazoles from α,β-unsaturated ketones and 

arylhydrazines ....................................................................................... 7 

Scheme 8: Synthesis of pyrazoles from alkynones and hydrazines. ....................... 7 

Scheme 9: Synthesis of 3-aryl(vinyl)pyrazoles from N-tosyl-                                                      

N-propargylhydrazines .......................................................................... 8 

Scheme 10: Woerpel’s stereoselectivity and glycosylation reaction .................... 10 

Scheme 11: General glycosylation reaction mechanism ....................................... 11 

Scheme 12: Synthesis of α-5-methylcytidine 35 and α-thymidine 37 .................. 13 

Scheme 13: N-Glycosylation of ribofuranosides 40 ............................................. 14 

Scheme 14: Synthesis of  ribofuranosides 44 ....................................................... 14 

Scheme 15: Synthesis of pyrazole riboside 48 ...................................................... 15 

Scheme 16: Synthesis of pyrazole ribosides 52-55 ............................................... 16 

Scheme 17: Synthesis of β-N-Riboside derivatives 58 ......................................... 17 

Scheme 18: Synthesis of N-Nucleoside ................................................................ 18 

Scheme 19: Synthesis of β-N-Nucleoside ............................................................. 18 

Scheme 20: Synthesis of α-indoline ribosides 67 ................................................. 19 

Scheme 21: Glycosylation of 2-thiopyrimidine .................................................... 19 

Scheme 22: N-Glycosylation of ribofuranosides 70 and 71.................................. 20 

Scheme 23: Synthesis of β-Nucleoside ................................................................. 20 

Scheme 24: Synthesis of β-deoxynucleosides....................................................... 22 

Scheme 25: 1´,3´-neighboring group participation ............................................... 22 

Scheme 26: Synthesis of β-N-deoxynucleosides................................................... 23 

Scheme 27: Synthesis of β-deoxyriboside using intramolecular                                    

Vorbrüggen reaction .......................................................................... 24 

Scheme 28: Synthesis of β-deoxyriboside using NBS .......................................... 25 

Scheme 29: Synthesis of α- and β-N-nucleosides ................................................. 25 

Scheme 30: Preparation of indole 2′-deoxyribonucleosides ................................. 25 

Scheme 31: Synthesis of 4-arylhydrazono-5-trifluoromethyl-                                             

2,4-dihydropyrazol-3-ones 113a-i ..................................................... 61 

Scheme 32: Suggested mechanism for the synthesis of 5-                                        

trifluoromethyl-2,4-dihydropyrazol-3-one ........................................ 62 

Scheme 33: Resonance structures of 5-trifluoromethyl-2,4-                                

dihydropyrazol-3-one 112 ................................................................. 63 



xxii 

 

 

 

Scheme 34: Suggested mechanism for the synthesis of 5-trifluoromethyl-                           

2,4-dihydropyrazol-3-ones 113a-i ..................................................... 65 

Scheme 35: Synthesis of O- and N- Pyrazolone Ribosides................................... 69 

Scheme 36: Mass fragments scheme for 3-(2",3",5''-tri-O-acetyl-                                    

β-D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                         

5-trifluoromethyl-2,4-dihydropyrazoline 116a .................................. 76 

Scheme 37: Synthesis of N-pyrazolinone ribosides .............................................. 78 

Scheme 38: Suggested mechanism of the ON rearrangement ........................... 79 

Scheme 39: Mass fragments scheme for 2-(2",3",5''-tri-O-acetyl-β- 

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-                                                 

5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a ............................ 88 

Scheme 40: Deprotection of 117c,e,g using triethylamine                                                                 

in methanol and water ........................................................................ 89 

Scheme 41: Mass fragments scheme for 3-(β-D-ribofuranosyl)-4-(3'-

nitrophenylhydrazono)-5-trifluoromethyl-2,4-                                      

dihydropyrazol-3-one  118c ............................................................... 94 

Scheme 42: Synthesis of 1,3,5-tri-O-acetyl-2-deoxyribofuranose ........................ 95 

Scheme 43: Synthesis of O- and N-Deoxy ribonucleosides                                          

derivatives of pyrazolones ................................................................. 98 

Scheme 44: Stereoselective synthesis of O- and N-β-2"-                                              

deoxyribose derivatives 122, 123 .................................................... 100 

Scheme 45: Mass fragments scheme for 3-(3",5''-di-O-acetyl-2"-                                           

β-deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                   

5-trifluoromethyl-2,4-dihydropyrazoline 122a ................................ 106 

Scheme 46: Mass fragments scheme for 2-(3",5''-di-O-acetyl-                                                    

2"-β-deoxy-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-                                      

5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a .......................... 110 

Scheme 47: Synthesis of 4-arylhydrazono-benzoyl-5-trifluoromethyl-                                  

2,4 dihydropyrazoline 124a-h .......................................................... 111 

Scheme 48: Synthesis of  2-benzoyl-5-trifluoromethyl pyrazol-                                                 

3-one 127a-c .................................................................................... 112 

Scheme 49: Mass fragments scheme for 4-[2-(3'-nitrophenyl)hydrazono]-                                     

3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f ......................... 116 

Scheme 50: Mass fragments scheme for of  N
2
-benzoyl)-4-(3'-

nitrophenylhydrazono)-5-trifluoromethyl-pyrazolone 127c............ 121 



xxiii 

 

 

 

List of Abbreviations 

 

A-549 Lung carcinoma from human cell line 

Abs Absorption 

Ac Acetyl 

CD Circular dichroism 

CdA 2-Chloro-2´-deoxyadenosine 

CDCl3 Deuterated chloroform 

CEF Ceftriaxone  

COSY Two dimensional nuclear correlation spectroscopy 

ct-DNA Calf thymus DNA 

DMF Dimethyl formamide 

DMSO Dimethyl sulfoxide 

DMSO-d6 Deuterated dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

EDTA Ethylenediaminetetraacetic acid  

EGFR Epidermal growth factor receptor 

Et Ethyl 

EtOAc Ethyl acetate 

EtOH Ethanol 

FT-IR Fourier transform infrared spectroscopy 

G Gram(s) 

gCOSY Gradient two dimensional nuclear correlation spectroscopy 

gHMBC 
Gradient two dimensional nuclear heteronuclear multiple-bond 

correlation spectroscopy 



xxiv 

 

 

 

h or hr Hour(s) 

HBA Hydrogen bond acceptor   

HBD Hydrogen bond donor  

Hep G2 Human liver cancer cell line 

HL60 Human promyelocytic leukemia cells 

HMBC 
Two dimensional nuclear heteronuclear                                                       

multiple-bond correlation spectroscopy 

HPLC High performance liquid chromatography 

HSQC 
Two dimensional nuclear heteronuclear                                                                   

single-quantum correlation spectroscopy 

HT29 Caucasian colon adenocarcinoma grade II cell line 

IC50 The half maximal inhibitory concentration 

K562 Chronic myelogenous leukemia 

KB Keratin-forming tumor cell line 

KBr Potassium bromide 

LC/MS High performance liquid chromatography/mass spectrometry 

LSER Linear solvation energy relationship  

M
+
H Parent plus a proton 

M
+
Na

+
 Parent plus sodium ion 

MDA-MB-231 Human breast adenocarcinoma cell line 

MDR Breast adenocarcinoma cells 

MeOH Methanol 

Mg Milligram(s) 

MIC Minimum inhibitory concentration 

Min Minute 



xxv 

 

 

 

mL Milliliter 

Mol Mole(s) 

Mmol Millimole(s) 

MW Microwave 

Mtb H37Rv Mycobacterium tuberculosis H37Rv 

NBS  N-bromosuccinimide  

NMR Nuclear magnetic resonance 

OVCAR3 Human ovary carcinoma cell   

PDB Protein data bank 

RNA Ribonucleic acid 

SD Standard deviation 

THF Tetrahydrofuran 

Tm Melting temperature  

TMS Tetramethylsilane 

TLC Thin layer chromatography 

TMSOTf Trimethylsilyl triflate 

TsNHNH2 Tosylhydrazones  

UV-Vis Ultraviolet–visible spectroscopy 



1 

 

Chapter 1: Introduction 

1.1 Overview 

Pyrazolones, which are five-membered heterocyclic ring containing two 

nitrogen atoms, are important organic compounds in pharmaceutical and 

agrochemical industries  (Figure 1). Pyrazolones are one of the oldest synthetic 

pharmaceutically active compounds. Compounds containing pyrazole moiety are 

known to exhibit non-steoriodal anti-inflammatory proprieties  that show anti pyretic 

and analgesic activities [1]. Pyrazolones are also used as multi drug resistant (MDR) 

reversal agents such as: antimicrobial, antiviral, anti-fungal, anti-cancer, anti-allergic, 

antidepressant, antibacterial [2-5] antidiabetic, anti-malarial, anaxiolytic, 

antineoplastic activities, antipyretic, anticonvulsant, anticholinergic, tyrosinase 

inhibitor ability, anti-HIV, anti-viral, anti-tuberculosis, antiparasitic, anti-microbial, 

hypoglycaemic and anti-tumor [6-10].  

 

 

 

Figure 1: Structure of pyrazoles 

 

1.2 Statement of the Problem 

Since cancer is considered the third leading cause of death in the UAE, this 

study will focus on the synthesis of newly synthesized pyrazolone nucleosides to be 

used in the treatment of cancer. Drug discovery programs focus on the development 
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of novel chemotherapeutics to reduce cancer’s risk [1], delay the spread of cancer, or 

in some cases destroy it completely [2]. The chemotherapeutic agents are either 

naturally occurring compounds that have been isolated from plants or synthetic 

compounds. Nucleosides containing fluorine atoms have several medical applications 

such as antiviral, antifungal and antiinflamatory agents [3, 4]. 

This research aimed to develop some novel pyrazoline nucleosides which 

may have potential activities against cancer cells. Pyrazoline derivatives are known 

to have antiproliferative effect against many types of cancer. For example, in the last 

decade, many Pyrazolone nucleosides were discovered and been used for treatment 

of cancer [11]. The new designed pyrazolone nucleosides as well as the benzoyl ester 

expected to have new anticancer prosperities. The results of this project may lead to 

development of anticancer agents in the UAEU. 

Furthermore, new and reemerging infectious diseases will continue to pose 

serious global health threats into the 21
st
 century and according to the World Health 

Organization report, these are still the leading cause of death among humans 

worldwide. Among infectious diseases, tuberculosis claims approximately two 

million deaths per year worldwide. In addition, agents that reduce the duration and 

complexity of the current therapy and solve the problem of resistance to conventional 

antibiotics would have a major impact on the overall cure rate to combat bacterial 

infection. Subsequently, there is an urgent need for the development of new drug 

candidates with newer targets and alternative mechanism of action. The research is 

focused as well in using some of the novel pyrazolones derivatives against common 

pathogenic bacteria. 
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1.3 The Chemistry of Pyrazoles 

Pyrazole is a tautomeric compound. Unsubstituted pyrazole can be 

represented in three tautomeric forms (Scheme 1). While substited pyrazole exist  in 

five possible tautomeric structures (Scheme 2) [12].  

 

 
Scheme 1: Tautomeric forms of unsubstituted pyrazole 

 

 

Scheme 2: Five tautomeric forms of 3-substituted pyrazole derivative 

 

1.3.1 Naturally Occurring Pyrazoles  

Naturally occurring pyrazoles were isolated after 1950s as pyrazole. 3-N-

nonylpyrazole isolated from Houttuynia Cordata, a plant of the piperaceae family in 

tropical Asia (Figure 2). This naturally occuring pyrazole showed antimicrobial 
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activity [13]. The other natural pyrazole derivative, levo-β-(1-pyrazolyl)alanine, was 

isolated from watermelon seeds (Citrullus Vulgaris) by Japanies researchers [13]. 

 

 

Figure 2: Two examples of naturally occurring  pyrazoles 

 

1.4 Synthesis of Pyrazoles 

Because of the excellent bioactivity and wide range of application associated 

with pyrazoles have targeted pyrazolines to be synthesized. Many methods have been 

developed for preparation of substituted pyrazoles. In general, pyrazoles are 

synthesized by (i) the reaction of 1,3-diketones with hydrazines, (ii) 1,3-dipolar 

cycloaddition of diazo compounds with alkynes and (iii) the reaction of α,β-

unsaturated aldehydes or ketones with hydrazines. [14]. 

1.4.1 Pyrazoles from 1,3-Diketones  

The first method used to synthesize pyrazole was explored by Knorr in 1883 

[15], which employed the reactions of 1,3-dicarbonyl compounds 5 with 

arylhydrazines to afford pyrazole derivatives 6 and 7 (Scheme 3). The condensation 

of 1,3-diketones with arylhydrazines in the presence of catalysts generally produced 

a mixture of two regioisomers. The yields of pyrazole isomers usually depend on the 

reaction conditions. 
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Scheme 3: Synthesis of pyrazoles from 1,3-diketones and arylhydrazines 

 

 Recently, an efficient one-pot synthesis of disubstituted pyrazoles was 

achieved by employing lithium enolates 8 and acid chlorides 9. The reaction 

proceeded by generating 1,3-dicarbonyl compound 5 in situ. The intermediate then 

cyclized with hydrazine to afford disubstituted pyrazole 10 (Scheme 4) [16]. 

 

 

Scheme 4: Synthesis of disubstituted pyarzoles from lithium enolates and acid 

chlorides 

 

1.4.2 Pyrazoles from 1,3-Dipolar Cycloaddition Reactions 

Alkynes react with diazonium ion to afford pyrazoles via [3+2]-

cycloaddition. Aggarwal [17] reported one-pot 1,3-dipolar cycloaddition of diazoles 

with alkynes for the preparation of 3,5-disubstituted pyrazoles (Scheme 5). First, 
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diazonium ions 12 were generated in-situ from the reaction tosylhydrazones 

(TsNHNH2) and aldehydes 11 in basic condition, which then underwent 

cycloaddition with terminal alkynes to produce pyrazole derivatives 13. 

 

 

Scheme 5: Synthesis of  pyrazoles via 1,3-dipolar cycloaddition 

 

In the reaction between N-monosubstituted hydrazones 14 and nitroolefines 

15, 1,3,4,5-tetrasubstituted pyrazoles 16 were obtained in moderate to good yields 

(Scheme 6) [18]. 

 

 

Scheme 6: Synthesis of pyrazoles from nitroolefines 

 

1.4.3 Pyrazoles from α,β-Unsaturated Aldehydes 

Another strategy for the synthesis of pyrazoles is the cyclocondensation of an 

appropriate hydrazine with α,β-unsaturated aldehydes or ketones [19]. Example, the 
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α,β-unsaturated ketone 17 reacted with hydrazine to give the desired product. 

Katritzky reported the synthesize of the 1,3,5-trisubstituted pyrazoles 19 by the 

reaction of α-benzotriazolyl-α,β-unsaturated ketones 17 with arylhydrazines (Scheme 

7) [20]. Pyrazolines 18 were first produced and then oxidized to pyrazoles 19 in the 

presence of base. 

 

 

Scheme 7: Synthesis of pyrazoles from α,β-unsaturated ketones and arylhydrazines 

 

The reaction of hydrazine with α,β-alkynic aldehydes or ketones produced 

two pyrazole products 21, 22. For instance, the reactions between propargyl ketones 

20  and hydrazine gave two pyrazole isomers 21 and 22 (Scheme 8) [21]. Notably, 

the regioselectivity of the reaction depend on the type of hydrazine substitutents. For 

example, methyl hydrazine afforded pyrazoles 21 as major product while aryl 

hydrazine yielded pyrazoles 22 as major product. 

 

 

Scheme 8: Synthesis of pyrazoles from alkynones and hydrazines 
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1.4.4 Pyrazoles Catalyzed by Palladium  

Pyrazoles were also synthesized by the reaction between N-tosyl-N-

propargylhydrazine 23 and aryl iodides in the presence of palladium catalyst 

(Scheme 9) [22]. Initially, cyclocondensation led to the formation of N-tosyl-3-

arylpyrazoles 24, followed by detosylation yielded 3-aryl-1H-pyrazoles 25. 

 

 

Scheme 9: Synthesis of 3-aryl(vinyl)pyrazoles from N-tosyl-N-propargylhydrazines 

 

1.5 Pyrazolone Nucleosides 

Nucleosides are the key to life as they building blocks of both DNA and RNA 

in Nature. In medicine, many drugs contain synthetic nucleosides or nucleoside 

analogues are used for the treatment of disease, especially cancer and viral infection 

[23]. As a result, designing expeditious routes are of paramount importance to 

organic and medicinal chemists, and the glycosylation step between nucleobase and 

carbohydrate is often the key step. To date, all reported nonenzymatic methods to 

synthesize nucleosides have required the use of protecting groups on the 

carbohydrate moiety to deactivate the inherently reactive hydroxyl groups on the 

sugar ring [24]. Three general glycosylation methods dominate in nucleoside 

synthesis. The Fischer method [25] employs nucleophilic displacement of an α-

halogenose by the metal salt of a heterocycle to furnish the nucleoside in the manner 
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of nucleophilic substitution reaction with inversion in the configuration of the 

stereochemistry of anomeric carbon [26]. The fusion method consists of heating a 

per-acylated sugar with a nucleobase [27]. The most popular and mildest method is 

the  orbr ggen variant [28] of the Hilbert−Johnson using a fully protected sugar in a 

coupling reaction with a silylated nucleobase in the presence of Lewis acids (SnCl4 

or TMSOTf), but other reactions exist [29]  to provide the protected nucleoside. The 

greatest challenge is the achievement of a good stereoselectivity to avoid the 

formation of α/β diastereomeric mixtures, which are quite difficult to separate [30].  

1.5.1  Stereoselectivity and Glycosylation Reaction  

In most frequently nucleosides studied  mechanisms, oxocarbenium ions have 

been proved to be the intermediates in glycosylation reactions, which mean those 

reactions underwent SN1 mechanism. Woerpel and coworkers [31-34] were active in 

studying these intermediates and their conformations when attacked by nucleophiles. 

They have established a model to explain the highly stereoselective reaction between 

nucleophiles and five-membered-ring oxocarbenium ions [31]. They futured a model 

to explaine the selectivity through using C-glycosylation as a model  by taking into 

account the favored conformations of both oxocarbenium ions and products (Scheme 

10). The favored conformation of the oxocarbenium ion was an envelope 26.  This 

allowed the nucleophile to attack the ion from inside face leading to the staggered 

product 27, which is lower in energy, due to a stereoelectronic effect. On the same 

area, Reissig provided an example of Woerpel’s stereoselectivity in his study of 

lactols [35]. 
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Scheme 10: Woerpel’s stereoselectivity and glycosylation reaction 

 

The glycosylation reaction involves nucleophilic displacement at the 

anomeric center. As the reaction takes place at the secondary carbon atom with the 

use of weak nucleophiles (sugar acceptors), it often follows a unimolecular SN1 

mechanism. In most cases, an activator (catalyst) assisted departure of the anomeric 

leaving group results in the formation of the glycosyl cation. The only possibility to 

intramolecularly stabilize glycosyl cation formed from the glycosyl donor bearing a 

non-participating group is by resonance from O-5 that results in oxocarbenium ion 

(Scheme 11). The anomeric carbon of either resonance contributors is sp
2
 hybridized; 

hence, the nucleophilic attack would be almost equally possible from either the top 

(trans, β- for the D-glucosides) or the bottom face (cis, α-) of the ring. Even though 

the α-product is thermodynamically favored because of the so-called anomeric effect 

[36], a substantial amount of the kinetic β-linked product is often obtained owing to 

the irreversible character of glycosylation of complex α glycones. Various factors 
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such as temperature, protecting groups, conformation, solvent, promoter, steric 

hindrance or leaving groups may influence the glycosylation outcome [37, 38]. 

 

 

Scheme 11: General glycosylation reaction mechanism 

 

 

As noted above, it is a general in carbohydrate synthesis that stereoselective 

preparation of 1,2-cis glycosides is more demanding than that of 1,2-trans 

glycosides. The formation of 1,2-trans glycosides is strongly favored by the 

neighboring-group participation (generation of intermediate acyloxonium ion). 

Typically, the use of a participating substituent at C-2 is sufficient to warrant 

stereoselective 1,2-trans glycosylation. One of the factors affecting the 

stereochemical outcome of glycosidation of glycosyl donors bearing a 

nonparticipating substituent at C-2 is the anomeric effect, which favors α-glycoside 

formation. However, because of the irreversible character of glycosylation, the role 
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of the anomeric effect is controlling the orientation of the new glycosidic bond. 

Although variation of reaction conditions or structural elements of the reactants may 

lead to excellent 1,2-cis stereoselectivity, no successful comprehensive method for 

1,2-cis glycosylation has been discovered.  

In this study, we focus on studying glycosylation reactions where furanoses 

was used as glycosyl donors; the most common furanoses are ribose and 2-

deoxyribose. The acceptor that participates in this reaction can be nucleobase. 

1.5.2 Stereoselectivity and Riboside 

In comparison to their pyranosyl six-membered ring, furanosides are 

relatively rare. Nevertheless, furanose presence in a variety of glycostructures from 

bacteria, parasites and fungi makes this type of glycosidic linkage an important 

synthetic target [39, 40].  

1.5.2.1  N- Riboside 

The synthesis of 1,2-trans furanosides is relatively straightforward and, 

similar to that of pyranosides, can be reliably achieved with the use of glycosyl 

donors bearing a participating group at C-2. In contrast, the construction of 1,2-cis 

glycofuranosidic linkage is difficult, because the stereocontrol in glycofuranosylation 

cannot be added by the anomeric effect owing to the conformational flexibility of the 

five-membered ring. In fact, both stereoelectronic and steric effects favor the 

formation of 1,2-trans glycofuranosides. Despite some recent progress, 

stereoselective synthesis of 1,2-cis glycofuranosides has been one of the major 

challenges of synthetic chemistry. General glycosylation methods, involving 

glycosyl fluorides [41], trichloroacetimidates [39], and thioglycosides [42] along 



13 

 

 

 

with less common and indirect techniques [43-45], were applied to 1,2-cis 

furanosylation. More recently, a notable improvement in stereoselectivity of 1,2-cis 

furanosylation was achieved by using glycosyl donors in which the ring has been 

locked into a single conformation. These examples include 2,3-anhydro [46, 47], 3,5-

O-(di-tert-butylsilylene) [46] and 3,5-O-tetraisopropyldisiloxanylidene [48] 

protected bicyclic glycosyl donors. 

The goal of Guindon and co-workers’ was to get high 1´,2´-cis stereoselective 

N-glycosylation of different furanoses by kinetic control [49]. In the synthesis of 

1´,2´-cis-nucleoside, the nucleophilic base had to attack the furanose from the most 

hindered side. The stereoselectivity was controlled by the neighboring group 

participation. The silylated base moieties (thymine and cytosine) were  reacted with 

benzoylated furanose 33 (Scheme 12) offering α-thymidine  35 and α-5-

methylcytidine 37 in a good yield. 

 

 

Scheme 12: Synthesis of α-5-methylcytidine 35 and α-thymidine 37 
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The synthesis of N-riboside reaction could be also affected by the leaving 

group of the sugar moiety. Scheme 13 illustrates the synthesis of 1,2-cis-nucleosides 

based on silylation method. Glycosylation of  2,4-bis(trimethylsily)cytosine 38 with 

1,2,3,5-tetra-O-acetyl-α,β-D-ribofuranose 39 in acetonitrile in the presence of 

tin(IV)chloride leads to N
1
-β-nucleoside 40 in 68% (Scheme 13) [50] (Scheme 13). 

 

 

Scheme 13: N-Glycosylation of ribofuranosides 40 

 

Elgemeie and co-workers reported [51] the Ring annulation of 1-deoxy-1-

hydraziny1-2,3-O-isopropylidene-D-ribose 42 with tetracyanoethylene 41 gave 5-

amino-1-(2,3-O-isopropylidene-β-D-ribofranosyl)-pyrazole-3,4-dicarbonitrile 43, 

which, on deisopropylidination, afforded 5-amino-1-(β-D-ribofuranosyl)pyrazole-

3,4-dicarbonitrile 44 (Scheme 14). 

 

Scheme 14: Synthesis of  ribofuranosides 44 
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In addition, Elgemeie’s group [51] illustrated also the glycosylation of diethyl 

pyrazole-3,4-dicarboxylate 45 with 1-O-acety1-2,3,5-tri-O-benzoyl-D-ribofuranose 

46 which gave predominantly the β-nucleoside 47. Hydrolysis of 47 by methanolic 

ammonia furnished 1-β-D-ribofuranosylpyrazole-3,4-dicarboxamide 48 (Scheme 15). 

 

 

Scheme 15: Synthesis of pyrazole riboside 48 

 

Matsumoto reported [52] that the deisopropylidenation of 5-amino-1-(2 ,3 -O-

isopropylidene-β-D-ribofuranosyl)pyrazole-4-carbonitrile 49 gave 5-amino-1-(β-D-

ribofuranosyl)-pyrazole-4-carbonitrile 50, and conventional hydrolysis of 50 

afforded compound 51. Acetylation of 50 gave 52. Non aqueous diazotization of 52 

with isoamyl nitrite in dibromomethane or diiodomethane gave the corresponding 

C5-bromo and C5-iodo derivatives, which subsequently were transformed into 5-

bromo-1-(β-D-ribofuranosyl)pyrazole-4-carboxamide 55 and the 5-iodo analog 54. A 

similar nonaqueous diazotization of compound 52 in dichloromethane afforded after 

deamination and hydrolysis product 55 (Scheme 16). 
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Scheme 16: Synthesis of pyrazole ribosides 52-55 

 

Scheme 17 shows the synthesis of pyrimidine ribosides 58 from 1,2,3,5-tetra-

O-acetyl-β-D-ribofuranose 39 and silylated 5-substituted uracils 56 by using solid-

supported oxazolium perchlorate 57 [53] (Scheme 17). 
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Scheme 17: Synthesis of β-N-Riboside derivatives 58 

 

Hayashi and co-workers [54] studied the synthesis of α-and β-nucleosides 

61a-c from the reaction of pyrimidinone derivative 59a-c with protected ribose 60. 

Firstly they investigated the affect of Lewis acids (Me3SiOTf, SnCl4, and BF3
.OEt2) 

and (OAc and F) as leaving groups from the sugar moiety 60. The resulted N-

nucleosides 61a-c demonstrate that α-ratio was reduced when the amount of Lewis 

acid was increased, for example; BF3
.OEt2 has higher effect when more than 3.7 

equivalents were used. This concludes that α to β ratio was controlled by Lewis acid. 

The β-selectivity could be also affected by the reaction time and temperature; as 

higher temperature increase the amount of α-selectivity; while β-selectivity increases 

at longer reaction time (Scheme 18).  

Similar reaction conditions were used to produce the β-N-ribosieds 64a-c in 

good yields and excellent β-selectivity. However,  the silylation reagent in this 

reaction was not necessary as with 59 because 62 derivatives are more nucleophilic 

compared to the 59 derivatives (Scheme 19). 
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Scheme 18: Synthesis of N-Nucleoside 

 

 
 

Entry R R' Product Yield (%) α:β 

1 Ph CO2Et 64a 78 β 

2 Me CO2Et 64b 66 β 

3 Ph H 64c 47 β 

 
 

Scheme 19: Synthesis of β-N-Nucleoside 
 

 

The synthetic methods to α-ribonucleosides still unfamiliar. Yet, Brown and 

co-worker had successfully synthesized α-indoline and α-5,6-dimethylindoline 

nucleosides [55]. They coupled unprotected indoline  65  with  ribose 66 in ethanol 

or DCM for 4-7 hours, and so they obtained only α-isomer 67 [56] (Scheme 20). 

Entry X Time (h) R R' Product Yield (%) α:β 

1   Ph CO2Et 61a 84 12:88 

2 F (α:β = 50:50) 2 Me CO2Et 61b 90 30:70 

3   Ph H 61c 93 10:90 

4   Ph CO2Et 61a 62 0:100 

5 β-OAc 3 Me CO2Et 61b 34 0:100 

6   Ph H 61c 46 0:100 
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Scheme 20: Synthesis of α-indoline ribosides 67 

 

Abdou and co-workers [57] reported that the glycosylation of 6-aryl-5-cyano-

2-thiouracil 68 using the silyl method forming β-N-ribosisde 69 (Scheme 21). 

  

 

 
 

Scheme 21: Glycosylation of 2-thiopyrimidine 

 

Researchers used 3-methoxy-2-pyridyloxide and 2-thiopyridylcarbonate as 

leaving groups of ribosyl derivatives 70 and 71 to produce the N-riboside 72  

(Scheme 22). Ribosyl derivatives 70 and 71 were treated with silylated uracil, 

thymine, cytosine and 6-chloropurine moieties in the presence of TMS triflate or 

silver triflate, the reactions were highly stereoselective, giving α-N-ribonucleosides 

72  over 90% [58].  



20 

 

 

 

 

Scheme 22: N-Glycosylation of ribofuranosides 70 and 71 

 

1.5.2.2  O- Riboside 

Chanteloup and co-worker [59] reported the synthesis of 2’-O-alkyl 

ribonucleosides 74 under Vorbrüggen condition using protected ribose 73 and 

silylated base. The glycosylation occurred fast giving β-O-nucleoside 74 with good 

yield and high stereoselectivity  (ratio = 95:5) (Scheme 23). 

 

 

 

Scheme 23: Synthesis of β-Nucleoside 
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1.5.3 Synthesis of 2-Deoxynucleosides 

In order to study the affect of sugar moiety of nucleosides in the biological 

activities; the ribose was replaced by 2-deoxy ribose. 2-Deoxyribonucleosides are 

biologically active as they have have anti-cancer [60] and anti-HIV activities [61]. 

The development of reliable methods for stereoselective synthesis of both α- and β-2-

deoxynucleosides has become an important area of research of drugs and 

glycomimetics [58]. Synthesize and separate both of α- and β-isomers consider as 

notable challenge as the direct glycosylation often results in the formation of 

anomeric mixtures. Similar to that of conventional glycosylation, the solvent and 

promoter effects play important stereodirecting roles in the synthesis. Absence of O-

2 acyl group on the sugar moiety makes the stereoselectivity of deoxynucleosides 

more challenge to control. Therefore, the resulted products are regularly mixtures of 

α- and β-isomers in deoxynucleoside synthesis. To overcome this challenge; three 

methods have been proposed by researchers: (1) O-3 acyl group involvement [62]; 

(2) Intramolecular Vorbrüggen method [63] within which the nucleophlic base first 

coupled with O-5, then it was forced to attack the anomeric carbon from β-side; (3) 

Reductive cleavage of 2´-O-thiocarbonyl group of ribonucleosides [64,65]. 

Following are examples of these three methods.  

As mentioned earlier, the synthesis of 2´-deoxy-ribonucleosides usually leads 

to producing a mixture of α- and β-isomers due to the absence of 2´-O group in the 

sugar moiety. Therefore, researchers developed some methods to synthesis a single 

isomer. Marzabadi and co-workers [62] succeeded in synthesizing 2´-deoxy-β-

ribonucleosides as single product by using deferent protecting groups at 3-O position 

in the sugar moiety. Compound 77 is an example which resulted from the reaction of 
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a silylated base 75 with an N-acetyl protection at the sugar O-3 76. The N-acetyl 

protection group at the sugar O-3 works as electron donor and stabilizes the 

oxocarbenium intermediate during a 1´,3´-participation mechanism (Scheme 24). 

 

 

Scheme 24: Synthesis of β-deoxynucleosides 

 

Marzabadi and co-workers also studied the affect of different seventeen C-3´ 

protecting groups. Protecting groups having S and P atoms at C-3´ gives low β-

selectivity while the benzoyl group at the same position gives α-selectivity. Sugar 

moieties with halides 78 could block the α-side 79 which give the highest β-

selectivity 80 (Scheme 25). 

 

 
 

Scheme 25: 1´,3´-neighboring group participation 
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Robins and co-workers planned to synthesize a derivative of one of very 

biologically active compounds; 2-chloro-2´-deoxyadenosine (CdA) 84. They 

synthesized it with higher β-stereoselectivity (≈ 70%) from the reaction btween sugar 

moieties with halides 81 and 2-chloro-6-imidazyl purine derivative 82 [65]. This 

compound is used to treat hairy cell leukemia [67] and other neoplasms [68]. Earlier; 

the CdA was prepared using enzymatic glycosyl transfer methods  [66, 69] (Scheme 

26).  

 

 

 

Scheme 26: Synthesis of β-N-deoxynucleosides 

 

Jung and co-worker synthesized 2-deoxypyrimidine with high β-selectivity 

using intramolecular Vorbrüggen reaction [63]. They suggested that if the activated 

base is attached to the O-5 position of 2-deoxyribose, then the nucleophilic base will 

attack the anomeric center from the β-side. First the activated base coupled with the 

D-ribose 85 forming the expected prodect 88 (87%) and its hydrolysis product 89 

(91%). Followed by sugare acetylation then base silylation and finally roduce  92 in 

good yield 90% which was hydrolyzed and give β-isomer of 93 as single product 

(yield ≈ 40%) (Scheme 27). 
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Scheme 27: Synthesis of β-deoxyriboside using intramolecular Vorbrüggen reaction 

 

Sugimura’s groups also synthesized β-deoxyriboside 96 from silylated 

pyrimidine base 94 and protected deoxyfuranosides 95 using N-bromosuccinimide 

(NBS) which enhances the β-stereoselectivity [70] (Scheme 28). Scheme 29 shows 

condensation of disilylated symtriazines 97 with 3,5-di-O- p-toluoyl-

deoxyribofuranosyl chloride 98  in a amixture of acetonitrile and 1,2-dichloroethane 

with the aid of SnCl4 as a catalyst leads to a mixture of α- and β-anomers of N1-
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nucleosides 99 [71]. Nucleoside yield amounted to 70% at the ratio α:β = 1:1. It has 

been found that after stirring the reaction mixture components at -25
o
C, the α-anomer 

is first formed. Subsequently, the β-anomer is formed slowly with simultaneous 

heating of the reaction mixture to +25
o
C (Scheme 29). 

 

 

Scheme 28: Synthesis of β-deoxyriboside using NBS 

 

 

Scheme 29: Synthesis of α- and β-N-nucleosides 

 

Zhang and co-workers  [72] showed that the indole 2′-deoxyribonucleosides 

102 were accomplished efficiently in one pot reaction between 3-cyano indole 

derivatives base 100 and protected deoxyribofuranosyl chloride 101  (Scheme 30). 

 

Scheme 30: Preparation of indole 2′-deoxyribonucleosides 
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1.6 Biological Properties of Pyrazoles 

Pyrazole and its derivatives represent one of the most active classes of 

compounds, which exhibit broad spectrum of pharmacological activities such as 

antimicrobial [73], anticonvulsant [74], anticancer [75], analgesic [76], anti-

inflammatory [77], antitubercular [78], ardiovascular [79] (Figure 3).  

 

 

Figure 3: Pharmacological and biological activities of Pyrazolone 

 

1.6.1 Pyrazoles as Antimicrobials 

Rana and co-workers synthesized pyrazolines 103 and 104  and evaluated 

them for in-vitro against Mycobacterium tuberculosis H37Rv (Mtb H37Rv) strains; 

the compounds displayed potent activity (MIC = 12.5 and 0.63 repectevely) [80]. In 

addition, Horrocks’ group synthesized 3-(4-chlorophenyl)-4-substituted pyrazole 105 

and tested for activity against Mtb H37Rv strain and it shows significant 

antimycobacterial activity [81] (Figure 4). 
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Figure 4: Prazolones 103-105 as antibacterial agents  

 

1.6.2 Pyrazoles as Anticancer Agents 

Xiao H. and co-workers [82] synthesized a series of pyrazole derivative 

reported as potent cytotoxicity against some tumour cells. Compound 106 had the 

strongest effectiveness against four human tumor cells including human liver 

cancer cell line (Hep G2), human ovary carcinoma cell  (OVCAR3),  keratin-forming 

tumor cell line (KB) and breast adenocarcinoma cells (MDR) (Figure 5). 

 

 

Figure 5: Prazolone has anticancer activity 

 

Peng-cheng and co-workers [83] synthesized a series of pyrazole derivatives 

that may function as inhibitors of epidermal growth factor receptor (EGFR) and 

kinases have been evaluated. The Compound 108 showed high antiproliferative 
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activity against MCF-7 with IC50 0.08 μM, which was comparable to the positive 

control erlotinib IC50 0.02 μM. (Figure 6). 

 

 

Figure 6: IC50 for some prazolones have anticancer activity 

 

1.6.3 Pyrazole Nucleosides as Anticancer Agents 

Stefano M. and co-workers [84] synthesized pyrezole nucleosides and tested 

for their antitumor activities. Compounds were tested in vitro for antiproliferative 

activity against fibroblast-like cells. Compounds bearing a bromine 109 or iodine 

110 atom at position 4 of the pyrazole ring showed a potent cytostatic activity against 

all the T-cell lines tested (IC50 range = 4-50 µM) (Figure 7). 

 

 

Figure 7: Some pyrazole nucleosides have anticancer activity 
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Palmarisa F. and co-workers [85] used C-nucleoside thiophenfurin 111 as a 

reference compound. They valuated its ability to inhibit the growth of human 

myelogenous leukemia K562 cells. Tumor cell proliferation was evaluated by 

incubating the cells continuously with either the compound or saline for 48 h. 

Thiophenfurin proved to be toxic to cell growth as  its IC50 = 4.6 µM (Figure 8). 

 

 

Figure 8: Thiophenfurin C-nucleoside as anticancer agent 

 

1.7 DNA and Molecular Recognition 

Nucleic acids are the vital components of life. They are defined as 

macromolecules or polymers of nucleotides. Nucleic acids are classified into two 

classes, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA carries the 

genetic information used in developing and functioning of all known living 

organisms such as the information needed to construct proteins and RNA molecules. 

RNA plays the main role in the transcribing of the genetic information from DNA 

into proteins [86]. 

Nucleotide is the building blocks of DNA. It consists of phosphate group 

connected to 2-deoxyribose sugar forming DNA backbone which in turn connected 

to nitrogen base (adenine (A), guanine (G), cytosine (C) and thymine (T)). Two 

chains of polynucleotides, known as complementary strands, can be held together by 
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hydrogen bonds and form the double helix secondary structure of DNA. This 

structure was described for the first time by James Watson and Francis Crick in 1953 

[86]. DNA in cells mostly takes one of three secondary structures; B-form, A-form 

and random coil. DNA structure depends on the DNA sequence and solution 

conditions [87]. 

In the double helix DNA, two strands of nucleotides twist around each other 

where adenine in a strand is held to thymine in the complementary strand by two 

hydrogen bonds while guanine is held to cytosine by three hydrogen bonds as shown 

in Figure 9. These hydrogen bonds are known as Watson-Crick hydrogen bonds [86] 

 

 

Figure 9: Hydrogen bonding in the A·T and C·G Watson-Crick DNA base pairs 

 

Double stranded DNA can take several conformations; B-form which is the 

most common DNA secondary structure with right-handed double helical and minor 

and major grooves. Less common forms are A-form and Z-form where both of which 

adopt a double-helical structure as shown in Figure 10. A-form is more compact than 

B-DNA and exists in dehydrated and crowded environments. The Z-form shows 

lefthanded helicity and exists in specific conditions such as high salted solutions 

[86]. 
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The discovery of the double helix DNA paved the way for the growing 

research on nucleic acids and their therapeutic applications.  

 

 

Figure 10: The helical structure A. A-DNA, B. B-DNA and C. Z-DNA [88] 

 

It is common that DNA is the target of many anti-cancer drugs and 

antibiotics. The main function of these drugs is to interact with DNA in order to 

block gene transcription or inhibit DNA replication [89]. Many of the currently used 

chemotherapeutic agents such as cisplatin, mitomycin C and daunomycin have 

shown efficacy against some cancers. However, they bind to DNA non-specifically 

and cause a wide variety of side effects including secondary cancer formation. 

Designing small molecules with high specificity to particular DNA secondary 

structures might improve cancer-specific targeting and decrease the side effects [90].  

The recent advances in molecular biology, biotechnologies and chemistry provide 

more important information concerning the oligonucleotide structures and enzyme 

active sites as well as receptor binding sites. Such information together with 

computational simulations gives chemists the tools to design and synthetize  specific 

and effective drugs. However, the lack of selectivity of most of the common drugs 
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leads to the possibility of interacting with more than one target which may result in 

side effects. To overcome the undesired side effects, there is a need to improve the 

molecular recognition properties of the commonly used molecules to develop new 

and more potent drugs [89]. Understanding the molecular mechanism by which 

chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug 

design. Currently, developing drugs with improved molecular recognition is one of 

the most expanding research areas because of its medical significance and for its 

expected minimum side effects. The expanding knowledge of cancer biology 

together with molecular recognition is considered as a useful tool for designing drugs 

with high selectivity towards cancer cells. The growing attention towards 

supramolecular structures during recent years is due to their probable involvement in 

cancer therapy [89]. 

Pyrazolones and pyrazolone nucleosides has been recognized to have anti-

microbial and chemotherapeutic antitumor effects. Studies reported that 

trifluoromethyl nucleosides induce cell apoptosis via different  mechanisms. For 

example, mechanism of action of some nucleosides with the topoisomerase II 

inhibitor, Etoposide results in biochemical evidence of apoptosis in a range of cell 

types [91]. The mechanism of action of initiation of apoptosis is unclear but 

succeeding proceedings in all of these cell types include cleavage of DNA [92-94]. 

Another proposed mechanism of action of some synthetic nucleosides suggested 

inducing apoptosis via mitochondrial pathway to encourage cell cycle arrest and 

allows the DNA to repair or induce apoptosis if the damage is severe and cannot be 

controlled [95]. Therefore, this work aimed to exam the stability of DNA in presence 

of the newly sunthesized pyrazolines and pyrazolines nucleosides. 
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1.8 Molecular Docking and Interaction between DNA and Small Molecules  

 DNA plays an important role in cellular processes, including cell division 

(DNA replication) and protein synthesis (Transcription and translation). Most of the 

anticancer therapies are involved in the interaction of drugs with DNA. The 

intercalation and groove binding are the two important modes of binding of drug 

with DNA. Both covalent and non-covalent types of interactions are possible in these 

two binding modes. Small molecules that can bind between nucleic acid base pairs 

are categorized as intercalators. These molecules contain planar heterocyclic groups 

which stack between adjacent DNA base pairs, which results decrease in the DNA 

helical twisting and lengthening of the DNA. On the other hand, groove binding does 

not induce large conformational changes in DNA and may be considered similar to 

standard lock and key models for ligand macromolecular binding. Such molecules 

bind to both major and minor groove of nucleic acid. Minor groove binders are 

crescent in shape and they complement the shape of minor groove [96].  

The role of computational molecular docking in educational, research, and 

drug discovery is evolving at a rapid rate which used to address real-world research 

problems. Therefore, understanding protein and ligand interactions is fundamental to 

treat disease and avoid toxicity in biological organisms. The fundamental problems 

in drug discovery are based on the process of molecular recognition by small 

molecules. The binding specificity of DNA-small molecule is identified mainly by 

studying the hydrogen bonding and polar interactions. As these small molecules can 

act as effective therapeutic agents against many diseases, there is a need to have the 

detailed mechanistic insights on how they interact with DNA.  
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Molecular docking programs are designed to accomplish two simultaneous 

tasks: 1) to identify the optimal binding orientation for a ligand within the binding 

cavity of the receptor, and 2) to score the resulting ligand binding interaction, 

providing a rank order that ideally predicts experimental results. Docking engines, 

such as DOCK [97] and AutoDock [98], calculate the optimal ligand binding 

orientation by minimizing the energy of interaction between molecules. Molecular 

docking results are evaluated by visual inspection of ligand pose or quantitatively 

using a scoring algorithm. Scoring algorithms may be incorporated into the docking 

engine, or accessed through third-party software, such as XScore and Medusa Score 

[99]. Both XScore and Medusa score have been shown to improve binding energy 

rankings over AutoDock when evaluated against a database of Protein Data Bank 

(PDB) benchmark standards. XScore is frequently cited as being used to re-rank 

AutoDock output and serves as the basis for AutoDock Vina [100] 

 Docking engines calculate the Gibbs free energy of binding (ΔG) between a 

ligand and a receptor, which is fundamental to the understanding of complex systems 

in biochemistry and molecular biology. The calculation of ΔG is based on estimates 

of the 3 total energy of intermolecular forces of attraction including van der Waals 

interactions, hydrogen bonding, and electrostatic interactions. Ligands are ranked by 

the calculated ΔG value; lower ΔG values correspond to more favorable ligand 

binding, where higher ΔG values are less favorable (Figure 11).  
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Figure 11: Depiction of high throughput virtual screening: multiple ligands are 

docked to a receptor and ranked by energy estimate 

 

All structures, including proteins, can exist in functionally different 

conformational states based on their inter- and intra-molecular interactions. 

Molecular and biophysical experiments can account for the net effects of structural 

interactions in a molecule or for a system of molecules, but they are unable to 

physically isolate all molecular structures or practically manage the evaluation for all 

of available structures in biology. Computational techniques that simulate molecular 

interactions can assist in expanding coverage for structures that are unresolved 

through experiments, but the sheer number of molecules and potential 

conformational states associated with macromolecular structures presents a sampling 

challenge for the reproducibility and reliability of simulations. In order to efficiently 

sample conformational space for even a single macromolecule, simulations rely on 

approximations of covalent and noncovalent molecular interactions and geometrical 
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structural features that are believed to be relevant for capturing the energetic and 

thermodynamic properties of molecules. Continued research is needed to improve 

these approximations through a better understanding of biologically relevant inter- 

and intra-molecular interactions. Also, more efficient sampling methods are needed 

that can quickly and accurately identify conformational states of structures that are 

related to functions of biological interest. The function of a protein depends on its 

structure which can be affected by interactions with other molecules, especially small 

chemicals.  

Despite much success in the field of structure-based discovery, current 

molecular modeling techniques need to be improved in order for the field to reach its 

anticipated potential of describing in detail how any given biological function arises 

from molecular structures and their interactions. It is unlikely that all structures and 

interactions will ever be completely modeled using experimental methods due to the 

vast number of structures, physical limitations of studying some important structures, 

and complexity of understanding increasingly higher-orders of structure. Predictive 

computational methods that simulate molecular interactions can aid experiments in 

the number of structural interactions that can be studied.  
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Chapter 2: Organic Synthesis and Structural Analysis 

2.1  Introduction 

3-Pyrazolone is a five member ring containing two nitrogen atoms and one 

ketonic group in its structure (Figure 12). 3-Pyrazolone and its derivatives are used 

for the synthesis of analgesic, anti-inflammatory, anti-pyretic, muscle relaxing, anti-

convulsant, anti-diabetic and anti-tumor active drugs. Peak plasma concentration of 

the pyrazolone derivatives in the human body occur after 1 to 1.5 hours of oral 

administration. Pyrazolones are advantageous in medical studies since they act as 

pharamcophores of numerous compounds, are known to possess diverse 

pharmacological properties and they are easy to prepare [1]. 

 

 

Figure 12: Structure of 3-pyrazolone 

 

Pyrazolone and its derivatives can be synthesized by different procedures and 

can be considered as intermediate compound for the synthesis of various cyclic 

compounds of very high biological activity. In this study, pyrazolone nucleosides and 

its brnzoyl derivatives  were synthesized and their structures were characterized 

using spectroscopic techniques. Infrared spectroscopy (IR) is generally used to 

determine the functional groups. NMR and Mass spectroscopy were also used to help 

to identify the chemical structure. 
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In this section, the syntheses procedures of different groups of pyrozolone 

derivatives are discussed, followed by discussion about their reaction mechanisms. 

Subsequently, the changes in the structure of these compounds are determined and 

resulting formula evaluated. 

2.2 Experimental Part 

All Melting points were determined in open capillary tubes and are 

uncorrected. TLC silica gel-G plates of 0.5 mm thickness and spots were located by 

UV. Column chromatography was performed on Kieselgel 60. IR spectra were 

recorded by Shimadzu FT-IR-8400 instrument using KBr disk method. The 
1
H and

 

13
C-NMR spectra were recorded on Varian NMR 400 MHz spectrometer. Chemical 

shifts are expressed δ (ppm) scale using the solvent peak as internal reference and 

coupling-constant values are given in Hz. Elemental analysis of synthesized the 

starting compounds was carried out on Leco Model CHN-600 elemental analyzer and 

the results are in agreements with the structures assigned. Mass spectroscopy of 

synthesized the starting compounds was carried out us LC/Ms from water company. 

Xevo TQD coupled with Acquity UPLC H class 2.1 x 50 mm column. HPLC: 

Agilent 1200 series. 

2.2.1 Synthesis of 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 

Method A: Conventional Method 

A mixture of ethyl-4,4,4-trifluoro-3-oxobutanoate (100 mmol, 14.6 mL) and 

hydrazine hydrate (100 mmol, 4.86 mL) in ethanol (150 mL) was refluxed for 18 

hours. The precipitated formed was filtered, washed with cold ethanol then dried. 
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Method B: Microwave-assisted Reaction 

A mixture of ethyl-4,4,4-trifluoro-3-oxobutanoate (50 mmol, 7.50 ml) and  hydrazine 

hydrate (50 mmol, 2.50 mL ) in ethanol (5.0 mL) and sulfuric acid (H2SO4) (1.00 

mL) were placed on microwave then various conditions were applied. 

5-Trifluoromethyl-2,4-dihydropyrazol-3-one (112): Off-white crystals. Yield 96 % 

(method A); mp = 208 – 209 °C; IR [KBr, cm
-1

]: 3286 (N-H), 1750 (C=O). 
1
H-

NMR [400Hz, DMSO-d6]: (δ, ppm) 5.64 (s, 1H, CH), 11.22 (s, 1H, OH, 

exchangeable with D2O), 12.81 (s, 1H, NH, exchangeable with D2O); 
13

C-NMR 

[100Hz, DMSO-d6]: (δ, ppm) 124.2 (C-4), 127.1(C-6), 129.9 (C-5), 174 (C-3). Anal. 

Calcd. for C4H3F3N2O: C, 31.59; H, 1.99; N, 18.42; Found: C, 31.75; H, 1.86; N, 

18.18. 

2.2.2 General procedure for the synthesis of 4-arylhydrazono-5-trifluoromethyl-

2,4-dihydropyrazolones 113a-i 

A solution of sodium nitrate (0.01 mol, 0.85 g) in water (10 mL ) was added 

drop wise with stirring to a solution of amine hydrochloride salt in water (2 mL) at 0 

o
C. The mixture was added drop wise with stirring to a cold solution of 5-

trifluoromethyl-2,4-dihydropyrazol-3-one (112, 10 mmol, 1.52 g) in ethanol (25 mL) 

containing sodium acetate (10 mmol, 0.82 g). The reaction mixture was allowed to 

stir at room temperature for 2 hr. The solid was filtrated; washed with cold H2O (2 x 

5 mL), dried and crystallized from ethanol yielding compounds 113a-i. 

4-(3'-Fuorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (113a): 

Red crystals; yield 99 %; mp = 211 – 213 °C; IR [KBr, cm
-1

]: 3459 (NH/OH), 1633 

(C=C).
 1

H-NMR [400Hz, DMSO-d6]: (δ, ppm) 7.09 (s, 1H, aromatic), 7.47 (m, 3H, 

aromatic), 12.69 (s, 1H, NH); 
13

C-NMR [100Hz, DMSO-d6]: δ 104.1 (C-2'), 112.9 



40 

 

 

 

(C-6'), 113.1 (C-4'), 118.2 (C-6), 123.7 (C-4), 131.5 (C-5'), 143.1 (C-1'), 158.6 (C-5), 

161.4 (C-3), 163.7 (C-3'); Anal. Calcd. for C10H6F4N4O: C, 43.81; H, 2.21; N, 

20.43. Found: C, 42.46; H, 2.11; N, 19.90. 

4-(4'-Fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (113b): 

Dark Orange crystals; yield 93 %; mp = 217 – 218 °C;
 
IR [KBr, cm

-1
]: 3463 

(NH/OH), 1637 (C=C). 
1
H-NMR [400Hz, DMSO-d6]: (δ, ppm)  7.33 (m, 2H, 

aromatic), 7.66 (m, 2H, aromatic), 12.63 (s, 1H, NH); 
13

C-NMR [100Hz, DMSO-

d6]: δ 116.5 (2 C, C-2', C-6'), 118.9 (2 C, C-3', C-5'), 121.1 (C-6), 128.9 (C-4), 137.8 

(C-4'), 158.7 (C-5), 159.3 (C-1'), 161.7 (C-3); Anal. Calcd. for C10H6F4N4O: C, 

43.81; H, 2.21; N, 20.43. Found: C, 44.175; H,2.21; N, 20.81. 

4-(3'-Trifluoromethylphenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-

one (113c): Yellow crystals; yield 99 %; mp = 221 – 222 °C;
 
IR [KBr, cm

-1
]:  3419 

(NH/OH), 1674 (C=O). 
1
H-NMR [400Hz, DMSO-d6]: (δ, ppm) 7.98 (s, 1H, 

aromatic), 7.89 (d, 1H, aromatic,  J = 12.0 Hz  ), 7.70 (t, 1H, Ar-H,  J = 8.0 Hz  ), 

7.63 (d, 1H, aromatic, J = 8.0 Hz  ), 12.69 (s, 1H, NH); 
13

C-NMR [100Hz, DMSO-

d6]: (δ, ppm) 114.0 (C-5'), 118.7 (C-4'), 120.8 (C-6'), 122.9 (C-2'), 124.6 (C-3'), 

125.6 (C-4), 130.6 (CF3), 131.4 (C-1'), 137.3 (CF3), 142.6 (C-5), 158.0 (C-3). Anal. 

Calcd. for C11H6F6N4O: C, 40.75; H, 1.87; N, 17.28. Found: C, 41.12; H, 1.84; N, 

17.55. 

4-(3'-Chlorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (113d): 

Pale yellow crystals; yield 94 %; mp = 238 – 240 °C;
 
IR [KBr, cm

-1
]: 3458 

(NH/OH), 1642 (C=C). 
1
H-NMR [400Hz, DMSO-d6 ]: (δ, ppm) 7.68 (s, 1H, 

aromatic), 7.58 (d, 1H aromatic,  J = 8.0 Hz ), 7.48 (t, 1H, aromatic,  J = 8.0 Hz  ), 

7.31 (d, 1H, aromatic,  J = 8.0 Hz), 12.69 (s, 1H, NH); 
13

C-NMR [100Hz, DMSO-
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d6]: (δ, ppm) 116.0 (C-6'), 117.1 (C-2'), 121.5 (C-4'), 124.4 (C-5'), 126.5 (C-3'), 

131.9 (C-4), 134.6 (C-1'), 137.2 (CF3), 143.2 (C-5), 159.1 (C-3); Anal. Calcd. for 

C10H6ClF3N4O: C, 41.33; H, 2.08; N, 19.28. Found: C, 40.96; H, 2.00; N, 19.16. 

4-(4'-Chlorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (113e): 

Yellow crystals; yield 93 %; mp = 226 – 228 °C;
 
IR [KBr, cm

-1
]: 3437 (NH/OH), 

1618 (C=C). 
1
H-NMR [400Hz, DMSO-d6]: (δ, ppm) 7.50 (m, 2H, aromatic), 7.60 

(m, 2H, aromatic),  12.63 (s, 1H, NH); 
13

C-NMR [100Hz, DMSO-d6]: (δ, ppm) 

119.0 (2C-2,'6'), 121.5 (C-4'), 123.9 (C-4), 130.1 (2C-3',5'), 131.0 (C-1'), 137.2 

(CF3), 140.6 (C-5), 159.2 (C-3); Anal. Calcd. for C10H6ClF3N4O: C, 41.33; H, 2.08; 

F, 19.61; N, 19.28. Found: C, 41.73; H, 2.11; N, 19.12. 

4-(2',4'-Dichlorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 

(113f): Yellow crystals; yield 90 %; mp = 239 – 241 °C;
 
IR [KBr, cm

-1
]: 3411 

(NH/OH), 1616 (C=C). 
1
H-NMR [400Hz, DMSO-d6]: (δ, ppm) 7.73 (m, 1H, 

aromatic), 8.03 (m, 2H), 8.45 (t, 1H, aromatic), 12.92 (s, 1H, NH); 
13

C-NMR 

[100Hz, DMSO-d6]: (δ, ppm) 117.7 (C-6'), 121.3 (C-2'), 122.5 (C-4'), 126.3 (C-5'), 

129.7 (C-3'), 130.0 (C-4), 130.9 (C-1'), 136.7 (CF3), 152.8 (C-5), 160.1 (C-3); Anal. 

Calcd. for C10H5Cl2F3N4O: C, 36.95; H, 1.55; N, 17.24. Found: C, 37.53; H, 1.64; N, 

16.99. 

4-(3'-Nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (113g): 

Pale yellow crystals; yield 98 %; mp = 251 – 254 °C;
 
IR [KBr, cm

-1
]: 3438 

(NH/OH), 1681 (C=O). 
1
H-NMR [400Hz, DMSO-d6]: δ 7.58 - 7.85 (m, 4H, 

aromatic), 12.67 (s, 1H, NH, exchangeable with D2O); 
13

C-NMR [100Hz, DMSO-

d6]: (δ, ppm) 111.96 (C-2'), 120.8 (C-4'), 121.4 (C-6'), 123.3 (C-5'), 125.0 (C-4), 
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131.5 (C-1'), 136.9 (CF3), 143.2 (C-3'), 149.0 (C-5), 158.8 (C-3); Anal. Calcd. for 

C10H6F3N5O3: C, 39.88; H, 2.01; N, 23.25. Found: C, 39.88; H, 2.19; N, 22.74. 

4-(4'-Bromophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (113h): 

Dark red crystals; yield 86 %; mp = 214 – 216 °C;
 
IR [KBr, cm

-1
]: 34673 (NH/OH), 

1641 (C=C). 
1
H-NMR [400Hz, DMSO-d6]: (δ, ppm) 7.54 (d, 2H, aromatic, J = 8.8 

Hz), 7.63 (d, 2H, aromatic, J = 8.8 Hz ), 13.68 (s, 1H, NH); 
13

C-NMR [100Hz, 

DMSO-d6]: (δ, ppm) 118.8 (C-4'), 119.2 (2C-2,'6'), 121.5 (C-4), 124.0 (C-1'), 133.0 

(2C-3',5'), 137.1 (CF3), 141.0 (C-5), 152.2 (C-3); Anal. Calcd. for C10H6BrF3N4O: 

C, 35.84; H, 1.80; N, 16.72. Found: C, 35.87; H, 1.88; N, 16.41. 

4-[2´-(Pyrene-2″-yl)hydrazono]-5-(trifluoromethyl)-4H-pyrazol-3-ol  (113i): Dark 

violet crystals; yield 94 %; mp = 256 – 258 °C; IR [KBr, cm
-1

]: 3435 (NH/OH), 

2253 (C=N);  
1
H-NMR [400Hz, DMSO-d6]: (δ, ppm) 8.12 (t, 1H, aromatic, J = 8.0 

Hz), 8.20 (s, 2H, aromatic), 8.37 (m, 6H, aromatic), 12.79 (s, 1H, NH); 
13

C-NMR 

[100Hz, DMSO-d6]: (δ, ppm) 113.7 (aromatic C), 126.9 (C-4), 126.2, 126.8, 127.0, 

127.5, 128.0,130.1, 131.0 (aromatic-Cs), 131.6  (CF3),  161.4 (C-5), 172.7 (C-3); 

Anal. Calcd. for C20H11F3N4O: C, 63.16; H, 2.92; N, 14.7. Found: C, 47.25; H, 5.66; 

N, 11.54. 

2.2.3 General procedure for the synthesis of 3-(2",3",5''-tri-O-acetyl-β-

ribofuranosyloxy)-4-(araylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 116a,b 

A mixture of 4-arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-ones 

113 (3.0 mmol), ammonium sulfate (3.0 mmol, 0.4 g ), in hexamethyldisilazane 

(HMDS) (25 mL) was  refluxed for 6 hours under nitrogen. The excess of HMDS 

evaporated under reduced pressure. A mixture of the silylated pyrazolone and 

1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (115, 3.0 mmol, 0.95 g) was dissolved in dry 
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CH2Cl2 (25 mL), and Trimethylsilyl trifluoromethanesulfonate (TMSOTf)  (1.1 

mmol, 0.2 mL) was added dropwise at (0 - 5 
o
C). The reaction mixture was stirred 

for 4 hours at room temperature, then CH2Cl2 (100 mL) was added. The organic 

layer washed with saturated aqueous solution of NaHCO3 (50 mL) and water (3 × 30 

mL), dried over anhydrous (Na2SO4), and evaporated under reduced pressure. The 

residue was purified using a silica gel column chromatography (ethylacetate: hexane; 

3:7) to separate the O-isomer 116a,b. 

3-(2",3",5''-Tri-O-acetyl-β-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (116a): Yield 67 %; mp = 130 – 131 °C; 

IR [KBr, cm
-1

]: 3475 (NH/OH), 1750 (acetoxy carbonyl, C=O). 
1
H-NMR [CDCl3, 

400 MHz]: (δ, ppm) 2.12 (s, 3H, CH3), 2.13 (s, 3H, CH3), 2.16 (s, 3H, CH3), 3.71 (t, 

1H, H-5b, J = 8.0 Hz), 4.19 (dd, 1H, H-4", J = 4.8, 12 Hz), 4.44 (dd, 1H, H-5"a, J = 

3.6, 15.6 Hz), 5.71 (t, 1H, H-3", J = 8.0 Hz), 5.90 (m, 1H, H-2"), 6.01 (d, 1H, H-1", J 

= 4 Hz), 7.23 (m, 1H, aromatic), 7.46 (m, 2H, aromatic), 7.63 (d, 1H, aromatic, J = 8 

Hz), 9.85 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 MHz]: (δ, ppm) 20.5, 20.5, and 20.8 

(3 CH3),  62.9 (C-5"), 71.0 (C-3"), 74.0 (C-2"), 80.9 (C-4"), 90.2 (C-1"), 107.7 (C-

2'), 118.6 (C-6'), 120.4 (C-4'), 123.6 (C-4), 130.7 (C-5'), 132.9 (CF3),  152.3 (C-1'), 

153.8 (C-5), 162.0 (C-3), 164.5 (C-3'), 169.3, 169.5, and 170.7 (Three acetoxy 

carbonyl carbon); LC-MS/MS (C21H20F4N4O8): m/z 533, 35 % (M
+
), 298, 15 % 

(acetyl sugar: C11H15O8
•+

Na
+
) , 296, 53 % (C10H5F4N4O

•+
Na

+
). 

3-(2",3",5''-Tri-O-acetyl-β-ribofuranosyloxy)-4-(3'-chlorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazole (116b): Yield 69 %; mp = 151 – 152 °C; IR 

[KBr, cm
-1

]: 3418 (NH/OH), 1749 (acetoxy carbonyl, C=O). 
1
H-NMR [CDCl3, 400 

MHz]: (δ, ppm) 2.11 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.13 (s, 3H, CH3), 4.20 (dd, 
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1H, H-5b, J = 4.8, 12.4 Hz), 4.41 (m, 1H, H-4"), 4.46 (dd, 1H, H-5a, J = 3.2, 12.4 

Hz), 5.71 (t, 1H, H-3", J = 5.6 Hz), 5.91 (dd, 1H, H-2", J = 3.6, 4.8 Hz), 6.01 (d, 1H, 

H-1", J = 3.2 Hz), 7.45 (m, 2H, aromatic), 7.73 (m, 1H, aromatic), 7.80 (m, 1H, 

aromatic), 9.80 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 MHz]: (δ, ppm) 20.5, 20.5, and 

20.8 (3 CH3),  63.0 (C-5"), 71.1 (C-3"), 74.0 (C-2"), 80.9 (C-4"), 90.3 (C-1"), 117.6 

(C-2'), 121.6 (C-6'), 121.9 (C-4'), 123.7 (C-5'), 130.4 (C-4), 131.6 (C-1'), 135.5 (C-

5), 138.6 (CF3), 151.7 (C-4), 153.8 (C-3'), 169.3, 169.5, and 170.7 (three acetoxy 

carbonyl carbons); LC-MS/MS (C21H20ClF3N4O8): m/z 571, 100 % (M
+
Na

+
), 290, 

30 % (C11H16O7
+
), 259,  80 %, (acetyl sugar: C11H15O7

•+
). 

2.2.4 General procedure of synthesis 2-(2",3",5''-Tri-O-acetyl-β-

ribofuranosyloxy)-4-(Araylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 117a-g 

A mixture of 4-arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-ones 3 

(3.0 mmol), ammonium sulfate (3.0 mmol, 0.4 g ), in hexamethyldisilazane (HMDS) 

(25 mL) was  refluxed for 6 hours under nitrogen. The excess of HMDS evaporated 

under reduced pressure. A mixture of the silylated pyrazolone and 1,2,3,5-tetra-O-

acetyl-β-ribofuranose (115, 3.0 mmol, 0.95 g) was dissolved in dry CH2Cl2 (25 mL), 

and Lewis catalyst  (1.1 mmol) was added dropwise at room temperature. The 

reaction mixture was stirred for 18 hours, then CH2Cl2 (100 mL) was added, washed 

with saturated aqueous solution of NaHCO3 (50 mL) and water (3×30 mL). The 

organic layer separated, dried over anhydrous (Na2SO4), and evaporated under 

reduced pressure. The residue was purified using a silica gel column chromatography 

(ethylacetate: hexane; 3:7) to separate the N-isomers 117a-g. 

2-(2",3",5''-Tri-O-acetyl-β-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazole (117a): Yield 80 %; mp = 160 – 161 °C; IR 
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[KBr, cm
-1

]: 3433 (NH/OH), 1749 (acetyl C=O), 1680 (C=O). 
1
H-NMR [CDCl3, 

400 MHz]: (δ, ppm) 2.09 (s, 3H,CH3), 2.10 (s, 3H, CH3), 2.11 (s, 3H, CH3), 4.51 

(dd, 1H, H-5b, J = 4.4, 12 Hz), 4.33 (m, 1H, H-4"), 4.44 (dd, 1H, H-5"a, J = 2.8, 12 

Hz ), 5.53 (t, 1H, H-3", J  = 4.8 Hz), 5.70 (t, 1H, H-2", J = 4.4 Hz), 5.99 (d, 1H, H-

1", J = 4 Hz), 6.98 (m, 1H, aromatic), 7.18 (m, 1H, aromatic), 7.27 (m, 1H, 

aromatic), 7.39 (m, 1H, aromatic), 13.48 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 

MHz]: (δ, ppm) 20.5, 20.6, and 20.6 (3 CH3),  62.9 (C-5"), 70.7 (C-3"), 72.5 (C-2"), 

79.7 (C-4"), 84.4 (C-1"), 104.1 (C-2'), 112.7 (C-6'), 114.3 (C-4'), 123.3 (C-5'), 131.2 

(C-4), 138.7 (CF3), 141.8 (C-1'), 157.8 (C-5), 162.3 (C-3), 164.8 (C-3'), 169.5, 169.6, 

and 170.7 (three acetoxy carbonyl carbons); LC-MS/MS (C21H20F4N4O8): m/z 555, 

48 % (M
+
Na), 532, 100 % (M

+
), 296, 17 % (base: C10H5F4N4O

•+
Na

+
). 259, 75 % 

(acetyl sugar: C11H15O8
•+

). 

2-(2",3",5''-Tri-O-acetyl-β-ribofuranosyl)-4-(3'-chlorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazole (117b): Yield 65 %; mp = 165 – 166 °C; IR 

[KBr, cm
-1

]: 3413 (NH/OH), 1749 (acetyl C=O), 1678 (C=O); 
1
H-NMR [CDCl3, 

400 MHz]: (δ, ppm) 2.10 (s, 3H,CH3), 2.11 (s, 3H, CH3), 2.12 (s, 3H, CH3), 4.56 

(dd, 1H, H-5b, J = 4.8, 12 Hz), 4.34 (m, 1H, H-4"), 4.44 (dd, 1H, H-5"a, J = 3.2, 5.6 

Hz ), 5.53 (dd, 1H, H-3", J = 5.6, 4.8 Hz), 5.70 (t, 1H, H-2", J = 4.4 Hz), 5.99 (d, 1H, 

H-1", J = 4.4 Hz), 7.24 (m, 1H, aromatic), 7.33 (m, 1H, aromatic), 7.35 (m, 1H, 

aromatic), 7.49 (m, 1H, aromatic), 13.48 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 

MHz]: (δ, ppm) 20.5, 20.6, and 20.6 (3 CH3),  68.1 (C-5"), 70.8 (C-3"), 72.5 (C-2"), 

79.7 (C-4"), 84.4 (C-1"), 115.0 (C-2'), 116.7 (C-6'), 123.4 (C-4'), 127.4 (C-5'), 128.8 

(C-4), 130.9 (C-1'), 135.9 (C-5), 139.1 (CF3), 141.2 (C-3), 157.8 (C-3'), 169.4, 169.6, 
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and 170.6 (three acetoxy carbonyl carbon); LC-MS/MS (C21H20ClF3N4O8): m/z 571, 

100 % (M
+
Na

+
), 290, 32 % (C10H5ClF3N4O

+
). 259, 85 % (acetyl sugar: C11H15O8

•+
). 

2-(2",3",5''-Tri-O-acetyl-β-ribofuranosyl)-4-(3'-trifluoromethyl-

phenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (117c): Yield 84 %; 

mp = 140 – 141 °C; IR [KBr, cm
-1

]: 3415 (NH/OH), 1749 (acetyl C=O), 1682 

(C=O). 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 2.10 (s, 3H, CH3), 2.11 (s, 3H, CH3), 

2.12 (s, 3H, CH3), 4.16 (dd, 1H, H-5b, J = 4.4, 12 Hz), 4.34 (m, 1H, H-4"), 4.44 (dd, 

1H, H-5"a, J = 3.2, 12 Hz), 5.53 (t, 1H, , H-3", J = 5.6 Hz), 5.70 (dd, 1H, H-2",  J = 

4.4, 5.2 Hz), 6.01 (d, 1H, H-1", J = 4.4 Hz), 7.56 (m, 2H, aromatic), 7.68 ( d, 2H, 

aromatic), 13.60 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 MHz]: (δ, ppm) 20.5, 20.5, 

and 20.6 (3 CH3),  62.9 (C-5"), 70.8 (C-3"), 72.5 (C-2"), 79.8 (C-4"), 84.5 (C-1"), 

113.6 (C-2'), 119.7 (C-6'), 120.4 (C-4'), 123.7 (C-5'), 124.6 (C-1'), 130.6 (C-5), 132.4 

(CF3), 138.7 (CF3), 140.7 (C-3'), 157.7 (C-4), 169.7, 169.6, and 170.7 (three acetoxy 

carbonyl carbons); LC-MS/MS (C22H20F6N4O8): m/z 585, 10 % (M
+
+1), 282, 100 % 

(acetyl sugar: C11H15O7
•
 + Na

+
). 

2-(2",3",5''-Tri-O-acetyl-β-ribofuranosyl)-4-(4'-fluorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazole (117d): Yield 78 %; mp = 130 – 131 °C; IR 

[KBr, cm
-1

]: 3426 (NH/OH), 1749 (acetyl C=O); 1676 (C=O). 
1
H-NMR [CDCl3, 

400 MHz]: (δ, ppm)  2.10 (s, 3H, CH3), 2.10 (s, 3H, CH3), 2.11 (s, 3H, CH3), 4.15 

(dd, 1H, H-5b, J = 4.8, 12.4 Hz), 4.33 (m, 1H, H-4"), 4.44 (dd, 1H, H-5"a, J = 3.2, 

12.4 Hz), 5.54 (t, 1H, , H-3", J = 6.6 Hz), 5.70 (m, 1H, H-2"), 6.001 (d, 1H, H-1", J = 

4.0 Hz), 7.15 (m, 2H, aromatic), 7.46 (m, 2H, aromatic), 13.63 (s, 1H, NH); 
13

C-

NMR  [CDCl3, 100 MHz]: (δ, ppm) 20.5, 20.6, and 20.6 (3 CH3),  62.9 (C-5"), 70.8 

(C-3"), 72.6 (C-2"), 79.7 (C-4"), 84.5 (C-1"), 116.9 (C-2'), 117.1 (C-6'), 118.4 (C-3'), 
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118.5 '(C-5'), 122.6 (C-4), 138.4 (C-1'), 138.6 ( C-6, CF3), 157.9 (C-5'), 160.4 (C-4'), 

162.9 (C-3), 169.5, 169.6, and 170.7 (three acetoxy carbonyl carbons); LC-MS/MS 

for (C21H20F4N4O8): m/z 554, 38% (M
+
Na

+
), 533, 100 % (M

+
),  296, 8 % 

(C10H5F4N4O
•+

Na
+
), 282, 98 %, (C11H15O8

•+
Na

+
),  259, 25 % (acetyl sugar: 

C11H15O8
•
). 

2-(2",3",5''-Tri-O-benzoyl-β-ribofuranosyl)-4-(4'-chlorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (117e): Yield 66 %; mp = 160 – 162 °C; 

IR [KBr, cm
-1

]: 3416 (NH/OH), 1724 (benzoyl carbonyl C=O), 1680 (C=O).
 1

H-

NMR [CDCl3, 400 MHz]: (δ, ppm) 4.62 (m, 1H, H-4), 4.74 (m, 2H, H-5"a,b), 6.02 

(t, 1H, H-3", J = 5.6 Hz), 6.13 (dd, 1H, H-2", J = 3.6, 5.6 Hz), 6.26 (d, 1H, H-1", J =  

3.6 Hz), 7.39 (m, 10H, aromatic), 7.54 (m, 3H, aromatic), 7.96 (m, 4H, aromatic), 

8.09 (m, 2H, aromatic, 13.59 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 MHz]: (δ, ppm)  

63.6 (C-5"), 71.4 (C-3"), 73.5 (C-2"), 79.7 (C-4"), 85.17 (C-1"), 117.9 (2C-C-2', 6'), 

123.0 (C-4), 128.4-128.7 (7 C- aromatic), 129.7-129.8 (10 C- aromatic), 130.1 (2C-

C-3', 5'), 133.1 ( C-1'), 133.6 (C-4), 138.7 (CF3), 157.8 (C-5), 165.1, 165.2, and 

166.3 (three benzoyl carbonyl carbons), 168.1 (C-3); LC-MS/MS (C36H26ClF3N4O8): 

m/z 757, 5 % (M
+
Na

+
), 735, 20 % (M

+
), 445, 28 % (benzoyl Sugar C26H21O7

•+
). 

2-(2",3",5''-Tri-O-acetyl-β-ribofuranosyloxy)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (117f): Yield 69 %; mp = 122 – 123 °C; 

IR [KBr, cm
-1

]: 3464 (NH/OH), 1749 (acetyl C=O), 1684 (C=O); 
1
H-NMR 

[CDCl3, 400 MHz]: (δ, ppm)  2.11 (s, 3H, CH3), 2.11 (s, 3H, CH3), 2.13 (s, 3H, 

CH3), 4.56 (dd, 1H, H-5b, J = 4.0, 12 Hz), 4.35 (m, 1H, H-4"), 4.44 (dd, 1H, H-5"a, 

J = 3.2, 3.6 Hz ), 5.52 (t, 1H, H-3", J = 5.6 Hz), 5.69 (dd, 1H, H-2", J = 3.6, 12.4 

Hz), 6.01 (d, 1H, H-1", J = 4.4 Hz), 7.65 (t, 1H, aromatic, J = 8.0 Hz), 7.82 (m, 1H, 
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aromatic), 8.12 (m, 1H, aromatic), 8.28 (t, 1H, aromatic, J= 2.4 Hz), 13.53 (s, 1H, 

NH); 
13

C-NMR  [CDCl3, 100 MHz]: (δ, ppm) 20.5, 20.5, and 20.6 (3 CH3),  62.9 

(C-5"), 70.7 (C-3"), 72.5 (C-2"), 79.8 (C-4"), 84.5 (C-1"), 111.6 (C-2'), 120.3 (C-6'), 

121.4 (C-4'), 121.9 (C-5'), 124.4 (C-4), 130.9 (C-1'), 138.7 (CF3), 141.3  (C-5), 149.3 

(C-3), 157.7 (C-3'), 169.5, 169.6, and 170.6 (three acetoxy carbonyl carbons); LC-

MS/MS (C21H20F3N5O10): m/z 582, 34 % (M
+
Na

+
), 560, 52 % (M

+
), 304, 22 % 

(C10H5F3N5O3
•+

), 296,  23 %, (acetyl sugar: C11H15O8
•+

Na
+
). 

2-(2",3",5''-Tri-O-acetyl-β-ribofuranosyl)-4-(4'-bromophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (117g): Yield 53 %; mp = 153 – 154 °C; 

IR [KBr, cm
-1

]: 3467 (NH/OH), 1747 (acetyl C=O), 1672 (C=O). 
1
H-NMR [CDCl3, 

400 MHz]: (δ, ppm)  2.10 (s, 3H, CH3), 2.11 (s, 3H, CH3), 2.12 (s, 3H, CH3), 4.16 

(dd, 1H, H-5b, J = 4.4, 4.8 Hz), 4.34 (m, 1H, H-4"), 4.44 (dd, 1H, H-5"a, J = 3.2, 

3.6 Hz ), 5.53 (t, 1H, H-3", J = 5.6 Hz), 5.70 (t, 1H, H-2", J = 4.4 Hz), 6.001 (d, 1H, 

H-1", J = 4.4 Hz), 7.36 (dd, 2H, aromatic, J = 3.2, 3.6 Hz), 7.57 (dd, 2H, aromatic, J 

= 2.0, 2.4 Hz), 13.54 (s, 1H, NH); 
13

C-NMR  [CDCl3, 100 MHz]: (δ, ppm) 20.5, 

20.5, and 20.6 (3 CH3),  62.9 (C-5"), 70.7 (C-3"), 72.6 (C-2"), 79.7 (C-4"), 84.4 (C-

1"), 118.1 (C-2'), 118.2 (C-6'), 120.2 (C-4), 120.9 (C-1'), 123.1 (C-5'), 132.9 (C-3'), 

133.0 (C-5'), 139.2 (CF3), 149.5 (C-4'), 157.8 (C-3), 169.5, 169.6, and 170.7 (three 

acetoxy carbonyl carbons); LC-MS/MS (C21H20BrF3N4O8): m/z 617, 8% (M
+
Na

+
), 

592, 10% (M
+
),  336, 10% (C10H6BrF3N4O

+
), 282, 100% (C11H15O8

•+
Na

+
). 

2.2.5 General procedure for de-protection of compounds 118 a-c 

A mixture of  triethylamine, water and methanol (1:1:1) (15 mL ) was added 

to the acetylated ribonucleosides analogues 118a-c (50.0 mg). The mixture was 

stirred overnight at room temperature and the solvents were evaporated under 
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reduced pressure. The residue was crystallized from 50 mL ethanol to give 118a-c in 

yield 84%, 92%  and 93% respectively. 

2-(β-D-Ribofuranosyl)-4-(3'-trifluoromethyl-phenylhydrazono)-5-trifluoromethyl-

2,4-dihydropyrazol-3-one (118a): Yield 84 %; mp = 149 – 152 
o
C; IR [KBr, cm

-1
]: 

3434 (NH/OH), 1678 (C=O); 
1
H-NMR [CDCl3, 400 MHz]: 3.11 (m, 3-OH, 

exchangeable with D2O), 3.73 (d, 1H, H-5″b, J = 12.0 Hz), 3.89 (d, 1H, H-5″a, J = 

11.6 Hz), 4.19 (s, 1H, H-4), 4.49 (s, 1H, H-3), 4.69 (s, 1H, H-2), 5.89 (d, 1H, H-

1, J = 2.4 Hz), 7.53 (m, 2H, aromatic), 7.63 (d, 1H, aromatic, J = 7.2 Hz), 7.67 (s, 

1H, aromatic), 11.07 (s, 1H, NH, exchangeable with D2O); 
13

C-NMR [CDCl3, 100 

MHz]: (δ, ppm) 63.0 (C-5), 71.6 (C-4), 73.8 (C-3), 85.6 (C-2), 88.0 (C-1), 

113.6, 117.6, 119.7, 121.9 (aromatic Cs), 123.9 (C-3'), 124.7 (aromatic C), 130.6 

(C4), 132.5 (CF3), 138.6 (CF3), 140.6 (C-5), 157.9 (C-3). LC-MS/MS 

(C16H14F6N4O5): m/z 457,  98 % (M
+
), 322, 38 % (C11H4F6N4O

+
), 140, 100 % 

(C7H9FN2
+
), 134, 15 % (C5H10O4

+
). 

2-(β-D-Ribofuranosyl)-4-(4'-chlorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one (118b): Yield 92 %; mp = 151 – 152 
o
C; IR [KBr, cm

-1
]: 

3414 (NH/OH); 1669 (C=O) 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 3.10 (m, 3-OH, 

exchangeable with D2O), 3.72 (d, 1H, H-5″b, J = 12.8 Hz),  3.90 (d, 1H, H-5″a, J = 

10.8 Hz), 4.18 (m, 1H, H-4), 4.50 (m, 1H, H-3), 4.72 (m, 1H, H-2), 5.89 (d, 1H, 

H-1, J = 4.8 Hz), 7.12 (m, 2H, aromatic), 7.48 (m, 2H, aromatic), 11.73 (s, 1H, NH, 

exchangeable with D2O); 
13

C-NMR [100Hz, DMSO-d6]: (δ, ppm) 64.4 (C-5), 71.9 

(C-4), 73.9 (C-3), 78.4 (C-2), 84.7 (C-1), 119.9 (aromatic C), 122.2 (C4), 129.1 

(2C, aromatic Cs),  129.8 129.1 (2C, aromatic Cs), 134.2 (CF3), 165.1 (C5), 166.0 
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(C3), LC-MS/MS (C15H14ClF3N4O5): m/z 423, 8 % (M
+
), 404, 100 % 

(C15H12ClF3N4O4
2•+

), 292. 48 % (C10H6ClF3N4O
+
), 132, 25 % (C5H8O4

+
). 

2-(β-D-Ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one (118c): Yield 93 %; mp = 146 – 147 
o
C; IR [KBr, cm

-1
]: 

3434 (NH/OH), 1670 (C=O); 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 3.10 (m, 3-

OH, exchangeable with D2O), 3.74 (dd, 1H, H-5″b, J = 2.8, 2.8 Hz), 3.90 (dd, 1H, H-

5″a, J = 2.4, 2.8 Hz), 4.20 (m, 1H, H-4), 4.51 (m, 1H, H-3), 4.72 (t, 1H, H-2, J = 

5.2 Hz), 5.90 (d, 1H, H-1, J = 5.2 Hz), 7.65 (m, 1H, aromatic), 7.81 (dd, 1H, 

aromatic, J = 1.2, 1.2 Hz), 8.13 (dd, 1H, aromatic, J = 1.6, 2.0 Hz), 8.30 (t, 1H, 

aromatic, J = 2.0 Hz), 11.81 (s, 1H, NH, exchangeable with D2O); 
13

C-NMR 

[CDCl3, 100 MHz]: (δ, ppm) 62.9 (C-5), 71.6 (C-4), 73.8 (C-3), 85.6 (C-2), 88.0 

(C-1), 111.7, 117.5, 121.5, 121.9 (aromatic Cs), 124.6 (C4), 130.9 (aromatic C), 

138.5 (CF3), 141.3 (aromatic Cs), 149.3 (C5), 157.9 (C3). LC-MS/MS 

(C15H14F3N5O7): m/z 456, 20 % (M
+
Na

+
), 433, 100 % (M

+
), 302, 30 % 

(C10H6F3N5O3
+
),  133, 10 % (C5H9O4

•+
). 

2.2.6 Synthesis of 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 

2-Deoxy-D-ribose (0.04 mol, 5.0 g) was dissolved in pyridine (14.0 mL). The 

solution was cooled to 0 °C and then acetic anhydride (12.5 mL) was added slowly. 

After the addition was complete, the solution was stirred at the room temperature for 

~25 h. Thereafter, 10 volumes of a saturated solution of NaHCO3 were added to the 

reaction mixture at 0 °C, and then the product was extracted with chloroform. The 

organic phase was washed with 1 M HCl (100 mL × 3 times), saturated solution of 

NaHCO3 (100 mL × 1 time), and water (100 mL × 1 time) successively. After being 

dried and filtered, a yellow syrup was obtained. After several hours, a white solid 
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was precipitated from the syrup at the room temperature. The solid was filtered and 

washed with isopropyl ether (100 mL), and then 1,3,5-tri-O-acetyl-2-deoxy- 

ribofuranose (yield 13 %) was obtained. The filtrate was concentrated and it gave a 

yellow syrup, which was stored at room temperature and yielded a single crystals 

after several days (yield 67 %). 

2.2.7 General procedure for the synthesis of deoxyribonucleoside derivatives 

122a-c and 123a-c 

To a solution of 4-arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-

ones 113 (1.0 mmol) in hexamethyldisilazine (HMDS) (6.0 mL), and anhydrous 

ammonium sulfate (1.0 mmol, 0.132g) was added. The mixture was refluxed for 3 

hours under nitrogen, and the excess of HMDS was evaporated under vacuum to 

dryness. The residue was dissolved in dry acetonitrile (2.0 mL) and the resulted 

solution was evaporated under vacuum to remove the excess HMDS. A cold solution 

of 1,3,5-tri-O-acetyl-2-deoxy-D-ribofuranose (0.001 mol, 0.26 g) in acetonitrile (2.0 

mL) was added to the silyl base (1.0 mmol) in acetonitrile (4.0 mL) at 0 
o
C. To the 

previous mixture, SnCl4 (1.0 mmol, 0.12 mL) in acetonitrile (2.0 mL) was added 

with stirring in ice (0 - 5 
o
C). Then the mixture stirred at  room temperature for four 

hours. The reaction mixture was quenched by chloroform (25 mL),  the organic layer 

washed with saturated aqueous solution of sodium bicarbonate (50 mL) and water (3 

x 30 mL). Then was dried over anhydrous sodium sulfate, filtered, and the solvent 

was removed under reduced pressure. The residue purified on column 

chromatography (ethyl acetate : hexane, 2:8, 3:7 then 4:6)  to produce  O-isomers 

122a-c and N-isomers 123a-c. 
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3-(3",5''-Di-O-acetyl-2"-β-deoxyribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-

5-trifluoromethyl-2,4-dihydropyrazol-3-one (122a): Yield 53 %; mp = 137 – 138 

o
C; IR [KBr, cm

-1
]:  3414 (NH/OH), 2922 (sp

3
-CH stretch), 1741 (acetoxy group ), 

1463 (CH2 bending), 1373 (CH3 bending); 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 

2.05 (s, 3H, CH3), 2.10 (dd, 1H, H-2"b, J = 2.8, 3.2 Hz), 2.15 (s, 3H, CH3), 2.67 (m, 

1H, H- 2″a),  3.94 (m, 2H, H-5"a,b), 5.11 (m, 1H, H-4), 5.66 (m, 1H, H-3), 5.83 

(dd, 1H, H-1, J = 2.8, 8.8  Hz), 6.98 (m, 1H, aromatic), 7.18 (m, 1H, aromatic), 7.28 

(m, 1H, aromatic), 7.40 (m, 1H, aromatic), 13.56 (s, 1H, NH); 
13

C-NMR [CDCl3, 

100 MHz]: (δ, ppm) 20.9 (CH3), 21.1 (CH3),  29.7 (C-2), 66.1 (C-5), 67.1 (C-4), 

68.6 (C-3), 78.5 (C-1), 103.8, 112.7, 114.5, 123.5, 131.2 aromatic Cs, 138.2 (CF3), 

141.7 (C4), 157.6 (C5),162.3 (C3), 164.3 (C-aromatic), 170.0, 170.6 (two acetoxy 

carbonyl carbons); LC-MS/MS (C22H20F6N4O8): m/z 497, 32% (M
+
Na

+
),  475, 97 % 

(M
+
), 274, 8 % (C10H6F4N4O

+
), 201, 27 % (acetyl sugar: C9H13O5

•+
). 288, 100 % 

(C15H14F4N4O2
+
). 

3-(3",5''-Di-O-acetyl-2"-β-deoxyribofuranosyloxy)-4-(3'-trifluoromethyl-

phenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (122b): Yield 55 %; 

mp = 135 – 136 
o
C; IR [KBr, cm

-1
]: 3411 (NH/OH), 2920 (sp

3
-CH stretch), 1735 

(acetoxy group ), 1461 (CH2 bending), 1372 (CH3 bending);  
1
H-NMR [CDCl3, 400 

MHz]: (δ, ppm) 2.05 (s, 3H, CH3), 2.10 (d, 1H, H-2"b, J = 9.6), 2.15 (s, 3H, CH3), 

2.67 (m, 1H, H- 2″a),  3.93 (m, 2H, H-5"a,b), 5.11 (m, 1H, H-4), 5.66 (m, 1H, H-

3), 5.83 (dd, 1H, H-1, J = 3.2, 3.2 Hz), 7.57 (m, 2H, aromatic), 7.66 (m, 1H, 

aromatic), 7.69 (m, 1H, aromatic), 13.64 (s, 1H, NH); 
13

C-NMR [CDCl3, 100 

MHz]: (δ, ppm) 20.9 (CH3), 21.1 (CH3), 29.7 (C-2), 66.2 (C-5), 67.1 (C-4), 68.6 

(C-3), 78.6 (C-1), 104.1, 112.7, 114.2, 123.4 (aromatic Cs), 131.2 (C4), 138.2 



53 

 

 

 

(CF3), 141.8 (C-aromatic), 145.5 (CF3),  157.6 (C5),162.4 (C3), 164.9 (C-aromatic), 

170.1, 170.6 (two acetoxy carbonyl carbons); LC-MS/MS (C20H18F6N4O6): m/z 547, 

100 % (M
+
Na

+
), 525, 32.4 % (M

+
), 325, 10 %  (C11H5F6N4O

+
),  201, 50 % 

(C9H13O5
•+

). 

3-(3",5''-Di-O-acetyl-2"-β-deoxyribofuranosyloxy)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (122c): Yield 49 %; mp = 136 – 138 
o
C; 

IR [KBr, cm
-1

]: 3411 (NH/OH), 2924 (sp
3
-CH stretch), 1740 (acetoxy group ), 1461 

(CH2 bending), 1375 (CH3 bending); 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 2.05 (s, 

3H, CH3), 2.10 (m, 1H, H-2"b), 2.15 (s, 3H, CH3), 2.67 (m, 1H, H- 2″a),  3.94 (m, 

2H, H-5"a,b), 5.10 (m, 1H, H-4), 5.66 (m, 1H, H-3), 5.83 (dd, 1H, H-1, J = 2.8, 

3.2 Hz), 7.65 (t, 1H, aromatic, J = 8.0 Hz), 7.81 (m, 1H, aromatic), 8.12 (m, 1H, 

aromatic), 8.27 (t, 1H, aromatic, J = 2.0 Hz), 13.62 (s, 1H, NH); 
13

C-NMR [CDCl3, 

100 MHz]: (δ, ppm) 20.8 (CH3), 21.0 (CH3),  31.2 (C-2), 63.5 (C-5), 66.5 (C-4), 

76.5 (C-3), 91.8 (C-1), 111.6, 117.6, 121.4, 121.8, 124.5 (aromatic Cs), 130.9 (C4), 

138.0 (CF3), 141.3 (C-aromatic), 149.3 (C5), 157.8 (C3), 169.8, 169.9 (two acetoxy 

carbonyl carbons); LC-MS/MS (C19H18F3N5O8): m/z 502, 100 % (M
+
), 201, 20 % 

(C9H13O5
•+

). 

2-(3",5''-Di-O-acetyl-2"-β-deoxy-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (123a): Yield 47 %; mp = 160 – 162 
o
C; 

IR [KBr, cm
-1

]:  3431 (NH/OH), 2919 (sp
3
-CH stretch), 1742 (acetoxy group), 1679 

(C=O),  1462 (CH2 bending), 1375 (CH3 bending); 
1
H-NMR [CDCl3, 400 MHz]: (δ, 

ppm) 2.04 (m, 1H, H-2"b),  2.05 (s, 3H, CH3), 2.20 (s, 3H, CH3), 2.87 (q, 1H, H- 

2″a),  3.83 (d, 1H, H-5"b, J = 13.2 Hz ), 4.13 (d, 1H, H-5"a, J = 13.2 Hz), 5.15 (m, 

1H, H-4), 5.21 (s, 1H, H-3), 5.50 (d, 1H, H-1, J = 10.8 Hz), 6.98 (m, 1H, 
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aromatic), 7.18 (m, 2H, aromatic), 7.28 (m, 1H, aromatic), 7.40 (m, 1H, aromatic), 

13.54 (s, 1H, NH, exchangeable with D2O); 
13

C-NMR [CDCl3, 100 MHz]: (δ, ppm) 

(δ, ppm) 20.8 (CH3), 21.0 (CH3),  29.7 (C-2), 63.5 (C-5), 66.6 (C-4), 76.5 (C-3), 

77.2 (C-1), 103.8, 112.7, 114.5, 123.4 (aromatic Cs), 131.2 (C4), 138.4 (CF3), 141.8 

(C-aromatic), 157.9 (C5),162.4 (C3), 164.9 (C-aromatic), 169.8, 169.9 (two acetoxy 

carbonyl carbons); LC-MS/MS (C22H20F6N4O8): m/z 497, 38 % (M
+
Na

+
), 475, 100 

% (M
+
), 275, 20 % (C10H6F4N4O

+
), 201, 33 % (C9H13O5

•+
). 

2-(3",5''-Di-O-acetyl-2"-β-deoxy-ribofuranosyl)-4-(3'-trifluoromethyl-

phenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one (123b): Yield 45 %; 

mp = 139 – 140 
o
C; IR [KBr, cm

-1
]: 3442 (NH/OH), 2922 (sp

3
-CH stretch), 1743 

(acetoxy group ), 1683 (C=O),  1462 (CH2 bending), 1370 (CH3 bending); 
1
H-NMR 

[CDCl3, 400 MHz]: (δ, ppm) 2.00 (m, 1H, H-2"b), 2.04 (s, 3H, CH3), 2.20 (s, 3H, 

CH3), 2.87 (q, 1H, H- 2″a), 3.83 (d, 1H, H-5"b, J = 13.6 Hz), 4.13 (t, 1H, H-5"a, J = 

13.2 Hz), 5.15 (d, 1H, H-4", J = 11.6 Hz), 5.20 (s, 1H, H-3), 5.52 (d, 1H, H-1, J = 

10.0 Hz), 7.53 (m, 2H, aromatic), 7.66 (m, 1H, aromatic, J = 7.6 Hz), 7.70 (m, 1H, 

aromatic), 13.56 (s, 1H, NH); 
13

C-NMR [CDCl3, 100 MHz]: (δ, ppm) 20.8 (C5"-

CH3), 21.1 (C3"- CH3),  29.7 (C-2), 63.0 (C-5), 64.3 (C-4), 74.5 (C-3), 76.0 (C-

1), 113.5, 119.6, 127.8 (aromatic Cs), 130.6 (C4), 132.4 (CF3), 140.8 (C-aromatic), 

147.2 (CF3),  158.0 (C), 158.1 (C3), 169.3, 170.5 (two acetoxy carbonyl carbons); 

LC-MS/MS (C22H20F6N4O8): m/z 47, 100 % (M
+
Na

+
),  525, 53 % (M

+
), 325, 10 % 

(C11H5F6N4O
+
), 5201, 38 % (acetyl sugar: C9H13O5

•+
). 

2-(3",5''-Di-O-acetyl-2"-deoxy-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one (123c): Yield 51 %; mp = 177 – 178 
o
C; 

IR [KBr, cm
-1

]: 3435 (NH/OH), 2921 (sp
3
-CH stretch), 1743 (acetoxy group ), 1682 
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(C=O),  1474 (CH2 bending), 1374 (CH3 bending);  
1
H-NMR [CDCl3, 100 MHz]: 

(δ, ppm) 2.01 (m, 1H, H-2"b), 2.05 (s, 3H, CH3), 2.20 (s, 3H, CH3), 2.87 (q, 1H, H- 

2″a), 3.84 (d, 1H, H-5"b, J = 12.8 Hz), 4.15 (dd, 1H, H-5"a, J = 1.6, 2.0 Hz), 5.16 

(m, 1H, H-4), 5.21 (s, 1H, H-3), 5.51 (dd, 1H, H-1, J = 2.0, 2.4 Hz), 7.64 (t, 1H, 

aromatic, J = 8.0 Hz), 7.80 (m, 1H, aromatic), 8.12 (m, 1H, aromatic), 8.29 (t, 1H, 

aromatic, J = 2.4 Hz), 13.63 (s, 1H, NH); 
13

C-NMR [CDCl3, 100 MHz]: (δ, ppm) 

20.7 (CH3), 20.8 (CH3),  30.9 (C-2), 63.6 (C-5), 66.5 (C-4), 68.1 (C-3), 81.2 (C-

1), 111.6, 121.4, 121.8, 128.8, 130.8 aromatic Cs, 132.4 (C-4), 138.0 (CF3), 141.4 

aromatic C, 149.3 (C-5), 157.8 (C-3), 167.7, 169.8 (two acetoxy carbonyl carbons); 

LC-MS/MS (C19H18F3N5O8): m/z 502, 100 % (M
+
), 201, 29 % (C9H13O5

•+
). 

2.2.8 Synthesis of O- and N-benzoyl of 5-trifluoromethyl-2,4-dihydropyrazolone  

General Procedures 

4-Arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-ones 113 (1.0 

mmol) was dissolved in methylene chloride (5.0 mL) at 0 °C. The arayl chloride (2.0 

mmol) was added dropwise into the solution with stirring at 0 
o
C. The reaction 

mixture was allowed to stir at room temperature for 24 hours. To the reaction 

mixture, hexane (25 mL) was added dropwise until a yellow precipitate was formed. 

The precipitate was then filtered off and dried. 

4-[2-(3'-Fluorophenyl)hydrazono]-5-(trifluoromethyl)-4H-pyrazol-3-yl-4"-

fluorobenzoate (124a): Yield 77.5 %; mp = 183 – 184 °C; IR [KBr, cm
-1

]: 3438 

(NH/OH), 1733(C=O); 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 7.03 (m, 1H, 

aromatic), 7.19 (m,3H, aromatic), 7.29 (m, 1H, aromatic), 7.44 (m, 1H, aromatic), 

7.97 (m, 2H, aromatic), 13.67 (s, 1H, NH, exchangeable with D2O); 
13

C-NMR 

[CDCl3, 100 MHz]: (δ, ppm) 104.3, 113.1, 115.5, 115.7, 117.5, 120.2, 121.9, 127.3, 
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131.4, 131.5, 133.5 (aromatic Cs), 141.5 (CF3), 158.5 (C-5), 162.4 (C-3), 164.0 

(C=O), 164.8 (C-F), 167.1 (C4"). LC-MS/MS (C17H9F5N4O2): m/z 419, 29 % 

(M
+
Na

+
), 396, 10 0% (M

+
), 124, 15 % (C7H5FO

+
). 

4-[2-(4'-Fluorophenyl)hydrazono]-5-(trifluoromethyl)-4H-pyrazol-3-yl-4"-

fluorobenzoate (124b): Yield 80 %; mp = 182 – 183 °C; IR [KBr, cm
-1

]: 3411 

(NH/OH), 1727 (C=O); 
1
H-NMR [CDCl3, 100 MHz]: (δ, ppm) 7.18 (m, 4H, 

aromatic), 7.50 (m, 2H, aromatic), 7.98 (m, 2H, aromatic), 13.80 (s, 1H, NH, 

exchangeable with D2O); 
13

C-NMR [CDCl3, 100 MHz]: (δ, ppm) 115.5, 115.7, 

117.1, 117.3, 118.8 118.9, 127.4, 133.5. 133.6 (aromatic Cs), 136.2 (C-4), 140.5 

(CF3), 158.5 (C-5), 160.7 (C- 4'),  163.2 (C-1'), 164.2 (C-3), 164.6 (C=O), 167.1 (C-

4"). LC-MS/MS (C17H9F5N4O2): m/z 419, 22 % (M
+
Na

+
), 396, 100 % (M

+
),  275, 32 

% (C10H6F4N4O
+
), 124, 10 % (C7H5FO

+
). 

4-[2-(3'-Trifluoromethoxyphenyl)hydrazono]-3-(trifluoromethyl)-4-4H-pyrazol-3-

yl-4"-fluorobenzoate (124c): Yield 96 %; mp = 185 – 186 °C; IR [KBr, cm
-1

]: 

3400 (NH/OH), 1731 (C=O); 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 7.18 (t, 2H, 

aromatic, J = 7.2 Hz), 7.62 (m, 4 H, aromatic), 7.96 (m, 2H, aromatic), 3.71 (s, 1H, 

NH);  
13

C-NMR [CDCl3, 100 MHz]: (δ, ppm) 113.8, 115.5, 115.7, 120.0, 122.3, 

124.3,  127.2, 130.7 aromatic Cs, 133.4 (CF3), 140.4 (CF3), 158.4 (C-5),  164.0 (C-

3), 164.6 (C=O), 167.2 (C4"). LC-MS/MS (C18H9F7N4O2): m/z 469, 18 % (M
+
Na

+
), 

447, 100 % (M
+
), 323, 5 % (C11H5F6N4O

•+
), 123, 8 % (C7H4FO

•+
). 

4-[2-(3'-Trifluoromethoxyphenyl)hydrazono]-3-(trifluoromethyl]-4-4H-pyrazol-3-

yl-4"-(trifluoromethoxy)benzoate (124d): Bright yellow; yield 97 %; mp = 197 – 

198 
o
C; IR [KBr, cm

-1
]: 3435 (NH/OH), 1730 (C=O); 

1
H-NMR [CDCl3, 400 

MHz]: (δ, ppm) 7.33 (d, 2H, aromatic, J = 8.8 Hz), 7.64 (m, 3H, aromatic), 7.73 (s, 
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1H, aromatic), 8.00 (d, 2H, aromatic, J = 8.8 Hz), 13.73 (s, 1H, NH); 
13

C-NMR 

[CDCl3, 100 MHz]: (δ, ppm) 113.8, 119.9, 120.0, 120.2 (2C) (aromatic Cs), 122.3 

(CF3), 124.4,  124.5 (aromatic Cs), 130.8 (CF3), 132.6, 132.9 (aromatic Cs), 140.4 

(CF3), 152.9 (C-5), 158.4 (C-3), 163.9 (C=O). LC-MS/MS (C19H9F9N4O3): m/z 536, 

18 % (M
+
Na

+
), 513, 55 % (M

+
), 324, 100 % (C11H6F6N4O

+
), 189, 12 % 

(C8H4F3O2
•+

). 

4-[2-(4'-Fluorophenyl)hydrazono]-3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 

(124e): Orang; yield 79 %; mp = 227 – 229 °C; IR [KBr, cm
-1

]: 3416 (NH/OH), 

1733 (C=O); 
1
H-NMR [DMSO-d6, 400 MHz]: (δ, ppm) 7.31 (m, 2H, , aromatic), 

7.51 (m, 2H, aromatic), 7.62 (m, 1H, aromatic), 7.70 (q, 2H, aromatic), 7.83 ( m, 2H 

aromatic), 12.64 (s, 1H, NH); 
13

C-NMR [DMSO-d6, 100 MHz]: (δ, ppm) 117.1 

118.5,119.9, 121.2, 122.2, 128.7 (2C), 130.5 (2C), 132.8 (aromatic Cs), 133.5 (C-4), 

138.6 (C-1´), 140.6 (CF3), 156.6 (C-4´) 160.0 (C-5), 162.5 (C-3), 165.6 (C=O). Anal. 

Calcd for C17H10F4N4O2: C, 53.98; H, 2.66; N, 14.81; Found: C, 54.23; H, 2.76; N, 

15.05. 

4-[2-(3'-Nitrophenyl)hydrazono]-3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 

(124f): Yellow; yield 90 %; mp = 216 – 217 °C; IR [KBr, cm
-1

]: 3432 (NH/OH), 

1725 (C=O),
1
H-NMR [DMSO-d6, 400 MHz]: (δ, ppm) 7.54 (m, 1H, aromatic), 7.71 

(m, 2H, aromatic), 7.85 (d, 1H, aromatic, J = 7.6 Hz), 8.04 (m, 4H, aromatic), 8.45 

(s, 1H, aromatic), 12.75 (s, 1H, NH); 
13

C-NMR DMSO-d6, 100 MHz]: (δ, ppm) 

111.8, 117.4, 120.1, 121.9, 122.1, 123.2, 128.3 (2C), 130.6 (2C), 131.1, 133.7 

(aromatic Cs), 140.7 (CF3), 141.1 (C-3´), 149.3 (C-5),  158.4 (C-3), 165.1 (C=O). 

LC-MS/MS (C17H12F3N5O4): m/z 407, 25 % (M
+
), 406, 100 % (C17H11F3N5O4

•+
), 

302, 10 % (C10H7F3N5O3
•+

), 105, 15 % (C7H5O
•+

). 
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4-(2-(3'-Nitrophenyl)hydrazono)-5-(trifluoromethyl)-pyrazoyl-4"-fluorobenzoate 

(124g): Yellow; yield 96 %; mp = 189 – 190 °C; IR [KBr, cm
-1

]: 3473 (NH/OH), 

1733 (C=O), 
1
H-NMR [CDCl3, 400 MHz]: (δ, ppm) 7.19 (m, 2H, aromatic), 7.68 (t, 

1H, aromatic,  J = 8.0 Hz), 7.81 (m, 1H, aromatic), 7.97 (m, 2H, aromatic), 8.17 (m, 

1H, aromatic), 8.33 (t, 1H, aromatic, J = 2.0 Hz), 13.72 (s, 1H, NH); 
13

C-NMR 

[CDCl3, 100 MHz]: (δ, ppm) 111.8, 115.6, 115.8 117.3, 122.0, 123.0, 127.1, 131.5, 

133.5, (aromatic Cs),  133.6, (C-4),  140.7 (CF3), 141.0 (C-1'), 149.3 (C-3'), 158.3 

(C-5),  163.8 (C-3), 164.7 (C-4"), 167.2 (C=O). LC-MS/MS (C17H11F4N5O4): m/z 

425, 25 % (M
+
), 424, 88 % (C17H10F4N5O4

•+
), 362, 100 % (C17H13F3N4O2

+
), 406, 100 

% (C17H11F3N5O4
•+

), 302, 10 % (C10H7F3N5O3
•+

), 105, 15 % (C7H5O
•+

). 

4-(2-(4'-Bromophenyl)hydrazono)-3-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-5-yl 

benzoate (124h): Dark orange; yield 82 %; mp = 260 – 261 °C; IR [KBr, cm
-1

]: 

3411(NH/OH), 1738 (C=O); 
1
H-NMR [DMSO-d6, 400 MHz]: (δ, ppm) 7.54 (m, 

2H, aromatic), 7.65 (m, 5H, aromatic), 7.85 (m, 2H, aromatic), 12.65 (s, 1H, NH); 

13
C-NMR [DMSO-d6, 100 MHz]: (δ, ppm) 119.8, 119.9. 122.8, 128.6 (2C), 129.0, 

129.7, 130.4 (2C), 132.7, 133.0 (aromatic Cs), 133.4 (C-4),  140.6 (CF3), 141.2 (C-

1'), 156.4 (C-5), 165.5 (C-3), 167.8 (C=O). Anal. Calcd for C17H10BrF3N4O2: C, 

46.49; H, 2.30; N, 12.76; Found: C, 46.80; H, 2.45; N, 13.07. 

2.2.9 Synthesis of (N
2
-Benzoyl)-4-(3'-arylhydrazono)-5-trifluoromethyl 

pyrazolone 127a-d 

Synthesis of Benzohydrazide 125 

A mixture of hydrazine hydrated (1.0 mmol, 0.03 g) and pyridine (1.0 ml) 

were stirred in methylene chloride (20 mL) at 0 °C for 15 min. Benzoyl chloride (2.0 

mmol, 0.23 ml) was added dropwise into the reaction mixture with stirring. The 

reaction mixture was continuously stirring at room temperature until the reaction 
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mixture was judged complete by the TLC (ethyl acetate : hexane, 3:7). To this 

reaction mixture, hexane (10 mL) was added dropwise until a white precipitate 

formed. The precipitate was filtered off and dried; yield 94 %; mp = 112-114
 o

C; 
1
H-

NMR [DMSO-d6, 400 MHz]: (δ, ppm)  8.81 (s, H, NH), 6.88 (d, 2H, C-3), 6.55 (m, 

1H, C-5), 6.49 (m, 2H, C-4), 3.52 (s, 2H, NH2); 
13

C-NMR [DMSO-d6, 100 MHz]: 

(δ, ppm) 127.4 (C-3), 128.8 (C-4), 131.5 (C-5), 167.0 (C-1). 

Synthesis of N
2
-benzoyl- 5-trifluoromethylpyrazolone 126 

2-N-benzoyl-5-trifluoromethyl pyrazolone 126 was obtained by the reaction 

of ethyl 4,4,4-trifluoro-3-oxobutanoate (0.1 mol, 21.41 mL) with benzohydrazide 

125 (0.1 mol, 13.61 g) in ethanol (150 mL) and refluxed for 18 hours. The precipitat 

was filtered, washed with cold ethanol then air dried to offered white crystals;  yield 

90%. mp = 127-128
o
C; 

1
H-NMR [DMSO-d6, 400 MHz]: (δ, ppm) 3.91 (s, 2H, 

CH2), 7.52 (t, 2H, aromatic), 7.62 (m, 1H, aromatic), 7.77 (m, 2H, aromatic), 11.55 

(s, 1H, OH); 
13

C-NMR [DMSO-d6, 100 MHz]: (δ, ppm)  14.36 (C-4), 119.9 (C-6), 

122.6 (C-2"), 128.9 (C-3"), 129.0 (C-4"), 132.7 (C-5"), 133.2 (C-5), 167.0 (C-1") 

Synthesis of N
2
-Benzoyl-4-(3'-arylhydrazono)-5-trifluoromethylpyrazolone 

127a-c 

A solution of sodium nitrite (0.01 mol, 0.85 g) in water (10.0 mL ) was added 

dropwise with stirring to a solution of aniline hydrochloride in water (2.0 mL) at 0 

o
C. The above mixture was added dropwise with stirring to a cold solution of 

compound 126 (0.01 mol, 2.39 g) in ethanol (25 mL) and sodium acetate (10.0 

mmol, 0.82 g). The reaction mixture was stirred at room temperature for 3 hr. The 

solid was filtrated; washed with cold H2O (2 x 5 mL), dried and crystallized from 

ethanol yielding compounds 127a-c. 
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N
2
-Benzoyl)-4-(3'-trifluoromethylphenylhydrazono)-5-trifluoromethylpyrazolone 

(127a): Yield 95 %; mp =  205 – 209 
o
C IR [KBr, cm

-1
]: 3438 (NH/OH), 1727 

(C=O), 1538 (C=C); 
1
H-NMR[DMSO-d6, 400 MHz]: (δ, ppm) 7.39 ( m, 5H, 

aromatic), 7.50 (m, 4H, aromatic), 12.71 (s, 1H, NH); 
13

C-NMR [DMSO-d6, 100 

MHz]: (δ, ppm)  117.6, 117.8, 120.5, 122.8, 124.8, 128.3, 129.4 (aromatic Cs),  

129.7 (C4) , 130.1, 131.1, 131.9, 133.3 (aromatic Cs), 136.5 (CF3), 139.6 (C-5), 

157.6 (C-3), 164.9 (C=O), Anal. Calcd for C18H10F6N4O2: C, 50.48; H, 2.35; N, 

13.08; Found: C, 50.79; H, 2.66; N, 13.39. 

(N
2
-Benzoyl)-4-[2-(2',4'-dichlorophenyl)hydrazono]-3-(trifluoromethyl)-1H-

pyrazolone (127b): Yield 93 %; mp =  209 – 211 
o
C, IR [KBr, cm

-1
]: 3415 

(NH/OH), 1732 (C=O), 1542 (C=C); 
1
H-NMR[DMSO-d6, 400 MHz]: (δ, ppm) 7.56 

(m, 3H, aromatic), 7.76 (m, 3H, aromatic), 12.92 (s, 1H, NH);  
13

C-NMR [DMSO-

d6, 100 MHz]: (δ, ppm)  117.6, 122.6, 123.2, 125.0, 128.3, 128.6, 129.4, 129.7 (C-4), 

130.1, 131.1, 131.8 (aromatic Cs),  133.4 (CF3), 136.1 (C-5), 157.6 (C-3), 164.9 

(C=O); Anal. Calcd for C17H9Cl2F3N4O2: C, 47.57; H, 2.11; N, 13.05; Found: C, 

48.17; H, 2.71; N, 13.65. 

(N
2
-Benzoyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethylpyrazolone (127c) : 

Yield 89 %; mp = 223 – 225 
o
C; IR (KBr, cm

-1
): 3412 (NH/OH), 1725 (C=O), 1660 

(C=O); 
1
H-NMR[DMSO-d6, 400 MHz]: (δ, ppm) 7.60 (m, 2H, aromatic), 7.73 (m, 

1H, aromatic), 7.87 ( m, 6H, aromatic), 12.93 (s, 1H, NH); 
13

C-NMR [DMSO-d6, 

100 MHz]: (δ, ppm) 112.5, 118.3, 121.0, 123.1, 129.0 (2C), 129.6, 129.7, 130.6 (2C) 

(aromatic Cs), 131.6 (C-4), 132.3, 133.9, 136.6 (aromatic Cs), 139.7 (CF3), 140.1 (C-

5), 158.1(C-3), 165.1 (C=O); Anal. Calcd for C17H10F3N5O4: C, 50.38; H, 2.49; N, 

17.28; Found: C, 50.74; H, 2.85; N, 17.64. 
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2.3  Results and Discussion  

Fluorinated pyrazolones and their nucleoside derivatives are mainly an 

interesting field in chemistry and medicine science. Introducing mono-fluorine atom 

or trifluoromethyl group in place of hydrogen atoms often enhance the biological 

activity of the aglycone [101]. Therefore, efforts for designing new pyrazolone 

nucleosides substituted with fluorine in different positions have been achieved using 

two sugar moieties such as D(+)ribose and D(+)-2-deoxyribose. Pyrazolone 

derivatives 113a-i prepared according to the literature method [102] with improving 

the overall yield as outlined in Scheme 31 and then allowed to react with various 

activated sugar derivatives under various experimental conditions to produce noval 

pyrazolone nucleosides 116-123. 

2.3.1 Synthesis of 5-trifluoromethyl-2,4-dihydropyrazol-3-ones 113a-i 

 

 

Scheme 31: Synthesis of 4-arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-

ones 113 a-i 

 

2,4-dione and  hydrazine to produce 5-trifluoromethyl-2,4-dihydropyrazol-3-

one 112. In the first step, hydrazine as nucleophile attacks the more electropositive 

center followed by 5-exo trig cyclization to form the final product 112. The 

mechanism in (Scheme 32) explains the reaction between trifluoromethyl  

 



62 

 

 

 

Table 1: The synthesized 4-arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-

ones yiels compared with the literature ones 

Entry Ar mp (
o
C) Yield % lit. mp (

o
C) lit. yield % 

112 - 208-209 96.3 207-208 15 

113a 3'-fluorophenylhy 211-213 99.3 201-203 78 

113b 4'-fluorophenyl 217-218 93.0 212-214 75 

113c 3'-trifluoromethylphenyl 221-222 99.6 218-220 85 

113d 3'-chlorophenyl 238-240 94.0 New - 

113e 4'-chlorophenyl 226-228 93.0 220-221 94 

113f 2',4'-dichlorophenyl 239-241 90.0  78 

113g 3'-nitrophenyl 251-254 98.0  75 

113h 4'-bromophenyl 214-216 86.0 New 85 

113i 2-(pyren-2-yl) 256-258 94.0 New - 
 

 

 

 

Scheme 32: Suggested mechanism for the synthesis of 5-trifluoromethyl-2,4-

dihydropyrazol-3-one 

 

Microwave mediated organic reactions are typically environment friendly, 

safe, and rapid as compared to conventional methods. CEM Microwave reactor was 

used to synthesize 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 with various 

conditions as shown in Table 2.  
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Table 2: Microwave conditions used to synthesized 5-trifluoromethyl-2,4-

dihydropyrazol-3-one 112 

Entry Mixing Temp (
o
C) MW Temp (

o
C) Reaction Period (min) Yield % 

1 rt 75 5 0 

2 rt 75 10 19 

3 rt 75 12 26 

4 rt 75 15 31 

5 rt 75 30 33 

6 rt 75 35 34 

7 0-5 75 30 32 

8 0-5 150 60 39 

9 0-5 75 60 42 

10 rt 75 60 45 

11 rt 150 60 51 

 

The structure of 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 and the 

obtained azopyrazolones have been confirmed according to their spectroscopic data 

analysis.  

 

 

 

Scheme 33: Resonance structures of 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 

 

 5-Trifluoromethyl-2,4-dihydropyrazol-3-one 112 shown in Scheme 33 is 

existing in form A in polar aprotic solvents according to 
1
H-NMR (400 MHz, 

DMSO-d6) data (Figure 13). The 
1
H-NMR analysis in DMSO-d6 showed H-4 as a 

singlet at δ 5.66 ppm. In addition, two protons appeared at δ 11.25 ppm and δ 12.84 

ppm exchangeable with D2O were assigned to NH and OH protons, respectively. To 

confirm the existing of both isomers B and C, the 
1
H-NMR was carried out in D2O 
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(Figure 14). The 
1
H-NMR showed two signals at δ 2.67 ppm and δ 3.06 ppm 

corresponding to the methylene protons 112 B (Figure 13, 14). 

 

Figure 13: 
1
H-NMR Spectrum for 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 in 

DMSO-d6 

 

Figure 14: 
1
H-NMR Spectrum for 5-trifluoromethyl-2,4-dihydropyrazol-3-one 112 in 

D2O 
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4-Arylhydrazono-5-trifluoromethyl-2,4-dihydropyrazol-3-ones 113a-i were 

synthesized by diazotization  reaction of 112 using aryldiazonium salt which was 

conducted by using a well-developed methodology [103] and the desired azo dyes 

113a-i were obtained in high yield 94 % (Scheme 34).  

The general synthetic mechanism of alryl hydrazone is shown in Scheme 34. 

The diazodization step was carried out in acidic condition with stirring at 0 – 5
o
C. 

Three structures are in equilibrium 112 A-C, under an acidic condition, pyrazolone 

112B was activated then allowed to react with arydiazonium salt to afford the final 

products 113a-i. 

 

 

Scheme 34: Suggested mechanism for the synthesis of 5-trifluoromethyl-2,4-

dihydropyrazol-3-ones 113 a-i 
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To confirm the correct structure of the final products, spectroscopic analysis 

of 4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 113a, 

was used. FT-IR assigned the functional groups such as the appearance of broad peak 

at ν 3421 cm
-1

 prove the existing of hydroxy group. The peak at ν 1635 cm
-1

  assigns 

for C=C while the peak at ν 1558 cm
-1

 assigns for C=N; and the peak at 1384 cm
-1

 

assign for O-H bending in plan (Figure 15). 

 

Figure 15: IR Spectrum of 4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 113a 

 
1
H-NMR (400 MHz, DMSO-d6) was used to confirm the suggested structure. 

For example, compound 113a shows a singlet at δ 7.10 ppm assigned for one 

aromatic proton at 2'-position while other aromatic protons resonate at 4',5' and 6' 

positions as multiplets at δ 7.45 - 7.54 ppm integrated to three protons.
1
H-NMR 

shows sharp singlet resonates at δ 12.67 ppm corresponding to one proton NH; the 

disappearance of the second imino-proton can be explained due to the formation of 
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hydrogen-bond with oxygen at C-3 (Figure 16). The 
13

C-NMR spectrum (100 MHz, 

DMSO-d6) of compound 113a gave the correct number of carbons on the right 

chemical shift for each carbon (Figure 17). 

 

Figure 16: 
1
H-NMR spectrum for 4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-

2,4-dihydropyrazol-3-one 113a in DMSO-d6 
 

 

Figure 17: 
13

C-NMR Spectrum for 4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-

2,4-dihydropyrazol-3-one 113a in DMSO-d6 
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2.3.2 Synthesis of Pyrazolinone Ribosides  

To achieve our goal in enhancing the bioavailability of the pyrazolinone 

moieties, ribose derivatives introduced to two different nucleophlic centers in the 

pyrazolone ring. The silyl-method is used to activate the pyrazolone ring, while the 

ribose was used as 1-acetyl analog that activated by Lewis acid catalyst. The 

sensitivity of both silyl pyrazolone and sugar needs dry conditions to achieve the 

final products 116 and 117. Hexamethyldisilazane (HMDS) was found a suitable 

silylating agent to activate the pyrazolone in the form of  3-trimethylsilyloxy 

pyrazoline 114 intermediate while ten (IV) chloride or trimethylsilyl 

trifluoromethanesulfonate (TMSOTf) was used as a catalyst in two solvents (CH3CN, 

CH2Cl2). The activated ribose allowed to react with the silyl intermediate (114) to 

afford the target products 116 and 117 (Scheme 35). The synthesis of O- and N-

isomer was controlled by the reaction time. The silyl intermediate 114 reacts with an 

activated surge in either dry acetonitrile or methylene chloride for 4 hours at room 

temperature. The reaction afford O- and N- nucleosides, isolated and identified as  3-

(2",3",5''-tri-O-acetyl-β-D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazoline (116a) and 2-(2",3",5''-tri-O-acetyl-β-D-

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazole  

117a in yield 66% and 34% respectively. The mechanism of the reaction can be 

explained as follow: the silyl group increases the electron-density at the neighboring 

oxygen atom, that attacks to the acyl oxonium ion from the β-face producing the 3-

(2",3",5''-tri-O-acetyl-β-D-ribofuranosyloxy)-4-(arylhydrazono)-5-trifluoromethyl-

2,4-dihydropyrazoline 116 or by increasing the electron-density around N-3 that 

attacks the activated sugar from the β-face as well to form the N-isomer 117 (Scheme 

35). 
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Scheme 35: Synthesis of O- and N- Pyrazolone Ribosides 

 

 The structure of O-ribose products 116a,b were confirmed using FT-IR, 
1
H-

NMR, 
13

C-NMR and LC-MS. The IR confirmed the formation of 3-(2",3",5''-tri-O-

acetyl-β-D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 116a by the appearance of a new sharp signal at ν = 1751 cm
-1

 

assigined to the acetyl ester at the sugar moiety while no signals observed at ν = 

1640-1690 cm
-1

 related to the carbonyl imid of pyrazoline. NMR data also confirmed 
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the suggested structures. For example,
1
H-NMR (400 MHz, CDCl3) showed new 

three signals at δ 2.12, 2.13, and 2.16 ppm corresponding to three methyl groups, 

while ribose anomeric proton appeared as a doublet at δ 6.01 ppm integrated to one 

proton with coupling constant J = 4.0 Hz confirmig the diaxial oriantation in β-form. 

While other sugar protons H-5"a , 4", 5"b, 3", and 2", resonate at δ 3.71, 4.19, 4.44, 

5.71, 5.90 ppm respectively. The aromatic protons of 116a appeared as multiplets at 

6.98-7.39 ppm (Figure 18).  

 

 

Figure 18: 
1
H-NMR Spectrum for 3-(2",3",5''-tri-O-acetyl-β-D-ribofuranosyloxy)-4-

(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazoline 116a 

 

13
C-NMR (100 MHz, CDCl3) also used to confirm the correct number of 

carbon atoms at the correct chemical shifts. The anomeric carbon resonates at δ 90.2 

ppm though C-5 appeared at δ 153.6, ppm and  C-3 appeared at δ 162.0 ppm. A 

complete set of assigned carbons are presented in (Figure 19). 
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Figure 19: 
13

C-NMR Spectrum for 3-(2",3",5''-tri-O-acetyl-β-D-ribofuranosyloxy)-4-

(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazoline 116a 

 

Long-range heteronuclear correlation gHMBC (400 MHz, CDCl3) was used 

to assign the 
1
H-

13
C interaction. Strong cross-peak interactions were found between 

the anomeric proton H-1" (δ 6.01 ppm) with C-2" (δ 74.0 ppm) of the sugar moiety. 

While H-3" (δ 5.71 ppm) showed cross-peak interaction with C-1", C-2" and C-5" at 

(δ 90.2, 74.0 and 62.9 ppm); respectively. H-5"a (δ 4.44 ppm) showed cross-peak 

interaction with C-2" (δ 74.0 ppm). While H-4" (δ  4.19 ppm) showed cross-peak 

interaction with both of  C-3" at (δ 71.0 ppm). Both H-3" (δ 5.71 ppm) and H-4" (δ 

4.19 ppm) showed a week cross-peak interactions with acetoxy carbonyl carbon of 

the sugar moiety at (δ 169.5 and 170.7 ppm) (Figure 20). 
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Figure 20: 2D- gHMBC
 
Spectrum for 3-(2",3",5''-tri-O-acetyl-β-D-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 116a 

 

Mass spectroscopic was used to confirm the formation of the targeted product 

116a. The total molecular ion peak appeared at m/z 533 with 35% intensity (Figure 

22). The fragment mass analysis scheme shows  the pattern of fragmentation with its 

relative intensity (Scheme 36). 

2.3.3 Solvent and Catalyst Effects 

To study the effect of the solvent and/or catalyst on regioselective synthesis, a 

complete study was reported as shown in Table 3. Eleven different reaction 

conditions were carried out to study the regioselectivety of the O- and N-isomers as 

nucleophile counters in the pyrazoline ring. In entry 1, the conditions were optimized 

using TMSOTf as catalyst in acetonitrile for 4 h at room temperature afforded only 
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one isomer identified as O-riboside 116a while tin (IV) chloride afforded a mixture 

of O-isomer (64%) and N-isomer (36%) (entry 2). While entries 3 and 4 CH2Cl2 was 

used as a solvent and both SnCl4 and TMSOTf were used in two different 

experiments and in the same reaction time (4h). The two reactions (entries 3 and 4) 

afforded O-isomers as major products (66%, 60%) while N-isomers identified in 

yield (34%, 40%) respectively. In entry 5, tin (IV) chloride in CH2Cl2 was used for 8 

hs, the reaction afforded a mixture of O-isomer (61%) and N-isomer (38%). The 

same reaction conditions in entry 3 repeated in doubled reaction time (8 hs) (entry 7). 

These reaction conditions (entry 7) were found enhancing the formation of N-isomer 

(42%). From entry 1 to 7, it was noticed that time may enhance the formation of N-

isomers, accordingly, the reaction time was increase to 10 hs using SnCl4 in CH2Cl2 

(entry 8). The reaction afforded N-isomer in (57%) yield in a mixture of O-isomer 

(43%). When TMSOTf was used in acetonitrile at room temperature for 18 hs N-

isomer ratio increased to (62%) (entry 9), while using SnCl4 gave more ratio of N-

isomer (67%) to O-isomer (33%) (entry 10). Comparing both of the reaction 

conditions used in both entry 8 and entry 10, it is clear to notice that acetonitile 

shifted the reaction toward the formation of N-isomers (yield  ≈ 67%). The same 

reaction conditions in entries 3 and 7 repeated in longer reaction time (18 hs) (entry 

11); these reaction conditions afforded only one isomer identified as N-riboside 

117a. 
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Table 3: Optimum synthesis conditions for O- and N-ribosides isomers 

Entry Condensation conditions 
a
 Products 

Yield of O 

(%)
b
 

Yield of N 

(%)
b
 

1 TMSOTf, MeCN, rt, 4 h O-isomer (116) 67 ND
c
 

2 SnCl4, MeCN, rt, 4 h O/N (116/117) 64 36 

3 TMSOTf, CH2Cl2, rt, 4 h O/N (116/117) 66 34 

4 SnCl4, CH2Cl2, rt, 4 h O/N (116/117) 60 40 

5 SnCl4, CH2Cl2, rt, 8 h O/N (116/117) 61 39 

6 SnCl4, MeCN, rt, 8 h O/N (116/117) 62 38 

7 TMSOTf, CH2Cl2, rt, 8 h O/N (116/117) 58 42 

8 SnCl4, CH2Cl2, rt, 10 h O/N (116/117) 43 57 

9 TMSOTf, MeCN, rt, 18 h O/N (116/117) 38 62 

10 SnCl4, MeCN, rt, 18 h O/N (116/117) 33 67 

11 TMSOTf, CH2Cl2, rt, 18 h N-isomer (117) ND 80 
a Molar ratio sugar: pyrazole base: Catalyst – 1:1:1  

b Isolated yield of O- and N- isomers by column chromatography. 

c ND: Not Detected  

 

 

In summary, solvents, catalyst and reaction times are controlled the 

regioselectivites of the reaction between silylated pyrazoline and the sugar moiety. 

Most particularly, the time is the most significant effect as it is noticed when solvents 

and catalyst are fixed (entries 3,7 and 11), the yield of O-isomer decrease 

dramatically while the yield of N-isomer increase gradually as shown in (Figure 21). 

This is may be attributed to the stability of N-isomer.  

 

 

Figure 21: Effect of reaction time in controlling the regioselectivity in synthesizing 

116a and 117a using same catalyst and solvent (TMSOTf and CH2Cl2)
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Figure 22: Mass fragmentation spectrum for 3-(2",3",5''-tri-O-acetyl-β-D-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 116a 

7
5
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Scheme 36:  Mass fragments scheme for 3-(2",3",5''-tri-O-acetyl-β-D-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 116a 
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2.3.4 Synthesis of Pure N-isomers 117c-g  

Since the reaction between the silylation pyrazolone 113 and the activated 

sugar derivatives in the presence of Lewis acid catalyst was found to be time 

dependent. The reaction was repeated under an optimizing condition using 

dichloromethane as solvent and in presence of TMSOTf as catalyst for 18 hours. The 

reaction afforded only N-isomer 117c-g (Scheme 37). The structure of the obtained 

product 117c-g were confirmed spectroscopycally to insure that structures are correct 

as suggested. FT-IR was used to confirmed the formation of glycosidic bonds 

between the anomeric carbon of the sugar moiety and the N
2
 of the pyrazolone. The 

IR-spectrum of compound 117a showed the appearance of two main signals at ν 

1680 cm
-1

 corresponding to the pyrazolone carbonyl and at ν 1749 cm
-1

 assigned to 

the acetoxy carbonyl carbones of the three acetyl groups allocated at C-2″, 3″ and 5″ 

of the ribose moiety (Figure 23). 
1
H-NMR spectroscopy was used to confirm the 

suggested structures. For example 
1
H-NMR of compound 117a showed a slightly 

high filed shifting of the anomeric proton (δ 5.99 ppm) compared to the O-isomer (δ 

6.01 ppm) 116a which indicated the formation of N-glycosidic bond. While other 

sugar protons H-5"a , 4", 5"b, 3", and 2", resonate at δ 4.51, 4.33, 4.44, 5.53, 5.69 

ppm; respectively. The aromatic protons of 117a appeared as multiplets at 6.98-7.27 

ppm (Figure 24).
13

C-NMR also used to confirm the correct number of carbon atoms 

at the correct chemical shifts. The anomeric carbon resonates at δ 84.4 ppm while C-

5 appeared at δ 157.8 ppm and  C-3 appeared at δ 162.3 ppm (Figure 25). 
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Compoun 117 R R' Yield (%) 

c 3-CF3 Ac 84 

d 4-F Ac 78 

e 4-Cl Bz 66 

f 3-NO2 Ac 69 

g 4-Br Ac 53 

 

Scheme 37: Synthesis of N-pyrazolinone ribosides 

 

The N-isomers 117a,b were obtained in a mixture with 116a,b. The pure N-

isomer 117a,b was separated using chromatography in yield 80%, 65%; respectively 

(Scheme 37). The obtained N-isomers 117a,b characterized as in the next section.  

The mechanism of the reaction can be explained as follow; since short 

reaction time afforded mixture of two isomers, the major was identified as O-

ribosides 116a,b and the minor is N-ribosides 117a,b. The reaction was continuous 

under dry condition with stirring at room temperature for about 18 hours. The 

formation of N-isomer can be explained as follows: the same reaction conditions of 

synthesizing the mixture of O-and N-isomers, as mentioned in the previous section, 

are applied but the reaction time was extended up to 18 hours.  The progress of the 

reaction was monitored by TLC (ethyl acetate: hexane, 3:7). As observed previously, 

the reaction initially produced the O-isomers. In the presence of a Lewis  acid 

catalyst and 1-O-acetyl ribose derivative, rearrangement occurred to produce the N-

isomers. The mechanism of ON rearrangement attributed to the excess of acetyl ten 

tetrachloride cation and/or trimethylsilyl cation coordinate with oxygen, weaken the 

O-ribose bond. Keto-enol tatumeric increases the electron-density at nitrogen atom at 
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position 2 enhancing the nucleophilicity of N
2
 that attacked the activated oxanium 

ion from β-face to form β-N-ribose isomer 117 (Scheme 38). 

 

Scheme 38: Suggested mechanism of the ON rearrangement 

 

The formation of O- and N-ribosides 116a and 117a, can be analyzed using 

FT-IR, NMR and mass spectroscopy. For example, the IR spectra of O-riboside 116a 
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and the N-riboside 117a were used to distinguish between different signals appeared 

within ν 1640-1690 cm
-1  

corresponding to the imide-carbonyl of the pyrazoline ring.  

For O-riboside 116a the disappearance of the imid carbonyl at ν 1650-1690 

cm
-1

 (Figure 23,A) confirms the existing of O-linkage, while N-riboside is confirmed 

by the existing of the imid-carbonyl at ν 1680 cm
-1

 (Figure 23, B). 

On the other hand.
1
H-NMR (400 MHz, CDCl3) data was used to confirm our 

observation of forming O- and N-ribosides. The difference in chemical shifts of the 

anomeric protons in both isomers were studied, the highly shielded proton in N-

isomer compared to highly deshielded proton in O–isomer gave a slightly difference 

in chemical shift for both products 116a, 117a. The anomeric proton in 116a 

observed as doublet at δ 6.01 ppm while the anomeric proton in 117a observed as 

doublet at δ 5.99 ppm.
13

CNMR (100 MHz, CDCl3) also confirmed the forming of O- 

and N-ribosides by studying the difference in chemical shift of the anomeric carbon 

in both isomers, the highly shielded carbon in N- isomer compared to highly 

deshielded carbon in O-isomer gave a difference in chemical shift for both isomers. 

The anomeric carbon in 116a observed at δ 90.2 ppm while the anomeric carbon in 

117a observed at δ 84.4 ppm (Figures 24, 25). 

19
F-NMR (376 MHz, CDCl3) was used also to confirm the presences of two 

fluorine groups in 117a. 
19

F-NMR spectrum showed a singlet at δ -109.5 ppm 

corresponding to mono fluorobenzen. A sharp singlet appears at δ -64.5 ppm 

integrated to three fluorine atoms confirmig the existing of  the CF3 (Figure 26).   
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Figure 23: IR Spectra for (A) O-riboside 116a, (B) N-riboside 117a 
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Figure 24: 
1
H-NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β- ribofuranosyl)-4-(3'-

fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a 

 

 

 

Figure 25: 
13

C-NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β- ribofuranosyl)-4-(3'-

fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a. Inset is 

the full spectra 
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Figure 26: 
19

F-NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β-ribofuranosyl)-4-(3'-

fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a 

 

2D-COSY was obtained to assign the correct chemical shift of the sugar 

protons. The anomeric proton H-1" (δ 5.99 ppm) showed across-peak interaction 

with H-2" (δ 5.70 ppm). H-2" (δ  5.70 ppm) has also a cross-peak interaction with H-

3" (δ 5.53 ppm).  H-3" (δ 5.53 ppm) has a clear cross-peak interaction with H-4" (δ 

4.33 ppm). H-4" (δ 4.44 ppm) showed a cross-peak interaction with both of H-5"a (δ 

4.44 ppm) and H-5"b (δ 4.15 ppm). While H-5"a (δ 4.44 ppm) showed strong 

correlation with H-5"b (δ 4.15 ppm). 2D-COSY data gave the correct order of 

assigned as follow:  H-1",  H-2", H-3", H-5"a, H-4" and H-5"b. 2D-COSY 

correlation also showed strong cross-peak interaction between the aromatic protons 

at (δ 6.98-7.39 ppm) (Figure 27). 
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Figure 27: 2D-COSY NMR spectrum for 2-(2",3",5''-tri-O-acetyl-β-ribofuranosyl)-4-

(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a 

 

 

 2D-HSQC and 2D-gHMBC were used to establish the structural 

conformational. HSQC showed direct correlation for short range 
1
H-

13
C interaction. 

H-1 (δ 5.99 ppm) has a correlation with C-1 (δ 84.4 ppm), while H-2 (δ 5.70 ppm) 

correlated with C-2 (δ 72.5 ppm), H-3 (δ 5.53 ppm) correlated with C-3 (δ 70.7 

ppm), H-4 (δ 4.33 ppm) correlated with C-4 (δ 79.7 ppm). While H-5a and H-5b 

(δ 4.44 and 4.15 ppm) showed a cross-peak interaction with C-5(δ 62.9 ppm). In the 

aromatic region, H-2' at (δ 7.27 ppm) correlated with C-2' (δ 104.1 ppm). While H-4' 

at (δ 6.98 ppm) correlated with C-4' (δ 114.3 ppm), H-5' (δ 7.39 ppm) correlated with 

C-5' (δ 123.3 ppm) and H-6' (δ 7.18 ppm) correlated with C-6' (δ 112.7 ppm) (Figure 

28). 
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Figure 28: 2D-HSQC NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β- ribofuranosyl)-

4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a 

 

Long-range heteronuclear correlation 2D-gHMBC was used to assign the 
1
H-

13
C interaction. The cross-peak interactions was found between the anomeric proton 

H-1 (δ 5.99 ppm) with  C-2 (δ 72.5 ppm) of the sugar moiety. While H-2 (δ 5.70 

ppm) showed with cross-peak interactions with C-4 (δ 79.7 ppm). H-3" (δ 5.53 

ppm) showed a cross-peak interaction with C-1" and C-5" at (δ 84.4 and 62.9 ppm); 

respectively. Both H-5"a (δ 4.44 ppm) and H-5"b (δ 4.15 ppm) showed a cross-peak 

interaction with C-3" (δ 70.7 ppm) (Figure 29). 

Mass spectroscopic also used to confirm the formation of 2-(2",3",5''-tri-O-

acetyl-β-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 117a. The total molecular ion peak appeared at m/z 533 with 
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100% intensity (Figure 30). The fragment mass analysis scheme shows the pattern of 

fragmentation with its relative intensity (Scheme 39).   

 

 

Figure 29: 2D-gHMBC NMR Spectrum for 2-(2",3",5''-tri-O-acetyl-β- 

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-

3-one 117a 
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Figure 30: Mass fragmentation spectrum for 2-(2",3",5''-tri-O-acetyl-β- ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-

2,4-dihydropyrazol-3-one 117a 
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Scheme 39: Mass fragments scheme for 2-(2",3",5''-tri-O-acetyl-β- ribofuranosyl)-4-

(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117a 

 

2.3.5 Hydrolysis of N-Nucleosides 118a-c 

Ammonolysis of the nucleosides 117c,e,f using triethyl amin in methanol 

gives free nucleosides 118a-c in 93%, 84%, 92%; respectively (Scheme 40). 
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Scheme 40: Deprotection of 117c,e,g using triethylamine in methanol and water 

(1:1:1) 

 

Structures of the obtained nucleosides 118a-c are elucidated by studying their 

IR, 
1
H-NMR and 

13
C-NMR spectra which are in accordance with the proposed 

structures. The IR (KBr) absorption spectrum of compounds 118c showed a 

characteristic band at ν 3443 cm
-1

 due to the sugar hydroxy groups. Another strong  

band at  ν 1670  cm
-1 

 is attributed to the imide–carbonyl of the pyrazolone. Signal 

corresponding to three acetoxy carbonyl groups have disappeared (Figure 31). 

 

 

Figure 31: IR Spectrum of 3-(β-D-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-2,4-dihydropyrazol-3-one 118c 
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The 
1
H-NMR (400 MHz, CDCl3) spectrum of compound 118c is confirmed 

by the appearance of a doublet at δ = 5.89 ppm corresponding to the anomeric proton 

of the ribose moiety with a spin-spin coupling constant equal to 4.0 Hz 

corresponding to the diaxial orientation of the H-1″ and H-2″ protons indicating the 

formation of only one β-isomer. And also the appearance of peak at δ = 2.82 ppm 

corresponding to the three OH groups; which is exchangeable with D2O. In addition 

to that, the three peaks of the acetyl groups at δ ≈ 2.10 ppm disappeared which also 

confirm the formation of the free nucleoside (Figure 32). 

 

 

Figure 32: 
1
H-NMR Spectrum for 3-(β-D-ribofuranosyl)-4-(3'-

nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 118c 

 

The 
13

C-NMR (100 MHz, CDCl3) spectrum of (118c) is characterized by a 

signal at δ = 88.0 ppm corresponding to the C-1″ atom of ribose residue. No more 
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signals appear in the region δ ≈ 20.5 ppm corresponding to the methyl of acetoxy 

groups (Figure 33). 

 

 

Figure 33: 
13

C-NMR Spectrum for 3-(β-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-

5-trifluoromethyl-2,4-dihydropyrazol-3-one 118c 

 

Heteronuclear correlation 
1
H - 

13
C was used to support the suggested 

structure of 3-(β-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4- 

dihydropyrazol-3-one 118c. 2D-HSQC showed direct correlation for short range 
1
H-

13
C interaction. H-1 (δ 5.90 ppm) has a correlation with C-1 (δ 88.0 ppm), while H-

2 (δ 4.72 ppm) correlated with C-2 (δ 85.6 ppm), H-3 (δ 4.51 ppm) correlated 

with C-3 (δ 73.8 ppm), H-4 (δ 4.30 ppm) correlated with C-4 (δ 71.6 ppm). While 

H-5a and H-5b (δ 3.90 and 3.74  ppm) showed a cross-peak interaction with C-5 

(δ 62.9 ppm). In the aromatic region. H-2' at (δ 8.30 ppm) correlated with C-2' (δ 

111.7 ppm). While H-4' at (δ 8.13 ppm) correlated with C-4' (δ 121.5 ppm), H-5' (δ 
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7.65 ppm) correlated with C-5' (δ 130.9 ppm) and H-6' (δ 7.81 ppm) correlated with 

C-6' (δ 121.9 ppm) (Figure 34) 

 

 

Figure 34: 2D-HSQC Spectrum for 3-(β-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-

5-trifluoromethyl-2,4-dihydropyrazol-3-one 118c 

 

Mass spectroscopic used to confirm the formation of the free riboside 118c. 

The total molecular ion peak appeared at m/z 433 with 100% intensity (Figure 35). 

The fragment mass analysis scheme shows the pattern of fragmentation with its 

relative intensity (Scheme 41).  
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Figure 35: Mass fragmentation spectrum for  3-(β-ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 118c 

9
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Scheme 41: Mass fragments scheme for 3-(β-D-ribofuranosyl)-4-(3'-

nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one  118c 

 

 

2.3.6 Synthesis of Deoxyribonucleoside Pyrazolones 

2.3.6.1 Synthesis of 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 

1,3,5-Tri-O-acetyl-2-deoxyribofuranose 121 was synthesized using  2-deoxy-

D-ribose, which is commercially available from sigma-aldrich according to the 

method described in literature [104]. Scheme 42 shows that the acetylated 

deoxyribose  121 was synthesized using a well-developed methodology [105].  
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Scheme 42: Synthesis of 1,3,5-tri-O-acetyl-2-deoxyribofuranose 

 

The structure of 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 was confirmed 

using spectroscopic techniqus such as FT-IR and NMR. The FT-IR was used to 

confirmed the presence of signal at ν 1743 cm
-1

 corresponding to the acetoxy 

carbonyl carbones of the three acetyl groups allocated at C-1, 3 and 5 of the 

deoxyribose moiety. 
1
H-NMR (400 MHz, CDCl3) spectroscopy was used to confirm 

the suggested structures. For example, 
1
H-NMR spectrum of compound 121 showed 

the anomeric proton as triplet (δ 6.25 ppm) integrated to one proton with a coupling 

constant J = 4.0 Hz. While the remaining sugar protons H-2a, 2b, 5a,b, 4, and 3, 

resonate at δ 1.90, 2.26, 3.85, 4.00, 5.20, 5.30 ppm respectively (Figure 36). 
13

C-

NMR (100 MHz, CDCl3) also used to confirm the correct number of carbon atoms at 

the correct chemical shifts. The anomeric carbon resonates at δ 91.5 ppm while C-2, 

5, 4 and 3 appeared at δ 29.4, 62.7, 65.0, 66.9 ppm; respectively (Figure 36). 
13

C-

NMR also showed new three signals at δ 20.6, 20.6, and 20.8 ppm corresponding to 

the three methyl of the acetoxy groups at C-1, 3 and 5 (Figure 37). 

2D-COSY NMR was used for clearly assigning the correlation btween 

protons in the sugar moiety. Figure 38 shows a cross-peak interaction between 

anomeric proton H-1 (δ 6.25 ppm) H-2b at (δ 1.91 ppm). A cross-peak interaction 

was observed between H-2 at (δ 2.26 ppm) and H-3 (δ 5.30 ppm). The 2D-COSY 

NMR spectrum also shows a cross-peak interaction between H-3 and H-4 (δ 5.20 

ppm). Additionally a cross-peak interaction was observed between H-4 and H-5a,b (δ 
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4.00, 3.85 ppm). 2D-COSY data gave the correct order of assigned as follow:  H-1,  

H-3, H-4, H-5a, H-5b, H-2a, H-2b.    

 

 

Figure 36: 
1
H-NMR Spectrum for 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 

 

Figure 37: 
13

C-NMR Spectrum for 1,3,5-tri-O-acetyl-2-deoxy-ribofuranose 121 



97 

 

 

 

 

Figure 38: 2D-gCOSY Spectrum for 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 

 

2.3.6.2 Synthesis of Deoxyribonucleosides derivatives 122 and 123 

Since there are insistent international demands for 2-deoxyribonucleosides as 

important resources of drugs [106], 1,3,5-tri-O-acetyl-2-deoxyribofuranose 121 

introduced to two different nucleophlic centers in the pyrazolone ring. As in the 

ribosides synthesis, the silyl-method is used to activate the pyrazolone ring, while the 

sugar moiety 121 was used as 1-acetyl analog that activated by Lewis acid catalyst 

(Scheme 43). Hexamethyldisilazane (HMDS) was used as silylation agent to activate 

the pyrazolone in the form of  3-trimethylsilyloxy pyrazoline 114 intermediate 

(Scheme 44). While Trimethylsilyl trifluoromethanesulfonate (TMSOTf) was used to 

activate the sugar. The silyl intermediate 113 reacts with the activated surge 125 in 

dry methylene chloride for 8 hours at room temperature. The reaction afford O- and 

N-nucleosides, isolated and identified as 3-(3",5''-di-O-acetyl-2"-β-Deoxy-

                 1                        3    4                          5a 5b                                     2a            2b   
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ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 122a and 2-(3",5''-di-O-acetyl-2"-β-Deoxy-ribofuranosyl)-4-

(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a in 

yield 53 % and 47 % ; respectively.  

 

 

 

Scheme 43: Synthesis of O- and N-Deoxy ribonucleosides derivatives of pyrazolones 

 

The formation of only β-isomers can be explained based on the fact that the 

HMDS enhances the nucleophlicity of both of the two nucleophlic centers of the 

pyrazolone and its reaction with anthe activated sugar to afford the desired 2-

deoxynucleosides. Surprisingly, the activated deoxy sugar under these conditions 

expected to produced both α- and β -isomers due to the lack of acetoxy group at 2"-

position of the 2"-deoxy analoge, while two β-isomers  identified as O- and N-

isomers were detected. The mechanism of the reaction can be explaned as Lewis acid 

substracted the acyl group from the anomeric carbon of the 2-deoxy sugar forming 

oxycarbonium triflate ion pair 124-126. The stereochemistry of the final product will 

depend on the equilibrium of the oxycarbonium triflate 124,126 which preferred to 

be in α-position 125. The silyl base as nucleophile attacks to the oxycarbonium 
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triflate from β-face afforded only β-isomers 122, 123 as mixture of O- and N-

nucleosides (Scheme 44). 

The structure of the obtained products 122a-c was confirmed by using FT-IR, 

1
H-NMR, 

13
C-NMR and LC-MS. The IR confirmed the formation of O-isomer by 

the appearance of a new signal at ν = 1741 cm
-1

 assigned to the acetyl ester at the 

sugar moiety while no signals observed at ν = 1640 - 1690 cm
-1

 related to the 

pyrazolin-3-one. 
1
H-NMR (400 MHz, CDCl3) showed two signals at δ 2.05, 2.15 

ppm corresponding to the two methyl protons of the acetoxy groups, while the 2"-

deoxyribose anomeric proton appeared as a doublet of doublet at δ 5.83 ppm, 

integrated to one proton with coupling constant J = 2.8, 8.8 Hz confirmig the diaxial 

in β-form. While other sugar proton H-2"a, 2"b, 5a,b", 4", and 3", resonate at δ 2.10, 

2.67, 3.94, 5.11, 5.66 respectively. The aromatic protons of 122a appeared as 

multiplets at 6.98-7.40 ppm (Figure 39). 
13

C-NMR (100 MHz, CDCl3) also used to 

confirm the correct number of carbon atoms at the correct chemical shifts. The 

anomeric carbon resonates at δ 78.5 ppm while C-5 appeared at δ 157.6, ppm and  C-

3 appeared at δ 162.3 ppm (Figure 40).  
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Scheme 44: Stereoselective synthesis of O- and N-β-2"-deoxyribose derivatives 122 

and 123 
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Figure 39: 
1
H-NMR Spectrum for 3-(3",5''-di-O-acetyl-2"-β-deoxy-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 122a 

 

 

Figure 40: 
13

C-NMR Spectrum for 3-(3",5''-di-O-acetyl-2"-β-deoxy-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 122a 
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2D-COSY NMR used for clearly assigning the correlation between protons in 

the sugar moiety. Figure 41 shows a strong cross-peak interaction between anomeric 

proton H-1″ δ 5.83 ppm and H-2″a at δ 2.67 ppm. H-2″a at δ 2.67 ppm has a cross-

peak interaction with H-2″ b at δ 2.10 ppm. And H-2″ b at δ 2.10 ppm showed cross-

peak interaction with H-3″ at δ 5.66 ppm. 2D-COSY shows also another cross-peak 

interaction between H-4″ at δ 5.11 ppm and H-5″a,b at δ 3.94 ppm. That confirm the 

correct order of sugar moiety protons assign. H-2' at δ 7.28 ppm showed no 

interaction with any other protons in the molecule. While both H-4' δ 6.98 ppm and  

H-6' δ 7.18 ppm showed a cross-peak interaction with H-5' δ 7.40 ppm (Figure 41). 

 

Figure 41: 2D-COSY Spectrum for 3-(3",5''-di-O-acetyl-2"-β-deoxy-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 122a 

 

Heteronuclear correlation 
1
H-

13
C was used to support the suggested structure 

of 3-(3",5''-di-O-acetyl-2"-β-deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-
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5-trifluoromethyl-2,4-dihydropyrazoline 122a. The HSQC spectrum showed the 

direct correlation for short range 
1
H-

13
C interaction. Strong cross-peak interactions 

were found between the anomeric proton H-1" at δ 5.83 ppm with C-1 at δ 78.5 ppm 

of the sugar moiety. While the both protons at position 2, H-2"a,b δ 2.10 and 2.67 

ppm, showed cross-peak interaction with C-2at δ 29.7 ppm, H-3" δ 5.66 ppm 

correlated with C-3 at δ 68.6 ppm, H-4" δ 5.11 ppm correlated with C-4 at δ 67.1 

ppm, and the both protons at position 5, H-5"a,b δ 3.94 ppm, correlated with C-5 at 

δ 66.1 ppm. In the aromatic region, The four aromatic protons at δ 6.98, 7.18, 7.28, 

7.40 ppm  showed cross-peak interaction with the aromatic carbons at δ 114.5, 112.7, 

103.8 and 131.2 ppm; respectively (Figure 42). 

 

 

 

Figure 42: 2D-HSQC Spectrum for 3-(3",5''-di-O-acetyl-2"-β-deoxy-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 122a 

             5' 2' 6'  4'                  1" 3"            4"                               5"ab                                 2"a            2"b   
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Mass spectroscopic analysis was used to confirm the fractions of the targeted 

product 122a. The total molecular ion peak appeared at m/z 475 with 97% intensity 

(Figure 43). The fragment mass spectroscopic scheme shows  the pattern of 

fragmentation with its relative intensity (Scheme 45).  

To confirm the formation of O- and N-deoxyribosides, spectra analysis such 

as IR, and NMR were used. For example, the O-deoxyriboside 122a compared to the 

N-deoxyribosides using IR spectroscopy analysis by comparing between signals 

appeared within ν = 1640-1690 cm
-1

. The formation of  O-deoxyriboside leads to the 

disappearance of the amid carbonyl at 1640-1690 cm
-1

 (Figure 44, A) while the 

formation of  N-deoxyribosides is confirmed by the existing of the amid-carbonyl at 

1640-1690 cm
-1

 (Figure 44, B). 

The 
1
H-NMR (400 MHz, CDCl3) data was used to confirmed the formation 

of both our O- and N-ribosides. Studying the difference in chemical shift of the 

anomeric proton in both isomers. The anomeric proton in 122a observed as doublet 

of doublet at δ 5.83 ppm with coupling constant  J = 2.8, 8.8 Hz, while the anomeric 

proton in 123a observed as doublet at δ 5.50 ppm with coupling constant J = 10.8 Hz 

confirmig the diaxial in β-form (Figure 45).
 13

C-NMR (100 MHz, CDCl3) also 

confirmed the forming of O- and N-deoxyribosides by studying the difference in 

chemical shift of the anomeric carbon in both isomers. The anomeric carbon  in 122a 

observed at δ 78.5 ppm while the anomeric carbon in 123a observed at δ 77.2 ppm 

due to the highly shielded N-atom compared to the deshieded O-atom (Figure 46). 
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Figure 43: Mass fragmentation spectrum for 3-(3",5''-di-O-acetyl-2"-β-deoxy-ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-                                              

5-trifluoromethyl-2,4-dihydropyrazoline 122a 

1
0
5
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Scheme 45: Mass fragments scheme for 3-(3",5''-di-O-acetyl-2"-β-deoxy-

ribofuranosyloxy)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazoline 122a 
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Figure 44: IR spectra for (A) O-deoxyriboside 122a, (B) N-deoxyriboside 123a 

(A) 

(B) 
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Figure 45: 
1
H-NMR Spectrum for 2-(3",5''-di-O-acetyl-2"-β-deoxy-ribofuranosyl)-                      

4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a 

 

Figure 46: 
13

C-NMR Spectrum for 2-(3",5''-di-O-acetyl-2"-β-deoxy-ribofuranosyl)-                      

4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 123a 
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Figure 47: Mass spectrum for 2-(3",5''-di-O-acetyl-2"-β-deoxy-ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-                                         

2,4-dihydropyrazol-3-one 123a 1
0
9
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Mass spectroscopic analysis was used to confirm the fractions of the targeted 

product 123a. The total molecular ion peak appeared at m/z 475 with 97% intensity 

(Figure 47). The fragment mass spectroscopic scheme shows  the pattern of 

fragmentation with its relative intensity (Scheme 46). 

 

 

Scheme 46: Mass fragments scheme for 2-(3",5''-di-O-acetyl-2"-β-deoxy-

ribofuranosyl)-4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-

3-one 123a 
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2.3.7 Synthesis of Benzolyated Pyrazolone Derivatives  

To extend our study to more hydrophobic examples, brnzoyl group was 

choosen to interduce into pyrazolone ring using two different synthetic methods. In 

method 1, a simple nucleophlic substitution reaction was used to introduce the 

benzoyl group into the pyrazolone ring. As discussed earlier, activating pyrazolone 

enhanced the nucleophilicity of both O- and N
2
 center of the pyrazolone ring. The 

reaction between the pyrazolone and benzoyl chloride afforded only one isomer 

identified later as benzoyl ester of the pyrazolone (Scheme 47).   

 

 

 

 

 

 

 

 

 

Scheme 47: Synthesis of 4-arylhydrazono-benzoyl-5-trifluoromethyl-2,4 

dihydropyrazoline 124a-h 

 

In method 2, benzoyl group introduced directly into the hydrazine nitrogen 

then cyclizaed followed by diazotization to afforded the N-benzoyl analogue 127a-c 

(Scheme 48). The structures of both O-benzoylation and N-benzoylation were 

confirmed. 

Entry R R´ 

124a 3-F 4-F 

124b 4-F 4-F 

124c 3-CF3 4-F 

124d 3-CF3 4-OCF3 

124e 4-F H 

124f 3-NO2 H 

124g 3-NO2 4-F 

127h 4-Br H 
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The structure of the obtained products 124a-h were confirmed by using FT-

IR, 
1
H-NMR, 

13
C-NMR and LC-MS. The IR for 4-[2-(3'-nitrophenyl)hydrazono]-3-

(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f confirmed the formation of 

Pyrazolone-O-benzoyl by the appearance of a the sharp signal at ν = 1725 cm
-1

 

assigned to the ester group formed by the bezoyl and the pyrazolone O-atom. While 

no signals observed at ν = 1640-1690 cm
-1

 related to the pyrazolin-3-one (Figure 48). 

1
H-NMR (400 MHz, DMSO-d6) showed all aromatic protons, as maltiplet at δ 7.54 

and 7.71 ppm integrated to one and two protons repectivly. Then it showed doublet 

at δ 7.85 ppm with coupling constant J = 7.6 Hz. 
1
H-NMR also showed a multipltet 

at δ 8.04 ppm integrated to one proton. Then singlet at 8.45 ppm assigned for the H-

2´ (Figure 49). 
13

C-NMR (100 MHz, DMSO-d6) also used to confirm the correct 

number of carbon atoms at the correct chemical shifts. The pyrazoline carbones C-3 

resonates at δ 158.8 ppm while C-5 appeared at δ 149.1 ppm. The ester carbonyl 

appeared at 165.6 ppm (Figure 50). 

 

 

 

 

 

 

 

 

Scheme 48: Synthesis of  2-benzoyl-5-trifluoromethyl pyrazol-3-one 127a-c 

Entry R 

127a 3-CF3 

127b 2,4-di-Cl 

127c 3-NO2 



113 

 

 

 

 

Figure 48:  IR Spectrum of 4-[2-(3'-nitrophenyl)hydrazono]-3-(trifluoromethyl)-4-

4H-pyrazol-3-benzoate 124f 

 

Figure 49:
 1

H-NMR Spectrum for 4-[2-(3'-nitrophenyl)hydrazono]-3-

(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f 
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Figure 50: 
13

C-NMR Spectrum for 4-[2-(3'-nitrophenyl)hydrazono]-3-

(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f 

 

The mass spectroscopic analysis was used to confirm the fractions of the 

targeted product 124f. The total molecular ion peak appeared at m/z 407 with 25% 

intensity. The fragment mass spectroscopic scheme shows  the pattern of 

fragmentation with its relative intensity (Scheme 49). 
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Figure 51: Mass spectrum for 4-[2-(3'-nitrophenyl)hydrazono]-3-(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f 

1
1
5
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Scheme 49: Mass fragments scheme for 4-[2-(3'-nitrophenyl)hydrazono]-3-

(trifluoromethyl)-4-4H-pyrazol-3-benzoate 124f 

 

To confirm the formation of O- and N-benzoyl, spectrascopic analysis such as 

IR, and NMR were used. For example, IR spectroscopy analysis was used to 

compare between the O-isomer 124f  and the N-isomer 127c using the IR signals 

appeared within ν = 1650-1690 cm
-1

.  The formation of  O-isomer 124 leads to the 

disappearance of the amid carbonyl at 1650-1690 cm
-1

 (Figure 52, A) while the 
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formation of  N-isomer is confirmed by the existing of the amid-carbonyl at 1640-

1690 cm
-1

 (Figure 52, B). 

The 
1
H-NMR (400 MHz, DMSO-d6)  data also used to confirmed the 

formation of both our O- and N-isomers. Studying the difference in chemical shift of 

the aromatic protons in both isomers. The aromatic protons in O-isomer 124f 

observed shifted little bit to the lower filed region δ 7.54-8.45 ppm compared to the 

N-isomer 127c which appear at δ 7.55-7.85 ppm (Figure 54). 

13
C-NMR (100 MHz, DMSO-d6) also used to confirmed the structure of N

2
-

benzoyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-pyrazolone 127c by confirm 

the correct number of carbon atoms at the correct chemical shifts. The pyrazoline 

carbone C-3 resonates at δ 158.0 ppm while C-5 appeared at δ 140.1 ppm. And the 

ester carbonyl appeared at 165.1 ppm (Figure 55).  

 

Figure 52: IR Spectrum of N
2
-benzoyl)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-pyrazolone 127c 
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Figure 53: IR Spectra for (A) O-isomer 124f, (B) N-isomer 127c 

(A) 

(B) 
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Figure 54:
 1

H-NMR Spectrum for N
2
-benzoyl)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-pyrazolone 127c 

 

 

Figure 55: 
13

C-NMR Spectrum for N
2
-benzoyl)-4-(3'-nitrophenylhydrazono)-5-

trifluoromethyl-pyrazolone 127c 
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Figure 56: Mass spectrum for N
2
-benzoyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-pyrazolone 127c 

1
2
0
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Scheme 50: Mass fragments scheme for of  N
2
-benzoyl)-4-(3'-

nitrophenylhydrazono)-5-trifluoromethyl-pyrazolone 127c 

 

2.4  Summary 

The main objective of the present study involved synthesis of some novel 

pyrazolone derivatives and to estudy their mechanisms and to confirm suggested 

structures. The study includes the syntheses and characterization of new pyrazolone 

derivatives, such as: pyrazolone riboside, deoxyriboside and benzolyated analogues. 

The organic synthesis contains two main parts, synthesis and structural analysis. 

Initially, the synthesis of pyrazolone covered their reaction mechanisms and 

the spectral data analysis to confirm suggested structures of the novel derivatives. 
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Two isomers were successfully obtained and identified as O- and N- isomers. The 

structures of two isomers were confirmed using FT-IR, 
1
H-NMR, 

13
C-NMR and LC-

MS/MS spectroscopic techniques. From the data analysis, it was stated that the 

reaction time regeioselective controlled the synthesized O- and N-isomers.   
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Chapter 3: Biological Activities 

3.1 Introduction 

Due to the increasing incidents of human’s susceptibility to microbial and 

cancerous infections, attempts have been made to synthesize new heterocyclic 

compounds including pyrazoles to overcome the antimicrobial resistance and to 

minimize its side effects. Although pyrazoles have been reported to exhibit a wide 

range of biological activities, their potential has not been exploited to its full extent 

with respect to the previous reported applications. This part aimed to study the 

biological activities possessed by newly synthesized pyrazoles and their derivatives 

against common microbes as well as cancerous cells. 

Some of the published results obtained from pyrazoline compound, including 

nucleosides, against bacterial infictions and leukemia showed promising results. The 

experiment was designed to be the Bauer Kirby disk susceptibility test to detect the 

growth of microbes and their sensitivity to the new synthezised compounds. The 

obtained results were reported using the minimum inhibitory concentration (MIC). In 

case of anti-cancer study, compounds tested against HL60 human caucasian 

promyelocytic leukemia cell Line and A-549 human non-small cell lung 

adenocarcinoma,  then some active compounds tested against MDA-MB- 231 human 

breast adenocarcinoma Cell Line and HT29 human caucasian colon adenocarcinoma 

grade II Cell Line.  

 



124 

 

 

 

3.2 Experimental Part 

3.2.1 Anti-fungal and Anti-bacterial Activities 

3.2.1.1 Materials  

Media for culturing (nutrient agar and broth) were obtained from Lab M 

Limited (UK). Two  Gram positive bacteria (Bacillus and Staphylococcus aureus). 

Two Gram negative bacteria (Escherichia coli and Proteus) and used fungi (Yeast). 

Ceftriaxone (CEF) was used as a control antibiotic. 

3.2.1.2 Methods 

Some the synthesized compounds (Table 4) tested for their in vitro growth 

inhibitory activity against a panel of standard strains of pathogenic microorganism 

including Gram-positive and Gram-negative bacteria. Gram-positive bacteria’s are, 

Bacillus and Staphylococcus aureus, Gram-negative bacteria’s are Escherichia coli 

and Proteus and fungi Yeast. The efficacy determined by zone of inhibition values 

using disk diffusion technique [107]. To each plate, 20 mL of sterilized medium was 

added. After the agar had set, 10 % of each microorganism culture added to each 

plate. Sterilized Whatmann no. 1  filter paper discs (diameter 5 mm) were thoroughly 

moistened with the synthesized compounds of concentration 100 μg/ mL in DMSO 

and placed on seeded agar plates. Paper discs moistened with DMSO considered as 

negative control. Discs saturated with Ceftriaxone at the same concentration 100 μg/ 

mL used as positive control. The plates incubated at 37 °C for 18 hrs. The clear zone 

of inhibition around disc-paper demonstrated the relative susceptibility towards the 

synthesized derivatives. The MIC test method performed in series of  dilutions 

twelve concentrations in the test medium to prepare the required concentration of the 

tested compounds. Each concentration was added to a growth medium in separate 
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test tubes. All tubes are then inoculated with the selected bacteria. Turbidity of tubes 

was measured by multi-channel tube (BioTeK) at 550 nm absorbance maxima. All 

experiments were performed in triplicate. 

3.2.2 The Anticancer Activities (Viability Test Assay) 

3.2.2.1 Material 

 Reagents: Pyrazolone analogues (Table 5) prepared by dissolving specific 

concentration in dimethylsulfoxide (DMSO; Sigma Aldrich Chemie GmbH 

Steinheim, Germany) to prepare stock solutions of each tested compound. The 

concentrations of the stock solutions were 2.5, 5.0, 10, 20, 30, and 40 µM (HL60 

experiment), 6.5, 12.5, 25, 50 µM (A-549, MDA-MB- 231 and HT29 experiments). 

All solutions were stored in dark at at -20 °C. 

3.2.2.2 Tissue Culture 

Experiments were performed using cultured HL-60 (Human Promyelocytic 

Leukemia Cell Line). 0.5 mL cultured cells (3 x 10
5
) in RBMI 1640  Medium. 

Human non-small cell lung adenocarcinoma A549 cells, human breast 

adenocarcinoma MDA-MB-231 cells, and human colorectal adenocarcinoma HT-29 

cells were maintained at 37 °C in culture medium supplemented with antibiotics as 

described in by Mechkarska  and co-others [108]. 

3.2.2.3 Methods 

In HL60 experiment, stock solution added to the culture cells as 1:1000 

dilutions to give 2.5, 5.0, 10, 20, 30, and 40 MicroMolar final concentration. 

Incubation time with Cells was 30 hours. After incubation, cells were washed 2 times 

with PBS (phoshate Buffer Saline) and incubated for 5 minutes with muse cell and 
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count viability kite from millipore. The Viability was analyzed using muse cell 

analyzer flow cytometer. The DMSO concentration in each experiment was less than 

0.05%. All control contained 0.05% DMSO. Four independent experiments were 

performed for each concentration and for each molecule.  Positive control etoposide 

4, 8, and 10 MicroMolar was added to the cultured HL60 in each experiment for the 

active compounds. 

In the A-549, MDA-MB- 231 and HT29 experiments, the cells were seeded 

in 96-well plates at a density of 5 × 10
3
 cells/ well. After 24 h, all cells were treated 

for 24, 48 and 72 h with increasing concentrations of the synthesized compounds in 

triplicate. The effect of the synthesized compounds on cell viability was determined 

by measurement of ATP concentrations using a CellTiter-Glo Luminescent Cell 

Viability assay (Promega Corporation, Madison, WI, USA) [108].   

3.3 Results and Discussion  

3.3.1 Antifungal and Antibacterial Activities 

Compounds contain pyrazole moiety are used to treat diseases such as 

inflammation, pain, cancer, tuberculosis, and bacterial infections [109]. Structure 

activity relationship conducted by Radi et al in 2010, showed that substitutes at N
2
 

position of pyrazole nucleus, do not impact any biological activities [110]. This 

section is the antibacterial and antifungal properties of N
2
-pyrazole derivatives by 

calculating the areas of the zones of inhibition generated by each  synthesized 

compound. Also, the minimum concentration of inhibition (MIC) can be attributed to 

the bactericidal or bacteriostatic activity of these compounds. The data obtained in 

this part will help to confirm the effectiveness of the compound as new anti-

microbial candidate.  
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Table 4: Some the synthesized compounds used in the anti-fungal and anti-bacterial 

study 

Compound code R Structure 

113a 3-F 

 

113c 3-CF3 

113d 3-Cl 

113g 3-NO2 

116a 3-F 

 

116b 3-Cl 

117a 3-F 

 

117c 3-CF3 

117f 3-NO2 

118a 3-CF3 

 

118c 3-NO2 

122a 3-F 

 

122b 3-CF3 

122c 3-NO2 

123a 3-F 

 

123b 3-CF3 

123c 3-NO2 

124e 4-F 

 

124f 3-NO2 

127c 3-NO2 
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Table 5: Some of the synthesized compounds used in the anticancer study 

Compound 

code 
R Structure 

116a 3-F 

 

116b 3-Cl 

117a 3-F 

 

117b 3-Cl 

117c 3-CF3 

117d 4-F 

117e 4-Cl 

117f 3-NO2 

118a 3-CF3 

 

118b 4-Cl 

118c 3-NO2 

122a 3-F 

 

122b 3-CF3 

122c 3-NO2 

123a 3-F 

 

123b 3-CF3 

123c 3-NO2 

124a 3-F, R' = 4-F 

 

124b 4-F, R' = 4-F 

124c 3-CF3, R' = 4-F 

124d 3-CF3, R' = 4-OCF3 

124e 4-F, R' = H 

124f 3-NO2, R' = H 

124g 3-NO2, R' = 4-F 

124h 4-Br, R' = H 

127a 3-CF3 

 

127b 2,4-Di-Cl 

127c 3-NO2 
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3.3.1.1 Study of Inhibition Zones 

Inhibition zone is the clear zone generated around the drug-candidate, To 

accomplish our study, bacterial cultures on agar plates were subjected to expose to  

pyrazolone derivatives. The initial results of the experiment showed both of the 

Gram positive bacteria Staphylococcus Aureus and Gram negative bacteria 

Escherichia Coli were found to be inactive to word all the pyrazoles derivatives. 

While both of the Gram positive bacteria Bacillus and Gram negative bacteria 

Proteus were found affected by some of the pyrazoles derivatives. 

3.3.1.1.1 Pyrazolones Inhibition Zones 

To study the affect of some of our pyrazolines, the inhibition zone of the for 

the Yeast was determined and calculated for each compound compared to 

Ceftriaxone. The obtained data showed that compound 113c, and 113g were both 

exhibited better activities than Ceftriaxone (Table 6). Compound 113a also showed 

slightly same zone of inhibition (21 mm) when it Ceftriaxone (23 mm). However 

113d didn’t produced appreciable value of inhibition (14 mm). These results can be 

attributed to the fact that compounds having pyrazolone moieties showed the greatest 

activities against Aspergillus niger, Aspergillus flavus, Pencillium chrysogenum and 

Fusirium moneliforme are known pharmacophores and hence show activity against 

fungal infections [111]. Results collected against Bacillus using pyrazones 113a, 

113c, 113d, 113g, 113i showed that the most active compound is 113c. Compound 

113c gave area of inhibition 15 mm compared to the positive control used in this 

experiment (Ceftriaxone, 10 mm). The results showed as well that compounds 113i, 

113d, and 113g were found inactive compared to the same antibiotic. To understand 

the difference in activity, structures of both 113a,c compared with 113g were 
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studied. The study demonstrate that, fluorine atom substituted in the phenyl group at 

position 3´ was found responsible in enhancing the activity compared to the chlorine 

atom or nitro group at the same position. These results confirmed that fluorine 

substituted heterocyclic compounds are owning better activities (Table 6) and Figure 

56 same results were obtained when Gram-negative bacteria was used (Table 6) and 

(Figure 57). 

 

Table 6: Inhibition zones values for active pyrazolones with respect to Yeast, 

Bacillus and Proteus 

Compound Code 
Zone of Inhibition (mm) 

Yeast  ±  SD Bacillus ± SD Proteus ± SD 

113a 21.67 ± 0.58 13.17 ± 0.29 18.50 ± 0.50 

113c 34.33 ± 0.58 15.00 ± 0.29 26.00 ± 0.29 

113d 13.67 ± 2.08 7.83 ± 0.29 9.00 ± 0.00 

113g 24.33 ± 1.53 8.83 ± 0.29 24.00 ± 1.00 

113i 7.00 ± 0 .50 6.50 ± 0.50 10.50 ± 0.50 

DMSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

CEF 23.00 ± 1.00 10.00 ± 1.00 16.67 ± 2.08 

 

 

 

Figure 57: Comparison of inhibition zone values of some pyrazolones against Yeast, 

Bacillus, and Proteus with reference standard (CEF) 
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Values are mean of triplicate readings (mean ± SD). SD = standard deviation 
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3.3.1.1.2 Pyrazoline Ribosides Inhibition Zones 

The antibacterial activites of some pyrazoline nucleosides 116 and 117 were 

evaluated against several pathogen (Table 7). To understand the effect of furanosyl 

ring introduced at either N
2
 or O-3 of the pyrazoline ring, accululated dara showed 

that the ribose moiety has no effect on the activity against different bacteria while the 

substituted arylhydrazo groups at pyrazoline C-4 played the major factors comparing 

to the positive control used in this experiment, For example, compounds 116a and 

117a,c were found the most active compounds among all synthesized isomers with 

respect to position and the type of the glycosidic linkage. It was found that both of O-

isomer 116a and N-isomers 117a,c possessed the highest antibacterial activites ahere 

the phynyl eing substited with fluorine atom (Table 7) and (Figure 58). 

 

Table 7: Inhibition zone values for pyrazoline ribosides with respect to Yeast, 

Bacillus and Proteus 

Compound Code 
Zone of Inhibition (mm) 

Yeast  ± SD Bacillus ± SD Proteus ± SD 

116a 22.33 ± 1.53 14.67 ± 0.58 13.83 ± 0.29 

116d 18.33 ± 0.58 7.17 ± 0.29 13.00 ± 1.00 

117a 21.67 ± 0.58 13.50 ± 0.50 12.50 ± 0.50 

117c 31.00 ± 1.00 16.50 ± 0.50 0.00 ± 0.00 

117f 11.50 ± 0.50 13.5 ± 00.50 24.00 ± 2.00 

118a 28.33 ± 1.53 14.00 ± 0.50 14.83 ± 0.29 

118c 9.67 ± 0.58 5.83 ± 0.29 7.50 ± 0.50 

DMSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

CEF 23.00 ± 1.00 10.00 ± 1.00 16.67 ± 2.08 

  

Values are mean of triplicate readings (mean ± SD). SD = standard deviation 
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Figure 58: Comparison of inhibition zone values of some pyrazoline ribosides 

against Yeast, Bacillus, and Proteus with reference standard  (CEF) 

 

3.3.1.1.3 Pyrazoline Deoxyriboside Inhibition Zones 

Pyrazoles deoxyribosides antimicrobial affect is studied by exposing the five 

bacterial cultures on to the following derivatives 122a-c and 123a-c. As other 

pyrazolines derivatives the gram positive bacteria Staphylococcus aureus and gram 

negative bacteria Escherichia coli were found to be inactive to word them, while 

pyrazoles deoxyribosides found have affect on both of the gram positive bacteria 

Bacillus and gram negative bacteria Proteus.  

The affect of the pyrazoles deoxyribosides on Yeast where studied by 

recording the inhibition zone for each compound and compared them with 

Ceftriaxone. The findings showed that compound 123b has better activities than 

Ceftriaxone (Table 8). Compound 122b also showed same inhibition zone of 

Ceftriaxone (23.0 mm). On the other hand, Compounds 122c and 123c didn’t show a 

significant effect on Yeast (1.0 mm). 123b and 122b  also showed good results 

against Bacillus (14.17 and 15.83 mm) respectively. These inhibition zones values 
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are higher than that for the positive control used in this experiment (Ceftriaxone, 

10.00 mm).  Compounds 123a and 123c 113c area of inhibition (10.17 and 10.5 mm) 

respectively which are slightly higher than the same antibiotic. Similar results were 

obtained when Gram-negative bacteria was used (Table 8). These results can be 

justified by the fact that compounds 123b and 122b  having  trifluoromethyl as 

a functional group. One more time, these results established that fluorine substituted 

heterocyclic compounds have better activities (Table 8) and (Figure 59). 

 

Table 8: Inhibition zone values for pyrazoles deoxyriboside derivatives with respect 

to Yeast, Bacillus and Proteus 
 

Compound code 
Zone of Inhibition  (mm) 

Yeast ± SD Bacillus ± SD Proteus ± SD 

122a 11.50 ±  0.50 7.17 ± 0.29 7.00 ± 12.12 

122b 23.00 ± 0.50 14.17 ± 0.76 19.33 ± 0.29 

122c 1.00 ± 0.00 8.50 ± 0.50 0.97 ± 0.06 

123a 18.17 ± 0.29 10.17 ± 0.29 21.00 ± 1.00 

123b 27.83 ± 0.29 15.83 ± 0.76 19.17 ± 0.29 

123c 1.00 ± 0.00 10.50 ± 0.50 0.93 ± 0.12 

DMSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

CEF 23.00 ± 1.00 10.00 ± 1.00 16.67 ± 2.08 

Values are mean of triplicate readings (mean ± SD). SD = standard deviation 

 

 

Figure 59: Comparison of zone of inhibition values pyrazoloes deoxyribosides 

against Yeast, Bacillus, and Proteus with reference standard (CEF) 
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3.3.1.1.4   Benzolyated Pyrazolines Inhibition Zones 

Antimicrobial affect is also studied for the benzoylated pyrazoline 

derivatives. The same five bacterial cultures were exposing the on to the following 

derivatives 124a, 124g and 127c. The benzoylated pyrazoline derivatives were found 

inactive  gram positive bacteria Staphylococcus aureus and gram negative bacteria 

Escherichia coli as all other tested pyrazolines derivatives. Whereas they have affect 

on both of the gram positive bacteria Bacillus and gram negative bacteria Proteus.  

The examined enzoylated pyrazoline derivatives affect on Yeast where 

studied also and the inhibition zones were recorded for each compound and 

compared with the positive control (Ceftriaxone). The results showed that the N-

isomer 124g has good  activities in referenced to the Ceftriaxone (Table 9). 

Compound 124g showed slightly close inhibition zone  (17.0 mm) of Ceftriaxone 

(23.0 mm) against Yeast. While it show better activities against  Bacillus (15.3 mm) 

and Proteus (20.0 mm) in compared to the positive control against the same bacteria 

cultures (10.0 and 16.7 mm) respectively.  The O-isomer, on the other hand, 127c 

doesn’t show good activity ageist Yeast culture. Close to the positive control against  

Bacellues (9.8 mm) and beter than the antibiotic (CEF) against Proteus (17.2 mm). 

In general, It was found that both of O-isomer 124g and N-isomers 127c showed high 

antibacterial activates but O-isomer 124g activates were higher (Table 9) and (Figure 

60).  
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Table 9: Inhibition zone values for benzolyated pyrazolines for Yeast, Bacillus and 

Proteus 

Compounds code Zone of Inhibition (mm) 

Yeast ± SD Bacillus ± SD Proteus ± SD 

124a 6.17 ± 0.29 6.33 ± 1.04 10.17 ± 0.76 

124g 17.00 ± 0.50 15.33 ± 1.53 20.00 ± 1.00 

127c 8.00 ± 1.50 9.83 ± 0.29 17.17 ± 0.76 

DMSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

CEF 23.00 ± 1.00 10.00 ± 1.00 16.67 ± 2.08 

Values are mean of triplicate readings (mean ± SD). SD = standard deviation 

 

 

Figure 60: Comparison of zone of inhibition values of some Benzolyated Pyrazolines 

against Bacillus, Proteus and Yeast with reference standards 
 

3.3.1.2 Minimum Inhibition Concentration 

Minimum Inhibition Concentration (MIC) is the minimum concentration of a 

substance which is required to inhibit the growth of microorganisms in a culture. It is 

a measure of strength of the antimicrobial compound [16]. The strength of 

antimicrobial activity has an inverse relationship with MIC, higher value of MIC 

indicates lower strength of the compound, and low MIC values indicate towards a 
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strong antimicrobial activity. Ahar et al. in 2015 analyzed the in-vitro activity of 

chemically synthesized pyrazolones using this method and the MIC values for six 

bacteria were calculated and found to be influenced by functional groups present 

[17]. The MIC studies of certain compounds in this study were evaluated, against 

Yeast, Bacillus and Proteus to determine the potency of the synthesized compounds’ 

antimicrobial activity. 

MIC studies on some active synthesized pyrazolines during the study were 

carried out, and the results are given in Table 51. Among all the pyrazolones tested 

for their MIC values, 4-(3'-fluorophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 113a was found to have the maximum value of MIC, for all 

the three microbes, that is, Yeast, Bacillus, and Proteus. This indicates that a high 

concentration of this compound will be required to completely inhibit their growth, 

thus making it the least desired compound of choice for inhibiting microbial growth. 

Among the Yeast, Bacillus, and Proteus; Proteus required the maximum 

concentration of 113a, whereas the MIC values for other two were the same. Yeast, 

Bacillus and Proteus were inhibited most effectively 113c, followed by 113g and 

113d.  Bacillus had the least value of MIC out of all the microbes, regarding the 

three pyrazoles 113c, 113g and 113d. This indicates that Bacillus is more prone to 

inhibition by active pyrazolone compounds. 

The common active pyrazolones were subjected to chemical reactions to 

synthesize the riboside derivatives of the compounds, and further the MIC values for 

these compounds were tested, and tabulated as below. Among all the riboside 

pyrazolones tested for their MIC values, 117a was found to have the maximum value 

of MIC, for all the three microbes. This indicates that a high concentration of this 
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compound will be required to completely inhibit their growth, thus making it the 

least desired compound of choice for inhibiting microbial growth.  

As seen in Table 51, Yeast was inhibited most effectively by 118a, with least 

concentration, among all the compounds. 116b had comparable values of MIC, and 

are secondary in inhibition activity as compared to 118a. 117a had higher values of 

MIC, as compared to other compounds. Hence, these are not favored over other 

compounds for inhibition of growth. 

The active pyrazoles derivatives were  compared with MIC concentration of 

Ceftriaxone, (antibiotic positive control), and Amphotericin B (antifungal positive 

control) then tested upon the gram negative bacteria Proteus and Yeast. Comparing 

with The positive control helped in results validation. 

 As seen in Figure 61, 113c,g exhibited the least values of MIC, showing 

slight increment in values as compared to the control. 113d, 116d, and 118c 

exhibited concentrations less than 1 µg/mL, and even less than the positive controls 

(Ceftriaxone and Amphotericin B).  

116a and 116g have concentrations higher than 1µg/mL, with 116a having 

higher value as compared to 116g. Hence, 116g is a better inhibitor as compared to 

116a. 113a had MIC value greater than 2µg/mL, thus it is not a very good inhibitor 

of Proteus cultures. Among all the compounds 117a exhibited the highest value of 

MIC, which makes it the least favored compound to bring about microbial inhibition.  
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Table 10: MIC for active pyrazolones against Yeast, Bacillus and Proteus 

Compound Code 
MIC for (µg/ml) 

Yeast Bacillus Proteus 

113a 1.234 1.234 2.468 

113c 0.151 0.075 0.151 

113d 0.336 0.084 0.672 

113g 0.324 0.081 0.162 

116a 0.364 0.728 1.456 

116b 0.547 0.034 0.547 

117a 1.644 3.287 6.574 

117c 0.316 2.525 ND 

117f 0.533 0.533 1.065 

118a 0.124 0.062 0.497 

CEF -  2 

Amphotericin B* 0.25 - - 

*Amphotericin B: antifungal 

 

 

Figure 61: MIC for some active pyrazolones against Yeast, Bacillus and Proteus 

compared to the positive controls 
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3.3.2 Anticancer Activities (Viability Test) 

3.3.2.1 Effect of the synthesized compounds on the cellular viability of HL60 

Leukemia Cancer Cell Line 

To examine the anticancer effect of the synthesized compounds 116a, 116b, 

117a, 117b, 117c, 117d, 117e, 117f, 118a, 118b, 118c, 122a, 122b, 123a, 123b and 

124f on Leukemia cancer cell line; the effect of various concentration of synthesized 

compounds on the proliferation of HL-60 were measured. The results showed a 

decrease in the cellular viability when the cells exposed to various concentration of 

different synthesized compounds 117a, 122a, 122b and 123a and Etoposide. Rile 

there is no significant effect were shown in compounds 116a, 117e, 118a, 118b and 

124f graphs. Furthermore, treatment with 20 µM of synthesized compounds for 24, 

48  and 72 hrs (Figure 62) resulted in approximately 50% decrease in the cell 

viability. The results confirmed that the cellular viability of the experienced 

compounds is a concentration- and time-dependent.  

3.3.2.2 Effect of the synthesized compounds on the cellular viability of the A-549 

cell line 

The anticancer effect of some of the synthesized compounds 116a, 117a 

117c, 117d, 117e, 117f, 117g, 118b, 118c, 122a, 124a, 124b, 124c, 124d, 124e, 

124f, 124g and 127c were examined on A-549 cell line. The results illustrated a 

decrease in the cellular viability of A-549 cell line when exposed to various 

concentration of different synthesized compounds. Additionally, treatment with 

small dose (25 µM) of synthesized compounds for 24, 48  and 72 hs (Figure 63)  

resulted in approximately 50 % decrease in the cell viability of A-549. The exposure 

of A-549 to synthesized compounds decreased cellular viability in a concentration 
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and time-dependent manner compared to a control cells treated with vehicle 

(DMSO). 

Effects of the experimental compounds on cell proliferation were determined 

by measurement of ATP concentrations using a CellTiter-Glo Luminescent Cell 

Viability assay. The DMSO concentration was less than 0.05% in all experimented 

compounds. 

3.4  Summary 

The present study involves extensive experiments which help to explore and 

understand the biological activity of the synthesized compounds. The study involved 

synthesis of pyrazolone compounds, and their testing for antimicrobial and 

anticancer activities. Both 113c and 118c were found to be the most effective in 

inhibiting the growth of all test microbes (Yeast, Bacillus, Proteus). Furthermore 

117a, 117e, 117f, 122a, 122b, 123a, 124c, 124d, 124f and 124g were found the most 

effective as anticancer drug in different cell lines. In the subsequent section, the 

physical interactions of the derived compounds of pyrazolones were studied, 

especially with regards to their behavior with UV, fluorescence radiation and DNA.  
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Figure 62: Cell viability of HL-60 cells with 2.5, 5.0, 10, 20, 30, and 40 μM of the 

synthesized pyrazolone derivatives. DMSO concentration was 0.05 % in all 

experimented compounds 
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Figure 63: Cell viability of A-549 cells with 6.5, 12.5, 25 and 50 μM of the 

synthesized pyrazolone derivatives for 1, 2 and 3 days 
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Chapter 4: Physical Studies of Pyrazole and its Derivatives 

4.1 Introduction 

Pyrazolone compounds showed some biological applications as anti-

inflammatory, anti-microbial, anti-cancer. Before any compound considered as a 

pharmacological agent several properties should be studied and evaluated. In this 

part, the physical properties of the newly synthesized pyrazolone derivatives have 

been studied. This study include the stability of the compounds  113g, 117f, 118c and 

127c in different solvents, and the effect of a series of pHs.   

Pyrazolone nucleosides have been found to have anti-bacterial and antitumor 

effects. Studies reported that trifluoromethyl nucleosides induce cell apoptosis via 

different mechanisms as mentioned in chapter 1. In this part, the direct interaction 

with DNA will be discussed by examing the DNA in the presence of the newly 

sunthesized pyrazoline nucleosides. Confirmations for the interaction of the 

investigated compound 118c with duplex DNA (ct-DNA) were obtained using 

melting temperature curves, circular dichroismand titration, UV–vis spectroscopy 

and fluorescence spectroscopy. 

4.2 Materials and Reagents 

All chemicals and reagents were used without further purification. 

Ethylenediaminetetraacetic acid (EDTA), 99 %, potassium chloride, 99 %, 

tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), 99 % and calf thymus 

DNA were purchased from Sigma-Aldrich.  
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4.3 Apparatus 

Fluorescence measurements were carried in quartz cell (1.00 cm path length) 

using Cary Eclipse model-3 spectroflourometer equipped with a high intensity 

Xenon flash lamp (Varian, Austria). Absorption spectrophotometric measurements 

were carried out using Agilent 8453, matched with 1 cm quartz cells. CD 

measurements were done using Jasco J-815 spectrometer (Jasco, USA). The study of 

the PH effects was done using Orion-401-Plus pH meter supported with Orion glass 

electrode.  

4.4 Small Molecules-DNA Interactions  

Tris-KCl buffer solution 

A 0.01 M Tris–KCl buffer solution, pH 7.4, was prepared by dissolving 10.00 

mM of tris–hydroxymethylaminomethane hydrochloride (1.576 g), 1.00 mM 

Na
2
EDTA (0.3722 g) and 100 mM KCl (7.455 g) into 1.00 L of deionized water. The 

pH was adjusted using the glass electrode. 

Ligands’ solutions 

Stock solutions (0.02 M) of 113g, 117f, 118c and 127c were prepared in 

100% DMSO. Solutions having concentrations of 1 x 10
-3

, 5 x 10
-4

, 1 x 10
-4 M were 

prepared by appropriate dilution into 4 mL using Tris-KCl buffer, pH 7.4. DMSO 

was kept at 5 % in all solutions  

Calf Thymus DNA (ct-DNA) 

Calf thymus ct-DNA 107 mg/L (1.07 x 10
-5

 M) was prepared by dissolving 

53.5 mg of DNA into 500 mL Tris-KCl buffer, pH 7.4, without sonication or stirring. 
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To prevent shearing of the large genomic DNA, the solution was gently inverted 

overnight at 4.00 
o
C to completely solubilize the DNA. Solutions of DNA are stable 

for several months at 4.00 
o
C in Tris–Cl buffer pH 7–8.  

Melting Temperature Curves 

The interaction between compounds 113g, 117f, and 118c and ct-DNA 

studied using CD as follow; a 1.00 mL ct-DNA (1.07 x 10
-5

 M, 107 ppm) and its 

ligands (3.93 x 10
-6 

M) in Tris-KCl-buffer, pH 7.4 were heated up in 5.00 C 

increments in the range 25 – 95 C using 5 minutes as incubation time intervals to be 

sure that the temperature in the cuvette is similar to that of the water bath. The data 

collected with 1 – 2 C increments in temperature in the CD jump range. CD spectra 

were recorded in the range 200 – 400 nm against temperature  

UV-Vis Study 

Solution (5.0 x 10
-5

 M) of 118c was prepared in Tris-KCl buffer, pH 7.4, 5 % 

by diluting 50 µL of 1 x 10
-3 

M to a final volume of 1000 L. Successive additions of 

(1.07 x 10
-5 

M) DNA were added. Solutions were shacked 10 times up-down after 

each addition and incubated for 3 minutes at room temperature then scanned in the 

range 200 – 700 nm using 1500 µL cuvette, 1cm path length. Increasing incubation 

time to one hour was found ineffective. Therefore, 5 min incubation time was applied 

throughout all measurements. Titration was stopped at saturation when no change in 

absorbance intensity observed. 
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Fluorescence Study 

Interactions of 118c with ct-DNA were followed fluorimetrically at 
max

 of 

emission 425 nm and excited at 280 nm respectively using slits width of 10.00 nm.  

Circular Dichroism Study 

The interaction between 118c and ct-DNA was studied. 118c (4 x 10
-6 

M, 

1000 µL) was prepared using Tris-KCl buffer, pH 7. then titrated with successive 

amounts of the ligands’ solutions (1 x 10
-4

M – 1 x 10
-3 

M). 

Solutions after each addition was shacked well, incubated for 3 minutes at 

room temperature and scanned in the range 200 – 400 nm with 50 nm/min, band 

width 1 nm and 3 accumulations. Increasing incubation times to one hour was found 

ineffective. Therefore, 3 min was applied. Incubation time throughout all 

measurements. 

4.5 Results and Discussion 

4.5.1 Effect of Solvents 

The solvents effect on organic compounds have been studied for more than a 

century [112]. Studying the effect of solvents on azo compounds using electronic 

spectra (absorption and fluorescence) became an important subject for research 

because it can play a significant role in the photophysics of the excited states [113]. 

Azo dyes are one of the important classes of colorants [112] and they are represent 

over than 50% of all colorants [114]. Their photosensitivity and the superior 

structuring properties are mainly due to the lability of substituents binding to the 

N=N groups [115]. Furthermore, heterocyclic azo dyes have played an important role 
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in the development of the chemistry of dyes. The physical properties of arylazo 

pyrazolones are strongly related to their tautomerism. [114]. 

In solutions, the solvent environment cause important changes in the electro-

optical properties of the azo dye compounds. Theories behind the solvent effects on 

the electronic spectra developed to estimate the electro-optical parameters, such as 

dipole electric moments electric permittivity and refractive indices. One of these 

methods is the solvatochromism [113]. Solvatochromism is caused by differential 

salvation of the ground and the first excited state of the photo-active molecule. If the 

ground state of the molecule is stabilized by increasing the solvent polarity; negative 

solvatochromism (blue shift) will result. On contrast, a positive solvatochromism 

(red shift) will result by stabilize the first excited state relative to the ground state 

[116].  

The intensity, shape, and maximum absorption and/or emotion wavelength of 

dyes in solution depend strongly on the solvent-solute interactions and solvent 

properties. This effect is related to the interaction of the dye–solvent. The solvent 

affect could be from either non-specific (dielectric enhancement) or specific solute–

solvent interactions (e.g. hydrogen-bonding). The solvent effect can be determined 

by Solvent polarity scale or solvatochromic parameters. Solvent polarity is a 

commonly used term related to the capacity of a solvent for solvating dissolved 

charged or neutral. The effect of solvent polarity on the absorption spectra are 

interpreted by means of linear solvation energy relationship (LSER) using a Kamlet–

Taft Eq. (1).  

              ------------(1) 
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Where π* is a measure of the solvent dipolarity/polarizability, β is the scale 

of the solvent hydrogen bond acceptor (HBA) basicities, α is the scale of the solvent 

hydrogen bond donor (HBD) acidities, and ν0 is the regression value of the solute 

property in the reference solvent cyclohexane. The regression coefficients s, b and a 

in Eq. (1) measure the relative susceptibilities of the solvent-dependent solute 

property (absorption frequencies) to the indicated solvent parameters [117]. 

This study of solvent effects on the electronic (absorption and fluorescence) 

spectra. It is directed to describe some applications giving information about the 

liquid structure, including the internal forces in liquid state and also allowing 

estimation the molecular electro-optical parameters in the electronic excited states of 

the spectrally active molecules [113]. 

The synthesized compounds were dissolved in different solvents and the 

resulting effect was observed through the absorption spectra. Compounds 113g, 117f, 

118c and 127c  were analyzed using absorption and fluorescence spectroscopy. The 

correlation of spectral bands with the solvent systems helped in identifying the 

solvent which maintains the pyrazolone in its most stable state.  

4.5.1.1 Solvent Effect Using UV-Visible Spectroscopy 

Four solvents used (Ethyl alcohol, Methyl alcohol, DMSO, and DMF) to 

measure  absorption bands were altered due to the physical interactions between 

solvent and solute molecules [28]. For compound 113g, has a maximum absorption 

peak (λmax) at (418 nm), mainly regard to n-* transition. In different solvents, 113g 

showed highest absorbtion in EtOH, which indicate a strong interaction between the 

solvent and the solute molecules. In DMSO and DMF, 113g shows similar 
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interaction. While in MeOH the compound shows decreasing in its absorption 

compared to other solvents (Figure 64). 

For compound 117f, absorption peak in DMSO and Methanol showed small 

red shift. The compound showed lower absorbance with ethanol, and the DMF 

absorption band tend to show shift towards lower range of wavelength (Figure 64). 

For compound 118c, absorption peak in DMSO showed highest red shift thus, 

DMSO proved to be the most suitable solvent system (Figure 64). In experiments 

conducted on Azo dyes by Zakerhamidi et al, showed the suitability and stability of 

DMSO solvent systems, pertaining to the strong solvent solute interactions, showing 

red shifts [30].  

 

  

Figure 64: The absorption spectra for the synthesized compounds (a) 113g, (b) 117f, 

(c) 118c and (d) 127c in different solvents (EtOH, MeOH, DMSO and DMF) 
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Among the four solvents DMSO has the highest value of dielectric constant, 

followed by dimethylformamide DMF, methanol and ethanol [29]. Higher dielectric 

constants are due to high polarity of the solvent, which could lead to higher solvent-

solute interaction [29]. Figure 65 shows the correlations of shifts in the frequency of 

the n-* band with  dielectric constant (D) constants.  

 

Figure 65: Solvents dielectric constant versus the absorption at λmax of  synthesized 

compounds (a) 113g, (b) 117f, (c) 118c, and (d) 122c 

 

Table 11 shows the solvent parameters and the tested compound maxima 

absorption. When absorption spectra are recorded; usually, the spectral shifts are 

attributed to specific solute-solvent interaction in form of hydrogen bonding or 

solvent properties. Solvatochromatic effect has been used to determine the magnitude 

of the solute-solvent interactions such as the polarizability/dipolarity parameter, π*, 

of the solvent, as well as giving information about hydrogen bond donor (HBD), α 

and/or acceptor (HBA), β ability of the solvent [113]. The correlations of shifts in the 
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frequency of the n-* bands of all the examined compounds with  the solvents 

parameters (π*,β and the normalized polarity parameter E
 
 

) were obtained (Figure 

66) 

Table 11: Solvent parameters of the studied solvents and absorption maxima of the 

synthesized compounds. E
 
 

: normalized polarity parameter of Dimroth–Reichardt; 

Solvent parameters of Kamlet–Taft: π*, polarity–polarizability; α, hydrogen-bond 

donor, and β, hydrogen-bond acceptor. 

Solvent E
 
 

 Dielectric Constant (D) π* β α 113g 117f 118c 127c 

EtOH 0.65 24.6 0.54 0.75 0.86 411 416 405 409 

MeOH 0.76 32.7 0.60 0.66 0.98 400 414 411 418 

DMSO 0.44 46.7 1.00 0.76 0.00 418 418 416 415 

DMF 0.39 36.7 0.88 0.69 0.00 417 424 409 405 

All solvent constanst are referenced by [117] 

 

 
 

Figure 66: Solvents π* constant versus the absorption at λmax of synthesized 

compounds (a) 113g, (b) 117f, (c) 118c, and (d) 127c 
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Figure 67: Solvents β constant versus the absorption at λmax of synthesized 

compounds (a) 113g, (b) 117f, (c) 118c, and (d) 127c 

 

 

Figure 68: Solvents normalized polarity parameter (E
 
 
) versus the absorption at λmax 

of synthesized compounds (a) 113g, (b) 117f, (c) 118c, and (d) 127c 
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MeOH and EtOH are protic solvents,  hydrogen bond donor capacity (HBD), 

α for MeOH is higher than in EtOH (0.98 and 0.86) respectively. In HBD 

interactions, during the excitation process, if the electron density move away from 

the basic atom, formation of the hydrogen bond opposes this movement; a blue shift 

is observed with an increase of the HBD capacity of the solvent. Conversely, if the 

charge migration occurs towards the basic atom upon excitation, a red shift is 

observed with the increasing HBD capacity of the solvent [118] . That is why there is 

blue shift of 113g and 117f in MeOH and EtOH in compared with 118c and 127c. 

Additionaly, the shift is higher in MeOH as it has higher hydrogen bond donor 

capacity. 

 

Figure 69:  Solvents hydrogen-bonding donor (HBD) acidity (α) versus the 

absorption at λmax of synthesized compounds (a) 113g, (b) 117f, (c) 118c, and (d) 

127c 

 

4.5.1.2 Solvent Effect Using Fluorescence Spectroscopy 

The fluorescence spectra for the obtained products in solvents with different 

polarity gave information about the effect of polarity of the solvents on the profile of 

the spectra, which is a result of electronic interactions between the pyrazolines 

derivatives and the surrounding environment. Figure 70.  Usually dye compounds in 

aprotic solvents, show a single absorption band in the visible range, whereas in protic 

solvents this band is considerably broadened and is split into two bands [113] as 
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shown by the pyrazolines azo derivatives fluorescence in EtOH. Table 14 shows 

different solvent parameters and  fluorescence maxima of the synthesized 

compounds.  

 

 

Figure 70: Fluorescence spectra for the synthesized compounds (a) 113g, (b) 117f, 

(c) 118c and (d) 122c in different solvent systems (EtOH, MeOH, DMSO and DMF) 

 

Table 12: Solvent parameters of the studied solvents and fluorescence maxima of the 

synthesized compounds. E
 
 

: normalized polarity parameter of Dimroth–Reichardt; 

solvent parameters of Kamlet–Taft: π*, polarity–polarizability; and hydrogen-bond 

donor 

Solvent E
 
 

 
Dielectric 

Constant (D) 
π* α 113g 117f 118c 122c 

EtOH 0.65 24.6 0.54 0.86 502 587 501 596 492  587 501  596 

MeOH 0.76 32.7 0.60 0.98 535 535 542 550 

DMSO 0.44 46.7 1.00 0.00 481 497 487 478 

DMF 0.39 36.7 0.88 0.00 496 505 493 490 
 

 

The correlations of shifts in fluorescence maxima of the synthesized 

compounds band with  D, and E were obtained (Figuers 71 and 72). Figure 71 shows 
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that the flouresence shift of the synthesized compounds are directly proportion with 

the solvent polarity as  dielectric constant (D). When the D increases, a red shift 

occurred for the fluorescence maxima band of the examined compounds. This results 

were confirmed by the solvents normalized polarity values (E
 
 

); A red shift occurred 

for the fluorescence maxima band of the compounds as the (E
 
 

) increases (Figure 

72). 

 

 

Figure 71: Solvents dielectric constant versus the fluorescence at λmax of  synthesized 

compounds (a) 113g, (b) 117f, (c) 118c, and (d) 122c 

 

Table 13 shows that, DMSO exhibited the highest fluorescence, with least 

amount of quenching in all the compounds as shown in Figure 70. This may indicate 

that charge-transfer interactions between DMSO and the compounds occur most 

significantly. Methanol showed the least fluorescence with all the compounds, owing 

to weakest electronic interactions with the compounds. Figure 73  showed correlation 
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between the normalized polarity and the fluorescence. Interestingly, it shows that as 

the solvent polarity increase the intensity of the tested compound fluorescence 

decreases. While the compound intensity increases with increasing the polarizability 

of the solvents (Figure 74).   

 

 

Figure 72: Solvents normalized polarity parameter (E
 
 

) versus the fluorescence at 

λmax of synthesized compounds (a) 113g, (b) 117f, (c) 118c, and (d) 122c 

 

Table 13: Solvent parameters of the studied solvents and fluorescence intensity of the 

synthesized compounds. E
 
 

: normalized polarity parameter of Dimroth–Reichardt; 

solvent parameters of Kamlet–Taft: π*, polarity–polarizability 

Solvent E
 
 
 π* 113g 117f 118c 122c 

MeOH 0.76 0.60 7.0 25.9 9.4 8.2 

EtOH 0.65 0.54 
52. 8 

60.5 

100.4 

180.5 

41.3  

119.6 

44.6   

45.3 

DMSO 0.44 1.00 179.8 239.3 240.2 215.1 

DMF 0.39 0.88 113.5 29.9 40.4 60.0 
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Figure 73: Solvents normalized polarity parameter (E
 
 

) versus fluorescence intensity 

of the synthesized compounds (a) 113g, (b) 117f, (c) 118c, and (d) 127c 

 

 

Figure 74: Solvents polarity–polarizability (π*) versus fluorescence intensity of the 

synthesized compounds (a) 113g, (b) 117f, (c) 118c, and (d) 127c 
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4.5.2 Effect of pH 

Effect of pH (3-11) on the obtained products was studied using UV-Vis 

spectrophotometer. The compounds were scanned after incubating in phosphate 

buffer for 30 minutes. Figure 74 shows compounds 113g and 118c. 113g shows 

maximum absorption at 411 nm. There is no change in this band in pH 3, 4, 8, 9, 10 

and11. While there is an increase in the absorption intensity in pH 5, 6 and 7.  On 

other hand, 118c shows two maximum absorption while increasing the pH. It has two 

absorption maxima at pH 3.5 (340 and 417 nm). By increasing the pH, the intensity 

of  the band at 340 nm decrease while the other one increase. The is because of the 

Keto-Enol tutomarizm,  

Figure 75 (b) shows also at two band absorbtion band appears at good 

intensity at pH 7.13 and 7.68. Therefore, natural pH is the optimum to use in the 

interaction experiments between this compound and the DNA. 

 

Figure 75: The absorption spectra for effect of pH (3-11) on (1 x 10
-5

 M) of 

synthesized drug (a) 113g, (b) 118c using phosphate buffer (0.01 M) and 5 % DMSO 
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4.5.3 Pyrazolones-DNA Interaction 

The interaction of the synthesized compounds with DNA was studied to their 

binding affinity, nature of binding and effect of binding on DNA conformation of. 

The knowledge of these parameters can aid in drug designing, so as to design the 

drugs target specific sites on DNA and producing minimal side effects. The UV-Vis 

titration gave information regarding the nature of interaction of the drug with DNA, 

and was used for calculating the binding affinity of the drug with DNA [119]. The 

circular dichroism (CD) was used to observe conformational change occurred after 

the binding of pyrazolone molecules with DNA. It was also utilized for calculating 

the melting temperature of DNA molecules. CD has proved the best techniques for 

studying structural changes accompany with the interactions between biomolecules 

and ligands [120]. Fluorescence titration technique was employed to investigate the 

mode of interaction between the molecules and DNA [119].  

4.5.3.1 Melting Temperature Curves 

Melting temperature (Tm) is the temperature at which the duplex DNA is mid 

transition to the single stranded state [121]. Its value is used as an indication of 

drug’s stabilizing capability upon binding with the DNA [121]. The temperature 

curve of ct-DNA complex with  pyrazolones and pyrazolone ribosides were studied 

in this part. Studying the effect of the drugs on the thermal stability of the double 

stranded DNA structure help in developing knowledge about the mode of interaction 

between the drug molecules and ct-DNA.  

The melting temperature curves for ct-DNA, and its complex with 114g, 117f 

and 118c, were constructed using (CD) spectroscopy. The 1.00 mL ct-DNA (1.07 x 

10
-5

 M, 107.0 ppm) solution in Tris-KCl-buffer pH 7.4 was heated up in 5.0 C 
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increments within the range 25 to 98 C. Then a 1.0 mL of ct-DNA - ligands 

complexes solution contain ct-DNA (1.07 x 10
-5

 M) and ligands (4.0 x 10
-6

 M) in 

Tris-KCl buffer pH 7.4 was heated from 25 to 98 
o
C. Incubation time intervals of 5 

minutes at room temperature to ensure that the solution attained the required. The 

experiments were repeated with 1-2 C increments in temperature in the CD jump 

range. The CD spectra were recorded in the range 200 – 400 nm against temperature. 

Figure 76 shows the melting temperature curves of ct-DNA and its complexes 

with 113g, 117f and 118c. Figure 76 shows that the pyrazoline azo day 113g 

stabilized ct-DNA by ΔTm = +4.5 °C, (Tm,113g–ct-DNA − Tm, ct-DNA = 95.4 – 90.9 

= +4.5 °C). The pyraoline acetylated riboside 117f stabilized ct-DNA by ΔTm = +2.9 

°C while the free pyrazoline riboside 118c stabilized ct-DNA by ΔTm = +4.8 °C 

(Table 14). These results indicated that the pyrazolone azo dye 113g and free 

pyrazoline nucleoside 118c have nearly the same magnitudes and are more efficient 

in stabilizing the ct-DNA than the acetylated pyrazoline nucleoside 117f. These 

differences in ΔTm values between the three compounds 113g, 117f and 118c may be 

attributed to the number of H-bond centers [122-125].  

Table 14: Drug structures and  ΔTm of drug-DNA complexes comparing with the ct-

DNA Tm (90.9 
o
C) 

Drug  ΔTm  (
o
C) 

113g 4.5 

117f 2.9 

118c 4.8 
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Figure 76: Melting temperatures’ curves for ct-DNA and ct-DNA-ligands complexes. 

1.0 mL of ct-DNA (1.07 x 10
-5

 M) solution in tris-KCl buffer, pH 7.4 was heated up 

in the range 25-98 
o
C. A 1.0 mL of ct-DNA-ligands complexes solution contain ct-

DNA (1 x 10
-9

 M) and ligands (1.10 x 10
-5

 M) in Tris-KCl buffer pH 7.4 was heated 

from 25-98 
o
C 

 

Pyrazolone derivaitives used in this section is illustrate in Figure 76. The 

pyrazolone azo dye 113g has three hygdogen-bond donors and two hydrogen-bond–

acceptor. While forming the glycosidc bond via the pyrazoline nitrogen atom 

reduced the number of hydrogen-bond-acceptor centers in the pyrazoline riboside 

117f. Then the de-accetylation of the pyrazoline riboside compound and forming the 

free derivative 118c, which has thee free hydroxyl groups, increase the number of 

hydrogen-bond-centers. These groups can form hydrogen bonds with the hydrogen 

bonding sites available on ct-DNA structure providing much more stabilizing for ct-

DNA [122-125]. 
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Figure 77: The H-bond-donors-acceptors in the ligands’ structures 

 

 

4.5.3.2 UV-Visible Titration 

The UV-Vis absorption spectroscopy is a suitable technique for studying 

interactions between drugs and DNA.  This interaction is indicated by the changes in 

the absorption properties of the drug or DNA. The DNA maximum absorption in the 

UV region is at 260 nm. This absorption is referred  to the electronic transitions of 

the chromophoric groups in the DNA base pairs. This band could be used to estimate 

the binding mode. If the absorbing decrease, with red shift, then it is intercalation 

binding mode between the drug and the DNA. In this mode, the aromatic 

chromophore of the drug inter between the DNA base pairs. Therefore the drugs’ π-

electrons merged to the DNA bases-π electrons which leads the decreasing in the 

energy level of the π– π* electron transition which appears in a longer wavelength 

(red shift) [126, 127]. Shifting to longer wavelength (red shift) is also could observed 

if there is an electrostatic interaction between the ligand and the phosphate group of 

the DNA backbone [128, 129]. 
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On the other hand, Tabernero L.  and co-workers illustrate that seventy-seven 

interactions between the drugs and the DNA base pairs can be classified as hydrogen 

bonds. Furthermore, there is a relationship between hydrogen bond geometry and the 

biding of the drug through the minor groove [130].  

To study the interaction between the Drug and DNA, the UV absorption 

should be observed. Changes in intensity and/or shifting could be refer to the 

strength of the interaction between the DNA and its ligand. Some of the Drug-DNA 

interaction parameters such as binding mode, constant and number of the binding 

sites could be considered  by titration process between DNA and the drug [131-134].  

DNA-Drug interaction study was carried on the free riboside 3-(β-D-

ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-

one (118c) since it is the most efficient ligand in stabilizing the ct-DNA (ΔTm = + 4.8 

°C).  

The compound 118c was titrated with different concentrations of calf thymus 

DNA and the absorption spectra was obtained Figure 77. The addition of DNA 

causes change in the UV-Vis spectrum of the free ribosed 118c. Figure 78 shows 

increasing in absorbance at 260 nm, decrease in at 380 nm and blue shift in λmax from 

380 to 260 nm. The hyperchromism, an increase in absorbance,  around 260 nm 

indicates the increasing of the DNA concentration as the maximum absorption of the 

DNA bases pairs appears around 260 nm. While the hypochromism, a decrease in 

absorbance, at 380 nm indicates the reduced n–π* electronic transition. This 

hypochromism could be coursed by forming H-bond between 118c and the polar 

hydrogens of DNA [135]. This H-bonding formed supports the bonding of 118c with 

the DNA, which also improve the chances of π-stacking. As a result of this stacking, 
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the interaction between π-orbitals of the drug (118c) and DNA increases, which also 

support the drug-DNA interaction [135].  

On the other hand, this existence of hyperchomism and hypochromism 

formed an isosbestic point, which confirm the presence of two types of interactions 

(H-bonding and π-stacking) in equilibrium.  

 

 

Figure 78: UV-visible spectrum of compound of 118c (2.46 x 10
-5

M) without ct-

DNA and with ct-DNA (1.07 x 10
-5

 M ) interaction (2.0 – 782.0 μL) in 5 % DMSO 

and Tris-KCl buffer, pH 7.4 

 

 

Regarding to the change in the DNA concentration, at the constant drug 118c 

concentration (2.46 x 10
-5

M), the drug-DNA binding constant has been calculated. 

The following host–guest equation (2) was used to calculate the DNA binding 

constant (K). 
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 Where Ao and A are the absorbance of drug, at λmax,  and  G and  H−G are the 

drug molar absorptivities, at λmax, in the absence and presence of DNA respectively. 

The value of binding constant (K) was calculated from the intercept to slope ratio of 

the linear plot between Ao /A− Ao and 1/[DNA]. From the linear equation (Figure 79) 

the binding constant (K) was calculated between the drug 118c and the ct-DNA K = 

5.4 x 10
6
 M

-1
 which indicates that 118c has a high affinity with DNA double helix 

[136].  

 

Figure 79: Graph between Ao/(A−Ao) and 1/[DNA] for the calculation of binding 

constant. where Ao and A are the absorbance of test sample, at λmax, in the absence 

and presence of DNA respectively. And [DNA] is the ct-DNA concentration during 

the UV titration process with the drug 118c (2.46 x 10
-5

M) 

 

The Drug-DNA stoichiometry was determined by mole-ratio method keeping 

the drug 118c concentration constant (2.46 x 10
-5

M) and varying the ct-DNA 

concentration. Change in absorbance was measured at 380 nm and plotted against 
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ratio of the drug to ct-DNA concentrations (Figure 80). Two straight lines were 

obtained intersection of which determines stoichiometry of the drug-DNA complex. 

Figure 80 suggests formation of a 30:1 drug: DNA complex at neutral pH. 

 

Figure 80: Mole-ratio plot showing the interaction of 118c with ct-DNA at neutral 

pH. Inset is the graph with zoom in the intersection area 

 

4.5.3.3 Fluorescence Titration 

Fluorescence spectroscopy is an emission technique depends on the emission 

of photon from an exited molecule in order to relaxed into its ground state. The 

emitted energy is less than the absorption one; therefore the emitted light is usually 

in the visible range while the absorbed light is in the ultraviolet range [137].  

Fluorescence titration experiment was done as an additional confirmation for 

DNA-drug interaction. As it is one of the most used techniques to study the 

interactions between small drug molecules and DNA [134]. The intensity of the 
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fluorescence emission band changes during the drug-DNA titration process which 

indicates the existence of the drug-DNA interaction [137, 138].  

The fluorescence titration of the fixed concentration of the synthesized drug 

118c (1.0x10
-5

 M) was carried against different concentrations of ct-DNA (1.07x10
-

5
M) in Tris-KCl buffer, pH 7.4 and 5% DMSO. The interactions of 118c with ct-

DNA were followed fluorimetrically at max of emission 425 nm and excitation of 

280 using slits width of 10.00 nm. After each DNA addition, solutions were shacked 

for 3 times, incubated for 3 min and scanned for its fluorescence spectra in the range 

300-600 nm. The titrations process were stopped; when no change in fluorescence 

intensity observed. 

Figure 81 shows the fluorescence spectrum of the compound 118c obtained at 

excitation λmax of 280 nm and emission band was obtained at 425 nm, with sequential 

additions of ct- DNA to the fixed drug concentration. The spectrum showed increase 

in fluorescence intensity, which could be attributed to the groove binding, 

electrostatic, or hydrogen bonding of the drug with DNA, resulting in the proximity 

of molecules to the sugar-phosphate backbone [119]. The fluorescence titration 

results confirm the UV-Vis titration results for the same complex.  

4.5.3.4 Circular Dichroism Titration 

Circular dichroism spectroscopy is also used to confirmed the interactions 

between drug 118c and DNA. As it is an effective technique used to study interaction 

between DNA and drugs. CD is used mainly to study the changes in DNA 

conformations and melting temperature curves (as discusses previously). Circular 

dichroism spectroscopy technique depends on the measurements of the difference 

between the left and the right handed absorption of a chiral molecule which 
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circularly polarized light. CD spectrum illustrates the average molecular 

conformation in the whole sample. Consequently, it is useful to track the structural 

changes in a biomacromolecule due binding with a drug molecule or changing in 

temperature [139]. Though, CD results could limit the number of duplex DNA types; 

it can’t certainly determine the type of  quadruplex structure [140]. 

 

 

Figure 81: Fluorescence titration spectra of 118c (5 x 10
-6

 M) in Tris-KCl buffer, pH 

7.4 with ct-DNA (1.07 x 10
-5 

M) (2.0 - 46.0 µL) and 5 % DMSO 

 

Figure 82 shows the CD spectrum of free calf thymus DNA (blue line), there 

are two major bands. at 243 nm (negative), 281 nm (positive). These bands are 

considered as the marker bands for B-form of DNA which is the most frequently 

observed conformation of DNA [136, 141].  

The circular dichroism titration was carried out for the newly synthesized 

compound 3-(β-D-Ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethy-2,4-

dihydropyrazol-3-one 118c as it produced the maximum thermal stability effect 

(ΔTm = + 4.8 
o
C). the interactions between 118c and ct-DNA were studied. The ct-
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DNA  (1.07 x 10
-6 

M) was prepared using Tris-KCl buffer, pH 7.4 then titrated with 

successive amounts of the drug  solution (1.0 x 10
-3 

M) in 5 % DMSO. Solution after 

each addition was shacked well, incubated for three minutes at room temperature and 

scanned in the range 200 - 400 nm with 50 nm/min, band width 1 nm and 3 

accumulations.  

The CD spectra (Figure 82) shows that the ct-DNA molecule gave a positive 

band at 280 nm, negative band at 240 nm and crossover occurred at 258 nm. Upon 

sequential addition of drug to ct-DNA changes in the CD spectra were observed, 

which indicated the change in conformation of the DNA molecules upon binding of 

the drugs. When the drug concentration was increased the intensity of the positive 

band at 280 nm decreased, and the crossover frequencies also changed beside the 

increase in absorbance on negative bands. These changes showed that compound 

118c interacted actively with DNA molecules, although preserving the B-form 

conformation of the DNA. 

 

 

Figure 82: CD spectra of ct-DNA (1.07 x 10
-5

 M) in Tris-KCl buffer, pH 7.4 titrated 

with (1.0 x 10
-3

 M) of  118c (1.0 - 20.0 µL) 
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4.5.3.5 Docking Study 

Some of the synthesized pyrazolones (117c, 118c, 124a,b) underwent 

preliminary docking experiments into the DNA minor groove as well as into the 

intercalating site of the DNA-topoisomerase complex. As shown in Table 15, the 

synthesized compounds had favourable binding energies in either binding sites where 

118c always scoring the best amongst the newly synthesized compounds. However, 

and in line with the previous spectroscopic data, 118c and the rest of the compounds 

in this series display better scores when they intercalate into the DNA-topoisomerase 

complex as compared to the minor groove binding site. Looking at the Ligands 

efficiency scores, it is clear that 118c had a comparable scoring to the standard 

inhibitor Doxorubicin whereas it was not able to match the standard groove binder's 

(Daphnetin) scoring. As shown in the Figure 83 (A) and (B). 118c seems to have 

more reasonable binding mode in the DNA-topoisomerase complex the minor groove 

as 118c nitro aromatic moiety seems to be better inserted in between the DNA 

nucleotides, forming clear stacking interactions with their nitrogen bases. In the other 

hand, the 118c sugar moiety forms several hydrogen bonds with the DNA backbone 

as well as with the topoisomerase basic residues. To sum up, the obtained docking 

results suggest that these compounds, especially 118c, would rather act as 

intercalating agents than minor groove binders. 



171 

 

Table 15: Docking results of test compounds into the ct-DNA major and intercalation 

binding side 

Compound 

code 

Minor 

 groove 

Intercalation  

binding side 

Structure 
Glide_XP 

Score 

kcal/mol 

Ligand 

efficiency* 

kcal/mol 

Glide_X

P Score 

kcal/mol 

Ligand 

efficiency* 

kcal/mol 

117e -3.383 -0.103 -5.047 -0.169 

 

118c -2.606 -0.085 -5.440 -0.186 

 

124a -0.980 -0.033 -5.181 -0.140 

 

124b -4.582 -0.153 -7.101 -0.237 

 

Doxorubicin - - -10.07 -0.26 

 

Daphnetin -4.437 -0.340 - - 
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Figure 83: Docking results of 118c into the ct-DNA  (A) docked pose of 118c in the 

ct-DNA minor groove, (B) docked pose of 118c in the ct-DNA intercalation binding 

side 
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4.6 Summary 

The study involved characterization of physical properties of the synthesized 

pyrazoline compounds, and testing for the nature of their interaction with the DNA 

(calf thymus), which is crucial for predicting their probable behavior with biological 

moieties. Among all the synthesized compounds, few compounds were subjected to 

the physical study and the most suitable compounds were selected pertaining to the 

results of their behavior in the different physical conditions. The effects of different 

physical conditions such as pH, solvent systems, upon the stability of ligands in the 

chemical compounds were studied.  

The compounds 4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4-

dihydropyrazol-3-one 113g, 2-(2",3",5''-tri-O-acetyl-β-ribofuranosyloxy)-4-(3'-

nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-one 117f, 2-(β- 

ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-

one 118c and  (N
2
-Benzoyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-

pyrazolone 127c were studied. The examined compounds were found to exhibit 

stability over different ranges of pH. The effect of four solvents (ethanol, methanol, 

dimethylformamide, dimethyl sulfoxide) with different dielectric constants upon the 

compounds 113g, 117f, 118c and 127c were studied, and DMSO was found to be the 

most stabilizing solvent for all the compounds.  

Effects of solvents on electronic spectra of synthesized compounds were 

investigated. Good correlations with solvents parameters indicating the dependence 

of λmax on solvent’s dielectric constants, basicity, and polarity were obtained 

Subsequent to stability studies of the compounds, the physical interaction of 

the compounds with ct-DNA was studied through different techniques which 
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involved melting temperature curve (measuring ΔTm). The compound 118c were 

found to have the highest ΔTm amoung the examined compounds.  Therefore, its 

interaction with ct-DNA was under more investigation. UV-Vis, fluorescence and 

circular dichroism spectroscophic techniques towards ct-DNA were studied as well. 

These helped in understanding the nature, mode and strength of interaction of the 

drugs with DNA. 118c absorption spectra with DNA exhibited hypochromism and 

bathochromic shifts. The fluorescence spectra, further, gave details about the mode 

of binding of 118c with ct-DNA. The results showed that compound 118c was found 

to exhibit strong intercalation binding, and increased fluorescence intensity. The 

circular dichroism titration was thus carried out only with the compound 3-(β- 

ribofuranosyl)-4-(3'-nitrophenylhydrazono)-5-trifluoromethyl-2,4-dihydropyrazol-3-

one 118c to observe the changes in conformation brought about by binding of the 

compound. therefore, on the basis of physical studies, the free riboside compound, 

118c was found to be the most suitable and effective in interacting with ct-DNA, and 

subsequently poses as a potent compound for further investigative studies as a 

therapeutic agent in the near future. 
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Chapter 5: Conclusion and Recommendations   

5.1 Summary  

The purpose of our study was to synthesize  new pyrazolones derivatives that 

can be used as antimicrobial or anticancer agents. The synthetic part includes four 

main categories: azopyrazolones, pyrazoline riboside, pyrazoline deoxyriboside and 

benzoyl pyrazoline  derivatives. In the first part, a new series of nine azopyrazoline 

113a-i were synthesized in an environmentally and efficiently procedure in a good 

yield avarge 94 % and the products screened for their antifungal and antibacterial 

activities. Among the newly synthesized derivatives, compound 113c exhibited the 

highest potent antibacterial activities MIC = 0.151 g/mL against yeast and MIC = 

0.075 g/mL against Bacillus.  

In the second part, a series of 10 new pyrazoline riboside  116a,b and 117a-h 

were synthesized  using silyl-method to activate the pyrazolone ring, while the ribose 

was used as 1-acetyl analog that activated by Lewis acid catalyst to achieve the final 

products 116 and 117 in yield 63%. The synthesis of O- and N-isomer was controlled 

by the reaction time. The silyl intermediate reacts with an activated surge in either 

dry acetonitrile or methylene chloride for 4 hours at room temperature to affords a 

mixture of O- and N-ribosides . The  study of the effect of the solvent and/or catalyst 

on regioselective showed the time is the most significant effect as it is noticed when 

solvents and catalyst are fixed, in which the yield of O-isomer decrease dramatically 

while the yield of N-isomer increase gradually  with increasing the time, this is may 

be attributed to the stability of N-isomer.  The structure of O- and N-ribose products 

were confirmed using FT-IR, 
1
H-NMR, 

13
C-NMR and LC-MS. The O-isomer 116a 

was found to be potent antimicrobials when tested against Gram-positive bacteria; 
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bacillus with MIC value of 0.034 μg/mL. While 118c showed high selectivity against 

the tested fungal with minimum inhibitory concentrations of 0.124 μg/ml, against 

Yeast. On the other hand, the N-isomer 117a, 117e and 117f showed superior 

anticancer activity against HL-60 and A-549 cell lines. 

In the third part, a new series of pyrazoline deoxyribosides 112a-c and 123a-c 

were designed and synthesized. 1,3,5-tri-O-acetyl-2-deoxy-D-ribofuranos has 

introduced to the two different nucleophlic centers in the pyrazolone ring. As in the 

ribosides synthesis, the silyl-method is used to activate the pyrazolone ring, while the 

sugar moiety was used as 1-acetyl analog that activated by Lewis acid catalyst. The 

silyl intermediate reacts with the activated surge in dry methylene chloride for 8 

hours at room temperature. The reaction afford O- and N-nucleosides in a good yield 

53% and 47%; respectively. Among the new discovery; the structures of the obtained 

products were fully confirmed using elemental and spectroscopic techniques. The 

newly synthesized compounds were screened for their antibacterial activities against 

pathogenic bacteria. The results indicated that compounds 122b and 123b showed 

high selectivity against the tested microbs with inhibition zones  of  (23.0 and 27.8 

mm) respectively, against control  compound show better anti bacterial activity 

against Proteusd (19.3 and 19.2 mm) respectively in comparing with the positive 

control (Ceftriaxon 16.7 mm). Synthesized pyrazoline deoxyribosides have 

significant effect on cancer cell lines. 122b showed the best decreasing in cell 

viability aganist HL-60 cell line among all tested compounds. While 122a showed 

promising activity against A-549 cell line.  

In the last part, The benzoyl Pyrozoline compounds 124a-h and 127a-c were 

prepared using two different synthetic methods, In the first method, a simple 
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nucleophlic substitution reaction was used to introduce the benzoyl group into the 

pyrazolone ring. The  activating pyrazolone will enhanced the nucleophilicity of both 

O- and N
2
 center of the pyrazolone ring to afforad O-isomer 124a-h. While, In the 

second method, the benzoyl group introduced directly into the hydrazine nitrogen 

then cyclizaed followed by diazotization to afforded the N-benzoyl analogue 127a-c. 

The structures of both O-benzoylation and N- benzoylation were confirmed and the 

antimicrobial, anti-cancer activity were evaluated. Antimicrobial activity results 

revealed that 124g and 127c were found to be the most potent antimicrobial agent 

with Inhibition zone value of (20.0 and 17.2 mm) respectively against Proteus which 

are higher than the positive control (Ceftriaxon 16.7 mm). Results of anticancer 

study indicated that the synthesized compound 124c, 124d, 124f and 124g have 

significant effect on of A-549 cell line. 124d showed the best decreasing in cell 

viability (almost 15 %) against A-549 among the tested compounds. Which make it 

most potent anticancer agent against the cancerous A-549  cell lines. 

5.2 Research Implications 

Pyrazolones are one of the most studied compounds, and constitute a large 

area of research in organic chemistry, posing as a universal, chemically active moiety 

which can be utilized in broad spectrum of drugs. The present research yielded 

important information regarding the significance of the newly synthesized 

pyrazolones. Among the various compounds; 113c,116a, 117a, 117e, 117f, 118c, 

122a, 122b, 123b,124c, 124d, 124f, 124g and 127c were found to exhibit important 

chemical and physical properties. Such a characterization and identification can be 

helpful in present studies being conducted on the scope of these compounds, and also 

the future researches. A large number of researches have been already conducted into 
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the wide range of biological properties such as antiviral, antimicrobial, anti-

inflammatory, anticancer, exhibited by pyrazolones and their derivatives, and the 

present research contributed significantly towards the existing information. The 

information can also find important implications in the field of therapeutics and drug 

designing, as a large number of infectious diseases continue to spread around the 

world, characterized with new and resistant strains of microbes. The knowledge of 

pyrazolone compounds and their ability to be designed and formulated as per the 

requirement of the infection or diseased condition is also another area which this 

research aims to contribute to. Further, since the newly synthesized compounds 

showed significant biological and DNA-interacting properties, it has added to the 

existing repository of potential compounds capable of providing lifesaving 

opportunities.  

5.3  Limitations and Future Scope of the Study 

Although the study resulted in the synthesis of a large number of derivatives 

of pyrazolones, among which several compounds showed significant biological and 

physical activities, the study also showed several limitations, with respect to the 

research methodology. First and foremost, only three families of derivatives were 

synthesized in this study, ribonucleosides, deoxyribonucleosides and benzolyated 

compounds, thereby leaving out other important derivatives of this important 

compound. Furthermore, during the studies evaluating the biological properties, only 

five microorganisms were chosen, excluding variation in fungal pathogens. Although 

the compounds showed activity against these commonly found pathogens, other 

equally important pathogens were not tested for. Further, for the physical studies, 

while testing the DNA-compound interactions, only few compounds were selected, 
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therefore leaving out the rest of the compounds. Furthermore, more investigations 

need to be done to understand the nature of the interaction between the synthesized 

drug and DNA.  

Through this study, several newly synthesized derivatives of pyrazolones 

were studies for their chemical structure, biological properties as well as physical 

interactions. Subsequently, few compounds were found to have significant potential 

as a future drug candidate. However, further research is needed with respect to its 

studies on anti-microbial activities against other groups of microbes, besides 

studying their effect against other cell lines. Also, other synthesized compounds need 

to be studied for their interaction with a broader range of solvents as well as testing 

the interactions of the remaining compounds with DNA. 
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