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Abstract

LIGO observatories in Livingston, LA and Hanford, WA may detect gravitational waves

emitted from coalescing binary systems composed of two compact objects. In order to

detect compact binary coalescence (CBC) events, LIGO searches utilize matched filtering

techniques. Matched filtering is the optimal detection strategy for stationary, Gaussian

noise, however, LIGO noise is often non-stationary, non-Gaussian. Non-stationary noise

result in an excess of false candidate events, commonly known as false alarms. This thesis

develops the r2 test to reduce the false alarm rate for LIGO CBC searches. Results of the

search for primordial black hole binary systems (where each object has less than 1M�), in

LIGO’s Third Science Run (S3) is also presented.

Results of the r2 test are shown for several LIGO CBC searches, including the binary

neutron star searches in the Third and Fourth Science Runs (S3/S4), the S3/S4 primordial

black hole searches, and the binary black hole search in the first three months of the Fifth

Science Run (S5). The r2 test significantly reduces the false alarm rate in these searches,

while only falsely dismissing a small fraction of simulated events.

x



1. Introduction

At present time, a worldwide network of interferometric detectors are searching for grav-

itational waves. These include LIGO (1) - which consists of two observatories with three

detectors located in Hanford, WA USA (2km, 4km) and Livingston, LA (4km) USA; VIRGO

(2) - a 4km interferometer located in Pisa, Italy; and GEO (3) - a 600m interferometer located

in Hannover, Germany.

This thesis contributes to the search of gravitational waves, specifically those emitted

from coalescing binary systems composed of two compact objects (such as a neutron stars or

black holes), by providing a new method the reduce the rate of false candidate events. The

method is called the r2 test and will be introduced in chapter four. Results of the search

for primordial black hole binary systems (where each object has less than 1M�), in LIGO’s

Third Science Run (S3) is also presented in chapter five. This thesis specifically uses data

from the LIGO interferometers, although methods described could be used with data from

the other gravitational wave detectors mentioned.

Chapter two introduces gravitational radiation, gravitational waves, astrophysical sources

of gravitational waves, and the Laser Interferometer Gravitational Wave Observatory (LIGO).

Chapter three describes data analysis for coalescing binary systems, including the the-

ory of matched filtering, methods for detecting gravitational waves from coalescing binary

systems, tuning searches for coalescing binary systems, and vetoes.

In the fourth chapter, we describe methods to reduce false alarms in coalescing binary

system searches, including the χ2 veto, and a test to further reduce false candidate events,

known as the r2 test. The last section describes how the r2 test is implemented into the

current searches of gravitational waves using LIGO data.

1
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The fifth chapter summarizes the search for primordial black holes in the Third LIGO

Science Run (S3), including the tuning of the search, results for the r2 test, and the result

of the PBH binaries search in S3.

The sixth chapter summarizes results for the r2 test in several other LIGO searches

including the S3/S4 binary neutron star searches, S4 primordial black hole search, and the

S5 binary black hole search (epoch 1).

The analysis presented in this thesis is the fruit of my own work, in collaboration with the

Compact Binary Coalescence (CBC) analysis group, which includes members of the LIGO

Scientific Collaboration (LSC) and Virgo. The results are under review by the LSC, thus

they are subject to possible revision before journal publication and they do not necessarily

reflect the opinions of the LIGO Scientific Collaboration, the CBC group, or Louisiana State

University.



2. Gravitational Radiation

This chapter describes gravitational waves, their sources, and an experiment presently

conducted to detect these waves. In section 2.1, we will provide the basis of gravitational

waves physics as described by Einstein’s theory of General Relativity. Section 2.2 discusses

the various sources of gravitational radiation, and in section 2.3 we describe detectors being

operated today to discover gravitational waves directly, the Laser Interferometer Gravita-

tional Wave Observatory (LIGO).

2.1 Gravitational Waves

Einstein’s theory of General Relativity (4) can be summed up in this simple, yet powerful

equation:

Gµν = 8πGTµν , (2.1)

known as Einstein’s equation. It essentially tells us how the curvature of spacetime, coded

in the Einstein tensor Gµν , reacts to the presence of matter/energy, coded in Tµν , the energy

momentum tensor, where G is Newton’s constant (5). Since Gµν and Tµν are symmetric 4-

tensors, this equation is actually a set of 10 coupled non-linear partial differential equations.

Few exact solutions are analytically known due to the non-linearity of the equations. One way

of gaining intuition about physical solutions to the field equations is to make approximations.

For example, in the weak field limit we assume the gravitational field is very weak and the

spacetime approximates that of Minkowski space. The metric, gµν , can be written as:

gµν = ηµν + hµν , |hµν | << 1 (2.2)

where ηµν is the flat Minkowski metric and hµν is the small metric perturbation, which will

influence the geometry of space-time, and thus the motion of particles and how light travels.

3



4

The weak field limit itself transforms the non-linear Einstein equations in vacuum (Tµν = 0)

into linear equations, with further simplifications using the transverse traceless (TT) gauge,

therefore making Einstein’s equation become a wave equation:(
52 − 1

c2

∂2

∂t2

)
hµν = 0 (2.3)

For a a wave propagating in the ẑ direction, hµν is:

hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (2.4)

where h+(t) and h×(t) are the two independent polarizations of the gravitational wave.

For gravitational waves being emitted from a binary composed of two neutron stars, the

polarizations of the gravitational wave are given by (6):

h+(t) = −2G

c4r
µ(πGMf)2/3(1 + cos2 ι) cos(2πft− 2φ0) (2.5)

h×(t) = −4G

c4r
µ(πGMf)2/3 cos ι sin(2πft− 2φ0) (2.6)

where ι is the inclination angle of the source, φ0 is the initial orbital phase, f is the frequency

of the gravitational wave, r is the distance from the detector to the binary system, M is the

total mass of the binary system, M = m1 + m2, µ is the reduced mass of the system, µ =

m1m2 / (m1+m2). The frequency of the gravitational wave, f , evolves as the two neutron

stars inspiral toward one another and is given by (6; 7):

f =
53/8c15/8

8πG5/8µ3/8M1/4(tc − t)3/8
(2.7)

where c is the speed of light and tc is the coalescence time.

Physically speaking, what is the effect of this gravitational wave passing by an object? A

classic example is to imagine a ring of particles in the x-y plane. As the gravitational wave

propagates along the ẑ axis, h+ would stretch the distances between the particles along x̂
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axis while shrinking the distances in the ŷ axis and vice-versa. The h× polarization of the

wave would have the same effect, although it would be rotated by 45◦. This is shown in

figure 2.1.

Figure 2.1: The effect of a gravitational wave on a ring of particles. The wave propagation
is perpendicular to the ring. The top row shows the effect of the wave + polarized, while
the bottom row shows the effect of the × polarization (8).

What type of astrophysical phenomena can cause a gravitational wave? This is described

in the following section.

2.2 Astrophysical Sources of Gravitational Waves

There are a large range of astrophysical phenomena that could produce gravitational waves

strong enough plausibly detectable by ground based interferometers. An example of such

detectors is the LIGO, where phenomena that produce gravitational waves within LIGO’s

sensitive band, the 40Hz-4kHz, could be detected in the near future if the signal is strong

enough to be above noise and is distinguishable from false alarms.

The first category of gravitational wave sources include those that emit brief, broadband

signals, such as those produced from the collapse of a supernova or coalescence of binary

systems, called burst signals. In particular, Type II supernova collapses can yield strong
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gravitational waves (h∼10−20). Another example of a burst source source includes those

producing gamma ray bursts (GRBs), where sources are speculated to be from a variety of

astrophysical phenomena ranging from black hole mergers to solar flares.

A second category includes periodic signals, resulting from rotating stars, such as pulsars.

Studies performed on the first discovered binary pulsar (PSR 1913+16) by Russell Hulse and

Taylor in 1974 provide the best empirical evidence we have of gravitational waves indirectly

to date (9). This was done by studying the orbital period of the binary system and accurately

predicted the speeding up as predicted by general relativistic emission of gravitational waves.

The third source of gravitational waves is a stochastic background, gravitational waves

emitted from the beginnings of the early universe (cosmological stochastic background) or

from a large an ensemble of unresolved astrophysical sources.

Gravitational waves can also be emitted by compact binary star systems, composed of

neutron stars or black holes. General relativity predicts that the shrinking of the binary

orbit of these systems is due to emission of gravitational radiation, with the gravitational

waves being emitted at twice the orbital frequency of the binary. This process continues until

the orbit begins to rapidly shrink (inspiral) and gravitational waveform becomes a “chirp”

signal, increasing in frequency and amplitude. To give a sense of the time scale for this

process, imagine an inspiralling system composed of two 1.4 M� traversing through LIGO’s

sensitive band with a starting frequency of 40Hz, the signal would spend about 25 seconds

in LIGO’s sensitive band. In the case of low mass binary systems, we can approximate the

waveform using the 2nd order Post-Newtonian expansion (10; 11). We will return to the

discussion of coalescing binary systems and methods used to detect these signals in chapter

3.
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2.3 Laser Interferometer Gravitational Wave Observa-

tory (LIGO)

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a joint Caltech and MIT

project supported by the National Science Foundation. The observatory is composed of two

sites, one in Hanford, WA and the other in Livingston, LA. The LIGO Hanford Observatory

(LHO) contains both a 4km (H1) and 2km (H2) interferometers which are independent of

one another, yet share the same vacuum system. The LIGO Livingston Observatory (LLO)

contains one 4km interferometer (L1). Each of the interferometer arms are perpendicular to

one another. The orientation of the Hanford Observatory is closely aligned to the Livingston

Observatory, as to give a common response to a gravitational wave signal, the North-South

arms of both detectors are along a great circle. This is depicted in figure 2.2.

3
0
0
2
 km

Figure 2.2: The two LIGO sites (14).

Beyond the two LIGO sites, an international team of scientists has been created in order

to analyze the data and to contribute to the improving of the experiment. This group is
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called the LIGO Scientific Collaboration (LSC) (15). It includes scientists working at the

LIGO laboratory sites and scientists representing over 52 institutions from around the world,

including Louisiana State University.

2.3.1 Design

The LIGO detector design is a power-recycled Michelson interferometer with Fabry-Perot

arm cavities, which have a set of equal length perpendicular arms of 4 km. The laser light

source (Nd:YAG laser, operating at a wavelength of 1.06 µm with a maximum output power

of 10W) is sent to the beam splitter which directs the light along the two perpendicular

arms, which first pass through a partially transmitting input mirror (ITM) which forms a

Fabry-Perot cavity with the end mirrors (ETM). The light from both arms recombine and

interfere with itself destructively at the beam splitter, with the non eliminated light hitting

the photodetector (AS port), this in fact is the signal we will use to detect gravitational

waves. A simple version of the LIGO detector is shown in figure 2.3.

laser

RM

ETMY

ITMY

ITMX                  ETMX

photodetector

Figure 2.3: A simplified schematic of LIGO interferometer. RM is the recycling mirror,
ITMX,Y are the intermediate test mass (partially transmitting mirrors), ETMX,Y are the
end test mass (mirrors).
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The data taken which measures the strain signal while interferometer is in“lock” is used

to determine if a gravitational wave has been observed. To acquire “lock” means to take

the interferometer from a state where the mirrors move freely to a state where the light is

resonant in the arm cavities and the power-recycling cavity, and the interference at the AS

port is kept at the dark point. A more detailed explanation of the LIGO interferometers can

be found in (16) and how to “lock” the interferometer in (17). The data taken in the locked

state and when the feedback systems keep the detector in a “low noise” mode is referred to

as “science data”. This strain signal, s(t), is defined as:

s(t) =
∆Lx −∆Ly

L
(2.8)

where Lx,y are the arm lengths on the interferometer. This signal is limited by the amount

of noise in the interferometer, n(t), which will be described in the following section.

2.3.2 Noise Sources

There are several types of noise sources which could affect LIGO and limit LIGO sensitivity.

These noise sources contribute to the measured output, denoted as h(f). We show in figure

2.4, the three main noise sources which determine LIGO’s design sensitivity. These are

seismic noise, thermal noise, and laser shot noise. Seismic and thermal noise affect the

interferometer by altering the differential change in the arm lengths measured in the anti-

symmetric port, and thus the strain signal defined in equation 2.8.

Seismic noise limits the strain sensitivity at frequencies f ∼< 40 Hz. There are several

constituents that contribute to the measured seismic noise, including earthquakes (0.03 ∼< f

∼< 0.1 Hz), ocean waves (0.1 ∼< f ∼< 0.35 Hz), and noise made by the everyday living of people

(1.0 Hz ∼< f ∼< 3 Hz). This noise is reduced by combination of passive and active isolation

techniques (18).
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Thermal noise may be the limit in the 40 Hz ∼< f ∼< 200 Hz regime and is due to thermal

fluctuations of the individual elements that compose the test masses (fused silica), including

the coating on the mirrors, the substrates, and the steel wires that hold the optics in place.

Laser shot noise affects the strain signal sensed in equation 2.8 and dominates for f ∼> 200

Hz. This is due to fluctuations in the stored power in the interferometer arm Fabry-Perot

cavities from fluctuations in the vacuum field, alternatively interpreted as photon counting

statistics (shot noise) on the light.

The noise sources described above limit the overall sensitivity of LIGO. Actual LIGO

detectors are limited by these and a variety of other noise sources, but the overall measured

noise currently similar to the LIGO design goal. This is illustrated in figure 2.4.

Shot Noise

S
e
is

m
ic

 N
o
is

e

Therm
al Noise

Figure 2.4: Noise limits for the LIGO interferometer design (20).

A more detailed description of all noise sources in the LIGO interferometers can be found

in (19).
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2.3.3 Science Runs

As described in section 2.3.1, science data is taken when the interferometer is in a locked

state and is in a low noise mode. Having both LIGO sites operating in a locked state results

in times where coincident data can be taken. Once the LIGO sites achieved a sensitivity

that was better than previous bar detectors, coincident data taking began, which alternated

with commissioning to improve the sensitivity . This was organized into long periods of time

of coincident data taking operation, known as science data taking runs, or science runs. The

LSC has analyzed the data for gravitational waves in the data taken from these science runs

offline. Up to the writing of this thesis, there have been 4 completed science runs with a

current science run S5:

1. S1 August 23, 2002 to September 09, 2002

2. S2 February 14 2003 to 14 April 14 2003

3. S3 October 31 2003 to January 09 2004

4. S4 February 22, 2005 to March 24, 2005

5. S5 Began November 4, 2005 and is currently in progress.

Through S4, no direct evidence of gravitational waves have been detected (21; 22; 23;

24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43). In S5, the

experiment reached the goal in sensitivity where we are now surveying hundreds of galaxies.

The improvement in strain sensitivity over the course of the science runs is shown in figure

2.5.
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3. Data Analysis for Coalescing Binary
Systems

In this chapter I introduce the fundamentals of gravitational wave data analysis for searching

coalescing binary systems. We begin with the theory of matched filtering, followed by a

description of the method used in a multi-detector search by the LSC in a multi-detector

search, the “inspiral pipeline”. The chapter also discusses methods to tune inspiral searches,

and vetoes used, both instrumental and signal-based.

3.1 Optimal Matched Filtering

In searching for gravitational waves with well understood waveforms, such as “chirp” wave-

forms from inspiralling neutron stars, matched filtering (46; 47) is the optimal detection

strategy in Gaussian noise. The measured detector’s stain amplitude is given by

s(t) = n(t) + h(t), (3.1)

where n(t) is the detector noise (assumed in this chapter to be Gaussian distributed) and h(t)

is the gravitational wave signal. An interferometric detector, such as LIGO (section 2.3), is

sensitive to a linear combination of the two gravitational wave polarizations (equations 2.5,

2.6), where the gravitational wave signal has the form:

h(t) = F+h+(t) + F×h×(t) (3.2)

with

F+ = −1

2
(1 + cos2 θ) cos 2φ (3.3)

F× = cos θ sin 2φ (3.4)

13
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where F+ and F× are the two antenna response functions of the detector, θ, and φ are the

spherical coordinates of the sources sky position with respect to axes defined by LIGO’s

arms.

We transform the template, h(t) (equations 2.5, 2.6, 3.2, 3.3, 3.4), into the frequency

domain using the the second order post-Newtonian stationary phase approximation(48)

h̃c(f) =
2GM�
c2r

(
5µ

96M�

)1/2 (
M

π2M�

)1/3

f−7/6
(
GM�
c3

)−1/6

eiΨ(f ;M,η), (3.5)

h̃s(f) = ih̃c(f) (3.6)

where f is the frequency of the gravitational wave, M is the total mass of the binary system,

M = (m1 + m2), µ is the reduced mass of the system, µ = m1m2/(m1 + m2), and η is the

ratio µ/M . The template h̃(f) (units of 1/Hz) is a linear superposition of h̃c(f) and h̃s(f),

defined in equations 3.5, 3.6. The phase evolution of the chirp signal, Ψ(f ;M, η), is given by

Ψ(f ;M, η) = 2πftc − 2φ0 − π/4 +
3

128η

[
x−5 +

(
3715

756
+

55

9
η
)
x−3 − 16πx−2

+
(

15293365

508032
+

27145

504
η +

3085

72
η2
)
x−1

]
, (3.7)

x =

(
πMfG

c3

)−1/3

(3.8)

where φ0 is the coalescence phase, and tc is the coalescence time of the binary. A combination

of equations 3.5, 3.6, 3.7, and 3.5 yields the form of the chirp signal used in the search. An

example chirp signal for a 1.4−1.4 M� binary with a starting frequency of 40Hz is given in

figure 3.1.

Optimal performance is achieved by filtering the data s(t) in the frequency domain

weighted inversely by the power spectral density of the noise. The complex output of the

Wiener optimal filter is given by:

z(t) = 4
∫ ∞

0

h̃∗(f)s̃(f)

Sn(f)
e2πiftdf (3.9)



15

0 5 10 15 20 25
−8

−6

−4

−2

0

2

4

6

8
x 10

−21

h
(t

)

Time (s)

 

 

1.4−1.4 M
solar

 Waveform

0 0.1 0.2 0.3 0.4 0.5
−8

−6

−4

−2

0

2

4

6

8
x 10

−21

h
(t

)

Time (s)

 

 

BNS 1.4−1.4 M
solar

 Waveform

Figure 3.1: An example chirp waveform for a 1.4−1.4 M� coalescing binary system, f =
40Hz at t = 0s, f = 1532Hz at t = 25s. A zoom of the first 0.5 seconds is shown in the
bottom panel.
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where s̃(f) is the Fourier transformed data of the detector and Sn(f) is the power spectral

density of the detector noise. The goal is to locate the maxima of the output of the matched

filter, ‖z(t)‖, over the arrival time and phase, comparing the maximum value with the

expected distribution of values in the absence of the signal. Furthermore, the output of the

optimal filter for each template has a characteristic amplitude:

σ2 = 4
∫ ∞

0

|h̃(f)|2

S(f)
df, (3.10)

we can then normalize the filter output, defining a signal-to-noise ratio (ρ):

ρ(t) =
|z(t)|
σ

(3.11)

A template has a time series ρ(t), while a candidate event (or trigger) is related to a local

maximum of ρ(t), and is assigned an SNR:

ρ =
|zmax|
σ

(3.12)

Given a candidate with a signal-to-noise ratio (SNR) ρ, we can also infer another physical

characteristic of the system, the effective distance:

Deff = (1Mpc)
σ

ρ
, (3.13)

which is the distance at which an optimally oriented binary inspiral would produce the

observed signal-to-noise ratio. Deff is related to the physical distance of the binary, r, by

the orientation of the binary with respect to the plane of the detector and the detectors two

antenna response functions by (5):

Deff =
r√

F 2
+(1 + cos2 ι)2/4 + F 2

× cos2 ι
(3.14)

A true inspiral signal would have a narrow peak in ρ(t) at the coalescence time, tc, the end

of the template used, or the time at which the two stars begin to merge. If no gravitational
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wave is present, all we would have is stationary detector noise and 〈ρ2(t)〉 = 2, since ρ(t) is

a random quantity, χ2 distributed with 2 degrees of freedom.

Instrumental glitches in the data can lead to large ρ, even in the absence of a signal:

these are called “false alarms”. Further tests are needed to differentiate real signals from

false alarms; these include coincidence between detectors, the χ2 veto. and the r2 test, which

will be further investigated in 4.

A more detailed explanation of how matched filtering is implemented in LIGO CBC

searches can be found in (6).

3.2 Searching for Gravitational Waves from Coalescing

Binary Systems: The Inspiral Pipeline

The search for gravitational waves from binary systems in a multi-detector search done by the

LSC uses several steps, collectively called the “inspiral pipeline”. The pipeline begins with

the raw data from a set of interferometers and ends with a number of candidate events, which

have passed a multitude of tests. These include signal thresholds, multi-tier coincidence,

signal based vetoes, and data quality cuts. The pipeline itself can be run with simulated

signals, either physically injected into the interferometer (hardware injections) or into the

data itself (software injections), and provide a great test of the efficiency to detect inspiral

waveforms.

The inspiral search pipeline can be divided into the following stages.

1. Data Collection: For the LIGO searches, we use a channel named DARM ERR. this

channel is sampled at 16384 Hz, and is the error signal of the feedback loop, controlling

Lx - Ly, keeping the antisymmetric port dark.

2. Template Banks : The template bank generation begins by reading in the DARM ERR

data, down-sampling it to 4096 Hz, and applying a high-pass filter. The data is di-
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vided into 2048 second “blocks”. These “blocks” are further divided into 256 second

segments, which are then overlapped with each other by 128 seconds, illustrated in

Fig.(3.3). This is done to insure no corrupted output is included into the analysis

due to edge effects of the Fast-Fourier-Transform. The average power spectral density

of the noise, S(f), is also calculated, as well as the instrumental response function,

which is used to calibrate the data and the power spectrum. Once this is complete, the

template waveforms are generated for each “block” of data. Note that we require more

than one template to scan to full parameter space, therefore using a bank of templates.

The number of templates in a bank is governed by allowed mismatch in the signal with

the template waveform, which ensures we lose < 3% in SNR of the signal. In the S4

searches (39), the template banks per block of data was 3500 for BNS, 4500 for PBH,

and 1200 for BBH, in S4 searches (39).

3. Matched Filtering I : As described previously in section 3.1. The templates generated

from step 2 are run through each block of data. The SNR time series, (ρ(t)), is

calculated for each template in each segment, where a SNR threshold, ρ∗, is applied.

Inspiral “candidates” are kept if ρ > ρ∗.The SNR threshold (ρ∗) is chosen low enough

to allow a background of false alarms.

4. First Coincidence: At this stage, the inspiral triggers from multiple interferometers are

combined, and we look for triggers coincident in time and mass within some accuracy.

The triggers that pass this test are kept, while the others are discarded. Demanding

coincidence between interferometers significantly lowers false alarms.

5. Triggered Template Bank : A new template bank is generated using only the parameters

of triggers which survived the previous step. Their mass parameters are used to create

the new bank.
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6. Matched Filtering II : The templates generated from stage 5 are run through the data

again.

7. Vetoes : Several instrumental (sec.3.4) and signal-based (sec.4.1, sec.4.2) vetoes are

applied.

8. Second Coincidence: We look again for coincidences between candidates left after in

step 7. These are our candidate events.

The pipeline is run on a given data set using Directed Acyclic Graph (DAG), which

describes the workflow, and is executed using the Condor High Throughput Computing

System (49), which manages the execution of tasks. The DAG reads in a configuration

file which contains locations of executables, science data lists, and search parameters. The

output of each stage of the pipeline after the data collection are in the extensible markup

language (XML) format, which stores in a tabular format the parameters and information

about the triggers. The software used to perform all steps of the analysis and to construct

the DAG is in the package LALAPPS (50).

We also repeat the pipeline with time shifts to find the background rate of the false

alarms. Time shifts are done by taking one set of interferometer triggers at one detector

and shifting them in time, usually on the order of seconds. These time shifted triggers

are then run through the first coincidence stage where any coincidence between the time

shifted triggers and real interferometer triggers are now false alarms. The pipeline is also

repeated for software injections (signals simulated in software) to determine the efficiency of

the search. A visual representation of the pipeline described can be found in Fig.(3.2).

3.3 Tuning the Search for Inspiralling Binaries

Searches for gravitational waves from coalescing binary systems must be optimized using

variety of methods in order to increase the likelihood of detecting gravitational waves. In
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Figure 3.3: Illustration of how single interferometer data is divided (22).

other words, parameters used in different stages of the search pipeline must be tuned. Data

from the playground, which constitutes roughly 10% of all the data from a science run taken

in 600 second intervals every 6370 seconds, is used to do this. The tuning presented here will

be primarily focused on what was used for LIGO’s 3rd and 4th science runs for the binary

neutron star (BNS) and primordial black hole (PBH) searches.

A first step in tuning our searches is allowing a time coincidence window taking into

account the precision in recovering the gravitational waveform’s inferred coalescence time,

tc, and the light travel time between detector sites. The precision is measured by injecting

simulated gravitational waves into the archived data and running matched filtering. Since

we know what the parameters of the injected waveforms are, we can take the output of the

matched filters to see how well the detected parameters agree with the injected parameters.

We histogram the difference between injected and recovered tc. The width of the histogram

gives the timing accuracy.The S3 BNS search used a window of 4 milliseconds to find an

injection in a single detector, for coincidence between sites we also include the light travel

time, which is on the order of 10 milliseconds.

Other coincidence windows are tuned. For non-spinning waveforms, the masses are the



22

main parameters, and we can therefore choose a coincidence test based upon the chirp mass.

The chirp mass is given by:

Mc =
(m1m2)3/5

(m1 +m2)1/5
, (3.15)

and the symmetric mass ratio of the binary is:

η =
m1m2

(m1 +m2)2
=

µ

Mc

. (3.16)

Precision in the recovered chirp masses depends on the variance in the detector noise (equa-

tion 3.10) and discreteness of the template bank. For the S3 and S4 PBH and BNS searches,

we chose a window for both η and Mc based upon histograms the injected and detected

parameters.

A third test can be only done in the case of the two co-located IFO’s, such as H1 and H2

by tuning the precision in the amplitude, or the effective distance, defined in equation 3.13,

for candidates found in both IFO’s. The precision in effective distance is given as

2|H1Deff − H2Deff |
H1Deff + H2Deff

< κ (3.17)

where κ is the value tuned with the software injections. In S3, the sensitivity of of H1 and

H2 differed significantly, and the test used was:

|H1Deff − H2Deff |
H1Deff

< κ (3.18)

The amplitude consistency check is not done between the Hanford and Livingston detectors

since the detectors are not perfectly aligned due to the curvature of the Earth; therefore we

could not expect a similar amplitude between sites.

3.4 Vetoes

So far I have described the detection strategy used for detecting inspiral signals, the analysis

pipeline, and how to tune such a search. I now bring focus to the characterization of vetoes.
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Conceptually, a veto is a time where by instrumental inspection or some statistical calcula-

tion, the data is atypical. There are three classes of vetoes; [1] instrumental vetoes - caused

by problems found in the interferometer, [2] statistical vetoes - defined by correlations be-

tween the gravitational wave channel and other channels, and [3] signal based vetoes, which

determine if candidate events are consistent with the waveform.

3.4.1 Instrumental Vetoes

An instrumental veto occurs at a time when the instrument was known to malfunction or is

sensing an environmental excitation and the malfunction is known to generate false alarms.

In the ideal case, once the times due to all instrumental problems are vetoed, the distribution

of remaining false alarms is as predicted for gaussian data.

The goal in veto investigations is several-fold: it should provide a high efficiency of

dismissing false signals (high veto efficiency), while keeping the amount of science mode

time used at a minimum (low deadtime), and it should have a large percentage of veto

triggers that eliminate one inspiral event or more. It is a balance between these factors that

we try to achieve, with the more analyzable time we have with Gaussian noise data, the

greater the chance of detection.

There are times during any of science runs when environmental disturbances and non-

optimal interferometer performance times should be excluded from the analysis, even when

the interferometer is in science mode(51). Large transients in the data causes most, if not

all of the templates in the bank to ring off, and thus create false alarms, even in coincidence.

Members of the LSC doing detector characterization develop data quality (DQ) flags. Some

of the tuning is done with candidates from the first matched filtering stage of the analysis

pipeline (sec.3.2). These triggers are used as a primer to go further into the IFO performance

and look for causes of these occurrences. The result of such work are data quality (DQ) flags,

used to let the scientists know what was discovered in the IFO while it was in science mode.
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A DQ flag can be created for a number of reasons, ranging from earthquakes affecting the

instrument, dips of the light intensity in the arms, airplanes passing by, and an unrelated

channel triggering. It should be noted that not all DQ flags are created from inspiral triggers,

most are in fact created from known problems with the interferometer. Some DQ flags do not

produce false alarms in compact binary coalescence (CBC) searches, thus, tuning is required.

3.4.2 Statistical Vetoes

Problems in the instrument can be identified in some statistical ways . An example includes

looking for correlations between “KleineWelle Triggers” (52) on the gravitational wave (GW)

channel and other auxiliary channels. KleineWelle is a wavelet analysis algorithm. An

example of such a veto is the “AS I veto” (53), where times when there are kleineWelle

triggers in both AS I and AS Q, with a ratio that makes the transient a very unlikely

gravitational wave.

3.4.3 Signal Based Vetoes

Finally, there is another category of vetoes which includes signal-based vetoes, which are

used to discriminate a real signal from background noise in a given search. An example of

this is the χ2 veto and the r2 veto, which is based upon the time series of χ2. The following

chapter will describe these both in detail.



4. Methods to Reduce False Alarms in
Coalescing Binary System Searches

This chapter introduces a veto currently implemented in searches of gravitational waves from

coalescing binary systems, the χ2 veto, and introduces a new veto, the r2 test. In the last

section, I will describe how the test is incorporated into the inspiral pipeline used in LSC

searches. The results presented in this chapter are my own while collaborating with the CBC

group.

4.1 The χ2 Veto

As described in Sec.3.1, matched filtering provides the optimal detection strategy for de-

tecting inspiral waveforms in Gaussian noise. Noise artifacts present in non-Gaussian noise

data generate a signal-to-noise ratio (ρ) large enough to exceed the given search threshold

(ρ∗) resulting in a false alarm. In order to further reduce these transient signals from being

misidentified as real signals, we check whether the waveform has the expected accumulation

of ρ in several time-frequency bins, illustrated in figure 4.1. This is analogous to breaking one

template into several sub templates i, where each sub template produces ρ/p of its parent

template’s SNR ρ.

For each candidate, we define the χ2 time series as (12):

χ2(t) =
p

σ2

p∑
l=1

|zl(t)− z(t)/p|2 = p
p∑
i=1

|ρi(t)− ρ(t)/p|2 (4.1)

where p is the number of χ2 bins (sub templates), ρ(t) is the matched filter (SNR time

series) for the signal, and ρi(t) is the SNR time series of the sub templates, i. If the noise

in the detector was Gaussian noise, we expect χ2(t) to be χ2 distributed with 2p-2 degrees

of freedom in the absence of true signals. The reduced χ2 test threshold (χ∗2) for Gaussian

25
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Figure 4.1: A visual representation of χ2 statistic. The solid black line represents the chirp
waveform, while the grey boxes illustrate each time-frequency bin, p = 8 in this example
(13).

noise is:

χ∗2 <
χ2

< χ2 >
=

χ2

2p− 2
(4.2)

where the quantity of the right has an expected value of 1. In LIGO inspiral searches, we

re-normalize χ2 to have an expected value ≈ 2.

r2 =
χ2

p
(4.3)

This quantity is referred to as r2 (7). For inspiral searches with LIGO data, a discrete

template bank is used that causes a potential mismatch between the template waveform and

signal (∼ 5% or less). The mismatch causes the χ2 to scale with ρ2. The r2 must be modified

to account for this. Therefore, we add a non-central parameter δρ2 to r2:

ξ2 =
χ2

p+ δρ2
(4.4)

where δ is the mismatch between the template and the signal. This is called the weighted

χ2, or ξ2. In order allow room for these mismatched signals, we apply a threshold on ξ2,

denoted ξ∗2. We therefore ask when ρ exceeds ρ∗, that the triggers also have both:

χ2

p+ δρ2
< ξ∗2 (4.5)
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Since this is a new constraint on the outputted triggers, the χ2 test now becomes a veto,

hence the χ2 veto.

An example comparing the output for a high ρ simulated inspiral injection’s r2 and

weighted χ2 time series is shown in figure 4.1. Notice in the zoomed in bottom panel in

figure 4.1 where the ξ∗2 threshold for the loud injection would have vetoed the calculated r2.

4.2 A Test to Further Reduce False Alarms

In the inspiral pipeline (section 3.2), triggers are kept during the second matched filtering

stage if they have a SNR above a threshold (ρ∗) and the weighted χ2 below a threshold (ξ∗2).

In Gaussian noise, the probability of these triggers being a false alarm can be estimated. In

real data collected by LIGO for example, this estimate is seriously flawed due to the presence

of excess noise contributed from instrumental transients. This is exemplified by comparing

segment of data’s filter output for a single template’s ρ(t) and weighted χ2 time series in

simulated Gaussian noise and actual detector noise (LHO 4km data). This is plotted in

figure 4.3. In the simulated Gaussian noise case, both time series stay relatively flat with

some small fluctuation, while in the detector noise, we see times when the SNR rises and

falls and the weighted χ2 time series changing by a significantly larger amount. Figure 4.4

shows histograms of the SNR and the weighted χ2 time series. Notice here the SNR time

series overlaps in both cases, with the LIGO data having a tail. The weighted χ2 has a slight

shift in overlap, due to the presence of instrumental glitches. We want to develop a method

to characterize the excess noise seen in these figures, and therefore create a veto to reduce

the background. This can be done based of the time history of SNR (ρ(t) or weighted χ2

time series, or some variant thereof.

Take as an example figure 4.5. The time series, ρ(t), of the false alarm and simulated

injections behave differently up to the coalescence time. The weighted χ2 time series has

greater fluctuations for the false alarms up to the inferred coalescence time, making it easier
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29

50 100 150 200
0

2

4

6

8

ρ

Simulated Gaussian Noise

50 100 150 200
0

5

10

15

20

χ2 /(
p 

+ 
δρ

2 )

time (s)

50 100 150 200
0

2

4

6

8

ρ

LHO 4km  Data

50 100 150 200
0

5

10

15

20

χ2 /(
p 

+ 
δρ

2 )

time (s)

Figure 4.3: The SNR and weighted χ2 time series for a 128 second segment of LIGO data
and simulated stationary Gaussian noise

to distinguish it from a true signal. We choose to use create a test based upon the χ2 time

series as a method to search for excess noise. We use r2 (equation 4.3) instead of the weighted

χ2 (equation 4.4) due of the computational cost of using both time series for data on the

order of a year of more. The test will measure the consistency of the candidate signal using

r2(t) by scanning a given amount of time prior to the coalescence time at a given threshold.

This test is otherwise known as the r2 test.

The r2 test will require two parameters, the r2 threshold, r∗2, and a window of time prior

to the coalescence time to search, ∆t∗, which is on the order of seconds. The r2 test looks

up to the time before the inferred coalescence time of the trigger since the templates do not

include the merger waveforms. The test will determine how much time the r2 time series

stays above r∗2 in ∆t∗, with the result denoted as ∆t. A visual representation of the test is

given in figure 4.6. An example of how the test performs for an ensemble of injections and
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using LIGO data and a simulated inspiral injection (bottom panel) in simulated stationary
Gaussian noise. The dashed lines represent the set thresholds.
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Figure 4.6: Illustration of the r2 test.

time slide triggers (false alarms) for the S4 binary neutron star search are shown in figure

4.7.

In figure 4.7 we see two distributions. A distribution of simulated inspiral waveforms

that begin to separate from the background time slide triggers (false alarms) at SNR = 10,

and a distribution of false alarms from the simulated waveforms for SNR < 10 and ∆t >

0.0002 seconds. The contours plotted in the figure denote two separate methods to veto

these false alarms while falsely dismissing few simulated inspiral injections. The first is a

dashed black contour which includes a bottom left rectangular region that is defined as a

constant duration segment (∆t = 0.0002 seconds) extending to a maximum SNR called rd

(in the case shown in the figure, rd = 10). The second parameter is the segment of constant

SNR extending to form the long side of the rectangle called ρr. Using this black dashed

contour line as a veto for this particular data set where any points within the rectangular

regime are eliminated results in roughly 35% of the false alarms being vetoed while 0.001%

of the simulated inspiral injections are falsely dismissed. The use of the r2 test’s results as a
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Figure 4.7: r2 test example result from the S4 binary neutron star search from background
triggers (time slides) and simulated inspiral injections. We chose to plot ∆t plus 10 millisec-
onds to allow false alarms and injections having ∆t ∼0 visible in the plot.

veto is called the r2 veto. The black dashed contour described in this example is called the

r2 veto v1.

The second is a magenta dashed contour includes rd, ρr, and two additional parameters.

The two additional parameters describe the power law region of the contour:

f(ρ) = rc × ρrp (4.6)

where rc and rp are parameters chosen to create the slope. Using this magenta dashed

contour line (with rc = 0.007, rp = 1.1), where any points above will be eliminated for this

particular data set results in roughly 36% of the background time slide triggers being vetoed

while falsely eliminating 0.001% of the simulated inspiral injections for the figure given. The

magenta dashed contour described in this example is called the r2 veto v2.

Note the four parameters can be tuned according to a given data set and inherently so

the fraction of vetoed false alarms and falsely dismissed triggers will change. This will be
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shown in chapters 5 and 6. The next section describes how this test could be implemented

into an inspiral pipeline.

4.3 Implementation of the r2 Test Into the Inspiral

Pipeline

The r2 test is implemented into the inspiral pipeline whenever the χ2 is calculated. The

r2 test is incorporated into the inspiral search pipeline (Sec. 3.2) in the second matched

filtering stage. The r2 test pipeline is described as:

1. Characterize the candidate trigger by the signal to noise ratio (ρ), keep candidates

with ρ > ρ∗.

2. Measure the consistency of the candidate signal with the expected chirp waveform,

keeping candidates with χ2/(p + δρ2) < ξ∗2.

3. Compute the time series χ2/p, count the time the trigger stays above a given time

threshold, r2
∗, in a given interval, ∆t∗, prior to the inferred coalescence time, tc, of the

trigger. Store the calculated value as ∆t.

The last step is what has been added to the inspiral pipeline. The following chapters will

include examples of results from implementing the pipeline described.



5. The Search for Primordial Black Holes in
LIGO’s 3rd Science Run

A black hole composed of mass < 1.0 M� is believed to be a primordial black hole (PBH)

(29), since it could not have been created as a product of stellar evolution. These compact

objects may have formed in the early, highly compressed stages of the universe immediately

following the big bang. A binary system composed of two PBH’s will emit gravitational

waves that may be detectable by LIGO (5). This chapter describes the search for primordial

black holes binary systems (PBH) in the third science run, including the tuning of several

coincidence parameters, how the r2 test was employed, and the result of the PBH binaries

search from the S3 run. The results are included in (39). The results presented in this

chapter are the authors while collaborating with the CBC group.

5.1 The Third LIGO Science Run

The third LIGO science run was conducted from October 3, 2003 to January 09, 2004. All

three LIGO detectors at the two observatories were in operation. The best sensitivity curve

for each IFO shown in figure 5.1.

Of the numerous binary systems that could be searched for gravitational wave emission,

primordial black hole (PBH) binary systems were chosen to search for this thesis. The masses

for the PBH search ranged from 0.35 M� to 1.0 M�. We used a low frequency cutoff, fL, of

100Hz. The longest waveform duration, Dmax, was 22.1 seconds while the average number of

templates used per block of data was 4500. Note that fL is higher than the lowest frequency

of the sensitive gravitational wave band. This was due to the computational cost of searching

at those low frequencies for PBH templates. The range of masses for the PBH search were

from 0.35 M� to 1.0 M�. An example PBH template waveform is given in figure 5.2.

35
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Figure 5.2: A sample PBH waveform, f = 100Hz at t = 0s, f = 2023Hz at t = 22s. A zoom
of the first 0.5 seconds is shown in the bottom panel.
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In order to search for these systems, we use a data analysis pipeline as described in

section 3.2. The first step is to determine to amount of data that will be used by collecting

the times when the three interferometers were in science mode. We also incorporate separate

segment lists which include times where the quality of the data is non-optimal for each of the

detectors. Once this information is collected, we calculate the times when two or more IFO’s

are in operation, this will represent the analyzed times to be searched and is summarized

in table 5.1. Since second coincidence is essential to the search, a viable candidate event

must have at least two detectors observing the same event. We required both of the Hanford

detectors to be in operation, due to the possibility of scattered light from one of the out of

lock detectors interfering with the other detector.

Table 5.1: Times analyzed when at least two detectors were operating. The times in paren-
theses exclude playground times.

S3
H1-H2-L1 times 184 (167) hrs
H1-H2 times 604 (548) hrs
Total times 788 (715) hrs

5.2 Tuning the Search

In order to tune a search for inspiralling binary systems (as described in section 3.3), several

parameters must be tuned. This is done is order to correctly characterize and optimize the

analysis pipeline for detection. Recall that two thresholds are introduced into the pipeline

at various stages in order to reduce the number of noise transients, these are the SNR and

the χ2 test thresholds. We chose ρ∗ = 6.5, ξ∗2 = 10.0, with 16 χ2 bins. Recall ρ(t) and ξ2

are calculated using equations 3.11 and 4.5.

For the PBH binary system search, the χ2 test (12) provides a measure of the quality-of-

fit of the signal to the template. We can also combine the SNR (equation 3.11) and the χ2
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value of the event, defined as the effective SNR, ρeff , by

ρ2
eff =

ρ2√(
χ2

2p−2

) (
1 + ρ2

250

) , (5.1)

where p is the number of χ2 bins used in the χ2 test; the specific value of the parameter

250 is chosen empirically. This parameter was chosen in order to effectively separate our

simulated inspiral injections with the background triggers (time slides) shown in figure 5.4,

since using the SNR of each coincident inspiral injections or background triggers did not

effectively separate the two as shown in figure 5.3. We expect ρeff ∼ ρ for real signals with

relatively low SNR, and low effective SNR for noise transients with high χ2. We can also

assign to each candidate in coincidence a combined SNR, ρc, defined by

(ρc)
2
PBH =

N∑
i

ρ2
eff,i (5.2)

where i is the detector index.

Figure 5.3: SNR of coincident time slides (false alarms) and coincident injections for the S3
PBH search.
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Figure 5.4: The effective SNR statistic for the S3 PBH search.

Several coincidence parameters are also tuned. These include the coincident time between

triggers (∆T), the coincidence in the chirp mass (∆Mc), and the coincidence in η (called

∆η). These parameters were tuned using results from injections. The results are plotted in

figure 5.5 for ∆T, figure 5.6 for ∆Mc, and figure 5.7 for ∆η. The chosen parameters based

on these figures are given in table 5.2.

Table 5.2: Summary of the S3 PBH coincidence windows. The second column gives the
coincident-time windows column; we need to take into account for time of flight between
detectors (10 ms between L1 and H1/H2 detectors).

∆T (milliseconds) ∆Mc (M�) ∆η
4× 2 0.002× 2 0.06

As described in section 3.3, we can tune the error in the effective distance (equation

3.18) for simulations done on the H1-H2 coincident triggers by comparing the background

time-slide triggers as shown in figure 5.8, a value of κ = 0.45 was chosen.
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Figure 5.7: η difference (∆η) histogram.

Finally, once all the various parameters have been tuned, we run the analysis pipeline

from start to end and cluster the final coincident triggers. They are clustered by locating

the trigger with the largest SNR within a 22 second window, which is the value associated

length of the longest template.

5.3 Results for the r2 Test

The r2 test as described in section 4.2 was done in the S3 PBH search. The parameters

chosen for the test are given in table 5.3.

The results of the r2 test for the S3 PBH search are plotted in figure 5.9. We see here

a clear distinction between the time slides background triggers and simulated PBH binary

system injections. The solid black line was chosen as a parameter region to veto any points
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Table 5.3: r2 test parameters for the S3 PBH search.

r∗2 ∆t∗ (seconds) rρ rd (seconds) rc rp

15 2.0 13 2× 10−4 - -

Figure 5.9: Result of the r2 test for the S3 PBH search using the parameters given in table
5.3. The solid black line is the r2 veto chosen, where points within it being eliminated.
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within. Using the solid solid black line as a veto therefore results in eliminating 26.5% of

the time slide background triggers and while falsely dismissing 0.001% of the injections.

The result proves the power of using such a test on a binary inspiral search, where

previously, coincidence between triggers and the χ2 test were the strongest vetoes available.

And most importantly, brings the possibility of finding gravitational waves in LIGO I and

future detectors that much closer. In chapter 6, we will see applications of the r2 test to

other science searches and how the veto parameters were chosen.

5.4 S3 PBH Search Result

A cumulative histogram of the combined statistic, (ρc)
2
PBH as defined in equation 5.2, of the

loudest coincident triggers in the S3 PBH search is shown in figure 5.10. We estimate the

background in the following way:

1. We shift the time of the L1 detector by 5 seconds from the true time, and the time of

the H2 detector by 10 seconds from the true time.

2. We look for coincident triggers, which are false coincidences (thus false alarms) due

to the shifted time.

3. We use the same pipeline (section 3.2) used for the unshifted-time analysis, including

all vetoes.

4. The resulting distribution of coincident triggers is considered the background of false

alarms.

5. We repeat the procedure for 50 different time shifts, and construct a cumulative

histogram of the mean number of false alarms versus combined statistic, and also

calculate the standard deviation in each bin.
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No triple coincident foreground candidate events or background events were found. We

show in figure 5.10 the foreground, or double coincidences found, and the expected back-

ground. The number of double coincidences found was consistent with the measured back-

ground.

Figure 5.10: Result of the S3 PBH search. The cumulative histogram of the combined
statistic, (ρc)

2
PBH, for coincident candidates events (4) and the estimated background from

time slides (+) with 1σ deviation ranges for the S3 PBH binaries shown (shaded region).



6. The r2 Test in Other LIGO Searches

In this chapter we revisit the r2 test, as described in chapter 4, application in several other

LIGO searches for gravitational waves. This includes the search for the binary neutron star

(BNS) in S3/S4, the search for primordial black holes (PBH) in S4, and the search for binary

black holes (BBH) in the first three months of S5, also known as epoch 1. Each section will

include a brief summary of the individual search. The searches in this chapter were done

in the CBC group, where the author was a critical member on the discussions of the r2 test

application.

6.1 S3/S4 Binary Neutron Star Searches

The LIGO’s third science run was conducted from October 31, 2003 to January 09, 2004

and the fourth science run ran from Feb 22, 2005 to March 24, 2005, with all all three LIGO

detectors at the two observatories in operation.

The first implementation of the r2 test was done on the S3 binary neutron star search. The

BNS searches (39) used post-Newtonian templates in the range 1.0 M� < m1,m2 < 3.0M�,

which for the S3/S4 searches are summarized in table 6.1. The coincidence parameters

chosen are included in table 6.1.

Table 6.1: Target Sources of the S3/S4 BNS Search.

mmin(M�) mmax(M�) fL(Hz) Nb Dmax(s)
S3 BNS 1.0 3.0 70 2000 10.0
S4 BNS 1.0 3.0 40 3500 44.4

The r2 test parameters in the S3/S4 BNS search are given in table 6.3. The results of the

test are given in figures 6.1 and 6.2, where the black line denotes the r2 veto chosen. The

47
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Table 6.2: Summary of the S3/S4 BNS Coincidence Windows.

∆T (milliseconds) ∆Mc (M�) ∆η
S3/S4 BNS 5× 2 0.01× 2 0.10

use of the r2 veto significantly lowers the background, vetoing about 43% of the false alarms

for S3 and 35% for S4, even after the χ2 veto and other vetoes. The veto falsely dismisses

only 0.001% of the simulated inspiral injections for both runs.

Table 6.3: r2 Test Parameters for the S3/S4 BNS Search.

r∗2 ∆t∗ (seconds) ρr rd (seconds) rc rp
S3/S4 BNS 10 2.0 10 2× 10−4 - -
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Figure 6.1: Result of the r2 test for the S3 BNS search using the parameters given in table
6.3. The solid black line is the r2 veto chosen, where points within it being eliminated.
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Figure 6.2: Result of the r2 test for the S4 BNS search using the parameters given in table
6.3. The solid black line is the r2 veto chosen, where points within it being eliminated.

Table 6.4: r2 Test Results for S3/S4 BNS Searches

Falsely Dismissed Injections (S3,S4) Vetoed False Alarms (S3,S4)
% 0.001, 0.001 43.0, 35.0
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6.2 S4 Primordial Black Hole Search

The S4 PBH searches (39) use post-Newtonian templates in the range 0.35 M� < m1,m2 <

1.0M�, which is summarized in table 6.5. The coincidence parameters chosen are included

in table 6.6.

Table 6.5: Target Sources of the S4 PBH search.

mmin(M�) mmax(M�) fL(Hz) Nb Dmax(s)
0.35 1.0 100 4500 22.1

Table 6.6: Summary of the S4 PBH coincidence windows.

∆T (milliseconds) ∆Mc (M�) ∆η
4× 2 0.002× 2 0.06

The r2 test was done on the S4 primordial black hole search (39) . The parameters are

given in table 6.7. The results of the test are given in figure 6.3, where using the black line is

the r2 veto chosen and results in gives a significant lowering of the background on the order

of 35% after the χ2 veto and other vetoes, while falsely dismissing 0.001% of the simulated

inspiral injections. It is also worth noting that in the r2 test result figure, there is a large

number of false alarms at the maximum window for all values of SNR. This is directly related

to the size of the r2 test window.

Table 6.7: r2 Test Parameters for the S4 PBH Search.

r∗2 ∆t∗ (seconds) ρr rd (seconds) rc rp
S4 15 2.0 13 2× 10−4 - -
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Figure 6.3: Result of the r2 test for the S4 PBH search using the parameters given in table
6.7. The solid black line is the r2 veto chosen, where points within it being eliminated.

Table 6.8: r2 test Results for S4 PBH Search

Falsely Dismissed Injections Vetoed False Alarms
% 0.001 35.0
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6.3 S5 Binary Black Hole Search (Epoch 1)

S5 started on November 4, 2005. We analyze the “first epoch”, from November 4, 2005

to February 6, 2006,with all all three LIGO detectors at the two observatories were in

operation. This search targeted black hole binaries of component mass in the range 3.0

M� < m1,m2 < 30.0M�, with of total mass no higher than 35.0 M�. For the S5 epoch

1 search, we decided to use standard post-Newtonian templates with a χ2 test. A sample

waveform is shown in figure 6.4. BBH simulated inspiral injections were done from 4 different

waveform families which included Pade-T1, Taylor-T1, Taylor-T3, and Effective-One-Body

(55).

Since the χ2 test was used, we could therefore incorporate the r2 test as well. The

parameters for the r2 test is given in table 6.11. The results of the test are given in figure

6.5. Note this was the first time we decided to use a non-zero value of rp not∼0. Immediately,

from 6.5 we see an overlap between the time slide triggers and injections. This results in not

being able to veto most false alarms beyond a given SNR as we saw in section 6.1, but does

significantly lower the background on the order of 19%.

Table 6.9: The target sources of the S5 BBH search.

mmin(M�) mmax(M�) fL(Hz) Nb Dmax(s)
3.0 25.0 40 300 2.0

Table 6.10: Summary of the S5 BBH coincidence windows.

∆T (milliseconds) ∆Mc (M�)
20× 2 5.0× 2
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Figure 6.4: A sample BBH waveform, f = 40Hz at t = 0s, f = 701Hz at t = 7s. A zoom of
the first 0.5 seconds is shown in the bottom panel.

Table 6.11: r2 test parameters for the S5 BBH search.

r∗2 ∆t∗ (seconds) ρr rd (seconds) rc rp
S5 10 6.0 9 2× 10−4 0.025 1.05
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Figure 6.5: Result of the r2 test for the S5 BBH search using the values given in table 6.11.
The solid black line is the r2 veto chosen, where points within it being eliminated.

Table 6.12: r2 test Results for S5 BBH epoch 1

Falsely Dismissed Injections Vetoed False Alarms
% 0.12 19.1



7. Conclusions

We have devised a new test, that we call the r2 test, that greatly reduces the number of

false alarms in gravitational wave searches of coalescing binary systems. We have shown the

actual efficiency of this test using data from the LIGO interferometers from several science

runs. The reduction in the rate of false alarms ranged for example from 43% for the search for

binary neutron star systems in the third science run, to 19% in the search for the coalescence

of binary black hole systems in the first three months of the fifth science run, while achieving

a low false dismissal rate of simulations ranging from 0.001% to 0.12%, respectively. The r2

test will be incorporated into future LIGO searches such as the searches for binary systems

in the fifth science run. A search for primordial black hole binary systems (where each object

has less than 1M�) in LIGO’s Third Science Run (S3) was conducted where results from the

number of double coincidences found was consistent with the measured background.
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