United Arab Emirates University
Scholarworks @ UAEU

Dissertations Electronic Theses and Dissertations

5-201S8

A Partial Replication Load Balancing Technique for
Distributed Data as a Service on the Cloud

Klaithem Saeed Al Nuaimi

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all dissertations

Part of the Philosophy Commons

Recommended Citation

AT Nuaimi, Klaithem Saeed, "A Partial Replication Load Balancing Technique for Distributed Data as a Service on the Cloud" (2015).
Dissertations. 37.
https://scholarworks.uaeu.ac.ae/all_dissertations/37

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for

inclusion in Dissertations by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/525?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations/37?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

aaaiall duy=ll Gljlall deala
United Arab Emirates University

UAEU

United Arab Emirates University

College of Information Technology

A PARTIAL REPLICATION LOAD BALANCING TECHNIQUE
FOR DISTRIBUTED DATA AS A SERVICE ON THE CLOUD

Klaithem Saeed Al Nuaimi

This dissertation is submitted in partial fultilment of the requirements for the
degree of Doctor of Philosophy

Under the Supervision of Dr. Nader Mohamed

May 2015

Declaration of Original Work

I. Klaithem Saeed Al Nuaimi. the undersigned. a graduate student at the United
Arab Emirates University (UAEU), and the author of this dissertation entitled .4
Partial Replication Load Balancing Technique for Distributed Data as a Service
on the Cloud”, hereby, solemnly declare that this dissertation is an original research
work that has been done and prepared by me under the supervision of Dr. Nader
Mohamed. in the College of Information Technology at UAEU. This work has not
been previously formed as the basis for the award of any academic degree. diploma.
or a similar title at this or any other university. The materials borrowed trom other
sources and included in my dissertation have been properly cited and

acknowledged.

7’—//1{%!4 Date 13- }w»u. 2]

Student’s Signature

Copyright © 2015 Klaithem Saeed Al Nuaimi
All Rights Reserved

This Doctorate Dissertation is approved by the following Examining Committee
Members:

1) Advisor (Committee Chair): Dr. Nader Mohamed
Title: Associate Professor
Department: Networking

College of Information Technology

Signature /,l{,f//f;pi P L Date 25/5/26)/5

2) Member: Dr. Imad Jawhar
Title: Associate Professor
Department: Networking

College of Information Technol

Signature ‘Q/J_ﬁ ‘T/\//\/ Date 22:(/ 572'0/ S’

3) Member: Dr. Nazar Zaki

Title: Associate Professor and Intelligent Sys. & Software Dev. Tracks
Coordinators
Department: Intelligent Systems

C of Information Technolo

A - Date I/(ajJO‘\’

Signature

4) Member: Dr. Ahmed Al Faresi

Title: Assistant Professor and Assistant Dean for Research & Graduate Studies

Department of Information Security

College of Information Technology
Signature Date_ 1/6 /2clS .

5) Member (External Examiner): Prof. Qing Yang

Title: Distinguished Engineering Professor

Department of Electrical, Computer, and Biomedical Engineering

Institution: University of Rhode Island /
- o
Signature /j,_, = *’l/ﬁ Date Z(f 05 / 2008
e - = / /

[

This Doctorate Dissertation is accepted by:

Dean of the College ofl nformation Technology: Dr. Shayma AlKobaisi

Signature __ ;AA el 4]A‘\\M Date _ Jowe 25, 720\5

Dean of the College of the Graduate Studies: Professor Nagi T. Wakim

pate 2%\ ¢\ 208

Signature

COPyiof‘_Z

Vi

Abstract

Data as a service (DaaS) is an important model on the Cloud. as DaaS provides
clients with different types of large files and data sets in fields like tinance. science.
health. geography. astronomy. and many others. This includes all types of files
with varying sizes from a few kilobytes to hundreds of terabytes. DaaS can be
implemented and provided using multiple data centers located at difterent locations
and usually connected via the Internet. When data is provided using multiple data
centers it is referred to as distributed DaaS. DaaS providers must ensure that their
services are fast. reliable. and efficient. However. ensuring these requirements
needs to be done while considering the cost associated and will be carried by the
DaaS provider and most likely by the users as well. One traditional approach to
support a large number of clients is to replicate the services on different servers.
However. this requires full replication of all stored data sets. which requires a huge
amount of storage. The huge storage consumption will result in increased costs.
Therefore. the aim of this research is to provide a fast. efticient distributed DaaS
for the clients. while reducing the storage consumption on the Cloud servers used
by the DaaS providers. The method | utilize in this research for fast distributed
DaaS is the collaborative dual-direction download of a file or dataset partitions
from multiple servers to the client. which will enhance the speed of the download
process signiticantly. Moreover. | partially replicate the file partitions among
Cloud servers using the previous download experiences | obtain for each partition.
As a result. | generate partial sections of the data sets that will collectively be
smaller than the total size needed if full replicas are stored on each server. My
method is self-managed: and operates only when more storage is needed. |
evaluated my approach against other existing approaches and demonstrated that it
provides an important enhancement to current approaches in both download
performance and storage consumption. | also developed and analyzed the

mathematical model supporting my approach and validated its accuracy.

Keywords: Cloud Computing. Data-as-a-Service (DaaS), load balancing, storage

optimization.

vii

Title and Abstract (in Arabic)

3 mS DUl e de j5a)l Dbl o8y Aaaal aled) oy g5 Slalall el) SE A 5 ol gal)
.m.bbhumz_f.rv..b_r.u..h

roadlall

mbwm.wb DE_%EV&W_L{_ﬁbw/&bD Aaaall 5a buhu E_Lhm;ﬁbbhbvwbpbbfﬂ.b%|
%%rﬂm_bu.buh.&_g.ﬁﬁb'%_h.fw_\vrt_b»g VE_M.%MP\L_%D;&FJMLDCE_D $ado g
S ye plasinls ULl 228 i iy Sy Sl y8 Dilie) S Ay e DT N Lgalaalls il g1 gl

enid g i EYY e Bole Lol Adlise a8l ga B A 5200 Ll 390 ya aladiid) haaly Bl jes afge Uy

T pedie ooy clildl e D) Jlay e O okl Wl i lay de jeal U Aans
5 L Aag jall S 8 Ll plaidly 45 Sl Lllaidl 028 jlacay agileas Adlady s e o
88 23 ae) bole paiiedl Gl il Ll e I8 e ma Y ey Reaadl 0 5e J8 e i

Ll Sle gane aread Sle 1S5 bl 12y Adhiss o Al cldle e claaddl oS5 s Slaal)
oa IS 5aly 5 (N (s adalt G Bl s A e B S LS il 53 LY G

1S5 80L) Ll a8 cally) AsLaYly el i e Slpadl o wie JBl aiad (S
DA N 5 a0 ae e Thaall AMad g A s Al sl T el 1 e gl 0 el e Slaall 235y
olad¥) 5l g Caadl M b4 o)l gl Sl Ladd etie JB e Al Bl o L
S S Janl) Alee de ju G5 Ll e (Alg 0 L cails e pLalS Sl Re gane 5l Sl Jaasd)
lele Jonas AN AL O ladll s ahaainbds 1, Op ale LAY L e S S5 L6 el e e
513 lhall Jlaa¥l anall e sl (oS SIS ans (e A ja oLl Al g Lils N dasy o8 S
Do e Aala Ala S5 Ledie dait JaaSy | JGE JSE | Lslad s JS e ALl AL Al oy jas
ol cadly o AV Llal gl aiis Lings auiliy Wil 3) 5 peall die o Aaall A Y1 Sllee 245 23 2l oy 530
Do Gaadlly Uagd ae) mh sl sty phaly Liad LS 53l Bl 5 Jiasd 6o (e JS) j5e0 S
e Sl Sleaad oWV 5530y Lasil D) ge Jne S Bacty il 8 g Al s Lold oAy 4By Adas
Ll

I W PR ER PN [5 PR DREV | R PERPIERE | RV JF PREQe P4 INEEQH | FE SUVS AN RN

Viii

Acknowledgements

I-irst. all thanks be to Allah for providing me with the determination to complete this
dissertation. Then. | would like to express my sincere appreciation to my advisor Dr.
Nader Mohamed. you have been a great mentor and a very patient person. | would like
to thank you for being positive even at hardship. I would like to thank my committee
members Dr. Imad Jawhar. Dr. Ahmed Al Faresi. Dr. Nazar Zaki and Dr. Qing Yang
for being in this committee. thank you for your bright comments and suggestions
which improved my dissertation tremendously. Special thanks to Dr. Jameela Al-

Jaroodi for her constant reviews.

I would like to thank UAEU for providing me with the opportunity to join this research

and encouraging me to complete it.

A special thanks to my tamily. Words cannot express how gratetul [am to you for all

the support and love you provided.

To my beloved parents and family

Table of Contents

T s e v rvseeesnescreeennr e i
Declaration of Original WOrK ..ot i
COPWIIENL oo . rmmmmmms sosmerssmsaes LS eame san s T7585 - sassanns 68t o0 4 o585 0 <52 mmnnssn e i
Approval of the Doctorate IDISSErtationccooviiiiiiiiiiiiiiieee e, v
o o T Uy s —— UV O O S Vi
Title and AbSIract (1IN ArabiC) ..oooveeiii e vii
ACKNOWledZemENTS ..o viil
IDRHICAOION ... s O o PRI o e i 2 AR << A 2 S IX
Table Of CONENTS ...ttt e s X
LASEOF TABIES .. X1
LISUOE FIEUIES <.t e et eeae e e e X1
LSt O ADBreVIAtONS. ...ttt XV
Chapter 1 INroductioncoiiiiiiiiii e 1
1.1 Background on Cloud Services..........cooooviiiiiiiiiiiiiiieee e 1

1.2 How can the download speed be improved and better utilize cloud
TESOUICES .ttt et e et st e e e et e e et e e e et e e aeieeea 3

1.3 DiISSertation SIFUCTUNEoouiiiiiii it 4
Chapter 2: Problem Statement. Contribution, and Research Scope...........ccccoovvenennn. 7
2.1 Problem Statement and Motivation...........c.ccoooviiiiiiniiieiiieieec e [

2.2 Research Contribution and SCOPEc.ooiiiiiiiiiiiiii e)
Chapter 3: Literature ReVIEWoooiiiiiiiiiiii e 12
3.1 Literature Classiicationcoiioiiiiieriiie it 12

3.2 Research Challenges ..o 13

3.2.1 Spatial Distribution of the Cloud Nodescccoovviiiiiiiinn. 13

3.2.2 Storage/ Replicationc.ccocviiiiiiiiiiiiiii e 14

3.2.3 Network Overhead ... 14

324 Point of Failure ..o 14

3.3 Load Balancing Approaches ... 15

3.3.1 Static Load Balancing Algorithmscccooiviiiiiiiiiee e 15

3.3.2 Dynamic Load Balancing Algorithms...........ccccoooiiiiiiinie 17

3.4 Storage Optimization WOrK ... 20

3.4.1 Full Replication Storage Work..........ccooiiiiii e, 20

3.4.2 Partial Replication Storage Work..........ccoooiiiiiiiiiiee 21

3.5 Discussion of Current Approaches...........ccoceevieiiiiiiiiiiieeeese e 23

3.6 Chapter CONCIUSIONouiiiiiiieiie e 28
Chapter 4: Collaborative Dual Direction Load Balancing Approach 30

X

4.1 CDDLB Methodologycovoovioiiiiiieeece e 30
4.2 Simulation and Analysis of CDDLB ..o 33
4.3 CDDLB Benefit and Limitationsooooieooieooooeeeeeeeoeee 35
F.d CONCIUSION <ottt e 35
Chapter 5: Static Partial Replication Technique Using Collaborative Dual Direction
DOWNI0AA ..., 37
5.1 SPRT Method.ccccc..eiiii it iiniiee i ccveie st ssvses s sneeseennene s e e s 37
5.2 Evaluation and Simulation of SPRT ..o 49
5.3 Prosand Cons of SPRT ..o 56
S8 CONCIUSION ettt 56

Chapter 6: Selt-Managed Partial Replication Technique Using Collaborative Dual

Direction Download (SSCIOUA) ... e 58
6.1 Description of sSClOUd..........ccvoiiiiiiiiiiicccceec e 58
6.2 Example of SSCloudoooiiiiii 65
6.3 Analysis and Simulation Results of ssCloudcccooiiiiiiiiinienn. 70
6.4 Enhancements and Limitation of ssCloud...........cccccooviiiiiiiiiiii, 82
6.5 CONCIUSION L.oiieiiiiiiieit et e et e e 83
Chapter 7: Performance AnalysiS..........cccoociiiiiiiiiiiiiiiiiiiiee e 84
7.1 Expected Storage Saved ESUMationcccooeiiiiiiiiiiiiiiicceeie 84
7.2 Expected Download Time Estimationcccccooviviiiiiiiiniicce, 90
7.3 Discussion and ObSErvationscoceeeeiiiiiiiieanieiie e 94
7.4 Chapter CoONCIUSIONooiiiiiiiiiiiii e 98
Chapter 8: Conclusion and Future Workcccooiiiiiiiiii e, 99
8.1 Summary of Research Contribution...............coccooiiiiiiiiiiiiiiii e, 99
8.2 FUtUre WOrK ..o 100
BIblOraphy......ooo o 103

LISUOE PUDTICAUIONS ..o 112

Xl

List of Tables

Table 2-1: Comparison of Current Industry DaaS Providers in 2015.............c.oooi. 8
Table 3-1: Load Balancing Algorithms. their Pros and Cons............ccccccoeiennin 26
Table 3-2: Comparison of [.oad Balancing Algorithms in Terms of Challenges...... 27
Table 3-3: Comparison of Storage Optimization Techniques in Terms of

CRhallenEES ...t 28
Table 5-1: Example of Block Size Handling MTU ... 41
Table 5-2: Metadata Size of Difterent File Sizes........cccccoooiiiiiiiniiiiii . 55
Table 6-1: Eftect of Difterent Speed of Servers in Three Runs................................. 69
Table 6-2: Number of Remaining Blocks Per Server After Removing Unused

BIOCKS .ttt e 70
Table 6-3: Comparison of Storage Optimization Techniquesccoeoiiinennn. 71
Table 6-4: Experimental Relationship Between NOS, NOC. Block Size and NOB . 80
Table 7-1: Evaluation of the Accuracy of Equation 7. 90
Table 7-2: Dual Servers Experience in Ten Runs..............ooooon 93
Table 7-3: Equation 9 Accuracy Evaluationccccoooviiiiiiii e 93
Table 7-4: Speed Difterence Between the Dual Servers, Affecting Download Time 94

xili

List of Figures

Figure 1-1: Cloud Computing Services Architectureo.oooooooovovoooo 1
IFigure 1-2: DaaS Architecture in the Cloudocoooiioooooeoeeeee) 2
Figure 2-1: DisSertation SCOPE...........c.oo oo 11
Figure 3-1: Literature Classificationo...cocooiiiiiiioeeeeeee e 13
Figure 4-1: Partitioning a File in CDDLB ... 31
Figure 4-2: Dual Servers Providing One Partition............ocoocooooooooooeooeoo 31
Figure 4-3: Simple Example of CDDLB Mechanism...............ooooooviviioieieeeee 32
Figure 4-4: Comparing CDDLB Performance to Normal Selection Methods 34
Figure 4-5: Effect of Number of Dual Servers on the Download Time 35
Figure 5-1: SPRT File Download from the Cloud Workflowccccoovvioveeieen.. 38
Figure 5-2: SPRT Replicated Data Removal Process............coooooovoeeoececeeee. 39
Figure 5-3: MTU in the Cloud NetwWorkccoooioiiiiii e, 40
Figure 5-4: Cloud Node A File Structurecooooiiiiiiioiiieeeeeeeeeeeee 44
Figure 5-5: Cloud Node B File Structure..........cooooooiiiiiiii i 44
Figure 5-6: Example of File Details in Controller's Databasecccccoocvioiniiins 47

Figure 5-7: Example of Experience Saved in Controller's Database of Each Block. 48

Figure 5-8: SPRT Solution DeSIZNcooiviiiiiiiiiie e 49
Figure 5-9: Storage Needed by SPRT Compared to CDDLB ..., 50
Figure 5-10: Blocks Downloaded from Server |cccoocoviiiiiin i 50
Figure 5-11: Blocks Downloaded from Server 2..........cooooiiiiiiiii e 50
Figure 5-12: Storage Consumption in Two Cloud Servers............ccccocoeviiniiinn. 52
Figure 5-13: Storage Consumption in Four Cloud Serversc..ocoevvinininnn. 52
Figure 5-14: Effect of Number of Servers on the Blocks' Replication..................... 53
Figure 5-15: Storage ot All Blocks After Upload Processc.occoeoiiiiiiiiininn, 54
Figure 5-16: Storage of the Same Blocks After Running SPRT ... 54
Figure 5-17: Partial Storage of Four Cloud Servers After Running SPRT................ 55
Figure 6-1: Overall Solution Structure of ssCloudc.cccoooviiiiiiiiiiiieeeee 60
Figure 6-2: Sequence Diagram of File Upload Process...........ccccooiiiiiiiiiiiininnn. 61
Figure 6-3: File Structure in the Cloud Servers After Initial Upload 64
Figure 6-4: File Structure in the Cloud Servers After Unused Blocks Removal 65

Figure 6-5: Uploaded File Details in Controller's Databasec.ccoooeviiiininn. 66

IFigure 6-6: Uploaded Blocks Details in Controller's Databaseccocoovieinn. 66
lFigure 6-7: Uploaded Files Structure in Cloud Servers.............cooooovvvooeeee . 67
IFigure 6-8: Blocks of the Uploaded File Saved as Separate Files in the Servers...... 67
Figure 6-9: File Download Splitting and Assignment Process...............ccccoeveevennn. 68
Figure 6-10: Probability of Removing a Block................ 72
IFigure 6-11: Time Difterence in Download for Difterent File Sizes 74

IFigure 6-12: Comparison of Full File Upload and Blocks Upload in Terms of Time

TAKECII . £S5
Figure 6-13: Consumed Storage Ditference in MB............... 75
Figure 6-14: Download Performance Comparisoncocceeeiiiiiiiiiniinicecee 77
Figure 6-15: Upload Performance CompariSon..........cccoucieeireouiiiiicnenieeneeeeeen, 78

Iigure 6-16: Error Rate Caused by the Database Server in the Case of an Exceeding
Number of CONNECHIONS ..o 79
Figure 6-17: Block Size Ettect on Download Time for 10 MB File Using Two
STV ..ttt ettt ettt etee st e satt e s e e st eeu e e e s het e e shee e sheena b et e she et eae e e s abe e s e e st e e e smeeas 81
Figure 6-18: Block Size Ettect on Download Time for 100 MB File Using Two

S CIVIBIG, e . 137 - i - o2 e SRR S S5 5 T o2 S8 o SRS« S « S STk e e 81
Figure 6-19: Block Size Eftect on Download Time for 400 MB File Using Two
TS0/ N S O R L OO USRS UR 81

Figure 6-20: Block Size Effect on Download Time for 400 MB File Using Four

SBIVCTS wewionon. 0. . IR SE e SIS | 5. .00 e« SOTIIORL BB 1ot neeneennones 82
Figure 7-1: Number of Replicated Blocks in Two Servers for 1000 Block File....... 85
Figure 7-2: Number of Replicated Blocks in Four Servers for 1000 Blocks File 86

Figure 7-3: Experimental Relationship Between Min-Max Speed Gap and Maximum

Number of Replicated Blocks for 100 MB File Size ..., 96

CL.LBDM
CDDLB
DaaS
DDFTP
ESFWILC
F(R)
IDE

INS
[.LBMM
M

MTU

NOC
NOS
oLB
R
RRNS
SPRT
SOF
ssCloud
VM
WLC
X

XV

List of Abbreviations

Central l.oad-Balancing Decision Model
Collaborative Dual-Direction l.oad-Balancing
Data as a Service

Dual-Direction File Transfer Protocol
Exponential Smooth Forecast based on Weighted Least Connection
Factorization method of R

Intgrated Development Environment
Index Name Server

Load-Balancing Min-Min

Number of cloud Nodes

Maximum Transfer Unit

Number of blocks

Number of Connections

Number of Servers

Opportunistic Load Balancing

Original File size in bytes

Redundant Residue Number System
Static Partial Replication Technique
Single Point of Failure

Smart Storage Cloud

Virtual Machine

Weigted Least Connection

Original File

Chapter 1: Introduction

In this chapter. | provide a background of the cloud structure and services.
focusing on data as a service in Section 1.1 then [discuss my research question and
a brief summary of the current solutions in Section 1.2. | finally show the

dissertation structure in Section 1.3.

1.1. Background on Cloud services

Svstems. such as grid. clusters. and cloud computing have been a trend for
many users in the last few vears. Especially cloud computing which became even
of more interest to the users and researchers [1][2][3][4]. One of the main features
on the cloud is that it provides flexible and easy methods to store and retrieve data
[5][6][7]- especially for large data sets and files. such as videos. scientific research.
and bioinformatics files [8][9](10] that could be used by an increasing number of
users around the world. Since cloud computing has great potential for data storage
and data retrieval. it opens the opportunity to conduct research in optimizing the
techniques for storing data in the cloud. That is the area of providing data as a

service (DaaS) on the cloud. as shown in Figure 1-1.

Cloud Application (Software As A Service: Saa$)

Cloud Service Environment {Paa$)

Cloud Service Infrastructure

Computational

Resources {laa$) SIofaREl(Daas)

Cioud Service Hardware (Haas$)

Figure 1-1: Cloud Computing Services Architecture.

Data as a Service provides the capability to deliver specific and valuable
data on demand [11][12]. This data can be business. scientific. medical. or any
other useful data required by multiple users. This large data can be replicated on
multiple servers located at different sites on the Internet to provide a scalable
capability to support a large number of requests. The DaaS is also reviewed in [13]
as providing data in different formats for different resources in various
geographical locations. The clients would be able to upload. download. and edit the
data on the cloud based on their reassigned privileges. Usually. the cloud will have
multiple distributed servers. which are able to access the data centers to fetch the
required data and provide it to the cloud user. Figure 1-2 shows how the cloud DaaS
is usually structured. Distributed DaaS mainly has spatially distributed resources
of the cloud and provides the user with access to the data independently from their
location. For example, there could be a cluster in one country, some servers in

another country, and other clusters in other continent [14].

Figure 1-2: DaaS Architecture in the Cloud

Data as a Service provides the capability to deliver specific and valuable
data on demand [11][12]. This data can be business. scientific. medical. or any
other useful data required by multiple users. This large data can be replicated on
multiple servers located at difterent sites on the Internet to provide a scalable
capability to support a large number of requests. The DaaS is also reviewed in [13]
as providing data in different formats for different resources in various
geographical locations. The clients would be able to upload, download, and edit the
data on the cloud based on their reassigned privileges. Usually. the cloud will have
multiple distributed servers. which are able to access the data centers to fetch the
required data and provide it to the cloud user. Figure 1-2 shows how the cloud DaaS
is usually structured. Distributed DaaS mainly has spatially distributed resources
of the cloud and provides the user with access to the data independently from their
location. For example. there could be a cluster in one country. some servers in

another country, and other clusters in other continent [14].

Cloud nterface

[

L]
’

Figure 1-2: DaaS Architecture in the Cloud

159 How can the download speed be improved and better utilize cloud

resources?

['he main focus of this research is to optimize the load balancing and storage
interface for cloud computing. The cloud uses multiple servers (usually referred to
as cloud nodes) and each node has difterent performances and load characteristics
as well as dynamically varying states of the network links between these servers
and the requesting clients: therefore. balancing the load to improve data download
is not a trivial task [15][16][17]. There have been some solutions proposed by
researchers in cloud DaaS and other distributed systems. such as dual-direction
FTP which is concerned with file download among FTP servers, the *Ant Colony”,
which assigns an "ant’ to go through a route to pick a free cloud server to perform
the task. and many other approaches. However. most of these approaches either
focus on improving only the load balancing or improving only the storage
consumption. In addition. the mere issue of creating multiple replicas of big data
creates another problem of storage. This is because there are huge amounts of

storage wasted by saving the same data on multiple cloud nodes [18][19].

In this research. | present an algorithm to reduce the load on each server
node of the DaaS and reduce the storage needed for the replicated data sets. This is
done using the dual-direction downloading algorithm and based on the experience
with each cloud node of those containing data replicas. As a result. | reduced the
size of the data files | retain on each node. The main attributes I consider in this
research are the number of times each block has been downloaded in earlier
requests and the speed of the download. With this information. my smart controller

will be able to make all the decisions. Another benefit of this algorithm is that the

client will not have to deal with any complex calculations. which could increase
the download time. Therefore. | believe my algorithms speed up the data download
process and simultaneously reduce the total amount of storage needed for
replications on the cloud servers. | use a special simulator that | built to evaluate

the performance of the algorithm and compare it to the other existing ones.

1.3. Dissertation Structure

In the rest of this dissertation. | will introduce the research by reviewing the
current problems of load balancing and storage optimization in providing Data as
a Service in the cloud in Chapter 2. In addition. the problem statements are

presented in Chapter 2.

In Chapter 3. | provide a thorough review of the research area ot providing
DaaS in the cloud. I classity the research area into multiple levels and review the
work done by researchers in the last few years accordingly. | then introduce the
challenges faced in this area and the importance of overcoming them in order to
provide an efficient method. | also compare the various methods reviewed in the
literature according to the challenges and find the limitations of each method. |
show that a common limitation between most of the methods used in literature is
not being able to provide a method that has a high-speed load-balancing strategy
that optimizes the storage used by the cloud provider. | show the importance of
having such an approach in order to provide an efticient quality of service for the

clients and reduce the cost to providers.

Chapter 4 describes the base approach of using a collaborative dual-

direction download method in the cloud. In chapter 4, | describe the advantages of

the dual- direction technique which enhances the speed of the download process in
the cloud using collaborative dual cloud nodes in order to provide different
partitions of the files. Then. | show the simulation results of using this method in
the cloud and how it has better speed compared to the regular method used for file

download in the cloud.

In Chapter 5. I demonstrate my first contribution. which is the static storage
optimization technique. | show how | improved the collaborative dual direction by
partially replicating the storage using download experience. | then discuss the
results of optimizing the storage of the cloud servers and compare the
enhancements to the previous approaches. In addition, the limitations and possible

enhancements of the static storage optimization are discussed.

Chapter 6 elaborates on how a self-managed method of storage
optimization can be added to the collaborative dual-direction download technique.
Chapter 6 illustrates how the file can go through difterent stages in the cloud,
starting from the upload stage on which the technique splits the tile into multiple
blocks and saves them each as a separate file in each cloud node to the download
stage in which the dual-direction technique is applied and experience is saved.
Finally. a discussion of when and in which cases the file blocks can be removed
from a certain cloud node is provided. | display the results | obtained when
simulating this method and comparing it to the similar approaches reviewed earlier

in the literature.

In Chapter 7. I develop analytical models of the partial replication dual-
direction download. | demonstrate the eftects of the technique on the time spent

downloading the file and the amount of storage that can be saved when using this

approach. | then provide some discussion of the results I attained when validating

these models.

Finally. Chapter 8 concludes this dissertation by summarizing the
contributions and benefits of this research and the possible tuture works that can

be conducted in order to enhance the current results.

Chapter 2: Problem Statement, Contribution, and Research
Scope

In this chapter. | discuss the problem and motivation behind this research
and the main contribution of this research. | also clarity the scope of my

contribution and the areas in which it is important.

2.1. Problem Statement and Motivation

Cloud services have become a trend in the last decade because of their
agility. location independence. and cost effectiveness [20]. There are many
organizations and cloud providers that offer DaaS [21][22]. These are very
common services among users and are very reliable solutions to keep large files
and share them. Examples of the most well-known industry applications are
Dropbox. Google Drive. Apple iCloud. Microsoft OneDrive. and Amazon EC2
[23][24]. The services provided by each of the mentioned applications vary from
providing the ability to upload and share files to the amount of storage provided to
the client. Table 2-1 shows a comparison of the most well-known applications in
the industry [25]. It was found that free storage provided to normal users ranges
from 2 GB to 15 GB. However, premium storage can reach up to 200 GB. This is
why the Dropbox application is the dominant application in the market by 47.9%.
Dropbox announced recently that the number of their users reached 270 million
users [23]. Imagine having at least 2 GB for 270 Million users. The problem here
is that storage consumes most of the cost spent to provide the cloud services. As
stated by Greenberg [26] in his analysis of cloud costs. data centers consume 45%
of the total costs. infrastructure consumes 25% while network and power draw

consume 15% each. Therefore. there is a strong need to reduce the cost of data

centers by optimizing the way data is stored. The storage utilization however. must
not negatively atfect the download speed at the client side or the reliability of the
storage and retrieval |27]|28][29]. The main tocus of this research is to use an
effective load-balancing technique to enhance the download performance and

optimize storage usage when providing DaaS in the cloud.

Table 2-1: Comparison of Current Industry DaaS Providers in 2015.

Application Free Premium Market
Storage Storage Share
~ Dropbox L IGR Unlimited 47.9%
~ Google 7GB 200GB 16.5%
Drive
iClond ~ 15GB 50 GB 10.5%
OneDrive 5GB 200 GB 9.3%

Cloud resources in the current systems consume a great deal of cost and time from
cloud providers [30]. I noticed that there are two main scenarios usually used when
providing DaaS on the Cloud for load balancing and storage optimizing. The scenario
for load balancing is to look for one server in the cloud and assign the task to that
server. This is of course while taking certain attributes into consideration. For example.
considering the number of connections that are created with that server or the speed of
the server. The problem with this scenario is that the server will be a bottle-nick it |
only consider its speed. Moreover, if | consider only the number of connections, the
server might be slow but free which will result in a slow download. Regarding storage
of DaaS. the scenario is to replicate full files on all servers. The benefit of full
replication is having the ability to distribute the load among the cloud servers it needed.
However, to do that | need huge storage space which will result in very high costs.

imagine the need to replicate a terabytes files among several servers. Here. comes a

9

question of how | can decrease the cost of storage in the cloud while still using
replication and providing a fast download service? My algorithm has the following

benetits to other load balancing and storage optimization techniques:

e It does not incur a high overhead. as less communication is needed to

finalize a file download from a cloud service.

e It has a better handling of the resources in terms of saving more storage
space in the cloud nodes. This is because only parts of the files are saved
and each part is referred to with an 1D so that the controller will know
which cloud node has which partition of the file. Usually. all download
algorithms from the cloud focus only on how to improve the speed of
the download process and how to specity which node has the file.
However. they do not focus on the storage consumption on the cloud
nodes and its eftect on speeding up the process of assigning the task to
the node. In my algorithm. I treat all cloud nodes as parts of a team. This
means that all cloud nodes will be busy downloading partitions of the

file.

2.2. Research Contribution and Scope

Based on the studies that were conducted and the various possibilities of load
balancing in DaaS, | have defined the scope of this dissertation research to address the
storage optimization, load-balancing. performance. and efticiency. The main
contributions possible to this area are shown in Figure 2-1. There are three main
research areas in enhancing DaaS in the distributed cloud; this includes enhancing the
speed of exchanging data through the cloud and 1its efticiency [31]({32][33]. optimizing

the amount of storage needed to host the files on the cloud. and securing the exchange

10

process. Both storage optimization and task allocation are also considered under cloud
resources management research [34]. The cloud resources management is called green
cloud computing by many researchers [28]. A green cloud usually aims to enhance the

use of cloud resources and reduce the effort and energy spent to accomplish tasks.
The following are the specitic contributions of this dissertation:

1. A static optimization of the storage using the dual direction download
technique. This contribution allows the cloud providers to improve the
download speed using a dual direction download technique and optimize
the storage by removing the redundant replicas manually. The benetit of
this contribution over the normal dual direction technique is the storage
optimization feature. However. the limitation is the need to perform the task
manually at a certain stage. A file and block experience are all saved in a

database where decisions about block removal can be made.

)

My second contribution is autonomizing the process of storage
optimization. This is done by an analysis carried at the upload phase of the
file life-time in the cloud. I propose a technique in which uploading any file
requires an analysis of the file size and the collaborative servers' available
as well as the previous experiences of the download of each block for the
registered files. A block would be removed automatically only if there is a
need to do so. That is. if there is not enough space available in one server.
and there exists previous blocks with download counter equal to zero while
the file was downloaded several times from the cloud. The dual direction

has also a minor modification as the files will be stored in the cloud as

11

multiple blocks. Therefore. instead of downloading from one tile only. the

process will loop through a number of block files in a folder.

3. My final contribution is an analytical model ot the amount of storage used
when using my ssCloud technique. | analyzed the expected minimum
amount of storage that could be saved by the cloud when using ssCloud. 1
evaluated the expected results and veritied the accuracy of my model.
Furthermore. | analyze the expected download time when using ssCloud
and evaluated the expected results. | found a high percentage of accuracy

in my analytical model.

It is important to note here that I only focus on large file sizes. | do not consider
any file size below 1 MB as one server can provide such files in a timely manner.
Moreover. files with sizes ranging from 1 MB to 10 MB are also convenient to be
provided by 1 server without going through the process of assigning tasks to multiple

servers. In this approach my main focus is large tiles with sizes greater than 10 MB.

Data exchange | Mobile] ' Task scheduling | S \
' . ; torage
security webservices and load balancing oftimization |
(35)(36)(37] | (38] [39] , of massive data \
Bets Service o : Reolicati
- i — ee eplication
encryption discovery P ‘ L :
User — Outsourcing |] Reliability
— Efficiency [42
authentication £ ,,ilil (40][41]
L] Fault
| Tolerance

Figure 2-1: Dissertation Scope.

12

Chapter 3: Literature Review

In this chapter. | provide an analysis of the load balancing and storage
optimization research area in Section 3.1. Then. | show the challenges that face
most of the techniques reviewed in the literature in Section 3.2. In Section 3.3 |
review the load-balancing techniques. while in Section 3.4 | review the storage
optimization technique. Then | provide an analysis of the current approaches in

Section 3.5. The chapter is finally concluded with Section 3.6.
3.1 Literature Classification

To analyze the state of the art research in DaaS. | thoroughly studied the current
approaches in load balancing and storage optimization in the cloud. | noticed some
approaches focused on enhancing the load balancing of the file downloads from the
cloud [33]. while others focused on optimizing storage in the cloud [43][44][45].
Theretore. | classified DaaS research as in Figure 3-1 into two categories: research on
load balancing and research on storage optimization. Each category has a sub category
based on the common solution provided in the literature. For example. load balancing
is categorized into static and dynamic load balancing because some solutions focused
on assigning tasks to cloud nodes based on their ability to receive new tasks (static)
while dynamic assigns tasks to cloud nodes by taking into consideration the node
speed, capacity, and network load. Moreover. the storage optimization is categorized
into full and partial replication. This is because some approaches save the same full
file on multiple cloud nodes. while others partition the tile based on certain

characteristics and save difterent partitions on difterent servers.

13

Uaud Computing
Saas Paas DaaS
Load Balancing Opi:r(:::::jon
Static Dynamic Full Replication Rez;';‘;'on

Figure 3-1: Literature Classification.

3.2. Research Challenges

Before I could review the current load-balancing approaches for cloud computing.
I must identity the main challenges involved and that could atfect how the algorithm
would perform. Here | discuss the challenges to be addressed when attempting to
propose an optimal solution to the issue of load balancing in cloud computing. These

challenges are summarized in the following points.

3.2.1. Spatial Distribution of the Cloud Nodes

Some algorithms are designed to be efticient only for an intranet or closely located
nodes where communication delays are negligible. However, it is a challenge to design
a load-balancing algorithm that can work for spatially distributed nodes. This is
because other factors must be taken into account. such as the speed of the network
links among the nodes, the distance between the client and the task processing nodes.
and the distances between the nodes involved in providing the service. There is a need
to develop a method to control the load-balancing mechanism among all the spatial

distributed nodes. while being able to eftectively tolerate high delays [46].

14

3.2.2. Storage/ Replication

A tull replication algorithm does not take efficient storage utilization into account.
This is because the same data will be stored in all replication nodes. Full replication
algorithms impose higher costs since more storage is needed. However, partial
replication algorithms could save parts of the data sets in each node (with a certain
level of overlap) based on each node’s capabilities, such as processing power and
capacity [47]. This could lead to better utilization, yet it increases the complexity of
the load-balancing algorithms as they attempt to take into account the availability of

the data set’s parts across the different cloud nodes.

3.2.3. Network Overhead

A network overhead is usually known as straining the network with several
connections and messages. Sending and receiving messages through the cloud should
be reduced as much as possible so that the network is free to do the tasks assigned
more efticiently. Therefore, load-balancing algorithms are preferred have less network

overhead [48].

3.2.4. Point of Failure

Controlling the load balancing and data collecting about the different nodes must
be designed in a way thatavoids having a single point of failure in the algorithm. Some
algorithms (centralized algorithms) can provide efficient and eftective mechanisms for
solving the load balancing in a certain pattern. However. they have the issue of one
controller for the whole system. In such cases, if the controller fails, then the whole
system fails. Any load-balancing algorithm must be designed in order to overcome this

challenge [49]. Distributed load-balancing algorithms seem to provide a better

15

approach. yet they are much more complex and require more coordination and control

to function correctly.

3.3. Load Balancing Approaches

In this section. I discuss the most well-known contributions in the literature
of'load balancing in cloud computing. I classify the load-balancing algorithms into
two types: static algorithms and dynamic algorithms. | tirst discuss the static load-
balancing algorithms that developed for cloud computing. Then, | will discuss the

dynamic load-balancing algorithms.

3.3.1. Static Load Balancing Algorithms

Static load-balancing algorithms assign the tasks to the nodes based only
on ability of the node to process new requests. Static algorithms do not consider
attributes. such as network tratfic. nodes CPU speed, node memory size. and other
node capabilities.

Radojevic suggested an algorithm called the central load-balancing
decision model (CLBDM)[15]. which is an improvement of the round robin
algorithm, which is based on session switching at the application layer. Round
robin [50] is a very tamous load-balancing algorithm. However, it sends the
requests to the node with the least number of connections. The improvement in
CLBDM is that the connection time between the client and the node in the cloud
is calculated. and it that connection time exceeds a threshold, then there is an issue.
If an issue is found. the connection will be terminated and the task will be

forwarded to another node using the regular round robin rules. The CLBDM acts

as an automated administrator. The idea was obtained from a human
administrator’s point of view.

The proposed algorithm by Nishant [51] is an improvement of the algorithm
presented in [32]. Both algorithms use “ants’ behavior to gather information about
the cloud nodes in order to assign the task to a specific node. However. the
algorithm in [52] has an ant synchronization issue. and this paper is attempting to
solve this by adding the feature *suicide’ to the ants. Both algorithms work in the
following way. once a request is initiated. the ants and pheromones are initiated
and the ants start a forward path from the “head’ node. A forward movement means
that the ant is moving tfrom one overloaded node looking to the next node to check
if it is overloaded or under-loaded. Moreover, if the ant finds an under-loaded node,
it will continue its forward path to check the next node. If the next node is an
overloaded node. the ant will use the backward movement to get to the previous
node. The addition in algorithm proposed in [51] is that the ant will commit suicide
once it finds the target node.

The algorithm proposed in [53] is an addition to the map reduce algorithm
[54]. The map reduce algorithm is a model that has two main tasks. map tasks and
reduce tasks. Moreover. there are three methods in this model. The three methods
are part. comp, and group. The map reduce algorithm first conducts the method by
map tasks. At this step. the request entity is partitioned into parts using the map
tasks. Then, the key of each part is saved into a hash key table. and the comp
method completes a comparison between the parts. After that, the group method
groups the parts of similar entities into groups using reduce tasks. Since several
map tasks can read entities in parallel and process them, this will cause the reduce

tasks to be overloaded. Theretore, it is proposed in this paper to add one more load

16

balancing between the map task and the reduce task to reduce the overload on these
tasks. The load balancing in the middle divides the large blocks into smaller blocks.
and then the smaller blocks are sent to the reduce tasks based on their availability.

Ni proposed a load-balancing algorithm [55] for private cloud using virtual
machine (VM) mapping to a physical machine. The architecture of the algorithm
contains a central scheduling controller and a resource monitor. The scheduling
controller does all the work for calculating which resource is able to take the task
and assigning it to a specific resource. However. the resource monitor does the job
of collecting the details regarding the resources availability. The process of
mapping goes through four main phases. which are accepting the VM request.
obtaining the resource details using the resource monitor, calculating the resources’
ability to handle tasks (the resource with the highest score is the one receiving the

task). and accessing the application.

3.3.2. Dynamic Load Balancing Algorithms

Dynamic load-balancing algorithms take into account difterent attributes of
nodes capabilities and network bandwidth. These algorithms assign the tasks
dynamically to the nodes based on the attributes calculated. Such algorithms are
usually harder to implement but are more efticient.

In [56]. they proposed an algorithm to minimize data duplication and
redundancy. The algorithm proposed is called an INS (index name server). and it
integrates de-duplication and access point selection optimization. There are many
parameters involved in the process of calculating the optimum selection point.
Some these parameters are hash code of the block of data to be downloaded. the

position of the server that has the target block of data. the transition quality. which

17

is calculated based on the node performance and a weight judgment chart. the
maximum bandwidth of downloading from the target server and the path
parameter. Another calculation is used to specity whether the connection can
handle additional nodes or not (busy level). The authors classified the busy levels
into three main categories B(a). B(b). and B(c). The B(a) category means that the
connection is very busy. and | cannotadd any more connections. The B(c) category
means that the connection is not busy, and additional connections can be added.
However. B(c) means that the connection is limited. and there is further study
needed. The B(b) category is also classitied into three turther categories: B(bl)
means that INS must analyze and establish a backup. B(b2) means the INS must
send the requests to the backup nodes. and B(b3), which is the highest level
efficiency required. means that INS must reanalyze and establish new backups.
Ren [57] presented a dynamic load-balancing algorithm for cloud
computing based on an existing algorithm called weighted least connection (WLC _
[58]. The Weighted Least Connections algorithm assigns tasks to the node based
on the number of connections that exist for that node. This is done based on a
comparison of the sum of connections of each node in the cloud and then the task
is assigned to the node with least connections. However. WLC does not take into
consideration the capabilities of each node., such as processing speed. storage
capacity. and bandwidth. The proposed algorithm is called exponential smooth
forecast based on weighted least connection (ESWLC). The ESWLC improves the
WLC by taking into account the time series and trials. The ESWLC builds the
decision based on an experience of a node’s CPU. memory, number of connections.
and load of disk occupation. The ESWLC then predicts which node is to be selected

based on exponential smoothing.

18

The algorithm proposed in [59][60][61] is a dual-direction downloading
algorithm from FTP servers (DDFTP). The algorithm presented can be also
implemented in cloud computing load balancing. The DDFTP works by splitting
an m-long file into m/2 partitions. Then. each server node starts processing the
assigned task based on a certain pattern. For example. one server will start from
block zero and keep downloading incrementally. while another server starts from
block m and keeps downloading decrement. Finally. when the two servers
download two consecutive blocks. the tasks are considered tinished. and other
tasks can be assigned to the servers. The algorithm reduces the network
communication needed between the client and nodes and therefore reduces the
network overhead. Moreover. attributes. such as network load. node load, and
network speed. are taken into consideration.

The paper in [62] proposes an algorithm called load balancing min-min
(LBMM). The LBMM algorithm has a three-level load-balancing framework. It
uses an opportunistic load-balancing algorithm (OLB) [63]. The OLB algorithm is
a static load-balancing algorithm that has the goal of keeping each node in the cloud
busy. However. the OLB algorithm does not consider the execution time of the
node. This might cause the tasks to be processed in a slower manner and could
cause some bottlenecks since requests might be pending while waiting for the
nodes to be free. The LBMM algorithm improves the OLB algorithm by adding
three-layered architecture to the algorithm. The first level of the LBMM
architecture is the request manager. which is responsible for receiving the task and
assigning it to one service manager in the second level of the LBMM. When the
service manager receives the request. it divides it into subtasks in order to speed

up processing that request. A service manager would also assign the subtask to a

19

20
service node, which is responsible for executing the task. The service manager
assigns the tasks to the service node based on different attributes, such as the
remaining CPU space (freeness of the node), remaining memory, and the

transmission rate.

3.4. Storage Optimization Work

There has been some interesting work on storage optimization in the cloud.
[noticed that some of these works focused on either dealing with large file sizes
or small size files. Moreover, most of the approaches dealing with small file sizes
replicated the full file over all the cloud resources. However, the approaches
dealing with large file sizes usually split the file onto multiple cloud servers and

had a partial replication only. Here, I show the storage optimization related works.

3.4.1. Full Replication Storage Work

Zhang [64] proposed a full replication solution that targets the download of
small files from the cloud. The solution is referred to as BerryStore. The targeted
file size is a maximum of 10 MB. The advantage of this solution is to group many
small files into one large file for which there is only one directory in the cloud
nodes. This will result in minimizing the search and queries of the small files where
there will be only one query method for all small files. The main structure of the
solution is the client, NameServer, and DataServer. The client requests the tile, the
NameServer attains the location of that tile (in which large file it is located), and
the DataServer contains the real file data from which the client can download the

actual file. The solution is good, yet not practical for large tiles. Moreover, the

solution replicates the grouped large files on multiple cloud nodes. which can be

enhanced by reducing the replication time.

3.4.2. Partial Replication Storage Work

Srivastava [65] proposed another solution that works for multi-cloud
storage and within each cloud. It reduces the migration effort of the client data from
one cloud to another. Each cloud contains multiple clusters, Vitual Machines
(VMs) and physical servers. Therefore. for each cloud there will be a
CloudInterface and for each cluster. there will be a ClusterInterface. The purpose
of having interfaces is to organize the interactions between each client and each
cluster within the cloud. Moreover, there is a broker that obtains the client’s request
and processes it to the multi-clouds. The client submits requests to the broker to
either upload or download. For an upload request. the client specities the security
level. The “SecurityLevel is a parameter used by the “FileSplittingFunction™ to
split the file into multiple files based on the percentage of security level provided
by the client. For example. if the client specities the security level to be 50%. then
the file will be split into two sub tiles each saved in a different location. For each
cloud. the number of sub files is equal to the number of free VMs. The limitation
of this approach is its complexity. Especially when the files are saved in ditferent
clouds. the operation will be more complex.

Villari et al. [66][67][68] proposed the redundant residue number system
(RRNS). Their main concern was the security of the client tiles hosted in the cloud.
It is similar to Srivastava's solution. However. it is difterent in terms of keeping
the metadata of each partition and its location in the cloud at the client side as an

XML file. This is to increase the security of the files because the only one who can

21

collect all the partitions and create the original file will be the client. The number
of file partitions is specified by the client. The solution is also useful for clients
dealing with multi-cloud providers. Another parameter specitied by the client is
the redundancy degree (RD). which refers to the number of replicas of the
partitions in each cloud node. The solution has four phases. splitting.
dissemination. retrieval. and reconstruction. The problem is that if the client has
lost the metadata of the partitions’ locations, the client will not be able to download
the file. Moreover. each file chunk is saved on the cloud nodes as XML files.
I'herefore. more processing is needed to convert them to their original formats.
There are approaches to enhance the storage consumption in the cloud of
clouds. These approaches consider avoiding vendor lock-in. enhancing the security
and privacy. and enhancing the cost of replicating full data across multiple
providers in the cloud. These approaches include some popular work such as
RACS [69]. DEPSKY [70]. SateStore [71]. and Hybris [72]. These solutions deal
with the service provider architecture as a black box. they integrate their solutions
with the storage provider so that there is data gathering by a local server at the
client side by requesting data existing in each service provider. The service
provider's storage architecture and load balancing technique is not touched and
therefore. there is a latency to the download time of the file eventually. The

approaches are very usetul for avoiding vendor (service provider) lock in issue.

This means that the client will suffer minimal effects if the vendor goes out of

business or did not provide sufticient service to satisty the client. Although
replicating even partitions of the data across multiple vendors will increase the cost
for the client as discussed in [69][70][71] and have a small latency to the download

time. it offers a very suitable solution to prevent the service provider from having

22

23

access to the full data of the client and it would help the client to be somehow

independent from the service provider.

3.5. Discussion of Current Approaches

As discussed earlier. the ditferent approaches ofter specific solutions for
load balancing that suit some situations but not others. The static algorithms are
usually very efficient in terms of overhead. as they do not need to monitor the
resources during run-time. Therefore. they would work very well in a stable
environment where operational properties do not change over time and loads are
generally unitorm and constant [73][74]. The dynamic algorithms, on the other
hand. offer a much better solution that could adjust the load dynamically at run-
time based on the observed properties of the resources at run-time. [However. this
feature leads to high overhead on the system. as constant monitoring and control
will add more traftic and may cause more delays [75]. Some newly proposed
dyvnamic load-balancing algorithms try to avoid this overhead by utilizing novel
task distribution models | 76][77].

Table 3-1 shows a comparison among the reviewed algorithms. The
comparison shows the positive and negative points ot each algorithm. For example.
the INS algorithm is able to handle the load balancing dynamically. However. the
provided algorithm is complicated. which could cause high implementation
complexity. | foresee that a close examination of the algorithm and changing the
overall structure may result in a less complex algorithm. Furthermore, the
CLDBM algorithm solves the problem of requiring a human administrator to
control the system all the time. Therefore. it provides a centralized controller.

However. if the centralized controller fails at any time. the whole system will not

be able to operate. which will cause a system failure. Having a backup of the central
controller could solve the issue tor CLDBM in cases of failure.

As for the ant colony approach. | can see that the decentralized approach
provides a good solution to the single point of failure issue. However. it could
easily cause a network overload due to the large number of dispatched "ants’. In
addition, several operational factors are not being considered. which may result in
poor performance. This algorithm can be further improved by introducing better
evaluation mechanisms that take into consideration the status of the node and its
current available resources. In addition. it may also be possible to limit the number
of ants used in the discovery process by introducing search controls that could
reduce the branching levels required in the search.

In DDFTP. the control is kept to a minimum and no run-time monitoring is
needed to keep up with environment changes. while keeping a very efticient load
balancing. As a result. it provides a good approach, yet it still needs some
improvements for better utilization of the available resources. One possibility is to
find a good model that will reduce the level of replication needed. while
maintaining the same level of performance. This may be possible with the
consideration of partial replications with a certain level of overlap that will enable
more efficient resource utilization and maintain minimum overhead for load
balancing.

Table 3-2 illustrates a comparison between the reviewed algorithms in
terms of the challenges discussed in Section 1. For example. the only algorithm
that avoids data redundancy and storage replication is the INS algorithm. FHowever.
INS is a centralized algorithm and therefore has a single point of failure. Moreover.

it is a complex algorithm.

24

On the other hand. DDFTP relies on replicated resources and does not
reduce the storage size required. but it has a dynamic decentralized approach to
balance the loads. It is also a much simpler algorithm to download stored data. By
applying partial replication, DDFTP can be improved to use less storage.
Generally, each algorithm satisties a partial set of these challenges. which makes
it suitable for specific situations that match the addressed challenges. For example
INS. CLBDM. and VM mapping all have a single point of failure, thus they would
function very well in a very stable environment where the resource reliability is
very high. Moreover. all algorithms except for ant colony and VM mapping can
handle a highly distributed environment. Therefore. they are more suitable for the
public cloud than the other two. In addition, all but DDFTP introduce high
overhead on the network. As a result. it the network conditions worsen. they would
all sufter significantly as more delays will be involved. which will delay the overall
load-balancing process. However. DDFTP would be more capable in handling

such delays. as it does not need to rely on run-time monitoring and controls.

25

Algorithm
INS

ESWLC

CLDBM

ANT
COLONY

Table 3-1: Load Balancing Algorithms. their Pros and Cons.

Pros

Cons

Initially proven to
handle certain sorts of
dynamic balancing.

Does not have a forecasting
algorithm to identify how the
behavior of the nodes will be in the
future.

Only certain parameters are taken
into consideration, such as distance
and time.

Reduces the server
load issue vhich
exists the original
WIL.C

Solves the issues of

the round robin
algorithm.
Automated task
forwarding eliminates
the need for a human
administrator at all
times.

Complicated.

Prediction algorithm requires
existing data and takes a lot of time
for processing.

Inherits round robin issues. such as
not taking into consideration node
capabilities.

Single point of failure (it CLBDM
fails, then the whole process would
fail).

The threshold might not be applied to
all cases.

Best-case scenario is
that the under-loaded
node is found at the
beginning of the
search.

Decentralized, not a
single point of failure.
Ants can collect the
info in faster manner.

Enhanced
Map
Reduce
VM
Mapping

Network overhead because of the
number of ants.

Points of initiation of ants and
number of ants are not clear.

Node's status change after ants visits
to them is not taken into account.
Only availability of node is being
considered, while there are other
factors that should be taken into
consideration.

Less overhead for the
reduce tasks.

More processing time.
Reduce tasks capabilities are not
taken into consideration.

" Reliable calculation
method.

Single point of failure.
Does not take into account network
load and node capabilities.

DDFTP

LBMM

Fast.

Reliable
Reliable
assignment to nodes.

tasks

A full replication requires full
storage in all servers.

Slower than other algorithms
because work must pass through
three layers to be processed.

26

l'able 3-2: Comparison of Load Balancing Algorithms in Terms of Challenges.

INS, 2012

ESWLC,
2011

CLBDM,

2011

An t-Colony,

2011

Enhanced
Map Reduce,

2012

VM
Mapping.
2011
DDETP,

2013

LBMM. 2011

As for the storage optimization techniques, since most of the technique

27

Replic:lt'ion Single Point of Network Spatial Fault
Failure (SOF) Overhead Dist. Tolerance
Partial Yes o Yes Yes No
Full "~ No " Yes Yes Yes
Full Yes Yes Yes No ’
Full No Yes No Yes
TFull ~ No =1 Yes Yes Yes
Full Yes Yes No Yes
“Full ~ No No Yes Yes
Rl -~ No No " Yes Yes

architecture rely on having the client containing the metadata of each partition on

the service providers, then if the client fails the whole process would fail. On the

other hand. most of them are more secure than other load balancing approaches

since cloud provider cannot have a full access to the whole data of the client. The

latency added to the load balancing download speed cannot be ignored since it is

added to the latency of the cloud provider and its architecture is not changed in

28

all of the techniques. Most of the approaches deal with large file sizes except for

berrystore of which goal is collect all small files as one large file and replicate it

among several severs which is a full replication of the files. Moreover. CDDIL.B

has a high download speed but a full replication of files over the servers in the

cloud. The goals of the storage optimization techniques are different but some of

them can be integrated together in order to provide even better performance. For

example, since RACS treats the cloud provider architecture as a black box and it

solves the issues of security and vendor lock in. it can be integrated with CDDIL.B

in order to provide a faster download and less effects to the client data security.

Table 3-3: Comparison of Storage Optimization Techniques in Terms of Challenges

SOF
RRNS, 2014 Yes
Vlriérr)-Storre. : ~ No)
2012
“RACS, 2010 T Yes
: Depshy, 2013 - Yes
)Iﬁris. 014 Yes
SafeStore, Yes
2007
“copbLB, 2013 No
3.6. Chapter Conclusion

Security I{;Flic:ltion Client
overhead
"~ High ~ Partial iligh
Moderate Full ~ Moderate
4 High : Partial 7nlligh' -
~ High ~ Partial High
- High - Partial Iligh :
High Partial T Mgt "
Moderate Fall Low

In this chapter. | have reviewed the state of the art research of providing

Daa$ in the cloud. From my analysis. | noticed that the current approaches lack the

ability to handle both efticient load balancing and an etticient technique to reduce
the storage consumption among the cloud servers. Both of these issues are
important in order to provide better services to the client and reduce the cost of
hosting millions of'tiles in the cloud. Theretore. | aim in this dissertation to provide

a novel technique to solve the issue mentioned earlier.

29

30

Chapter 4: Collaborative Dual Direction Load-Balancing
Approach
In this chapter. 1 demonstrate the collaborative dual-direction load-
balancing (CDDLB) technique. I show how the technique works in the cloud and
explain the basis of CDDI.B. The technique by which files are partitioned and
partition tasks are assigned to servers is also illustrated in this chapter. Then. an
evaluation of the method is discussed in Section 4.2. Finally, the possible

enhancements and strengths of the techniques are demonstrated in Section 4.3.

4.1. CDDLB Methodology

Here. I describe the collaborative dual-direction download approach. | have
applied the technique DDFTP used in FTP file exchange to the cloud in order to allow
collaborative servers to provide partitions of the files whenever a client requests that

file.

The CDDLB idea originates from the same approach as DDFTP. which uses a
dual-direction download technique in FTP servers [59|[60]. The CDDLB is the dual-
direction file retrieval from the cloud servers. The algorithm works by splitting the file
into partitions of data as shown in Figure 4-1 and assigning two cloud servers for each
partition to download the data from opposite directions. Each of the cloud servers will
handle a download of either forward or backward in the partition depending on its
agsignment. This way. the download process is parallelized across the available
replicas. and the overall client download time is improved significantly. In addition,

the approach provides an efficient load-balancing scheme with minimum coordination

25l

and zero interaction among the servers being used. However. the CDDLB method

works well with the existence of full replicas of the data set on each of the cloud server

nodes in use.

Partition 1 Partition 2 Partition 3

< b e >

Figure 4-1: Partitioning a File in CDDLB.
[f 1 assume that each partition is of length ». then for each set of two cloud servers.
the tirst one will provide the data starting from block index zero and increment its
counter to move forward. while the second server will provide the data starting from

block index #2-/ and decrement its counter to move backwards. as shown in Figure 4-

2.

Partition 1 ’

Server 1 Server 2
SR

0 n

Figure 4-2: Dual Servers Providing One Partition.

Figure 4-3 shows a very simplified example of a download process for a file with
four cloud servers in the cloud. When a client requests file X, the request will be
forwarded to the load balancer in the cloud. There are several load balancers in the

cloud structure; however. requests are generally forwarded to the closest load balancer

39

in terms of distance. The load balancer will then identity the available cloud nodes to
process the task (server 1. 2.4, and cluster 1); it will partition the tile according to the
number of available servers into two partitions and then will assign: 1) a forward
download task starting from block zero to S1. 2) a backward download task starting
from block » to §2. 3) a forward download task starting from block n+/ to C'/. and 3)
a backward download task starting from block 2# to node S4. The speed ot each of the
cloud nodes ditters according to its performance, which is the benetit of the dual-
direction download process. If a certain server is sloww when providing its task. the
collaborating server can overcome this limitation by providing the blocks in its

direction.

&
LY 5 a N
. .
2 & %
W
. © “
(S L) .
3
51 % ° N
% L & g
% P1 N P2 g A
% . 9(‘
0 1 2 we N1 n N+l m2 ne3 L. 201 2n
=
o
x
Load Balancer
Request File X 4 Available Servers = Split file X into 2 Partitions

2 Servers download forward Process
2 Servers Download Backward process

Client C

Figure 4-3: Simple Example of CDDLB Mechanism.

33

Since any file X will be downloaded collaboratively between multiple servers and
cach set of two servers will collaborate to download one partition. the equation to
calculate the number of partitions needed for any file X" is by dividing the number of
available servers over two. Moreover. a partition size is decided as shown in Equation
| by the number ot blocks (.V) and number of available servers (Af). For example. it |
have a file X with 100 blocks and four available servers. then the partition size for each

set of two servers is (100/4)*2. which is 50 blocks per partition.

N
Partition size = (ﬁ) X 2 (D)

While the number of blocks N in file X can be found by dividing the file X size (R)

by the block size. The equation to find N is as below:

e —
BlockSize e (2)

It was proven in [61] that the performance of the dual-direction technique is
enhanced since the number of control messages (communication) between the client
and the cloud servers is decreased to the minimal in reality. using dynamic servers and

network loads even when there is a reassignment of the task from one server to another.
. . K
It is found that the number of start messages would be equal to k + > ((logyn) — 1)

where k is the number of servers. and » is the number of the last block in the ftile.

4.2. Simulation and Analysis of CDDLB

To evaluate the proposed algorithm. | consider a data set initially replicated
on two cloud servers at different locations that are working according to any
normal single node selection algorithm (e.g.. ant colony or INS). The size of the

data set is SOMB. As this data is replicated on both servers. a total ot 100MB are

used. The data set is divided into 5000 blocks of size 10.000 bytes each. I assume
that the average download speed trom the first server to different clients over the
Internet is 20 blocks/second with a minimum speed of 15 blocks/second and a
maximum speed of 20 blocks/second. The average download speed trom the
second server to difterent clients is 3@ blocks/second with a minimum speed of 25
blocks/second and a maximum speed of 30 blocks/second. The average download
times using any node selection and assigning technique and CDDLB are shown
Figure 4-4. As | can see from the figure. CDDLB provides a good download
performance, as it utilizes both servers and provides efficient load balancing

regardless of the load on the servers and the networks.

)

°

=

o

o

) 300

£ 200

=

- 100

1)

o

= 0

3 Single Node coDLB

8 Selection
Technique

Figure 4-4: Comparing CDDLB Performance to Normal Selection Methods.

In order to check the effect of the processing speed. | simulated the file
g
download speed using various numbers of dual servers for a 100 MB file. [first
p £
conducted an experiment using only two servers. Then. I conducted more
experiments by increasing the number of servers to four, six. eight. and up to ten
servers. The time needed in order to process the request reduced each time |

increaged the number of servers. Figure 4-5 shows the finishing time of each

34

35

processing time done by the number of servers specified. As discussed earlier. in a

real cloud the speed and load of cloud servers’ change every second.

01:26
01:12
00:57 +
00:43
00:28 -
00:14

3
8

0 1 2 B 4 S 6
Number of dual servers

download time (Seconds)

Figure 4-5: Etfect of Number of Dual Servers on the Download Time.
4.3. CDDLB Benefits and Limitations

The CDDLB technique works well for file downloading and shows some good
results as discussed earlier in this chapter. However. the data storage is still consuming
a lot of space on each cloud server. and the same data files are saved on each server.
Although some parts of these replicas never get used. This means that the storage
consumption is more than needed and therefore, my target is to reduce server storage
consumption by improving the CDDLB algorithm by applying the partial replication
of the data files being saved on each cloud server. This means that I will not store the
same data tile on all cloud servers. | would store different parts of the data files on
each cloud server according to the servers’ performances throughout the various times

download requests were performed on each server.
1.4 Conclusion

In this chapter. I discussed the collaborative dual-direction approach to download
files from the cloud. The approach simply partitions files into several partitions

depending on the number of available cloud servers and assigns each partition to two

36

servers so that they can provide it collaboratively. Each server will be providing
partition blocks either tforward or backward. The importance of this approach is to
enhance the dovwnload speed of large files in the cloud. However. the limitation here
is the need to replicate tull tiles in the cloud. This could be enhanced using the partial

replication methods discussed later in this thesis.

237/

Chapter S: Static Partial Replication Technique Using
Collaborative Dual Direction Download

In this chapter. | discuss my static partial replication technique (SPRT),
which uses the collaborative dual-direction download in order to make decisions.
First. | discuss the technique. its worktlows. and needed procedures. Then. |
evaluate the performance of this technique and how it proved to have a significant
improvement over the other methods. including the CDDLB technique. in terms of
storage. | finally conclude the chapter by discussing the limitations of the technique

and how it can be enhanced further to provide better results.

S.1. SPRT Method

To implement SPRT. I used the workflows shown in Figures 5-1 and 5-2.
Figure 5-1 describes the workflow of downloading a file by the cloud client. To
download a file. the client initiates a request to the cloud. The cloud controller then
checks whether the file was downloaded before, and if so. there will be data regarding
the file partitions that were downloaded and which cloud servers provided them.
Having this history will help in selecting which cloud server must provide which
partition. The controller finds the required data trom the database and then assigns the
servers. which already have the file partitions to the tasks. After the data is downloaded
from all the servers. the client is updated by the required file. However. there must be
a first-time download for each tile to get its experience. Therefore. the alternative
workflow is selected when the file is being downloaded for the first time. The tile size
in bytes is fetched; the block size is determined by factorizing the file size. Then.

serversare assigned based on their availability and processing speeds. When the dual-

38

direction download is processed from all servers for the first time. the client is updated
as well as the database. A database must always be updated with what happens in the
servers processing each partition so that the controller can decide later vwhich partitiong

are to be kept in the cloud server and which are to be removed.

Receive Request |

Check Database

File
download
or first time

Assign based on previous
partitions

Assign to all servers

Multiple servers dual
direction download

!

Database updated based
on servers partitions

Client updates the file by
combining partitions
based on bytes indices

Figure 5-1: SPRT File Download from the Cloud Worktlow.

I allow the file partitioning process at the controller side when the controller has
enpugh data to make its decisions. Figure 5-2 illustrates how the controller saves the
required partitions on the servers and removes the redundant partitions based on their
download rate. To do that. the controller first checks the available data in the database
concerning the download from the previous servers’ experiences. Then. if blocks
downloaded from server S (for example) were found. the controller creates a directory
in server S where the directory name is the file X 1D. Inside the server folder, the

blocks that were downloaded from that server are copied. Each block will be a file by

39

itself and the name of the file will be the block 1D. | tested splitting the original file
into the blocks and combining them by the client. The original file was created at the
client without any problems. Therefore. this could be the best way to keep partitions
of the file in the server without the need for complicated calculations. The file sizes

will match the block size in the original file.

Check File history
from Database

Server §
provided
partitions from
File X

Create folder | Noj
structure using file ID

in server S

Write the partition to
a binary file with
block ID

More partitions
from File X

End process

Figure 5-2: SPRT Replicated Data Removal Process.

Moreover. the block size should be selected based on the original problem size

(file X size). To do that. | tactorize the original tile X size and find the biggest factor
. . A . i B X
that belongs to the interval from zero. which is the minimum file size to {(W) X

NOS} that refers to the file size divided by the maximum number of connections
allowed by the database server (NOC) multiplied by the number of servers (NOS). This

interval will prevent any “‘exceeding number of connections™” errors for the users when

40

uploading their files to the cloud servers. Since | keep the metadata in the database. it

is important to consider the database server's ability to receive the updated

connections.

BlockSize = Max(f(x)) : where f(x) € {0'(NZC) «NOS} (3)

Another problem that could be faced when transmitting a file. even through the
cloud, is the maximum transmission unit (MTU). Even it | found a block size that will
not face an "exceeding number of connections"” error. | could face the MTU error for
which a block can be transterred several times because it exceeds the MTU with even
one byte. Having a file transterred through several networks will result in having
different MTUs for each one. For example. Figure 5-3 shows a file being transterred
though a cloud that has an MTU of 1500 bytes. and between the cloud and the client.
which has an MTU ot 1000 bytes. The 1500-size blocks that passed through the cloud
will not be able to go through the cloud-client network because the MTU there is less.
Theretore. each block ot >1000 will be transferred as two blocks ot 1000 and 500. This

will consume time from the transter process.

......
......

A
X e S
MTU = 1000
= bytes MTU = 500 bytes
- =

s

Figure 5-3: MTU in the Cloud Network.

41

When [say that an MTU is 500. it is really 512 bytes and 1000 is really a 1024
bytes (which is double). The benefit here is that any factorial result from Equation 1 is
actually divisible by any of the multiples of 512. 1024. or 1536. Therefore. when a
block size ot 51.200 of a certain file is defined. this block will be transterred through
the network based on the MTU. as in the table. The table shows that after selecting the
minimum MTU in a certain route of the file transfer. the block can be split into several

packets without any remaining packets.

Table 5-1: Example of Block Size Handling MTU.

MTU Real pocket size Example Result

S0 512 51200/512 = 100 packets

oo 1024 51200/1024 = 50 packets

1500 1536 Lo Note: Reduce pa;.:mis'izé 01280
51200/1280 = 40 packets

2000 2048 51200/2038=25 packets =

The pseudo code in Algorithm 5-1 shows how the block size is determined
based on Equation 3. The file size is first acknowledged. Then. the tactorization
method is applied. and when the largest number in the required interval is found, it is
updated in the block size table in the controller. This is so that the block size is
determined for all servers and all download times when the file is tirst uploaded to the

cloud. The file is uploaded as a whole in the cloud without any additional procedures

except determining its blocks size for download purposes.

42

Algorithm 1 upload a file to the cloud
Require: z; . FileName;, NOC, NOS

Ensure: r, > 0. NOC >0, NOS >0
1 set k=0
2 set UpperLimit = (r/NOC)* NOS
3 for1=0toi=UpperLimit do
4 if r|7then

Block Size « i

(4]

6: end if

ot

. end for

8: fort=0tot=rdo

9: fors=01tos=NOS do

10: trasfer block, to Server,

11: append to Target FileName
122 end for

13: end for

Ensure: TargetFile NamnmeSize = &

During my experience. | found that the number of replicated blocks in more
than one cloud node is associated with the number of coordinated nodes in the
download process. It is also associated with the load assigned to each server and the
speed of the cloud server. For example. if | had only two nodes downloading the file
and both nodes have the same load and the same speed, then the number of replicated
blocks on the two servers from the file will be two. While when the number of nodes
downloading the file is four. the number of replicated blocks will be four. and if one
of the dual servers was faster than the second server. then the number of replicated
blocks could increase to six. This is because one server processes the request much

faster than the other one. and for the other server to reach it. more blocks are replicated.

43

I'herefore. if | have four replicas of a data file on four cloud servers. then [need
to divide the file into 4/2 ~ 2 partitions. If the data file .Y has 3000 blocks for example.
then cach partition will be of size (3000 4)*2 = 1500 blocks. Assuming | have the
cloud servers A. B. C. and D. The first time the request is initiated. the controller will
look for the free servers and assign the partitions to them accordingly. In this example.
partition | will be assigned to servers A and B. Server A will provide the forward
download of partition 1. while server B will provide the backward download of the
same partition. As the servers push the blocks. they also update their blocks™ download
counters as in Tables 1 and 2. where the partition is of size P and server A downloads
from zero onwards and server B downloads from /-] downwards until they meet at

blocks kand k+1/.

Similarly. the second partition is assigned to cloud servers C and D. and they
both keep similar tables. These tables are updated every time a download request is
assigned to the servers for the same file. This will allow the servers to know which
blocks are being used and which are not. Over time and with the repetitions of the
downloads. the servers can decide to remove the blocks that are never used from
storage. This way if | examine servers A and B. after a while | may find that server A
has pushed blocks zero to & at least once, while the remaining blocks in the partition
were never used. In addition. server B has pushed blocks -/ to block j at least once,
while the others were never used. In this case, the controller may decide to instruct
server A to delete blocks k+/ to P-1 and server B to delete blocks zero to j-/. Assuming
varying performance and loads on the two servers. j will usually be smaller than 4. thus
there will be some overlap across the servers to ensure proper download in the
upcoming requests. For this approach to work correctly. | must ensure that the

downloads on particular servers are always done in the same direction. For example.

44

cloud server A will always be assigned to start from the beginning of a partition. while
cloud server B will always start from the end of the partition. The same applies to all

servers participating in the overall download process.

As more requests are initiated for downloading a specitic file, the controller
will be able to remove some blocks from each partition on the cloud servers.
Simultaneously. the download process will continue normally for future requests
without noticing the partial replications. This will allow us to reduce the storage
needed on the cloud servers. while achieving better levels of performance tor the client.
The partial replication of the load-balancing algorithm performs better as the number
of downloads increases. This is because more information about the cloud servers
becomes available for the evaluation of their ability to obtain which part of the file.
Figures 5-4 and 5-5 demonstrate how the file blocks are stored as file structure in the
cloud servers to simplify the search process of the partitions blocks tor the client.
Moreover. to secure the other files hosted by the cloud server from being accessed by
the wrong clients.

File Z [File X|

(i[5 I3] k]

Figure 5-4: Cloud Node A File Structure.

File R File X|

X i 1
P |IP1]lP2] ... | [k+1 |

Figure 5-5: Cloud Node B File Structure.

Algorithm 5-2 and 5-3 show the pseudo code of the partition removal at the

server level in the cloud. The main idea involves copying the file blocks into other

smaller files based on the block IDs in each server node. After that the original file
is removed. To save partitions of the file into the cloud servers. I first check the
existing experience saved for that tile. This experience is saved in a database that
is available with the controller. All the rows saved for that specific file will be
retrieved. Then. for each server that provided a partition ot the file. a directory will
be created in that specific server containing the file 1D. This is so that it becomes
casier for the server to find the data for that tile. When the directory is created, the
method will check the database for which blocks were downloaded trom that
server. As long as there are blocks downloaded trom the server by checking the
attribute “DownloadCounter™ in the controller table, a small file containing the
block IDs will be created in the directory and the binary will be written to the tile
starting from the first position ot the block till the last position. The new file size
will match the block size. Theretore. | made sure that there is no additional storage
needed when writing the partition of the original to the new small files. Moreover.

when downloading a tile. each block is read and appended to the resulting tile on

the client side. and its size is also matched to the original file size and the sum of

the blocks sizes. which contirms that there is no additional storage needed when
splitting the file into multiple blocks files. Moreover, when removing a block, 1
ensure that the file was downloaded several times betore, while the block was not

downloaded trom that server at all.

45

Algorithm 2 Remove blocks for additional storage

Require: FilelD -

Ensure: none

1: Declare i

2 Selection = Select all from ControllerDB GROUPBY Filel D
3 1 + Selection

1 for all 1 do

getServerlD(i)

o

6 call CreateDirectory Algorithm

-1

end for

Algorithm 3 CreateDirectory
Require: FilelD, Server] D

Ensure: none
1: Declare . j, path
2. while 1 < blocksDounloaded FromSever do
3: Set NewPath « dwrectory + Serverl D + Filel D
&+ FileF = CreateWrite File(i)

) < StartPositionO f Block

[

6: while j < EndPositionO fBlock do

WriteBinary(F. j)

8: end while

9: close File F

0- end while

—

Figures 5-6 and 5-7 show an example XML of the data saved in the
controller's database. | made sure that the data saved there is minimal so that it does
not overload either the retrieval or the storage of the data center. When the file is
first uploaded. I add its details. such as the identification number. name. file size.

and block size identitied based on Equation 3. and | initiate the number of

downloads to zero. As there are more requests initiated for that file. the number of

downloads will increase. | keep this attribute to compare the block downloads to

46

the file downloads when attempting to delete any blocks to avoid deleting a block
from a file that wasn't downloaded before. As for the *filesblocksmap® table. I keep
the attributes that will help us in deciding whether or not to delete a certain block
from a file. The first three attributes (node ID. file 1D. and block 1D) will help in
determining which block is which and help map it to the cloud node that usually
provides it and the file to which it belongs. Then. I add the download counter and
the processing type. which is either forward or backward based on the dual-

direction approach.

<?xml version="1.0" encoding="utf-8" ?>
<!-—-
- Database: 'controller'
-——>
<controller>
<!-- Table filedownload -->
<filedownload>
<FileID>100</FilelID>
<FileName>Important .pdf</FileName>
<NumOfDownloads>100</NumOfDownloads>
<FileSize>524</FileSize>
<BlockSize>256, 000</BlockSize>
</filedownload>
</controller>

Figure 5-6: Example of File Details in Controller's Database.

47

48

<?xml version="1.0" encoding="utf-8" 2>
Sl==
- Database: ‘controller’
-——>
<controller>
<!-- Table filesblocksmap -->
<filesblocksmap>
<rowID>1</rowID>
<NodeID>0</ThreadID>
<FileID>1</FilelD>
<BlockID>0</BlockID>
<DownloadCounter>1</DCounter>
<ProcessingType>Forward</Processing>
</filesblocksmap>
<filesblocksmap>
<rowID>2</rowID>
<NodeID>1</ThreadID>
<FileID>1</FilelID>
<BlockID>2047</BlockID>
<DownloadCounter>1</DCounter>
<ProcessingType>Backward</Processing>
</filesblocksmap>
</controller>

Figure 5-7: Example of Experience Saved in Controller's Database of Each Block.

The components of the solution are shown in Figure 5-8. The main
components are 1) the clients who initiate the request and send it to the cloud, 2)
the load balancer that checks the tile download experience from the database and
assigns tasks to the cloud servers. 3) the cloud servers that process the requests,
and 4) the file controller that does the partitioning on the storage level at the cloud

servers after checking the experience of the file downloads.

49
Download_client - L Cloud I
Application
I
MISHREYE ClientThread
CloudServer
Request
ThreadsControlter ServerNode
ServerThread | | NetworkLimit
FileControlier
ServerFileEdnor

Figure 5-8: SPRT Solution Design.

S Evaluation and Simulation of SPRT

Here. | show an evaluation of the storage enhancements of SPRT over CDDLB
(discussed in Chapter 4). To evaluate my methods. I implemented my own Cloud
simulation environment as shown in the class diagram in Figure 5-8. Servers™ speed.
network speed. bandwidth, and round trip time are all attributes which I can
manipulate to simulate a real cloud network. This simulator follows the same approach
used by other models used for other related research [76][77][78].

The first comparison in terms of storage is shown in Figure 5-9. Only 60 MB
of space is needed after removing the blocks that have never been downloaded from
both servers. The storage space needed by the new approach is reduced from 100 MB
to 60 MB (i.e.. 40% savings) without increasing the download time compared to

DDFTP with full replication.

50

120

never

' o8y
09

_ ozvy
7 otz
000t

| 06LE
7 08S€
7 0LEE
09T€

| 0562
“ (11744
0§57
= 0752

= 117
= 0061
= 0691

= 08t1
0Lzt
0901
058

from Server |.

SPRT

Technique
Block Number

@) (@ @) (ol (o)
m8642

CDDLB
ge Needed by SPRT Compared to CDDLB.

-10: Blocks Downloaded

3
§

(1134
(1744
ot

9: Stora

(g11) 9oeds ades01s

gure D
Figure

Qo ~ w T MmN

m000w0000m0
-

Speojumo(o JAquiny Speojumo(Q Jo JaquinN

Fi

first server has

the

-1,

5

Block Number
-10 and

5

Blocks Downloaded from Server 2.

-11:

5

Figure

As displayed in Figures
never downloaded any blocks lower than block number 1500. The main reaSon for

downloaded blocks higher than block number 2500, while the second server has

obtaining these numbers is based on two cases. The first case is when the first
server was downloading at its maximum speed. while the second server was
downloading at its minimum speed. Thus. the maximum block number that the tirst
server downloaded is block number 2500. as both servers will be downloading an
average of 25 blocks/second. The second case is when the first server was
downloading at its minimum speed, while the second server was downloading at
its maximum speed. Thus. the minimum block number that the second server will
download is block number 1500. as the speed of the tirst server is 15 blocks/second.
while the speed of the second server is 35 blocks/second. Using the technique
developed in this research. it possible to remove the last 2500 blocks tfrom the first
server and the first 1500 blocks from the second server without aftecting the
parallel download operations and without increasing the download time.

Figure 5-12 compares the space used by SPRT (partial replication) and two
of the most used algorithms in load balancing. which are the ant colony load-
balancing and map reduce algorithm using ditterent file sizes. | noticed that when
the file size increased. my partial replication algorithm improved the storage
optimization of the cloud to a greater extent. This is because the difference of the

file sizes between my algorithm and other load-balancing algorithms increased.

51

6.000
o
3
5 5,000
@
= 4,000
£
H o LYees = Partial
5 2 2 000 Replication
o Ant Colony
(8] 1,000
o
) 0 & Map Reduce
g 100 500 1GB 2GB 3GB

MB MB
Original File Size

Figure 5-12: Storage Consumption in Two Cloud Servers
When testing the same algorithms using four cloud servers. the difference
increased much more. even when the number of replicated blocks in the partial
replication algorithm increased. However, the difference between it and the other
algorithms was greater because they are based on a full replication of data. Figure
5-13 shows a comparison between the three techniques in terms of storage
optimization when using four servers. As more servers are used. | can achieve more

savings.

T 12,000 1

o

S 10,000 4

Q

=

P 8,000

T _

°E’92_0 6,000 s Partial
Es o
2 4000 ¥ Replication
S Ant Colon
S 2000 /
o

©

5 0 ® Map Reduce
n 100 500 1GB 2GB 3GB

MB MB
Original File Size

Figure 5-13: Storage Consumption in Four Cloud Servers.
In addition to testing the performance of the algorithm while increasing the number
of servers. | also simulated the storage consumed whenever the number of servers

increased. To do that. I simulated a download for a 100 MB file using two. four.

52

six. and eight servers. Then. I ran my algorithm for optimizing the storage of the
servers. Figure 5-14 shows the amount of storage consumed for each group of
Servers. | noticed trom the results that the storage consumed increased whenever
the number of cloud servers increased. This is because for each dual server working
on a partition. there are blocks replicated. and those are the blocks where the two
servers meet in the download process. The percentage of the replicated blocks is
very low compared to other full replication techniques. The other full replication
techniques double the storage consumed as the number of servers increase.

30

NN
o uv

—
o

Replicated Blocks
—
(V]

(o) (Un)

4 6
Number of servers

Figure 5-14: Eftect of Number ot Servers on Blocks' Replication.

I simulated an experiment with a file containing 12.800 blocks using two
servers. At the first upload. servers were storing all the file blocks as difterent tiles
(see Figure 5-15). Then. | downloaded the file a few times using my collaborative
dual-direction download approach. Then, | stored several files in both servers 1
and 2 to crowd the storage space and leave little room for new uploads. Finally. |
submitted a request by the client to upload a new file. After running SPRT to
optimize the storage for the new file. blocks that were not previously provided by
each server were removed. Figure 5-16 shows that blocks tfrom 6500 were removed

from the server because they were not previously used. Blocks starting trom block

53

zero 1o 6460 were removed from server 2. There are some blocks that were used

by the two servers for downloads and these blocks are left in both servers.

Server 1

s e e R

- N

w M N N O ™M N
SRR RARSSRRSAS
wl\mVNF‘O\WWU\MNﬂO\
HANM T NN O 0000 v
- -
Server 2
2
1
(o] ® Server 2
-~ wn MM NS
O N N T N Y @ W WV M N Y
S ANM S NN WO N 00O O w4 vt
- - -

Figure 5-15: Storage of All File Blocks After the Upload Process.

Serverl

1
e - servert

855
1709
2563
3417
a7
5125
5979
6833
7687
8541
9395
10249
11103
11957

Server2

I -

855
1709
2563
3417
4271
5125
5979
6833
7687
8541
9395

10249
11103
11957

Figure 5-16: Storage ot the Same File Blocks After Running SPRT.

When running the same experiment using four servers downloading the
same file. the number of partitions increased (see Figure 5-17). If all servers had a
full storage and all of them removed the unused blocks, then each server would
only save the number of blocks from the original file. The importance of this
approach is that although the file does not exist in its entirety on any one of the
servers. all the blocks of the original file exist and can be found in the collaborative
cloud servers and the file can be reconstructed easily. Moreover. the download

process is faster. as there are a number of servers working together to provide the

ditferent partitions of the file simultaneously.

54

Serverl
2
1
- CEE N = servert
R BN T = A T oo T o N Y o T = T o o T o I IV o T« I o T
MO W o« NN~ ST OOT OO
WM~ VN T AN oo W MmN — O
— N MM T NN O 000 O -
L B I |
Server2

0 L B Server2

WU O MM N MO M S
VI O W IS NS Mo s O s O WV
@0~ v 3 ™N = O 0 O UV M ™N ™~ O

-~ ™~ T N N O™ 0 D O oo
~~ o
Server3
2
1
. @ Server3

— N M NSN ~SOMS =N Mm S
N O WL =« I~ N0 T O W
W M~ N T N - (Vo3 ™M N —~ O

— AN M T NN O NS00 O A
— o~
Serverqd
2
. i
0 _ @ Serverd

— N OO M N NO MO NS
N O WA N ANNMOMHOOST O OWm
0O N N ST NN v+) 0O O VL M AN = O

AN M T NN O NS00 O0 O v~
~ 4 -

=

Figure 5-17: Partial Storage of Four Cloud Servers After Running SPRT.

78!

An important parameter to evaluate is the amount of additional storage consumed
by the metadata of each file. [have checked this parameter and found it does not
exceed one megabyte of storage for a one gigabyte file. This amount is minimal
compared to the file size. Table 5-2 shows different file sizes that | tried and the
amount of storage consumed by their metadata.

Table 5-2: Metadata Size of Difterent Files

File Size Metadata size
e 13 MB -
500 MB 700KB
T 100MB - J00KB -

10 MB 200 KB

55

56

S.3. Pros and Cons of SPRT

he SPRT method showed promising results in terms of enhancing the
performance and storage consumption of the cloud. Therefore. using this technique
will reduce the cost of cloud resources used by cloud providers without an eftect
on performance. The pertormance of using dual-direction techniques improves the
speed and theretore performs better than a regular selection technique as discussed
in Chapter 4. In addition. adding a storage enhancement to the dual-direction

technique has very good effects on the efficiency of the original CDDLB.

However. using SPRT will result in the need to have manual control over
the removal process of partitions: therefore. the basis cannot be determined. Even
it the threshold of storage was determined and a removal process was conducted
whenever the threshold was reached. it wouldn't be an optimal solution. since the
storage resource is not fully utilized. Therefore. I considered the need for a manual
control over the SPRT as a limitation of the technique and [have attempted to

enhance it. as discussed in Chapter 6.

o Conclusion

‘N

In this chapter. [introduced the static optimization technique of cloud storage using
the dual-direction download experience. The SPRT saves the experience of each block
when downloading the file using a dual-direction technique; therefore. there is a need
to store this data in a database in the cloud itselt. The technique resulted in a big
enhancement of storage compared to the original CDDLB method. The SPRT has a
partial replication feature on which there are few blocks that will be saved in multiple

cloud servers. Therefore. even if there was a failure ot any of the cloud servers. there

57
are backup blocks in another one. [only remove the previously unused blocks. By this
method. | preserve the reliability of the technique and optimize the storage. This is

while also enhancing the speed.

58

Chapter 6: Self-Managed Partial Replication Technique Using
Collaborative Dual Direction Download (ssCloud)

In this chapter | discuss the ssCloud (smart storage cloud) technique. The
technique is an enhancement to the previously proposed methods. Here. | introduce
the automation of the cloud storage concept and discuss the need to have such an
automation. | then elaborate on the structure of the ssCloud technique and its
implementation. I discuss simulation results. which proved the efficiency of this
technique. and | compare it to other existing approaches in the research field and
the industry. 1 finally conclude the chapter with a summary of the ssCloud

technique. its benefits. and areas of enhancements.

6.1. Description of ssCloud

Here. | discuss my proposed ssCloud methodology for the cloud. The main goal is
to enhance the limitation of the SPRT technique. which is the need to have a manual
control over partition removals. Here. | automate the process by controlling the tile
partitioning starting from the upload phase. For example. when the client needs to
upload a new file to the cloud. and some cloud servers do not have sufticient storage
to host this file. In this case. | look for the blocks that were not downloaded from that
certain server for a certain amount of time and remove them so that | can clear
sufficient storage for any new files. These blocks are usually replicated on other cloud
servers and can be downloaded from those servers when requested. Therefore. the
eftfect of removing these blocks will be minimal to the download time of the file from

the cloud.

59

To download a file. the client initiates a request to the cloud as in the previous
methods. The cloud load-balancing module then checks whether the file was
downloaded before. and if so. then there will be data regarding the file partitions that
were downloaded and which cloud servers provided them. Having this history will
help in selecting which cloud server must provide which partition. The controller tinds
the required data from the database and then assigns the servers. which already have
the file partitions to the tasks. After the data is dovwnloaded from all the servers. the
client 1s updated by the required file. However. there must be a first-time download
for each file to get its experience. Therefore. an alternative workflow is selected if the
file is being downloaded for the first time. The file size in bytes is fetched: the block
size 1s determined by factorizing the tile size. Then. servers are assigned based on their
availability and processing speeds. The database is updated at the end of every

download.

To implement the storage enhancement technique. | structured my solution as
described in Figure 6-1. The figure shows that there are two interfaces for each cloud.
One is to manage the download requests from the clients. This includes the cloud load-
balancing module. The second interface manages the file uploads and blocking
processes. which is the *FileController™ of the cloud. This means that the FileController
will reduce the load of client requests on the cloud load-balancing module. This is
because such requests go to a different interface rather than going to the cloud load-
balancing module at all. Blocking and partitioning will also be done at the
FileController side. Both the cloud load-balancing module and the FileController have
access to the database to make decisions. Moreover. both update the database with the

results of their processes.

60

Assign Tasks

Check/Updat Database
Reguest File -5 . N
e
% i‘ T—
Uder Check/Update Cluster

Upload File

ooe
FlleCoﬁ&v‘» ler ;

Figure 6-1: Overall Solution Structure of ssCloud.

When the client initially uploads the file. the sequence diagram shown in
Figure 6-2 is used. Client. FileController. cloud server. and database are the only
entities needed for this process. The client submits an upload file request to the
FileController. The FileController obtains the file size from the client. Then. the
FileController communicates with the servers on the cloud to identify the current
available storage and to compare it to the file size to determine whether it is sufficient
to upload the file. If the storage is sufficient. the FileController determines the block
size. creates a directory entry with the tile name in the servers. and saves the file as
blocks of the block size. Finally. the FileController updates the database with each
block stored in each server. In the case that the storage was not enough in any of the
cloud servers. the FileController will communicate with the database to obtain all non-
downloaded blocks that belong to previously downloaded files. Then. it will delete

them from the server to clear storage space for the new file.

61

Client FileController Server Database
! | | |
I I I |
I Upload F-IHl I |
| I

I

K—Get File sue—{
Return File size 9‘

I—Check Avatlable Stovage—)l '
I<—Return Available Storage -—'I

Upload blocks to
server directory

|
I I I I
l Compare FileSize tlo Available Storage I |
<+
I I |
| / I |
| Determmel block size l |
I l | I
|

— ——=——Update Database=————————fi!

alt

Available Storage is less than file size

FileController checks Database for blocks with download
times = O from server X. FileControlier then deletes the
queried blocks from server X and upload the new file blocks

Figure 6-2: Sequence Diagram of File Upload Process.

The dynamic file upload to the cloud pseudo code for the main method of
ssCloud is shown in Algorithm 6-1. When receiving a file upload request from the
client. the method attains the file name and the tile size. Then, it runs a loop through
each server in the cloud and checks whether the available free storage of that server
is sufficient to upload the required file on that server. It the storage is sufficient.
then the file is divided into blocks determined by the tactorization of the file size.
A directory in the targeted cloud server is created and all the blocks of that SerVer

are copied to the destination server. In the case when the available storage of a

certain server from the cloud is not sufficient to store the file. then the method
determines the required space. and checks the database for all the files that were
downloaded tfrom the cloud but the blocks were not provided from the target server.
I'he method then removes the blocks that were never downloaded from that server
and recursively uploads the file as blocks into the server directory.

This solution could be implemented in several other ways. For example. | could
have implemented a batch process that runs periodically to check for non-
downloaded blocks and remove them. The problem with this approach is that if |
needed to upload a file before the batch process is executed. the storage may not
be sufficient in the targeted server. Another method is to run the batch process after
each download process by the load-balancing module. This approach will increase
the load on the load-balancing module. which will have a negative ettect on the
download process. Therefore. | held that the most etfective method is to remove
blocks when an upload is requested. This allows for finding the unused blocks and
removing some only when necessary for more storage. Moreover. all the additional
work of storage checking. tile splitting, determining block size. and saving will be
done by the FileController without the need to include the load-balancing module

in the process.

62

Algorithm 1 ssCloud Dynamic File Upload to the Cloud

Require: r; , FileName;, NOC, NOS

Ensure: r, > 0. NOC >0 .NOS >0

l:set k=0

2: set Upper Limit = (0 /NOC)« NOS

3: for i =0 to 1 = Upper Linnt do

I: if r |« then

o BlockSize « i

: endif

7: end for

8: for all Server, m NOS do

9: if S:Storage > r then

10: fort=0tot—=ado

LilE trasfer block, to Server,

12: create directory Fole Nanee
13: for bh=0 te Number of Bluck do

1.4: New File F « BlockID

15: writeBinary to £

16: end for

17: end for

18: else

19: get Server; available storage
20: clieck none previously dowunloaded blocks
21: while NotPremouslyDownlouded Blocks > () do
2k remove NotPre muu.J:/D:m{:(nmh dBlocks
23: Not PreviouslyDoenloaded Blocks - -
240 end while

25 CheckLine 9 again

2(: end if

27: end for

63

The file structure after uploading the file to the targeted server is shown in Figure
6-3. The figure shows that the directory of the file in the server contains the file 1D
that was saved in the main database. Then each block is stored as a separate file
using its block D). This will make it easier for the client and the load balancer to
find the blocks of the file even if the history of the file was lost or deleted by
mistake. With blocks stored by their incremental 1D in the file. if the database was
not available. the load balancer can simply calculate the block size using the file

size and look for the blocks in the cloud servers to provide them to the client.

[ﬁ.iA][ﬁ.iRJ [n.iq [F..ea][j..ea]

Figure 6-3: File Structure in the Cloud Servers After Initial Upload.

After more file downloads. it there was a request to upload a new file to the
cloud server and the server does not have enough storage space. the non-
downloaded blocks will be removed from that server. If there were blocks that were
downloaded previously. the directory will remain and the previously downloaded
blocks will remain in the same directory. Figure 6-4 shows the file structure in case
of removing the unused blocks in order to provide more storage. In this case, server
S has a full storage space in which it will not provide blocks 1. 2.3...100.
Therefore. they were removed from its storage. and its storage space was used for
the new file C. while server SS has enough storage space for file C therefore. no

blocks were removed from server SS.

64

65

i ¥ +
File K [Filec] FileB [FiIeR] FileZ
T
5 G B 0 (0 i =

Figure 6-4: File Structure in the Cloud Servers Atter Unused Blocks Removal.

6.2. Example of ssCloud

In this section. I show the life cycle of a file in ssCloud to clarify how it is
handled. | chose a 100 MB file in order to illustrate this example. The life cycle is
as follows:

I. The 100 MB tile is uploaded to the cloud using the dynamic upload file
algorithm discussed in Section 6.1. Since | had eight operating servers. the
number of connections allowed by my database server is 16.300 and
therefore the block size of this file was found as the below.

104,857,600
Max (f (104,857,600)): where f(104,857,600) € {o, (———) . }

16,300
= 51,200 bytes

104,857,600
51,200

The number of blocks for that file will be = 2,048 blocks each of

size 51.200. Each of these blocks is saved into the controller's database
separately as shown in the second row from below Figure 6-5. The tables are

exported from the database.

B

FilelD| FileName | NumOfDownloads| FileSize |BlockSize
1| file20 dat |1 2097152010240
L 2| file100.dat|0 104857600) 51200

IFigure 6-5: Uploaded File Details in Controller's

Database.
rowID|ThreadID| FileID |BlockID|DCounter|Processing
2050127.0.0.1 |file100.dat 0 0| default
20511127 0.0.1 |file100.dat 1 0|default
2052]127.0.01 |file100 dat 2 0|default
20531127.0.0.1 |file100 dat 3 0| default
2054{127.0.0.1 [file100 dat 4 0|default
2055/127.0.0.1 | file100 dat 5 0|default
2056(127.0.0.1 |file100.dat 6 0| default
2057(127.0.0.1 |file100 dat 7 0| default
2058]127.0.0.1 |file100 dat S 0| default
20591127.0.0.1 |file100 dat 9 0|default
2060/127.0.0.1 |file100 dat 10 0|default
2061(127.0.0.1 |file100.dat 11 0|default
2062(127.0.0.1 |file100.dat 12 0|default

Figure 6-6: Uploaded Blocks Details in Controller's
Database.

66

Moreover. the time taken to upload this tile was 20 seconds into all the servers.

However. when running this example. | were not using the Internet and

therefore, the time might change accordingly.

Each block is also saved as a separate tile in a folder directory with the

same name as in the database. Figures 6-7 and 6-8 below show how the

blocks were saved.

filel0dat
L file20dat
L. fiel00dat

filed00dat

file500.dat

Figure 6-7: Uploaded Files Structure in Cloud
Servers.

Name Size

0.dat KB
1.dat
2.dat
3.dat
4.dat KB
5.dat

6.dat KB
7.dat

Figure 6-8: Blocks of the Uploaded File Saved
as Separate Files in the Servers.

When running the download. the requested file was divided into four
partitions: each partition has (2048/4) = 512 blocks. Each set of two servers
worked on their partition forward and backward till they met at certain
block. and depending on the server speed. the partition was received. and
they were able to help the other two servers it the other partitions were not
finished. Figure 6-9 shows how the file is divided into partitions and which
server is assigned to which task. An important note to mention here is that
when two servers of a certain partition were very fast and tinished their task

betore any other pair. they can join the pair in downloading their partition.

67

68
S1 52 S3 S5 S6 S7 S8
— +« > « — » «—» -« —
0-512 513-1024 1025 - 1536 1537 - 2048
1 2 3 4

Figure 6-9: File Download Splitting and Assignment Process.

After running the download several times. each of the eight servers usually

provided some of the blocks, although there were blocks with a download

counter of zero. | stored many files on the servers so that when uploading

any new tile. | could see the blocks that had *DCounter’ of zero removed. |

changed the network speed and server speed each time I ran the download

in order to simulate a real Internet download and so that the change would

affect which blocks were saved in which server. The download time

whenever | ran the ssCloud changed since | changed the server speed:

therefore. the number of replicated blocks changed. For example, Table 6-

| shows the each server speed and how many blocks it was provided based

on its download speed.

B

First run

Second run

Third run

oys -9 2[qel

~

SI 2[lj Y1 ‘19AIMO} ‘sidads dpdumnuw uo sydo[q paedidal

2191 *+8€9T JO N0 L0 € "SY90[q Bulurewas ayi [[e JO 1ey) padnou | 'spasu
53101S UO PAsEq SYI0[q PASNUN Y} PIAOWIAL I JI IDAISS 3y uo pajedrdal
"SY20[q PISNUN 3} IAOLWI O} PIPIU puk SaNSSI ITLI0IS ey SIAAISS [[e J]

aie 219 "AlIEd p[nom I9AI9S [IBI SYO0[q AuBll MOy sam

A[ny 10U

-

S1 SP(1000) bytes/ms SP(1000) bytes/ms SP(1500) bytes/ms
38 blocks 282 blocks 279 blocks

S2 SP(1000) bytes/ms SP(1000) bytes/ms SP(900) bytes/ms
374 blocks 287 blocks 276 blocks

S3 SP(2000) bytes/ms SP(1000) bytes/ms SP(900) bytes/ms
730 blocks 269 blocks 260 blocks

S4 SP(500) bytes/ms SP(1000) bytes/ms SP(1100) bytes/ms
187 blocks 281 blocks 265 blocks

Ss SP(1000) bytes/ms SP(1000) bytes/ms SP(2000) bytes/ms
374 blocks 288 blocks 274 blocks

S6 SP(2000) bytes/ms SP(1000) bytes/ms SP(500) bytes/ms
295 blocks 245 blocks 228 blocks

S7 SP(1500) bytes/ms SP(1000) bytes/ms SP(1000) bytes/ms
77 blocks 260 blocks 244 blocks

S8 SP(100) SP(1000) bytes/ms SP(1200) bytes/ms
8 blocks 177 blocks 258 blocks

"SUNY| 21y] Ul SISAIIS JO Spaadg WUdIdJJI(] JO 131JH -9 J[qR

69

70

were only 18.9%. which meant that the storage consumption was enhanced
by at least 75%. Moreover. since each block was of size 51200. the entire
amount of storage saved was 13,277*51.200 = 679.782.400 bytes. which is
equal to almost 679 MB of storage. More of the storage saving analysis will

be discussed in Chapter 7.

l'able 6-2: Number of Remaining Blocks Per Server After Removing Unused Blocks.

Server Number of Blocks

S1 328

. | 433 -
S3 741 R
S4 - 361
S5 418

S6 303 al
S7 261 e
S8 262 -

‘Total Number (8 2048) - 3107
removed blocks = 13277 blocks

6.3. Analysis and Simulation Results of ssCloud

In this section | analyze the differences between ssCloud and other storage
optimization approaches for the cloud. I also discuss the evaluation of ssCloud.

When comparing ssCloud to RRNS (discussed in Chapter 3). RRNS retains
the file fragmentation details on the client side. This is beneficial as a security
measure allowing for higher safety controls for the client. However. if the client
loses the file information, a serious issue would occur because no one elSe has the
same information. This is not an issue with ssCloud since there are backups of the

database. Even if there is an issue with the database. the blocks and files are stored

71

in each server by a sequence 1D. This means that they are reachable. but the load-
balancing module will have to expend more effort to obtain the information.
BerryStore, on the other hand. does not take security as a priority. Its target is to
provide a fast method to download small files by storing multiple small files as one
large tile. The problem here is that it cannot be applied to larger files. while ssCloud
and RRNS both can handle files of any size. Table 6-3 shows the comparison

between the three approaches.

Table 6-3: Comparison of Storage Optimization Techniques.

SOF Security File Replication Client
Types effort
RRNS Yes High All Partial High
Bery- No Moderate <10 Ful Moderate
Store MB
“ssCloud “No ' Moderate All Partial = s

To know the probability of deleting a certain block from a given server. | use
a conditional probability because there are three events that must happen betore
deleting a block from a server. First, a file upload request must be initiated. Then. the
server storage must be insufficient. Finally, the block must not have been previously
downloaded from the server for a previous download request. Figure 6-10 illustrates
the probability of deleting a block from a server. In the figure. P(A) is the probability
of uploading a new file: P(B) is the probability of insufticient storage in server X. and
P(C) is the probability that block z was never downloaded betore. while file R

containing that block was downloaded several times. The highlighted intersection

72

between P(A). P(B). and P(C) signifies having all these events occurring
simultaneously. That is. if P(A&B&C) then the block will be deleted. Notice that the
probability of removing a certain block using ssCloud is low compared to the normal
flow. This means that in most cases. there will be a file upload request but cloud servers
will have sufticient storage available or the block will be downloaded previously from

the server, and it will not be removed.

P{ANBNC) = P{A}.P{B|A}.P{C|A N B)

OR=— =— (4)

w

Figure 6-10: Probability of Removing a Block.

On the other hand, the probability that a partition is downloaded from a
certain server is a dependent probability. If | have a file of two partitions and four
servers will be working on providing these partitions. then the probability that

server | provides a forward download from the file is as follows:

P(S; downloads P;) = (5)

Where S is the number of available servers and /7 is the number of partitiong.
This means that the probability that server | provides partition 1 forward is 1/(4/2))
=1/2. Whentrying to determine the probability that server | provides the download
of partition 2. then it will be 1/(3/1)) = 1/3 as the number of servers will decrease
because server I will be busy providing partition 1. and there is only one partition
remaining. This analysis is important to know which blocks will be downloaded
by which server. If a block is regularly provided by a server. then it will not be
removed.

Storing the file for the first time in my static storage optimization was done by
saving the full file then taking copies of the blocks and deleting the original file.
However, splitting the file from the beginning as blocks when the file is transmitted
from the client to the cloud servers enhances this. This will also be of minimal
eftect to the client download process. This is because the client will be
downloading the blocks within a file (as shown in Figure 6-11). When simulating
both cases. | noticed that the download time difterence between the two is
negligible. Downloading ditferent blocks will increase the download time because
databases must be checked for previous experience for that file. Moreover. each
block file must be opened and downloaded. | noticed that the maximum difference
between downloading the full tile without database access and downloading
partitions with database access was 8 seconds when the file size was 2 GB. The
average overhead of the download process is about 3%. However. using multiple
dual-direction servers still improves the pertormance compared to regular
approaches. Furthermore. when optimizing the storage space of the cloud servers.

this is a very minimal difference.

73

B -
g
T 1000 E——
~N
(Va)
S 500 mm—
S
oe]

100 |

0 200 400 600 800

TIME (SECONDS)

Block files m Full File

Figure 6-11: Time Difference in Download for Different File Sizes.

Moreover. there is an eftect to the need to connect to the database in the
upload process too. This is since all the upload requests must go through the
controller and be partitioned into blocks as in equation 3. chapter 5. This process
increases the time of upload for the files. However. since the file is uploaded once
and downloaded several times. my concern was to minimize the database
connection effect on the download process. Figure 6 -12 shows a comparison of
uploading a file using ssCloud to uploading a full file without partitioning and
database connection. | noticed that as the file size increases the difference between
the two methods decreases. This is because the number ot blocks is determined
based on the number of servers. number of database connections and file size. By
using equation 3. the number of blocks will decrease as the file size increases and
therefore the number of connection requests to the database will decrease too. As

a result. this decreases the difference between the process of uploading a file

without the need to a database connection and the process used in ssCloud.

74

200

180

160 &)

140 i

120

100 ~
80 P

Time taken (seconds)

40 -
20 —

100 500 1000 2000
File Size (MB)

—o— full file blocks

Figure 6 -12: Comparison of Full File Upload and Blocks Upload in Terms of
Time Taken

A hypothesis was made that the storage consumption in the server when
storing a full file would be less than storing multiple distributed blocks of the same
file. That is because most of the researchers assumed that each block of the file
would require additional space to store headers and file types. Theretore. |
simulated the difference between the two options using my approach and found
that the overall size of the original file and the folder containing all the split blocks
of the file are exactly the same as shown in Figure 6-13. The result was the same
because | stored the file as a number of binary files and the resulting downloaded

tile is of the same format as the original file.

2000

-
w
o
o

o TP _ll I I B
00 500 1000 2000

ol

:

Original File size
w
8

Storage consumed

m Full File & Blocks Folder

Figure 6-13: Consumed Storage Difterence in MB.

75

Figure 6-14 demonstrates a comparison between ssCloud. RRNS. Dropbox.
and Google Drive in terms ot the download time for files of difterent sizes. The
sizes of files used for the comparison ranged from 10 MB to 1000 MB (1 GB). |
set the download speed as the Internet speed in my network which was 1 Gbps.
['he tigure shows that the 10 MB file was downloaded by RRNS in 30 seconds
while the ssCloud downloaded the same file in 11 seconds. Dropbox took 20
seconds. and finally Google Drive took almost one minute. Moreover. a 400 MB
file was downloaded by RRNS in 640 seconds. while the ssCloud downloaded it
in 525 seconds. This is mainly a result of multiple servers working collaboratively
on each partition of the download. Dropbox provided the file in 750 seconds and
Google Drive in 660 seconds. The results demonstrate that Google Drive pertorms
better with medium file sizes (100-500): however, when the file size reaches | GB
both Google Drive and Dropbox need more than 20 minutes to download. The
RRNS pertorms better than Dropbox and Google Drive because it assigns tasks to
multiple servers; however. each cloud server is solely responsible for providing its
partition; therefore. the delay in any of the servers' performances will atfect the
entire download process. Although. RRNS performs better than many of the
existing load-balancing strategies that assign the full download to one server.
However. its performance can be enhanced by the dual-direction approach used by

ssCloud.

76

1400
3 1200
[=4
o
S 1000 g
A >
¥ 800
c
e
= 600
~
2 400
og 200
0
10 100 200 300 400 1000
—o— ssCloud 11 105 208 291 460 800
—&— RRNS 30 170 320 440 620 1000
Dropbox 20 240 390 504 750 1270
Google Drive 60 220 360 495 680 1200
File Size (MB)

Figure 6-14: Download Performance Comparison.

Dropbox. Google Drive., RRNS. and ssCloud all have an upload phase
where the file is uploaded into the cloud [78]. The number of partitions and replicas
are then determined. | compared the upload of files of the same sizes using RRNS
and ssCloud and compared them to Google Drive and Dropbox using an Internet
speed of | Gbps for each.

Figure 6-15 illustrates the difference between the approaches. The tigure
shows that RRNS performed better when the file size was relatively small (10 MB).
The file was uploaded in 30 seconds using RRNS, while it was uploaded in 50
seconds using ssCloud. However. as the file size increases. the performance of
ssCloud improves and outperforms RRNS in all trials. A file of size 400 MB was
uploaded in 120 seconds using RRNS and in 79 seconds using ssCloud. Dropbox
usually redirects many of its tasks to Amazon EC2 for processing. and that takes
more time to process tasks compared to the other approaches in both he upload and

download processes [79].

77

900
800
700
600
S00
400

300
A

200 g =
at «‘:3:3:4"
B Smm—

10 M8 100MB 200MB 300MB 400 MB 1000 MB
File Size (MB)

Upload Time (Seconds)

—®— ssCloud —&— RRNS =—&— Dropbox Google Drive

Figure 6-15: Upload Performance Comparison.

The issue of the number of connections will mostly appear at the database
server side. This 1s because a large number of connections could aftect any
database server. which could result in inetticient performance. This is why | ensure
that the blocks are large enough to reduce the number of communications with the
database server whenever a block is added to the tile. The approach is to split the
file into multiple blocks and then save them as separate files in the target folder on
the hosting server. It will also save each block record in the database in order to
target any action taken regarding the block, such as download or delete. Figure 6-
16 shows the error rate in a case where the number ot connections of the database
server was not considered. In the case where the number of connections was not
considered. the database server will generally crash at some point. It usually
recovers and saves the rest of the blocks, but | noticed that it has not saved all the
correct rows. | also noticed that as the file size increases, the error rate between the
actual rows saved and the real value that should have been saved increases. To

solve this problem. | considered the number of hosting servers (NOS) and the

78

78

number of available database server connections (NOC) when calculating the

block size of the target file.

300000
250000
200000
150000

100000

Number of blocks

50000

0
10 20 40 100 200 500

e=@== Actual 5120 10240 17430 42569 87438 209866
Target 5120 10240 20480 51200 102400 256000
File Size (MB)

Figure 6-16: Error Rate Caused by the Database Server in the Case of an Exceeding
Number of Connections.

When applying my approach for creating a number of blocks that are
associated with the DB server connections and the number of hosting servers. |
have noticed that as the number of servers increased, the block size also increased
and the number of blocks decreased. This is because | want to reduce the number
of blocks saved in the database every time there is an upload request. Therefore,
clients will not face any failure in the cloud DB server. Table 6-4 displays the
results obtained when applying my approach. knowing that when applying this

approach the error rate was zero.

File Size

Table 6-4: Experimental Relationship Between NOS, NOC, Block Size. and NOB.

NOS NOC Block Size NOB
524,288,000 16.384 128,000 4096
209,715,200 © 16384 51.200 4096
52,428,800 16384 12800 1096
524,288,000 ~16.384 256.000 2048
629,145,600 16384 307.200 2048
524,288,000 10,000 409.600 1280
629,145,600 ~ 10000 491520 1280

Moreover. | have tested the eftect of block size over the download time in
the case where the block size was not restricted by the number of connections
available with the database server. | have changed the block size among values by
1 KB. which is the minimum size of a block to file size divided by two. As | are
using a dual-direction download. the maximum block size without replication
should be half of the file size. Results shown in Figures 6-17. 6-18, 6-19. and 6-20
demonstrate that there is an optimal block size for each file. and this optimal block
size depends on the file size itself and the number of collaborated servers providing
this file. Usually the optimal block size starts from 100 KB-1000 KB for a file
provided by two servers. and as the file size increases. the optimal block size
changes accordingly. The difference between the optimal block size and any other
block size (as | increase) is minimal for small files (10 MB). but as the file size
increages. the difterence in the performance increases. Therefore. the effect s clear.
This emphasizes the importance of choosing the optimal block size when

uploading the file to the cloud.

80

60

50

40 o

30

20

10 B-2..3 3

0

Download Time (S)

0 1000 2000 3000 4000 S000 6000
Block Size (bytes)

Figure 6-17: Block Size Eftect on Download Time for 10 MB File Using Two

Servers.

300
240

250

200

150

100 60
oo @1 25 30 30 34

Download Time [S)

0 10000 20000 30000 40000 50000 60000
Block Size (bytes)

Figure 6-18: Block Size Eftect on Download Time for 100 MB File Using Two

Servers.

1000
900 900
800
700
600
200 369
400
300
200 85 8 90 90 120
100
0

Download Time (S)

134

0 20000 40000 60000 80000 100000
Block Size (bytes)

Figure 6-19: Block Size Effect on Download Time for 400 MB File Using Two

Servers.

700
600
500
400
300 i

200 120
100 | 5245 SO 60 67

600

300

Download Time (S)

0
0 20000 40000 60000 80000 100000

Block Size (bytes)
Figure 6-20: Block Size Effect on Download Time for 400 MB File Using Four

Servers.

6.4. Enhancements and Limitations of ssCloud

The main importance of ssCloud is the combination of the dual-direction
download approach and the autonomic management of the storage resources in the
cloud. There is a clear benetit that the download time is tremendously decreased as
well as the cost of storing the file whenever necessary. The ssCloud is safe to
remove the unused blocks. as this will not atfect the download time and therefore
will not negatively aftect the end users (cloud clients). Moreover, the ssCloud
overcomes most of the challenges facing load balancing and storage optimization
in the cloud. such as server failure. In the case of a server failure, another
contributing server can replace the failing server. As long as this server provides
blocks even minimally. then the blocks will not be removed from that server. which
confirms the reliability of this method. I think that more analytics on the optimum
block size to further enhance the download speed could further improve the

ssCloud.

82

6.5. Conclusion

The design of the ssCloud aims to improve the download time trom the
cloud and optimize the storage allocation techniques to enhance the cloud DaaS.
l.oad balancing is improved using a collaborative dual-direction download method
to partition files and assign partitions to multiple cloud servers. Smart storage
allocation is accomplished by automating the file upload process to check tfor
available storage on each server and remove non-downloaded blocks based on
previous experiences. The technique’s analysis shows that my algorithm has a
better opportunity of optimizing cloud storage. In addition, | calculated the
probability of removing unused blocks and found it to be very low. However, the
choice of deletion is available when needed. Using the ssCloud helps reduce the
time needed to download a file and the storage cost needed to host millions of files

in the cloud.

83

Chapter 7: Performance Analysis

In this chapter | develop an analytical model in order to estimate storage
saved using my partial replication approach and the amount of time needed to
download the files using this technique. | validate the estimations by simulation
and provide the results. I then discuss my observations and provide methods of

enhancing the ssCloud even more. Finally. I discuss the conclusions.

7.1. Expected Storage Saved Estimation

In this section, | develop an analytical model to estimate the storage saved
through a mathematical analysis. In order to explain the storage saved by ssCloud.
1 investigate an example of two collaborative servers working on a 1000-blocks
tile. I review the case where the maximum number of blocks downloaded by server
1 was 700 blocks, as shown in Figure 7-1. and the maximum number of blocks
downloaded by server 2 was 500 blocks. This means that server | (even at its best
performance) never downloaded the 300 remaining blocks. Moreover, server 2
never downloaded the 500 remaining blocks. These blocks will be removed by my
approach. On the other hand. there are 200 blocks that are commonly downloaded
by one of the two servers at difterent download times. These blocks are the only
blocks that will be replicated in both servers at the end.

In order to estimate the number of replicated blocks. | summed the
maximum blocks downloaded by both servers and took the file total number of
blocks out.

Est(Rep) = (700 + 500) — 1000

84

= 200 Blocks
This indicates that the total number of saved blocks is 1200 blocks with a partial
replication. However. a full replication technique would need to store 1000 blocks

on both of the servers. which would be 2000 blocks. By removing the unused

blocks. I saved 800 blocks of storage.

Total = 1000 blocks

S1

t3

200

/s

v

500 $2

Figure 7-1: Number of Replicated Blocks in Two Servers for 1000 Block File.

In the same way. | can find the replicated blocks among four servers. An
example of the case where the same file of 1000 blocks were downloaded by four

servers and the maximum number of blocks for each server is below:

Server |: 300 blocks

Server 2: 300 blocks

Server 3: 400 blocks

Server 4: 200 blocks

Figure 7-2 shows the replicationamong the four servers. I can see that there
are 100 blocks replicated between server 1 and 2, and 100 other blocks replicated
between server 3 and 4. The sum of all the replicated blocks among all partitions

1s as follows:

Est(Rep) = (300 + 300 + 400 + 200) — 1000

= 200 Blocks

Total = 1000 blocks

4

v

S1 3(:@ 40Q.
100
i P - e
300 <20()

52

Figure 7-2: Number ot Replicated Blocks in Four Servers tfor 1000 Blocks File.

Theretore. the equation to calculate the number of replicated blocks of file

i inany collaborative servers S after an experience is as in Equation 6.

s
Exp(Rep); = ZMax(BlocksProvided)}- — TotalBlocks, (6)
Jj=1
S
Where Max(BlocksProvided); is the sum of all the maximum number of
J=1

blocks provided by each server of the collaborative servers and TotalBlocks, is
the total number ot blocks in file /.
In order to know the maximum number ot blocks that will be provided by

a certain server. | need to know the maximum and minimum speeds of each of the
collaborative severs. For this example | have four servers of minimum and
maximum speeds as follows below:

e Server I: Min = 15 blocks/s. Max: 20 blocks/s

e Server 2: Min = 5 blocks/s. Max: 12 blocks/s

e Server 3: Min = 6 blocks/s. Max: 10 blocks/s

e Server 4: Min = 8 blocks/s. Max: 15 blocks/s
10 estimate the maximum number of blocks that will be downloaded by
server |, ['allow itto download at its maximum speed (20 blocks/second) by setting
all the other servers' speed to the minimum speeds (five. six. and eight
blocks/second). By doing this. server | will have to download most of the blocks
in the file. which is the maximum number of blocks it can provide. Equation 7 ig

used for the estimation.

MaxBlocks(S;)

B Max(A(S;))
B Max(/l(Sl)) + Zl}{:z Min(/l(sj)

) X TotalBlocks(File) (7)

Where MaxBlocks(S,) is the maximum number of blocks provided by Server i.
Max(A(S;)) is the maximum speed of Server i. and Zj(zz Min(/l(S,-)) is the
minimum speed of all other collaborative servers downloading the file.

When applying Equation 7 to my example, the maximum number of blocks

20

rovi © server | 1§ —m—
provided ‘by 20+(5+6+8)

X 1000 = 512 blocks. It is important to

mention here that [either use speed units of bytes/ms or blocks/s since each block
in my approach is found by Equation 3 in terms of bytes. Therefore. any of the two
units can be used to estimate the maximum number of blocks provided and the
number of replicated blocks. Equation 8 is used to convert the speed from bytes/ms
unit to blocks/s unit.

1 (byteS/mS)

: x 1000 (8)
BlockSize;

A(blocks/s) -

87

Where A(blOCkS/S)thc speed in blocks/second is. A (byteS/mS) is the
speed in terms of bytes/milliseconds and BlockSize, is the block size of file i.
The below experience demonstrates how Equations 6 and 7 are useful for
estimating the number of replicated blocks and the saved storage. In order to
validate this. | used a file of size 20 MB. and two servers to download it. The file
has 2048 blocks of size 10.240 bytes each. Below are the minimum and maximum
speeds of both servers.
e Server 1: Min = 600 bytes/ms, Max= 1500 bytes/ms (Min = 58 blocks/s.
Max = 146 blocks/s).
e Server 2: Min: 100 bytes/ms, Max = 1000 bytes/ms (Min = 10 blocks/s.
Max = 97 blocks/s).
I ran the download for the 20 MB file using the above two servers after
setting the speed for server 2 to nine blocks/s. Server | automatically performed at

its max speed (146 blocks/s). Using Equation 10. MaxBlocks(Server,) =

146
146+10

X 2048 = 1917 blocks. The result | obtained from running the

experience was that server 1 provided 1921 blocks and server 2 provided 128
blocks. which is very close to the estimated number by using Equation 10.
I conducted another experiment by setting the speed of server 1 to 48

blocks/s so that server 2 was forced to download the maximum number of blocks

97
97+58

x 2048 =

it could attord. Using Equation 7 MaxBlocks(Server,) =

1281 blocks. The results I obtained tfrom running my method was that server 1
provided 768 blocks and server 2 provided 1281 blocks which contirms that the

equation is correct when using two servers to provide one file.

88

Moreover. when using Equation 6. the expected number of replicatigns for

this run is found by the following equation:

Est(Rep) = (1921 + 1281) — 2048
= 1154 Blocks

When testing this using my approach. it is exactly equal to the result above.
The replicated blocks 1Ds belonged to the real numbers in € {767, 768,,,1921}.

[applied this equation to a situation of four servers too. The servers' speed

were are follows:

Server |: Min = 59 blocks/s. Max = 146 blocks/s.
e Server 2: Min = 10 blocks/s, Max = 97 blocks/s.
e Server 3: Min = 20 blocks/s, Max = 100 blocks/s
e Server 4: Min = 10 blocks/s. Max = 80 blocks/s.

I ran my method using the four above servers four times so that each server
could perform at its maximum for one iteration. The results of the maximum blocks
for each server against the one expected using Equation 7 are found in Table 7-1.
The equation was at least 98.7% correct. and the difference between the expected

and actual was at most only 19 blocks. which is the server 1 result.

89

Server |

Server 2

Server 3

Server 4

Table 7-1: Evaluation of the Accuracy Equation 7.

Expected Max blocks

146

x 2048

146 + (10 + 20 + 10)

= 1607

97
"~ 97+ (59+ 20+ 10)

x 2048

= 1068

L 100
100 + (59 + 10 + 10)

= 1144

0 80
~ 80+ (59 + 10 + 20)

= 969

X 2048

x 2048

90

Real Max Correctness
blocks

1595 992% o
1061 99.3%
1130 98.7%
969 100%

As for the number of replicated blocks over the four servers for the 20 MB

file tested above, it is equal to (1588 + 1061+ 1130 + 969) — 2048 =

2700 blocks.

7.2. Expected Download Time Estimation

In order to estimate the expected download time (Exp(DT)) of block i using

the ssCloud. I must know the attributes. such as the percentage that block 7/ was

downloaded from each server and the time taken by each Server in ordér to

download that block. Then. the expected download time of block i is the sum of

the percentage that block i was downloaded from server & multiplied by the time

taken by server k to provide block i. A simple example to explain this equation is

the time taken to travel from one place to another several times. If a person, who
usually uses two methods of travel between two cities. such as by car and plane.
would like to estimate the expected travel time between cities. and it previously
took one hmy to travel by plane (percentage of using plane is 90%) and three hours
to travel by car (percentage of using the car is 10%), then the estimated travel time
is (0.10*3 + 0.90*1). The same applies to ssCloud since there are difterent

possibilities that a block could be download from any server.

S
Exp(DT) =) (PF x) 9)
k=1

Where Exp(DT;) is the expected download time spent to provide block i
using ssCloud. S is the number of Servers providing block i. Pl-" is the percentage
server k provides block 7. and A¥ is the speed by which server k provided block i.

The total download time of file F is equal to the sum of the expected
download time of all the blocks b in File £ as shown in Equation 10.

b
Exp (D)= Z Exp(DT;) (10)
1=1

Where Exp(DT) is the overall expected download time. and b is the number
of blocks in the file.

This will also result in summing all the download time for each block (sum

of percentage a block was downloaded from a certain server multiplied by the

download time of that server) as in Equation 1.

b

S
Exp(DT) = Z(Pi" x A (11)
k=1

91

When using my partial replication dual-direction technique to verity the
above-mentioned equations. first. | set a very simple experiment to begin. |
uploaded a 20 MB file size. with 2048 blocks. each of size 10.240 bytes. | set this
download test to operate using only two servers. | ran the experiment ten iterations
and changed the servers' speed each time so that the download percentage of the
block tfrom a server is attected (as shown in Table 7-2). For the eleventh time. the
speed of server | was at 50 blocks/s and the speed of server 2 was 70 blocks/s. |
estimated the download time for each block by Equation 6 and Table 7-3 depicts

the estimated download time versus the actual download time. | selected blocks 1.

2048, 1024, 500 and 1500 to be the blocks on which | compare the accuracy of

Equation 8 because they represent the edges and elements of the groups. For
example. block 1 will always be downloaded from server | and block 2048 will
always be downloaded from server 2. Theretfore. it is easy to predict the expected
download time for such blocks. and it will be accurate. as they have the same
experience every time a download is completed. However. this is not the case for
blocks similar to block 500 and block 1500. This is because there is a small
percentage of time that they will be provided by a different server than the regular
server that usually provides them. For example. server 1 usually provides block
500. but there are two times when server | was slow or loaded when server 2 had
to provide this block. The Equation 6 prediction in these cases was very efficient
since the accuracy percentage was not below 90. The worst case is the point where
the two servers usually meet. An example of this case is block 1024. When
downloading block 1024. it could be downloaded by any of the servers each time.
This will have the least accuracy in my case. but the error rate was 12%. | consider

a maximum difference of 12% to be within the acceptable rate because the

92

93

download times of each server differs according to the network speed. and this is
very unpredictable behavior.

Table 7-2: Dual Server Experience in Ten Runs.

Run S1 Speed 2 Speed Sl ~ S2blocks
(blocks/s) (blocks/s) blocks

1 100 100 1-1026 2048-1024

2 100 20 1-1709 2048-1708

3 20 100 1-340 2048-339

4 120 100 1-1118 2048-1116

5 g0, Ty = 1-1823 2048-1822

6 10 80 1227 2048225

7 0 1200 1-512 2048-511

8 90 70 ©1-1153 2048-1150

9 60 50 I-1118 2048-1117

10 120 130 1-984 2048-982

Table 7-3: Equation 9 Accuracy Evaluation.

Txb(ﬁj in Seconds “Actual(DT) in ‘Correctness
Seconds
' S AN m - L nlaos e - nNNos
Block 1 - {(100%x5_10) + (0%x7—0)} _ 0.02 100%
0.02 -
’ O - 9
Block = {(0%x$)+(100%x7_10)} - 0.014 100%
2048 - i
Block = {(54_54% x 5_10) + (45.45% x 0.014 88%
1024 1
5} = 0.016
T 1 1 90°
l_zlock E {(80% x 5) + (20% x %)} - 0.02 0%
500 i R
Rlock 1 1 939,
Block I {(30% x5)+ (70% x%)} - 0.014 0

1500 0.015

94

7/ 2% Discussion and Observations

In this section. | discuss different performance and storage observations
obtained during the evaluation of my approach. One observation 1 made was that
as the sum of speeds of the dual servers increases. the overall performance
increases as well and therefore the download time decreases. Table 7-4 shows the
experiment | ran to validate this assumption. | carried 5 runs each with difterent
speeds of each servers and different sums ot speeds. The best performance of this
run was 8 seconds download when both servers were fast and the sum of speeds
was 3000 bytes per second. The difference between the speeds of the servers does
not have much eftect to the download time because the dual servers work in
opposite directions and they meet at a certain point.

Table 7-3: Speed Difterence Between the Dual Servers, Attecting Download Time.

S1 S@di S2 Speed Download Speed ~Sum of
(bytes/ms) (byvtes/ms) time (S) Difference speeds
(bytes/ms) (bytes/ms)
1 500 500 ~21s 0 1000
2 500 600 19s 100 1100
3 500 1000 ~ 17s 500 1500 -
4 1000 2000 8s 1000 3000
s 1000 1000 Ils 0 2000

Another observation was also the effect of the difference between the
minimum and maximum speeds of any server on the number of replicated blocks

between the two servers. This depends on the file size. Therefore. I tried a tile of

size 400 MB to validate this assumption. For example. if I have two servers as
follows:
e Server 1: Min = 20 blocks/s. Max= 100 blocks/s. The difference betwween

the Min and Max 1s 80 blocks/s.

e Server 2: Min: 50 blocks/s. Max = 150 blocks/s. The difference between
the Min and Max is 100 blocks/s.
When I use Equation 7 to discover the maximum number of blocks that can

be provided by any of the above-mentioned servers. | found the results below:

100
100+50

e Server 1 Maximum blocks = () X 4098 = 2732 blocks

150
150+20

e Server | Maximum blocks = () X 4098 = 3615 blocks

From these results. the maximum number of replicated blocks would be
(2732 + 3615) — 4098 = 2249. If using the other two servers. there would be
less difterence between the minimum and maximum speeds and the results would
change. for example:
e Server 1: Min = 50 blocks/s. Max= 70 blocks/s. The ditterence between the
Min and Max is 20 blocks/s.
e Server 2: Min: 60 blocks/s. Max = 80 blocks/s. The difference between the
Min and Max is 20 blocks/s.
The maximum number of blocks that could be provided by any of the two servers

1s shown below.

e Server | maximum blocks = (707+060) X 4098 = 2026 blocks.

e Server I maximum blocks = (808350) x 4098 = 2185 blocks.

The number of replicated blocks would be only equal to (2026 + 2185) —

4098 = 113 blocks. This means that. as the difference between the maximum and

95

minimum of the dual servers decreases. the number of replicated blocks will also
decrease. This would be very useful in terms of saving the storage used for the
replicated blocks. since this storage can be used for other large files.

Figure 7-3 shows relationship between the maximum number of replicated
blocks with the min-max gap in servers' performances tested in my validation of
the previously mentioned observation. The validation was completed for a 400 MB
file size of 4098 blocks. The relationship is extrusive. as the gap increases. the

number of replicated blocks also increases.

M S1 Gap W S2 Gap Max Replicated Blocks
160 2500
= 140 B E
- 120 L 000
B h "
0 100 1500 x
& 80 o ¥
2 60 4 1000 2
& 40 :
< d 500
: F | l A B
0 0
1 2 3 4
. 51 Gap 80 60 40 20
S2 Gap 150 80 50 20
Max Replicated Blocks 2250 1736 1161 546
RUN NUMBER

96

Figure 7-3: Experimental Relationship Between Min-Max Speed Gap and Maximum

Number ot Replicated Blocks for 100 MB File Size.

To evaluate the storage enhancement of ssCloud compared to the original
CDDLB technique [80]{81][82]. I estimate the storage enhancement of a
524.288.000 bytes (524 MB) file replicated on 4 servers. If | use the original
CDDLB technique. then a full replication of the file is needed across the 4 servers
degpite the maximum and minimum number of blocks that can be provided by any
of the servers. Therefore, the tinal storage consumption of the file would be as

equation 12.

Storagecppig = M X R (12)
Where A is the number of servers and R is the file size. This means that the storage
required by CDDLB for the above example would be 4*524.288.000 =
2.097.152.000 byvtes (around 2 GB). On the other hand. if | use the ssCloud

technique. and servers maximum and minimum blocks were as follows:

e Server |: Min = 59 blocks/s, Max = 146 blocks/s.
e Server 2: Min = 10 blocks/s. Max = 97 blocks/s.
e Server 3: Min = 20 blocks/s, Max = 100 blocks/s
e Server 4: Min = 10 blocks/s. Max = 80 blocks/s.
[f I have NOC of 16.300 then the block size would be 128,656 bytes and number

of blocks would be 4096 according to equations 1.2 and 3. The maximum number

of blocks for each server according to equation 7 would be as follows:

e Serverl: (—“"—) x 4096 = 3215 blocks

146+(10+20+10)
: () x 4096 = 2135 blocks

97+(59+20+10)

e Server 3: () x 4096 = 2288 blocks
100+(59+10+10)

e Server4: ()x 4096 = 1938 blocks
80+(59+10+20)

Now. the overall storage used by ssCloud would be the sum of all the maximum
blocks of the above four servers which is 9576 blocks each of size 128.656 bytes.
This means that the overall storage consumed would be 1.232.009.856 bytes
(around 1.2 GB). This means that the least saved storage if | only removed the zero
downloaded blocks would be 865.142,144 bytes compared to the original CDDLB

or DDFTP.

97

7.4. Chapter Conclusion

In this chapter, | have discussed the mathematics behind my partial
replication load-balancing approach for providing DaaS in the cloud. | provided an
estimation of the storage that could be saved using the ssCloud and the estimated
download time after removing the redundant data from storage. | validated the
estimates by running the experiments and found a satisfying percentage of
accuracy. Finally. I noted some observations and best service optimization

methods and validated those as well.

98

Chapter 8: Conclusion and Future Work

In this chapter. I conclude this dissertation by summarizing the research
contributions and goals of this work in Section 8.1. Then. | summarize the possible
future work that could be of a significance to the areas of load balancing and

storage optimization in the cloud.

8.1. Summary of Research Contribution

Combining an efficient load balancing and storage consumption utilization
in the cloud provides the ability to ofter better services and less cost for the cloud
providers. My solution focuses on enhancing both aspects. as it improves load
balancing by collaborative server downloads and improves storage by reducing the
amount of replicated blocks among the cloud servers.

The research contributions of this dissertation follow.
8.1.1. Static Removal of Replicated Blocks

I enhanced the collaborative dual-direction download method by removing
the previously unused blocks. The tirst enhancement was to manually have a static
removal of unused blocks from each cloud server. | have implemented this
technique on top of the previous dual-direction method. The benefit was to reduce
the amount of storage consumed. However. the process had to be done manually
on occasion. The problem was that the storage consumption could reach its peak

betore any removal could be conducted.

98

100

8.1.2. Autonomic Removal of Replicated Blocks

In this contribution, | have added steps to the cloud environment where
uploading files will go through a worktlow of 1) determining the block size. 2)
splitting the file into blocks according to the block size. 3) and uploading the file
onto each server of the cloud environment. When there is a need to remove blocks.
the controller will complete an analysis of the unused blocks. and those blocks will
be removed. T'he process is automated through the upload process and the use of

controller.

8.1.3. Analytical Model of Performance

My tinal contribution in this dissertation was to provide an analytical model
of how to estimate the amount of storage saved depending on the collaborative
server speeds. Moreover. | validated my expected equations against experiments
conducted using the simulator. | found a high percentage of accuracy through

running the experiments.

8.2. Future Work

As a future addition to this research. | considered some enhancements that
could be of significant contribution to the area of load balancing and storage

optimization. Below are some of the possible future works of this dissertation.
8.2.1. Auto-Recovery of Blocks

In case there was a need to restore the removed blocks, the process is easy

because all blocks exist in the cloud with their unique identitier. An analysis of the

need to restore any block into server X could be a useful enhancement to the current

approach.

8.2.2. Partial Editing of the File

Moreover. | discussed throughout this thesis the uploading and
downloading of data in the cloud. which is the scope of my research. However.
when there is a need to edit or modify a portion of a large file, there should be an
improvement to the partial replication load-balancing technique that | provided.
This by 1tselt is a huge research effort. which could provide a significant

contribution to the topic.

8.2.3. Fault Tolerance Handling

As the cloud is known for its elasticity and cloud servers can join and leave
the cloud at different times. an analysis of how the ssCloud can handle tault
tolerance in the case when a server fails or leaves the cloud would be needed. The
backup of the removed blocks and the amount of replication needed in such cases

would be very usetul.

8.2.4. Enhancing the Security of ssCloud

Another future work is enhancing the security of the partial files. |
mentioned previously that security is an important research area in distributed
DaaS. There are many research studies conducted on enhancing the security of the
data exchanged in the cloud. as | have seen earlier in this thesis. Using a partial

replication could be a solution used by ssCloud as well as other approaches like

101

102

RRNS. Therefore. enhancing the security of the ssCloud by adding new features to

the partial replication would be an interesting solution.

8.2.5. Implementation and Evaluation of a Compression Method

Since file compression is a popular solution for reducing the storage used.
| think that it could further enhance the storage consumption of ssCloud. This could
be done by compressing the never downloaded blocks instead of removing them
permanently. This may create additional tradeoffs between download speed.
storage saving. and reliability. As a result. | plan to evaluate the effects of
compressing files at the servers' side in terms of storage and performance to verify

that it will not significantly increase the overall download time.

8.2.6. Implementation of the Full Idea on Top of Simulation

To better evaluate the full idea of the compression and additional other
features that could be added in the future to the main idea. I need to implement a
simulation environment where the full cloud is simulated and ditterent attributes
could be changed on large scale environment. This would help in evaluating most

of the points in the future work.

[T]

3]

[4]

(6]

(7]

(8]

(]

(10]

103

Bibliography

Rimal. B.P.. E. Choi. and I. Lumb. “A taxonomy and survey of cloud
computing systems.” In proc. 3th International Joint Conference on INC. IMS
and I1DC. IEEE. 20009.

Armbrust, M., Fox, O., Griftith. R.. Joseph. A. D.. Katz. Y.. Konwinski. A..
and Zaharia, M, "M.: Above the clouds: a Berkeley view of cloud computing"
in Citeseer. 2009.

Muniswamy-Reddy, K. K.. Macko. P.. and Seltzer. M. I. "Provenance for the
Cloud". In FAST (Vol. 10. pp. 15-14). 2010.

Goyal. A.. and Dadizadeh. S.. "A survey on cloud computing". University of
British Columbia Technical Report for CS, 508, 55-58. 2009.

Buyya. R.. Ranjan. R.. and Calheiros, R. N.. "Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services". In Algorithms and architectures for parallel processing (pp. 13-31).
Springer Berlin Heidelberg. 2010.

Sakr, S.. Liu. A.. Batista. D. M.. and Alomari, M. "A survey of large scale data

management approaches in cloud environments". Communications Surveys &

Tutorials. IEEE. 13(3). 311-336. 2011.

Schatter. H. E.. "X as a service. cloud computing, and the need for good

judgment”. IT professional. 11(5). 4-5. 2009.

Karlsson. J.. er al.. "Enabling large-scale bioinformatics data analysis with
cloud computing.". In Parallel and Distributed Processing with Applications

(ISPA). 2012 [EEE 10th International Symposium on. IEEE. 2012.

Cuzzocrea. A.., Song. 1. Y., and Davis. K. C., "Analytics over large-scale
multidimensional data: the big data revolution!”. In Proceedings of the ACM
14th international workshop on Data Warehousing and OLAP (pp. 101-104).
ACM. 2011.

Wang. L.. Kunze. M.. Tao, J., and von Laszewski. G., "Towards building a
cloud for scientific applications". In Advances in Engineering software. 42(9).

714-722.2011.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

104
Olson. J. A.. "Data as a service: are | in the clouds?". Jowrnal of Map &
Geography Libraries. 6(1). 76-78. 2009.
Dikaiakos. M. D.. Katsaros, D., Mehra. P.. Pallis, G.. and Vakali. A. "Cloud

computing: Distributed internet computing for 1T and scientific research".

Internet Computing, 1EEE. 13(5). 10-13. 2000.

Youseff. L... M. Butrico. and D. Da Silva. “Toward a unified ontology of cloud

computing.” Grid Computing Environments Workshop, IEEE GCE'08.. 2008.
Agarwal. S.. Dunagan. J.. Jain. N., Saroiu. S.. Wolman. A.. and Bhogan. H.
(2010. April). Volley: Automated Data Placement for Geo-Distributed Cloud
Services. In NSDI (pp. 17-32).

Radojevic. B.. and Mario. Z. "Analysis of issues with load balancing
algorithms in hosted (cloud) environments." MIPRO, 2011 Proceedings of the

34th International Convention. [EEE. 2011.

Letaifa, A. B., et al. "State of the Art and Research Challenges of new services
architecture technologies: Virtualization, SOA and Cloud
Computing."International Journal of Grid and Distributed Computing 3.4. 69-
88.2010.

Huang, Y., er al. "Cloud download: using cloud utilities to achieve high-quality
content distribution for unpopular videos." Proceedings of the 19th ACA/

international conference on Multimedia. ACM. 2011.

Reichman. A. "File storage costs less in the cloud than in-house."Forrester,
25th August, available at: http: svww forrester. conv/FileStorage+ Costs+
Less+ In+ The+ Cloud+ Than+ InHouse fulltext/~/E-RES57696. 201 1.
Dillon. T., Wu, C.. and Chang. E. "Cloud computing: issues and challenges".
In Advanced Information Networking and Applications (AINA), 2010 24th
[EEE International Conference on (pp. 27-33). IEEE. 2010.

Dinh. Hoang T.. er al. "A survey of mobile cloud computing: architecture,
applications. and approaches." Wireless communications and mobile
computing 13.18: 1587-1611. 2013.

de Oliveira. D., Baido. F. A.. and Mattoso, M. "Towards a taxonomy for cloud
computing from an e-science perspective". In Cloud Computing (pp. 47-62).

Springer, London. 2010.

26]

(27]

28]

[29]

[31]

105

Abadi, D. J. "Data Management in the Cloud: Limitations and Opportunities”.
[EEE Data Eng. Bull.. 32(1). 3-12. 20009.

TechCrunch. “Dropbox Hits 275M Users And Launches New Business
Product To Al | TechCrunch." TechCrunch. N.p., n.d.. Web. 30 Apr. 2014,
Sevior, M.. Fifield. T.. and Katayama. N. "Belle Monte-Carlo production on
the Amazon EC2 cloud". In Journal of Physics: Conference Series (Vol. 219,
No. [. p. 012003). IOP Publishing. 2010.

Hamburger. Ellis. "Google Drive vs. Dropbox. SkyDrive. SugarSync. and
others: a cloud sync storage tace-off." The I'erge. 2012.

Greenberg. Albert. er al. "The cost of a cloud: research problems in data center
networks." ACM SIGCOMM Computer Communication Review 39.1. 2008.
Casas. P.. Fischer. 11. R.. Suette. S.. and Schatz. R. "A first look at quality of
experience in personal cloud storage services". In Communications Workshops
(ICC), 2013 IEEE International Conference on (pp. 733-737). IEEE. 2013.
Baliga. I., Ayre. R. W.. Hinton. K.. and Tucker. R. "Green cloud computing:
Balancing energy in processing. storage. and transport".Proceedings of the
[EEE. 99(1). 149-167. 2011.

Dory. T.. Mejias. B.. Van Roy. P., and Tran. N. L. "Measuring elasticity for
cloud databases". In CLOUD COMPUTING 2011, The Second International
Conference on Cloud Computing, GRIDs, and Virtualization (pp. 154-160).
2011.

Benson, K.. Dowsley. R.. and Shacham. H. "Do you know where ymy cloud
files are?". In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop (pp. 73-82). ACM. 2011

Wee. S.. and Liu. H. "Client-side load balancer using cloud". In Proceedings
of the 2010 ACM Symposium on Applied Computing (pp. 399-405). ACM.
2010.

Zhang. C., De Sterck. H.. Aboulnaga. A.. Djambazian. H.. and Sladek. R. "Case
study of scientific data processing on a cloud using hadoop". In figh
performance computing systems and applications (pp. 400-415). Springer

Berlin Heidelberg. 2010.

133]

[34]

[36]

(37

[38]

[39]

[40]

(41]

106

Wang. S. C., Yan. K. Q.. Liao, W. P. and Wang. S. S. "Towards a load
balancing in a three-level cloud computing network". In Computer Science and
Information Technology (ICCSIT), 2010 3rd 1EEE International Conference
on (Vol. 1. pp. 108-113). IEEE. 2010.

Beloglazov, A.. and Buyya. R. "Energy efficient resource management in
virtualized cloud data centers". In Proceedings of the 2010 [10th IEEEACM
International Conference on Cluster, Cloud and Grid Computing (pp. 826-

831). IEEE Computer Society. 2010.

Tseng. F. H.. Chen. C. Y.. Chou. L. D.. and Chao, H. C. "Implement a reliable
and secure cloud distributed file system". In lntelligent Signal Processing and
Communications Systems (ISPACS), 2012 International Symposium on (pp.
227-232). IEEE. 2012.

Modi. C.. Patel. D.. Borisaniya. B.. Patel. A., and Rajarajan. M. "A survey on

security issues and solutions at different layers of Cloud computing". The

Journal of Supercomputing, 63(2). 561-592.2013.

Parekh. Disha I1.. and R. Sridaran. "An Analysis ot Security Challenges in
Cloud Computing." IJACSA) International Journal of Advanced Computer
Science and Applications 4.1. 2013.

Mao, H.. Xiao. N.. Shi. W.. and Lu, Y. "Wukong: Toward a Cloud-Oriented
File Service tor Mobile Devices". In Services Computing (SCC), 2010 [EEE
International Conference on (pp. 498-505). IEEE. 2010.

Saranya, S. Mohana. and M. Vijayalakshmi. "Interactive mobile live video
learning system in cloud environment." Recent Trends in Information
Technology (ICRTIT), 201 I International Conference on. 1IEEE. 2011.
Broberg. J., Buyya, R.. and Tari. Z. "MetaCDN: Harnessing *Storage Clouds’
for high performance content delivery". Journal of Network and Computer
Applications. 32(5). 1012-1022. 2009.

Grossman. R. L., Gu, Y.. Sabala. M., and Zhang, W. "Compute and storage

clouds using wide area high performance networks". Future Generation

Computer Systems. 25(2). 179-183. 2009.

[42]

[43]

[44]

[45]

[46]

(47

(48]

[49]

[50]

107

Thakar. A.. and Szalay. A. "Migrating a (large) science database to the cloud".
In Proceedings of the 19th ACM [nternational Symposium on High
Performance Distributed Computing (pp. 430-434). ACM. 2010.

Sun. Z.. Shen. J.. and Yong. J. "DeDu: Building a deduplication storage system
over cloud computing”. In Computer Supported Cooperative Work in Design
(CSCWD). 2011 15th International Conference on (pp. 348-355). IEEE. 2011.
Dong. B. Zheng. Q.. Tian. F.. Chao. K. M.. Ma. R.. and Anane. R. "An
optimized approach for storing and accessing small tiles on cloud storage".
Journal of Network and Computer Applications. 35(6). 1847-1862. 2012.
Fesehaye., D.. Malik. R.. and Nahrstedt. K. "Scalable Distributed File System
for Cloud Computing". Technical report. University of Illinois at Urbana-
Champaign (UIUC). 2010.

Randles. M.. D. Lamb. D.. and A. Taleb-Bendiab. "A Comparative Study into
Distributed [oad Balancing Algorithms for Cloud Computing,” in Proc. IEEE
24th International Conference on Advanced Information Networking and
Applications Workshops (WAINA). Perth, Australia. 2010.
Ananthanarayanan. R., Gupta. K., Pandey. P.. Pucha. H., Sarkar. P.. Shah, M..
and Tewari. R. "Cloud analytics: Do I really need to reinvent the storage stack".
In Proceedings of the 2009 Workshop on Hot Topics in Cloud Computing
(HotCloud 09), San Diego, California. 2009.

Biran. O.. Corradi. A.. Fanelli. M.. Foschini. L.. Nus, A.. Raz. D.. and Silvera.
E. "A stable network-aware vim placement for cloud systems". In Proceedings
of the 2012 12th IEEEACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012) (pp. 498-506). IEEE Computer Society. 2012.
Armbrust. M.. Fox. A.. Griftith, R.. Joseph. A. D.. Katz. R.. Konwinski. A.. ...
and Zaharia. M. "A view of cloud computing". Communications of the ACM,
33(4). 50-58. 2010.

Sotomayor. B., Montero. R. S.. Llorente. 1. M.. and Foster. . "Virtual
infrastructure management in private and hybrid clouds”. /nternet computing,
[EEE. 13(5), 14-22.2009.

Nishant. K.. P. Sharma, V. Krishna. C. Gupta. KP. Singh. N. Nitin, and R.

Rastogi. "Load Balancing of Nodes in Cloud Using Ant Colony Optimization.™

(53]

[54]

N
N
—

[56]

[57]

[59]

108

In proc. [4th International Conference on Computer Modelling and Simulation
(UKSim). IEEL. pp: 3-8. 2012.

Zhang. Z. and X. Zhang. “A load balancing mechanism based on ant colony
and complex network theory in open cloud computing federation.™ In proc. 2nd

International Conference on. Industrial Mechatronics and Automation

(ICIMA). IEEE. Vol. 2. pp:240-243. 2010.

Kolb. L., A. Thor, and I-. Rahm, “[.oad Balancing for MapReduce based Entity
Resolution.™ in proc. 28th International Conference on Data Engineering
(ICDE). IEEE, pp: 618-629. 2012.

Gunarathne. T.. T-L. Wu. J. Qiu, and G. Fox, “MapReduce in the Clouds for
Science.” . proc. 2nd International Conference on Cloud Computing
Technology — and Science (CloudCom), lIBEES pp. 565-572,
November/December 2010.

Ni. J.. Y. Huang. Z. Luan, J. Zhang, and D. Qian, "Virtual machine mapping
policy based on load balancing in private cloud environment,” in proc
International Conference on Cloud and Service Computing (CSC). 1EEE. pp.
292-295. December 201 1.

T-Y.. W-T. Lee. Y-S. Lin, Y-S. Lin. H-L. Chan, and J-S. Huang, “Dynamic
load balancing mechanism based on cloud storage™ in proc. Computing,

Communications and Applications Conference (ComComAp). 1EEE. pp. 102-

106. January 2012.

Ren. X.. R. Lin. and H. Zou, A dynamic load balancing strategy for cloud
computing platform based on exponential smoothing forecast,” in proc.
International Conference on Cloud Computing and Intelligent Systems (CCIS).
IEEE. pp. 220-224. September 2011.

Lee, R. and B. Jeng. “Load-balancing tactics in cloud.” in proc. International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (Cyber(C), IEEE. pp. 447-454. October 201 1.

Al-Jaroodi. J. and N. Mohamed, “DDFTP: Dual-Direction FTP.™ in proc. 11th
IEEE/ ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). IEEE. pp. 504-503. May 2011.

[60]

[61]

162]

[63]

[6+4]

[65]

[66]

[67]

[68]

109

Mohamed. N. and J. Al-Jaroodi. “Delay-tolerant dynamic load balancing.™ in
proc. 13th International Conference on High Performance Computing and

Communications (HPCC). pp:237-245, September. 2011.

Mohamed. N.. J. Al-Jaroodi. and A. Eid A Dual-Direction Technique for Fast
IFile Downloads with Dynamic Load Balancing in the Cloud.”™ in The Journal
of Network and Computer Applications. Elsevier, Vol. 36, No. 4. pp. 1116-
1130, July 2013.

Wang. S-C.. K-Q. Yan. W-P. Liao. and S-S. Wang, “Towards a load balancing
in a three-level cloud computing network.” in proc. 3rd International
Conference on Computer Science and Information Technology (ICCSIT).
[EEE. Vol. 1. pp:108-113. July 2010.

Sang, A., X. Wang. M. Madihian, and RD. Gitlin, “Coordinated load
balancing. handott/cell site selection. and scheduling in multi-cell packet data
syvstems.™ in Wireless Networks, Vol. 14. No. 1. pp: 103-120. January 2008.
Zhang. Y.. Liu. W.. and Song. J. "A novel solution of distributed file storage
for cloud service". In Computer Software and Applications Conference
Workshops (COMPSACHW), 2012 IEEE 36th Annual (pp. 26-31). IEEE. July
2012.

Srivastava. S.. Gupta, V.. Yadav, R.. and Kant, K. "Enhanced distributed
storage on the cloud". In Computer and Communication Technology (ICCCT),

2012 Third International Conference on (pp. 321-325). IEEE. November 2012.

Celesti. A.. Fazio. M.. Villari. M.. and Puliafito. A. "Adding long-term

availability, obfuscation, and encryption to multi-cloud storage systems".

Journal of Network and Computer Applications. 2014,

Villari. M.. Celesti. A.. Tusa. F.. and Puliafito, A. "Data reliability in mult-
provider cloud storage service with rms". In Advances in Service-Oriented and
Cloud Computing (pp. 83-93). Springer Berlin Heidelberg. 2013.

Villari, M.. Celesti. A.. Fazio. M., and Puliatito. A. "Evaluating a file

fragmentation system for multi-provider cloud storage". Scalable Computing:

Practice and Experience, 14(4). 2014.

[69]

[70]

[71]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

110

Abu-Libdeh. H.. Princehouse. L.. & Weatherspoon. H. “RACS: a case for
cloud storage diversity.” In Proceedings of the Ist ACAL symposium on Cloud
computing. pp. 229-240. ACM. 2010.

Bessani. A.. Correia. M.. Quaresma. B.. André. F.. & Sousa. P. "DepSky:
dependable and secure storage in a cloud-of-clouds". ACM Transactions on
Storage (TOS). 9(4). 12. 2013.

Kotla. R.. Alvisi. L... & Dahlin. M. SafeStore: a durable and practical storage
system. In USENLX Annual Technical Conference. pp. 129-142. 2007.

Dobre. D.. Viotti. P.. & Vukoli¢. M. Hybris: Robust Hybrid Cloud Storage. In
Proceedings of the ACM Symposium on Cloud Computing. pp. 1-14. ACM.
2014.

Grosu. D.. A.T. Chronopoulos. and M. Leung, “Cooperative load balancing in
distributed systems,” in Concurrency and Computation: Practice and
Experience. Vol. 20. No. 16, pp. 1953-1976, 2008.

Ranjan. R.. L. Zhao. X. Wu. A. Liu, A. Quiroz, and M. Parashar, “Peerto- peer
cloud provisioning: Service discovery and load-balancing,” in Cloud
Computing - Principles, Systems and Applications, pp: 195-217.2010.
Al-Jaroodi. J.. Mohamed. N., and Al Nuaimi, K. “An Efticient Fault-Tolerant
Algorithm for Distributed Cloud Services,” /[EEE NCCA. December 2012.

Wu. I, et al. “Cloud storage as the infrastructure of cloud computing,”
Intelligent Computing and Cognitive Informatics (1C1CC/), 2010 International

Conference on. [EEE. 2010.

Zeng. W._ et al. "Research on cloud storage architecture and key technologies.™
Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ACM, 2009.

Li. Z.. Wilson, C.. hhang. Z.. Liu, Y., Zhao. B. Y., Jin. C.. ... and Dai. Y.
"Efticient batched synchronization in dropbox-like cloud storage services”. In
Middleware 2013 (pp. 307-327). Springer Berlin Heidelberg. 2013.

Drago. I.. Mellia, M., M Munafo, M., Sperotto, A.. Sadre. R., and Pras. A.
"Inside dropbox: understanding personal cloud storage services". In
Proceedings of the 2012 ACM conference on Internet measurement conference

(pp. 481-494). ACM. November 2012.

[80]

|81]

111

Mohamed. N. and J. Al-Jaroodi. "MidCloud: An Agent-Based Middleware tor
Eftective Utilization of Replicated Cloud Services.” in Software: Practice and
Experience, Wiley, 45(3): 343-363. March 2015.

Mohamed. N.. J. Al-Jaroodi. and H. Jiang. “DDOps: Dual-Direction
Operations for Load Balancing on Non-Dedicated Heterogeneous Distributed
Systems.™ in Cluster Computing, Springer, Vol. 17, No. 2. pp. 503-328. June
2014. DOI: 10.1007'5s10586-013-0294-3. 2014,

Al-Jaroodi. J.. N. Mohamed. and A. Eid “*Dual Direction Big Data Download
and Analysis,” ACM SIGMETRICS Performance Evaluation Review (PER),
ACM, Vol 41, Issue 4, pp. 98-101, March 2014,

(1]

3]

(4]

(6]

List of Publications

Al Nuaimi. Klaithem. et al. "A survey of load balancing in cloud computing:
Challenges and algorithms." Nenwvork Cloud Computing and Applications

(NCCA). 2012 Second Symposium on. 1EEE. 2012.

Al Nuaimi. Klaithem. et al. "A partial replication load balancing algorithm for
distributed Data as a Service (DaaS)." High Performance Computing and
Simulation (HPCS), 2013 International Conference on. IEEE, 2013. [ERA
Ranking: B|

Al Nuaimi, Klaithem. et al. "A Novel Approach for Dual-Direction Load
Balancing and Storage Optimization in Cloud Services." Nenwork Computing
and Applications (NCA), 2014 IEEE 13th International Symposium on. 1EEE,
2014. [ERA Ranking: A]

Al Nuaimi. Klaithem. et al. "Dual direction load balancing and partial
replication storage of cloud DaaS." Cloud Networking (CloudNet), 2014 [EEE
3rd International Conference on. IEEE, 2014.

Al Nuaimi. Klaithem. et al. "Partial Storage Optimization and Load Control
Strategy ot Cloud Data Centers." The Scienific World Journal, communication
section, 2013. In Press. [Impact Factor: 1.219]

Al Nuaimi. Klaithem, et al. "A Self-Optimized Storage for Distributed Data as
a Service". Convergence of Distributed Clouds, Grids and their Management
Track, The 24th IEEE International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises. [ERA Ranking: B]

113
|7] Al Nuaimi. Klaithem. et al. " ssCloud: A Smart Storage for Distributed DaaS
on the Cloud". Cloud Computing (CLOUD), 2015 IEEE 8th International

Conference on IEEE, 2015. [ERA Ranking: B]

