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Abstract

Advances in the construction of realistic internucleon interactions together with the
advent of massively parallel computers have resulted in a successful utilization of the
ab initio approaches to the investigation of properties of light nuclei. The no-core
shell model is a prominent ab initio method that yields a good description of the
low-lying states in few-nucleon systems as well as in more complex p-shell nuclei.
Nevertheless, its applicability is limited by the rapid growth of the many-body basis
with larger model spaces and increasing number of nucleons.

To extend the scope of the ab initio no-core shell model to heavier nuclei and
larger model spaces, we analyze the possibility of augmenting the spherical har-
monic oscillator basis with symplectic Sp(3,R) symmetry-adapted configurations
of the symplectic shell model which describe naturally the monopole-quadrupole
vibrational and rotational modes, and also partially incorporate a-cluster correla-
tions. In our study we project low-lying states of ?C and 'O determined by the
no-core shell model with the JISP16 realistic interaction onto Sp(3,R)-symmetric
model space that is free of spurious center-of-mass excitations. The eigenstates un-
der investigation are found to project at the 85-90% level onto a few of the most
deformed symplectic basis states that span only a small fraction (=~ 0.001%) of
the full model space. The results are nearly independent of whether the bare or
renormalized effective interactions are used in the analysis.

The outcome of this study points to the relevance of the symplectic extension
of the ab initio no-core shell model. Further, it serves to reaffirm the Elliott SU(3)
model upon which the symplectic scheme is built. While extensions of this work
are clearly going to be required if the theory is to become a model of choice for
nuclear structure calculations, these early results seem to suggest that there may be
simplicity within the complexity of nuclear structure that has heretofore not been
fully appreciated. As follow-on work to what is reported in this thesis, we expect to
develop a stand alone shell-model code that builds upon the underlying symmetries
of the symplectic model.
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Chapter 1

Introduction

The long-standing goal of theoretical nuclear physics is to describe properties of
nuclei starting from the elementary interactions among the constituent nucleons.
A solution to this problem represents a formidable challenge due to the intricate
nature of the strong force that precludes perturbative treatments, and due to the
complexities of the strongly interacting quantum many-particle systems that exhibit
single-particle as well as collective and clustering correlations. Nevertheless, the last
decade has witnessed remarkable progress toward this arduous goal. Recently de-
veloped realistic interactions, such as J-matrix inverse scattering potentials [1, 2]
and modern two- and three-nucleon potentials derived from meson exchange theory
[3, 4, 5, 6] or by using chiral effective field theory [7, 8|, succeed in modeling the
essence of the strong interaction. At the same time, a dramatic increase in perfor-
mance achieved by highly parallel computing systems has enabled the performance
of large-scale ab initio nuclear structure calculations for light nuclei.

The ab initio methods such as no-core shell model [9], Green’s function Monte
Carlo [10, 11], and coupled cluster method [12], integrate the modern realistic inter-
actions with cutting-edge numerical algorithms to reproduce characteristic features
of light nuclei. Besides bridging the gap between quantum chromodynamics (QCD)
and measured properties of light nuclei, the ab initio approaches hold promise to
have a tremendous impact on advancing the present frontiers in multiple branches
of physics. Realistic nuclear wave functions are crucial for gaining an understanding
of astrophysical processes involving exotic and unstable nuclei, the study of elec-
tromagnetic, weak, and particle decay modes, as well as for testing fundamental
symmetries in nature and probing physics beyond the standard model.

While the applicability of the coupled cluster method is limited to closed-
shell nuclei and the Green’s function Monte Carlo method is capable of solving
the nuclear many-body problem with realistic interactions for systems with A <
12 nucleons, the no-core shell model (NCSM) can obtain bound-state solution to
the problem of A < 16 interacting nucleons with no limitations on the nature of
the nucleon-nucleon or three-nucleon interaction. The NCSM has achieved a good
description of the low-lying states in few-nucleon systems [13, 14] as well as in more
complex p-shell nuclei [9, 15, 16, 17, 18]. The main limitation of this method is
inherently coupled with the use of a many-body basis constructed from spherical



harmonic oscillator single-particle states, whose size, and hence the computational
complexity and associated storage requirements, grows combinatorially with the
number of nucleons and with the number of allowed single-particle states. The
NCSM is therefore currently not capable of modeling sd-shell nuclei, and often
falls short of accurately reproducing characteristic features and physical observables
in p-shell nuclei, as, for example, enhanced B(E2) transitions strengths or states
dominated by multiple-particle-multiple-hole configurations.

With the goal of providing a unified description of phenomena ranging from
single-particle effects to monopole-quadrupole vibrational and rotational modes, as
well as clustering correlations, we consider the possibility of extending the many-
body basis of the NCSM beyond its current limits through symplectic Sp(3,R)
symmetry-adapted basis of the symplectic shell model [19, 20, 21]. This approach
is based on recognition that the choice of coordinates is often crucial in quantum
mechanical calculations, and that in order to reduce the size of a model space, an ap-
propriate choice of basis should reflect symmetries inherent the system under study.
The symplectic extension of the no-core shell-model (Sp-NCSM) [22, 23, 24, 25] with
realistic interactions and with basis spanning multiple Sp(3,R) irreducible represen-
tations (irreps) will allow one to account for nuclear collective correlations beyond
the current computational limits, which are required to realize experimentally mea-
sured B(E2) values without an effective charge and to accommodate highly deformed
spatial configurations. The objective of this dissertation is to perform a proof-of-
principle study of the Sp-NCSM approach by analyzing realistic wave functions
obtained by the ab initio NCSM with a modern realistic internucleon interaction
for the presence of an underlying symplectic Sp(3,R) D SU(3) D SO(3) symmetry,
which is not a priori imposed on the internucleon interaction.

In Chapter 2, we give a short review of the independent particle model and
the interacting shell model as these two models constitute pillars underlying the
NCSM. In particular, we introduce the three very important components that the
interacting shell model provides to the NCSM framework: the spherical harmonic
oscillator (m-scheme) basis, powerful techniques based on the formalism of the sec-
ond quantization, and the Lanczos algorithm. Chapter 3 gives an outline of the ab
initio NCSM method. We first review the modern two- and three-nucleon realistic
interactions. Next we describe the construction of an effective interaction from a
bare realistic potential by means of non-unitary and unitary similarity transforma-
tions. The cluster approximation to an effective interaction is also discussed. We
conclude this chapter by a brief discussion of applications of microscopic nuclear
wave functions, which can be obtained by the NCSM, in various fields of physics.
In Chapter 4 we summarize the symplectic shell model, its underlying symmetries,
and relations to various microscopic models of the nuclear collective motion. In
particular, the Elliott SU(3) model of nuclear rotations is reviewed and a classifica-
tion scheme for many-particle states using SU(3) quantum numbers is introduced.
Next we describe construction of a translationally invariant basis of a Sp(3, R) irrep.
The chapter is concluded by a short discussion of relationships between symplectic
and cluster model wave functions. In order to facilitate symmetry identification in
NCSM wave functions, we need to expand symplectic basis states in m-scheme basis.



Chapter 5 describes methods utilized to accomplish this task, including the parallel
implementation of the algorithm. The final Chapter 6 summarizes our findings.



Chapter 2
Nuclear Shell Models

The nucleus does not appear to be a system for which the concept of a shell model,
which has proven to be so successful in the atoms, could be of much relevance. A sys-
tem of strongly interacting protons and neutrons, with no preferential central point
other than the center-of-mass, intuitively lacks a dominating mean field analogous to
the Coulomb field of the positively charged nucleus, which suffices to explain many
features of atoms without recourse to the effects of the electron-electron interaction.
Other descriptions of the nucleus, e.g. charged liquid drop, appear to be more natu-
ral. Nevertheless, despite early considerations to the contrary, shell structure clearly
manifests itself in nuclei through regularities in various nuclear properties, especially
those associated with specific number of protons and neutrons, the so-called “magic
numbers”.

The experimental evidence for the shell structure initiated development of
nuclear models based on the mean field assumption. In this chapter we follow
the development of these models from the independent particle model through the
interacting shell model, as these simple models are underpinning the more advanced
ab initio approaches to nuclear structure such as the symplectic no-core shell model
(Sp-NCSM) that is the focus of this work.

2.1 Independent Particle Model

The “magic numbers” were explained by Mayer [26] and by Axel, Jensen, and
Suess [27] utilizing the independent particle model (IPM) framework. The IPM
assumes that, to first order, each nucleon is moving in an independent way in the
average potential field produced by the forces of the remaining nucleons. In this
approximation a system of strongly interacting fermions becomes a system of non-
interacting fermions exposed to an external field. The IPM Hamiltonian is thus a
sum of the single-particle Hamiltonian operators

A A

Hy =314+ U] =3 ho (i), (2.1)

=1 =1



where T; denotes kinetic energy of the ¢th nucleon. The solution to the corresponding
eigenvalue problem is noticeably simple. Each eigenstate of the Hamiltonian (2.1)
is a product of the single-particle wave functions, p,(x), obtained by solving one-
nucleon Schrodinger equation

howa(X) = €atpa(x). (2.2)

Here, a denotes a set of quantum numbers describing the single-particle state, x
signifies the spatial coordinates and the spin degree of freedom. The mean field
U(r) that reproduces the nuclear magic numbers consist of a spherical harmonic
oscillator term, a significant spin-orbit term and a term proportional to [%: !

U(r) = shwr® — Cl-s — DI?, (2.3)
where the constant C' (D) characterizes the strength of the spin-orbit (orbit-orbit)
interaction. The single-particle wave functions

J
nm (%)= (0.0l m) = Ror) |1, 0) x x| 24

m

constitute a complete solution of the corresponding single-nucleon Schrodinger equa-
tion. Here, R,; () denotes the radial wave function, the spherical harmonics Y},,,, (6, ¢)
and the eigenspinor y 1 o, are coupled to the total angular momentum j and its pro-

2
jection m = m; + 0. The quantum numbers describing the single-particle state are

as follows:

e The major harmonic oscillator shell number, n = 0,1,2,3,..., called s, p,
sd, pf ... respectively, denotes the number of the harmonic oscillator quanta
carried by a given single-particle state.

e [=nmn—2,...,1o0r0 is the orbital angular momentum quantum number,
e j=1+1/2is the total angular momentum,

e m=7j,5—1,...,—7 is the third projection of the total angular momentum j.

2.1.1 Many-Nucleon Configurations

The single-particle wave functions ¢, (x) form an orthonormal and complete ba-
sis of the single-particle Hilbert space. The A-nucleon states are constructed as
products of the individual nucleon wave functions such that the former are anti-
symmetric under the interchange of any pair of protons or neutrons in order to
satisfy the Fermi-Dirac statistic of identical fermions. It is convenient to express

IFor the sake of simplicity we will generally refrain from using a caret above a symbol to denote
an operator. We will only use the caret to distinguish an operator from its associated eigenvalue
in situations where the two might otherwise be confused with each other, as, for example, L and
L.



a many-fermion wave function as a Slater determinant, which assures the proper
antisymmetrization on the outset, e.g. a Z-proton wave function becomes,

Pm (Xl) Py (XQ) cee Pm (XZ)
@Z<X1, . ,Xz) _ \/% Py ;(Xl) Pra E(X2) " Py (EXZ) : (25)
Pry (Xl) Pry (XQ) s Py (XZ)

where m; and x; denote quantum numbers and the spatial coordinates of the ith
proton, respectively. The A-nucleon wave functions is the product of one Slater
determinant for protons and another one for neutrons

\IJA(Xla"wXZ?yl?"'ayN) = CDZ(Xlw"7XZ)(I>N(Y1>"'7YN)' (26)

An alternative to this representation, without any difference in physical con-
tent, is the isospin formalism in which protons and neutrons are considered to form
two isospin states of a generic fermionic nuclear particle, the nucleon. As a conse-
quence, the A-nucleon wave function must be antisymmetric under the interchange
of any two nucleons, and hence the wave function is written as a single Slater de-
terminant.

2.1.2 Validity of the Independent Particle Model

The eigenstates of the Hamiltonian (2.1) are simplistic. Being the wave functions
of the form (2.6), they cannot describe realistic nuclear states which are superpo-
sitions of rather large number of the many-body configurations. For instance, the
nuclear ground state, obtained in the IPM framework, is constructed directly by
filling the lowest lying single-particle orbitals. This turns out to be a reasonable
approximation for closed-shell nuclei, where all nucleons are coupled to zero total
angular momentum, and also for the “closed-shell + 1 nucleon” nuclei, where the
single-particle effects predominate. As the number of the protons and the neutrons
depart from the magic numbers, it becomes necessary to include the internucleon
residual interaction to lift degeneracies inherent to the filling orbits beyond a last
closed shell with more than one nucleon. As a consequence, one has to abandon
the independent particle picture in order to move beyond the mean field toward a
more complex framework, the interacting shell model, that enables the modeling of
a system of mutually interacting nucleons.

2.2 Interacting Shell Model

The ultimate ambition of the nuclear structure physics is to find exact solution to the
problem of A strongly interacting point-like non-relativistic nucleons. The general
translationally invariant Hamiltonian for this problem, if one considers two-body
nucleon-nucleon interactions only, can be written as

R A R
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where the first term is the relative kinetic energy operator, and Vj; is the nucleon-
nucleon interaction. It is important to note, however, that the realistic internucleon
interaction is known to have three- and even four-body terms [28, 29, 30, 31]. We
will not, for the purposes of this work, address the fundamental problem of finding
an appropriate realistic internucleon interaction, but rather simply assume that a
realistic interaction is given.

It is impossible to find the exact solution to the given many-body Schrodinger
equation in the full infinite Hilbert space. The interacting shell model (SM) [32, 33]
reduces the full problem into a tractable one by splitting nucleons into two groups, as
schematically depicted in Fig. 2.1. The valence nucleons interacting via a two-body
force are restricted to occupy only the valence orbitals, while the inactive nucleons
in the closed shells constitute an inert code. This choice of the model space reflects
a basic physical fact: the most significant components of the low-lying nuclear states
can be accounted for by many-body states involving the excitations of particles in
a few orbitals around the Fermi level [34]. Another simplification follows from the
fact that the valence space is free of center-of-mass spurious excitations [35]. On
the other hand, the valence space can describe only a limited number of low-lying
states of the same parity. Particularly, it can not account for states with a multi-
particle-multi-hole structure occurring at low energies, as, for example, states with
a pronounced a-cluster structure. Furthermore, due to the restricted number of
active nucleons and small model space, one has to introduce “effective” electric and
magnetic charges to obtain experimental electromagnetic transition rates.

Similarly, one has to transform the “bare” Hamiltonian (2.7) into an effective
one that takes into account effects of excluded configurations and inactive nucleons,

HSM = Z ho(Z) + % Z V;;es, (28)

i€ valence particles i,j € valence particles

where ho(i) = p}/2m+ 3mwr} is spherical harmonic oscillator, and V;* is a residual
effective interaction. At least in principle then, the remaining problem becomes
trivial, and all that is left is to select a convenient many-body basis and diagonalize
the effective Hamiltonian, Hgy.

2.2.1 Many-Body Basis

A many-body basis represents one of the pillars of the SM. If chosen properly, it can
greatly facilitate evaluation of the Hamiltonian matrix elements, and also provide
means to select a model space small enough to be tractable yet incorpor