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ABSTRACT 

In this dissertation work, I report on the interesting results of our detailed investigations 

of the synthesis, structural, electrical and magnetic characterization of three different classes of 

intermetallic systems.  

Mo3Sb7 wires, thin films and microfibers exhibit the highest Tc ~ 8 K, which is 

substantially higher than the 2.2 K reported for the single crystal and powder of Mo3Sb7. The 

suppression of the spin fluctuations in Mo3Sb7 is evident by the absence of a parabolic 

dependence of magnetic susceptibility at 1 T. MoN wires, thin films and coated microfibers have 

Tc ~13 K which is consistent with the values reported in the literature. To my knowledge, for the 

first time we report on the magnetotransport and critical current measurements in MoN and 

Mo3Sb7 in these forms. We show (1 - (T/Tc)
2
)
3/2

 dependence of the critical current density of 

MoN- and Mo3Sb7-coated microfibers near the transition temperature, Tc.  The extrapolated 

values of the critical current density to zero temperature for the MoN- and Mo3Sb7-coated fibers 

are Jc(0) = 1.66 x 10
8
 A/cm

2
 and Jc(0) = 7.7 x 10

5
 A/cm

2
 , respectively.  

The results of magnetic susceptibility and transport properties measurements of Mg1-

xBexCNi3 and Mg1-xLixCNi3 for x = 0 to 0.2 showed a very small change in Tc and Hc2 due to Be 

and Li doping in MgCNi3. The heat treatment of the carbon deficient samples MgCxNi3 for 2 h in 

N gas improved the superconductivity of the compounds. In MgC0.7Ni3, the superconductivity re-

appeared after the treatment.  

Single crystals and polycrystalline samples of VB2 and other transition metal diborides 

were synthesized. Cr1-xVxB2 are paramagnetic for x > 0.23, and no superconductivity is observed 

above 1.8 K. We also present the results of magnetotransport and de Haas–van Alphen (dHvA) 
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measurements on high quality single crystals of VB2 grown from a molten aluminum flux. At 

low temperature the magnetoresistance of VB2 is very large (∼1100%) and is found to be 

extremely sensitive to sample quality (RRR value). 



1 

 

CHAPTER  1 

INTRODUCTION 

Superconductivity is a phenomenon occurring in certain materials at extremely low 

temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior 

magnetic field (the Meissner effect). The onset of superconductivity is accompanied by abrupt 

changes in various physical properties, which is the hallmark of a phase transition. For example, 

the electronic heat capacity suffers a discontinuous jump at the superconducting transition 

temperature, and thereafter ceases to be linear. Superconducting magnets are some of the most 

powerful electromagnets known. They are used in maglev trains, MRI and NMR machines and 

the beam-steering magnets used in particle accelerators. Superconductors have also been used to 

build Josephson junctions which are the building blocks of SQUIDs (superconducting quantum 

interference devices), the most sensitive magnetometers known.  

  

 

Fig: 1.1 Right: A magnet levitating above a high-temperature superconductor, cooled with liquid 

nitrogen. Left: Behavior of heat capacity (cv) and resistivity (ρ) at the superconducting phase 

transition. 

 

Since the discovery of the superconductivity in mercury in 1911 [1], a broad and 

significant research effort has been aimed at identifying and characterizing superconducting 

materials. In 1957 the first widely-accepted theoretical understanding of superconductivity (BCS 

http://en.wikipedia.org/wiki/Material
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Electrical_resistance
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theory) was published. Since then, many theoretical and experimental results in this exciting 

research field have been discovered. Since 1986, copper oxide compounds have dominated the 

superconductivity fast-track, but copper oxides are not the only superconductors worthy of study.  

In 1953, researchers first saw the zero-resistance phenomenon in a multimetal compound based 

on niobium, designated A15 [2]. In 1974, a group of chemists achieved superconductivity at a 

temperature of 23.2 K in a niobium-based thin film-a breakthrough that has gone unchallenged 

for nearly 20 years [3]. Now, superconductivity researchers are refocusing attention on such 

"intermetallic" compounds [4]. My research work include following three major branches of  

intermetallic systems: i) AlB2 type structure  compounds, ii) Mg compounds containing 

refractory elements such as B and C and iii) A15 phase Mo based compounds.   

In the framework of the BCS theory [5] lower-mass elements result in higher frequency 

phonon modes which may lead to enhanced transition temperatures. The highest superconducting 

temperature is predicted for the lightest element, hydrogen [6,7,8], under high pressure. At 

ordinary pressures, the light metallic element
 

Li does not show any evidence of 

superconductivity down to 4 mK
 
 [9], but recent calculations for Li predict that Tc can

 
reach 70 K 

at high pressures [10,11]. Be has a Tc of 0.25
 
mK, but in thin films this increases to 10.5 K 

[12,13]. For example molynitride compounds exhibit higher Tc in intermetallic. Finally, the 

recent discovery of superconductivity in MgB2 and MgCNi3 confirms the predictions of higher 

Tc in compounds containing light elements. 

  At the beginning of the 21
st
 century, the discovery of 39 K superconductivity in MgB2, 

with its unique multiple superconducting gap structure has reignited interest in the intermetallic 

superconductors [14].  MgB2 have layered crystal structures - alternating hexagonal layers of Mg 

and B in the MgB2 compound.  MgB2 has subsequently been intensively studied because of its 

exotic properties [14]. 
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The AlB2 structure type seems to favor a superconducting state in many materials [15-

17]. The announcement of superconductivity in MgB2 has proved to be catalyst for the discovery 

of several superconductors, some related to magnesium diboride. This discovery revived the 

interest in a search of superconductivity, especially in related boron compounds, with the very 

hope that this material will be the tip of a much „hotter‟ iceberg, being the first in a series of 

diborides with a much higher Tc.  The transition-metal borides are interesting because of their 

highly refractory properties and corrosion-resistant characteristics, and due to the discovery of 

superconductivity in MgB2, the AlB2-type transition-metal diborides have attracted a lot of 

interest, with many experimental and theoretical studies going on in these compounds [18]. 

However, a clear proof of superconductivity could not be shown for any of these isostructural 

compounds [15]. Most of the results suggest MgB2 to be a conventional superconductor with the 

layers of the boron atoms playing a very important role for superconductivity of MgB2 [20]. 

Hence, most work has concentrated on the research on the influence of the boron atoms on 

superconductivity of MgB2. However, there is no doubt the metal atoms have played an 

important role in the superconductivity as well. Some research [21] has shown that the difference 

of the metal atom in these compounds can influence the electronic properties, phonon behavior 

and electron–phonon coupling effect. The fact that some borides have been found 

superconducting by some authors while others did not find traces of superconductivity in the 

same materials, suggests that non-stoichiometry may be an important factor in the 

superconductivity of this family [15]. This has been the case with TaB2, ZrB2 and BeB2 [15, 19, 

22]. Therefore, further work is necessary to settle the controversy in these systems. Growth of 

single crystals can provide the best measure of intrinsic properties.  With the motivation from 

these developments I have synthesized and characterized some transitions metal diborides using 
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various techniques. I grew high quality single crystal of VB2 which exhibit unusually large 

magnetoresistance [27].    

Shortly after the discovery of MgB2, a report on superconductivity in MgCNi3 came as 

another surprise [23]. This was the first example of a perovskite superconductor that did not 

contain oxygen. Furthermore, the discovery of superconductivity in this compound has drawn 

attention owing to its high nickel content, which may complicate the origin of superconductivity. 

Additionally, MgCNi3 may provide a possible link between the traditional intermetallic 

superconductors and the high Tc oxides. Energy band calculations show that the density of states 

(DOS) at the Fermi level, N(EF), is dominated by Ni d-states, and there is a von Hove singularity 

in the DOS just below EF [24, 25, 26]. It is surprising that the conduction electrons are derived 

from partially filled Ni d-states, which typically lead to ferromagnetism in metallic Ni and many 

Ni-based alloys. Notwithstanding the widespread interest in MgCNi3, its status as a non-BCS 

superconductor remains controversial. It has been theoretically suggested to be an 

unconventional superconductor and near instability to ferromagnetism [34]. Experimentally, the 

pairing mechanism of MgCNi3 is quite controversial.  Electron tunneling studies of the density of 

states in polycrystalline powders have yielded conflicting results as to whether or not MgCNi3 

exhibits a BCS density of states spectrum.  London penetration depth and the earlier tunneling 

spectra suggested an unconventional pairing state, while the NMR relaxation rate, specific heat 

data, and the latter tunneling spectra support a conventional s-wave BCS type behavior [28-32, 

44]. Though no long-range magnetic order has been observed, FM spin fluctuations have been 

confirmed to be vigorous in both pristine [30, 31] and doped [33] MgCNi3. Tunneling into 

sintered powders is technically difficult, and indeed, a detailed quantitative characterization of 

MgCNi3 has, in part, been hampered by the fact that only polycrystalline powder samples have 

been available. 
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 Review of the literature indicates that the investigations of chemical doping in 

polycrystalline MgCNi3 can result in more interesting properties. Chemical doping experiments 

are motivated by the unusual band structure of this compound. Most groups have doped in the Ni 

sites. Rosner et al have suggested if 12 % Mg is replaced by Na or Li, long range magnetic order 

can be observed [34]. It contains highly volatile Mg and refractory elements C and B. My goal is 

to investigate the effect of doping in Mg and C site to understand the role of Mg and C in SC and 

optimize the SC properties of MgCNi3. A lattice compression is expected if the larger ion Mg is 

substituted by the smaller Be. In order to study the effects of valence change and lattice 

expansion on the superconducting properties of these intermetallic compounds, pseudo-

quaternary Mg1-xMxCNi3 polycrystalline samples with 0 ≤ x ≤.2, where M is Li or Be, have been 

synthesized. The effect of N on the superconducting properties of MgCxNi3 samples for x = 1.2, 

1, 0.9, and 0.7 has also been investigated. 

Over the past 20 years, both theoretical and experimental efforts were made on materials 

which not only undergo a superconducting transition but also exhibit rather unconventional 

properties in their normal and superconducting states. Among them, it is worth mentioning 

Chevrel phases containing rare-earth ions, such as the heavy-fermion CeCu2Si2 compound, 

which displays an intimate interplay of superconductivity and magnetism, [35-37] and the 

intermetallic actinides such as UPt3 or UCo2, with spin fluctuation behavior [38, 39]. Only a few 

materials without an actinide element exhibit both superconductivity and spin fluctuation 

behavior [40]. More precisely, spin fluctuation effects usually manifest themselves at low 

temperature as a T
2
 term in the electrical resistivity, parabolic temperature dependence of the 

magnetic susceptibility and for some compounds, an upturn in the specific-heat temperature 

dependence [39].  
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Recently, a new type II superconductor, namely Mo3Sb7, which crystallizes in the Ir3Ge7-

type structure (space group Im3m), was identified as being a Pauli paramagnet with a 

superconducting transition temperature, Tc, of 2.1 K and an upper critical field of 17 kOe [41]. In 

another study [42], the maximum energy gap value (0.32 meV) as well as the critical 

temperature, (2.2 K) have been derived from the Andreev reflection method. 0.32 meV is close 

to the expected BCS value of 0.35 meV and is in good agreement with that found by Bukowski 

et al. [41]. Candolfi et al. report on electrical resistivity, magnetic susceptibility, and, for the first 

time, heat capacity measurements on a Mo3Sb7 polycrystalline sample [43]. The results suggest 

that Mo3Sb7 could be classified as a coexistent superconductor-spin fluctuation system [43]. It is 

known for long time that spin fluctuations could suppress superconductivity. Many materials in 

low dimensional phases such as thin films and microfibers offer a lot of opportunity for the 

condensed matter researcher to investigate very interesting physical properties such as critical 

current density, magnetoresistance etc. Furthermore, some materials only show 

superconductivity in reduced dimensions. For example, Be can have Tc as high as 10 K in thin 

films [45]. This motivated us to study of Mo3Sb7 in the form of wires, thin films and microfibers. 

Substantially higher superconducting transition temperatures, Tc, and upper critical field, Hc2, 

were observed in Mo3Sb7 wires, thin films and coated C-microfibers. This has been explained as 

a result of the suppression of spin fluctuations in the system in these low dimensional forms.  

Transition metal nitrides are known to have a set of interesting physical properties such 

as low compressibility, high melting point, magnetism, and superconductivity [46-50]. A large 

number of experimental and theoretical works exist which focus on their synthesis and on the 

microscopic understanding of these properties. Of particular interest is the molybdenum nitride 

phase which, at ambient conditions of pressure and temperature, is nitrogen deficient [51].  
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-Mo2N is a known superconductor with Tc ~ 5 K [52]. It is reported that -Mo2N is also 

a superconductor with Tc ~ 5 K [53].  The hexagonal -MoN was crystallized in a slightly 

distorted NiAs type structure under 6 GPa [54, 55], and the resulting phase showed 

superconductivity with Tc ~ 12 K [54]. A theoretical study predicted that N-ordered 

stoichiometric MoN with the cubic NaCl type structure (so called B1-MoN) would have a Tc as 

high as 29 K [56-59]. Since B1-MoN is believed to be a metastable phase, many studies adopted 

thin film deposition techniques, such as magnetron sputter, ion-beam assisted deposition, and ion 

implanting for the synthesis of this phase [60-63, 51, 64, 65]. The B1-MoN films reported in the 

literature, however, have not exhibited such “high Tc.”  

It could be argued that the above prediction of the 29 K-Tc is not realistic for a high-Tc 

transition metal nitride because this class of compounds tends to form with vacancies on the 

nitrogen sub lattice [57]. Although -MoN with its hexagonal structure has been known for some 

time, [55] the quality of the crystals was not sufficiently good to determine the positions of the N 

atoms. Recently, stoichiometric -MoN has been produced with high pressure and high 

temperature annealing [56, 54]. Combined room temperature x-ray and low temperature neutron 

diffraction experiments [54] revealed the positions of the perfectly ordered N atoms. The 

superconducting transition temperature was 12.1 K.  

MoN can be used to form high-hardness, refractory films making it potentially useful for 

micro-electromechanical components, tribological applications, and/or protective coatings [56, 

57]. These in combination with its relatively high transition temperature Tc  13 K provide 

ample motive for further development [52]. The bulk modulus of hexagonal -MoN phase is the 

highest of any known compound material [56, 66]. For the first time, we present the transport 

and critical current measurements on MoN- and Mo3Sb7-coated C-microfibers. 
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Young et al have created a new type of superconducting wire, made from an unusual 

magnesium-carbon-nickel compounds layered around a carbon fiber, that not only carries a high 

electric current without resistance but also is remarkably strong, thin and long [67]. This is the 

research work that motivated me to synthesize Mo3Sb7 and MoN on commercially available 40-

nm thick Mo-coated C- microfibers. 

The discovery of exciting physical properties in the above-mentioned novel intermetallic 

systems persuaded me to explore the superconductivity and magnetic properties of other 

magnesium compounds. Among the reported over 60,000 [68] intermetallic compounds, 

approximately 450 are binary, ternary, and quaternary magnesium compounds. There are only 

three known magnesium carbon compounds, and among them, MgCNi3 is superconducting. 

Many of the magnesium compounds were found to still be uncharacterized. On the course of 

investigation of these known phases of magnesium, I synthesized and characterized several of 

them. The very recent discovery of a new 5-K non-centrosymmetric (without a center of 

inversion symmetry) intermetallic superconductor Mg10Ir19B16 [69] has given me further 

encouragement in this research.  

With the motivation from the review of the literature and the preliminary results of my 

work, I set up the general goal of my thesis to explore and apply efficient techniques in 

identification and characterization of superconducting compounds with elements N, Sb, C, Mg, 

B, Li and Be which are difficult to deal but favor to superconductivity and other interesting 

physical properties.   

This thesis entitled “Investigation of superconductivity and physical properties of  

intermetallic compounds: MoN, Mo3Sb7, MgCNi3 and Transition metal diborides” is organized 

into seven chapters. In this chapter a general introduction of superconductivity, literature review 

and my overall motivation and goals have been given. The detailed justification and procedural 
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steps of the synthesis of single and polycrystalline samples of transition metal diborides, powder 

pressed pellets of MgCNi3 and doped systems and wires, thin films and thin coatings on C-

microfibers of MoN and Mo3Sb7 are presented in Chapter 2. Chapter 3 and 4 provide the 

interesting results of our detailed investigations of the synthesis, structural, electrical and 

magnetic characterization of Mo3Sb7, MoN and MgCNi3 are presented, respectively. The study 

of transition metal diborides is discussed in chapter 5. Then, with the brief presentation of future 

work in chapter 6 the thesis is concluded in chapter 7.  
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CHAPTER  2 

EXPERIMENTAL DETAILS 

2.1 Introduction 

In this chapter, we discuss in brief the methodology (synthesis and characterization 

procedures), and technical details of the instruments used in this work. The synthesis and 

characterization are essential parts of an investigation dealing with intermetallic systems. Several 

new synthesis and characterization techniques have been developed recently for the investigation 

of the physical properties of these materials which depend upon the nature of the sample of 

study. The material synthesis, structural characterization, and the measurement of physical 

properties were performed in material science laboratories in the Department of Physics, 

Chemistry and Geology at Louisiana State University. The details of the equipment set up, 

sample preparation and characterization procedure are discussed in the following sections. 

2.2  Synthesis 

The equipment set up in our laboratories makes a variety of synthesis techniques 

available which are necessary for preparing the materials discussed in this thesis. These 

techniques include: 1) preparation of polycrystalline samples by solid state reaction in high-

temperature tube and box furnaces and by induction and arc melting, 2) synthesis of volatile 

materials in sealed Ta tubes, 3) single crystal growth by chemical vapor transport and metallic 

fluxes, and 4) thin film growth by e-beam vaporization. 

2.2.1 Polycrystalline Samples 

2.2.1.1 Solid State Reaction 

The bulk polycrystalline samples with the starting materials like Mg powder which are 

volatile above 647 C, are prepared in the form of a pressed pellet [1]. Stoichiometric amounts of 

the powders of starting materials are mixed and ground well in an alumina mortar. The mixture 
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is then pressed into pellets of 10 mm diameter under 635 MPa pressure using a stainless steel 

Graseby Specac die and hydraulic press (Figure 2.1).   

 

 

 

 

 

 

 

 

 

 

Fig: 2.1 Tools used for preparation of pellets of materials in powder form. 

 

Fig: 2.2  High temperature tube furnaces used to anneal the samples. 



15 

 

The pellets are then wrapped with Ta foil and put in an alumina (Al2O3) crucible. The 

crucibles are sealed in a quartz tube in vacuum or under Ar atmosphere.  The sealed tube is then 

put in a horizontal tube furnace for sintering. For some samples the crucibles with pellets are 

placed in a long quartz tube and heated in a horizontal tube furnace in a stream of gases like Ar, 

N or NH3. We can set the different sequence of heating treatments as required. In this kind of 

furnace available to our lab we can heat up to 1200
 
C.  

2.2.1.2 Arc and RF Induction Melting 

Polycrystalline samples of nonvolatile materials, especially intermetallics, can be 

prepared by arc and RF induction melting [2]. To arc melt the samples, desired compositions are 

weighed and reacted under flowing ultra high purity argon gas in an arc melter using a tungsten 

electrode and a water-cooled copper hearth. A Zr button was used as an oxygen getter. The 

sample was flipped over and re-melted 3-5 times to ensure homogeneous mixing of the 

constituent elements. The sample chamber is pumped, purged and sealed at least three times 

before melting.  

 

Fig: 2.3 Arc melting chamber and copper hearth. 
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Fig: 2.4 RF induction melting system. 

 If the starting materials are in powder form, the powders are mixed and pressed into 

pellets as explained in previous section. This resulted in the formation of small buttons. The 

sample button is wrapped in Ta foil, sealed in a quartz tube under vacuum, and annealed at 

suitable temperature and time period. RF Induction heating provides reliable, repeatable, non-

contact and energy-efficient heat in a minimal amount of time. The power supply sends 

alternating current through a coil, generating a magnetic field.  When the workpiece (sample) is 

placed in the coil, the magnetic field induces eddy currents in the workpiece, generating precise 

amounts of clean, localized heat without any physical contact between the coil and the 

workpiece.  Induction heating provides fast, controllable temperature ramp, allowing for 

consistent quality results. Both ferrous and non-ferrous alloys can be melted in induction 

furnaces. The sample is placed in a crucible wrapped with a tantalum foil as a susceptor inside 

the induction coil and RF power is supplied. The charge can be melted and then maintained in 
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the liquid state, depending on the application requirements. The operating frequency of our RF 

supply is 0-100 KHz.  

2.2.2 Single Crystals  

A polycrystalline sample of a material that belongs to one of the non cubic crystal 

systems can have significant built-in strain. Single crystals do not exhibit artificial effects due to 

strain or impurities. This is the first reason why access to single crystals is important. Secondly, 

it is necessary to study the anisotropic, or directionally dependent, properties of a material in a 

single crystal. The properties of many crystalline materials depend on the axis along which they 

are measured. For example, some materials are thought to be metallic (conducting) along one 

axis and insulating along another. Crystals can belong to one of several crystal systems, each of 

which is characterized by certain symmetries. There are various ways of single crystals growth. 

The two techniques we have adopted are explained below. 

2.2.2.1 Metallic Flux Growth 

Flux growth is a comparatively simple technique: the crystals are grown out of a solvent 

that reduces the melting point of the desired compound. If we heat the mixture of starting 

materials up to melting point, it turns out that the small amount of the material is dissolved into 

molten metallic flux, which has a relatively low melting point. The melt is then slowly cooled, 

and beautiful single crystals can grow out of the flux, sometimes several mm in length. Single 

crystals of many intermetallic compounds can be grown in a metallic flux [3].  It is a versatile 

technique that allows for the growth of congruently and incongruently melting materials with 

equal ease. The primary requirement for growth is that there be an exposed primary solidification 

surface in the appropriate equilibrium phase diagram. 

For the materials with low melting point, below 1200 C, starting materials in a 

stoichiometric ratio are placed in a small  alumina crucible and filled with metal used as flux, for 
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example antimony or tin. The approximate material-to-flux mass ratio is taken as 1:10 initially. 

The open side of the crucible is closed by quartz wool and then sealed in an evacuated quartz 

ampule. Then the sample undergoes a suitable sequence of heat treatment in a box furnace. The 

quartz tube should be vertical. The temperature sequence is determined by studying the phase 

diagram of the material. The sample is cooled very slowly to just above the melting point of the 

metallic flux. Then very quickly the quartz tube is taken out of furnace, inverted, and spun in a 

centrifuge for 30 seconds keeping it upside down.  The flux drains out of crucible and leaves the 

crystals of the material at the bottom [4]. 

 

Fig: 2.5 High temperature vertical furnaces used for single crystal growth. 

This method is not always feasible to grow single crystals of the materials with very high 

melting points, for example boron and carbon [5]. In that case we melt the material inside a 

bigger vertical tube furnace using molten Al as a flux. A 10 - 50 ml alumina crucible is filled 

with stoichoimetric amounts of starting raw materials and the metal used as flux, with material to 
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flux mass ratio 1:70. The crucible is put inside vertical mullite tube which passes through the 

middle of the vertical furnace. For volatile materials like Mg, the alumina crucible is sealed in a 

Ta crucible of a larger size in an Ar atmosphere in a glove box [3].  Then the sample is heated 

under flowing Ar atmosphere with a suitable heating program. After the sample is cooled to 

room temperature the single crystals are extracted from the solid Al by etching it away with a hot 

solution of NaOH. By this method we can heat different samples using four different crucibles at 

the same time. The surface of the grown crystals is cleaned by etching them in very dilute nitric 

acid. Then the crystals are washed, rinsed with ethanol, and dried.  

2.2.2.2 Chemical Vapor Transport 

Nonvolatile solid substances can be transported through a vapor phase by chemical vapor 

transport (CVT) when the suitable reactive gases are provided in the presence of a temperature 

gradient, such as to transform the solid substances into gaseous compounds via heterogeneous 

chemical reactions and vice versa. The vapor-grown crystals are often perfect enough and good 

enough quality crystals to be used in solid state physics experiments [6]. In our lab single 

crystals are grown by the CVT method using iodine as the transporting agent. A mixture of 

elements is placed in a quartz ampule of length 18 cm and a diameter of 1 cm along with an 

iodine concentration of 10 mg/cm
3
. The ampule is evacuated to around 2x10

-6
 torr, and sealed 

off.  The ampule is placed in a horizontal furnace with small openings on each side. The 

determination of suitable growth duration and the temperature gradient along the source zone 

and growth zone is a key to this method. 

2.2.3 Thin Films and Micro Fibers 

Thin film science and technology play an important role in the high-tech industries. Thin 

film technology has been developed primarily for the integrated circuit industry. The demand for 

development of smaller and smaller devices with higher speed, especially in the next generation 
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of integrated circuits, requires advanced materials and new processing techniques suitable for 

future giga scale integration (GSI) technology. In this regard, the physics and technology of thin 

films can play an important role to achieve this goal. Thus, knowledge and determination of the 

nature, functions and new properties of thin films can be used for the development of new 

technologies for future applications [7, 8].  

 

Fig: 2.6  Experimental set up for thin film growth. 

There are various types of chemical and physical deposition processes of thin films. In 

our lab we do an electron-beam deposition [9]. The material to be deposited is placed on a boat               

(crucible) made of a material with high melting point. Depending on the type of the materials to 

be deposited, a carbon or tantalum boat is used. An electron beam evaporator fires a high-energy 

beam from an electron gun to boil a small spot of material; since the heating is not uniform, 

lower vapor pressure materials can be deposited. The beam is usually bent through an angle of 

270° in order to ensure that the gun filament is not directly exposed to the evaporant flux. 
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Typical deposition rates for electron beam evaporation range from 0.1 to 10 nanometer 

persecond in a 2 micro Torr vacuum. 

 

Fig: 2.7 Mo- coated C fibers produced by  JW Composities LC. 

A carbon fiber is a long, thin strand of material about 0.0002-0.0004 in (0.005-0.010 mm) 

in diameter and composed of carbon atoms.  Carbon fiber-reinforced composite materials are 

used to make aircraft and spacecraft parts, racing car bodies, golf club shafts, bicycle frames, 

fishing rods, automobile springs, sailboat masts, and many other components where light weight 

and high strength are needed. There are various ways of synthesizing the carbon fibers [10].  JW 

Composites has developed a unique technology for incorporating graphite fibers into a copper 

matrix [11].  Graphite fibers are not wetted by many metals including copper.  By providing a 

thin layer of molybdenum metal on the surface of each graphite filament, the coated fibers are 

spontaneously wetted by molten copper.  The molybdenum coating provides a strong bond 
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between the fibers and copper; a bond that is stable even above the melting point of copper!  

Once coated with molybdenum, the graphite fibers have a typical metallic appearance.  

Fibers coated with various metals (nickel, copper, gold, etc.) for use in aerospace, 

defense, electronics, communications and biomedical applications.  David Young et.al have 

found a way to synthesize a layer of MgCNi3 an 8 K superconductor directly onto tiny carbon 

fibers that are five times smaller than a human hair, and the results could lead to advances in 

space travel and transport [12]. MoN and Mo3Sb7 were synthesized in our lab reacting the Mo 

coated carbon fibers with N and Sb, respectively. 

2.3 Characterization 

Sample structure and phase purity analysis will be performed by powder and single 

crystal X-ray diffraction using Cu Kα diffractometer equipped with an incident beam 

monochromator in the Chemistry Department. SEM images and elemental analysis were done 

using JEOL 840A. The physical properties measurements were carried out in Quantum Design 

Physical Property Measurement System (PPMS).  

2.3.1 Structure and Elemental Analysis 

2.3.1.1 X-ray Diffraction 

The X-Ray diffraction method is most useful for qualitative rather than quantitative 

analysis (although it can be used for both) of powders, single crystals and thin films. We can use 

it to identify phases, to measure crystal lattice parameters, residual stress, texture, and crystalline 

size of nanomaterials.  

The X-ray radiation most commonly used is that emitted by copper, whose characteristic 

wavelength for the radiation is  = 1.54056 Å. For powder X-ray diffraction, well grounded 

powder of the samples was placed onto a sample holder of the diffractometer equipped with Cu  

Kα radiation (λ = 1.54056 Å). 
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Fig: 2.8  A Bruker D8 Advance Powder Diffractometer housed at Chemistry department. 

Data were collected from 2 θ = 20
o
 to 80

o
 with a constant scan speed of 2º min

-1 
at room 

temperature. When the incident beam strikes a powder sample, diffraction occurs in every 

possible orientation of 2 . The diffracted beam may be detected by using a moveable detector 

such as a Geiger counter, which is connected to a chart recorder. In normal use, the counter is set 

to scan over a range of 2  values at a constant angular velocity. Routinely, a 2  range of 10 to 

80° is sufficient to cover the most useful part of the powder pattern.  The scanning speed of the 

counter is usually 2° min
-1

 and therefore, about 30 minutes are needed to obtain a trace. In this 

work, XRD measurements were carried out using the Bruker D8 Advance Powder 

Diffractometer housed in the Department of Chemistry at Louisiana State University. To perform 
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the single crystal X-ray diffraction, a small crystal fragment is glued to a glass fiber and mounted 

on the goniometer of a Nonius Kappa CCD diffractometer equipped with Mo Kα radiation (  = 

0.71073 Å). Data were collected at 298 K.  

2.3.1.2    EDX Spectroscopy and SEM Microscopy 

Energy dispersive X-ray spectroscopy (EDS or EDX) is an analytical technique used 

predominantly for the elemental analysis or chemical characterization of a specimen [13]. Being 

a type of spectroscopy, it relies on the investigation of a sample through interactions between 

electromagnetic radiation and matter, analyzing X-rays emitted by the matter in this particular 

case. Its characterization capabilities are due in large part to the fundamental principle that each 

element of the periodic table has a unique atomic structure allowing x-rays that are characteristic 

of an element's atomic structure to be uniquely distinguished from each other. Spectroscopy data 

is often portrayed as a graph plotting x-ray energy vs. count rate. The peaks correspond to 

characteristic elemental emissions. 

 

Fig: 2.9 Spectroscopy data for an elemental analysis. 

There are four primary components of the EDS setup: the beam source; the X-ray 

detector; the pulse processor; and the analyzer. A number of free-standing EDS systems exist. 

However, EDS systems are most commonly found on scanning electron microscopes (SEM). 

http://en.wikipedia.org/wiki/Characterization_%28materials_science%29
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/X-rays
http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Periodic_table
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Scanning_electron_microscope
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Electron microscopes are equipped with a cathode and magnetic lenses to create and focus a 

beam of electrons, and since the 1960s they have been equipped with elemental analysis 

capabilities. A detector is used to convert X-ray energy into voltage signals; this information is 

sent to a pulse processor, which measures the signals and passes them onto an analyzer for data 

display and analysis. The scanning electron microscope (SEM) is a type of electron microscope 

that creates various images by focusing a high energy beam of electrons onto the surface of a 

sample and detecting signals from the interaction of the incident electrons with the sample's 

surface. The SEM also produces images of high resolution, which means that closely spaced 

features can be examined at a high magnification. Preparation of the samples is relatively easy 

since most SEMs only require the sample to be conductive.  

 

Fig: 2.10  JEOL 840A Scanning electron microscope in the geology department at LSU. 

The types of signals gathered in an SEM vary and can include secondary electrons, characteristic 

x-rays, and back-scattered electrons. In an SEM these signals come not only from the primary 

beam impinging upon the sample, but from other interactions within the sample near the surface. 

http://en.wikipedia.org/wiki/Cathode
http://en.wikipedia.org/wiki/Magnetic
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Electron_microscope
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The SEM is capable of producing high-resolution images of a sample surface in its primary use 

mode, secondary electron imaging.  

SEM images of our samples were taken using a JEOL 840A SEM in the SEM and 

Microprobe lab at the Department of Geology and Geophysics. This machine is equipped with 

four detectors (SE, BE, CL, and X-ray). Analog photography of secondary and backscatter 

images is supported by a dedicated CRT and Polaroid camera. A Mac G4 computer with dual 

monitors is used to work with a 4Pi ADC (Spectral Engine II) and multichannel analysis system 

to acquire digital SEM images and EDS spectrum. NIH Image or Evolution of 4pi is used to 

acquire and analyze image data. The sample stage supports 12 mm stub, 32 mm stub, and thin 

section. Sample exchange is rapid and sample throughput potentially quite fast. This instrument 

is very simple and quite robust. 

2.3.2        Physical Properties 

2.3.2.1    Overview of PPMS 

The Physical Property Measurement System (PPMS) provides a flexible, automated 

workstation that can perform a variety of experiments requiring precise thermal control. The 

unique open architecture of our Model 6000 PPMS allows us to use different measurement 

options, such as the AC Measurement System option, AC transport option, and heat capacity 

option. We can also use a breakout box to connect with external instruments to measure transport 

critical current density and the thermoelectric effect. The sample environment controls include 

fields up to ± 9 Tesla and temperature range of 1.8 - 400 K. Temperature is reported with a 

typical accuracy of 0.5%. The slew rate is 0.01  dt  12 K/min. with full sweep capability. The 

PPMS unit operates with a nitrogen- jacketed dewar.  The dewar contains the liquid helium bath 

in which the probe is immersed. The probe‟s intricate design incorporates the basic temperature 

control hardware, the superconducting magnet, the helium-level meter, the gas lines, the sample 
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puck connectors and a variety of electrical connections. The pins from the sample puck 

connector are wired to the pins on the gray-ringed Lemo connector that is on the probe head. The 

state-of-the art technology of the AC Measurement System offers extensive susceptibility and 

magnetization capabilities while retaining a user-friendly environment. The ACMS houses the 

drive and detection coils, thermometer, and electrical connections for the ACMS system. The AC 

drive coil set provides an alternating excitation field, and the detection coil set inductively 

responds to the combined sample moment and excitation field.  The insert fits directly in the 

PPMS sample chamber and contains a sample space that lies within the uniform magnetic field 

region of the host PPMS, so DC field and temperature control can be performed with  

conventional PPMS  methods. The ACMS coils are connected to the PPMS electronics through 

the 12- pin connector located in the base of PPMS sample chamber. The ACMS is both a DC 

magnetometer and an AC susceptometer. 

 

Fig: 2.11  Physical Property Measurement System.  
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2.3.2.2 Resistivity and Hall Coefficient 

The measurement of transport properties such as electrical resistivity, magnetoresistivity, 

and Hall coefficient are performed in the AC transport option of the PPMS MultiVu software.  

 

Fig: 2.12  Liquid He tank and other tools for sample installment inside the PPMS. 

We adopt a standard four-probe technique. Hall coefficient measurements, however, measure the 

sample‟s Hall voltage and therefore require a different configuration. The sample is cut or 

polished into a bar with dimensions of approximately 2 × 1 × 1 mm. The sample is glued on a 

special kind of plastic holder (G10) using VGE varnish. Four pieces of 0.002 inch size platinum 

wire are used to make electric contact to the smooth surface of the sample using a conductive 

epoxy (Epotek H20E). It is placed on a hot plate for several minutes to cure the epoxy. Then the 

wires are connected to the current and voltage points on a PPMS sample puck. The contact 

resistance is checked with a voltmeter. The puck is placed inside the PPMS for the measurement. 
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Fig: 2.13  Single crystal with four current and voltage leads and Samples puck and base for Ac 

transport. 

 

In the active AC transport option, the resistivity control center makes basic system operations 

such as installing samples, selecting or creating data files, measurement sequences, and setting 

up and running immediate mode resistance measurements. With the help of the PPMS MultiVu 

software, the magnitude of excitation current and the sequence of temperature and magnetic field 

variation for the measurement are provided. The resistivity measurements are typically made by 

passing a known current through the sample and measuring the voltage drop across the sample in 

one direction. We can turn on the magnetic field for magnetoresistivity and Hall coefficient 

measurements. 

The resistivity in different directions of applied magnetic field can be measured using a 

rotator. The sample is mounted on a special sample puck which fits on a rotating holder.   

2.3.2.3 Magnetization and Susceptibility 

For magnetization and susceptibility measurements in the PPMS, samples may be 

mounted directly on the ACMS sample holder, a teflon cup or on clear plastic drinking straw. 

The teflon and clear plastic straw adds a negligible magnetic moment. We can also use a 

nonmagnetic material like quartz wool or piece of tape to ensure that the sample will not shift 

within the holder. The sample holder is held within the insert‟s coil set on the end of a thin, rigid 
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sample rod. The purging, evacuating, sealing, centering the sample and measurement can be 

performed in the ACMS option using PPMS MultiVu software. DC magnetization measurements 

measure a sample‟s magnetic moment in an applied magnetic field H at a specific temperature T 

(M= M(H,T)). The sample is moved quickly through both sets of coils, inducing a signal in them 

according to Faraday‟s law and it is analyzed with a digital signal processor (DSP) to determine 

the sample‟s magnetic moment. Magnetic susceptibilty is given by magnetic moment per mole 

per unit field. 

2.3.2.4 Thermoelectric Power 

The Seebeck coefficient (also called the thermopower) is the ratio between the elecric 

field and the temperature gradient (or equivalently, the ratio between the voltage difference and 

temperature difference between the ends of the sample). The sign of the Seeback coefficient 

depends on the sign of the majority charge carriers (whether positive or negative charge builds 

up on the cold end). So measuring the Seebeck coefficient is a way to determine whether the 

charge carriers in a particular material are holes or electrons. Seeback coefficients measurements 

are performed by using a comparative technique with a constantan standard (Sc = 40µV/K). We 

have designed a special board on a PPMS puck where a 1000 ohm resistance heater is thermally 

attached to the plate. The sample and the constantan are approximately of the same dimensions 

and attached to the plate parallel to each other so that the temperature gradient across each is 

equal. When the heater is on, one end of both the constantan and the sample are heated. From the 

temperature gradient ( T) and potential difference ( V) between the ends, the Seeback 

coefficient can be obtained by Ss = Vs/ Ts for the sample and for the constantan (Sc =  

Vc/ Tc).   Since Ts = Tc, Ss = ( Vs/ Vc) Sc .  Temperature dependence of the Seeback 

coefficient can be performed with the help of LabView software by placing the sample puck 

inside the PPMS. The software takes the data for Vs and Ts until the temperature T saturates 
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with time. The Seeback coefficient S, given by the slope of the graph of Vs vs. Ts , at different 

temperatures is recorded.  

2.3.2.5 Critical Current Density 

The critical currents of the samples in the form of microfibers with very large normal 

state resistivity are measured in a four probe geometry using a standard pulsed technique [12]. 

The sample is mounted on a PPMS transport puck as explained in section 2.3.3.2. The current 

and voltage leads were directly bonded to the surface of the fiber with a distance of 3-6 mm 

between them. The puck is then installed into the PPMS sample chamber so that the temperature 

and the magnetic field can be varied as required.  The electrical connection is carried out to the 

critical current measurement system from the probe head of PPMS through the breakout box.   

 

 

Fig: 2.14  Equipments for the measurement of critical current density. 

Below the superconducting transition temperature of the material, currents are driven 

using a pulse duration of 1-2 µs with a duty cycle of 1/1000, and resulting voltages are measured 
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via a boxcar integrator. We need to insure that the pulse width and duty cycle are low enough to 

avoid significant heating at the contacts. Superconductors can support only a finite amount of 

supercurrent. As the current increases, the voltage drop across the sample is monitored. As long 

as the sample remains superconducting, the measured voltage should be zero. When the sample 

becomes resistive, the current through it generates a potential difference across the sample. The 

current at which this occurs in a given superconductor is the critical current. The data for input 

and output voltages are recorded and plotted using LabView software. We can calculate the 

current density using the resistance of the resistor used and the cross sectional area of the sample. 
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CHAPTER    3 

MOLYBDENUM NITRIDES AND ANTIMONIDES IN THE FORM OF WIRES, THIN 

FILMS AND COATINGS ON C-MICROFIBERS 

 

3.1 Introduction 

Transition metal-based superconductors have been a historically important class of 

materials, primarily due the fact that the A15 intermetallics such as Nb3Sn became widely used 

in high magnetic field applications, such as in the windings of superconducting solenoids [1]. 

Though the most extensive research has been carried out on niobium intermetallics, there has 

been a recent renewal in interest in two particular molybdenum-based superconductors. The first 

compound is Mo3Sb7 which has recently been classified as a strong spin fluctuation 

superconductor [8,9]. The second is molybdenum nitride which has attracted much attention as 

superconducting material due to its relatively high Tc (13 K) for an intermetallic. [2]. 

 Mo3Sb7 is the only intermediate line compound in the Mo-Sb system. It decomposes 

peritectically at 780 
o
C into pure components i.e. liquid antimony and solid molybdenum [14]. It 

has the cubic Ir3Ge7-type crystal structure [15, 16]. Bukowski et al. have shown Mo3Sb7 to be a 

type-II superconductor with Tc = 2.08 K [8]. It is believed to be similar to the non-conventional 

superconductor MgCNi3, which also exhibits strong spin fluctuations due to its proximity to a 

ferromagnetic ground state. In both these latter systems, strong spin fluctuations alter the 

superconducting ground state properties in non-trivial ways [10, 11]. Spin fluctuations may 

compete with superconductivity or even lead to an exotic pairing mechanism other than 

conventional s-wave. Up to now, more than 20 of the T3X7-type compounds (T is a transition 

metal, X is p-electron metalloid, mainly In, Ge, Ga, Sn), have been recognized to crystallize in 

this type of structure [17]. However, very little is known on the physical properties of these 

phases. Most of them are metallic, known exceptions are semiconducting Tc3As7 [17] and 
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Nb3Sb2Te5 [18]. Metallic properties [19] and diamagnetism [17, 20, 21] were reported for 

Re3As7. The superconductivity with Tsc = 0.87 K was discovered in Ir3Ge7 by Raub et al. [22]. In 

turn, Chakoumakos et al. studied a single crystal of Ru3Sn7 and reported it as a diamagnetic 

metal, being nonsuperconducting down to 2 K [23].  

 

Fig: 3.1 Temperature dependence of the electrical resistivity for a Mo3Sb7 single crystal. The 

inset shows an enlargement of the data at low temperature, in the vicinity of the superconducting 

transition [8]. 

 

There are a few studies on Mo3Sb7. The detailed crystal structure of Mo3Sb7 has been 

determined by Jensen et al. [24] on single crystals prepared by chemical vapor transport. Hulliger 

reported metallic properties and practically temperature- independent paramagnetism (570 and 

580 x 10
-6

 emu/mol at 80 and 300 K, respectively) for polycrystalline Mo3Sb7 [17]. The 

decomposition pressures of the Mo3Sb7 compound were measured by Mart et al. [25].  
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Fig: 3.2 Magnetization of Mo3Sb7 as a function of temperature at various magnetic fields. 

Numbers denote applied magnetic fields in T [8]. 

 

Molybdenum nitride forms several crystalline nitrides including -Mo2N (cubic), -Mo2N 

(tetragonal), and hexagonal -MoN [6,42]. -Mo2N and -Mo2N are known as superconductors 

with Tc ~ 5 K [30,43]. According to the Mo-N phase diagram only the hexagonal -MoN exists 

at the stoichiometric composition [6]. MoN with B1-type structure has been predicted to have a 

higher superconducting transition temperature (Tc) than NbN [44,41]. B1-MoN does not appear 

in the equilibrium phase diagram of the Mo-N system [47]. This and the high density of 

antibonding states make it difficult to synthesize a perfect crystal of B1-MoN. Recently some 

workers have succeeded in preparing B1-MoN films by sputter-deposition techniques [36,45,48]. 
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The observed onset Tc, 12.5 K, however, is not as high as the theoretical prediction [36,44]. This 

has been explained by the occurrence of nitrogen vacancies and nitrogen defects at the interstitial 

sites [45].   

Bukowski et al. have reported on electrical resistivity and magnetization measurements 

of single crystals of Mo3Sb7, grown via a peritectical reaction between Mo metal and liquid Sb 

[8]. The summary of the experimental procedure is as follows. Approximately 10 g of Sb (purity 

99.99%) was placed in a thick-wall molybdenum crucible and sealed under an Ar atmosphere. 

The crucible was heated in a vacuum furnace to 1000 
o
C and slowly cooled (3 

o
C/h) to 700 

o
C 

which was followed by furnace cooling to room temperature. Then the crucible was opened and 

transferred to a silica glass tube and an excess of Sb was removed by means of sublimation in 

vacuum at 620 
o
C. The single crystal has the cubic Ir3Ge7 structure (space group Im–3m) with 

lattice parameter a = 9.582 Å, which is slightly higher than a = 9:5713 Å, reported in Ref. [24].  

Recently, Candolfi et al. have reported on electrical resistivity, magnetization and heat 

capacity measurements on a Mo3Sb7 polycrystalline sample [9]. The compound was prepared via 

a metallurgical route. Stoichiometric amounts of Sb shot and Mo powders were loaded into a 

quartz ampoule which was heated up to 750 
o
C and left at this temperature for 10 days. The 

product was then powdered and finally densified by hot pressing at 600 
o
C for 2 h under 51 MPa 

pressure using graphite dies.   

The onset superconducting transition temperature Tc = 2.2 K, the residual resistivity 0 = 

95 μΩ-cm and the debye temperature D = 162 K were obtained by Bukowski et al. [8].  The Tc 

is comparable to the value, 2.3 K, obtained from the sharp specific-heat discontinuity C, as 

shown in Figure 3.3(b) [9]. It must be noted that, surprisingly, the temperature dependence of the 

resitivity reported by Bukowski et al on a Mo3Sb7 single crystal [8] (Figure 3.1) is different from 

that reported by Candolfi et al on the Mo3Sb7 polycrystalline sample (Figure 3.3(a)) [ 9]. It is 
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interesting to note that the normal state resistivity is relatively high ( 0 = 95 μΩ-cm, 300/ 0 = 

1.4) for the single crystal. The high 0 reflects the presence in this compound a rather strong 

electron-phonon coupling [8]. The onset superconducting transition temperature Tc = 2.2 K from 

the magnetization measurement in an applied magnetic field of 15 Oe agrees well with that 

determined from the resistivity data in 0 T [8] [Figure 3.2]. 

 

Fig: 3.3  (a) Electrical resistivity as a function of the temperature. Inset: parabolic dependence of 

the electrical resistivity at low temperature. (b). Temperature dependence of the specific heat Cp 

of Mo3Sb7 at low temperature highlighting the specific heat jump at the transition temperature. 

Inset: temperature dependence of the specific heat up to 300 K [9]. 

 

At room temperature Mo3Sb7 is paramagnetic with M = 240 x 10
-6

 emu/mol [8]. 

Surprisingly this value is about two times lower than that reported by Hulliger [17] and Candolfi 

et al. [9] for the polycrystalline sample. The magnetic susceptibility measurement performed in a 

relatively high magnetic field (B = 1 T) shows a constant behavior above 50 K suggesting that 

this compound is a Pauli paramagnet [8]. The upper (Bc2) and lower (Bc1) critical fields were 

roughly estimated to be 0.6 T and 1 mT, respectively [8].  

The value of Bc2(0) was estimated by Bukowski et al. [8] using a simple empirical formula:  

Bc2(T) = Bc2(0) (1-(T/Tc)
2
) ………………………………….…(1)   
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Their value of Hc2(0) is 1.7 T, which is in close agreement with the result from the Andreev 

reflection measurement by Dmitriev et al. [26]. The maximum energy gap (0)  0.32 meV, 

which is slightly smaller than that expected from BCS theory, 
BCS

(0)  0.35 meV was reported 

by Dmitriev et al. [26]. The smaller experimental gap value may be attributed to the magnetic 

character of this material, where a destructive role of the spin-flip processes still cannot be 

disregarded entirely. 

 

Fig: 3.4  The upper critical field Bc2 of Mo3Sb7 vs. temperature. The solid line is the best fit to 

Eq. (1) [8]. 

Candolfi et al. have reported Mo3Sb7 is also a spin fluctuation system on the basis of the 

results of the electrical resistivity, specific heat capacity and susceptibility measurements [9]. 

According to the literature, the first strong evidence is the typical quadratic temperature 

dependence of the electrical resistivity, , at low temperature (T  50 K), associated with both a 

large value and  saturation in going up to room temperature (Figure 3.3a).   
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Fig: 3.5  Magnetic susceptibility as a function of the temperature in Mo3Sb7. The arrow indicates 

the position of the maximum. Inset: low field magnetization curves for the two extreme 

temperatures investigated (5 and 300 K)[9]. 

Second is the temperature dependence of the magnetic susceptibility (Figure 3.5). The 

susceptibility displays a parabolic dependence at low temperature, then increases with 

temperature, and at higher temperature becomes maximum around 180 K. Above this 

temperature it obeys Curie-Weiss law. The parabolic dependence, which was also noticed in the 

UAl2 compound [27], is consistent with the theoretical prediction made by Beal-Monod et al. 

[28] on a spin fluctuation contribution to the temperature dependence of the magnetic 

susceptibility. The third evidence for Mo3Sb7 to be considered as a spin fluctuator is the fair 

agreement of the ratio A/
2

n ~0.55 x 10
-5

 μΩ-cm(K-mol/mJ)
2
 of this system with the Kadowaski-

Woods relation A/
2
n ~1.55 x 10

-5
 μΩ-cm(K-mol/mJ)

2
 , which can be explained in terms of the 

spin fluctuation theory [29]. The most encouraging part of this literature [9] is that the transition 

temperature obtained by the McMillan relation without spin fluctuation rescaling is substantially 

higher, i.e., Tc ~ 8.7 K -11 K. The density of states at the Fermi level is reported to be high due to 
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the contribution of the Mo d-states, leading this material to the border of magnetic ordering [9, 

38]. 

 

Fig: 3.6  Electrical resistance vs. temperature for the starting material, and pressure-annealed 

MoN  films at various temperatures [7].  

 

-MoN crystallizes in a hexagonal structure [3] (space group number 186) and the lattice 

parameters reported are a = 5.73 and  c = 5.60 Å. The unit cell contains 8 formula units of MoN. 

Sahu et al. have performed LDA and GGA electronic structure calculations on the N ordered 

phase of -MoN [33-35]. Linker et al. have shown that a highly disordered phase (MoNx with x 

= 0.20) with a Tc of 9.2 K was produced by ion implanatation of nitrogen into molybdenum [39]. 

For x > 0.20 a phase transformation to a FCC phase was observed. Later, Linker showed that the 

lattice parameter of the FCC phase revealed a linear increase as a function of N concentration up 

to a value of x = 0.5 [40].  Moreover, Linker et al., in view of the above predictions for Tc, have 

fabricated nominally stoichiometric but not highly ordered MoN in the NaCl structure (B1 

structure) to see if more nitrogen could be incorporated into the FCC phase by non-equilibrium 
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techniques, so that the stoichiometric B1 phase could finally be obtained. The reactive sputtering 

of the 150-400-nm thick films was carried out in a RF system, and then implantation of nitrogen 

was performed into Mo films using multiple ion energies. The superconducting transition 

temperature is only about 3 K, in contrast to expectations raised by theoretical and empirical 

predictions [36, 44].  The resistivity values of MoN are considerably larger than those of other 

refractory superconductors also prepared by sputtering.  

Ihara et al. attempted to stabilize the nonequilibrium B1-phase MoN and fill the N 

vacancies by interstitial N atoms by high-pressure annealing, because the density of the B1-MoN 

is larger than that of the equilibrium hexagonal MoN [7, 41].  They prepared B1-MoN films by 

sputtering, and annealed under a pressure of 6 GPa at a temperature between 600 and 1100 
o
C for 

8 h. The B1 phase MoN is converted mainly to the hexagonal-phase and partly to tetragonal-

phase Mo2N when annealed at temperature above 750 
o
C. A residual phase was observed only at 

an annealing temperature of 600 
o
C. The onset Tc of the 1000 

o
C-annealed films was 14.9 K. 

This is the maximum value found in the literature for the Mo-N system [7]. Though they could 

reveal the existence of the pure hexagonal-phase MoN with high Tc, high pressure larger than 6 

GPa was needed to obtain the nonequilibrium B1 phase MoN. Saur et al. prepared MoN in the 

form of wires by heating the Mo wires of 0.5 mm at temperatures between 750 and 950 
o
C in a 

stream of ammonia gas under atmospheric pressure [37]. The highest transition temperature of 

about 12.95 K was obtained by a heat treatment at 800 
o
C for 232 hr.     

To the best of my knowledge, there are no reports on the study of Mo3Sb7 synthesized in 

the form of wires, films and microfibers, and there are no reports on magnetotransport properties 

of MoN. This chapter reports on the synthesis and characterization of Mo3Sb7 and MoN wires, 

films and coatings on carbon microfibers.  This is first report on the transport critical current 

measurements of annular MoN and Mo3Sb7 fibers as a function of temperature.  
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3.2 Synthesis 

1 gram of bulk polycrystalline Mo3Sb7 was synthesized by RF melting with nominal 

formula Mo3Sb7.5. The powders of Molybdenum (99.95 % Alfa Aesar) and Antimony shot 

(99.9999 % Alfa Aesar) were thoroughly mixed and ground well for 10-15 minutes. Then the 

powder was pressed into a pellet of 10 mm in diameter. The pellet was put into an Al2O3 crucible 

wrapped by a thick foil of tantalum from the outside. The crucible with the sample was then 

placed inside an induction coil and RF power was supplied. The operating frequency was 

increased slowly until sufficient heat was produced to melt the pellet. The process was carried 

out in a stream of high purity Ar.        

Hard and 99.8% pure metallic Molybdenum wires of 0.013 mm and 0.07 mm in diameter 

were obtained through Alfa Aesar from the Johnson Matthey Company.  During the production 

of these wires, a very small percent of W, Cr and Si can become impurities. Similarly the 

commercial fibers consisting of a 6-micron diameter carbon core, which are coated a 40 nm thick 

film of molybdenum metal, were obtained from JW Composites, LC [13].  To synthesize Mo3Sb7 

samples a few centimeter long pieces of the wires and the fibers were placed in a small alumina 

(Al2O3) crucible. The crucible with a small amount of Sb shot (99.999% Alfa Aesar) was sealed 

in an evacuated quartz tube and heated at temperatures between 800 C and 1030 C for different 

time periods. The entire tube was quenched-cooled to room temperature. To optimize the 

superconducting properties, the synthesis of samples was carried out many times with different 

amounts of Sb at different temperatures, and for different time periods.  

MoN wires and coatings were prepared by reacting the Mo wires and Mo-coated carbon 

fibers in a 1 ATM stream of ammonia gas (NH3) at 800 C – 1030 C for different times. 

Exposures at 900 C for 1h and 30 min resulted in the samples with the best superconducting 

properties. To compare the structure and properties before and after the reaction, the wires and 
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the fibers as obtained from the manufacture, were annealed at 900 C for 1 hour and 30 minutes 

without Sb. 

In addition, we formed planar films of each compound first by evaporating 60-nm films 

of Mo onto sapphire substrates via e-beam vacuum deposition of arc-melted molybdenum 

buttons (99.999 % Alfa Aesar). Typical deposition rates were  0.1 nm/s in a 2 µTorr vacuum. 

The resulting Mo films were then exposed to either ammonia gas or Sb vapor as per the recipes 

used to form the fiber coatings. Because the planar film synthesis did not involve carbon, it 

provided us with control samples from which we could determine the effects of possible carbon 

contamination from the fiber cores. The planar geometry, however, is not particularly suitable for 

critical current measurements.  

3.3 Characterization 

The reacted thin wires and coated carbon microfibers of MoN and Mo3Sb7 were 

examined with a scanning electron microscope (SEM) and their chemical composition were 

determined using EDX analysis by JEOL 840A Scanning electron microscope.   

A bunch of approximately 4-cm long pieces of wire and the fibers were heated with Sb and in a 

stream of NH3 at a suitable temperature and time period to get the sufficient amount of powder 

of Mo3Sb7 and MoN respectively for X-ray diffraction.  Well grounded powder of each sample 

was placed onto a sample holder of a powder X-ray diffractometer equipped with Cu Kα 

radiation (λ = 1.54056 Å). Data were collected from 2 θ = 20
o
 to 80

o
 with a constant scan speed 

of 2º min
-1 

at room temperature. The phase purity of Mo3Sb7 and MoN thin films were also 

verified by powder XRD.  

To measure the transport properties of the samples the contacts were made with two mil 

platinum wires by applying Epotek conductive epoxy or silver paint directly on to the wires, 

fibers and thin films. The electric resistance and magnetoreisatance measurements were 
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performed by the standard four-probe ac technique at 27 HZ with an excitation current of 3 mA 

for the wire and 0.01 mA for fibers and thin films. Critical currents of 3 - 5 mm long fibers were 

measured in the 4-probe geometry using a standard pulsed technique. Superconductors can 

support only a finite amount of supercurrent. As the current increases, the voltage drop across the 

sample was monitored. The current at which the sudden potential drop occurs in a given 

superconductor is the critical current. Currents were driven using pulse durations of 1-2 μs with a 

duty cycle of 1/1000, and the resulting voltages were measured via a boxcar integrator. The data 

for input and output voltages were recorded and plotted using LabView software.  Care was 

taken to ensure that the pulse width and duty cycle were low enough to avoid significant Joule 

heating at the contacts. The current density was calculated using the resistance of the resistor 

used and the cross sectional area of the sample. The samples were cooled by the vapor down to 

1.8 K in magnetic fields up to 9 T via a Quantum Design PPMS. 

The temperature dependence of the magnetic susceptibility of Mo3Sb7 wires of 70 μm in 

diameter were measured at magnetic fields of 20 Oe and 1T. A bunch of pieces of Mo3Sb7 wires 

was packed in a plastic capsule and attached to the ACMS sample holder of the PPMS.  

3.4 Results and Discussions 

3.4.1 Polycrystalline Mo3Sb7 

The low temperature electrical resistivity of the RF melted polycrystalline sample of 

Mo3Sb7 is shown in Figure 3.7. The superconducting transition temperature, Tc, (midpoint) is 

2.35 K, which is comparable to the value reported for the single crystal and polycrystalline 

sample of Mo3Sb7 [8, 9].  The Tc obtained from lower temperature dependence of magnetic 

susceptibility of the sample at a magnetic field of 20 Oe is consistent with the 2.35 K. The 

powder sample of Mo3Sb7, prepared by solid state reaction, also shows the superconducting 

transition around the same temperature. 
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Fig : 3.7  Superconducting transition of a RF melted polycrystalline sample of Mo3Sb7. The solid 

line is a guide to the eye. 

 

 

3.4.2    Mo3Sb7 and MoN Wires 

Scanning electron microscopy of un-reacted and reacted wires showed an obvious change 

in the Mo wires due to the reaction with either Sb or N. The cross-sectional area of the Mo3Sb7 

wire increased by approximately four times due to the  reaction, while that of MoN did not 

change substantially. Figures 3.8 and 3.9 show the cross-sectional view of bare Mo and Mo3Sb7 

wires of 70 μm in diameter respectively. As shown in Figure 3.9 for the Mo3Sb7 wire of 70 μm in 

diameter, the reaction is not throughout the wire. We can see clearly a portion of un-reacted Mo  

in the core of the wire obtained by the heat treatment at 900 
o
C for 1 h in Sb vapor.  
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Fig: 3.8   Scanning electron micrograph of a Mo wire of 70 μm in diameter. 

 

The EDX analysis of the wire revealed the chemical composition of Mo3Sb7 in the reacted 

portion of the wire, while in the middle portion there is only Mo. The powder X-ray diffraction 

obtained from the powder of Mo3Sb7 wires has revealed the presence of the cubic phase with the 

Ir3Ge7 structure type.  A few impurity peaks, which correspond to the un-reacted Mo, were also 

observed.  XRD of powdered MoN wires verified the crystallization in the  hexagonal -MoN 

phase.  
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Fig: 3.9 Scanning electron micrograph of Mo3Sb7 of  wire of 70 μm in diameter showing a cross-

sectional view. 

 

 

The temperature dependence of electrical resistivity of Mo and Mo3Sb7 wires of 70 μm in 

diameter is shown in Figure 3.10. The Mo3Sb7 sample was prepared by heating Mo wire with a 

lot of Sb at 900 
o
C for 1 hour, which was followed by slow cooling down to room temperature. 

As shown in the inset of Figure 3.10, the superconducting transition temperature, Tc, is 2.1 K 

which is in good agreement with the values reported for single crystal and polycrystalline bulk 

samples [8,9]. The shape and the magnitude of the normal state resistivity of Mo3Sb7 are very 

much different from that of Mo wire.  
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Fig: 3.10 Temperature dependence of the resistivity of  Mo and Mo3Sb7 wires of 70 μm in 

diameter. Inset: Superconducting transition in the resistivity vs. temperature plot of Mo3Sb7.  

 

Surprisingly, we found the transition temperature, Tc, of the Mo3Sb7 thin wire, which is 13 μm in 

diameter, is almost a factor of four higher than the Tc = 2.1 K for the Mo3Sb7 wire of 70 μm in 

diameter, presented earlier. The cross-sectional view of the SEM  picture of the Mo3Sb7 thin wire 

is shown in Figure 3.11.  Figure 3.12 shows the superconducting transition of the Mo3Sb7 thin 

wire. The transition temperature Tc is about 8.05 K with a transition width ( Tc) of ~ 0.1 K. The 

Tc is substantially higher than that reported for single crystal and polycrystalline samples of 

Mo3Sb7 synthesized in various forms [8, 9, 24].   To optimize the physical properties of the 

material the synthesis and characterization of these Mo3Sb7 wires were performed several times. 

The heat treatment at 900
o
C for 1 hour and 20 minutes is found to be the best synthesis route. 
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Fig: 3.11  Scanning electron micrograph of a Mo3Sb7 wire of 13 μm diameter showing a cross-

sectional view. The reaction does not occur throughout the wire.  

 

 

It can be seen that the shape of the (T) curve for the thin wire (onset in Figure 3.12) is 

similar to that for thick wire as depicted in Figure 3.10. One can observe an upward curvature of 

(T) at low temperature followed by a downward one for high temperature. It looks similar to 

that of conventional metals and different from the simply linear-T dependence observed in 

copper oxide superconductors. A similar shape has been observed in MgCNi3 in which (T) fits 

well to the curve predicted by Bloch-Gruneisen theory consistent with the electron-phonon 

scattering [31].  
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Fig: 3.12 Low temperature resistivity of Mo3Sb7 wire of 13 μm in diameter. Resistivity is 

normalized by its normal state value. Inset: Resistivity vs. temperature plot over the temperature 

range from 7 K to 290 K. Solid lines are a guide to the eye. 

 

 

However, the magnitude of the resistivity ( 290 K = 751 μΩ-cm and 10 K = 506 μΩ-cm) observed 

for Mo3Sb7 thin wire is much higher than that reported by Bukoswski et al. and Candolfi et al. 

[8, 9]. These values are approximately 100 times higher than that obtained for the Mo3Sb7 thick 

wire, which shows the lower transition.  On the other hand, the residual resistivity ratio [RRR = 

(290 K) / (10 K)] of the thick wire is 7.4, which is substantially bigger than the one for thin wire 

(1.4). The cross-sectional view in a SEM micrograph of MoN wire of 70 μm in diameter in 

Figure 3.13 clearly shows the reaction of N with Mo. Unlike in Mo3Sb7 wire, the expansion in 

the MoN wire due to the reaction is not observed. Shown in Figure 3.14, is the temperature 

dependence of the electrical resistivity of MoN in the form of thin wire of 13 μm in diameter.  
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Fig: 3.13  Scanning electron micrograph of a MoN wire of 70 μm in diameter showing a cross-

sectional view.  
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Fig: 3.14  Temperature dependence of resistivity of  MoN wire (13 μm dia.). Inset:  Resistive 

transition of  the MoN wire. 
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The shape of the (T) curve of the MoN thin wire is different from that of the Mo3Sb7 thin wire. 

Its residual ratio (RRR) is 10, which indicates the complete reaction of N with Mo in the wire. 
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Fig: 3.15  Magnetic field dependence of  resistivity of  Mo3Sb7 wire (13 μm dia.)  at 2 , 4, 5, 6 

and  7 K (from right to left). The resistivities are normalized by their normal state values. The 

solid lines are a guide to the eye. 

 

To the best of my knowledge, there is no report on the measurement of the resistivity of 

MoN in the form of a wire as a function of temperature in the range of 1.9 to 290 K. The lower 

temperature resistivity measured at zero magnetic field for the MoN thin wire is shown in the 

inset of Figure 3.14. The sharp superconducting transition at 13.2 K with a small transition width 

Tc ~ 0.3 K can be observed. This value is higher than the Tc ~ 12.95 K, reported for the  

MoN wire by Saur et al. [37]. They obtained the highest transition temperatures of about 12.95 K 

(midpoint) by the heat treatment at 800 
o
C for 232 hrs. In my experiment, the highest transition 

temperature of about 13.2 K (midpoint) was obtained by the heat treatment at 900 
o
C for 5 hrs.    
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Fig: 3.16  Upper critical field Hc2 as a function of temperature for  Mo3Sb7 wire (13 μm dia.).  

The solid line is the fit to equation (2).  

 

 

The upper critical field Hc2(0) of Mo3Sb7 and MoN thin wires were determined from the 

resistivity (ρ) data at various temperatures. The magnetic field was applied along the wire axis. 

Figure 3.15 presents the magnetic field dependence of resistivity at 2, 4, 5, 6, and 7 K for 

Mo3Sb7. The transition width ( H) is fairly small, indicating a sharp transition. Critical field , 

Hc2,  is defined as the midpoint of the transitions. The error bar is  0.2 T. In Figure 3.16 the 

upper critical field of Mo3Sb7 is plotted as a function of reduced temperature. The temperature 

dependence of the upper critical field Hc2(T) is defined by a simple empirical formula: 

Hc2(T) = Hc2(0) (1-T/Tc)            ………………………………….…(3.2) 



55 

 

 

8

6

4

2

0

R
e

s
is

ti
v
it
y
 (

c
m

)

86420

Magnetic field (T)

  2K

  5K

  7K

  9K

 10K

  11K

  12K

  20K

 

Fig: 3.17  Magnetic field dependence of  resistivity of  MoN wire (13 μm dia.) at 2, 5, 7, 9, 10, 

11, 12, and 20 K.  The solid lines are a guide to the eye. 

 

Hc2(0) is the upper critical field extrapolated to 0 K and Tc is the superconducting transition 

temperature in zero applied magnetic field. The solid line in Figure 3.16 represents the best fit of 

the experimental data to equation (3.2) for Mo3Sb7. The extrapolation yielded Hc2(0) = 11.3 T.  

This corresponds to a superconducting coherence length (0) = 54 Å, estimated using the 

Ginzberg Landau formula for an isotropic three dimensional superconductor Hc2(0) = 

0/2 (0)
2
,  where 0 = 2.0678 x 10

9
 Oe Å

2
  is a flux quantum. The upper critical field of the 

single crystal of Mo3Sb7 is 1.7 T [8, 26]. Not only is the critical field of the Mo3Sb7 wire 

significantly higher than that of the single crystal, but the reduced critical field Hc2/Tc ~ 1.4 T/K 

is also significantly higher than the 0.55 T/K of the single crystal. Indeed, the former is near the 

Clogston limit [12]. 
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Fig: 3.18  Upper critical field Hc2 as a function of temperature for  MoN wire (13 μm dia.). The 

solid line is the fit to equation (3.2). 

 

 

Resistivity of MoN thin wire was measured at the temperatures 2, 5, 7, 9, 10, 11, 12, and 

20 K with varying magnetic field. It can be seen that this sample has a 15 % magnetoresistance 

[( 9T- 0)/ 0]. The midpoint values of the magnetoresistive transitions vs. magnetic field were 

plotted in Figure 20 as a function of reduced temperature. The data were fitted to equation 3.2, 

and extrapolated to zero temperature, which yielded an upper-critical field Hc2(0) = 5 T. To the 

best of my knowledge, this is the first report on the magnetic field dependence of the resistivity 

for this system. It is to note that this value is pretty low in comparison to the value of Hc2(0) for 

the Mo3Sb7 thin wire. 
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3.4.3 Mo3Sb7 and MoN Thin Films 

Results of powder X-ray diffraction confirm the growth of Mo, Mo3Sb7, and MoN thin films 

with the absence of any impurities. The molybdenum films were grown on sapphire via e-beam 

deposition of Mo buttons held in tungsten boats, thus there was no carbon involved in the 

process.  

35

30

25

20

15

10

5

0

c
m

)

300250200150100500

Temperature (K)

400

300

200

100

0

c
m

)

 Mo

 Mo3Sb7

 MoN

    

Fig: 3.19  Temperature dependence of  resistivity of  60-nm thick  film of Mo3Sb7 and MoN (left 

axis) and Mo (right axis).  The solid lines are a  guide to the eye. 

 

 

The best samples in terms of the phase purity and the value of Tc  were obtained by 

exposing 60-nm thick Mo films to (a) antimony vapor at 900 
o
C for 30  minutes for Mo3Sb7 and 

(b)  a stream of  NH3 at 900 
o
C for 5 hrs. The MoN film was formed in hexagonal -MoN phase.  
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Shown in Figure 3.19 is the temperature dependence of the resistivity of the thin films of Mo, 

MoN and Mo3Sb7. The shape of (T) curve is similar to that of wires of respective materials. The 

normal state resistivity decreased by an order of magnitude when the Mo reacted to form Mo3Sb7 

and MoN in thin films. MoN film is observed to be more ordered than Mo3Sb7.   The residual 

resistivity ratios (RRR) are 1.5 and 1.7 for Mo3Sb7 and MoN, respectively. Sharp 

superconducting transitions are observed in thin films of MoN and Mo3Sb7.  
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Fig: 3.20  Low temperature resistivity normalized by its normal state value  of  60-nm thick films 

of Mo3Sb7 and MoN. The solid lines are a  guide to the eye.  

 

The low temperature resistivity data for MoN and Mo3Sb7 thin films are shown in Figure 3.20. 

The resistivity is normalized by its normal state value. The Tc from the midpoint of the transition 

for Mo3Sb7 is 8.2 K with the transition width Tc ~ 0.4 K. This value is close to the value 

obtained for the thin wire. The transition temperature Tc (midpoint) of the MoN thin film is 12.3 
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K with Tc ~ 0.2 K , which is consistent with that of MoN thin wire and the values reported for 

-MoN in literature [5,7,36,2,46].  
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Fig: 3.21  Magnetic field dependence of  resistivity of  a 60-nm thick film of Mo3Sb7 at 2, 2.5, 3, 

5, 5.5, 6, 6.2, 6.5, 7, and 7.2 K. The resistivity is normalized by its  normal state value. 

 

Figures 3.21 and 3.22 present the magnetic field dependence of the resistivity of the 

Mo3Sb7 and MoN  thin films  at various temperatures. The resistivity is normalized by its value 

at 9 T. It can be seen that for both samples the transition width ( H) decreases with increase in 

temperature. The H-T phase diagram of each compound was derived from the upper-critical field 

Hc2 obtained from the midpoints of the transitions in the R(H) data at various temperatures in 

Figures 3.21 and 3.22 with error bar  0.4 T. The data thus obtained was fit to equation (2) as 

shown in Figure 3.23 and 3.24 (solid lines). The extrapolation of the fit lines produces the Hc2(0) 

= 9.6  and 10 T for Mo3Sb7 and MoN thin films, respectively. These values of Hc2(0)  correspond 

to coherence lengths  (0) = 58.5 and 57 Å for Mo3Sb7 and MoN, respectively.    
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The upper critical field Hc2(0) of the thin film is approximately 2 T less than the value obtained 

for the Mo3Sb7 thin wire. The decrease of Hc2 can be explained in terms of the Hc2 dependence 

on the effective coherence length ( ):  Hc2  0/
2
, where 0 is a flux quantum.  
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Fig: 3.22  Magnetic field dependence of  resistivity of  a 60-nm thick film of MoN at  3, 7, 8, 9, 

10, and 20 K. The resistivity is normalized by its  normal state value. Solid lines are a guide to 

the eye. 

 

For dirty superconductors the effective coherence length is defined as 1/  = 1/ 0 + 1/l, 

where 0 is the Pippard coherence length and l is the mean free path [32]. We know l varies with 

residual resistivity 0 through l = 2mVF/(ne
2

0), for the sample used in [31], where n is the 

carrier density  and VF is the Fermi velocity. The thin film is more ordered with the normal state 

resistivity 0 approximately 100 times lower than that of the thin wire, which leads to the 

elongation of the mean free path l. On the other hand, 0 is related to the critical temperature: 0 

= a(h/2 )v0/kTc, where a is a constant and v0 is the velocity at the Fermi level [32]. It did not 
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shorten 0 simultaneously by increasing Tc in the same proportion. In this situation one can 

expect the lower value of Hc2 in this sample. 

 

 

Fig: 3.23  Upper critical field Hc2 as a function of temperature for a 60-nm thick  film of Mo3Sb7. 

The solid line is a fit to equation (3.2). 

 

 

Upper critical field Hc2(0) of the MoN thin film is approximately double of that of the MoN thin 

wire reported earlier. To my knowledge, there are no any other reports on magneto-trnasport 

measurements of MoN in any phase.  
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Fig: 3.24  Upper critical field Hc2 as a function of temperature for 60-nm thick  film of MoN. The 

solid line is a fit to equation (3.2). 

 

 

The magnetoresistance (MR) which is defined by [(ρ(H) − ρ(0))/ρ(0)], versus applied 

magnetic field at 20 K and 290 K for the thin film of Mo3Sb7 is shown in Figure 3.25a. At both 

temperatures, the magnetoresistance increases with the applied field. At 20 K the 

magnetoresistance at 9 T is large (∼61%) and shows no tendency toward saturation. The study of 

dependence of MR with the variation of thickness of the films will be interesting. The MR of 

MoN thin films is found very small. 
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Fig: 3.25a  Dependence of magnetoresistance (MR) of the Mo3Sb7 60-nm thick film on magnetic 

field at 20 and 290 K.  

 

The Hall voltage data for the Mo3Sb7 thin film at 10 K is shown in Figure 3.25b. Note that the 

field dependence of the Hall voltage is not linear over the entire range of magnetic field. It has a 

different slope at different segments of the field range. The data and fit to the linear equation H 

= RHB for the lower field regime are shown in the lower right corner, and for the higher filed 

regime the at upper left corner in the inset of Figure 3.25. At low field, RH = 4.673 x 10
-10

 m
3
/C, 

and the calculated carrier density is 1.33 x 10
22

/cm
3
, while at higher field, RH = 9.617 x 10

-10
 

m
3
/C and the carrier density is 6.4 x 10

21
/cm

3
. The main feature of the Hall effect is the positive 

RH. It definitely indicates that the carrier is hole type, which is strongly supported by the positive 

thermoelectrical power S = 8 μV/K, observed at the room temperature in the wire. The behavior 

of H and the decrease in carrier density with field remains an open question.   
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Fig: 3.25b  Hall voltage vs. magnetic field data of a 60-nm thick film of Mo3Sb7 measured at 

10K. Inset: upper left is H(H) at high field and lower right is H(H) at low field. The solid lines 

are fits to the linear equation H = RHB.   

 

 

On other hand, the negative slope of the H(B) curve of the MoN thin film indicates  the electron 

type carrier. This is supported by the negative value of the thermoelectric coefficient S = -5.1 

μV/K measured at room temperature for the MoN wire.  The data were more scattered, so that 

they are not presented here. 

3.4.4 Mo3Sb7 and MoN Coatings on C Microfibers 

The scanning electron micrograph of Mo3Sb7 and MoN coated C microfibers are shown 

in Figures 3.26 and 3.27. Since the coating is very thin (40- 160 nm), the SEM pictures of 

Mo3Sb7 coated fiber [Figure 3.27(a)] and that of MoN coated fiber [Figure 3.27(b)] look similar.   
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Fig: 3.26   Scanning electron micrograph of Mo3Sb7 coated carbon fibers.  

 

The result of the XRD of ground fibers verified the formation of Mo3Sb7 with a lot of un 

reacted carbon as expectation. From the observation of the expansion in the Mo3Sb7 wire due to 

the reaction of Mo with Sb, one can consider the similar result in case of the Mo3Sb7 coating in 

the fiber. Shown in Figure 3.28 is the temperature dependence of the resistivity of a pristine Mo-

coated fiber, Mo3Sb7-coated fiber and a MoN-coated fiber.  The shape of the (T) curves of all 

three compounds is different, but they are similar to that of their respective films. The residual 

resistivity ratios 290K/ 10K are 1.49 and 1.8 which are consistent with those of the thin films.   
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Fig: 3.27  Scanning electron micrograph of (a) Mo3Sb7 (left) and (b) MoN (right) coated carbon 

fibers showing the cross-sectional view. 
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Fig: 3.28  Temperature dependence of resistivity of  C fibers coated with Mo and MoN (right),  

and Mo3Sb7 (left). The solid lines are a guide to the eye. 
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Note that each of these fibers underwent a superconducting transition at a temperature well 

above 1 K. The transition temperatures are Tc = 3.7 K, 7.8 K and 12.9 K for the Mo, Mo3Sb7 and 

MoN coated fibers, respectively. The relatively high transition temperature of the pristine Mo-

coated fiber is due to the fact that a portion of the molybdenum coating reacted with the carbon 

core to form Mo2C, which itself has a Tc ~ 3 K [4]. The fibers have very sharp resistive 

superconducting transitions, with a width Tc ~ 0.2 K. Tc of the fibers are slightly smaller than 

that of the respective wires and thin films. The heat treatment of a Mo-coated C fiber at 900 
o
C 

for 1 h and 20 minutes in Sb vapor resulted in Mo3Sb7 with the highest Tc. Similarly, the 

exposure of Mo-coated C fibers to the stream of NH3 at 900 
o
C for 1 h and 20 minutes produced 

MoN with the highest Tc. We were successful to reproduce the samples with the above synthetic 

route.   
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Fig: 3.29  Low temperature  resistivity normalized by its normal state value of  C fibers coated 

with Mo, Mo3Sb7, and MoN. The solid lines are a guide to the eye. 
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Fig: 3.31  Magnetic field dependence of the resistivity normalized by its  normal state value of 

Mo3Sb7 and MoN coated C fibers at various temperatures. Solid lines are a guide to the eye.  
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The magnetic field dependence of the resistivity of Mo3Sb7 and MoN coated fibers at 

various temperatures are presented in Figures 3.30 and 3.31, respectively. The magnetic field 

was applied along the fiber axis. 

 

Fig: 3.32  Upper critical field Hc2 as a function of temperature  for a C fiber coated with Mo3Sb7. 

The solid line is a fit to equation (3.2).  

 

 

The resistive superconducting transition shifts to the lower field with the increase in the 

temperature. The onset magnetic field decreases and the superconducting transition is absent at 

10 K. Figures 3.32 and 3.33 show the Hc2-T phase diagram obtained from the  vs. H curves at 

various temperatures. Here, Hc2 is defined as the midpoint of the transition with error bar  0.5 T. 

The upper critical field at zero temperature, Hc2(0),  was estimated by fitting the data to equation 

(2) for each compound.  Hc2(0) and the superconducting coherence lengths (0) are found to be 9 
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T and 60 Å for Mo3Sb7 and   9.5 T and 58 Å for MoN.  Since  is much less than the Mo3Sb7 

coating, the superconducting layers are essentially in the finite thickness limit.  

 

Fig: 3.33  Upper critical field Hc2 as a function of temperature  for a C fiber coated with MoN. 

The solid line is fit to equation (3.22).  

 

Hc2(0) for Mo3Sb7 coated fiber is slightly smaller than that for Mo3Sb7 thin film and 3 T less than 

that for the wire. On other hand Hc2(0) for MoN coated fiber is slightly higher than that for MoN 

thin film, while it is more than 3 T higher than that for MoN wire.  

A set of typical I-V curves of the Mo3Sb7 coated fiber in zero field, where the boxcar 

integrator output is plotted as a function of the current pulse magnitude  at T =  5.8, 5.5, 5.2, 5, 

4.8, 4.5, 4.3, 4, 3.5,  3, and 2.5 K, is shown in Figure 3.34. Similarly, Figure 3.35 shows the I-V 

plot of a MoN coated fiber in zero field at T = 12, 11.8, 11.6, 11.4, 11.2, 11, 10.8, 10.7, 10.6, and 

10.5 K.   
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 Fig: 3.34  Typical I-V characterstics of a Mo3Sb7 coated C fiber in zero field, where the boxcar 

integrator output is plotted as a function of the current pulse magnitude. 
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Fig: 3.35  Typical I-V characterstics of a MoN coated C fiber in zero field, where the boxcar 

integrator output is plotted as a function of the current pulse magnitude. 
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Critical current measurements were limited to the temperatures above 10.5 K in MoN fibers due 

to both the limitation of the electronics and the risk of damaging the samples. For the Mo3Sb7 

fiber data were obtained down to 2.5 K without destroying the fiber.   It can be seen from the 

I(V) data that the transitions from the superconducting state (i.e. zero voltage ) to the normal state 

are very sharp at lower temperature, while near Tc the transitions are broad.  Here, the critical 

current threshold Ic is defined as the intersection of the linear extrapolation of the most rapidly 

changing part of V(I)  and that of the superconducting state. 

 

  

Fig: 3.36   Log-log plot of the critical current density  in zero magnetic field for a Mo3Sb7 coated  

fiber. The dotted line is provided as a guide to the eye and extrapolates to a zero temperature 

density Jc(0) = 7.7 x 10
5
 A/cm

2
. 
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The critical current density, Jc , was calculated from Ic by dividing it by the cross 

sectional area of the Mo3Sb7- or MoN-coating in the fibers. The cross-sectional area of the 

coating was calculated from the difference of the cross-sectional area the fiber after the reaction 

and that of the carbon core in the fiber provided by the company. 

 

Fig: 3.37  Log-log plot of the critical current density  in zero magnetic field for two different 

samples of MoN coated  fiber. The dotted line is provided as  a guide to the eye and extrapolates 

to a zero temperature density Jc(0) = 1.66 x 10
8
 A/cm

2
. 

 

Figures 3.36 and 3.37 present a log–log  plot of the critical current density(Jc) in zero magnetic 

field as a function of reduced temperature for Mo3Sb7- and MoN-coated fibers. Care was taken 

to reduce the pulse width and duty cycle to the point were no hysteresis was observed across the 

critical current threshold. The dashed lines in Figures 3.36 and 3.37 are provided as a guide to 

the eye which follows the Ginzburg-Landau (G-L) critical current behavior for a superconductor 

with a homogeneous order parameter [12].  
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The Ginzburg-Landau (G-L) equation is as follows: 

                

where Hc is the thermodynamic critical field and  is the London penetration depth. Though both 

systems exhibited the expected 3/2 scaling behavior, the critical current densities in the Mo3Sb7 

microfibers were roughly an order of magnitude lower than that of the MoN fibers. The critical 

fields were lower too. The Mo3sb7 coatings may not be as homogeneous as the MoN coatings.  

Whether or not this is an intrinsic property of Mo3Sb7 remains unclear. Obviously, cracks and 

grain boundaries can undermine the maximum critical current density, but the fact that the data 

agree well with Equation 3.3 suggests that the low critical current density of the Mo3Sb7 is an 

intrinsic property. 

Interestingly, upon lowering the temperature below 10 K, we observed a precipitous 

upturn in the critical current density of all the MoN microfibers, suggesting a possible phase 

transition. 

3.4.5 Series of Mo3Sb7 Wires 

  Figure 3.38 shows the resistive superconducting transitions of a series of samples of 

Mo3Sb7 with Mo wires of 70 μm in diameter at the same temperature (900 
o
C) and period (30 

minutes), but with different amounts of Sb. Synthesis of samples A, B, C, D, E, F, and G were 

done using 0.75, 0.36, 0.25, 0.16, 0.044, 0.029, and 0 g of Sb using Mo wire of equal mass in 

each experiment. The superconducting transition temperature, Tc, and the transition width Tc 

changed with the amount of Sb used.  The sharp transition at 2.1 K can be seen for sample A, 

which is from the experiment with the highest amount of Sb. This agrees with Tc observed in 

bulk Mo3Sb7. Then the transition broadens for the samples from the experiment with lower 
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amount of Sb. A sharp transition at highest temperature ~ 7.8 K is observed for sample F, reacted 

with the lowest amount of Sb.     

The calculated required mass of stoichiometric Mo3Sb7 is smaller than 0.029 g which was 

used to synthesis sample F.  We tried to explain the variation in the result of experiment with the 

amount of Sb used during the synthesis in terms of the vapor pressure and the number of 

molecules per unit volume of Sb, but the analysis remained inconclusive [49].    
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Fig: 3.38   The superconducting transition temperature of the  Mo3Sb7 wire changes with the 

amount of  Sb used during the synthesis of Mo wires of  70μm in diameter. 

 

3.4.6 Magnetic Susceptibility of Mo3Sb7 Wires 

Figure 3.39 shows the temperature dependence of the magnetic susceptibility measured in 

an applied magnetic field of 1 T for the Mo3Sb7 wires. A plastic capsule packed with a bunch of 
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pieces of reacted wires of 70 μm in diameter was attached to the ACMS holder with the help of a 

plastic straw. Both the capsule and the straw have negligible magnetic background. Low 

temperature resistivity data shows that sample A, which was synthesized using a lot of Sb, has Tc 

~ 2.3 K and sample B, which was synthesized using  little Sb, has Tc ~ 7 K. The lower Tc is 

consistent with the values observed in polycrystalline and single crystal Mo3Sb7 [8, 9].  
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Fig: 3.39   Magnetic susceptibility as a function of  temperature in an applied magnetic field of 1 

T for the Mo3Sb7 wires (sample A (left) and sample B (right)). Inset: Superconducting transition 

in susceptibility vs. the temperature in an applied magnetic field of 20G   in Mo3Sb7 wires, where 

sample A has Tc ~ 2.1 K (left) and sample B has Tc ~ 6 K (right). 

 

In the inset of Figure 3.39, the superconducting transitions in the temperature dependence 

susceptibility (ZFC) data at an applied field of 20 Gauss for both samples, are shown. As the 
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wires are fragile, they cannot be packed tightly in the capsule which produced some noise in 

data. The temperature dependence of the susceptibility in the applied magnetic field of 1 T has 

an interesting feature. The susceptibility of sample A displays a parabolic dependence at low 

temperature, then increases with temperatures, becoming maximum around 180 K, and then 

obeying a Curie-Weiss law at higher temperature. The same feature was reported in the 

polycrystalline sample of Mo3Sb7 by Candolfi et al in [9], which has been considered as a strong 

evidence to consider Mo3Sb7 as a spin fluctuation system. The parabolic dependence of the 

magnetic susceptibility at low temperature was also noticed in the spin fluctuation system UAl2 

[27]. The value of the magnetic susceptibility at room temperature is 225 x 10
-6

 emu/mol. This is 

in good agreement with that measured by Bukowski et al. for the single crystal [8], but it is 2 

times lower than the values reported by Candolfi et al. and Hulliger for polycrystalline samples 

[9, 17].  

A more striking result is obtained in the measurement of the temperature dependence of 

the magnetic susceptibility in sample B at a magnetic field of 1 T. Here, the parabolic 

dependence at low temperature is absent in this sample. It is paramagnetic with a value of 

susceptibility slightly lower than the values observed for sample A.  Both samples have sharp 

tails at low temperature which could be a Curie tail due to impurities.  From the result of SEM 

and EDX, it can be seen that the wires are not reacted throughout the sample. There is a small 

amount of Mo in the core of wires. This clearly indicates the contribution of Mo impurities in the 

susceptibility of the samples.     

I performed a lot of experiments on Mo3Sb7 wires with P, As, Se, Te, and S to investigate 

the effect of doping, but none of the results are better than pure Mo3sb7. The partial substitution  

for Mo by Cr and W also did not  improve the superconducting properties. 
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3.5 Conclusions  

I reported on the synthesis of Mo3Sb7 and MoN  in the form of wires, thin films and 

coatings on microfibers and their characterization via electric transport, magneto-transport and 

magnetization properties measurements. The superconducting properties of both compounds 

were optimized by exposing the wires, thin films and carbon microfibers of Mo to either 

ammonia gas or antimony vapor at various temperatures for different time periods. Scanning 

electron micrographs and powder x-ray diffraction analysis verified the Ir3Ge7 type structure 

(space group Im3m) of Mo3Sb7 and the hexagonal -MoN phase.  

The Mo3Sb7 wire, obtained by the heat treatment of Mo wire of 70 μm in diameter at 900 

o
C for 30 minutes with a lot of Sb, shows the superconducting transition around 2.2 K . This is 

consistent with the superconducting transitions observed in single crystal and polycrystalline 

samples of Mo3Sb7 reported by different groups [8, 9, 26].  Surprisingly, for Mo3Sb7 wire of 

same diameter treated at same temperature and period, but with a little amount of Sb has a 

superconducting transition temperature Tc ~ 8 K, which is almost a factor of four higher than the 

value of the former sample and that reported for the single crystal and powder of Mo3Sb7 

[8,9,26]. This result is consistent with the Tc ~ 8.05 K of Mo3Sb7 thin wire of 13 μm in diameter, 

obtained by the heat treatment at 900 
o
C for 1h and 20 minutes. This sample has the upper 

critical field Hc2(0) ~ 11.3 T, which is substantially higher than the 1.72 T of single crystal and 

powder samples [8,9,26]. The Mo3Sb7 thin films and coating on C fibers also exhibit 

superconducting transitions around ~ 8.2 and 7.8 K, respectively. The upper critical fields Hc2(0) 

are also close to the 11.3 T of the Mo3Sb7 thin wire. This suggests that contamination (for 

example C, W, Si etc.) was not a significant factor in determining the high Tc‟s of the samples.  

To the best of my knowledge this is the first report on a study of Mo3Sb7 in the form of wires, 
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thin films and coating on microfibers. The anomalously high Tc and Hc2(0) of Mo3Sb7  is also a 

new discovery in this system.  

I believe that the enhanced Tc's observed in the wires, microfibers and films is due to the 

suppression of spin fluctuations. There is a speculation that the relatively low 2.1 K transition 

temperature of the bulk Mo3Sb7 is a result of the attenuating effects of strong spin fluctuations 

and that the "bare" transition temperature is near 10 K [9].  This speculation is strongly 

supported by the absence of the parabolic dependence of the magnetic susceptibility at lower 

temperature in the sample with higher Tc. The parabolic dependence was clearly observed in the 

(T) curve of my sample with lower Tc and also in the report on the powder of Mo3Sb7 by 

Candolfi et al [9]. The suppression of spin fluctuations in the Mo3Sb7 wires, thin film and fibers 

could be a stress effect. There is, in fact, a factor of four expansion associated with the antimony 

reaction, which can, in principle, produce large internal stresses, especially in a thin film 

geometry. In this scenario, stress may act to suppress the spin fluctuation amplitude thus 

resulting in a higher Tc. If this is, indeed, the case, then one would expect the superconducting 

phase of Mo3Sb7 to be pressure sensitive.  Clearly, the pressure dependence of Tc in Mo3Sb7 

should be measured and correlated with its normal state magnetic susceptibility.  

A novel synthesis route for -MoN in the form of wires, thin films and coating in 

microfibers were developed.  The sample of MoN wire, exhibiting the Tc ~ 13.2 K  slightly 

higher than the highest Tc reported by Saur et al, was obtained by heat treatment for a very short 

period. To our knowledge the Hc2 has never been reported in MoN in any form.  

For the first time the magnetotransport and critical current measurements of MoN- and Mo3Sb7-

coated carbon microfibers are reported. The transition temperatures of the micro-fibers are 

comparable to that of wires and thin films of respective compounds.   
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The Mo3Sb7 microfibers, however, exhibited transition temperatures that were almost a 

factor of four higher than reported in powder samples. The critical current density of the MoN 

fibers was well described by Equation 3 down to 10 K but increased much faster than (1 - 

(T/Tc)
2
)
3/2

 at lower temperatures. The extrapolated value of Critical current density for MoN-

coated fiber is Jc(0) = 1.66 x 10
8
 A/cm

2
. In contrast, the critical current density of the Mo3Sb7 

fibers is Jc(0) = 7.7 x 10
5
 A/cm

2
 , which is anomalously low .   

Of course, further study is needed to settle the issue of anomalously high Tc observed in Mo3Sb7. 
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CHAPTER   4 

MgCNi3 AND DOPED SYSTEMS 

4.1 Introduction 

The intermetallic MgCNi3 was discovered as an 8 K superconductor by He et al. [1] in 

2001. The discovery is rather surprising, considering its high Ni content. It has a perovskite 

structure [1] like that of CaTiO3 with equivalence of Ca to Mg, Ti to C and O to Ni. Its structure 

is also like that of the 30-K non-cuprate oxide cubic superconductor [1] Ba1−xKxBiO3. It is found 

to possess the classical cubic perovskite structure with the space group Pm3m and the lattice 

constant a  3.81221 Å at 295 K [1, 2, 3, 4, 5].  

 

Fig: 4.1 The powder neutron diffraction pattern at ambient temperature for the sample of 

nominal composition MgC1.25Ni3 and the perovskite crystal structure for the superconducting 

compound MgCNi3 (inset)[1]. 

 

The high proportion of Ni in this compound suggests that magnetic interactions may play 

a dominant role in the origin of its superconductivity. In fact, the density of states (DOS) in the 
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vicinity of the Fermi level are dominated by the Ni d states [6–11], and though it may not be 

large enough to induce a magnetic instability [8], it is associated with the superconducting 

properties [10]. Experimental investigation and theoretical computation reveal that there is a von 

Hove singularity (vHs) in the DOS just below EF [12, 11]. The vHs peak gives rise to a large 

DOS at EF which can be directly related with the superconducting coupling constant. The single-

phase perovskite structure in MgCxNi3 is found [13] only in a narrow range of carbon content 

(0.88 < x < 1.0). The band structure calculations [41] indicate that as x decreases in MgCxNi3, 

the proximity to ferromagnetism increases, and increasing spin fluctuations may be responsible 

for the reduction of Tc. The DOS of the components of MgCNi3 along with the total DOS [6] are 

displayed in Figure 4.2. 

 

Fig: 4.2 The total and atomic site projected local DOS of MgCNi3 [6]. 

MgCxNi3 samples with x = 0.9–1.5 were prepared by He et al. [1] using as raw materials 

Mg flakes, fine Ni powder and glassy spherical carbon powder. The starting materials were 

properly mixed and pressed into pellets. The pellets were placed into Ta foil, put in an alumina 
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boat and fired in a quartz tube furnace in a mixed gas (95% Ar and 5% H2) environment. The 

samples were heat treated at 600 
◦
C for 1/2 h, followed by treatment for 1 h at 900 

◦
C. The 

samples were cooled, ground, pressed and heated at 900 
◦
C for one more hour. Owing to the 

volatility of Mg, 20% in excess of its stoichiometric ratio was added to the initial mixture. The 

preparation procedures of other groups are almost the same as that of He et al. [1].  

 

Fig: 4.3 Magnetic characterization of the superconducting transitions for the intermetallic 

perovskite superconductor of nominal composition MgCxNi3. [1] 

 

From neutron diffraction studies, it is found [1, 2] that the formula for the 

superconducting phase is MgC0.96Ni3 for the nominal composition MgC1.25Ni3. This is due to the 

small amount of un-reacted graphite found in the sample [1, 2]. The chemically doped samples 

reported by different groups were also prepared by more or less the same procedure used by He  

et al. [14, 15, 16, 4, 17–22]. So far, there has been only one report on the preparation of MgCNi3 

as a thin film [23]. He et al. [1] observe the onset of Tc for a sample with nominal composition 

MgC1.5Ni3 at 8.4 K from resistivity measurements and 7.4 K from magnetization measurements. 

Differences among the values of Tc derived from resistivity, magnetization and specific heat 
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measurements are also found by several other groups [24-27]. Different values of Tc being 

obtained by different techniques is also a well known fact for other intermetallic and oxide 

superconductors; they mainly depend on the sample homogeneity and transition width.  

 

Fig: 4.4 C(T)/T vs T. The data are presented as the solid circles. The solid line is the BCS 

C(T)/T with 2 /kTc=4. The deviation at low temperatures from the solid line is due to the 

magnetic contribution of a small amount of the paramagnetic centers in the sample. Inset: 

entropy difference S by integration of C(T)/T according to the data above 3 K and the solid 

line below 3 K [26]. 

 

Young et al. [23] report on the Tc of MgCNi3 thin films thicker than 40 nm have Tc  8 

K, which is comparable to that of polycrystalline bulk samples. The Tc is found to decrease 

systematically with decreasing carbon concentration [13] from the stoichiometric value. It is 

concluded from theoretical calculations that the absence of superconductivity for non-

stoichiometric compositions MgC1−xNi3 is due to the transition of the system to the magnetic 

state [38]. Excess of Mg and C in the initial material mixture is favorable for improving Tc and 

for obtaining single-phase samples [1, 15]. The upper critical field Hc2(0) of MgCNi3 is 

determined both from the specific heat (C) and from the resistivity (ρ) data [1, 24, 25, 28, 29, 13, 

26, 3, 23, 30, 31, 32 , and 33]. Within the weak-coupling BCS theory, Hc2(0) can be estimated 
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using the Werthamer-Halfand-Hohenberg  formula, oHc2(0) = -0.69 Tc (dHc2 /dT)Tc which 

leads to a oHc2(0) value of 15.0 T [24]. Taking into accounts the effect of strong coupling, Mao 

et al estimated Hc2(0) to be around 14.4 T from a reasonable extrapolation [28]. 

The specific heat (C), a thermodynamic bulk property, of MgCNi3 has been intensely 

studied by several groups [1, 26, 34, 21, and 32]. The normal state specific heat, Cn(T ) = γnT + C 

lattice(T ), was extracted from H = 8 T data by Lin et al. [26] between 4 and 10 K. Clattice(T ) = βT 
3
 

+ δT 
5
 represents the phonon contribution, and γnT the electronic contribution, with γn as the 

coefficient of the electronic specific heat in the normal state. It was found by several groups that 

γn = 9.8–11.2 mJ K
−2

 (mol Ni)
−1

. Both the specific heat jump C/γnTc = 1.7–2 at Tc [26] and the 

quantity 2 /kBTc  4.0, where  is the superconducting energy gap, are higher than the BCS 

weak coupling value 1.43 and 3.52, respectively indicating strong electron – phonon coupling.  

The nuclear spin-lattice relaxation rate 1/
13

T1 exhibits typical behavior for isotropic s-wave 

superconductivity with a coherence peak below Tc  =  7.0 K  [35].  However, the field dependent 

specific heat and resistivity results imply that it is a moderate coupling, type II, s-wave BCS 

superconductor [1, 29, 26, 21, 31, 32]; this is supported by tunneling and other experiments as 

well as theoretical calculations [36, 4, 6, 8, 37]. Again, the penetration depth distinctly exhibits a 

non-s-wave BCS low temperature behavior [38], instead of showing quadratic temperature 

dependence, suggestive of a nodal order parameter. Band calculation by Rosner et al. also 

suggests MgCNi3 is a non s-wave superconductor [11]. Thus the nature of the superconductivity 

in MgCNi3 is still controversial and needs more effort to clarify it.  

The chemical doping experiments are motivated by the unusual band structure of this 

material. Shein et al [10] have shown theoretically the deterioration of the superconducting 

characteristics of MgCNi3 that occurs upon hole-doping. The decline of the superconductivity 

upon electron doping (MgCNi3−xCux ) is due to the filling of anti bonding states and a sharp drop 
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in the DOS at the Fermi level, N(EF) [38]. Most groups have doped at the Ni site. However, the 

effect of doping at the Mg site is also studied [21, 22]. Complete and partial replacement of Mg 

by Zn was carried out from the nominal compositions Zn1.2C1.3Ni3 and (MgZn)1.2C1.3Ni3, 

respectively, [21, 22]. Rosner et al. [11] have suggested that MgCNi3 is near a ferromagnetic 

instability that can be reached by hole doping on the Mg site (if 12% Mg is replaced by Na or Li, 

i.e., 0.04 hole/Ni) and the effective carriers are Ni-derived holes of very high band mass. The 

Hall coefficient and thermoelectric power data show that the carriers in this superconductor are 

electrons [24]. The doping at the Ni site with Cu and Co decreases Tc significantly [14, 15]. 

Doping at the Ni site with Co, Fe, Mn, Cu, etc. also causes a decrease of Tc except for the initial 

increase with Fe doping [16]. Calculation of the expected electronic DOS suggests that electron 

(Cu) and hole (Co) doping should have different effects on Tc [14]. However, the Tc of 

MgCNi3−zCuz decreases systematically from 7 to 6 K for z = 0.1 [14]. No magnetic ordering was 

found for MgCNi2Co and MgCNiCo2 [40]. This indicates that the hole doping does not produce 

the magnetic instability which could be responsible for pair breaking [39]. Again, no long range 

magnetic ordering is observed in the magnetic susceptibility of MgCNi3−zCoz [14]. The detected 

variation of Tc is explained in terms of the competition between an increase in Tc due to increase 

in the DOS and a decrease in spin fluctuations [16]. Thus, the review of literature shows that the 

physics of the origin of superconductivity in this system is complicate and more theoretical and 

experimental investigations on doping effects may help to settle the controversies.  

This chapter focuses on the effect of Li, Be, Ga and La substitution for Mg,  and B and N 

substitution for C on superconducting and normal state properties of MgCNi3. As reported in 

[40], the magnetic susceptibility measurements show that superconductivity is suppressed slowly 

with increasing x in MgC1−xBxNi3. The mixing of carbon and boron on the B site in MgB2 has a 

substantial effect on Hc2(T). Analogies between the role of B in that compound and C in MgCNi3 
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persuaded me to have the study of Hc2(T) in B substituted MgCNi3, but no enhancement in Hc2 

was observed. Data are not shown here due to the null result. Similarly results on Ga and La 

doping were also not discussed here, as they do not have any influential effect. 

The synthesis of MgCNi3 requires an excess of both Mg and C to compensate for Mg 

evaporation and to ensure carbon incorporation. Therefore, controlled doping of both the Mg site 

and the C site is difficult, and crystal structure analysis is required to determine the true 

composition. The reports on synthesis and characterization of MgCNi3, Mg1-xBexCNi3, Mg1-

xLixCNi3 and MgCxNyNi3  are presented in the following subsections.  

4.2 Synthesis and Characterization 

1g of bulk polycrystalline MgCNi3 was prepared with nominal formula Mg1.2C1.5Ni3. The 

starting materials were powder of Mg (99.8% Alfa Aesar), Ni (999.996% Alfa Aesar), and glassy 

carbon spherical (Alfa Aesar) or acetylene black carbon. Glassy carbon spherical powder is 

found to be better in forming hard pellets. The powders were thoroughly mixed and ground well 

for 10-15 minutes and then pressed into a pellet of 12 mm in diameter. The pellet was placed in 

an alumina (Al2O3) crucible and covered by Ta foil. The sample was heated in a stream of Argon 

by placing the crucible inside a quartz tube in a horizontal tube furnace. The heat treatment 

follows the following sequences. First, it was heated at 600 
◦
C for 30 minutes, which was 

followed by a treatment for 1 h at 900 
◦
C. After cooling, the sample was reground, pressed into 

the pellet and heated at 900 
◦
C for 90 minutes. Owing to the volatility of Mg, 20% in excess of 

its stoichiometric ratio was added to the initial mixture.  

A series of 1-g samples with compositions Mg1-xBex C1.5Ni3 (x = 0.01, 0.05, 0.1, 0.15, 

0.2, and 1) were prepared with the same procedure explained above. The starting materials were 

powders of Mg, Be (99+% Alfa Aesar), Ni and glassy carbon. The initial stoichiometry was 

(Mg1-xBex)1.2C1.5Ni3.  
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Fig: 4.5 The X-ray diffraction pattern at ambient temperature for the sample of nominal 

composition MgC1.5Ni3 and the perovskite crystal structure for the superconducting compound 

MgCNi3 (inset). 

 

Since Li is not available in powder form and oxidized very quickly in air, it was found to 

be rather difficult to synthesize Mg1-xLixCNi3 samples. Various methods and sources of Li have 

been used to dope Li in this system. We used borothermal reduction as a method using lithium 

carbonate as a source of Li. The reaction is as follows: 

 1.08 Mg + 1.56 C + 3Ni + 0.12 LiC03   (Mg0.9Li0.1)1.2C1.5Ni3 + 0.18 Co2   

So far the following method seems to be better but not the best, I think, to incorporate the Li into 

the Mg compounds.   The powders of all the elements but Li were mixed and ground well. A 

sandwich of Li metal granules ( 99.3%  Alfa Aesar) with mixed powder of the rest of the starting 

materials is pressed into a pellet. It should be done very fast before the Li metal gets oxidized. 

After first stage heating   ( i.e. at 600 ˚C for 30 min and at 900˚C for 1 h ), the pellets were 

reground and mixed well again. The rest of the synthesis procedure is same as the described 

above. The resulting samples Mg1-xLix C1.5Ni3 (x = 0.03, 0.05, 0.1, and 0.2) are hard pellets. 
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Following the procedure explained earlier, C deficient compounds Mg1.2CxNi3 (x = 1.5, 1.2, 1, 

0.9, and 0.7) were prepared. After having XRD and magnetization measurements, these samples 

were reground, pressed into the pellets and heated at 900˚C for 2 hours under a flowing 

atmosphere of N2.   

The structure, phase purity, and peak shift of the prepared samples were analyzed by 

powder X-ray diffraction using a diffractometer equipped with Cu Kα radiation (λ = 1.54056 Å). 

Data were collected from 2 θ = 20
o
 to 80

o
 with a constant scan speed of 2º min

-1 
at room 

temperature. 

MgCNi3 and doped samples were characterized by magnetization and transport properties 

measurement. Samples were mounted directly on the ACMS sample holder, a teflon cup, to 

measure zero field cooling dc magnetizations  in the range of 1.9 - 10 K in the PPMS. Some of 

the pellets were hard enough to cut into bars (1.5 x 2 x 3 mm
3
). The electrical resistivity, 

magnetorsistance and upper critical field were measured in the range of 2 – 290 K and 0 – 9 T 

using the standard four probe technique in the PPMS. 

 

4.3       Results and Discussions 

4.3.1 MgCNi3 

Figure 4.5 shows the x-ray diffraction pattern at ambient temperature for the sample of 

nominal composition Mg1.2C1.5Ni3 and the perovskite crystal structure for the superconducting 

compound MgCNi3. The sample is of good quality, with sharp x-ray diffraction peaks. No 

impurities such as elemental Ni and Mg were observed. From the calculation based on hkl(111) 

peak the lattice constant was found to be  a  3.80596 Å which is slightly smaller than the values 

reported in the literature [1, 2, 3, 4, 5].  
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Fig: 4.6  Susceptibility versus temperature for MgCNi3 in an applied magnetic field of 20 Gauss. 

Shown in Figure 4.6 is the temperature dependence of zero-field cooling dc magnetization of 

pristine MgCNi3 measured at a magnetic field of 20 Oe. The superconducting transition is sharp, 

and the onset transition temperature is 6.7 K.   

The resistivity of MgCNi3, measured in between 2 K and 290 K  as a function of 

temperature in zero magnetic field is shown in Figure 4.7. It can be seen that the shape of the 

R(T) curve presented here is very similar to those reported by He et al and Li et al [1,24].  The 

residual resistivity ratio (RRR = (290 K) / (10 K) = 2.4) is similar to that obtained by He et al [1, 

24]. However, the magnitude of the resistivity ( 290 K = 1200 μΩ-cm and 10 K = 500 μΩ-cm) 

obtained in this study is higher than that of [1]. A natural explanation for the high resistivity of 

the investigated sample, which was not subjected to high-pressure sintering, is a relatively large 
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resistance of grain boundaries [32]. The conclusion is supported by Hc2(0) and Tc values of low-

resistivity thin film data ( 0 down to 20 μΩ-cm) by Young et al [23]. 
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Fig: 4.7 Resistivity of MgCNi3 as a function of temperature. Log-log plot of normal state 

resistivity as a function of temperature (inset). The solid line is a guide to the eye. 

 

 

A superconducting transition with an onset (mid) Tc of 7.35 K (7.25) is observed (90-10 % of the 

transition width Tc = 0.1 K). This is slightly higher than the value obtained from magnetization 

which we normally find in polycrystalline samples. The upper critical field Hc2(0) of MgCNi3 is 

determined from the resistivity (ρ) data at different temperatures. Figure 4.9 presents the 

magnetic field dependence of resistivity at 4 K, 4.5 K, 5.3 K, 5.8 K, 6.3 K, and 6.7 K. The 

transition width ( H) is fairly small to be considered as sharp transition. Critical field , Hc2,  is 

defined as the midpoint of the transitions with error bar  0.3 T. 
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Fig: 4.8  The low temperature  resistivity normalized by its normal state  value of MgCNi3. The 

solid line is a guide to the eye. 
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Fig: 4.9  Magnetic field dependence of  resistivity of MgCNi3  measured at 4 K, 4.5 K, 5.3 K, 5.8 

K, 6.3 K and  6.7 K. The solid lines are guide to the eye. 
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The temperature dependence of the upper critical field  Hc2(T) with the prediction of BCS theory 

can be expressed as follows : 

Hc2(T) = Hc2(0) (1-(T/Tc)
2
)            (at low T) ………………………………….…(1)  

where Hc2(0) is the upper critical field extrapolated to 0 K, and Tc is the superconducting 

transition temperature in zero applied magnetic field. The solid line in Figure 4.10 represents the 

best fit of the experimental data to equation 1. The Hc2(T) curve, exhibits negative curvature over 

a wide range of temperature, characteristic of conventional superconductivity [42]. The best 

fitting resulted in Hc2(0) = 11.26 T. This value is below the paramagnetic limit Hp = 1.84Tc = 13 

T, suggesting that the Zeeman pair breaking mechanism is ineffective in this case.  

 

Fig: 4.10 Upper critical field Hc2 as a function of temperature for MgCNi3. The solid line is fit to 

the equation (1) and extrapolated to the Hc2(0). 

 



96 

 

4.3.2 Mg1-xBexCNi3 

Powder x-ray diffraction patterns of Mg1-xBexCNi3 for x = 0, 0.01, 0.05, 0.15 and 0.2 are 

shown in Figure 4.11. All samples reacted to form single cubic phases (a 3.805  0.005 Å). Be 

substitution on Mg up to 20 % does not change the X-ray diffraction pattern much, but only the 

positions of diffraction peaks are shifted slightly towards higher angle side on 2   axis, 

indicating a decrease in lattice parameters. The lattice parameter shrinks slightly as x increases. 

This decrease of a with x is consistent with the fact that Be is a smaller ion than Mg. The 

systematic shift of the peaks in XRD pattern confirms the incorporation of Be into the samples.  

 

 

Fig: 4.11   Powder X-ray diffraction pattern of Mg1-xBexCNi3 (x = 0, 0.01, 0.03, 0.05, 0.1, 0.15 

and 0.2) samples. 

 

For samples with x  0.15 a few extra peaks which correspond to elemental Ni, are observed. 

Change in the direction of shifting the position of peaks in Mg0.8Be0.2CNi3 indicates that x = 0.1 

is the solubility limit of Be in Mg.      
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Figure 4.12 shows the temperature dependence of zero-field cooling dc magnetization for typical 

samples of Mg1-xBexCNi3 (x = 0, 0.01, 0.05, 0.1, 0.15 and 0.2) in an applied field of 20 Oe.  The 

transitions for all samples are sharp and larger diamagnetism is observed. The suppression of 

superconductivity of the system up to 20 % doping concentration is not noticeable. The variation 

in Tc ( Tc) is less than 0.1 K. It is surprising that Tc is so robust, even at 10% Be.  
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Fig: 4.12 Susceptibility versus temperature for Mg1-xBexCNi3 (x = 0, 0.01, 0.03, 0.05, 0.1, 0.15 

and 0.2)  in an applied magnetic field of 20 Gauss. The solid line is a guide to the  eye. 

 

In order to elucidate the magnetic consequences of the Be doping on MgCNi3, the 

normal state susceptibilities of these materials were measured between 10 K  and 300 K. Un-

reacted ferromagnetic Ni metal, always present in very small (fractional percentage) amounts in 

un-doped and doped MgCNi3 powder preparation ( no single crystals have yet been reported), 

complicates the measurement of the normal state magnetic susceptibility [43]. Therefore, to 

approximate the intrinsic susceptibility of Mg1-xBexCNi3 compounds, the difference in 
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magnetization ( M) between the applied fields of 4 T and 2 T was determined at each 

temperature to estimate the susceptibility (  = M/ H) for all samples. 
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Fig: 4.13  Normal state magnetic susceptibilities of Mg1-xBexCNi3 (x = 0,0.01,0.05,0.10, and 

0.15). 

 

 The susceptibilities derived in such a fashion for representative samples with x = 0, 0.01, 

0.05, 0.1, and 0.15 are shown in Figure 4.13 for temperature between 5 K and 290 K. The 

susceptibilities for lower concentrations of Be, x, increase with decreasing temperature, as 

previously observed for MgCNi3 [17, 44]. There is substantial decrease in the susceptibility at 10 

K  for x  0.05. The susceptibilities for x = 0.1 and 0.15 are essentially temperature independent 

(Pauli paramagnetic).  The variation of resistivity normalized by its value at room temperature 

(T)/ (290K) with temperature for  Mg1-xBexCNi3 (x = 0, 0.05, 0.1, and 0.15 ) is shown in Figure 

4.14. It can be seen that no substantial change in shape and magnitude of the (T)/ (290K) 

curves is observed for the entire range of doping. The residual resistivity ratio (RRR ~2.4) is 

almost constant. Though, the resistive superconductive transition temperature (Tc ~ 7.2 K ) for 
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each sample is higher than the one obtained from the magnetization, the variation of Tc with x is 

less than 0.1 K.    
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Fig: 4.14 Resistivity of Mg1-xBexCNi3 (x = 0, 0.05, 0.1, and 0.15) normalized by its room-

temperature value as a function of temperature. The solid line is a guide to the eye. 

  

 

The behavior of Tc was also tried to be understood by invoking the well known McMillan 

formula [45] ( refined by Allen and Dynes [47]) 

 

where  is the average characteristic phonon frequency, μ* is the effective Coulomb repulsion 

and  = N(0) I
2

/M
2

 denotes the electron-phonon coupling constant, in which N(0) is the 

density of states (DOS) at the Fermi level EF, I
2

 is the square averaged electronic matrix 

element for the electron-phonon interaction, M is ionic mass. Since this is an isoelctronic 
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substitution, assuming I
2

 does not change significantly, the robustness of the Tc can be realized 

by analyzing how N(0),  and M change under substitution [48].  
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Fig: 4.15 Resistive transitions for Mg1-xBexCNi3 (x = 0, 0.05, 0.1, and 0.15). 

There will not be a significant increase in  too, as the decrease in lattice volume is very small. 

On the other hand, M decreases by a factor of ~ 2.7 which causes a decrease in .  Since 

behavior of N(0) under Be substitution is not known, we cannot explain if N(0) has the opposite 

effect on  to keep Tc constant. 

Figure 4.16 presents the magnetic field dependence of resistivity of Mg1-xBexCNi3 (x = 0, 

0.05, 0.1, and 0.15 ) at 4 K. Keeping consistent with the result of the magnetic and resistive 

transitions, no substantial change in the upper critical field  is observed due to the Be substitution 

for Mg. The resistivity measured at 4 K as a function of magnetic field shows Hc2 for the sample 
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with x = 0.05 is minimum, (approximately 0.3 T less than Hc2 for x = 0). For the sample x = 0.15  

Hc2 is even slightly higher that of the un-doped sample.  
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Fig: 4.16  Magnetic field dependence of  resistivity at 4K, normalized by its normal state value, 

for  Mg1-xBexCNi3 (x = 0, 0.05, 0.1, and 0.15). The solid lines are a guide to the eye. 

 

 

The temperature dependence of the upper critical field  Hc2(T) for Mg1-xBexCNi3 (x = 0, 0.05, 

0.1, and 0.15 ) is shown in Figure 4.17.  The solid and broken lines in Figure 4.17 represent the 

best fit of experimental data to equation (1). This small variation is followed by the upper critical 

field Hc2(0) at zero temperature, yielded  by  extrapolation of the fit to T = 0 K.  Hc2(0)  for x = 0, 

0.05, 0.1 and 0.15 are 10.616 T, 11.125 T, 11.267 T, and 11.299 T  respectively. 

Superconducting coherence lengths (0) can be estimated using the Ginzberg Landau formula for 

an isotropic three dimensional superconductor, Hc2(0) = 0/2 (0)
2
,  where 0 = 2.0678 x 10

9
 

Oe Å
2
  is a flux quantum. The estimated values of (0) are 56 Å for Mg0.95Be0.05CNi3 and 54 Å 
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for the rest of samples including un-doped MgCNi3. These values are slightly higher than the 

value reported by Young et al for thin film of MgCNi3 [23].   

We know Hc2  0/
2
, and for dirty superconductors the effective coherence length is defined as 

1/  = 1/ 0 + 1/l, where 0 is the Pippard coherence length and l is the mean free path [42]. For 

Be doped MgCNi3 samples the above results show that there is no effect of doping on expansion 

or contraction of 0 and l.   

The Be study seems to be in agreement with electronic structure calculations, where the majority 

of the DOS at EF are Ni 3-d states, and Mg p-states contribute very little [6-11]. 

 

Fig: 4.17  The dependence of the upper critical field Hc2(T) on temperature for Mg1-xBexCNi3 (x 

= 0, 0.05, 0.1, and 0.15). The lines are fit to equation (1) and extrapolated to Hc2(0) for 

comparison. 
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4.3.3 Mg1-xLixCNi3 

The powder X-ray diffraction pattern of Mg1-xLixCNi3 (x = 0, 0.03, 0.05, 0.1, and 0.2) are 

shown in Figure 4.18. As in the case of MgB2 [45], due to the closeness in the atomic volume 

values of these elements, Li substitution on Mg in MgCNi3 up to 20% does not change  the x-ray 

diffraction pattern. As shown in Figure 4.19, the XRD peaks shift slightly but systematically 

toward higher angle on 2  axis as Li concentration, x, is increased from x = 0 to 0.2. The value 

of lattice parameters (a 3.805  0.003 Å) of the doped samples remained practically unchanged.  

 

 

Fig: 4.18   Powder X-ray diffraction pattern of Mg1-xLixCNi3 (x = 0, 0.03, 0.05, 0.1, and 0.2) 

samples. 

 

In the Mg0.8Li0.2CNi3 sample a few extra peaks, which correspond to un-reacted Ni, were 

observed. On the other hand, because no reaction with the crucible wall was detected, and no un-
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reacted Mg was observed, any variation in the physical behavior, should give the best indication 

of the incorporation of Li element into the MgCNi3 structure.  

 

 

Fig: 4.19  Powder X-ray diffraction pattern of Mg1-xLixCNi3 (x = 0, 0.03, 0.05, 0.1, and 0.2) 

samples focused on one peak near 70
o
. 

 

 

Figure 4.19 shows the susceptibility measurements versus temperature  for Mg1-xLixCNi3  

( x = 0, 0.03, 0.05, 0.1 & 0.2 ) at a constant magnetic field of 20 Oe. It can be seen that all the 

samples up to x = 0.2 exhibit superconductivity. The variation of the onset Tc as a function of Ni 

concentration, x is shown in Figure. It is observed that Tc does not decrease monotonically with 

increasing x. Initially, Tc decreases by approximately 1 K with 3% of Mg substitution with Li. 

With further doping Tc comes back and, for 15 and 20 % Li substitution, it is almost the same as 

the un-doped sample.  
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Fig: 4.20 Susceptibility versus temperature for Mg1-xLixCNi3 (x = 0, 0.03, 0.05, 0.1, and 0.2)  in 

an applied magnetic field of 20 Gauss. The solid lines are a guide to the eye. 

 

 

Though, it has been suggested that MgCNi3 is near a ferromagnetic instability that can be 

reached by hole doping on the Mg site (if 12% Mg is replaced by Li), no long range magnetic 

ordering was observed in normal state  susceptibility of  Mg1-xLixCNi3  measured  at 0.1 T in 

between 3 K and 290 K [11]. Figure 4.21 shows the variation of resistivity normalized by its 

value at room temperature (T)/ (290K) for  Mg1-xLixCNi3 (x = 0, 0.03, 0.1, and 0.2 ). It can be 

seen that no substantial change in shape of the (T)/ (290K) curves is observed for the entire 

range of doping. The magnitude of the absolute resistivity increases monotonically with Li 



106 

 

concentration, x (inset of Figure 4.21). For the 20 % Li doped sample the resistivity at 10 K is 

approximately 20 times more than that of pure MgCNi3. 
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Fig: 4.21 Resistivity of Mg1-xLixCNi3 (x = 0, 0.03, 0.1, and 0.15) normalized by its room-

temperature value as a function of temperature. Inset: Low temperature resistivity as a function 

of temperature. The solid lines are a guide to the eye. 

 

The temperature dependence of resistance of Mg1-xLixCNi3  (x = 0, 0.03, 0.05, 0.1, and 0.2) in the 

vicinity of the superconducting transition is shown in Figure 4.22. Overall, the resistive 

transitions are sharper, and at higher temperature than observed in dc magnetization. The 

transitions are broadened and Tc is smaller for lower concentration of Li. As shown in Figure 

4.23, the variation of the onset Tc as a function of Li concentration, x is consistent with that 
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observed from susceptibility. The error bar for Tc is  0.2 K.  Mg0.97Li0.03CNi3 has minimum Tc 

(mid point) ~ 6.62 K with Tc ~0.3 K. Then, for  Mg0.95Li0.05CNi3, Tc ~ 6.7 K with Tc ~ 0.4 K, 

for Mg0.9Li0.1CNi3, Tc ~ 6.97 K with Tc ~ 0.2 K, and for Mg0.8Li0.2CNi3, Tc ~ 7 K with Tc ~ 

0.2 K, and for MgCNi3, Tc ~ 7.25 K with Tc ~ 0.1 K. 
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Fig: 4.22  Resistive transitions for  Mg1-xLixCNi3 (x = 0,0.03, 0.05, 0.1, 0.2).The solid lines are a 

guide to the eye. 

 

 

Shown in Figure 4.24 is the magnetic field dependence of electrical resistivity of Mg1-

xLixCNi3 (x = 0, 0.03, 0.05, 0.1, and 0.2 ) at 4 K.  Note that the transition is broadened for lower 

concentration of Li. 
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Fig: 4.23  Variation of the transition temperature as a function of Li concentration, x in Mg1-

xLixCNi3. The solid lines are a guide to the eye. 

 

 

The variation of the upper critical field Hc2(4 K) as a function of Li concentration, x in  Mg1-

xLixCNi3  is shown in Figure 4.24. The error bar for Hc2 is  0.3 T. The magnitude of Hc2 for the 

sample with x = 0.03 is minimum, (approximately 1.3 T less than the value for sample x = 0). 

Samples with x = 0.1 and 0.2  have upper critical field, 8.6 T and 8.8 T,  respectively, which are 

higher than that of the un-doped MgCNi3 sample. The temperature dependence of the upper 

critical field  Hc2(T) for Mg0.97Li0.03CNi3 and Mg0.8Li0.2CNi3 are shown in Figure 4.26 and Figure 

4.27, respectively. The error bar is  0.3 T for each of them. The  lines in the figures represent 

the best fit of experimental data to equation (1).    
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Fig: 4.24  Magnetic field dependence of normalized  resistivity of Mg1-xLixCNi3  measured at 4 

K. The solid lines are a guide to the eyes. 

 

The upper critical field Hc2(0) at zero temperature, yielded  by  extrapolation of the fit to T = 0 K  

are 10.616 T, 10.628 T, and 12.684 T for x = 0, 0.03 and 0.2, respectively. Superconducting 

coherence lengths (0) were estimated to be 55.6, 55.6 and 51.11 Å for x = 0, 0.03 and 0.2, 

respectively. Given that Li and Mg have different covalent radii, the lack of change in the cell 

parameters in Mg1-xLixCNi3 has made the conclusion on the incorporation and the effect of Li 

indecisive. Kumary et al. [16] also find no significant changes of lattice parameter upon partial 

replacement of Ni with Fe or Co. Li partially substitute Mg and each Li introduces only one hole 

to the system, where as Fe and Ru substitute for Ni and introduce two holes. The significant 

effect of Fe substitution in reduction of Tc can be explained by the Cooper pair breaking 

mechanism by the 3d electrons in Fe [49].  
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Fig: 4.25   Variation of upper critical field (Hc2) at 4 K as a function of Li concentration, x in 

Mg1-xLixCNi3. The solid lines are a guide to the eyes. 

 

In Mg1-xLixCNi3 systems, in spite of theoretical prediction [11], the absence of magnetic 

ordering indicates that the hole-doping does not produce the magnetic instability which could be 

responsible for pair breaking [39]. The reason could be that the electronic structure of MgCNi3 

indicated that its electronic states at the Fermi energy (EF) are dominated by the 3d-orbitals of 

Ni. The detected variation of Tc is tried to be understood by invoking equation (2), the well 

known McMillan formula [45, 47].Certainly, there will not be much change in  as the 

decrease in lattice constant is negligible. The decrease in  due to the decrease in M by a factor 

of ~ 4 could lead to a decrease in Tc. Again, since there are no reports on theoretical calculations 

of the electronic structure of Li-doped MgCNi3, further discussion is rather difficult with our 

experimental results. The enhancement of the upper-critical field is an interesting result of the Li 

doping in MgCNi3.  Hc2(0) for the sample with 20 % Li concentration is approximately 2 T more 

than that of pure MgCNi3.  
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 Fig: 4.26  The dependence of the upper critical field Hc2(T) on temperature for Mg0.97Li0.03CNi3. 

The dotted line is a fit to equation (1) and extrapolated to Hc2(0)=10.628 T. 

 

 The increase of Hc2 can be explained in terms of the Hc2 dependence on the effective 

coherence length ( ): Hc2  0/
2
, where 0 is a flux quantum. For dirty superconductors the 

effective coherence length is defined as 1/  = 1/ 0 + 1/l, where 0 is Pippard coherence length 

and l is the mean free path [42]. We know l varies with the residual resistivity 0 through l = 

2mVF/(ne
2

0), for the sample used in [24], where n is carrier density  and VF is Fermi velocity. 

On the other hand, 0 is related to the critical temperature: 0 = a(h/2 )v0/kTc, where a is a 

constant and v0 is the velocity at the Fermi level [42]. Doping leads to shortening of the mean 

free path [50], and if it does not elongate 0 simultaneously by suppressing Tc, one can expect 

the increase in the Hc2 value. This is valid for Mg1-xLixCNi3 with x 0.1 and x = 0.2 because both 
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of these samples have 0 (8-20 times) more than that of the un-doped MgCNi3  and no decrease 

in Tc (Inset of Figure 4.21). 

 

Fig: 4.27  The dependence of the upper critical field Hc2(T) on temperature for Mg0.8Li0.2CNi3. 

The dotted is fit to the equation (1) and extrapolated to Hc2(0)=12.684 T. 

 

 

4.3.4 MgCxNyNi3 

The XRD patterns of C deficient samples with nominal compositions MgCxNi3 ( x = 1.5, 

1.2, 1, 0.9, and 0.7 ) are shown in Figure 4.28. It can be seen that the XRD patterns of all the C 

deficient samples are similar to that of the pristine MgCNi3, indicating the formation of the 

requisite phase. There are a few impurity peaks in MgC0.9Ni3 and MgC0.7Ni3 samples identified 
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to be due to the presence of very small traces of un-reacted Ni. It is apparent from Figure 4.29 

that the XRD peaks shift slightly towards higher angle on 2  axis as C concentration, x, is 

decreased from x = 1.5 to 0.9. The shift is significant for x = 0.9. The change in lattice 

parameter, a, extracted from the analysis of the XRD peak hkl (111) is consistent with the peak 

shift. The lattice constants for x = 1.5, 1.2, 1, 0.9, and 0.7 are 3.80596, 3.80273, 3.80105, 

3.80171, and 3.77194  Å respectively.    

      

 

 

 

Fig: 4.28   Powder X-ray diffraction pattern of samples prepared with nominal composition 

MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7). 
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Fig: 4.29   Powder X-ray diffraction pattern of samples prepared with nominal composition 

MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7) shows the peak shift around 70
0
. 

 

 

The temperature dependence of  susceptibility of all the samples is shown in Figure 4.30. It can 

be seen that all samples down to x = 0.9 exhibit superconductivity. Tc is found to decrease 

monotonically with decreasing x in MgCxNi3. Eventually, the compound with x = 0.7 does not 

show a superconducting transition down to 2 K. The XRD results and susceptibility 

measurements of C deficient samples of MgCNi3 strongly support the report which says the 

carbon atom in MgCNi3 plays a crucible role in its superconductivity [1], and a single-phase 

superconducting compound occurs only in a narrow range of carbon content [51].   
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Fig: 4.30  Susceptibility versus temperature for samples prepared with nominal composition 

MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7) in an applied magnetic field of 20 Gauss. 

 

 

Shan et al proposed that the disappearance of superconductivity in MgCxNi3 is due to a 

substantial depression of the electron-phonon coupling caused by decreasing x [31].  The powder 

x-ray diffraction pattern of MgCxNi3 samples after 2 hours long heat treatment in a stream of 

nitrogen gas is shown in Figure 4.31. All the samples are in single phase, but Figure 4.32 clearly 

shows the peak shift in each sample (with x = 1.2, 1, 0.9, and 0.7) towards lower angle on 2   

from its previous position. It can be seen that the peaks in all samples but in MgC0.7Ni3 shift 

slightly towards lower angle even from the position of the peak in MgC1.5Ni3. The increase in the 

lattice constants of these nitrogen doped samples (MgCxNyNi3) is consistent with the shifting of 

the peaks towards lower angle on the 2  axis. 
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Fig: 4.31 Powder X-ray diffraction pattern of MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7) after the 

heating in flow of N2. 

 

The lattice constants for x = 1.5, 1.2, 1, 0.9, and 0.7 are 3.80596, 3.81145, 3.80578, 3.80819, and 

3.78997 Å respectively. Though, the gain in mass after 2 hours heating in nitrogen gas flow was 

recorded, the precise value of the parameter y in the formula MgCxNyNi3 is not known because 

we lost mass of Mg and C at the same time. In the extended XRD pattern (Figure 4.31) of 

MgCxNyNi3 a few extra peaks which correspond to elemental Ni are observed.  

Shown in Figure 4.33 is the temperature dependence of the magnetization of the samples 

MgCxNyNi3 ( x = 1.5, 1.2, 1, 0.9, and 0.7) at an applied dc magnetic field of 20 Oe. All 

compounds are found to superconduct. After heating in N2 the sample with nominal formula 
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Mg1.2C0.7Ni3 shows the superconducting transition with Tc (onset) ~ 5.9 K.  Tc ‘s of other samples 

are also observed to be slightly increased. 

 

Fig: 4.32 Powder X-ray diffraction pattern of MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7) showing 

peak shift in opposite direction after the heat treatment in flow of N2. 

 

 

For carbon deficient samples, the change in the parameters  and N(0) contribute to the 

reduction in the transition temperature. The results of XRD and magnetization measurements 

indicates that the decrease in   was compensated by the substitution of N to some extent. 

According to Wie et al. replacement of C by N or B greatly reduces the DOS peak near EF [6].  

Certainly, electron doping (N) doping reduces N(EF) in MgCNi3. There will not be significant 

change in ionic mass M, but  decreases due to the increase in lattice volume. The net effect, 

therefore, can be expected to be an increase in  in some extent leading to the observed 



118 

 

reappearance of superconductivity in the N-doped MgC0.7Ni3 sample and increase in Tc for the 

rest of samples. 
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Fig: 4.33 Low temperature magnetization for samples prepared with nominal composition 

MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7) and heat treatment with N2. The solid lines are a guide to 

the eyes. 

 

4.4 Conclusions 

Solid state reaction method under the stream of high purity Ar  has been employed for the 

synthesis of Mg1-xBexCNi3 (x = 0, 0.01, 0.05, 0.1, 0.15 and 0.2) , Mg1-xLixCNi3 (x = 0, 0.03, 0.05, 

0.1, and 0.2 ) and MgCxNi3 (x =1.5, 1.2, 1, 0.9, and 0.7) samples. All the samples were 

characterized by powder XRD to examine the phase purity and determination of lattice 

parameter. The basic superconductivity parameters in Be-and Li-doped samples were studied by 

magnetization and transport measurements, while only magnetization measurements were 

performed for N-doped samples as the pellets are not hard enough to cut into  bars. 
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All the samples formed a single phase with sharp X-ray diffraction peaks. A few impurity 

peaks, which correspond to un-reacted elemental Ni, were observed in XRD pattern of samples 

with concentration higher than x = 0.1 of Be and Li. No significant change in lattice parameter 

was observed in Be and Li substitutions. For C deficient samples, the lattice parameter decreased 

with decreasing the C content, while it increased after the heat treatment in flowing N2. The 

transition temperature Tc and upper critical field for Mg1-xBexCNi3 does not change with Be 

concentration, x. It is surprising that Tc is so robust up to 20 % Be substitution. No substantial 

change in Tc for Mg1-xLixCNi3 is observed. The upper critical field of Mg1-xLixCNi3 decreased 

initially and then increased with increasing in x. The enhancement of the upper critical field for 

Li-doped samples could be due to reduction of the mean free path. The negative curvature of the 

Hc2(T) curve over a wide range of temperature is a characteristic of conventional 

superconductivity.  The results of the study of Be-and Li-doped systems suggest Mg plays a 

small role in the superconductivity. 

As expected, the superconductivity was suppressed by the reduction of C content in 

MgCxNi3 the deficient samples.  No superconductivity was observed in MgC0.7Ni3. After the heat 

treatment of C deficient samples in the stream of N2 for a couple of hours, Tc was found to be 

increased slightly for  samples with x =1- 0.9. Furthermore, superconductivity appeared in 

MgC0.7Ni3. The results of the study of this system indicate the contribution of N in the 

superconductivity in MgCxNyNi3.      
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CHAPTER    5 

TRANSITION METAL DIBORIDES
*
 

5.1 Introduction 

Transition metal diborides with the simple AlB2 structure type have been studied since 

the late 1940s. These early works focused primarily on the mechanical properties of these 

materials, because they have high microhardnesses and are very refractory, making them useful 

in high temperature applications [1, 2, 3]. The transition metal diborides are also of interest, 

since they form an isostructural series that runs from Sc through Fe in the first row of transition 

metals. Thus, these materials offer a rare opportunity to study the variation in electronic 

properties within this single structure type as one move along the series. 

More recently, however, the diborides are being reinvestigated after the discovery of the 

MgB2 phase as an intermetallic superconductor with an exceptionally high-transition temperature 

near 40 K [4].  MgB2 and the transition metal diborides of Cr, Fe, Mn, Mo, Nb, Sc, Ta, Ti, V, W, 

Y, and Zr all form in the simple hexagonal AlB2 structure type. With the exception of Nb, none 

of the other transition metal diborides have been confirmed as superconductors [5]. There have 

been further attempts to prepare new superconducting borides. The reports are still controversial, 

with some authors reporting superconductivity in one compound and others finding the material 

normal [5]. This has been the case with TaB2, which was found to be a normal metal in earlier 

experiments (Leyarovska and Leyarovski 1979) and recently discovered to have a transition 

temperature of Tc = 9.5 K (Kaczorowski et al 2001b). A similar situation applies for ZrB2, found 

to be non-superconducting by Kaczowski et al (2001b) and superconducting at 5.5 K by 

Gasporov et al. [6].  

 

*portions reprinted by permission of IOP Publishing Limited. 
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BeB2 did not superconduct in stoichiometric form (Fener 2001), but superconductivity at 

0.7 K was found for the composition BeB2.75 [7].  NbxB2 and Mo0.96Zr0.04B2 are found to 

superconduct with Tc = 8.5 K and Tc = 5.9 K, respectively [8]. The non-stoichimetry 

requirement for optimized superconducting properties is frequently observed in low-Tc as well 

as in high-Tc superconductors.  

As explained earlier, the transport properties of the samples depend sensitively on their 

quality. Nice single crystals of some transition metal diborides were grown by metallic fluxes 

and their transport properties were measured. In the following sections there are reports on the 

synthesis and characterization of single crystals and polycrystalline samples of transition metal 

di-boride compounds CrB2, VB2, TiB2, TaB2, MoB2, OsB2, NbB2 and ZrB2 and doped systems.    

5.2 Cr1-xVxB2 

5.2.1 Introduction 

The theoretical predictions on the possibility of superconductivity in many compounds 

have been normally made on the basis of electronic structure, density of states and electron –

phonon interaction. There are some materials in which superconductivity appears by the 

modification of the above mentioned electronic properties due to external pressure and /or 

chemical doping.  It is believed that superconductivity in MgB2 is due to the electron-phonon 

interaction. Hole doping in AlB2-type transition metal diborides lowers the Fermi level to lower 

energies and hence the density of states increases at the Fermi level, which may result in the 

appearance of superconductivity due to the electron-phonon interaction [9]. In the case of some 

antiferromagnetic materials, the Neel temperature can be tuned by applying physical and/or 

chemical pressure. When the Neel temperature becomes zero at some critical value of pressure or 

doping concentration, a quantum mechanical phase transition occurs in the material and a 

superconducting phase can appear in the vicinity of a quantum critical point (QCP) [10]. 
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Different studies confirmed that CrB2 orders antiferromagnetically below 85 K, while VB2 

shows paramagnetic behavior over the entire temperature range [11]. There are no reports of 

superconcoductivity in either of these compounds. If VB2 does superconduct, then it is predicted 

to do so at temperatures <1 K [10]. Casting et al. reported that the antiferromagnetic ordering in 

CrB2 disappears at 23% V doping [14]. A series of doped samples Cr1-xVxB2 in the range of x = 

0 to x = 1 were synthesized and characterized to investigate the superconductivity and transport 

properties. The high quality of the samples has allowed us to experimentally determine the Fermi 

surface of VB2 and compare it to theoretical calculations [13]. An unusually large 

magnetoresistance is observed at low temperature in the highest quality crystals. 

5.2.2 Synthesis 

The single crystals of Cr1-xVxB2 ( x = 0, 0.1, 0.2, 0.4, 0.5, 0.97, and 1) were synthesized 

by a metallic flux technique using molten aluminum at high temperature. This is a standard 

synthesis method for refractory borides. The starting materials consisted of V and Cr turnings 

(99.7% CERAC, INC.), amorphous B powder (99.99% Alfa AESAR), and Al shot (99.999% 

Alfa AESAR). Stoichiometric amounts of V, Cr and B were placed in an aluminum oxide 

crucible with excess Al shot. The molar ratio of the starting elements to Al was 1:70. The 

crucible was then placed at the center of a vertical tube furnace and heated in an inert atmosphere 

of flowing ultrahigh purity argon gas. The samples were heated from room temperature to 1400 

˚C in 6 h and maintained at that temperature for 10 h, followed by cooling to 1000 ˚C at a rate of 

50 ˚C h
−1

. The slow cooling rate aids in the growth of larger single crystals. The furnace was shut 

off and allowed to cool to room temperature. The single crystals were extracted from the solid 

aluminum by etching it away with a hot solution of NaOH. The crystals were collected and their 

surfaces were cleaned by etching in very dilute nitric acid. Finally, the crystals were washed, 
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rinsed with ethanol, and dried. Shown in Figure 5.1 are the single crystals of VB2 grown both as 

rods and flat plates, with typical dimensions on the order of 1 mm × 1 mm× 4 mm.  

5.2.3 Characterization 

The structure and the phase purity of the samples were verified by single crystal and powder X-

ray diffraction.  A small crystal fragment is glued to a glass fiber and mounted on the goniometer 

of a Nonius Kappa CCD diffractometer equipped with Mo Kα radiation (  = 0.71073 Å). Data 

were collected at 290 K and 90 K.  

 

Structure of VB2

V -
B -

 

Fig: 5.1  Single crystals of VB2 (Top) and Fig: 5.2  AlB2 type- crystal structure of  VB2 (bottom). 
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The dc magnetic susceptibility was measured using the PPMS between 1.8 K and 10 K in 

a 20 Oe applied field to check for superconductivity.  Then, to investigate the change in the 

magnetic ordering temperature, the dc magnetic susceptibility was measured between 2 K and 

300K in 1000 Oe. We placed a bunch of single crystals in the ACMS sample holder, while an 

arc-melted sample was cut into a parallelepiped shape with dimensions: length = 3 mm, width = 

1.5 mm and thickness = 0.3 mm. It was taped in a plastic straw for magnetization.  

 

Fig: 5.3  Peak shift in powder X-ray pattern of polycrystalline  Cr1-xVxB2 samples  due to doping. 

 

Electrical resistivity and magneto-resistivity were measured using a standard 4-probe 

technique. 0.002-inch size platinum wires were attached to the sample using a conductive epoxy 

(Epotek H20E) for the current and voltage leads. Data were collected from 1.8 to 290 K and in 

magnetic fields up to 9 T using the PPMS system. The resistivity and magnetoresistivity were 

measured along the c-axis and b-axis of the single crystal of VB2 applying the magnetic field in 

the direction perpendicular to the axis. The magnetoresistance was measured  at 3 K, 100 K and 
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290 K from 0 to 9 T. Resistivity of a single crystal of VB2 was also measured at 9 T in tilted field 

from 0˚ to 90˚ with respect to c-axis using a rotating sample puck .  

dHvA measurements for single crystals of VB2 were performed at the National High 

Magnetic Field Laboratory, Los Alamos, New Mexico. Measurements were taken using pulsed 

magnetic fields extending to 55 T in the temperature range from 450 mK to 6 K using a plastic 

[3] He refrigerator.  

5.2.4  Results and Discussions 

Room temperature X-ray diffraction (XRD) patterns for the Cr1-xVxB2 with x = 0, 0.1, 

0.2, 0.4, 0.5, and 1 are shown in Figure 5.3.  All the samples crystallize in simple hexagonal 

AlB2-type structure with space group P6/mmm. With successive substitution of V at the Cr site in 

Cr1-xVxB2, the structure and space group remain the same, although all XRD peak positions are 

shifted towards lower angle side, indicating a increase in lattice parameters. 
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Fig: 5.4 Temperature dependence of normalized resistivity of arcmelted Cr1-xVxB2 samples. 
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The lattice parameters of single crystal of VB2, measured at the temperatures 298 K and 90 K are 

shown in table 2. 

The resistivity versus temperature plots of the Cr1-xVxB2 with x = 0, 0.1, 0.2, 0.4, 0.5, 

0.97, and 1 are shown in Figure 5.4. All samples show metallic behavior over the entire 

temperature range. As reported in [14], magnetic susceptibility and resistivity measurement data 

show that CrB2 has an antiferromagnetic transition around 85 K, and VB2 is paramagnetic over 

the entire range of temperature. The Neel temperature (TN) decreases with V concentration in 

Cr1-xVxB2, and antiferromagnetic ordering completely disappears with x higher than 0.23. 

Samples with x higher than 0.23 are found paramagnetic, and no superconducting transition is 

observed above 1.9 K.   
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Fig: 5.5  Magnetic susceptibilities of CrB2 (left axis) and  VB2 (right axis). 

 

The electrical resistivity data of the VB2 single crystals and polycrystalline samples measured 

from 290 K down to 1.9 K are shown in Figure 5.6. The samples are metallic, and no 

superconductivity was observed.  
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Fig: 5.6  Resistivity Ratios of a single crystal and an arc-melted sample of  VB2. 

 

The residual resistivity ratio (RRR), which is defined as RRR = ρ (290 K)/ρ (1.8K) varied from 

crystal to crystal, with typical values falling in the range of 100 –150. Samples with RRR values 

as high as 258 were measured, and indicate excellent sample quality. The RRR for 

polycrystalline sample is just 3.8. 

Typical fast Fourier transforms (FFTs) of the dHvA data for B ∕∕ [001] and B ∕∕ [010] 

giving the frequencies reported here are shown in Figure 5.7. The frequencies of the dHvA 

oscillations are proportional to extremal areas of the Fermi surface perpendicular to the applied 

field direction. From the temperature dependence of the amplitudes of the FFT peaks, the 

effective masses were obtained. Table 1 gives a summary of the measured frequencies and 

effective masses for each field orientation. From the band structure of VB2 calculated using the 

WIEN2K full potential LAPW band package, [11] using the GGA exchange correlation potential 

[15] it is observed that the density of states at the Fermi level are derived almost entirely from 
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the d-bands of vanadium, in contrast to the case in MgB2, where the high energy part of the 

valence band is made up predominantly of boron 2p states [13, 17].  

 

Fig: 5.7  FFTs of the dHvA data for B ∕∕ [010] and B ∕∕ [001]. The symbols are the names assigned 

to each fundamental frequency and some harmonics. 

 

Table 5.1 Measured dHvA frequencies and effective masses for single crystalline VB2. The left 

side of the table corresponds to B ∕∕ [001], and the right side corresponds to B ∕∕ [010]. 
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Calculations were performed using both the room temperature lattice constants and also the 

lattice constants measured at 90 K  [16]. The results of these calculations are presented in Figure 

5.8 for the bands and Figure 5.9 for the density of states.  

 

 

Fig: 5.8 The calculated electronic band structure of VB2 in the vicinity of the Fermi level. 

Designations on the horizontal axis represent high symmetry directions in the hexagonal 

Brillouin zone [13]. 

 

 

It is observed that because of the relatively flat bands near the Fermi level, some of the Fermi 

surface areas change substantially (15%) as the lattice constants are changed by less than 1%. 

For example, the empty band just above the Fermi level from Gamma to M reaches the M-point 

just above the Fermi level, resulting in a small hole pocket there. Changes in the lattice constants 

by less than 1% can result in this pocket of holes vanishing.  
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Fig: 5.9 The calculated total (solid line) and partial density of states for VB2. The large peak in 

the density of states near the Fermi level is almost entirely composed of V d-orbitals [13]. 

 

 

Fig: 5.10 Fermi surface of VB2. a) The main section of the Fermi surface using the lattice 

constants measured at 90 K which resembles a six-sided tree trunk. b) The other sections are 

nearly spherical pockets of electron states where one pair is located at qz = ±0.16π/c, and the 

other two are located on the upper face of the Brillouin zone at qz = π/c[13]. 
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Thus, while most of the overall topology of the Fermi surface agrees among the four 

calculations, the theoretical predictions of the Fermi surface shape are not in excellent agreement 

with the measured values [13]. The sensitivity of Fermi surface to lattice constant was not 

considered by other authors in their calculations done on VB2 using other basis sets [12, 18, 19]. 

 

Fig: 5.11 Dependence of isothermal magnetoresistance (MR) of VB2 on magnetic field at 

different temperature with H//a and I//c. The solid lines in the main panel and the two insets are 

fits proportional to H
2
. Upper inset: shows the values of  the MR measured at 3 K and 9 T versus 

the RRR value of several different single crystals and polycrystalline samples of VB2. Lower 

inset: shows the large anisotropy in the magnetorsistance of a single crystal of VB2 at 3 K for the 

field applied along the a-and c-axis [13]. 

 

The magnetotransport properties of VB2 are shown in Figure 5.11. All the transport 

properties measurements were made with the current parallel to the c-axis. The 

magnetoresistance (MR), which is defined as MR = [(ρ(H) − ρ(0))/ρ(0)], plotted versus applied 

magnetic field is shown at different temperatures for a single crystal of VB2 with a RRR value of 

258. At all temperatures, the magnetoresistance increases with applied field and decreases with 
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increasing temperature. At 3 K (right axis, Figure 5.11) the magnetoresistance at 9 T is unusually 

large (∼1100%) and shows no tendency toward saturation. In general, classical theory predicts 

that the high field transverse magnetoresistance of a normal metal depends on the Fermi surface 

topology [20]. The magnetoresistance should saturate at high fields for closed orbits, or continue 

to increase as H
2 

for open orbits. The solid lines in the main panel of Figure 5.11 are quadratic 

fits to the data, showing that the MR does indeed increase as H
2
 up to a field of 9 T, suggesting 

open orbits for the field applied along the a-axis. The lower inset in Figure 5.11 demonstrates the 

large anisotropy in the magnetotransport for a single crystal of VB2 at 3 K. The quadratic field 

dependence observed in the MR for H ∕∕ a is not observed for H ∕∕ c, but a much weaker field 

dependence occurs. This is also consistent with the calculated Fermi surface. The calculation 

indicates that for a field in the [100] direction, an open orbit exists that runs along the trunk of 

the Fermi surface shown in Figure 5.10. For the [110], or b direction, this open orbit is absent. 

Any disorder in the sample that resulted in 30˚ twins would produce a mixture of open and 

closed orbits for electrons moving along the trunk. This may well explain the large, unsaturated 

magnetoresistance observed in these samples. There are six closed orbits for the magnetic fields 

aligned along the (001) direction. One small hole orbit and another larger electron orbit are found 

in the qz = 0 plane, surrounding the K-point. This larger one gives rise to the high frequency 

dHvA signal seen in the experiment. In addition to these orbits, there is an electron orbit at qz = 

±0.16π/c, a hole orbit derived from the same band that gives rise to the trunk like piece of the 

Fermi surface at qz = π/c, and an electron orbit at qz = π/c (Figure 5.10(b)). The areas and 

frequencies found for these surfaces for each of the four calculations are listed in table 2. 

From Figure 5.10(a) it is also apparent that the tubular structure on each side of the main part of 

the Fermi surface will give a dHvA signal at a field about 30◦ above and below the ab plane and 

that the frequency dependence will vary as 1/ cos θ, where θ is the angle measured form the tube 
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direction. This would confirm the general features of the Fermi surface that we are seeing. The 

upper inset of Figure 5.11 demonstrates the sensitivity of the MR to the quality of the samples. 

Generally, a larger RRR value indicates higher crystal quality. Here, the value of the MR 

measured at 3 K and 9 T is plotted versus the RRR value for several different single crystals of 

VB2. The size of the MR increases dramatically with the RRR value. The solid line in the inset 

represents the following fit to the data: MR = α (RRR) [4], where α = 1.65 × 10
−4

.  

Table 5.2 Calculated frequencies with magnetic field in different directions for experimentally 

determined lattice constants of VB2 (columns 1,2, and 4) and for the theoretically determined 

equilibrium lattice constants (column 3). 

 

 

In many metals the MR behavior is known to follow Kohler‟s rule i.e. ρ/ρ(0) = f 

(H/ρ(0)) [21]. Attempts to show that Kohler‟s rule is obeyed were inconclusive due to the scatter 

in the data at low fields. However, the correlation that exists between the MR and the RRR 

values suggest this to be the case. Based on Kohler‟s rule, the isothermal magnetoresistance 

should obey the following: ρ/ρ0 ∼ (H/ρ0)
2
. For metals, ρ(0) ∼ (1/l), where l is the mean free 

path. Thus, the magnetoresistance should follow: ρ/ρ0 ∼ (Hl)
2
. The RRR value is proportional 
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to the mean free path (l) at low temperatures, so that ρ/ρ0 ∼ (RRR)
2
, which is the behavior we 

observe (Figure 5.11 inset). 
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Fig: 5.12 Dependence of magnetoresistance (MR) of VB2 on the direction of the applied 

magnetic field 9 T.   

 

As shown in Figure 5.12, anisotropy in the single crystal of VB2 is evident by the 

variation of the magnetoresistivity of the crystal with direction of the applied magnetic field with 

respect to c-axis measured at 9 T. 

5.3 Other Transition Metal Diborides 

Contradictory theoretical and experimental reports on superconductivity of some 

transition metal diborides persuaded me to continue the investigation of the superconductivity on 

those compounds and doped systems. Polycrystalline samples of TixZr1-xB2, TiB2-xCx and VB2-

xCx were arc-melted and their transport properties were measured. Very nice single crystals of       

V1-xNbxB2 were grown by Al flux following the same procedure used to grow VB2. Structure and 
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phase purity of the samples were verified by powder X-ray diffraction. A systematic peak shift in 

the XRD pattern and the systematic change in electrical resistivity of each series with respect to 

x confirm the effective substitution. No superconductivity is observed in any of the compounds.  

However, magnetoresistances of the TixZr1-xB2 system are found to be very interesting. 

Magnetoresistances of   TixZr1-xB2 for x = 0, 0.01, 0.03, 0.05, 0.07and 0.1 are shown in Figure 

5.13. For the 5 % Zr doped sample the MR is around 30 % at 290 K, which is higher than that of 

a normal metal at room temperature, so it will be interesting to further investigate the 

magnetoresistance of this material. 
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Fig: 5.13  Field dependence of magnetoresistance (MR) of Ti1-xZrxB2 samples at 290K.  

5.4 Conclusions 

The measurements of XRD, magnetization and resistivity of Cr1-xVB2 x = 0, 0.1, 0.2, 0.4, 

0.5, 0.97, and 1 are presented. The Neel temperature of CrB2 was tuned to zero by doping V but 

no superconductivity was observed above 1.9 K.  I have succeeded in growing very high quality 
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single crystals of VB2 and experimentally determined the Fermi surface via dHvA 

measurements. Some of the crystals had a RRR value in excess of 250. Electronic structure 

calculations confirm that the density of states near the Fermi surface is dominated by vanadium 

d-orbitals, unlike the case of MgB2. Magnetotransport measurements show a very large 

magnetoresistance at low temperatures which scales quadratically with the residual resistivity 

ratio. Given the large sensitivity of the Fermi surface topology to the lattice constants, I am 

motivated in future work to investigate the magnetotransport properties of VB2 under pressure. 

The literature and the experience in synthesis and characterization of a lot of transition metal 

diborides show that the physical properties of the compounds depend clearly on the purity of 

samples. Single crystals of some transition metal diborides can be grown by RF-heated floating-

zone method in our lab. 
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CHAPTER  6 

FUTURE WORK 

The substantial enhancement of the superconducting transition temperature, Tc, and the 

upper critical field, Hc2, of Mo3Sb7 in the form of wires, thin films and coatings in microfibers 

was observed.  Experimental results that spin fluctuations is reduced in the low dimensional 

forms with higher Tc. I speculate that the origin of Tc enhancement is the reduced spin 

fluctuations due to the stress [1,2,3,4,5]. Further experiments will be necessary to strengthen 

these speculations. On the other hand, the 60-nm thick film of Mo3Sb7 shows 61% MR and a 

non-uniform field-dependent Hall voltage at low temperature. It will be interesting to investigate 

the behavior of the MR and Hall voltage (also the carrier density) with the variation of thickness 

of the film. This may provide additional base to understand the origin of high Tc in this system.     

To have samples which are free from artificial effects due to strain or impurities, we need 

single crystals to study the anisotropic, or directionally dependent properties of the system. The 

synthesis of polycrystalline MgCNi3 requires an excess of both Mg and C to compensate for Mg 

evaporation and to ensure carbon incorporation. Therefore, controlled doping at both the Mg site 

and the C site has been found difficult. Due to the high volatility of Mg, the growth of single 

crystals of MgCNi3 and the doped systems is difficult. Recentlty, Hyun-Sook Lee et al. have 

reported the synthesis of MgCNi3 single crystals under high-pressure 4.25 GPa and 1200 
o
C[6].  

The crystals are in few hundred micrometers in size [6].  

I have been exploring and designing an experimental set up to grow single crystals by a 

self flux technique in the vertical tube furnace in our lab. As explained in chapter 4 the starting 

materials Mg, C and Ni in stoichiometric ratio are put in a 10-mL alumina crucible with a lid.  Ni 

metal itself is used here as flux. The crucible is sealed in a Ta crucible of a larger size in an Ar 

atmosphere in a glove box. The sealed crucible is placed inside the vertical tube furnace and 
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heated under flowing Ar. The heat treatment is as follows. The first set point temperature 1400 

o
C is reached at 5h and then heated in this temperature for 25 h. The sample is then cooled down 

to 650 
o
C at the rate 50 

o
C per hour and the furnace is shut down. The single crystals are then 

extracted out dissolving the flux in a mixture of weak HNO3 and HCl. The profiles tested thus far 

have failed to produce crystals. 

The discovery of superconductivity in MgB2, MgCNi3 and Mg10Ir19B16 motivated a 

search for new superconducting materials containing light elements such as magnesium, boron, 

and carbon [7,8,9]. All three of these Mg intermetallic superconductors contain refractory 

elements like boron and carbon with different crystal structures. This reflects the future of the 

research of these systems. As I explained in chapter 1, I synthesized a few of existing 

intermetallic compounds of magnesium and checked for the superconductivity by low 

temperature susceptibility at the magnetic field of 20 Oe.  Additionally, the exploration of new 

compounds of magnesium is also in progress. Since a few of them have shown some signature of 

superconductivity, these materials will be worthy of exploration. 

Conventional electronics utilize semiconductor devices, such as silicon-based integrated 

circuits, that rely on the manipulation of the charge on the conduction electrons.  Information 

storage technology, on the other hand, is achieved by magnetic recording using the spins of the 

electrons in ferromagnetic metals.  More recently, the emerging field of “spintronics” [10] is 

attempting to use both attributes of the electron – the charge and spin.  A successful fusion of 

these technologies would enhance device performance and allow the capability of mass data 

storage and information processing simultaneously. 

One class of boride compounds that shows promise as a potential spintronic material is 

the system MB6, where M is an alkaline earth metal.  These compounds form in a simple cubic 

CsCl-type structure, where the metal atom sits at each corner of the cube, and a boron octahedron 
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occupies the center.  Until recently, however, much less has been known about the divalent 

alkaline earth hexaborides (CaB6, SrB6, BaB6).  One would naively expect these compounds to 

be insulators based on simple electron counting, however, electronic structure calculations have 

predicted both insulating and semimetallic behavior for these materials [11-12]. Therefore, 

experimentally, we might expect vacancies and foreign-atom additions to alter significantly the 

transport properties of the divalent hexaborides even for very small doping levels.   

Young et al [13] pointed out that the largest moments were found for the same critical 

concentration xc in trivalent La-, Ce- and Sm- doped CaB6 and SrB6, where each dopant ion 

introduces a single electron. A spontaneous magnetization develops whose ferromagnetic 

ordering temperature is incredibly high (~600 - 1000 K) [13,14].  The saturation moment is small 

and sensitive to the La concentration, peaking at ~0.1 B/mol-La for the 0.5% doping level.  This 

is remarkable when one considers that none of the constituent elements in these materials is 

associated with a local magnetic moment, i.e. no partially filled d- or f-orbitals.  Thus, one is led 

to believe that the ferromagnetism is due to, at least a partial, polarization at low carrier density 

of the Fermi surface, i.e. the itinerant charge carriers.  The discovery of the high-Tc weak 

ferromagnetism has fueled theoretical interest, with several descriptions emerging. In spite of 

much theoretical and experimental effort, the origin of the exotic magnetic properties is still 

under much debate.  The suggestion that the high-Tc weak ferromagnetism is of an extrinsic 

origin, resulting from iron impurities incorporated into the samples during synthesis [15] 

contradicts with experimental evidence. More recently it has been suggested that the 

ferromagnetism is driven by intrinsic defects [16-17], either defects on the Ca site or in the boron 

sublattice.    

Irrespective of the origin of the ferromagnetism in AB6, one now has a carrier-induced 

ferromagnetic metal with an extremely high ordering temperature.  As pointed out by Tromp 
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[12] et al, it should be possible to inject a spin-polarized current from the doped material (A1-

xLaxB6) into the undoped material and study the temperature-dependent spin dynamics.  The 

incompatibility of crystal structures [18] in a junction would not be a problem in case of  pure 

and doped hexaborides, given that the materials are isostructural and have nearly identical lattice 

constants.  Furthermore, if a p-type hexaboride were also found to be ferromagnetic (for 

example, A1-xKxB6), then it would be possible to make the spin-analogues of bipolar devices 

[12].  The exploration of the materials aspect of this problem, starting initially with the synthesis 

of bulk single crystals in the future is interesting.  p-type doping in AB6 with potassium has to be 

fully explored, as will the correlation between the doping level and the saturation moment. All of 

the hexaboride single crystals could be grown from molten aluminum flux after a borothermal 

reduction of the high-purity metal oxides.   

In addition to the alkaline earth hexaborides mentioned above, the alkali earth hexaboride 

KB6, the new cubic carbaborides of potassium (KB5C), and their doped variants also have the 

potential to be useful in applications.  These systems are isostructural to the alkaline earth 

hexaborides, and KB5C is isoelectronic to CaB6 [19].  Preliminary electrical resistivity 

measurements on pressed powder samples of KB5C indicate that this material is a small band gap 

semiconductor (Eg = 0.19 eV) [19].  This result supports the Longuet-Higgins and Roberts [20] 

band structure rule, which states that the boron octahedron in the hexaboride crystal structure 

requires 20 electrons for a closed-shell configuration.  The structural characterization and limited 

physical properties measurements on these alkali metal borides have been investigated only on 

powder samples [19,21].  As part of future research, I will attempt to synthesize single crystals of 

these materials and carefully explore their magnetic and transport properties, especially 

chemically doped samples to see if ferromagnetism can be induced.  Given their similar 
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structural and electronic characteristics to the hexaborides, we feel these materials are good 

candidates for high-Tc ferromagnetism.  
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CHAPTER  7 

CONCLUSIONS 

Mo3Sb7 and MoN were successfully synthesized in the form of wires, thin films and 

microfibers by exposing them to either Sb or N at various temperatures for different periods to 

optimize and explore the superconducting and other physical properties. Similarly, a series of 

MgCNi3 with the substitution of Be and Li for Mg and N for C were prepared by solid state 

reaction to understand the role of Mg and C in the superconductivity in the system. More than 

half a dozen of AlB2-type transition metal diborides and doped samples were prepared by various 

methods. Some of them grew as nice single crystals and their high quality allowed us to measure 

the properties which have rarely been reported. Most of them were arc-melted which also offers 

the opportunity to investigate their physical properties quickly.  The synthesized materials were 

extensively characterized using different techniques such as XRD, SEM, electrical and magnetic 

transport and magnetic susceptibility measurements. The aforementioned techniques clearly 

elucidated the single phase and excellent quality with the new results.  

The research presented in this thesis is classified within superconductivity and magnetism 

in condensed matter physics. Nowadays, in the field of superconductivity, intermetallic 

superconductors are the focus of condensed matter physics because of their stability and practical 

applications. In this race, superconducting wires and fibers are a head of all in terms of 

applications. For examples NbTi, Nb3Sn and MgB2 wires are being used in high magnetic field 

applications like MRI.  Actually, the success in fabrication and characterization of Mo3Sb7-and 

MoN-coated C microfibers has provided me the opportunity to understand the importance of the 

sample geometry in the study of superconductivity. 

I found the strong dependence of the synthesis route adopted on to prepare a material on 

its chemical properties. Arc melting is suitable for the materials with high melting point but low 

http://superconductors.org/Uses.htm
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vapor pressure. This technique offers the opportunity for the quick preparation of the sample. 

Solid state methods are adopted for the compounds made of the elements with high vapor 

pressure and the elements with high melting point. MgCNi3 can be taken as the best example. 

Single crystal growth is the best way of producing a high purity sample. Metallic flux and vapor 

transport are two novel synthetic routes available in our labs for large and high quality single 

crystal growth. We explored and applied the efficient methods to synthesize Mo based 

compounds in the form of thin wires, films and coatings in microfibers. The experimental details 

regarding the structural, electrical and magnetic characterizations of the synthesized single 

crystals, powders, wires, thin films and coatings in fibers using X-ray Diffraction (XRD), 

Scanning Electron Microscopy (SEM), electrical and magneto transport measurements and 

magnetic susceptibility measurements are also elaborated in chapter 2. 

XRD confirmed the single phase of the cubic Ir3Ge7-type Mo3Sb7 and hexagonal -MoN. 

SEM of the Mo3Sb7 samples clearly revealed the expansion due to the reaction of Mo with Sb. 

Mo3Sb7 thin wire (13 μm in diameter) and microfiber obtained by the heat treatment at 900 
o
C 

for 1 h and 20 minutes exhibit the highest Tc ~ 8 K which is substantially higher than the 2.2 K 

that is reported for the single crystal and powder of Mo3Sb7.  60-nm thick Mo3Sb7 films 

produced by the heat treatment at 900 
o
C for 30 minutes also has a Tc close to 8 K. The Hc2 = 

11.2 T for the Mo3Sb7 thin wire is the highest among all the Mo3Sb7 samples. The suppression of 

the spin fluctuations in Mo3Sb7 is evident by the absence of a parabolic dependence of magnetic 

susceptibility at 1 T. MoN wires, thin films and coated microfibers obtained by heat treatment at 

900 
o
C for 2 h have Tc ~13 K which is consistent with the values reported in literature. To the 

best my knowledge, this is the first report on the magnetotransport and critical current 

measurements for MoN and Mo3Sb7 in these forms. We show that though the scaling behavior 

near the transition temperature, Tc, is well described by a Ginzburg-Landau form (3) in both 
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systems, the overall critical current densities in the Mo3Sb7 fibers is an order of magnitude lower 

than would be expected from its transition temperature. We speculate that this may be a 

ramification of anomalously large spin fluctuation amplitude. As for the critical temperatures, it 

is known for a long time that spin fluctuations decrease Tc considerably in some 

superconductors. The increase in Tc could also be due to a strain effect because SEM clearly 

shows the expansion of the Mo3Sb7 wire by a factor of four. Long coherence lengths in these 

kinds of wires and fibers eliminates the problems with weak links, which are instead typically 

present in „high Tc‟ materials, and suggests the possibility of achieving a remarkably high critical 

current density if proper technological treatments are adopted. 

All of the Be- and Li-doped samples were obtained in the form of hard pellets without 

heating for an additional 2-3 h, unlike reported in the literature. The XRD results confirmed the 

single cubic phases (a 3.805  0.005 Å) of the Be- and Li-substituted samples. The systematic 

peak shift on 2  indicates the effect of the substitution for Mg. The encouraging result is the 

absence of oxides in Li-doped samples too. The sharp superconducting transitions in both the 

magnetic susceptibility and the resistivity data for x = 0 sample indicate the good quality of the 

samples. The Tc ~ 7.2 K and Hc2(0) ~ 11.2 T are  consistent with the values reported for pristine 

MgCNi3. The Be substitution for Mg in MgCNi3 has not shown any influential effect on the 

superconducting properties such Tc and Hc2. No substantial change in Tc for Mg1-xLixCNi3 is 

observed. The upper critical field of Mg1-xLixCNi3  for x > 0.1 is higher than that of pure 

MgCNi3. The enhancement of the Hc2 for Li-doped samples could be due to reduction of the 

mean free path which can be realized from the increase in resistivity with increase in x. To this 

point, electronic structure calculation of Be- and Li- substitution for Mg in MgCNi3 may help to 

analyze effects of the substitution. In conclusion, the results suggest a small role of Mg in the 

superconductivity in this system. The reappearance of the superconductivity in the carbon 
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deficient samples MgCxNyNi3 obtained by the heat treatment of MgCxNi3 in the stream of N at 

900 
o
C for 2 h is an indication of the contribution of N to the superconductivity in MgCxNyNi3. 

This is verified by the results of the characterization such as XRD and magnetic susceptibility 

measurements of the samples before and after the reaction.   

We can conclude that high quality single crystals of VB2 and V1-xTxB2, where T stands 

for transition metals, were successfully grown by molten Al flux. Polycrystalline samples of Cr1-

xVxB2 for x = 0 to 1 were arc-melted. The single phase and the incorporation of the doped 

elements in the samples were confirmed by the result of XRD. CrB2 shows the antiferromagnetic 

transition around 86 K, while VB2 is paramagnetic above 1.9 K. The results are consistent with 

the previous reports.  The Neel temperature could be tuned to zero by increasing the value of x 

but no superconductivity is observed.  We were successful in measuring the dHvA frequencies to 

determine the Fermi surface and effective masses for the single crystals of VB2 with RRR values 

as high as 258. The experimentally determined Fermi surfaces are in good qualitative agreement 

with the theoretical calculations. In the highest quality crystals, an unusually large 

magnetoresistance MR ~ 1100 % is observed at low temperature. The behavior of MR  H
2
 

indicates open orbits, which is consistent with the calculated Fermi surface for H//c. The 

parabolic increase in MR with increasing RRR reflects the importance of the quality of samples. 

The process we adopted here to grow single crystals could be used for the growth of single 

crystals of the other transition metal diborides.  

This thesis has laid a strong foundation for the development of a novel synthesis route 

and guidelines in the search of new superconductors as well as in understanding the origin and 

nature of existing superconductors. There are many compounds which have the potential to be 

high Tc superconductors, and the effort for the development/upgrading of the synthesis 

techniques to produce them are in progress.  
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