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Abstract

Even though Quantum Chromodynamics (QCD) was formulated over three
decades ago, it poses enormous challenges for describing the properties of hadrons
from the underlying quark-gluon degrees of freedom. Moreover, the problem of
describing the nuclear force from its quark-gluon origin is still open. While a direct
solution of QCD to describe the hadrons and nuclear force is not possible at this
time, we explore a variety of developed approaches ranging from phenomenology
to first principle calculations at one or other level of approximation in linking the
nuclear force to QCD.

The Dyson Schwinger formulation (DSE) of coupled integral equations for the
QCD Green’s functions allows a non-perturbative approach to describe hadronic
properties, starting from the level of QCD n-point functions. A significant approx-
imation in this method is the employment of a finite truncation of the system of
DSEs, that might distort the physical picture. In this work we explore the effects
of including a more complete truncation of the quark-gluon vertex function on the
resulting solutions for the quark 2-point functions as well as the pseudoscalar and
vector meson masses. The exploration showed strong indications of possibly large
contributions from the explicit inclusion of the gluon 3- and 4-point functions that
are omitted in this and previous analyses. We then explore the possibility of ex-
trapolating state of the art lattice QCD calculations of nucleon form factors to the
physical regime using phenomenological models of nucleon structure.

Finally, we further developed the Quark Meson Coupling model for describing
atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is
modeled by the MIT bag model and the nucleon many body interaction is mediated
by the exchange of scalar and vector mesons. This approach allows us to formulate a
fully relativistic theory, which can be expanded in the nonrelativistic limit to repro-
duce the well known phenomenological Skyrme-type interaction density functional,
thus providing a direct link to well modeled nuclear forces. Moreover, it allows
for a derivation of the equation of state for cold uniform dense nuclear matter for
application to calculations of the properties of neutron stars.

viii



Chapter 1

Introduction

Ever since the birth of human civilization, we have pondered over how “things
are made” and what “things are made of”. Even in ancient times people were con-
cerned over this question, as the atomic theory of the structure of matter was first
proposed in the fifth century BC by the Greek philosophers Democritus and Lecip-
pus. The proof of their theory came only in the nineteenth century, after many
advances in our knowledge and technology, especially Rutherford’s famous gold foil
experiment. This question in some sense constitutes human curiosity, being more or
less universal. For example, even one of the very popular contemporary TV shows on
the “Discovery” channel is named “How It’s Made”. The exploration of this problem
drove science and technology forward, and is currently the main motivation for cut-
ting edge, large-scale scientific experiments such as those conducted at the Thomas
Jefferson National Accelerator facility, Fermi National Accelerator Laboratory, etc.
The Large Hadron Collider will be soon operational, opening new horizons on our
understanding of the physics of the most elementary particles known to us. History
has shown that even though the direct benefits of these explorations are not always
clear, they come in unexpected ways and enable us to create unimaginable benefits,
provided the knowledge is applied with great care.

According to our present understanding, the most elementary particles in-
volved in the strong interaction are the quarks and gluons, which make up the large
variety of discovered hadrons. A distinguishing property of the quarks is the color
quantum number and the anticolor for the antiquarks. Currently we believe that the
number of the colors are three as entailed by a local SU(3) gauge symmetry, but an
assumption of a large number of colors is useful in some applications. This quantum
number can only be changed by exchange of a gluon, näıvely carrying both color
and anticolor quantum numbers. A peculiar feature of the quarks, the so-called
confinement phenomenon, is that they are always bound into hadrons, making up
only colorless configurations, i.e. configurations where every color is present in equal
proportions, or a quark and antiquark cancel each other’s colors. The universal the-
ory of the strong interaction is widely believed to be Quantum Chromodynamics
(QCD), which is the SU(3) local gauge theory of the strong interaction [1], [2]. Even
though QCD is often referred as the “perfect theory”, it poses enormous challenges
for describing the properties of hadrons from the underlying quark-gluon degrees of
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freedom. The non-Abelian nature of QCD implies a self-interaction of the gauge
field, which manifests itself in an extremely non trivial structure of the QCD vac-
uum, as illustrated in the Fig. 1.1. This makes the effective coupling constant of
the theory dependent on the momentum transfer, becoming large at the momen-
tum scale of most of the hadronic states. Thus, a perturbative expansion in the
coupling constant is rendered useless in describing physical processes, as in any ap-
proximation all orders of the expansion contribute with comparable strength. Novel
methods and approaches to solving the problem, like Lattice QCD (LQCD), have
been developed for solving this problem, with various degrees of success and many
obstacles are yet to be overcome.

Figure 1.1: The vacuum action density of QCD gauge field as calculated in Lattice
QCD. The red color reflects a higher value and the blue a lower value of the action
density, which is similar to the energy density of the field. This plot is courtesy of
Dr. Derek Leinweber [3].

The more general question of whether one can find an ab-initio description of
the nuclear force is still open. The interaction of nucleons binding them into atomic
nuclei is mediated by the strong force, where the electroweak interaction plays a
secondary role with exactly calculable small corrections. Some of the phenomeno-
logical aspects of this force, like the spin dependence and saturation have long been
extracted from experiment and many models based on this phenomenology with
a good description of the properties of the known nuclei close to the beta stability
valley have been created. On the other hand, many questions like the density depen-
dence of the nuclear force, the role of strangeness at high densities and the behavior
of the nuclear force in neutron rich nuclei are not very well known yet. Moreover, a
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direct derivation of the force from QCD itself has yet to be provided. This situation
is comprehensible in the light of our previous discussion of the properties of QCD
in the regime of low energies. However, any advances in understanding hadrons
without fully describing atomic nuclei will be incomplete to state the least. Thus
the solution of this problem is essential for further validation of both QCD and the
methods employed for its solution, as well as our understanding of nuclear physics.
In this work we outline a possible scenario for connecting the nuclear force with
its QCD origin. Development of the methods and models for solving QCD at the
hadronic level will play a central role in this work.

The first approach that we will study and develop will be the framework of
QCD Dyson Schwinger Equations (DSE) and their application to hadronic physics.
DSEs are the equations governing the QCD Green’s functions, derived directly from
the QCD Lagrangian, where employment of a particular gauge enables significant
advances in analytic treatment [4], [5]. While the full system of the DSEs is an
infinite tower of coupled QCD n-point functions, employment of finite truncations
of this system have proven to be very successful in describing the low-order n-point
functions and several hadronic observables ( [6], [7] and references therein). A widely
employed truncation scheme in describing various quantities is the so-called “Ladder-
Rainbow” approximation for solving the quark DSE and constructing equations
for the bound state hadrons, where the quark-gluon vertex is taken to be bare.
Exploration of the accuracy of this approximation thus far has included only certain
infinite classes of diagrams in Refs. [8], [9], where phenomenological inclusion of the
three gluon dressing with the previous class of diagrams was explored in Ref. [10].
In Chapters 2 and 3 we will build successively more sophisticated models for the
dressed quark-gluon vertex and explore the effect of including the more realistic
vertex function on the calculated quark two-point function and meson masses.

As we have already mentioned, QCD in the low energy region does not have
a small parameter that can be used in an expansion. Gerard ’t Hooft proposed to
use the inverse of the number of the colors, 1/Nc, as such an expansion parameter,
where the number of the colors is assumed to be very large for the expansion to be
convergent [11]. This model proved to be a very useful analytical tool for obtaining
exact results in QCD-like theories and hadron phenomenology [12], [13], [14]. The
shortcoming of the current formulation of the Feynman rules for the 1/Nc expansion
is that they are accurate only in the leading order of the expansion, which is usually
the order considered. In our explorations of the quark-gluon vertex diagrams, we
came across some diagrams contributing at the next-to-leading order in the 1/Nc

expansion, thus we needed a more complete rules for the expansion to examine their
relative strength in this limit. We have formulated a complete set of Feynman rules
in Chapter 3, that allow one to calculate the expansion coefficients exactly.

While Lattice QCD has achieved very significant results in recent years [15],
[16], [17], there are still large obstacles in the path of solving QCD with physical
hadrons in this method. The LQCD approach employes finite space-time discretiza-
tion (lattice) for calculating the QCD vacuum gauge field configurations and expec-
tation values for observables on the background of the gauge field. The discretization
then introduces two scales into the problem, one being the lattice spacing and the
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other being the length of the lattice sides in each direction. The existence of these
scales means that the momentum in the LQCD is discretized, with the minimum
allowed momentum being set by the inverse of the lattice length and the maximum
by the inverse of the lattice spacing with the usual cyclic boundary conditions set
on the lattice. An additional restriction is imposed by the capability of modern
computers, as the volume of the numerical calculations grows as some inverse power
of the quark masses used, thus presently only unphysically high masses are used
in calculations of the physical observables. A necessary connection to the physical
mass scale must be provided before comparing the results to the experiment.

The recent Lattice QCD calculated nucleon electromagnetic form factors of
the Ref. [18] have attracted significant attention in the light of recent experimental
discoveries. The nucleon electric and magnetic form factors reflect the distribution
of charge and magnetization inside the nucleon, thus providing invaluable informa-
tion on the dynamical structure created by the quarks and gluons. Until recently,
the experimental measurements of the ratio of the electric to magnetic form factors
of the proton utilizing the Rosenbluth separation method showed constant behavior
versus the momentum transfer squared [19]. This result was anticipated in the very
high momentum transfer region, where a perturbative expansion of QCD is possi-
ble and one can rely on the dimensional scaling arguments of Ref. [20], but wasn’t
rigorously justified in the low momentum transfer region. Several experiments in
Jefferson Laboratory (JLab) used the method of measuring the polarization trans-
fer to the struck nucleon (Refs. [21], [22]) and showed a steep decline of the ratio
as the momentum transfer square exceeded 1 GeV2, strongly disagreeing with the
previous measurements. While several arguments exist explaining the discrepancy
between the measurements with two different methods, that generally involve large
contributions from two photon exchange [23], a direct guidance from the LQCD
calculations can be very helpful. In Chapter 4 we employ a specific method of using
phenomenological models of nucleon structure for extrapolating the LQCD calcu-
lated form factors in both quark mass and the momentum transfer region. Let’s
note that latter is necessary as the possible values of momenta on the lattice are
discrete and limited, as explained above. We choose to employ two distinct models
that provide a good fit to the experimental data, but differ in the phenomenological
ideas of nucleon structure behind them, namely the Light Front Cloudy Bag Model
(LFCBM) of Refs. [24], [25], [26] and a modern version of the Vector Meson Dom-
inance (VMD) model of Ref. [27], where successful description of LQCD data will
serve as an additional measure of reliability of the models.

After exploring several methods and models for solving for the hadronic prop-
erties from QCD, in Chapter 5 our work culminates in meeting our initial goal of
connecting the nuclear force to QCD. A first principle calculation of the properties of
the nuclear force is still unaffordable, thus we resort to the phenomenological mod-
eling that proved to work very well for hadrons. Here we further develop the Quark
Meson Coupling (QMC) model ( see Refs. [28], [29], [30]) for describing atomic nu-
clei and nuclear matter, where the quark-gluon structure of nucleons is modeled
by the MIT bag model and the nucleon many body interaction is mediated by the
exchange of scalar and vector mesons. We derive a refined formalism for QMC,

4



where we lift the tight constrain of small values of the scalar field imposed in the
previous formulations. Through our research into QCD dynamics, we argue that
this approach has intimate connections to QCD and is one of the very few prospects
we have to solve this problem. In fact, this approach allows us to formulate a fully
relativistic theory, which can be expanded in the nonrelativistic limit to reproduce
the well known phenomenological Skyrme-type interaction density functional, thus
providing a link directly to well modeled nuclear forces. Moreover, it allows for a
derivation of the equation of state for cold uniform dense nuclear matter for appli-
cation to calculations of the properties of neutron stars. This discussion concludes
our work, as we meet our goals and examine the results. We give our concluding
remarks in Chapter 6.
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Chapter 2

Dyson-Schwinger Equations and

Hadronic Physics

2.1 Overview

At present Quantum Chromodynamics is believed to be the fundamental the-
ory of the strong interaction. Even though it was formulated more than thirty years
ago, it still presents enormous challenges in describing the bound states (hadrons)
of its quanta, quarks and gluons, as solutions of the theory. Moreover, the puzzle
of confinement, namely the fact that quarks and gluons are only observed bound in
hadrons, has still not been solved. In contrast with QED, QCD has a running cou-
pling constant which becomes large at the energy scale corresponding to hadrons,
making a perturbative expansion impossible. This non-perturbative nature of QCD
requires the employment of new approaches, such as Lattice QCD (LQCD), Effective
Field Theories (EFT), AdS/CFT Correspondence and Dyson-Schwinger Equations
(DSE) in order to allow for a solution. All of the approaches that are currently
known have their limitations and shortcomings, due to both technical difficulties
and matter of principal. For example, Lattice QCD calculations, among other re-
strictions, are performed at unphysically high quark masses to make them affordable
with the present large-scale supercomputing clusters. Thus all of the above men-
tioned approaches should complement each other in piecing together the physical
picture from the information that becomes available as advances in each field are
made. For example, EFT is being widely used to extrapolate the LQCD results to
the physical masses, while in DSE, Lattice calculated QCD Green’s functions are
used to constrain the parameters of the models.

In recent years there has been significant progress in the study of the spec-
trum of hadrons and their non-perturbative structure and form factors through DSE
approaches that are manifestly covariant, and which accommodate both dynamical
chiral symmetry breaking (DCSB) and quark confinement [6]. Covariance provides
efficient and unambiguous access to form factors [31–33]. Consistency with chiral
symmetry and its spontaneous breaking is obviously crucial to prevent the pseu-
doscalars from artificially influencing the difficult task of describing and modeling
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the infrared dynamics; this is a role better left to other hadronic states that are not
so dominated by chiral symmetry. The associated concept of a constituent quark
mass is important and it is often implemented in models as a constant mass appear-
ing in the propagator, however this idealization runs into trouble for higher lying
states where the sum of the constituent masses is below the hadron mass. This
difficulty is marginally evident with the ρ, but it is inescapable by the time one has
reached the ground state axial vector mesons (e.g., a1, b1 mesons) [34].

In reality, solutions of the QCD equation of motion for the quark propagator
(quark Dyson-Schwinger equation ) give a momentum-dependent quark mass func-
tion. Model calculations, mostly in Landau gauge, typically yield a mass function
that evolves from the current mass value at ultraviolet spacelike momenta to a value
some 0.4 GeV larger in the deep infrared [35]. The propagator is a gauge-dependent
object and the gauge dependence of this phenomenon has not been fully explored.
In the chiral limit, such an enhancement is DCSB. At finite current mass, mod-
els also strongly suggest that the enhancement is the same mechanism as DCSB
which has an important influence over the low-lying hadron spectrum. In the chiral
limit, the scalar term of the quark self-energy, which shows most of the momentum
dependence, plays a dual role as the dominant invariant amplitude of the chiral
pion Bethe-Salpeter equation (BSE) amplitude at low momenta [36]. In any pro-
cess where the spatial extent of the pion plays an important role, the running of
the quark mass function is likewise crucial to an efficient symmetry-preserving de-
scription. Otherwise a theoretical model is fighting symmetries. An example is
provided by the pion charge form factor above the chiral symmetry breaking scale,
i.e., Q2 > mρ. It is this large value of the dressed quark mass function at low space-
like momentum that leads, in model solutions of the quark DSE, to |p2| 6= M2(p2)
within a significant domain of timelike momenta where these models can be trusted.
For example, this is sufficient to prevent spurious qq̄ production thresholds in light
quark hadrons below about 2 GeV [34].

The task of maintaining manifest covariance, DCSB, a running quark mass
function and an explicit substructure in terms of confined quarks is often met by
models defined as truncations of the DSEs of QCD [5, 6, 37]. For practical reasons
the equations must be truncated to decouple arbitrarily high order n-point func-
tions from the set of low order n-point functions used to construct observables. A
common truncation scheme is the rainbow-ladder truncation. Here the one-loop
gluon dressing of the quark (with bare gluon-quark vertices) is used self-consistently
to generate the quark propagator. In general the kernel, K, of the Bethe-Salpeter
equation is given in terms of the quark self-energy, Σ, by a functional relation dic-
tated by chiral symmetry [38]. This preserves the Ward-Takahashi identity for the
color singlet axial vector vertex and ensures that chiral pseudoscalars will remain
massless, independent of model details. With a rainbow self-energy, this relation
yields the ladder BSE kernel. To go beyond this level, one needs to realize that
the exact quark self-energy is given by the same structure except that one of the
gluon-quark vertices is fully dressed. It is the vertex dressing that generates the
terms in K beyond the ladder level. This is the topic we are concerned with in this
chapter.
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The ladder BSE for meson bound states is an integral equation with a one-
loop kernel structure that must allow for the spinor structure of propagators and
the meson amplitudes. With the four-dimensional space-time that one must use to
maintain manifest covariance, and with dynamically generated quark propagators
that one must use to preserve the Ward-Takahashi identities of chiral symmetry, the
numerical task is large. Any scheme for corrections to the ladder truncation will in
general add the complexity of multiple loop Feynman diagrams involving amplitudes
that are only known after solution. For practical reasons the studies that have been
able to investigate hadron states beyond ladder-rainbow (LR) truncation in recent
years [8–10,39] have exploited the simplifications following from use of the Munczek-
Nemirovsky (MN) model [40]. In this case the basic element is a delta function that
restricts the exchanged (or gluon) momentum to zero. It reduces both the quark
DSE and the meson BSE to algebraic equations with only one parameter, a strength
set by mρ.

This simplified kernel has no support in the ultraviolet and one must be wary
of its use for related physics. Bound state masses are relatively safe in this regard;
even heavy quark states that sample short distance or large momenta are safe due to
the large quark mass scale present. Even with the MN model, the DSE solutions for
the quark propagators have the correct power law behavior, and they continuously
connect to the current quark mass, in the ultraviolet, apart from log corrections.
The dominant qualitative features of DSE solutions of realistic models are preserved
in the MN model: large infrared strength giving DCSB and the (confining) absence
of a mass pole. Our analysis is not intended to provide a serious representation
of experimental data; rather we aim at some understanding, even if it is quite
qualitative, of the relative importance of classes of higher-order diagrams for the
BSE kernel for bound states. Because of the inherent complexity brought by the
use of a momentum distribution as a kernel, there is little information available in
the literature on this topic. To obtain such information, we feel the price paid by
dispensing with a clear connection to perturbative QCD is worthwhile in the initial
stages.

There are studies of vertex corrections and the relevance of the ladder-rainbow
truncation of the BSE that have utilized the convenience of purely scalar field the-
ories (see Ref. [41]) or scalar QED (see Ref. [42]). In a non-Abelian context, a
first study of the correction to ladder-rainbow truncation for pseudoscalar and vec-
tor mesons and scalar and axial vector diquark correlations was made in Ref. [8]
where a one-gluon exchange dressing of the quark-gluon vertex was implemented.
Subsequently [9], it was realized that the algebraic structure allowed a recursive im-
plementation of the ladder series of diagrams for the quark-gluon vertex as well as
an implementation of the corresponding series of diagrams for the chiral symmetry-
preserving BSE kernel. As far as we are aware, this was the first solution of a BSE
equation for bound states of colored quarks and gluons in which the kernel contained
the effects from an infinite number of loops. In these works the chiral pseudoscalars
remained massless independent of the model parameter and mρ received corrections
of order 10% from ladder dressing of the vertex. The influence of vertex dressing
upon the quark propagator was also studied.
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There is very little in the way of guidance from realistic non-perturbative non-
Abelian models of the infrared structure of the quark-gluon vertex. It has often
been assumed, e.g., see Ref. [43], that a reasonable beginning is the Ball-Chiu [44]
or Curtis-Pennington [45] Abelian Ansatz times the appropriate color matrix. These
Abelian descriptions of the momentum dependence satisfy the Abelian vector Ward-
Takahashi identity, and their use makes the implicit assumption that this might be
a good enough approximation to the corresponding identity for QCD, namely the
Slavnov-Taylor identity for the color octet vertex [46]. The use of an explicit ladder
sum for the gluon vertex provides easy access to the chiral symmetry preserving BSE
kernel and receives some motivation from the fact that a ladder-summed photon-
fermion vertex combines with the rainbow approximation for the fermion propagator
to preserve the Ward-Takahashi identity for that vertex.

However, when initial results from lattice-QCD simulations of the gluon-quark
vertex became available [47,48], it was realized [49] that the color algebra generated
by any ladder sum for this vertex gives a magnitude and strength for the domi-
nant amplitude at zero gluon momentum that is qualitatively and quantitatively
incompatible with the lattice data and incompatible with the leading ultraviolet
behavior of the one-loop QCD Slavnov-Taylor identity. The infrared vertex model
developed in Ref. [49] made an extension of the fact that the one-loop QCD color
structure introduced by the three-gluon coupling repairs the deficiency of a purely
ladder structure. The color structure of the ladder class of diagrams produces a
weak repulsive vertex, while the color structure of the three-gluon coupling contri-
bution produces an attractive contribution that is enhanced by a factor of -N2

c at
the purely one-loop level.

These observations from Ref. [49] were blended with the algebraic features
afforded by the MN model to re-examine the relation between vertex dressing, the
chiral symmetry-preserving BSE kernel, and the resulting meson spectrum and di-
quark correlations [10]. This approach introduced one extra parameter (besides the
gluon 2-point function strength and the quark current mass)—an effective net color
factor fitted to lattice-QCD data on the gluon-quark vertex. The net attraction in
the vertex, driven by the explicitly non-Abelian 3-gluon coupling, had a marked ef-
fect: the ladder-rainbow truncation made mρ 30% too high compared to the solution
from the completely summed vertex. In other words, the attraction produced by
summed vertex dressing in a non-Abelian context is more important than previously
thought. However in that approach, the structure of the vertex is such that the cou-
pling of any internal gluon line to a quark is itself bare. This is not self-consistent
and one can question what effect this omitted infinite sub-class of vertex dressing
and BSE kernel contributions may have upon the hadron spectrum.

In the present chapter we extend the analysis of Ref. [10] by the incorporation
of a wider class of vertex dressing diagrams. We allow the coupling of any internal
gluon line to a quark to be described by the dressed vertex at an order consistent
with a given total order in the final vertex. In the limit of the vertex summed to
all orders, this becomes the use of the self-consistent quark-gluon vertex at every
internal location in a diagram. We borrow from previous work the use of the MN
model of the 2-point gluon function to generate an algebraic structure and we again
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Figure 2.1: The GAP equation for the dressed quark 2-point function. The black
circle denotes that the corresponding propagator is fully dressed and the red circle
denotes the fully dressed quark-gluon vertex function.

incorporate the important non-Abelian three-gluon coupling through the device of
an effective net color factor refitted to the lattice data for the vertex. We use the
infinite series of diagrams for the BSE kernel generated from the chiral symmetry-
preserving relation to the quark self-energy and investigate the resulting spectrum
of pseudoscalar and vector mesons.

2.2 The Quark GAP Equation and the Ladder-

Rainbow Truncation

The Dyson-Schwinger equation for the dressed quark propagator or the GAP
equation is

S(p)−1 = Z2 S
−1
0 (p) + CF Z1

∫ Λ

q

g2Dµν(p− q) γµS(q)Γν(q, p), (2.1)

where S−1
0 (p) = i/p+mbm, mbm is the bare current quark mass, Z2(µ

2,Λ2) is the quark
wave function renormalization constant, and Z1(µ

2,Λ2) is the vertex renormalization
constant. The general form for S(p)−1 is

S(p)−1 = i/pA(p2, µ2) +B(p2, µ2) (2.2)

and the renormalization condition at scale p2 = µ2 is S(p)−1 → i/p+m(µ) wherem(µ)
is the renormalized current quark mass. The GAP equation is diagrammatically
depicted in Fig. 2.1.

It is clear that in order to solve this equation, we need both the dressed gluon
propagator and the dressed quark-gluon vertex. The Dyson-Schwinger equations
for these Green’s functions involve higher order n-point functions. For example,
the DSE for the gluon propagator involves the dressed 3 and 4 gluon vertices, the
dressed ghost-gluon vertex, etc. To solve these equations a certain truncation scheme
should be employed to express the higher n-point functions through the lower ones,
guided by chiral symmetry, gauge invariance and other fundamental symmetries of
QCD. The truncation closes the set of integral equations which can then be solved
simultaneously to produce the considered Green’s functions.

One of the most explored and widely used truncation schemes is the so called
“Ladder-Rainbow” (LR) truncation. In this truncation the dressed quark-gluon
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Figure 2.2: The “Rainbow” truncation of the quark self-energy term in the GAP
equation.

=

Figure 2.3: The homogeneous Bethe-Salpeter equation for the quark-antiquark scat-
tering amplitude.

vertex, Γν(q, p), in the quark self-energy term in Eq. (2.1) is set simply to its bare
value, γν , and a model gluon propagator is employed to absorb the effects of both
vertex and gluon dressing. The corresponding “Rainbow”-dressed self-energy term
is depicted schematically in Fig. 2.2.

Probably the easiest physical observables that can be calculated in this ap-
proach are the meson properties using the relativistic two-body Bethe-Salpeter equa-
tions (BSE) for quark-antiquark scattering amplitudes. The renormalized homoge-
neous Bethe-Salpeter equation for the quark-antiquark channel, denoted by M , can
be compactly expressed as

[ΓM(k;P )]EF =

∫ Λ

q

[K(k, q;P )]GHEF [χM(q;P )]GH , (2.3)

where ΓM(k;P ) is the meson Bethe-Salpeter amplitude (BSA), k is the relative
momentum of the quark-antiquark pair and P is their total momentum. E,...,H
represent color, flavor and spinor indices and the BS wavefunction is

χM(k;P ) = S(k+)ΓM(k;P )S(k−), (2.4)

where k± = k± P
2
, and K is the amputated quark-antiquark scattering kernel. The

BSE of Eq. (2.3) is diagrammatically depicted in Fig. 2.3.
The scattering kernel K describes the interaction between the quark and the

anti-quark and should be constructed to best reproduce it. The “Ladder” approx-
imation for the K is formulated by simply replacing it with a one dressed gluon
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Figure 2.4: The “Ladder” approximation for the BSE scattering kernel.

exchange between the pair, where the gluon couples to the quarks by a bare quark-
gluon vertex. Diagrammatically it can be seen in Fig. 2.4.

The “Rainbow” approximation to the GAP equation self-energy and “Lad-
der” approximation to the BSE scattering kernel constitute the “Ladder-Rainbow”
approximation. While this approximation is seemingly very crude, it preserves the
chiral symmetry of QCD by satisfying the axial-vector Ward-Takahashi identity.
Thus the solutions of the BSE in the pseudoscalar channel, with quark 2-point
functions as solutions of the GAP equation, ensure that the resulting meson is a
Goldstone boson.

In ’t Hooft’s model of 1 + 1 dimensional QCD, in the leading order 1/Nc

expansion, the LR truncation is exact [11], [12], [14]. In this oversimplified model of
QCD that has only one time and one space dimension, the light-cone choice for the
gauge fixing , A+ = A− = 0, simplifies the Lagrangian density, eliminating the 3 and
4 gluon couplings. QCD at small momentum scale doesn’t have small parameters for
perturbative expansion. This means that in calculations of any observable one must
calculate all the diagrams with infinite number of loops. ’t Hooft has proposed to
use the inverse of the number of colors, 1/Nc, as such a small parameter, assuming
Nc to be so large that the expansion will be sensible. The hope is that the expansion
will give qualitative results that will hold even for the Nc = 3. The 1/Nc expansion
will be described in more detail in the next chapter. The interesting result of this
model is that in leading order of the expansion only the “Rainbow” type diagrams
contribute to the quark self-energy term and only “Ladder” type diagrams to the
quark-antiquark interaction. This further encourages the exploration of the LR
truncation scheme.

Even with LR truncation, in practice the GAP equation is solved with a model
dressed gluon two point function. This approach proves to be productive in both
reducing the numerical task of solving coupled quark and gluon DSEs as well as
allowing us to introduce some phenomenology to compensate for the shortcomings of
the truncation. This scheme has been used to successfully describe the experimental
observables such as meson masses, decay widths and form factors (see, for example,
Refs. [50], [51], [52], [53]) as well as baryon properties [33]. With all its success, the
LR truncation has its shortcomings. For example, it yields bound diquark states,
contradicting all observations of no colored bound states. It also gives an inadequate
description of scalar mesons, etc [8].
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The LR truncation is a non-perturbative truncation of the theory, which is be-
lieved to be a good representation of the full theory. In order to test this hypothesis,
we need to study the theory with more complete truncation and explore how the
calculated observables change. The task of maintaining manifest covariance, DCSB,
a running quark mass function and an explicit substructure in terms of confined
quarks is often met by models defined as truncations of the DSEs of QCD [5,6,37].
For practical reasons, the equations must be truncated to decouple arbitrarily high
order n-point functions from the set of low order n-point functions used to construct
observables. A common truncation scheme is the rainbow-ladder truncation. Here
the one-loop gluon dressing of the quark (with bare gluon-quark vertices) is used
self-consistently to generate the quark propagator. In general, the kernel K of the
Bethe-Salpeter equation is given in terms of the quark self-energy, Σ, by a functional
relation dictated by chiral symmetry [38]. This preserves the Ward-Takahashi iden-
tity for the color singlet axial vector vertex and ensures that chiral pseudoscalars
will remain massless, independent of model details. With a rainbow self-energy, this
relation yields the ladder BSE kernel. To go beyond this level, one needs to realize
that the exact quark self-energy is given by the same structure, except that one of
the gluon-quark vertices is fully dressed. It is the vertex dressing that generates
the terms in K beyond ladder level. The first steps in this direction were taken by
considering the ladder-summed vertex [8], [9], [10].

2.3 The Ladder-Summed Vertex and Its Conse-

quences

In order to continue our description of the subject we briefly describe the
framework for the calculations. We employ Landau gauge and a Euclidean metric,
with: {γµ, γν} = 2δµν ; γ

†
µ = γµ; and a·b =

∑4
i=1 aibi. The dressed quark-gluon vertex

for gluon momentum k and quark momentum p can be written ig tc Γσ(p + k, p),
where tc = λc/2 and λc is an SU(3) color matrix. In general, Γσ(p + k, p) has 12
independent invariant amplitudes. We are particularly concerned in this work with
the vertex at k = 0, in which case the general form is

Γσ(p) = α1(p
2)γσ + α2(p

2)/ppσ − α3(p
2)ipσ + α4(p

2)iγσ/p (2.5)

where αi(p
2) are invariant amplitudes. In the model studies of Refs. [9] and [10]

that we build upon, one finds α4 = 0, which will also be the case here.
As we shall discuss later, we wish to utilize the functional relation that enables

the BSE kernel to be generated from the quark self-energy so that chiral symmetry
is preserved. This requires the vertex to be represented in terms of a set of explicit
Feynman diagrams. Some exact results are known for the vertex at 1-loop order in
QCD [54]. In Landau gauge and to O(g2), i.e., to 1-loop, the amplitude Γσ is given
by

Γ(1)
σ (p+ k, p) = Z1γσ + ΓA

σ (p+ k, p) + ΓNA
σ (p+ k, p), (2.6)
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(a) − 1

2Nc

(b) Nc

2

Figure 2.5: The O(g2) contributions to the quark-gluon vertex. The color factor
of the vertex dressed with 2-point gluon function a) is N2

c times smaller than the
vertex dressed with 3-point gluon function b). The corresponding color factors are
shown next to the labels of the diagrams.

with

ΓA
σ (p + k, p) = −(CF − CA

2
)

∫ Λ

q

g2Dµν(p− q)γµS0(q + k)γσS0(q)γν , (2.7)

and

ΓNA
σ (p+ k, p) = −CA

2

∫ Λ

q

g2γµS0(p− q)γνDµµ′(q + k)iΓ3g
µ′ν′σ(q + k, q)Dν′ν(q), (2.8)

where
∫ Λ

q
=
∫ Λ

d4q/(2π)4 denotes a loop integral regularized in a translationally-

invariant manner at mass-scale Λ. Here Z1(µ
2,Λ2) is the vertex renormalization

constant to ensure Γσ = γσ at renormalization scale µ. The following quantities
are bare: the three-gluon vertex ig f abc Γ3g

µνσ(q + k, q), the quark propagator S0(p),
and the gluon propagator Dµν(q) = Tµν(q)D0(q

2), where Tµν(q) is the transverse
projector. The next order terms in Eq. (2.6) are O(g3): the contribution involving
the four-gluon vertex, and O(g4): contributions from crossed-box and two-rung
gluon ladder diagrams, and 1-loop dressing of the triple-gluon vertex, etc. The
corresponding Feynman diagrams are depicted in Fig. 2.5.
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The color factors in Eqs. (2.7)and (2.8) are given by

tatbta = (CF − CA

2
)tb = − 1

2Nc
tb

tafabctb =
CA

2
itc =

Nc

2
itc

tata = CF1c =
(N2

c − 1)

2Nc
1c. (2.9)

In contrast, for the color singlet vector vertex, i.e. for the strong dressing of the
quark-photon vertex, one has the one-loop Abelian result

Γ̃(1)
σ (p+ k, p) = Z̃1γσ − CF

∫ Λ

q

g2Dµν(p− q)γµS0(q + k)γσ S0(q)γν. (2.10)

To motivate the approximate vertex used in the present study, we note that
the local color SU(3) gauge invariance of the QCD action gives the Slavnov-Taylor
identity [46] for the gluon vertex

kµiΓµ(p+ k, p) = G(k2)
{
[1 −B(p, k)]S(p+ k)−1 − S(p)−1 [1 − B(p, k)]

}
, (2.11)

which relates the divergence of the vertex to the quark propagator S(p), the dressing
function G(k2) of the ghost propagator −G(k2)/k2, and the ghost-quark scattering
kernel B(p, k), all consistently renormalized. Even though there is no explicit ghost
content evident in the 1-loop vertex Eq. (2.6), it does satisfy this identity at one-loop
order [54].

Prior to the recent appearance of quenched lattice-QCD data [47,48], there had
been little information available on the infrared structure of the gluon-quark vertex.
The two O(g2) diagrams of Eq. (2.6) cannot be expected to be adequate there.
A common assumption [43] has been to adopt an Abelian vertex Ansatz, such as
the Ball-Chiu [44] or Curtis-Pennington [45] forms and attach the appropriate color
matrix. In the case of an Abelian U(1) gauge theory, the counterpart to Eq. (2.11)
is the Ward-Takahashi identity (WTI)

kµ iΓ̃µ(p+ k, p) = S(p+ k)−1 − S(p)−1. (2.12)

At k = 0, the Abelian vertex Γ̃µ has the same general form as given earlier in
Eq. (2.5). The Ward identity Γ̃σ(p) = −i∂S(p)−1/∂pσ yields: α̃1 = A(p2), α̃2 =
2A′(p2), and α̃3 = 2B′(p2), where f ′ = ∂f(p2)/∂p2. However, even if the Abelian
Ansatz, ig tc Γ̃σ(p), were to be adopted for the gluon vertex, it would not help in
the present context because we need a representation in terms of an explicit set of
Feynman diagrams for the resulting self-energy, in order to determine the symmetry-
preserving BSE kernel.

In Ref. [9] a study was made of a ladder summation Ansatz for the gluon
vertex based on just the Abelian-like gluon exchange diagram of Eq. (2.7); the
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symmetry-preserving BSE kernel was generated and used to explore meson and
diquark masses. The vertex was generated by iterative and recursive techniques
and, after convergence, is equivalent to solution of the integral equation

Γσ(p+k, p) = Z1γσ−(CF−
CA

2
)

∫ Λ

q

g2Dµν(p−q)γµS(q+k)Γσ(q+k, q)S(q)γν. (2.13)

Here, at any order of iteration, the quark propagator is calculated by using the same
vertex in the gap equation, Eq. (2.1). Is this ladder sum a good approximation to
the gluon-quark vertex, particularly in the infrared? The quenched lattice-QCD
data indicates that the answer is no. The lattice data clearly gives α1(p

2) > 1
for all available p2 and the infrared limit appears to be α1(0) & 2.2. The ladder
summation based on Eq. (2.13) gives α1(p

2) < 1, with infrared limit α1(0) ≈ 0.94.
The 1-loop QCD analysis indicates that in the ultraviolet α1(p

2) approaches unity
from above [54], while the recent model vertex [49], based on a non-perturbative
extension of the two 1-loop diagrams from Eq. (2.6), yields α1(p

2) > 1 for all p2,
and agrees quite well with the lattice data.

The reason for the discrepancy mentioned above can be seen from the color
factors associated with the two 1-loop diagrams, Eq. (2.7) and Eq. (2.8), which are
the leading terms in the ultraviolet region. The ladder sum in Eq. (2.13) is built
on the least significant of the two diagrams. The color factor of the omitted 3-
gluon term is N2

c times that of the term retained. The relative contribution to the
Slavnov-Taylor identity, Eq. (2.11), from that term is of the same order at 1-loop.
More generally, as discussed in Ref. [10], if G(k2)(1 − B(p, k)) > 0 persists into
the non-perturbative region, one can expect α1(p

2) > 1. One can also expect to
obtain the wrong sign for α1(p

2) − 1 if a model kernel has the wrong sign. This
is the case with the Abelian-like ladder sum, Eq. (2.13). Note that in an Abelian
U(1) gauge theory, e.g., the photon-quark vertex, α̃1(p

2) = A(p2) > 1. An Abelian
Ansatz for this amplitude of the gluon-quark vertex might be quite reasonable, but
it cannot be simulated by an explicit ladder sum because the color algebra prevents
it. In analogy with the photon-quark vertex, where α̃1(p

2) > 1 is correlated with
the spectral density being positive definite as the timelike region is approached,
the gluon-quark vertex dressing has been referred to as an attractive effect in the
infrared spacelike region [10]. (Of course, for the gluon vertex there should be no
color octet bound states and no positive spectral density in the timelike region.)
The 3-gluon coupling is a strong source of the attraction at low spacelike p2. It is
N2
c times larger than the small repulsive effect of gluon exchange.

The model for Dµν that we employ in this work, described in Section III, al-
lows us to focus on zero gluon momentum. In this case, as discussed and utilized in
Ref. [49], the two pQCD 1-loop diagrams for the vertex, Eq. (2.7) and Eq. (2.8), are
both closely related to the momentum derivative of the corresponding quark self-
energy, apart from the differing color factors. The resulting dependence upon the
single quark momentum variable is similar for each diagram. Both are 1-loop inte-
grals projected onto the same Dirac structures. We adopt the approach of Ref. [10]
to the vertex for our algebraic study. The approach is defined by taking the momen-
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tum dependence to be similar even in the infrared and with dressed propagators.
Thus we combine the two terms and write Eq. (2.6) as

Γ(1)
σ (p+ k, p) ≈ Z1γσ − CCF

∫ Λ

q

g2Dµν(p− q)γµS0(q + k)γσS0(q)γν , (2.14)

with C being an effective color factor to be determined by a fit to lattice-QCD
data for the vertex. If the momentum dependence of the two combined terms from
Eq. (2.6) were identical, then we see that C = 1. This is equivalent to the Abelian
limit. If one were to omit the 3-gluon term altogether, as in the iterative study
in Ref. [9], then C = (CF − CA

2
)CF

−1, which for Nc = 3, gives C = −1/8. One
expects that the non-Abelian term is necessary for an effective model and thus that
0 < C < 1.

This vertex Ansatz allows us to avoid making a model for the dressed 3-gluon
vertex for which there is little in the way of reliable information. It is the hope that
the fit of C to lattice data will effectively compensate for these deficiencies. Our aim
is not the vertex itself but a study of the relative importance of classes of diagrams for
the BSE kernel for meson masses. This vertex Ansatz allows an algebraic approach
to the BSE meson masses that is quite illustrative of new qualitative information.

From Eq. (2.14), non-perturbative summation equivalent to the integral equa-
tion

Γσ(p+ k, p) = Z1γσ − CCF

∫ Λ

q

g2Dµν(p− q)γµS(q + k)Γσ(q + k, q)S(q)γν, (2.15)

is a natural suggestion. This was studied in Ref. [10], with S(q) being the self-
consistent solution of the quark DSE, Eq. (2.1), containing the same dressed vertex.
A fit to the lattice-QCD data for the vertex gave C = 0.51, a value that confirms that
attraction by a mechanism outside the scope of iterated gluon exchange is present.

An iterative representation is useful: Γµ =
∑

i=0 Γiµ, where Γ0
µ = Z1 γµ, and

i labels the number of internal gluon lines. The contribution with i + 1 internal
gluon lines is obtained from the ith contribution by adding one gluon ladder. This
is schematically depicted in Fig. 2.6.

2.4 Self-Consistent Quark-Gluon Vertex

2.4.1 A Wider Class of Quark-Gluon Vertex Dressing

In this section we propose to include self-consistent dressing of all internal
vertices in the the ladder-summed dressing scheme for the quark-gluon vertex. The
enlarged class of dressing diagrams considered here is obtained iteratively as depicted
in Fig. 2.7. The contribution with i internal gluon lines is generated from three
contributions having a smaller number of gluon lines by adding one gluon ladder with
dressed vertices. If the number of gluon lines in the three vertex contributions are
denoted j, k and l, then summation is made over j, k and l such that j+k+ l+1 = i.
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( i+1) (i)
=

Figure 2.6: The iterative relation for successive terms in the ladder-summed vertex.
Here the large filled circles denote the dressed quark-gluon vertex, the numbers in
the parenthesis denote the numbers of gluon lines contributing to the particular
vertices and the small filled circles denote that the propagators are fully dressed.
Note that an important non-Abelian term is approximately accounted for by the
effective color factor C, as described in the text.

Again, Γµ =
∑

i=0 Γiµ. The iterative scheme is described by

Γiµ(p+ k, p) =

−CCF

∑

j,k,l
i=j+k+l+1

∫ Λ

q

g2Dσν(p− q)Γjσ(p+ k, q + k)S(q+ k)Γlµ(q+ k, q)S(q)Γkν(q, p),

(2.16)

for i ≥ 1.
If the iteration is carried to all orders, the equivalent integral equation is

Γµ(p+ k, p) = Z1γµ

− CCF

∫ Λ

q

g2Dσν(p− q)Γσ(p+ k, q + k)S(q + k)Γµ(q + k, q)S(q)Γν(q, p). (2.17)

If the iteration is stopped to produce all vertex functions with up to n internal two
point gluon lines, our improved scheme takes into account 1 + n(n + 1)(n + 2)/6
diagrams. The corresponding ladder-summed vertex at that order contains a subset
of (n+ 1) of these diagrams.

In Fig. 2.8 we use low order diagrams to illustrate the more general class of
dressing terms included this way. Note that the included diagrams are restricted
to planar diagrams. The contribution from crossed gluon lines in Fig. 2.8d is not
included. All diagrams of the ladder sum used in Ref. [10], such as Fig. 2.8a, are
included, where the new element here is the self-consistent dressing of the internal
vertices illustrated by Fig. 2.8b and Fig. 2.8c.
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(i)
=

(j) (k)

(l)

Figure 2.7: The iterative relation for the enlarged class of dressing diagrams consid-
ered in this work. Here the large filled circles denote the dressed quark-gluon vertex,
the numbers in the parenthesis denote the numbers of gluon lines contributing to the
particular vertices (with j+k+ l+1 ≡ i) and the small filled circles denote that the
propagators are fully dressed. The vertex contribution with i internal gluon lines is
obtained from vertex contributions with less gluon lines. Note that an important
effect of the non-Abelian 3-gluon coupling is approximately accounted for by the
effective color factor C, as described in the text.

2.4.2 Symmetry-Preserving Bethe-Salpeter Kernel

Chiral symmetry is one of the very important symmetries of the QCD La-
grangian, where an arbitrary rotation of quark colors at every point in space-time
leaves the physical observables unchanged. Thus preserving this symmetry in de-
riving the BSE scattering kernel in a particular truncation scheme allows for a
realistic description of mesons. A general prescription exists for expressing the
chiral-symmetry preserving BSE kernel K as a functional of the quark self-energy,
Σ, [38]. This preserves the Ward-Takahashi identity for the color singlet axial vector
vertex and ensures that chiral pseudoscalars will remain massless, independent of
model details.

In a flavor non-singlet channel, and with equal mass quarks, the axial-vector
Ward-Takahashi identity is

−iPµΓ5
µ(p+ P, p) = S(p+ P )−1γ5 + γ5S(p)−1 − 2m(µ)Γ5(p+ P, p), (2.18)

where we have factored out the explicit flavor matrix. The color-singlet quantities
Γ5
µ and Γ5 are the axial-vector vertex and the pseudoscalar vertex, respectively, and
P is the total momentum. The amplitude Γ5

µ(p + P, p) has a pseudoscalar meson
pole. A consequence is that the meson BSE (2.3) for the (dominant) γ5 amplitude
at P 2 = 0 is equivalent to the chiral limit quark DSE for B(p2) and a non-zero value
for the latter (DCSB) necessarily produces a massless pseudoscalar bound state [36].
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(2) = ++ +

(a) (b) (c) (d)

Figure 2.8: Vertex diagrams at O(g5). Here the large red circle denotes the 2-
nd order dressed quark-gluon vertex function ( 2 in the parenthesis denotes the
number of gluon lines contributing to the vertex) and the small black circles on the
propagators denote that the propagators are fully dressed. Previous work included
the ladder structure typified by part (a). The enlarged class of dressing diagrams
implemented in this work includes parts (b) and (c) as well. Non-planar diagrams
such as part (d) are not accommodated by the present approach. We use an effective
color factor to accommodate a major non-Abelian effect from the 3-gluon coupling
as described in the text.

The general relation between the BSE kernel, K, and the quark self-energy,
Σ, can be expressed through the functional derivative [38]

K(x′, y′; x, y) = − δ

δS(x, y)
Σ(x′, y′). (2.19)

It is to be understood that this procedure is defined in the presence of a bilocal exter-
nal source for q̄q and thus S and Σ are not translationally invariant until the source
is set to zero after the differentiation. An appropriate formulation is the Cornwall-
Jackiw-Tomboulis effective action [55]. In this context, the above coordinate space
formulation ensures the correct number of independent space-time variables will be
manifest. Fourier transformation of that 4-point function to momentum representa-
tion produces K(p, q;P ) having the correct momentum flow appropriate to the BSE
kernel for total momentum P .

The constructive scheme of Ref. [8] is an example of this relation as applied
order by order to a Feynman diagram expansion for Σ(p). An internal quark prop-
agator S(q) is removed and the momentum flow is adjusted to account for injection
of momentum P at that point. The number of such contributions coming from
one self-energy diagram is the number of internal quark propagators. Hence the
rainbow self-energy generates the ladder BSE kernel. A 2-loop self-energy diagram
(i.e., from 1-loop vertex dressing) generates 3 terms for the BSE kernel. One can
confirm that the axial-vector Ward-Takahashi identity is preserved. Similarly, the
vector Ward-Takahashi identity is also preserved.
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To be more specific, with the discrete indices made explicit, we consider

KGH
EF = −δΣEF

δSGH
, (2.20)

with the self-energy given by the second term on the RHS of Eq. (2.1). After a
decomposition

Σ(k) =

∞∑

n=0

Σn(k), (2.21)

according to the number n of gluon kernels in the vertex defined by

Σn(k) = CF

∫ Λ

q

g2Dµν(k − q)γµ S(q)Γnν(q, k), (2.22)

for n ≥ 1, with

Σ0(k) = mbm + CF

∫ Λ

q

g2Dµν(k − q)γµS(q)γν, (2.23)

The order n contribution to the BSE kernel is

[Kn(k, q;P )]GHEF = −CFg
2Dµν(k − q) [γµ]EG [Γnν (q−, k−)]HF

− CF

∫ Λ

l

g2Dµν(k − l) [γµS(l+)]EL
δ

δSGH(q±)
[Γnν (l−, k−)]LF . (2.24)

This format is the same as used in Refs. [9] and [10], except that here the
content of Γnν is more extensive. With a bare vertex, the first term of Eq. (2.24)
produces the ladder kernel and the second term is zero. With a vertex up to 1-loop
(n = 1), the first term of Eq. (2.24) produces the ladder term plus a 1-loop correction
to one vertex, while the second term produces two terms: a 1-loop correction to the
other vertex and a non-planar term corresponding to crossed gluon lines. These
three corrections to the ladder kernel have the same structure as the kernels shown
in parts (b), (c), and (d) of Fig. 2.8. At higher order, n > 1, the BSE kernel
produced in the present work departs from that considered in Ref. [10].

After substitution of Eq. (2.24) into the BSE Eq. (2.3), and with a change of
variables, the meson BSE becomes

ΓM(k;P ) = −CF

∫ Λ

q

g2Dµν(k − q)γµ [χM(q;P )Γν(q−, k−) + S(q+)ΛMν(q, k;P )] ,

(2.25)
where we denote by ΛMν the summation to all orders of the functional derivative of
the vertex as indicated in Eq. (2.24). In particular,

ΛMν(q, k;P ) =

∞∑

n=0

Λn
Mν(q, k;P ), (2.26)
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= +

Figure 2.9: Kernel decomposition. The filled triangles represent the meson BSAs,
the filled circle represents the dressed quark-gluon vertex and the crossed circle
represents the Λ function.

with

[Λn
Mν(q, k;P )]LF =

∫ Λ

l

δ

δSGH(l±)
[Γnν (q−, k−)]LF [χM(l;P )]GH . (2.27)

The vertex iteration given in Eq. (2.16) produces the recurrence formula for
the Λn

Mν

Λn
Mν(q, k;P ) = −CCF

∑

j,k,h
n=j+k+h+1

(2.28)

[∫ Λ

t

g2Dρσ(q − t)Γjρ(q+, t+)χM(t;P )Γkν(t−, t− + k − q)

S(t− + k − q)Γhσ(t− + k − q, k−)

+

∫ Λ

t

g2Dρσ(k − t)Γjρ(q+, t+ + q − k)S(t+ + q − k)

Γkν(t+ + q − k, t+)χM(t;P )Γhσ(t−, k−)

+

∫ Λ

t

g2Dρσ(q − t)Λj
Mρ(q, t;P )S(t−)Γkν(t−, t− + k − q)

S(t− + k − q)Γhσ(t− + k − q, k−)

+

∫ Λ

t

g2Dρσ(q − t)Γjρ(q+, t+)S(t+)Λk
Mν(t, t+ k − q;P )

S(t− + k − q)Γhσ(t− + k − q, k−)

+

∫ Λ

t

g2Dρσ(q − t)Γjρ(q+, t+)S(t+)Γkν(t+, t+ + k − q)

S(t+ + k − q)Λh
Mσ(t+ k − q, k;P )

]

where Λ0
Mν(q, k;P ) = 0.

The structure of the qq̄ BS kernel produced by Eq. (2.25) and Eq. (2.28) is
schematically depicted in Figs. 2.9 and 2.10. With a general interaction kernel,
g2Dρσ, it is exceedingly difficult to implement this formal recurrence relation to
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Figure 2.10: Λ function decomposition. The filled triangles represent the meson
BSAs, the filled circles represent the dressed quark-gluon vertex functions and the
crossed circles represent the Λ functions. The numbers in the parenthesis denote
the numbers of gluon lines contributing to the particular functions.

obtain a BS kernel because of overlapping multiple integrals that compound rapidly
with increasing order.

2.5 Algebraic Analysis

The ladder BSE for meson bound states is an integral equation with a one-
loop kernel structure that must allow for the spinor structure of propagators and
the meson amplitudes. With the four-dimensional space-time that one must use to
maintain manifest covariance, and with dynamically generated quark propagators
that one must use to preserve the Ward-Takahashi identities of chiral symmetry, the
numerical task is large. Any scheme for corrections to the ladder truncation will in
general add the complexity of multiple loop Feynman diagrams involving amplitudes
that are only known after solution. For practical reasons the studies that have been
able to investigate hadron states beyond ladder-rainbow (LR) truncation in recent
years [8–10,39] have exploited the simplifications following from use of the Munczek-
Nemirovsky (MN) model [40]. In this case, the basic element is a delta function that
restricts the exchanged (or gluon) momentum to zero. It reduces both the quark
DSE and the meson BSE to algebraic equations. There is only one parameter which
is a strength set by mρ.

This simplified kernel has no support in the ultraviolet and one must be wary
of its use for related physics. Bound state masses are relatively safe in this regard,
even heavy quark states that sample short distance or large momenta due to the
large quark mass scale present. Even with the MN model, the DSE solutions for
the quark propagators have the correct power law behavior, and they continuously
connect to the current quark mass, in the ultraviolet, apart from log corrections.
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The dominant qualitative features of the DSE solutions of a realistic model are
preserved in the MN model: large infrared strength giving DCSB and the (confining)
absence of a mass pole. Our analysis is not aimed to provide a serious representation
of experimental data; rather we aim for a deeper understanding of the relative
importance of classes of higher-order diagrams for the BSE kernel for bound states.
Because of the inherent complexity brought by use of a momentum distribution as a
kernel, there is little information available in the literature on this topic. To obtain
such information, we feel the price paid by dispensing with a clear connection to
perturbative QCD is worthwhile in the initial stages.

2.5.1 The Interaction Model

In the ultraviolet, the kernel of the quark DSE, Eq. (2.1), takes the form

Z1γµg
2Dµν(k)Γν(q, p) → 4πα(k2)γµD

free
µν (k)γν , (2.29)

where k = p − q, and α(k2) is the renormalized strong running coupling, which
has absorbed the renormalization constants of the quark and gluon propagators
and the vertex. The ladder-rainbow truncations that have been phenomenologically
successful in recent years for light quark hadrons adopt the form of Eq. (2.29) for all
k2 by replacing α(k2) by αeff(k2), which contains the correct 1-loop QCD ultraviolet
form and a parameterized infrared behavior fitted to one or more chiral observables,
such as 〈q̄q〉0µ. In this sense, such an αeff(k2) contains those infrared effects of
the dressed vertex Γν(q, p) that can be mapped into a single effective amplitude
corresponding to γν for chiral quarks. Such a kernel does not have the explicit
dependence upon quark mass that would occur if the vertex dressing were to be
generated by an explicit Feynman diagram structure. In particular, one expects the
vertex dressing to decrease with increasing quark mass. The effective ladder-rainbow
kernel appropriate to heavy quark hadrons should have less infrared strength from
dressing than is the case for light quark hadrons.

We use an explicit (but approximate) diagrammatic description of the dressed
vertex Γν(q, p), and to facilitate the analysis we make the replacement 4παeff(k

2)/k2

→ (2π)4G2δ4(k). This is the Munczek-Nemirovsky Ansatz [40] for the interaction
kernel. The parameter G2 is a measure of the integrated kernel strength, and we
expect this to be less than what would be necessary in ladder-rainbow format because
of the infrared structure provided explicitly by the model vertex Γµ(q, p). The
equations of the previous sections convert to model form by the replacement

g2Dµν(k) →
(
δµν −

kµkν
k2

)
(2π)4G2δ4(k), (2.30)

where we choose Landau gauge. It is the combination of Eq. (2.30) and the model
vertex that is the DSE kernel. Comparisons of Eq. (2.30) with information about
the dressed gluon 2-point function are incomplete. The resulting DSEs for the quark
propagator and gluon-quark vertex are ultraviolet finite, thus the renormalization
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Figure 2.11: Quark propagator amplitude A(s) versus Euclidean s = p2. We use
the interaction mass scale G = 1 GeV and the current mass is m = 0.0183 G =
18.3 MeV. C dependence calculated with converged summation of vertex dressing,
for C = 0.15 (solid curve), C = 0.5 (dashed curve), C = −0.125 (dot-dashed curve)
and C = −0.25(dotted curve).

constants are unity: Z1 = Z2 = 1, and there is no distinction between bare and
renormalized quark current mass. We set mbm = m(µ) = m.

2.5.2 The Algebraic Vertex and Quark Propagator

With this kernel, the vertex integral equation Eq. (2.17) determines solutions
for k = 0 and we define Γµ(p, p) ≡ Γµ(p). Eq. (2.17) reduces to the algebraic form

Γµ(p) = γµ − CG2Γσ(p)S(p)Γµ(p)S(p)Γσ(p) . (2.31)

In obtaining this form, we have used 3CF/4 = 1, where the extra factor of 3/4 arises
from the transverse projector. The general form of the vertex is:

Γµ(p) = α1(p
2)γµ + α2(p

2)/ppµ − α3(p
2)ipµ + α4(p

2)iγµ/p (2.32)

where αi(p
2) are invariant amplitudes. From Eq. (2.31) we find α4 = 0, as was the

case for the related models in Refs. [9] and [10].
The vertex is a sum over contributions with exactly n internal effective gluon

kernels according to

Γµ(p) =
∞∑

n=0

Γnµ(p), (2.33)
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Figure 2.12: Quark propagator amplitude A(s) versus Euclidean s = p2. We use
the interaction mass scale G = 1 GeV and the current mass is m = 0.0183 G =
18.3 MeV. We show the influence of vertex dressing to order n as described in the
text. For C = 0.15, n = 0 yields the solid curve and the result is the ladder-rainbow
truncation. The other curves are n = 1 (long dashed curve, 1-loop vertex), n = 2
(dotted curve, 2-loop vertex), n = 12 (dot - short dashed curve), n = 13 (dot - long
dashed curve) and n = 14 (dot dot dot - dashed curve) order of dressing for the
quark gluon vertex.
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with the general contribution given by the recursive relation

Γnµ(p) = −CG2
∑

j,k,l
n=j+k+l+1

Γjν(p)S(p)Γkµ(p)S(p)Γlν(p), (2.34)

where Γ0
µ(p) = γµ. Substitution of the form S(p)−1 = i/pA(p2)+B(p2) into Eq.(2.34)

gives Γnµ(p
2) in terms of the functions A(p2) and B(p2). These latter functions must

be solved simultaneously with the vertex at the given order. The algebraic form of
the gap equation for the propagator is

S(p)−1 = i/p +m+ G2γµS(p)Γµ(p), (2.35)

where again the transverse projector and the color factor combine to yield 3CF/4 =
1. After projection onto the two Dirac amplitudes we have

A(p2) = 1 − G2 i

4
tr

[
/p

p2
γµS(p) Γµ(p)

]
, (2.36)

B(p2) = m+ G21

4
tr [γµ S(p) Γµ(p)] . (2.37)

Equations (2.34), (2.36) and (2.37) are solved simultaneously at a specified order n
of vertex dressing.

In the case where one is limited to a strict ladder summation for the vertex
with bare internal vertices, closed form expressions for the vertex amplitudes αi
in terms of A and B are obtainable [9, 10]. With the enlarged class of dressing
considered here, corresponding closed form expressions have not been obtained.
However numerical evaluation is sufficient for the vertex and propagator amplitudes.
A numerical treatment of the BSE kernel must be made in any case. Numerical
solution of the simultaneous algebraic equations for the vertex and propagator is
carried out here using the algebraic and numerical tools of Mathematica [56] with
the assistance of the FeynCalc package used for computer-algebraic evaluation of
the Dirac algebra [57].

The model parameter C for the vertex is determined by a fit to selected global
features of quenched lattice-QCD data for the quark propagator [58] and the quark-
gluon vertex [47]. This data is available for both quantities at current quark mass
m = m̄ = 60 MeV. This is the same data as used to fit the same parameter C in
Ref. [10]. A different result will therefore reflect the wider class of vertex dressing
herein. To facilitate comparison we also eliminate the role of the interaction strength
mass scale parameter, G, in this step by dealing with dimensionless quantities. G
will later be fixed by requiring that mρ be reproduced.

The lattice-QCD data for the quark propagator indicates that Zqu(0) ≡ 1/Aqu(0)
≈ 0.7 and Mqu(0) ≡ B(0)/A(0) ≈ 0.42 GeV. Following Ref. [10] the lattice data
for both the propagator and the vertex in the infrared is characterized by the set of
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Figure 2.13: Quark mass function M(s) versus Euclidean s = p2. We use the inter-
action mass scale G = 1 GeV and the current mass is m = 0.0183 G = 18.3 MeV.
C dependence calculated with converged summation of vertex dressing, for C = 0.15
(solid curve), C = 0.5 (dashed curve), C = −0.125 (dot-dashed curve) and
C = −0.25(dotted curve).
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Figure 2.14: Quark mass function M(s) versus Euclidean s = p2. We use the inter-
action mass scale G = 1 GeV and the current mass is m = 0.0183 G = 18.3 MeV.
We show the influence of vertex dressing to order n as described in the text. For
C = 0.15, n = 0 yields the solid curve and the result is the ladder-rainbow trunca-
tion. The other curves are n = 1 (long dashed curve, 1-loop vertex), n = 2 (dotted
curve, 2-loop vertex), n = 12 (dot - short dashed curve), n = 13 (dot - long dashed
curve) and n = 14 (dot dot dot - dashed curve) order of dressing for the quark gluon
vertex.
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four dimensionless quantities evaluated at p2 = 0:

A(0, m60) = 1.4 (2.38)

α1(0, m60) = 2.1 (2.39)

−M(0, m60)
2α2(0, m60) = 7.1 (2.40)

−M(0, m60)α3(0, m60) = 1.0, (2.41)

where m60 = m̄/Mqu(0). The best fit to these quantities gives C = 0.34 with an
average relative error of r̄ = 24 % and standard deviation σr = 70 %. The quality
of fit is about the same as in Ref. [10], and changes ∆C ≈ ±0.2 are not significant
in this regard. For example, C = 0.15 leads to r̄ = 39 % and σr = 72 %. We will use
C = 0.15 because the resulting vertex at timelike p2 is more convergent with respect
to increasing order of dressing. The value of C being significantly greater than the
strict ladder sum limit, C = −1/8, we see that the attraction provided by the 3-
gluon coupling is important for the vertex. However, the amount of attraction that
must be provided in this phenomenological way in the present work is less than what
was required in Ref. [10] to fit the same lattice quantities. In that work, C = 0.51
was found necessary. We attribute this difference to the fact that a wider class of
self-consistent dressing diagrams is included in the present approach. Attraction is
provided by every vertex that is internal in the sense of Fig. 2.7.

In Figs. 2.11 and 2.12 we present the results for our calculations of A(p2) for
different values of C and different orders of quark-gluon vertex dressing. We set
G = 1 GeV, so all dimensionful quantities are measured in units of G. The current
mass is mq = 0.0183 G. One can see from Fig. 2.11 that C has a major impact on the
behavior of A(s), especially in the timelike region. Fig. 2.12 shows that with n = 14
as the order of dressing of the quark-gluon vertex, we achieved convergence of the
quark propagator function A(p2) for p2 > −G2. The same is true for the function
B(p2). The relative measure of the convergence of the quark propagator functions
with n is the convergence of the meson masses calculated using the solutions for
the propagators. It will be shown later on that our calculations of mπ and mρ have
converged to better than 1% for n = 14. For heavier current quarks, the convergence
region for the solutions of A(p2) and B(p2) extends deeper into the time-like region
of p2, which allows for convergent calculations of heavier meson masses.

In Figs. 2.13 and 2.14 we present the results for our calculations of M(p2) =
B(p2)/A(p2) for different values of C and different orders of quark-gluon vertex
dressing. Again these calculations have G = 1 GeV, so all dimensionful quantities
are measured in units of G. The vertex parameter C has a modest impact on the
behavior of M(s).

Figures 2.15, 2.16 and 2.17 display the results for the vertex amplitudes αi(s)
corresponding to different orders of vertex dressing. Successive orders after 1-loop
(n = 1) serve to enhance the infrared strength for s < 1. The convergence with n is
monotonic, in contrast to the convergence of the BSE kernel that is generated from
this vertex, as discussed later.
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The quark condensate in the present model is given by

〈q̄q〉0 = − 3

4π2

∫ s0

0

dss
B0(s)

sA2
0(s) +B2

0(s)
, (2.42)

in terms of the chiral limit quark propagator amplitudes. There is no renormalization
necessary because there is a spacelike s0 for which B0(s > s0) = 0. Because of the
underrepresentation of the ultraviolet strength of the interaction in this model, the
condensate is characteristically too low. In particular, we find

−〈q̄q〉0C=0.15 = (0.2146 G)3 = (0.1266 GeV)3 (2.43)

with G = 0.59 GeV. The rainbow-ladder result (C = 0) is −〈q̄q〉0LR = G3/(10π2) =
(0.1277 GeV)3. Thus one can see that the vertex dressing decreases the condensate
slightly. In more detail, we have

〈q̄q〉0LR

〈q̄q〉0C=0.15

= 1.03, (2.44)

which indicates that the ladder-rainbow truncation overestimates the condensate by
3% compared to the more completely dressed vertex considered here. The previous
study [10] with a more restricted class of vertex dressing diagrams found that the
ladder-rainbow truncation was 18% too low.

2.5.3 The Algebraic Bethe-Salpeter Kernel for Mesons

Substitution of the model interaction kernel Eq. (2.30) into the meson BSE,
Eq. (2.25), produces the algebraic form

ΓM(k;P ) = −G2γµ {χM(k;P )Γµ(k−) + S(k+)ΛMµ(k;P )} . (2.45)

The previous general recurrence relation Eq. (2.28) for the general term of ΛMν =∑∞
n=0 Λn

Mν now has the algebraic form

Λn
Mν(k;P ) = −CG2

∑

j,k,h
n=j+k+h+1

(2.46)

[
Γjρ(k+)χM (k;P )Γkν(k−)S(k−)Γhρ(k−) + Γjρ(k+)S(k+)Γkν(k)χM (k;P )Γhρ(k−)

+Λj
Mρ(k;P )S(k−)Γkν(k−)S(k−)Γhσ(k−) + Γjρ(k+)S(q+)Λk

Mν(k;P )S(k−)Γhρ(k−)

+Γjρ(k+)S(k+)Γkν(k+)S(k+)Λh
Mσ(k;P )

]
.

If we work at a given order, n, of vertex dressing, then the quark propagator,
the dressed vertex, and the BSE kernel can be constructed recursively. By construc-
tion, chiral symmetry is preserved and the chiral pseudoscalar states are massless,
independent of model parameters. Because of the algebraic structure, in which the
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Figure 2.15: Gluon-quark vertex amplitude α1(s) versus Euclidean s = p2, for
C = 0.15. We use the interaction mass scale G = 1 GeV and the current mass is
m = 0.0183 G = 18.3 MeV. n = 0 (solid curve) results from the bare vertex and
is the ladder-rainbow truncation. The other curves are n = 1 (short dashed curve,
1-loop vertex dressing), n = 2 (dotted curve), n = 11 (dot - short dashed curve),
n = 12 (dot - long dashed curve), n = 13 (dot dot dot - dashed curve) and n = 14
(long dashed curve).
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Figure 2.16: Gluon-quark vertex amplitude α2(s) versus Euclidean s = p2, for
C = 0.15. We use the interaction mass scale G = 1 GeV and the current mass is
m = 0.0183 G = 18.3 MeV. n = 0 (solid curve) results from the bare vertex and
is the ladder-rainbow truncation. The other curves are n = 1 (short dashed curve,
1-loop vertex dressing), n = 2 (dotted curve), n = 11 (dot - short dashed curve),
n = 12 (dot - long dashed curve), n = 13 (dot dot dot - dashed curve) and n = 14
(long dashed curve).
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Figure 2.17: Gluon-quark vertex amplitude α3(s) versus Euclidean s = p2, for
C = 0.15. We use the interaction mass scale G = 1 GeV and the current mass is
m = 0.0183 G = 18.3 MeV. n = 0 (solid curve) results from the bare vertex and
is the ladder-rainbow truncation. The other curves are n = 1 (short dashed curve,
1-loop vertex dressing), n = 2 (dotted curve), n = 11 (dot - short dashed curve),
n = 12 (dot - long dashed curve), n = 13 (dot dot dot - dashed curve) and n = 14
(long dashed curve).
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BS amplitude ΓM(k;P ) appears on both sides of Eq. (2.45) with the same qq̄ rel-
ative momentum k, a physical solution where P 2 = −M2

M is independent of k is
defined only at k = 0. That is, the quark and antiquark have momenta ηP and
(1−η)P . (Here we consider only equal mass quarks and thus have chosen η = 1/2.)
The Munczek-Nemirovsky model interaction does not allow momentum transfer to
quarks. This is a restriction present in all hadron studies made within this model.
We define ΓM(P ) = ΓM(k = 0;P ), after which the form in which we solve the BSE
is

ΓM(P ) = −G2 γµS(
P

2
)

{
ΓM(P )S(−P

2
) Γµ(−

P

2
) + ΛMµ(0;P )

}
. (2.47)

2.6 Meson Masses and Results

The general form of a meson BS amplitude can be written as

ΓM(k;P ) =
∑

i

Ki(k;P ) f iM(k2, k · P ;P 2), (2.48)

where the Ki(k;P ) are a complete set of independent covariants constructed from
Dirac matrices and momenta that transform in a manner specified by the quantum
numbers of the meson under consideration. The f iM(k2, k ·P ;P 2) are the correspond-
ing invariant amplitudes. (We do not show explicitly the color singlet unit matrix.)
The model BSE under consideration here, Eq. (2.47), has relative momentum k = 0,
and the set of covariants is reduced considerably. We have

ΓM(P ) =
N∑

i=1

Ki(P )f iM(P 2) (2.49)

and it is convenient to develop a set of projection operators Pj that allow us to
isolate each amplitude according to

f jM = TrD [PjΓM ] . (2.50)

Then projection of the BSE, Eq. (2.47), yields the eigenvalue equation

f(P 2) = H(P 2) f(P 2), (2.51)

where f = (f 1
M , f

2
M · · · ) is a vector of invariant amplitudes and the matrix H(P 2) is

an N ×N representation of the kernel.
The mass, MM , of the lowest bound state is obtained from the highest negative

value of P 2 for which
det
[
H(P 2) − I

]
P 2+M2

M
=0

= 0. (2.52)

This method, namely the solution of the characteristic polynomial for Eq. (2.51),
has also been followed in earlier work of this type [9, 10].
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2.6.1 The Pion

The general form of the π Bethe-Salpeter amplitude requires four covariants
and is

Γπ(k;P ) = γ5 [i f 1
π + /P f 2

π + /k k · P f 3
π + σµνkµPν f

4
π ], (2.53)

in terms of amplitudes f iπ(k
2, k ·P ;P 2). We do not show flavor dependence since we

treat we treat u-quarks and d-quarks the same in all other respects. In the present
case only two covariants survive and we have

Γπ(P ) = γ5 [if 1
π(P

2) + /Pf 2
π(P

2)]. (2.54)

Convenient projection operators in this case are

P1 = − i

4
γ5, P2 =

1

4P 2
/Pγ5. (2.55)

2.6.2 The Rho

The general form of the ρ Bethe-Salpeter amplitude requires eight transverse
covariants and the corresponding amplitudes. Specific choices that have been found
convenient in earlier work are given in Refs. [34, 59]. In the present case, the most
general form is simply

Γρµ(P ) =

(
δµν −

PµPν
P 2

)
γνf

1
ρ (P

2) + σµνPνf
2
ρ (P

2). (2.56)

Again a unit color matrix is understood and we treat u-quarks and d-quarks as the
same. Convenient projection operators that isolate the amplitudes are

P1 =
1

12
γµ, P2 =

1

12P 2
σµνPν . (2.57)

2.6.3 Vertex Dressing for Light Quarks

There are a total of three parameters: C = 0.15, which has already been set by
the quenched lattice data for the quark propagator and the gluon-quark vertex, while
the experimentalmπ andmρ are used to set the other two: the interaction mass scale,
G = 0.59 GeV, and the current mass for the u/d quark, m = 0.0183G = 11 MeV.
The fully dressed vertex model is used in these determinations. In practice, we
require convergence to 3 significant figures for the masses and this is achieved with
a vertex dressed to order n = 14. Table 2.1 shows how the vertex dressing influences
mπ and mρ.

To confirm that our constructed BSE kernel preserves chiral symmetry, we
verified that with m = 0 and to any order of vertex dressing, the chiral pion is
massless to the numerical accuracy considered. The physicalmπ is not fixed perfectly
by the symmetry but is almost so. The explicit symmetry breaking by the current
mass is sufficient to determine mπ for all orders of vertex dressing except for a few
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Table 2.1: Effect of quark-gluon vertex dressing to order n upon the masses of the π
and ρ mesons (in GeV). The ladder-rainbow (LR) truncation corresponds to n = 0,
one loop vertex dressing corresponds to n = 1, etc, while the full model result
(converged to 3 significant figures) is labeled n = ∞. Also displayed for mρ is the
mass error, ∆mρ, and the relative mass error, ∆mρ/mρ, of the LR truncation of the
present model compared to a previous model [10] based on a limited class of vertex
dressing diagrams. The mass scale parameter is G = 0.59 GeV, the current mass of
the u/d-quark is m = 0.0183G = 11 MeV, and C = 0.15.

Vertex Dressing mπ mρ ∆mρ
∆mρ

mρ

∆mρ

mρ
[10]

n = 0 (LR) 0.140 0.850 +0.074 +0.095 +0.295
n = 1 (1-loop) 0.135 0.759 -0.017 -0.022 —–
n = 2 0.135 0.781 +0.005 +0.006 +0.096
n = 3 0.135 0.772 -0.004 -0.005 N/A
n = 4 0.135 0.778 +0.002 +0.003 N/A
n = ∞ (full model) 0.135 0.776 0.0 0.0 0.0

% error in the ladder-rainbow truncation (n = 0). Since the same behavior was
observed in earlier work of this nature [9,10], this result is quite model-independent.

The response ofmρ to increasing order of vertex dressing shows that the ladder-
rainbow truncation is missing 74 MeV of attraction compared to the full model re-
sult. The magnitude of the error decreases with each added order of vertex dressing.
The relative error in the ladder-rainbow mass is 9.5% in the present self-consistent
vertex model, compared to 29.5% in the vertex model of Ref. [10]. In the present
approach each diagram for the dressed vertex has each of its internal vertices dressed
in a self-consistent way. This self-consistency introduces a greater non-linearity into
the dependence of the vertex, and BSE kernel, upon the effective strength (−C G2)
of the relevant integral equation for the vertex. This in turn significantly alters the
response of the meson mass calculation to changes in either of these parameters or
the order n (maximum number of gluon lines) of the summed vertex.

Some of the attraction due to the corrections to ladder-rainbow truncation
in Ref. [10] is offset here by a combination of two effects: a) the presence of the
extra diagrams we account for by generating the vertex self-consistently, and b) the
resulting smaller values of the strength parameters C and G found necessary to fit
the lattice vertex data, as well as mπ and mρ. Note that in either Ref. [10] or in the
present self-consistent scheme for the vertex, diagrams with n gluon lines contain
an overall factor (−C G2)n. However in the former scheme there is only one diagram
of order n, while in the self-consistent scheme, the number is n(n + 1)/2. With
increasing n, this latter effect can quickly alter the balance between positive and
negative contributions and can offset the effect of smaller strength for the kernel.
In fact calculations of mρ for a range of C values up to 0.5 show that the error of
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Table 2.2: Error of the ladder-rainbow truncation for equal quark mass vector
mesons in the u/d-, s-, c-, and b-quark regions, according to calculated mass and ef-
fective binding energies (in GeV). The ladder-rainbow (LR) truncation corresponds
to order n = 0 in vertex dressing and the full model result corresponds to ver-
tex dressing to all orders, n = ∞, in this model. The mass scale parameter is
G = 0.59 GeV, and C = 0.15.

ladder-rainbow full model LR % error
n = 0 n = ∞ this model [10]

mu,d = 0.011
mρ 0.850 0.776 9.5% 30%
BEρ 0.346 0.311 11%
ms = 0.165
mφ 1.08 1.02 6.0% 21%
BEφ 0.350 0.320 9.0%
mc = 1.35
mJ/ψ 3.11 3.09 0.3% 3.5%
BEJ/ψ 0.260 0.260 0%
mb = 4.64
mΥ 9.46 9.46 0% 0%
BEΥ 0.100 0.100 0%

the ladder-rainbow truncation is always less in the self-consistent vertex dressing
scheme; the converged mρ never becomes more than 11% below the ladder-rainbow
value. Thus the extra diagrams, or consequent non-linearity of the self-consistent
vertex dressing scheme, is the dominant reason for the evident improved accuracy
of ladder-rainbow truncation arising from the present simple algebraic model. It is
not known whether this finding carries over to a more realistic treatment of QCD
dynamics.

2.6.4 Current Quark Mass Dependence

One expects the influence of vertex dressing to decrease with increasing quark
mass because of the internal quark propagators in the vertex. Thus the LR trunca-
tion should become more accurate for mesons involving heavier quarks. It is useful
to quantify this for the following reason. Phenomenological LR kernels [32] are
capable of incorporating many realistic features of QCD modeling, and have been
developed to provide efficient descriptions of light quark mesons, their elastic and
transition form factors, and decay constants. A parameterized LR kernel that re-
produces the experimental values of mπ and mρ has, by definition, absorbed the
effective dressing of the vertex. The present work suggests that this is an amount of
vertex attraction worth 9.5% of the vector meson mass. However this phenomeno-
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logical representation of the dressing does not have an explicit dependence upon
quark mass that would occur if the vertex dressing were to be generated by an ex-
plicit Feynman diagram structure. One would expect such a phenomenological LR
kernel to be progressively too attractive when applied to mesons with progressively
heavier quarks.

The present model provides an opportunity to explore how much of the final
meson mass result is attributable to vertex dressing and how this varies with quark
mass. In Table 2.2 we display results for the ground state vector mesons in the u/d-,
s-, c-, and b-quark regions for both rainbow-ladder truncation and the full model.
Again the quark current masses are determined so that the full model reproduces
experiment. We see that the amount by which the LR masses are too large decreases
steadily with increasing quark mass, as expected. The LR truncation here is missing
6% of attraction for mφ compared to 21% in the restricted class of dressing diagram
considerably previously [10]. The LR truncation is quite accurate for the cc̄ and bb̄
vector states, as expected.

For the larger quark masses, the meson mass is dominated by the sum of the
quark masses. We also express the results in a form that has this large mass scale
removed. For each state in Table 2.2, we display an effective binding energy defined
as BE = 2Mq(0) −mV , where Mq(0) is the quark mass function obtained from the
DSE solution at p2 = 0, and mV is the meson mass. Thus Mq(0) is being used as a
rough measure of the constituent quark mass. The use of a single p2 point may well
be an overestimate of constituent masses. Furthermore, our fitted current quark
masses are on the upper edge of what is usually quoted at a renormalization scale of
µ = 2 GeV [60]. Such an overestimate would be amplified in the infrared region via
a DSE solution for the quark propagator. Nevertheless, a relative comparison should
be meaningful. Table 2.2 shows the dependence of BE upon the current quark mass
for the fully dressed model and the ladder-rainbow truncation. On this basis, the
relative amount of overbinding of the LR truncation is consistent with its relative
lack of attraction with respect to the mass results.

In Table 2.3 we display the full model results for both the vector and pseu-
doscalar qq̄ states. The masses for ηc and ηb are predictions. In the c- and b-quark
regions, these results are essentially the same as those of Ref. [10], because the
differences in the employed model of vertex dressing become irrelevant when any
dressing contribution is suppressed by the large mass of propagators internal to the
vertex. The systematics of the mass dependence of hyperfine splitting that spans
the c- and b-quark regions, here and in earlier work [10], strongly suggests that the
experimental value [60], mηb

= 9.30 ± 0.03, is too low.

2.7 Summary

We have taken advantage of an algebraic model to enlarge the class of diagrams
for the quark-gluon dressed vertex that can be incorporated into the Bethe-Salpeter
kernel, while allowing a practical application to the calculation of meson masses.
A given expansion of the vertex in diagrammatic form, produces a diagrammatic
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Table 2.3: The masses of the equal quark mass vector and pseudoscalar mesons
in the u/d-, s-, c-, and b-quark regions, and the current quark masses required to
reproduce the experimental vector meson masses. All are in units of GeV. The
values of mηc

and mηb
are predictions. Experimentally [60], mηc

= 2.9797±0.00015
and mηb

= 9.30 ± 0.03. The fictitious pseudoscalar 0−ss̄ is included for comparison
with other studies [10].

mu,d = 0.011 ms = 0.165 mc = 1.35 mb = 4.64
mρ = 0.776 mφ = 1.02 mJ/ψ = 3.09 mΥ(1S) = 9.46
BEρ = 0.311 BEφ = 0.320 BEJ/ψ = 0.260 BEΥ = 0.100
mπ = 0.135 m0−ss̄

= 0.61 mηc
= 2.97 mηb

= 9.43

BEπ = 0.953 BE0− = 0.727 BEηc
= 0.380 BEηb

= 0.130

expansion of the quark self-energy, which in turn specifies a diagrammatic expansion
of the BSE kernel if chiral symmetry is to be respected. This procedure relieves the
phenomenology of the task of reproducing Goldstone’s theorem whenever parame-
ters are changed. It is always obeyed in this approach and thus phenomenology can
address itself to a more constrained task. The constraints are considerable: a real-
istic ladder-rainbow kernel fitted to 〈q̄q〉0 [32] produces mρ, mφ and mK⋆ to better
than 5%. Such a phenomenological LR kernel for light mesons has absorbed vertex
dressing but without the explicit mq dependence associated with an explicit dia-
grammatic representation of the dressed gluon-quark vertex. In order to gain more
information it is necessary to work with a model that can implement a summation
of vertex diagrams, turn that into a summation of diagrams for the chiral symmetry
preserving BSE kernel, and allow a practical solution of the meson BSE.

To this end we adopted the Munczek-Nemirovsky Ansatz [40] for the interac-
tion kernel. We used an improved model for the quark-gluon dressed vertex wherein
each diagram for the dressed vertex has each of its internal vertices dressed in a
self-consistent way. This moves considerably beyond the ladder BSE structure [10]
for the vertex, in which vertices internal to the dressed vertex of interest are bare.
In common with Ref. [10], we also used an effective method, with one parameter
(C = 0.15 for this model), to accommodate the important non-Abelian effect of the
3-gluon coupling for the vertex. Quenched lattice-QCD data for the quark propa-
gator and the quark-gluon vertex at zero gluon momentum fixed the parameter C,
while mπ and mρ fixed the other two parameters via the fully dressed vertex results.

The resulting model provides a laboratory within which the relevance of ladder-
rainbow truncation (bare vertex) can be explored over a range of quark masses
from u/d-quarks to b-quarks. The influence of the enlarged class of vertex dressing
diagrams included in this work is seen to indicate that LR truncation is missing 9.5%
of attraction for mρ, whereas the previous information from a smaller class of vertex
dressing diagrams [10] had LR missing 30% of attraction. We have argued that the
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extra diagrams, or consequent non-linearity of the self-consistent vertex dressing
scheme, is the dominant reason for the evident improved accuracy of ladder-rainbow
truncation arising from the present simple algebraic model. It is not known whether
this finding carries over to a more realistic treatment of QCD dynamics. As heavier
qq̄ mesons are considered, the amount of missing attraction in the LR truncation
decreases steadily, as does the influence of vertex dressing which is less than 1% for
the J/ψ and Υ.

The influence of the non-Abelian 3-gluon coupling is very significant. No
attempt has been made to consider 4-gluon coupling nor to consider non-planar
gluon line diagrams (e.g. crossed-box diagrams) for the vertex dressing. On the
other hand, a limited class of non-planar gluon line diagrams for the meson BSE
kernel, as generated from the planar diagrams of the dressed vertex, are included.
Clearly the next step in this analysis is to include all possible diagrams dressed with
two-point gluon lines in dressing the quark-gluon vertex and explore the influence of
this complete dressing (excluding the 3- and 4-gluon couplings) on the solutions of
the GAP equation. Convergence of these solutions with employing the fully dressed
vertex will be a strong indicator of the reliability of the predictions made within
this framework.
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Chapter 3

Fully Dressed Quark-Gluon Vertex

3.1 Introduction

Inspired by the success of the improved vertex dressing scheme explored in the
previous chapter, which allowed us to include a generalized class of planar diagrams
in the dressing, in this chapter we explore the consequences of completely dressing
the vertex with only two-point gluon lines. Here the planar diagrams are defined
as those that can be drawn without any two gluon lines crossing each other. In the
proposed scheme we will include both planar and non-planar diagrams, where the
latter have typically been omitted in the previous models.

3.2 Non-Planar Diagrams and the Correct Large

Nc Counting

The lowest-order non-planar diagram, which appears only at order O(g5) in
dressing the vertex, is shown in Fig. 3.1d. This and all other non-planar diagrams
were omitted in the previous models of the vertex dressing, where we assumed that
they were small. One of the arguments supporting that conjecture is that non-
planar diagrams should have smaller color factors than planar diagrams, as proven
by topological arguments in ’t Hooft’s 1/Nc expansion in QCD [11], [13], [14]. On
the other hand, the color factors of the diagrams in Fig. 3.1 are easy to calculate
explicitly using the properties of the matrices of the fundamental representation of
SU(N) group. All the diagrams included in the improved model with a number of
internal gluon lines n have the same color factors:

CfImp
n ta =

(
− 1

2Nc

)n
ta (3.1)
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(2) = ++ +

(a) (b) (c) (d)

Figure 3.1: Vertex diagrams at O(g5). Here the large red circle denotes the 2-
nd order dressed quark-gluon vertex function ( 2 in the parenthesis denotes the
number of gluon lines contributing to the vertex) and the small black circles on the
propagators denote that the propagators are fully dressed. Previous works included
only one or all of the diagrams (a), (b) and (c). Non-planar diagrams included in
this work, such as diagram (d), prove to have significantly larger color factors than
the planar ones.

Thus CfImp
2 = 1/4N2

c for diagrams in the Figs. 3.1a-3.1c. The relation (3.1)
can be easily proven using the following identity:

tatbta = (CF − CA

2
)tb = − 1

2Nc
tb (3.2)

and remembering the structure of the improved vertex.
The color factor of the diagram (3.1, d) can also be easily calculated

CfNpl
2 ta = tctbtatctb =

N2
c + 1

4N2
c

ta, (3.3)

where we used the following identities

[
ta, tb

]
= ifabctc, (3.4)

fabctbtc =
1

2
iNct

a, (3.5)

with totally antisymmetric structure constant fabc.
This result seems to be in contradiction with the planarity arguments associ-

ated with the 1/Nc expansion. The qualitative solution of this puzzle can be easily
given if we look more closely at the topological criteria in 1/Nc. The criteria of
planarity can be applied only to color-singlet objects if it is unambiguous. More-
over, the outer edge of the diagram should be a quark loop [14]. The most logical
way of constructing a color-singlet object from the vertex diagrams of Fig. 3.1 is
by inserting them into the quark self-energy term of the GAP equation and closing
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(a)

(b)

Figure 3.2: The non-planar diagrams obtained from inserting the corresponding
vertices into the quark self-energy term and closing the fermion loop to form a color-
singlet object. This shows that there is no clear indication as to which diagram is
dominant in 1/Nc epansion.

the fermion loop in a manner that will leave the quark loop on the outer edge of the
diagrams, as demonstrated on the Fig. 3.2 for the diagrams in Fig. 3.1a and 3.1d.

This demonstrates that both vertex diagrams yield non-planar diagrams, which
need to be considered in more detail in a 1/Nc expansion in order to determine their
leading order contribution. We just note here that all the arguments that are true
for the diagram in Fig. 3.1a in a 1/Nc expansion are also valid for the diagrams in
Figs. 3.1b and 3.1c and vice a versa.
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3.3 ’t Hooft’s Double-Line Counting Rules and

the Undeservingly Discarded U(1) Ghost in

1/Nc Expansion

A careful examination of the 1/Nc power behavior of the self-energy diagrams
requires a short review of the introduction to ’t Hooft’s model of the 1/Nc expansion
(also known as large N QCD) [14]. As we mentioned in the previous chapter, QCD
in the low energy scale, where most of the hadrons lie, does not have an explicit
parameter in which it can be expanded. ’t Hooft’s proposition was to use 1/Nc,
assuming Nc to be so large that the expansion will be sensible. In the discussion
from now on we will drop the c index from the number of colors, writing it simply
as N .

The expansion is setup by extending QCD to N colors and Nf flavors of
quarks. The underlying local gauge symmetry is the SU(N) in the fundamental
representation. Here the color parts of the quark fields are represented by N dimen-
sional vectors and the gauge fields are represented by Hermitian N × N traceless
matrices ta, Aµ ≡ taAaµ, with index a ∈ {1, 2, .., N2 − 1} in the adjoint representa-
tion of SU(N). In the 1/N expansion the gauge coupling constant g is taken to be
g = g0/

√
N , which is necessary to keep the theory sensible as N → ∞.

The corresponding Lagrangian density is:

LQCD =

Nf∑

f=1

ψ̄f (iγ
µDµ −m)ψf −

1

2
Tr [F µνFµν ] , (3.6)

with the covariant derivative defined via gauge field:

Dµ ≡ ∂µ + i
g0√
N
Aµ, (3.7)

and the field strength as:

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + i

g0√
N
fabc

[
Abµ, A

c
ν

]
, (3.8)

From now on we will ignore the flavor index of the quarks, as it will be irrelevant
to our discussion. We want to note that the large N limit can be taken with either
Nf or Nf/N fixed.

The counting of the color factors of the Feynman diagrams is necessary in as-
sessing their importance in this counting scheme. ’t Hooft proposed a diagrammatic
method for counting the color factors of the diagrams, the so-called double-lined
notation. The method is easy to understand by considering the color structure of
the theory’s Green’s functions. The quark propagator has the following structure

〈0|ψi(x)ψ̄j(y) |0〉 = δijS (x− y) , (3.9)
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where the color indices i, j ∈ {1, 2, ..., N}. Thus, the propagator is depicted dia-
grammatically by an arrowed line with the same color indices on both ends due to
δij, see Fig. 3.3a.

The gauge field propagator is

〈
0
∣∣Aaµ(x)Abν(y)

∣∣ 0
〉

= δabDµν (x− y) (3.10)

Using the following SU(N) identity

(ta)ij (ta)kl =
1

2
δilδ

k
j −

1

2N
δijδ

k
l (3.11)

and the normalization condition of the ta matrices the color indices of the propagator
(3.10) can be written explicitly

〈
0
∣∣∣
(
Aaµ(x)

)i
j

(
Abν(y)

)k
l

∣∣∣ 0
〉

=

(
1

2
δilδ

k
j −

1

2N
δijδ

k
l

)
Dµν (x− y) (3.12)

The U(N) identity corresponding to (3.9) has the following form

(ta)ij (ta)kl =
1

2
δilδ

k
j , (3.13)

which is usually substituted into the gluon propagator. The gluon propagator is
then diagrammatically depicted as a double line, with opposite arrows and the same
color indices on both ends of each line, as implied by the Kronecker deltas in (3.13).
The second term on the right hand side (RHS) of Eq. (3.11) is dropped, assuming
it will be unimportant in the 1/N counting, as it is suppressed by a 1/N factor.

Here we propose to keep the second term on the RHS of Eq. (3.11), which
corresponds to a U(1) ghost field, which is necessary to cancel the extra U(1) gauge
boson in relating the U(N) gauge theory to SU(N). We propose to depict the ghost
field as a single dotted line with no color indices, as it transfers no color because of
the Kronecker deltas that contract the color factors at each end of the line, see Eq.
(3.11). The corresponding diagrams are depicted in Fig. 3.3b, where the double-
lined object correspond to the U(N) gluon propagator, and the ghost field has a
negative sign as one can see from (3.12). In counting the powers of N , each ghost
field will enter with a 1/N factor also coming from the form of the propagator. This
extra penalty of 1/N is the reason the ghosts are generally ignored in the literature.
We also note that with each double-lined U(N) gluon and U(1) ghost propagator,
we have to include a factor of 1/2 to account for the proper normalization.

In a similar fashion, the quark-gluon vertex can be depicted in the double-
lined and dotted notation as shown in Fig. 3.4a. We note here, that in the general
literature on the 1/N expansion, the ghost contribution is usually ignored as well.
For completeness, we also show in Fig. 3.4b and 3.4c the 3 and 4 point gluon vertices
in the double-lined notation. We note that there is no 3 or 4 point ghost interaction,
nor is there a U(N) gluon-ghost interaction, as these fields are commutative.
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Figure 3.3: The double-lined notation for the low order QCD Green’s functions in
1/Nc expansion of the vertex diagrams.
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Figure 3.4: The double-lined notation for the low order QCD Green’s functions in
1/Nc expansion of the vertex diagrams.
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Figure 3.5: The double-lined analysis of the lowest order non-planar diagram with
quark loop, where the U(1) ghosts were also included.

With this diagrammatic notation, the color factor of a diagram is counted by
replacing the Green’s functions with the corresponding ’t Hooft line diagrams and
counting the number of the closed color index loops, each accounting for a factor
of N . The 1/N counting is unambiguous only for color-singlet objects, where the
corresponding diagram will not have any open color index lines. The overall order of
the diagram is then calculated by taking into account the number of 1/

√
N factors

from the gauge coupling constant and the 1/N factors from the ghost propagators:

O = NL−C/2−G, (3.14)

where L is the number of the closed color index loops, C is the number of the
couplings, g, and G is the number of the ghost propagators in the diagram.

These rules are easy to demonstrate on the simple example depicted in Fig.
3.5.

The color factor and 1/N order of the diagram (3.5, a) is easy to calculate

Cf
a)
1 = Tr[tatbtatb] = −N

2 − 1

4N
(3.15)

O
a)
1 = Cf

a)
1 ×

(
1√
N

)4

= −N
2 − 1

4N3
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The rules described above allow for an easy evaluation of the color factors for
the diagrams in Figs. 3.5b-3.5d:

Cf
b)
1 =

1

4
N (3.16)

O
b)
1 = Cf

b)
1 ×

(
1√
N

)4

=
1

4N

Cf
c)
1 =

1

4
N2 × 1

N
=

1

4
N

O
c)
1 = Cf

c)
1 ×

(
1√
N

)4

=
1

4N

Cf
d)
1 =

1

4
N × 1

N2
=

1

4N

O
d)
1 = Cf

d)
1 ×

(
1√
N

)4

=
1

4N3

It is easy to check that

Cf
a)
1 = Cf

b)
1 − 2Cf

c)
1 + Cf

d)
1 , (3.17)

as depicted in the Fig. 3.5.
Here we see the importance of the ghost fields, where the term Cf

c)
1 is equal to

Cf
b)
1 , but is multiplied by a factor of two and has the opposite sign. In the literature

this example is demonstrated without the ghost fields, which should yield the wrong
sign, but accidentally the right order in the 1/N expansion. We want to emphasize
that the ghost fields can be discarded in describing the SU(N) theory only if we
consider the leading order diagrams with the given number of quarks and gluons,
that is only for planar diagrams. For planar diagrams, each U(N) gluon forms a
new color index loop which cancels the penalty of the 1/N induced by two factors
of g it carries. On the other hand, a ghost line does not create a color loop and
carries an extra 1/N penalty for the propagator, thus contributing at 1/N2 order
compared to the corresponding U(N) gluon. However, for the non-planar diagrams,
the U(N) gluon may not create or can even destroy a color index loop, where the
ghost stays “invisible” (same old ghostly habits) to the color loops. Thus in some
circumstances they become as large as the U(N) gluon contribution.

The 1/N analysis for the vertices depicted in Fig. 3.2 is now straightforward.
The corresponding double-lined decompositions are depicted in the Figs. 3.6 and
3.7.
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Figure 3.6: The double-lined analysis of the diagam in Fig. 3.2a, where the U(1)
ghosts were also included.
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Figure 3.7: The double-lined analysis of the diagam in Fig. 3.2b, where the U(1)
ghosts were also included.
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We simply write down the corresponding color factors from each diagram

Cf
b)
2a =

1

8
N2 (3.18)

Cf
c)
2a =

1

8
N3 × 1

N
=

1

8
N2

Cf
d)
2a =

1

8
N × 1

N
=

1

8

Cf
e)
2a = Cf

f)
2a =

1

8
N2 × 1

N2
=

1

8

Cf
g)
2a =

1

8
N × 1

N3
=

1

8N2

and

Cf
b)
2b =

1

8
N2 (3.19)

Cf
c)
2b =

1

8
N × 1

N
=

1

8

Cf
d)
2b =

1

8
N2 × 1

N2
=

1

8

Cf
e)
2b =

1

8
N × 1

N3
=

1

8N2

The Cf
a)
2b and Cf

b)
2b are easy to calculate using Eqs. (3.1) and (3.3)

Cf
a)
2a = CfImp

2 Tr [tata] =
N2 − 1

8N2
c

, (3.20)

Cf
a)
2b = CfNpl

2 Tr [tata] =
N4
c − 1

8N2
c

. (3.21)

Thus we can again check that

Cf
a)
2a = Cf

b)
2a − Cf

c)
2a − 2Cf

d)
2a + Cf

e)
2a + 2Cf

f)
2a − Cf

g)
2a, (3.22)

Cf
a)
2b = Cf

b)
2b − 3Cf

c)
2b + 3Cf

d)
2b − Cf

e)
2b, (3.23)

where we skipped constructing the full 1/N ordering of the diagrams, as the factor
N−3 from gauge coupling g is common for all the diagrams.

Thus the correct 1/N analysis of the vertex diagrams completely agrees with
the straightforward calculations of the color factors using the properties of the Gell-
Mann matrices. It is remarkable that in the diagram of Fig. 3.6 the leading-order
contribution from U(N) gluons, Fig. 3.6b, is exactly canceled by a diagram including
a ghost line, Fig. 3.6c, so that the leading order contribution is given by diagrams
in Figs. 3.6d-3.6f, containing one or more ghost lines.
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Figure 3.8: Quark self-energy type contribution in dressing the quark-gluon vertex.

3.4 Consequences of Including All Possible Dia-

grams

The analysis performed in the previous section showed that the previously
ignored “non-planar” diagrams are important in dressing the quark-gluon vertex,
since they have large color-factors and their numbers grow significantly faster than
even the improved vertex diagrams as we include more gluon lines in the dressing.
Thus it is crucial to explore the effects of including all diagrams dressed with two-
point gluon lines in dressing the quark-gluon vertex.

In this section we propose a scheme for dressing the vertex function that
includes all possible contributions with two-point gluon lines up to some order n of
the gluon lines. We decompose the vertex function into a sum of all contributions
with exactly i gluon lines:

Γµ =
∑

i=0

Γiµ, (3.24)

where Γ0
µ = Z1 γµ.

We use a recursive algorithm for obtaining all the contributions with exactly i
gluon lines, Γiµ , from the diagrams contributing to Γi−1

µ . We consider each diagram
contributing to Γi−1

µ and consider the diagrams produced by making all possible
insertions of a single gluon line into the vertex diagram by attaching its ends to
fermion lines, assuring that at least one bare quark-gluon vertex is attached to the
fermion line between the endpoints of the new gluon line. This ensures that the
produced diagram is not simply a fermion self-energy type correction (see Fig. 3.8).
It is then checked whether the resulting diagram was already produced from any
previously considered diagrams contributing to Γi−1

µ to avoid double counting. One
can easily see that the algorithm works for constructing the one-loop diagram from
the bare vertex diagram and from that the diagrams of Fig. 3.1, as demonstrated
on the Fig. 3.9.
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Figure 3.9: Generating all the second order diagrams form the only first order
diagram by making all possible insertions of a single gluon line into the first order
vertex diagram. The letters indicate the starting point of the inserted line. We note
that there are several redundant diagrams generated, which should be removed.
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Figure 3.10: Constructing the set of numbers uniquely identifying one of the second
order diagrams.

It is trivial to prove, using mathematical induction, that this algorithm pro-
duces all possible diagrams involving i gluon lines in dressing the vertex for any
i ≥ 1. In the previous paragraph we demonstrated that all the first and second
order diagrams are generated using this algorithm. Let’s suppose for some n > 1
we have all the diagrams with n− 1 gluon lines, but there is one with n lines that
we did not obtain from our insertions. It is easy to see that we can always find
one gluon line, which can be removed from the diagram leaving it without quark
self-energy type subdiagrams. Then the resulting vertex has n− 1 gluon lines, thus
should be in the set of diagrams we used to construct the vertices with n lines. Since
we included all the possible insertions in our construction, we then had to obtain
the original diagram as well.

In fact, the gluon line that can be removed is easy to find in a diagram. If the
gluon line starting the first on one of the sides of the quark line cannot be removed,
then there is a gluon line who’s endpoints are separated only by the other end of
our gluon. Then we can simply remove that gluon line without generating quark
self-energy type subdiagram.

The algorithm described above is easy to implement in practice by constructing
a set of numbers uniquely identifying each diagram. We build the set by enumerating
the bare quark-gluon vertices in a diagram with n−1 gluon lines from 1 to n−1 and
assigning the same numbers to the vertices attached to the same gluon propagators.
We assign 0 to the external gluon vertex. An example of such construction is shown
in the Fig. 3.10.

To construct the vertices with n gluon lines, we insert a pair of n into the set
described above so that they will not be next to each other, as illustrated in the
Fig. 3.11. We relabel the resulting set in the ascending order and check if the final
set was already generated.

Algebraic Analysis

In order to solve the GAP equation with our dressed quark-gluon vertex, one
needs the gluon 2-point function. As in the previous studies of this kind, we again
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n n

(

1, 2, 1, ..., 0, ..., n − 5, n − 1
)

Figure 3.11: The sets for diagrams with exactly n diagrams are obtained from ones
corresponding to diagrams with exactly n− 1 lines by inserting a pair of n into the
set and making all possible permutations, so they are never next to each other.

employ the Munczek-Nemirovsky Ansatz [40] for the interaction kernel to reduce
the high dimensional integral equations to algebraic ones that make the analysis
affordable

g2Dµν(k) →
(
δµν −

kµkν
k2

)
(2π)4G2δ4(k), (3.25)

where the parameter G2 is a measure of the integrated kernel strength.
The algebraic form of the GAP equation for the quark propagator correspond-

ing to the gluon propagator (3.25) is

S(p)−1 = i/p+mbm + G2γµS(p)Γµ(p). (3.26)

After projection onto the two Dirac amplitudes we have

A(p2) = 1 − G2 i

4
tr

[
/p

p2
γµS(p) Γµ(p)

]
, (3.27)

B(p2) = mbm + G2 1

4
tr [γµ S(p) Γµ(p)] . (3.28)

Equations (3.27) and (3.28) are solved simultaneously with a vertex function
calculated at a specified order n of vertex dressing.

The calculations of the Dirac algebra for vertex diagrams was performed using
computer-algebraic methods provided by FeynCalc package [57] for Mathematica
[56]. The color factors were calculated by numerical contraction of SU(3) matrices.
The number of possible diagrams grows extremely fast with the number of gluon
lines included, making it difficult to advance too far with the number of loops. For
example, while there are only 4 possible diagrams with exactly 2 internal gluon lines,
there are 27 with 3 and 38232 with 6 internal lines. Such a rapid increase in the
number of possible contributions forced us to use parallel computing to calculate
the invariant amplitude functions for the vertex with exactly 6 gluon lines within a
reasonable time frame. The contributions to Γ7

µ include more than 5 × 105 possible
diagrams, which we did not consider feasible to calculate. The comparison of the
number of diagrams with the previous dressing schemes is shown in the Table 3.1.

The numerical solutions of the GAP equation constructed with the full vertex
function are shown in Figs. 3.12 and 3.13. One can see from the plots that for
n = 3 and n = 5 we obtain the perturbative Wigner-Weyl mode solutions for the
quark propagator as A(s) → ∞ and M(s) → 0 when s→ 0. This indicates that the
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Table 3.1: Comparison of the number of diagrams with exactly n gluon lines included
in various dresing schemes.



n LRSummed Improved Full
2 1 3 4
3 1 6 27
6 1 21 38232
7 1 28 ∼ 5 ∗ 105




Abelian part of the vertex dressing is not attractive enough to produce a Nambu-
Goldstone mode for the quark propagator, so one necessarily needs at least 3-point
gluon functions to account for the non-Abelian part of vertex dressing.

Effect of 3-Point Gluon Function Dressing

Explicit calculations with gluon 3-point functions proved to be extremely dif-
ficult, both because of difficulties in reproducing all possible diagrams at some non-
trivial order in quark-gluon coupling and from the fact that no suitable, model gluon
2-point function is known to us which would allow for affordable calculations be-
yond one or two loops. Hence we resort to the method introduced in Ref. [10], which
allows effective accounting of 3-point gluon function dressing of the vertex through
the introduction of a phenomenological parameter −1/8 ≤ C ≤ 1 in counting the
color factors. We chose to implement the phenomenological color factor counting
scheme only for the sub-class of diagrams that were included in the improved dress-
ing scheme from the previous chapter to be unambiguous, since at a given order all
of the diagrams included in the improved dressing scheme have the same color fac-
tors. The results show that for the range of parameter C ∈ (0.375, 0.8) the solutions
of the GAP equation are in Nambu-Goldstone mode at every calculated order up to
n = 6. The solutions for C = 0.375 are presented in Figs. 3.14 and 3.15.

Padé Approximant

One can see from Figs. 3.14 and 3.15 that even though Nambu-Goldstone
mode solutions can be obtained using minimal introduction of phenomenological 3-
point gluon function, the solutions do not have convincing convergence with respect
to the maximum number of gluon lines allowed in the quark-gluon vertex dressing,
even in the space-like region. In order to draw any reliable conclusions we employ
a Padé approximate to re-sum the perturbative solutions of the GAP equation and
yield a solution at n = ∞. While the details of this calculations are presented in
the Appendix A, the graphs corresponding to the solutions of the GAP equation
with Padé approximant used for the quark self-energy contribution are shown in
magenta in Figs. 3.14 and 3.15. It is clear from the graph that our results are
significantly different from the ones obtained using LR truncation and indicate the
severe limitations of that scheme.

57



s
-1 0 1 2 3 4

A
(s

)

1

1.5

2

2.5

3

3.5

4
n=0

n=1

n=3

n=5

n=6

Figure 3.12: Quark propagator amplitude A(s) versus Euclidean s = p2. We use
the interaction mass scale G = 1 GeV and the current mass is m = 0.0175 G =
17.5 MeV. We show the influence of vertex dressing to order n as described in the
text. n = 0 yields the black curve and the result is the ladder-rainbow truncation.
The other curves are n = 1 (green curve, 1-loop vertex), n = 3 (blue curve), n = 5
(red curve) and n = 6 (orange curve) order of dressing of quark gluon vertex.
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Figure 3.13: Quark mass function M(s) versus Euclidean s = p2. We use the inter-
action mass scale G = 1 GeV and the current mass is m = 0.0175 G = 17.5 MeV.
We show the influence of vertex dressing to order n as described in the text. n = 0
yields the black curve and the result is the ladder-rainbow truncation. The other
curves are n = 1 (green curve, 1-loop vertex), n = 3 (blue curve), n = 5 (red curve)
and n = 6 (orange curve) order of dressing of quark gluon vertex.
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Figure 3.14: Quark propagator amplitude A(s) versus Euclidean s = p2. We use the
interaction mass scale G = 1 GeV, the current mass is m = 0.0175 G = 17.5 MeV
and C = 0.375. We show the solutions in the Nambu-Goldstone mode corresponding
to n = 3 (blue curve) and n = 5 (red curve) order of dressing of quark gluon vertex.
The solution obtained using Padé approximation is shown in magenta. The n = 0
solution (black curve) corresponding to the ladder-rainbow truncation is shown for
reference.
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Figure 3.15: Quark mass function M(s) versus Euclidean s = p2. We use the
interaction mass scale G = 1 GeV, the current mass is m = 0.0175 G = 17.5 MeV
and C = 0.375. We show the solutions in the Nambu-Goldstone mode corresponding
to n = 3 (blue curve) and n = 5 (red curve) order of dressing of quark gluon vertex.
The solution obtained using Padé approximation is shown in magenta. The n = 0
solution (black curve) corresponding to the ladder-rainbow truncation is shown for
reference.
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Unfortunately, the restrictions induced by the model used for the gluon propa-
gator do not allow studies in the time-like region, where the behavior of the propaga-
tors have direct impact on the meson masses obtained by solving the corresponding
Bethe-Salpeter equations.

3.5 Summary

We explored the consequences of employing the most general quark-gluon ver-
tex dressing scheme with only 2-point gluon functions. We showed that the non-
planar vertices have dominant contribution in the diagrams with large numbers of
the gluon lines included in the dressing due to their large color factors. A careful
application of the 1/Nc expansion allowed one to confirm the results for the color
factors evaluated in the SU(3) algebra. The inclusion of the U(1) ghost proved to
be critical in this evaluation, providing necessary cancellations with U(N) gluons.
The discussion of the role of U(1) ghost proved to clear some misconceptions in
evaluating the non-planar diagrams, common in all the previous discussions of the
1/Nc expansion.

The resulting solutions of the GAP equation with the corresponding vertex
calculated up to some finite order showed significant deviation from those calculated
previously using ladder-rainbow truncation or its various extensions. Moreover, the
resulting solutions with the corresponding vertices dressed to the maximum odd
number of gluon lines are in Wigner-Weyl mode for every calculated odd order up
to n = 5. This indicates that inclusion of only 2-point gluon functions in dressing the
quark-gluon vertex omits a significant piece of physics and suggests the importance of
the 3- and 4- point gluon function dressing. This also indicates the likely unreliability
of the predictions made using the ladder-summed and improved vertex dressing
schemes described in the previous chapter. The instability of the solutions shows
that the converged solutions in those dressing schemes might be arbitrarily far from
the full solution, so they cannot be used as benchmarks for reliability of the ladder-
rainbow solutions. Only the solutions explicitly including the 3- and 4- point gluon
functions might allow for converged solution close to the full solution. We do not
exclude the possibility of this instability being a manifestation of the model gluon
artifacts, which made high-order solutions possible in these models.

We used the improved ladder dressed scheme as a phenomenological means
of including the effects of 3-point gluon function dressing. This scheme provided
enough attraction to produce Nambu-Goldstone mode solutions for the GAP equa-
tion, which show significant deviations from the solutions with rainbow truncated
vertex.

The solutions of the GAP equation with the full vertex do not indicate con-
vergence with the maximum number of gluon lines included, at least to the order
of calculations that we could afford. We employed a Padé approximate for both
quark propagator functions to obtain the converged solutions in the space-like re-
gion. These solutions can be used for comparison with other models.
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Chapter 4

Nucleon Electromagnetic Form

Factors from Lattice QCD

4.1 Nucleon Electromagnetic Form Factors and

Controversy in Experimental Measurements

The electromagnetic form factors of the nucleon are an invaluable source of
information on its structure [1]. For example, observing their fall as Q2 increases
from zero revealed the finite extent of the nucleon, and measuring the Sachs electric
form factor of the neutron, Gn

E [61,62], showed that it has a positive core surrounded
by a long-range, negative tail [24, 63–67].

In the last few years particular interest has focused on the ratio of the electric
and magnetic form factors of the proton, GE/GM . The long standing theoretical
prediction was that the ratio should be constant in the large Q2 region (see Refs.
[68], [69]), confirmed by numerous measurements using the Rosenbluth separation
method for values of Q2 . 6 GeV2 [19]- [70]. Recently several experiments at
Jefferson Lab which measured the same ratio using the recoil proton polarization
method [21,22], [71], have revealed a dramatic decrease with Q2 – in contrast with
earlier work based on the Rosenbluth separation.

While the behavior of GE/GM with Q2 was anticipated in some models (e.g.
see Ref. [72], [73–75]), there is no consensus as to which explanation best represents
how QCD works. A constant ratio would mean a similar distribution of charge and
magnetization throughout proton, while a decreasing ratio with increasing Q2 would
mean that the charge density increases slower than magnetization density towards
the center of the proton. Direct guidance from QCD itself would be most valuable
and for that purpose lattice QCD represents the one of very few techniques by which
one can obtain non-perturbative solutions to QCD.

63



4.2 Lattice QCD Calculated Data

Lattice QCD (LQCD) is one of very few methods for performing non-perturbative
calculations in QCD [16]- [76], [1]. LQCD is formulated in the framework of the
Feynman path-integral formalism for QCD, where the expectation values of the
field operators corresponding to physical observables are calculated using the path
integrals:

〈O〉 =

∫
DAµDψDψ̄eiS(Aµ,ψ,ψ̄)O

Z , (4.1)

where the normalization is given by the partition function:

Z =

∫
DAµDψDψ̄eiS(Aµ,ψ,ψ̄), (4.2)

and the fermions are represented through the Grassman variables ψ̄,ψ.
Here the QCD action is given as:

S(Aµ, ψ, ψ̄) =

∫
d4x

(
−1

4
F µν
c F c

µν + ψ̄Mψ

)
, (4.3)

where the Dirac operator M is the quark matrix and c denotes the color index.
The functional integrals of Eqs. (4.1, 4.2) are evaluated in LQCD in several

steps. First space-time is discretized on a finite 4-dimensional hyper-cube (the
lattice) with some finite lattice spacing a and length L. This allows one to remove
the ultraviolet divergences from the theory by introducing a finite cutoff imposed
by the smallest possible scale a. One should first note that the results should not
depend on the regularization scheme, thus the cutoff should be eliminated from
the results before any comparison with experiment is carried out. Analogously, an
infrared cutoff is imposed by the finite volume L of the lattice, which is required for
any numerical calculation to be possible. This in turn infers that the affordable (to
date) calculations should be performed with unphysically high fermion masses to
accommodate the bound state hadron inside of the lattice. One should also ensure
that the finite volume effects are removed from the final result.

Even with the introduction of the finite space-time lattice, the numerical eval-
uation of the integrals of Eqs. (4.1, 4.2) is impossible, since the integrands have an
oscillatory nature due to the eiS factor and require one to include all possible (in-
finite) “paths”for the field configurations for evaluation. This conceptual problem
is avoided by transformation to the Euclidean space-time via Wick rotation from
Minkowski space-time:

x0 → −ix4 (4.4)

p0 → ip4

SMink → iSEucl
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While in the Euclidean space, the integrals can be well approximated by a
Monte-Carlo integration over a finite number of the field configurations due to the
e−SEucl damping factor, one must make an analytic continuation of the results back
to the Minkowski space.

As one can see from Eq. (4.3), the quark fields can be explicitly integrated
out in Eqs. (4.1, 4.2):

∫
DAµDψDψ̄e−S =

∫
DAµe−(S(Aµ)−ln detM(Aµ)) (4.5)

However, this elimination does not reduce the volume of the calculations, since
detM is a very complicated non-local functional of the gauge field, Aµ, and requires
significant computational resources. The quenched approximation in LQCD sup-
poses this determinant to be a constant, effectively neglecting the quark-loop effects
and greatly reducing the computational costs. This is a ”non-controllable” approx-
imation, since there is no systematic way of improving on it other than completely
removing it. While some recent calculations have been able to avoid this approxi-
mation, as the computational resources increase, it is still widely employed.

The QCDSF Collaboration recently presented lattice QCD simulations for
the form factors of the nucleon over a wide range of values of momentum trans-
fer [18]. These calculations were carried out using quenched, non-perturbatively
O(a)-improved Wilson fermions (clover fermions), for three different values of the
lattice spacing, a = {0.47, 0.34, 0.26}GeV−1. For each value of a, several sets of pion
(or equivalently nucleon) masses were considered. For each mass set, Dirac and Pauli
form factors for both the proton and neutron were calculated at several values of
Q2. The typical range for the pion mass used varied from 1.2 GeV to 0.6 GeV, with
the corresponding nucleon mass ranging from approximately 2 GeV to 1.5 GeV. The
typical range for Q2 was 0.6 GeV2 to 2.3 GeV2. With the smallest lattice spacing
being around 0.05 fm (β = 6.4) and pion mass 580 MeV, these calculations represent
the present the state of the art. Therefore one needs to parametrize the form factors
as a function of pion mass and extrapolate to the physical value before comparing
these lattice results with the experimental data.

At Q2 = 0 there have been a number of studies of the chiral extrapolation
of baryon magnetic moments [77–80]. However, there is no model independent
way to respect the constraints of chiral symmetry over the range of Q2 and mπ

required by the QCDSF data. Instead, at finite Q2, one has been led to study
various phenomenological parameterizations [81], which have at least ensured the
correct leading order non-analytic structure as mπ → 0. The purpose of the work
here is three-fold. First, the lattice data will be used to investigate whether a
particular quark model is capable of describing the properties of the nucleon in
this additional dimension of varying mπ - an important test which any respectable
quark model should satisfy1. Second, having confirmed that the model is consistent

1Just as the study of QCD as a function of Nc has proven extremely valuable, so the study
of hadron properties as a function of quark mass, using the results of lattice QCD calculations,
undoubtedly offers significant insight into QCD, as well as new ways to model it [82].
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with the lattice data over the range of mπ noted earlier, the model will be used to
extrapolate to large values of Q2 (for lattice values of mπ). Third, the model will
be used to extrapolate to the physical pion mass.

4.3 The Light Front Cloudy Bag Model and Ex-

trapolations

4.3.1 Introduction

The first model which will be considered here is the light front cloudy bag
model (LFCBM) [25], where the nucleon is assumed to consist of three bound,
relativistically moving constituent quarks, surrounded by a cloud of pions. LFCBM
was developed as a means of preserving the successes of the original cloudy bag
model [24, 65–67], while ensuring covariance in order to deal unambiguously with
modern high energy experiments. The light front constituent quark model, upon
which it is built [72], predicted the rapid decrease of GE/GM with Q2 and, as the
pion cloud is expected to be relatively unimportant at large Q2, this success carries
over to the LFCBM [25]. Furthermore the LFCBM corresponds to a Lagrangian
built upon chiral symmetry, so it can be extended to the limit of low quark mass as
well as low and high Q2.

4.3.2 Review of the LFCBM

The LFCBM is a relativistic constituent quark model incorporating the effect
of pion-loops, key features motivated by chiral symmetry. The light-front dynamics
is employed to maintain the Poincaré invariance, and one pion-loop corrections
are added to incorporate significant pion cloud effects (particularly in the neutron
electric form factor and the magnetic form factors) as well as the leading non-
analytic behavior imposed by chiral symmetry. In light-front dynamics the fields
are quantized at a fixed “time”= τ = x0+x3 ≡ x+ (see Refs. [68,83]). The light front
time or τ -development operator is then P 0−P 3 ≡ P−. The canonical spatial variable
is x− = x0 −x3, with a canonical momentum P+ = P 0 +P 3. The other coordinates
are x⊥ and P⊥. The relation between the energy and momentum of a free particle
is given by p− = (p2

⊥ + m2)/p+, with the quadratic form allowing the separation
of center of mass and relative coordinates. The resulting wave functions are frame
independent. The light front technique is particularly relevant for calculating form
factors because one uses boosts that are independent of interactions.

The Dirac F1 and Pauli F2 form factors are defined as the invariant functions
in the Dirac decomposition of the nucleon electromagnetic current’s matrix element:

〈N, λ′p′ |Jµ|N, λp〉 = uλ′(p
′)

[
F1(Q

2)γµ +
F2(Q

2)

2MN
iσµν(p′ − p)ν

]
uλ(p) . (4.6)
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The momentum transfer is qµ = ( p′−p)µ, Q2 = −q2 and Jµ is taken to be the
electromagnetic current operator for a free quark. For Q2 = 0 the form factors F1

and F2 are, respectively, equal to the charge and the anomalous magnetic moment κ
in units of e and e/(2MN) , and the magnetic moment is µ = F1(0)+F2(0) = 1+κ.

We are interested in the electric and magnetic Sachs form factors:

GE = F1 −
Q2

4M2
N

F2, GM = F1 + F2, (4.7)

with normalization

Gp
E(0) = 1; (4.8)

Gp
M(0) = µp;

Gn
E(0) = 0;

Gn
M(0) = µn;

The evaluation of the form factors is simplified by using the so-called Drell-Yan
reference frame in which q+ = 0, so that Q2 = q2

⊥ = q2
1. If light-front spinors for the

nucleons are used, the form factors can be expressed in terms of matrix elements of
the plus component of the current [84]:

F1(Q
2) = 〈N, ↑

∣∣J+
∣∣N, ↑〉 and QF2(Q

2) = (−2MN )〈N, ↑
∣∣J+
∣∣N, ↓〉 .

(4.9)
The form factors are calculated using the “good” component of the current, J+, to
suppress the effects of quark-pair terms.

The next step is to construct the bare (pionless) nucleon wave function Ψ,
which is a symmetric function of the quark momenta, independent of reference
frame, and an eigenstate of the canonical spin operator. The commonly used ansatz
is:

Ψ(pi) = Φ(M2
0 )u(p1)u(p2)u(p3)ψ(p1, p2, p3), (4.10)

pi = pisi, τi,

where ψ is a spin-isospin color amplitude factor, the pi are expressed in terms of
relative coordinates, the u(pi) are Dirac spinors and Φ is a momentum distribution
wave function. The specific form of ψ is given in Eq. (12) of Ref. [26] and earlier in
Ref. [73–75]. This is a relativistic version of the familiar SU(6) wave function, with
no configuration mixing included. The notation is that pi = (p+

i , pi⊥). The total
momentum is P = p1 +p2 + p3, the relative coordinates are ξ = p+

1 /(p
+
1 + p+

2 ), η =
(p+

1 + p+
2 )/P+, and k⊥ = (1 − ξ)p1⊥ − ξp2⊥, K⊥ = (1 − η)(p1⊥ + p2⊥) − ηp3⊥.

In computing a form factor, we take quark 3 to be the one struck by the photon.
The value of 1 − η is not changed (q+ = 0), so only one relative momentum, K⊥ is
changed: K′

⊥ = K⊥ − ηq⊥. The form of the momentum distribution wave function
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is taken from Schlumpf [85]:

Φ(M0) = N
(
M2

0 + β2
)γ
, (4.11)

with M2
0 the mass-squared operator for a non-interacting system:

M2
0 =

K2
⊥

η(1 − η)
+
k2
⊥ +M2

ηξ(1 − ξ)
+

M2

1 − η
. (4.12)

Schlumpf’s parameters were β = 0.607 GeV, γ = −3.5, M = 0.267 GeV, where
the value of γ was chosen so that Q4GM(Q2) was approximately constant for Q2 >
4 GeV2, in accord with experimental data. The parameter β helps govern the
values of the transverse momenta allowed by the wave function Φ and is closely
related to the rms charge radius. The constituent quark mass, M , was primarily
determined by the magnetic moment of the proton. These parameters will be varied
to accommodate the inclusion of the pion cloud and to allow for fits to lattice data.

A physical nucleon can sometimes undergo a quantum fluctuation so that it
consists of a bare nucleon and a virtual pion. In this case, an incident photon can
interact electromagnetically with a bare nucleon, Fig. 4.1a, with a nucleon while a
pion is present, Fig. 4.1b, or with a charged pion in flight, Fig. 4.1c. These effects are
especially pronounced for the neutron GE [24,65–67], at small values of Q2. The tail
of the negatively charged pion distribution extends far out into space, causing the
mean square charge radius, R2

n, to be negative. The effects of the pion cloud need to
be computed relativistically if one is to confront data taken at largeQ2. This involves
evaluating the Feynman diagrams of Fig. 4.1 using photon-bare-nucleon form factors
from the relativistic model, and using a relativistic π-nucleon form factor. The
resulting model is defined as the light-front cloudy bag model LFCBM [25]. The
light-front treatment is implemented by evaluating the integral over the virtual pion
four-momentum k±,k⊥, by first performing the integral over k− analytically, re-
expressing the remaining integrals in terms of relative variables (α = k+/p+), and
shifting the relative ⊥ variable to L⊥ to simplify the numerators. Thus the Feynman
graphs, Fig. 4.1, are each represented by a single τ -ordered diagram. The use of J+

and the Yan identity [86] SF (p) =
∑

s u(p, s)u(p, s)/(p
2 −m2 + iǫ) + γ+/2p+ allows

one to see that the nucleon current operators appearing in Fig. 4.1b act between
on-mass-shell spinors.

The results can be stated as

Fiα(Q
2) = Z

[
F

(0)
iα (Q2) + Fibα(Q

2) + Ficα(Q
2)
]
, (4.13)

where i = 1, 2 denotes the Dirac and Pauli form factors, α = n, p determines the
identity of the nucleon, and F

(0)
iα (Q2) are the form factors computed in the absence

of pionic effects. The wave function renormalization constant, Z, is determined
from the condition that the charge of the proton be unity: F1p(Q

2 = 0) = 1.
For illustration we start with the calculation of the neutron form factors. Then,
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Figure 4.1: Feynman diagrams for bare nucleon (a) and nucleon with a virtual-pion
loop (b,c) contributions to the electromagnetic current of the nucleon.

evaluating the graph in Fig. 4.1b gives

F1bn(Q
2) = g2

0

∫ 1

0

dαα

∫
d2L

(2π)3
RN (L(+) 2

, α)RN(L(−) 2
, α)

[(F
(0)
1p (Q2)+F

(0)
1n (Q2)/2)(α2(M2−Q2/4)+L2)−(F

(0)
2p (Q2)+F

(0)
2n (Q2)/2))(α2Q2/2)],

(4.14)

F2bn(Q
2) = −g2

0

∫ 1

0

dαα

∫
d2L

(2π)3
RN(L(+) 2

, α)RN(L(−) 2
, α)

[(F
(0)
1p (Q2) +

1

2
F

(0)
1n (Q2))(2α2M2)

+ (F
(0)
2p (Q2) +

1

2
F

(0)
2n (Q2)))(α2M2(1 −Q2/4M2) + (L2

x − L2
y))] (4.15)

where g0 is the bare πN coupling constant, and the renormalized coupling constant
Zg2

0 = g2/4π = 13.5, L
(±)
⊥ ≡ L⊥ ± αq⊥/2, α ≡ k+

p+
, DN(k2

⊥, α) ≡ M2α2 + k2
⊥ +

µ2(1 − α), and RN(k2
⊥, α) ≡ FN

πN (k2
⊥
,α)

DN (k2
⊥
,α)
. The πN form factor is taken as [87, 88]

FπN(k2
⊥, α) = e−(DN (k2

⊥
,α)/2α(1−α)Λ2), (4.16)

and maintains charge conservation [89]. The constant Λ is a free parameter, but
very large values are excluded by the small flavor asymmetry of the nucleon sea.

From Eqns. (4.14) and (4.15) we see that each term in the nucleon current
operator contributes to both F1 and F2. The evaluation of graph 4.1c yields

F1cn(Q
2) = −g2

0Fπ(Q
2)

∫ 1

0

dαα

∫
d2K

(2π)3
R(K(+) 2

, α)R(K(−) 2
, α)

[
K2 +M2α2 − (1 − α)2Q

2

4

]
(4.17)
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F2cn(Q
2) = −g2

0(2M
2)Fπ(Q

2)

∫ 1

0

dαα2(1 − α)

∫
d2K

(2π)3
R(K(+) 2

, α)R(K(−) 2
, α)

(4.18)

where K
(±)
⊥ ≡ K⊥ ± (1 − α)q⊥/2.2

The proton form factors can be obtained by simply making the replacements
n → p in Eqs. (4.14,4.15) and −g2

0 → g2
0 in Eqs. (4.17,4.18). The change in sign

accounts for the feature that the π− cloud of the neutron becomes a π+ cloud for
the proton. The mean-square isovector radii 〈r2〉Vi , computed using Eqs. (4.13), and
then taken to the chiral limit at low-Q2, have the same singular log terms as those
of the relativistic results of Beg and Zepeda [90]. The details of this calculations are
presented in Appendix B.

The LFCBM was defined by choosing four free parameters: m, β, γ,Λ so as
to best reproduce the four experimentally measured electromagnetic form factors of
the nucleon [25]. In the present work, the most relevant of these parameters will be
varied to reproduce lattice data, and the resulting dependence on the quark mass
and lattice spacing used to extrapolate to the physical region.

4.3.3 Fitting the QCDSF Form Factors and Extrapolating

to the Physical Pion Mass

In this section we discuss the fitting procedure used to parametrize the nu-
cleon form factors calculated in lattice QCD. We use data produced by the QCDSF
Collaboration [18] and employ the LFCBM to calculate the corresponding form fac-
tors, varying the model parameters to find the best-fit to the different sets of lattice
data obtained for different values of the current quark mass, mq. The behavior of
the fitting parameters is then represented by a polynomial function of the quark
mass mq. This polynomial fit in mq, or equivalently in pion mass squared, m2

π, can
then be used to extrapolate the values of the fitting parameters to the physical pion
mass. Nucleon form factors for the physical pion mass are then calculated using the
extrapolated values for the model parameters. In the following few subsections a
more elaborate explanation is given and the results are presented. In section 4.3.3
we describe the available data and the analysis procedure used to extract the quan-
tities necessary for further fits. In sec. 4.3.3 we describe the details of the fitting
and extrapolation process and in sec. 4.3.3 we present the nucleon form factors
resulting from the extrapolation to the physical pion mass and make comparisons
with experiment.

QCDSF Data and its Analysis

The form factor calculations in Ref. [18] were carried out for three different
values of the lattice spacing, a = {0.47, 0.34, 0.26}GeV−1. For each value of a,
several sets of pion (or equivalently nucleon) masses were considered. For each mass

2These formulae are slightly different from those of Ref. [25], correcting for some very minor
typos. This leads to slight changes in the parameters that will be discussed elsewhere.
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set, Dirac and Pauli form factors for both the proton and neutron were calculated at
several values of Q2. The typical range for the pion mass used varied from 1.2 GeV
to 0.6 GeV, with the corresponding nucleon mass ranging from approximately 2 GeV
to 1.5 GeV. The typical range for Q2 was 0.6 GeV2 to 2.3 GeV2.

The LFCBM is basically a relativistic constituent quark model, so we need to
relate the model constituent mass of Eq. (4.12) to the masses of the nucleon and
pion. To do so we use the approach of Ref. [82], ( Eq. (8))

M = Mχ +
cmphys

q

(mphys
π )2

m2
π, (4.19)

where Mχ is the constituent quark mass in the chiral limit, mphys
q is the current

quark mass and c is of order 1. In the study of octet magnetic moments in the
AccessQM model of Ref. [82], the best fit value for Mχ was 0.42 GeV, while for
cmphys

q it was 0.0059 GeV.

Lattice Data Fit and Extrapolation

The first step in our extrapolation of the lattice results to the physical quark
mass is to fit the lattice results for each quark mass mq by adjusting the parameters
of the LFCBM calculation. For that purpose two fitting parameters were chosen.
The first parameter is Mχ in Eq. (4.19), which determines the constituent quark
mass. This parameter was varied for each lattice spacing separately, since some
dependence upon lattice spacing was anticipated. The second parameter is the
internal parameter, γ, in the nucleon wave function Eq. (4.11), which is varied
separately for each pion (or equivalently nucleon) mass. For convenience, we express
all magnetic form factors GM in “physical” units of e/2MPhysical

N . Since the LFCBM
uses the mass of the ρ-meson included in the pion electromagnetic form factor, we
need the extrapolated value for its mass. We use the simple fitting function from
Ref. [91]:

mρ = c0 + c1m
2
π, (4.20)

with c0 = 0.776 GeV and c1 = 0.427 GeV−1 .
A function representing the χ2 for the deviation between the lattice data and

the values calculated using the LFCBM was constructed and minimized by varying
the fitting parameters. Changing the value of Mχ causes the calculated form factors
to move up or down by an amount approximately independent ofQ2, thereby causing
a relatively small change in χ2. Therefore a simple grid variation for that parameter
was employed, with grid boundaries Mχ ∈ [0.15, 0.45]GeV, and step size of δMχ

=
0.01 GeV. The variation of χ2 in γ was much stronger, and the Minuit package of
CERN’s Root framework [92] was used for the minimization. At first the boundaries
for γ were set to keep it in the physical region, but successful boundless runs were
also performed in order to confirm the true minimum and error sizes. The pion
masses used in the lattice calculation are very large, and the resulting pionic effects
are very small. Therefore the value of Λ could not be determined from lattice data
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Figure 4.2: LFCBM fit to QCDSF data for GP
E(in units of e) for a lattice spacing

a = 0.26 GeV−1, MP = 1.80 GeV and mπ = 0.93 GeV

and its value was held fixed at Λ = 0.58 GeV from fits to physical nucleon form
factors of Ref. [25]. Similarly, varying β did not change the description of the lattice
data, so it was held fixed at β = 0.607 GeV /c as in Ref. [25]. The resulting fits
are in good agreement with data, as one can see in Figs. 4.2, 4.3, 4.4 and 4.5. The
best-fit values of the parameters are shown in Table 4.1. The figures show results for
the smallest lattice spacing, a = 0.26 GeV−1, but the reproduction of lattice data is
equally successful for larger values of a.

The next step is to extrapolate the fitting parameters to the physical quark
mass. This is done using the assumption that the parameters vary smoothly as
functions of the quark mass, and the fact that mq ∼ m2

π over the mass range
investigated. We limited the extrapolation function to a low order polynomial in
m2
π. The resulting fits for two lattice spacings are presented in Figs. 4.6 and 4.7,

from which we see that the fitting function provides a very accurate representation
of the values obtained from lattice data.

The fitted values of γ and the extrapolation to the physical value of mπ, with
their corresponding errors, are shown in Figs. 4.6 and 4.7.

The fitted values of γ and the extrapolation to the physical value of mπ, with
their corresponding errors, are shown in Figs. 4.6 and 4.7.

In our calculations, Mχ has a very weak dependence on the pion mass, but
it has a rather strong dependence upon the lattice spacing. As we see in Table
4.1 and Figs. 4.2-4.5, very good fits to the lattice data are obtained even without
varying Mχ for each quark mass. In contrast, Fig. 4.8 and Table 4.1 show rather
dramatic variation of Mχ for different values of the lattice spacing a. This suggests
that the larger values of the lattice spacing are rather far from the continuum limit
and (at best) only the results for the smallest lattice spacing should be compared
with experimental data. It would clearly be desirable to have new data at even
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Figure 4.4: LFCBM fit to QCDSF data for GN
E (in units of e) for a lattice spacing

a = 0.26 GeV−1, MP = 1.80 GeV and mπ = 0.93 GeV
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Figure 4.6: Polynomial extrapolation of γ vs. mπ for lattice spacing a = 0.47 GeV −1
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Table 4.1: Lattice data and LFCBM fitting parameters. (All expressed in powers of
GeV.)

a mπ MN Mχ γ

0.47 1.146 2.062 0.390(5) −6.12(7)
0.47 1.068 1.981 0.390(5) −5.67(6)
0.47 0.873 1.746 0.390(5) −4.95(9)
0.47 0.752 1.567 0.390(5) −4.78(12)
0.47 0.638 1.503 0.390(5) −4.67(15)
0 .47 0 .135 0 .938 0 .390 (5 ) −4 .79 (46 )
0.34 1.201 2.141 0.280(5) −5.03(6)
0.34 1.035 1.933 0.280(5) −4.37(5)
0.34 0.881 1.732 0.280(5) −4.99(5)
0.34 0.706 1.522 0.280(5) −3.51(6)
0 .34 0 .135 0 .938 0 .280 (5 ) −2 .91 (29 )
0.26 1.237 2.202 0.210(5) −4.78(5)
0.26 1.092 2.028 0.210(5) −4.14(7)
0.26 0.925 1.802 0.210(5) −3.69(5)
0.26 0.744 1.600 0.210(5) −3.09(6)
0.26 0.580 1.379 0.210(5) −3.01(13)
0 .26 0 .135 0 .938 0 .210 (5 ) −2 .41 (22 )

smaller a, or use an improved action, known to provide a good approximation to
the continuum limit.

Use of the values of γ and M determined by the lattice data in the LFCBM
defines a lattice version of the LFCBM. We may use this new model to compute
the form factors at arbitrarily large values of Q2, thereby extending the kinematic
range of the lattice calculations. The results are shown in Figs. 4.9, 4.10, 4.11 and
4.12. In Figs. 4.13 and 4.14 we show the corresponding plots of µ0GE/GM .

Results at the Physical Pion Mass and Comparison With Experiment

We use the extrapolated values of γ and M (Figs. 4.6-4.8) to calculate the
nucleon electric and magnetic form factors using the physical pion and nucleon
masses. The resulting plots for GE, GM and their ratios vs. Q2 for both proton and
neutron are shown in Figs. 4.15-4.20. Figure 4.21 shows that our results are in more
or less good agreement with the experimental data in the low-Q2 region, but yield a
slightly lower value of Q2 for the zero cross-over point than that extrapolated from
experiment [93]. A new analysis that includes an estimate of all of the effects of two
photon exchange yields a zero-crossing value that is somewhat closer to ours [94]
but future data will resolve this unambiguously.

An alternative method of determining the value of the Q2 for which GE/GM

passes through zero at the physical pion mass is to fit the crossover values as a linear
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function of m2
π and extrapolate again to the physical pion mass. The resulting plot

is shown in Fig. 4.22.
This procedure yields approximately the same cross-over point as found in

Fig. 4.17.

4.3.4 Discussion

Our study of the form factors calculated using the LFCBM with parameters
determined by lattice data and by extrapolation to the physical pion masses yields
very interesting results. The ratio Gp

E/G
p
M passes through zero for all of the cal-

culations, similar to LFCBM prediction for physical proton. The main variation of
the position of the crossover between the fitting curves shown in Figs. 4.13 and 4.14
comes from the variation of the nucleon mass, and not the variation of γ. Even
though for the physical pion mass, the ratio varies rapidly as a function of γ in the
region γ ∼ −2, the function GE/GM for the neutron has a turning point at about
γ ∼ −2.3. We shall explain these features using the LFCBM.

Let us express the ratio GE/GM in terms of Pauli and Dirac form factors, F1

and F2, respectively, using Eq. (4.7)

GE

GM
=
F1 −Q2/(4M2

N)F2

F1 + F2
= 1 − 1 +Q2/(4M2

N)

1 + F1/F2
(4.21)
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Figure 4.10: LFCBM calculations using parameters (Figs. 4.6, 4.7 and 4.8) obtained
by fitting the lattice results for the proton magnetic form factor, GM , at lattice
spacing a = 0.26 GeV −1.

Consider first the values of Q2 = (Q2
Cross) where the ratio GE/GM for the proton

passes through zero for the set of calculations shown in Fig. 4.13. Equation (4.21)
tells us that

Q2
Cross = 4M2

N

F1

F2
(4.22)

Now let us consider the formula for Fiα(Q
2), Eq. (4.13). The second and third

terms in Eq. (4.13) are only significant in the low − Q2 region for physical pion
masses. In the high − Q2 region, or for lattice calculations with high pion mass,
these terms are vanishingly small. Indeed the numerical calculations support these
statements, so we can neglect their contribution in the rest of the discussion.

The corresponding formulas for F
(0)
1 and F

(0)
2 from Ref. [26] are

F
(0)
1 (Q2)

=

∫
d2q⊥dξ

ξ(1 − ξ)

d2K⊥dη

η(1 − η)
Φ̃†(M ′

0)Φ̃(M0) ×
〈
χrel0 (p′

1,p
′
2)|χrel0 (p1,p2)

〉
〈↑ p′

3| ↑ p3〉
(4.23)
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Figure 4.11: LFCBM calculations using parameters (Figs.4.6, 4.7 and 4.8) obtained
by fitting the lattice results for the neutron electric form factor, GE , at lattice
spacing a = 0.26 GeV −1.

QF
(0)
2 (Q2)

2MN

=

∫
d2q⊥dξ

ξ(1 − ξ)

d2K⊥dη

η(1 − η)
Φ̃†(M ′

0)Φ̃(M0) ×
〈
χrel0 (p′

1,p
′
2)|χrel0 (p1,p2)

〉
〈↑ p′

3| ↓ p3〉
(4.24)

The Φ̃(M0) factors are wave functions of the form of Eq. (4.11), but using the lattice
values of γ and M shown in Figs. 4.6-4.8. We stress that these two integrals differ
only by the last factor, which gives the spin non-flip and spin-flip dependence of
F

(0)
1 and QF

(0)
2 /2MN , respectively. At high Q2 these matrix elements are each of

order Q, causing the ratio QF2/F1 to be approximately constant. So we can express
Q2
Cross as

Q2
Cross = 4M2

N

(∫
↑↑∫
↑↓

)2

(4.25)

where
∫
↑↑

denotes the integral for F
(0)
1 , and

∫
↑↓

denotes the integral for F
(0)
2 .

In the high-Q2 region, the ratio in Eq. (4.25) is approximately a constant
because the difference comes only from the overlap factors of the spin-dependent
parts of the wave functions in the integrals (see Refs. [25], [99]). Therefore the
behavior of Q2

Cross is governed primarily by the factor M2
N . The linear variation of
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Figure 4.12: LFCBM calculations using parameters (Figs.4.6, 4.7 and 4.8) obtained
by fitting the lattice results for the neutron magnetic form factor, GM , at lattice
spacing a = 0.26 GeV −1.

Q2
Cross vs. M2

N presented in Fig. 4.23 shows the validity of this interpretation.
We can also understand the behavior of GE/GM versus γ, by considering its

role in the wave function. The factor γ determines the size of the momenta appearing
in the integrands of Eqs.(4.23) and (4.24). The corresponding integrands differ by
terms that are ratios of second order polynomials of the integration variables. For
large absolute values of γ, the high momenta are cut off more strongly, so that
the contribution of terms that cause differences between the integrals are not very
significant. For small absolute values of γ, the integrals become more sensitive to
those terms and we obtain a larger variation of the ratios of the integrals and hence
the ratio GE/GM .

4.4 VMD

4.4.1 Introduction

Given the considerable interest in the vector meson dominance (VMD) ap-
proach, next we consider its suitability as an alternative method of chiral extrapo-
lation. There are many variations of the basic VMD, but we choose the implemen-
tation of Lomon [27], because it is phenomenologically extremely successful. We
introduce the dependence of the vector meson masses in mπ found in earlier lattice
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Figure 4.13: LFCBM calculations using parameters (Figs.4.6, 4.7 and 4.8) obtained
by reproducing lattice results for the ratio of proton form factors, µ0GE/GM , at
lattice spacing a = 0.26 GeV −1.

studies [77,91] and parametrize the mass dependence of the corresponding couplings
in order to best describe the lattice QCD data. The major disappointment is that
the functional form is so sensitive to the parameters, that it is meaningless to com-
pare any extrapolation of the form factors to the physical pion mass. This makes
the VMD approach unsuitable as a method of chiral extrapolation. On the other
hand, by fixing the parameters to the values given in Ref. [27] at the physical mass,
it is possible to obtain a fit to all of the lattice QCD data of comparable quality to
that found earlier using LFCBM.

4.4.2 Review of the GKex Model

Here we briefly summarize the formulation of the GKex model from Ref. [27].
The extended Gari-Krümpelmann model exhibits the basic properties of a VMD
model, and also phenomenologically incorporates the correct high-Q2 behavior of
the nucleon electromagnetic form factors as implied by PQCD. The model was suc-
cessfully fit to the present experimental data sets available for the nucleon electro-
magnetic form factors. The particular interest in the model is increased by its ability
to describe the fall-off of the proton ratio, GE/GM , vs Q2, as measured recently in
Refs. [21, 22].
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Figure 4.14: LFCBM calculations using parameters (Figs.4.6, 4.7 and 4.8) obtained
by reproducing lattice results for the ratio of neutron form factors, µ0GE/GM , at
lattice spacing a = 0.26 GeV −1.

In calculating the nucleon Pauli and Dirac form factors, one can express them
in terms of isoscalar and isovector form factors

2F p
i = F IS

i + F IV
i ; (4.26)

2F n
i = F IS

i − F IV
i ;

where i = 1, 2.
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Figure 4.15: Extrapolated calculations for the proton electric form factor, GE , for
lattice spacing a = 0.26 GeV −1. The dashed and dotted curves show the upper
and lower limits of variation of the calculated values due to the uncertainties of the
parameters γ and Mχ.
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Figure 4.16: Extrapolated calculations for the proton magnetic form factor, GM ,
for lattice spacing a = 0.26 GeV −1. The dashed and dotted curves show the upper
and lower limits of variation of the calculated values due to the uncertainties of the
parameters γ and Mχ.

84



)
2

 (GeV2Q
0 1 2 3 4 5 6 7 8

P M
/G

P E
 G

P 0µ

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
=0.205χ=-2.624, Mγ
=0.210χ=-2.406, Mγ
=0.215χ=-2.188, Mγ

Figure 4.17: Extrapolated calculations for the ratio of proton form factors,
µ0GE/GM , for lattice spacing a = 0.26 GeV −1. The dashed and dotted curves
show the upper and lower limits of variation of the calculated values due to the
uncertainties of the parameters γ and Mχ.
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Figure 4.18: Extrapolated calculations for the neutron electric form factor, GE , for
lattice spacing a = 0.26 GeV −1. The dashed and dotted curves show the upper
and lower limits of variation of the calculated values due to the uncertainties of the
parameters γ and Mχ.
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Figure 4.19: Extrapolated calculations for the neutron magnetic form factor, GM ,
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The isoscalar and isovector form factors were parametrized by Lomon as

F iv
1 (Q2) = N/2

1.0317 + 0.0875(1 +Q2/0.3176)−2

(1 +Q2/0.5496)
F ρ

1 (Q2) (4.27)

+
gρ′

fρ′

m2
ρ′

m2
ρ′ +Q2

F ρ
1 (Q2) +

(
1 − 1.1192N/2− gρ′

fρ′

)
FD

1 (Q2)

F iv
2 (Q2) = N/2

5.7824 + 0.3907(1 +Q2/0.1422)−1

(1 +Q2/0.5362)
F ρ

2 (Q2)

+ κρ′
gρ′

fρ′

m2
ρ′

m2
ρ′ +Q2

F ρ
2 (Q2) +

(
κν − 6.1731N/2 − κρ′

gρ′

fρ′

)
FD

2 (Q2)

F is
1 (Q2) =

gω
fω

m2
ω

m2
ω +Q2

F ω
1 (Q2) +

gω′

fω′

m2
ω′

m2
ω′ +Q2

F ω
1 (Q2) +

gφ
fφ

m2
φ

m2
φ +Q2

F φ
1 (Q2)

+

(
1 − gω

fω
− gω′

fω′

)
FD

1 (Q2)

F is
2 (Q2) = κω

gω
fω

m2
ω

m2
ω +Q2

F ω
2 (Q2) + κω′

gω′

fω′

m2
ω′

m2
ω′ +Q2

F ω
2 (Q2)

+ κφ
gφ
fφ

m2
φ

m2
φ +Q2

F φ
2 (Q2) +

(
κs − κω

gω
fω

− κω′

gω′

fω′

− κφ
gφ
fφ

)
FD

2 (Q2)

with pole terms of the ω(782), φ(1020), ω′(1420) , ρ(770) and ρ′(1450) mesons, and
the FD

i terms ensuring the correct asymptotic behavior as calculated in PQCD. The
F α
i , with α = ρ, ω, or φ, are the meson-nucleon form factors.
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The following parametrization of these form factors is chosen for GKex:

F α,D
1 (Q2) =

Λ2
1,D

Λ2
1,D + Q̃2

Λ2
2

Λ2
2 + Q̃2

, (4.28)

F α,D
2 (Q2) =

Λ2
1,D

Λ2
1,D + Q̃2

(
Λ2

2

Λ2
2 + Q̃2

)2

,

F φ
1 (Q2) = F α

1

(
Q2

Λ2
1 +Q2

)1.5

, F φ
1 (0) = 0,

F φ
2 (Q2) = F α

2

(
Λ2

1

µ2
φ

Q2 + µ2
φ

Λ2
1 +Q2

)1.5

,

with Q̃2 = Q2
ln
[
(Λ2

D +Q2)/Λ2
QCD

]

ln(Λ2
D/Λ

2
QCD)

.

With this formulation there are unknown 8 meson coupling constants, 4 cutoff
masses, one magnetic moment, and a single normalization constant, all of which
should be determined from the fits to the experimental data. Fits to the experimen-
tal data points were made using different sets of data, some of which excluded the
controversial high Gp

E/G
p
M measured previously by Rosenbluth separation method.

The fits with different data sets were labeled GKex(01), GKex(01-), GKex(02S) and
GKex(02L). The values of the fitted parameters are listed in the Table I in Ref. [27].
Figure (4.24) shows that the model GKex(02S) describes the fall-off of Gp

E/G
p
M with

Q2, in contrast with GKex(01) and GKex(01-), which stay almost flat in the con-
sidered range of the Q2. In the present work we use all 4 models in our attempt to
describe the lattice data.

4.4.3 Lattice Data Fits and Results

We employ the Extended Gari-Krümpelmann Model (GKex) of Lomon Ref.
[27] to fit Lattice QCD calculated nucleon electric and magnetic form factors pro-
duced by the QCDSF collaboration [18].

Extrapolation of the GKex Model’s Parameters

Using the model to reproduce lattice data requires that we make extrapolations
of some of the parameters that depend on the mass of the hadron constituents. We
start by considering the normalizations of the isovector and isoscalar form factors
that depend on the nucleon magnetic moments:

F IV
2 (0) = κν = (µp − 1 − µn) ; (4.29)

F IS
2 (0) = κs = (µp − 1 + µn) ;
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The magnetic moments have non-trivial dependence upon the pion mass as a
consequence of chiral symmetry. For example, the leading dependence on the quark
mass near the chiral limit is in fact non-analytic (i.e. proportional to mπ ∼ m

1/2
q ).

To extrapolate the nucleon magnetic moments for the mass range accessible in lattice
QCD to the physical mass scale, we use the Padé approximant derived in Ref. [77]

µp (mπ) =
3.31

1 + 1.37 ·mπ + 0.452 ·m2
π

, (4.30)

µn (mπ) =
−2.39

1 + 1.85 ·mπ + 0.271 ·m2
π

.

The dependence of the masses of the vector mesons upon the pion mass was
studied in the work by Leinweber et al. [91]. We use a linear extrapolation for
the vector meson masses, which was shown in Ref. [91] to provide quite a good
approximation to the full mass function including the LNA and NLNA behavior:

mv (mπ) = c0 + c1m
2
π; (4.31)

mv (mπ) = mphys
v + c1

(
m2
π − (mphys

π )2
)
;

c1 = 0.4273 GeV−1;

The vector-meson nucleon effective coupling constants may also depend on
the mass of the hadron constituents and to describe that, we choose the following
extrapolation forms

gαi
(
m2
π

)
= gαi0 + alαi

(
m2
π − (mphys

π )2
)

+ blαi
(
m4
π − (mphys

π )4
)

(4.32)

where α = ρ′, ω, ω′, φ; lα = {IV for α = ρ′; IS for α = ω, ω′, φ} ; i = 1, 2; and
gα10 = gα

fα
, gα20 = κω

gα

fα
are the effective coupling constants at the physical mπ. These

are taken from the fits to the physical data of Ref. [27].
We choose a similar ansatz for the extrapolation of the cut-off masses

Λ
(
m2
π

)
= Λ0 + aΛ

(
m2
π − (mphys

π )2
)

+ bΛ
(
m4
π − (mphys

π )4
)

(4.33)

where Λ = Λ1,Λ2,ΛD,ΛQCD and µφ.

Fitting Procedure

Using the extrapolation forms given in Eqs. (4.30-4.33), we can fit the GKex
form factors given by Eq. (4.27) to the lattice data by varying the coefficients a, b
of relations (4.32) and (4.33). We performed the fits using the 4 different sets of
physical GKex parameters reported in Ref. [27].

We fitted the lattice data points for all three lattice spacings available using the
Minuit package of CERN’s Root framework [92]. The resulting fits for the smallest
lattice spacing a = 0.26 GeV−1 with 120 data points are shown in the Figs. 4.25,
4.26, 4.27 and 4.28, where the corresponding fits using the LFCBM are shown for
comparison.
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Figure 4.25: GKex(01-) fit[solid] to QCDSF data for GP
E(in units of e) for a lat-

tice spacing a = 0.26 GeV−1, MN = 2.20 GeV and mπ = 1.24 GeV. LFCBM
fits[dashed] are also shown for comparison.
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LFCBM fits[dashed] are also shown for comparison.
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Table 4.2: GKex fitting parameters and χ2 for lattice spacing a = 0.26 GeV−1.

GKex(01) GKex(01-) GKex(02L) GKex(02S)

χ2 185 103 671 217
aIV1 -1.80(16) -2.35 -1.7(2) -1.86(17)
bIV1 0.46(11) 0.81 0.54(14) 0.39(13)
aIV2 -11.9(5) -55.2 -1(1) -10.9(5)
bIV2 2.98(36) 18 -0.34(76) 2.34(38)
aIS1 -0.99(18) -1.61 -0.39(9) -0.58(1)
bIS1 -0.21(14) 0.28 0.06(6) -0.078(73)
aIS2 8.6(18) 3.1 2.53(58) -0.32(14)
bIS2 2.6(14) -0.44 0.62(41) 0.1(1)
aΛ 0.034(38) -0.19 0.3(1) 0.035(42)
bΛ -0.10(3) 0.065(33) -0.14(6) -0.12(3)

The resulting χ2 and the fitting parameters for lattice spacing a = 0.26 GeV−1

are summarized in Table 4.2. For a comparison, we obtained χ2 = 81 for the LFCBM
fit.

Results

As one can see from Table 4.2, the best fit to the data is obtained using the
GKex(01-) model, even though one is inclined to believe that GKex(02S) gives the
best description of the nucleon structure since it exhibits the rapid decrease with Q2

of the experimentally measured ratio, GP
E/G

P
M . One can see this from our Fig. 4.24

as well as the original work of Ref. [27]. We also note that our attempts to fit the
data using only the lowest order polynomial forms in mπ of the coupling constants
(4.32), (4.33) did not yield satisfactory results. Indeed we had to include 10 fitting
parameters for successful extrapolations.

4.5 Conclusion

We have seen that the LFCBM can produce a very good description of the
lattice QCD data for the nucleon form factors over a wide range of quark masses with
a smooth, analytic variation of the wave function parameter, γ, and the constituent
quark mass, M . The pion cloud plays very little role in the mass range for which the
lattice simulations have been made but it rapidly becomes more important as we
approach the chiral limit. From the rather strong dependence of the form factors on
the lattice spacing, a, it is not yet clear that we have obtained a good approximation
to the continuum limit, but the form factors obtained at the smallest value of a are
in reasonable agreement with experimental data in the low-Q2 region for which the
lattice simulations were made.
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At present the lattice simulations are limited to values of the momentum
transfer at or below 2 GeV2 and it is therefore a very big extrapolation to look at the
behavior of the form factors in the region of greatest current interest. Nevertheless,
the behavior of GE/GM which we find is particularly interesting. The ratio crosses
zero for all values of the quark mass but the position where this happens varies
over a very wide range of Q2. This variation can be understood almost entirely
in terms of the variation of the corresponding nucleon mass, given that the ratio
QF1/F2 is approximately Q2-independent in the model. We obtain the same value
of Q2 for the cross-over whether we extrapolate the position as a function of quark
mass or simply evaluate the form factors at the physical pion mass using the fitted
dependence of the wave function parameters on pion mass.

Since the VMD approach has been widely used to describe the experimental
data at high Q2 (a region of special phenomenological interest at the present time),
we use a modern version of the VMD model, namely the Gari-Krümpelmann model
as implemented by Lomon [27], and extend it in a natural way to describe the lattice
data in the large mass region. Starting with the existing fit to the experimental data
we find that it is possible to describe the lattice simulations quite well. However, it
was necessary to allow some 10 parameters to vary smoothly with the pion mass in
order to do so. In comparison, the LFCBM produced a fit of similar quality with
only two parameters varied. As a result we are led to the conclusion that VMD is
not suitable as a method of chiral extrapolation.

In the immediate future it is clearly very important to improve on the lattice
data, both by ensuring that we really have a good approximation to the continuum
limit (e.g., by using a suitably improved action) and by extending the calculations
to higher values of Q2. It would also be important to remove the need for quenching,
even though that may not be such a limitation at large Q2. From the point of view
of developing a deeper understanding of QCD itself, it is important that the LFCBM
is able to describe the present lattice data over such a wide range of masses. We
would encourage a similar exercise for other models as a novel test of their validity.
It remains to be seen whether the LFCBM has indeed been successful in predicting
the behavior of the form factors at higher Q2 and indeed whether it will match
future experimental data.
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Chapter 5

Quark-Meson Coupling Model:

Connecting the Nuclear Forces

with the Underlying Degrees Of

Freedom

5.1 Introduction

The structure of the atomic nucleus has long been the subject of intensive
explorations both for theory and experiment. A large variety of theoretical models
have been extremely successful in describing one or more aspects of the structure
and properties of nuclei. In most of these models, the basic constituents of the
nuclei are the nucleons, bound together by the strong force. The nucleon-nucleon
interaction at short distances is governed by the strong interaction, mediated by the
quark-gluon content of the nucleons. Thus, contemporary nuclear physics faces the
challenge of describing the effective nucleon-nucleon forces in terms of underlying
quark-gluon degrees of freedom. This might be too ambitious in the present, since
as we have demonstrated in the previous chapters, solving QCD even for one nu-
cleon is an extremely challenging task, calling for novel approaches and requiring
enormous computational resources for completion. Thus one can try and include
quark-gluon effects at least on the phenomenological level. One way to accomplish
this is using a well-established quark model of the nucleon to describe nuclei and
nuclear matter, as such models have been very successful in describing the properties
of the nucleons, as we demonstrated in the previous chapter. Our work in develop-
ing such an approach, namely the Quark-Meson Coupling (QMC) model, was based
on describing the nuclear medium as consisting of nucleons, modeled as systems
of relativistic, confined quarks, moving in Lorentz scalar and vector mean fields.
The quark model description of the nucleons allows for describing the response of
the nucleon to the external field, thus manifesting the density dependence of the
derived, effective nucleon-nucleon forces. This derived interaction agrees well with
popular Skyrme models and reproduces very reasonably the observables for heavy
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nuclei. Further, this model was used in the construction of the equation of state
for dense nuclear matter, which allowed calculations of properties of slowly rotating
neutron starts, such as the radius and the mass of the star corresponding to a given
central density, as well as the prediction of the maximum mass of a neutron star.
These calculations, while they describe the observational data very well, have also
shown a favorable result for the maximum central density of neutron stars of only
6 times the nuclear saturation density, thus giving some confidence in applying the
model for the description of the neutron star core.

In this chapter we will describe the key features of the relativistic formulation
of the QMC model and elaborate on the derivation of the corresponding Hamilto-
nian, following the Ref. [100]. We will also present the details of the non-relativistic
expansion of the Hamiltonian and the application of the corresponding density func-
tional in calculation of the atomic nuclei properties.

5.2 QMC Model and Hamiltonian

The QMC model is built upon the assumption that bound nucleons generate
static, self-consistent scalar and vector fields, which couple directly to up and down
constituent quarks. This approximation is well justified for not very light nuclei
and cold uniform nuclear matter, the latter having more simplifications due to the
uniformity of the fields. As a model for the baryon structure in QMC the MIT bag
model is used, where the quarks are confined inside of a nucleon by an impenetrable
bag. The bag model gives a good description of the baryon properties and allows for
simple algebraic derivations throughout the QMC formulation. While the picture
of the impenetrable bag is an over-simplification of the confining mechanism in the
nucleon, which looks more like a Y-shaped objects with the quarks confined by a
gluon flux tube (see Refs. [101], [102] and also Fig. (5.1)), it allows for a simple
formulation and should not be taken as contradictory to the possibility of pion
exchange throughout the neighboring bags. Other than being confined into a color-
singlet bound state, quarks in the baryons should be able to respond to the external
fields. Employment of a more sophisticated model might improve some details of the
model, but it would introduce many complications that are premature at this stage.
In describing the nuclei here we consider only protons and neutrons, avoiding the
complications of including the strange baryons. The formulation of the model with
inclusion of the members of the full SU(3) spin 1/2 baryon octet N , Λ, Σ and Ξ,
is described in [103] and goes beyond the scope of the current chapter. A covariant
version of QMC in application to the European Muon Collaboration (EMC) effect
in finite nuclei was formulated in the Ref. [104], where the confining Nambu–Jona-
Lasinio model was used for calculations of the nucleon structure functions and quark
distributions. This model allowed one to study the nuclear medium modification of
these functions and gave a good description of both polarized and unpolarized EMC
effect for a range of nuclei.

The essential assumption of QMC is that the nucleons in nuclei can be repre-
sented as relativistically moving bags, each confining three constituent quarks. The
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Figure 5.1: The gluon flux tubes in the proton are responsible for creating a confining
interaction, as suggested by lattice QCD calculations, giving it a Y-shaped form.
The figure is taken form the Ref. [102].
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nucleon many body interaction is generated by the self-consistent scalar and vector
fields which couple directly to the constituent quarks. In the model we consider
only σ, ρ and ω fields to be active, which generate the bulk of the interaction and
can absorb the effects generated by the higher lying states by fitting the coupling
parameters to the physical observables. The model assumption is that meson fields
don’t interact with the strange quark, which can be justified by describing the meson
fields as correlated multi-pion exchanges.

We assume that at the particle densities considered, the bags don’t overlap,
so the energy of the i−th bag with center of mass momentum Pi can be written as

Ei =
√
P 2
i +Meff (σ)2 + gωω + Vso, (5.1)

where Meff (σ) is the effective mass of the bag generated by the interaction with the
σ field measured in the center of the bag, gω represents the coupling constant with
the ω field and Vso represents the spin-orbit interaction generated by the variation
of the field over the bag. Here we skipped the ρ field, because it enters the equation
in exactly the same manner as the ω, except for the isospin dependence.

In order to calculate Meff (σ) one needs to solve the bag equations for the
relevant value of the σ field. However, we have checked that the quadratic expansion:

Meff (σ) = M − gσσ +
d

2
(gσσ)2 (5.2)

is accurate up to values of gσσ as large as 600 MeV, which corresponds to densities
far beyond the physical limitations of the model. The parameter d is the scalar
polarizability of the nucleon. It depends explicitly on the response of the quark
structure to the external scalar field. In the bag model it is well represented as a
function of the bag radius, RB, as

d = 0.0044 + 0.211RB − 0.0357R2
B, (5.3)

where both d and RB are in fm. This does not give exactly the values that were used
in Ref. [105], because we have now included the contribution of the spin dependent,
“hyperfine” color interaction to the bag energy.

The coupling constant, gσ, which by definition refers to the nucleon, is related
to the σ–quark coupling, gqσ, by

gσ = 3gqσ

∫

Bag

d~r q̄q(~r), (5.4)

where q is the valence quark wavefunction for the free bag. For the vector couplings
the relationship is

gω = 3gqω, gρ = gqρ. (5.5)
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The energy of the static meson field has the standard form

Emesons =
1

2

∫
d~r
[
(∇σ)2 +m2

σσ
2
]
− 1

2

∫
d~r
[
(∇ω)2 +m2

ωω
2
]
, (5.6)

with mσ and mω representing the masses of the corresponding mesons.
Thus the total energy of the system is

E =
∑

i

Ei + Emesons . (5.7)

We do not quote the expression for the spin orbit interaction here. It was first
derived in Ref. [29] and it does not play a crucial role in describing the many body
force.

The classical Hamiltonian of the system is constructed using the expression
for the total energy of the system, by replacing the variable meson fields with the
corresponding solutions of the equations of motion:

H(Ri, Pi) = E(Ri, Pi, σ → σsol, ω → ωsol) (5.8)

The equation of motion for the meson fields can be obtained by the variational
principle:

δE

δσ
=
δE

δω
= 0 (5.9)

yielding the equations

−∇2σ +m2
σσ = −

∑

i

δ(~r − ~Ri)
∂

∂σ

√
P 2
i +Meff (σ)2, (5.10)

−∇2ω +m2
σω = gω

∑

i

δ(~r − ~Ri). (5.11)

In Eqs. (5.10,5.11) we have neglected the contribution corresponding to the
variation of the spin orbit interaction Vso. As pointed out in Ref. [105], this results in
an error of order V 2

so in the Hamiltonian and it is consistent to neglect it because the
spin-orbit interaction in Eq. (5.1) has been derived as a first order perturbation [29].
Since the equation for the ω field is linear, its solution is elementary and poses no
new problem with respect to previous work [105]. Its contribution to the energy will
be written later and we now concentrate on the field equation for σ.

We assume that we can treat the deviation δσ of the σ field from its expectation
value in the nuclear ground state 〈σ〉 as a small perturbation:

σ = 〈σ〉 + δσ, (5.12)
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where the C-number 〈σ〉, also written σ̄, is defined as1

〈σ(~r)〉 =

∫
d~R1...d ~RAΦ∗(~R1... ~RA)σ(~r, ~Ri, ~Pi)Φ(~R1... ~RA). (5.13)

Defining

K =
∑

i

δ(~r − ~Ri)
√
P 2
i +Meff(σ)2 (5.14)

we can rewrite the Eq. (5.10) as

(
−∇2 +m2

σ

)
(σ̄ + δσ) = −∂K

∂σ
= −∂K

∂σ
(σ̄) − δσ

∂2K

∂σ2
(σ̄) − · · · (5.15)

By expanding ∂K
∂σ

(σ̄), ∂
2K
∂σ2 (σ̄) about their expectation values

∂K

∂σ
(σ̄) =

〈
∂K

∂σ
(σ̄)

〉
+ δ

[
∂K

∂σ
(σ̄)

]

∂2K

∂σ2
(σ̄) =

〈
∂2K

∂σ2
(σ̄)

〉
+ δ

[
∂2K

∂σ2
(σ̄)

]
(5.16)

and supposing that

δσ, δ

[
∂K

∂σ
(σ̄)

]
, δ

[
∂2K

∂σ2
(σ̄)

]

are small quantities, we can rewrite the Eq. (5.15) for the terms of the same order:

(
−∇2 +m2

σ

)
σ̄ = −

〈
∂K

∂σ
(σ̄)

〉
(5.17)

(
−∇2 +m2

σ

)
δσ = −δ

[
∂K

∂σ
(σ̄)

]
− δσ

〈
∂2K

∂σ2
(σ̄)

〉

= −∂K
∂σ

(σ̄) +

〈
∂K

∂σ
(σ̄)

〉
− δσ

〈
∂2K

∂σ2
(σ̄)

〉
(5.18)

As we limit the expansion of the Hamiltonian to order (δσ)2, it is sufficient to
solve the field equation at order δσ, which corresponds to Eqs. (5.17,5.18). Using
integration by parts, the Hamiltonian (5.1) may be expanded as

H =

∫
d~r K|σ̄ + δσ

∂K

∂σ
(σ̄) +

1

2
(δσ)2∂

2K

∂σ2
(σ̄)

+
1

2
σ̄
(
−∇2 +m2

σ

)
σ̄ + δσ

(
−∇2 +m2

σ

)
σ̄ +

1

2
δσ
(
−∇2 +m2

σ

)
δσ (5.19)

1Of course this explicit expression is quite formal as it amounts to having solved the problem.
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In the approximation considered, we can substitute the coefficient of the (δσ)2

term with its expectation value:

∂2K

∂σ2
(σ̄) →

〈
∂2K

∂σ2
(σ̄)

〉

Using Eqs. (5.17,5.18) we then find:

H =

∫
d~r

[
K(σ̄) − 1

2
σ̄

〈
∂K

∂σ
(σ̄)

〉
+

1

2
δσ

(
∂K

∂σ
(σ̄) −

〈
∂K

∂σ
(σ̄)

〉)]
. (5.20)

Note that the mean field approximation amounts to neglecting δσ in Eq.
(5.20). The Hamiltonian of the Eq. (5.20) can be quantized by writing the quantum
form of K and its derivatives. The important simplification is that these are one
body operators because they are evaluated at the C-number point σ = σ̄. Thus we
can write

K(σ̄) =
∑

αβ

Kαβ(σ̄)a†αaβ ,

where a†α, aα are the creation and destruction operators for the complete 1-body basis
|α〉. The matrix elements Kαβ(σ̄) must be chosen so as to reproduce the classical
limit, Eq. (5.14). In the momentum space representation, there is a natural choice
2

K(σ̄) =
1

2V

∑

~k,~k′

ei(
~k−~k′).~r

(√
k2 +Meff [σ̄(~r)]2 +

√
k′2 +Meff [σ̄(~r)]2

)
a†~ka~k′, (5.21)

where the symmetrization is introduced to ensure hermicity and V is the normal-
ization volume. We also choose

∂K

∂σ
(σ̄) =

1

2V

∑

~k,~k′

ei(
~k−~k′).~r ∂

∂σ̄

(√
k2 +Meff [σ̄(~r)]2 +

√
k′2 +Meff [σ̄(~r)]2

)
a†~ka~k′

(5.22)
with a similar expression for the second derivative. The ordering ambiguities asso-
ciated with products of non-commuting operators are fixed by the normal ordering
prescription, which amounts to removing that part of the energy which originates
from the interaction of one nucleon with its own field.

The Hamiltonian defined in Eq. (5.20) is not a standard many-body problem,
since we do not know σ̄ and δσ until the ground state nuclear wave function has
been specified. Therefore the Hamiltonian must be determined (through σ̄ and
δσ) at each step of the self consistent procedure. This is a significant technical
complication. On the other hand, for our purposes it is not necessary to solve this
Hamiltonian in the general case. One of the main goals in constructing the model
is to obtain the equation of state for very dense nuclear matter, with the goal of
applying it to neutron stars [106], but in that case we will only need the uniform

2Spin and flavor labels are understood.
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matter approximation for which the model is easy to solve. However, we do need
to consider finite size effects for ordinary nuclei, a necessary step in order to show
that the model is realistic with respect to nuclear phenomenology.

5.2.1 The Non-Relativistic Expansion

In considering the applications of the model in calculations of the proper-
ties of finite nuclei, we can make a non-relativistic expansion and build a density
functional, 〈H(~r)〉, using approximations which are standard in low energy nuclear
physics, which can then be used in variational calculations. The approximations
that we use below involve a non-relativistic expansion and the neglect of those ve-
locity dependent and finite range forces which involve more than 2 bodies, as is the
case for conventional effective nuclear forces. This amounts to expanding the terms
which involve either the momentum or the gradient of the density in powers of the
σ nucleon coupling and stopping at order g2

σ. To simplify the expressions we omit
the spin and flavor indices as long as they are not truly necessary. We first define
the number density, D(~r), and kinetic density, ξ(~r), by

D(~r) =
1

V

∑

~k,~k′

ei(
~k−~k′).~ra†~ka~k′, ξ(~r) =

1

V

∑

~k,~k′

ei(
~k−~k′).~r k

2 + k′2

2
a†~ka~k′. (5.23)

Then, following the approximation scheme defined above and using Eq. (5.2)
we find the following expression for the operator K and its derivatives

K|σ̄ = D(~r)Meff [σ̄(~r)] +
ξ(~r)

2M

(
1 +

gσσ̄

M

)

∂K

∂σ

∣∣∣∣
σ̄

= D(~r)
∂Meff

∂σ̄
+ gσ

ξ(~r)

2M2
(5.24)

∂2K

∂σ2

∣∣∣∣
σ̄

= dg2
σD(~r)

Substituting the above expressions into Eqs. (5.17,5.18) and using the same
approximations, we can solve for σ̄ and δσ:

gσσ̄ =
Gσ 〈D〉

1 + dGσ 〈D〉 −Gσ
〈ξ〉

2M2
+Gσ

∇2 〈D〉
m2
σ

, (5.25)

δσ =
1

m̃2
σ

(
−∂K
∂σ

(σ̄) +

〈
∂K

∂σ
(σ̄)

〉)
+

1

m̃2
σ

∇2 1

m̃2
σ

(
−∂K
∂σ

(σ̄) +

〈
∂K

∂σ
(σ̄)

〉)
, (5.26)

where we have defined Gσ = g2
σ/m

2
σ and the (position dependent) effective σ mass

m̃2
σ = m2

σ (1 +Gσd 〈D〉) (5.27)

The model Hamiltonian can be obtained by substituting Eqs. (5.24,5.25,5.26)
into Eq. (5.20). In practice we want the corresponding density functional in the
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Hartree Fock approximation, so we need to evaluate (note that by definition 〈δσ〉 =
0)

〈H(~r)〉 = 〈K(σ̄)〉 − 1

2
σ̄

〈
∂K

∂σ
(σ̄)

〉
+

1

2

〈
δσ
∂K

∂σ
(σ̄)

〉
, (5.28)

where the ground state wave function is a Slater determinant, with Fermi level F ,
built from the single particle wave functions Φj(~r, σ,m). We now restore the spin
flavor dependence but restrict our considerations to nuclei made of protons and
neutrons. So the flavor index is just the isospin projection m = ±1/2. As usual, we
define [107]:

ρm(~r) =
∑

i∈F

∑

σ

∣∣Φi(~r, σ,m)
∣∣2 , ρ(~r) =

∑

m

ρm(~r) (5.29)

τm(~r) =
∑

i∈F

∑

σ

∣∣∣~∇Φi∗(~r, σ,m)
∣∣∣
2

, τ(~r) =
∑

m

τm(~r) (5.30)

~Jm(~r) = i
∑

i∈F

∑

σσ′

~σσ′σ ×
[
~∇Φi(~r, σ,m)

]
Φi∗(~r, σ′, m), ~J(~r) =

∑

m

~Jm(~r) (5.31)

The density functional then can be expressed using the above notation. While
the lengthy details of the calculations are shown in the Appendix C, here we simply
write down the results:

〈H(~r)〉 = ρM +
τ

2M

+
Gσ

2M2

(
ρτ +

1

8

∑

m

ρm∇2ρm

)

−
(
Gσ

2m2
σ

+
Gσ

4M2

)(
ρ∇2ρ−

∑

m

(
1

4
ρm∇2ρm − ρmτm

))

− 1

2

Gσ

1 + dGσρ

(
ρ2 − 1

2(1 + dGσρ)2

∑

m

ρ2
m

)
(5.32)

For completeness, we give the ω, ρ and spin orbit contributions (labelled IS
for isoscalar and IV for isovector):
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〈
: HIS

so (~r) :
〉

= − 1

4M2

[
Gσ +

(
2
µIS
µN

− 1

)
Gω

]∑

mm′

[(
1 +

1

2
δmm′

)
ρm′

~∇. ~Jm′

]
,

(5.33)

〈
: HIV

so (~r) :
〉

= − Gρ

4M2

[
2
µIV
µN

− 1

]∑

mm′

[(
mm′ +

1

2
Cmm′

)
ρm′

~∇. ~Jm
]
, (5.34)

〈: Hω(~r) :〉 =
Gω

2

∑

mm′

[(
1 − 1

2
δmm′

)
ρmρm′

+
1

m2
ω

(
ρm∇2ρm′ − 1

4
δmm′

(
ρm∇2ρm − 4ρmτm

))]
, (5.35)

〈: Hρ(~r) :〉 =
Gρ

2

∑

mm′

{(
mm′ − 1

2
Cmm′

)
ρmρm′

+
1

m2
ρ

(
mm′ − 1

4
Cmm′

)
ρm∇2ρm′ +

1

m2
ρ

Cmm′ρmτm′

}
, (5.36)

where: Cmm′ = δmm′m2 + (δm,m′+1 + δm′,m+1)/2 and Gω = g2
ω/m

2
ω, Gρ = g2

ρ/m
2
ρ. The

isoscalar and isovector magnetic moments which appear in the spin orbit interaction
have the values

µIS = µp + µn = 0.88, µIV = µp − µn = 4.7. (5.37)

We note that all terms which involve the square of the spin density, ~J , have
been neglected. This is common practice and, since it amounts to treating the spin
orbit interaction as a first order perturbation, it is consistent with our derivation of
the expression for the effective mass, Eq. (5.1).

We have determined the couplings Gσ, Gω, Gρ by fixing the saturation density
and binding energy of normal nuclear matter to be ρ0 = 0.16 fm3 and EB = −15.85
MeV, as well as the asymmetry energy of nuclear matter as a4 = 30 MeV. Apart
from a small readjustment of the couplings, we found no significant sensitivity to
the bag radius. We therefore display our results for only one value, RB = 0.8 fm,
which is quite realistic [64]. The ω and ρ masses are set at their experimental
values. The last parameter, which is not well fixed by experiment, is the σ mass.
We shall use mσ = 600, 650, 700, 750 MeV. The corresponding results are given in
Table 5.1. We see that the incompressibility, KN , is a little high with respect to the
currently preferred range, but we point out that this calculation has not yet taken
into account the single pion exchange interaction. We know [105] that the pion Fock
term alone reduces KN by as much as 10% and it is likely that this is amplified by
other correlations.
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Table 5.1: The best-fit values of the couplings Gσ, Gω and Gρ and the corresponfing
value for the nuclear incompressibility for different values of the scalar meson mass,
mσ.

mσ(MeV) Gσ(fm
2) Gω(fm

2) Gρ(fm
2) KN(MeV)

600 12.652 9.838 9.67 346
650 12.428 9.308 8.583 346
700 12.254 8.899 7.724 346
750 12.116 8.575 7.048 346

5.2.2 Description of the Finite Nuclei.

Starting from the QMC energy functional one can easily derive the corre-
sponding Hartree-Fock (HF) equations. They have a form similar to the Skyrme-HF
equations, apart from the rearrangement term and the one-body spin-orbit inter-
action, which have a different density and isospin dependence. The HF equations
were solved in coordinate space, following the method described in Ref. [107] and
the Coulomb interaction was treated in a standard way – i.e., the contribution of
its exchange part was calculated in the Slater approximation. The calculations were
performed for the doubly magic nuclei 16O, 40Ca, 48Ca and 208Pb. For definiteness,
the σ meson mass has been set to mσ = 700 MeV, as suggested by the comparison
with the SkM∗ interaction. At this point we recall that the QMC model is essen-
tially classical because both the position and velocity of the bag are assumed known
in the energy expression (5.2). The quantization then leaves some arbitrariness in
the ordering of the momentum dependent pieces of the interaction. As pointed out
in previous work [105], in the non-relativistic approximation the difference between
the orderings is equivalent to a change of about 10% in mσ. In this chapter the or-
dering is fixed by the relativistic expression chosen for the operator K, Eq. (5.21).
The non-relativistic reduction then leads to an ordering which is not the same as
in Ref. [105]. This is why the σ meson mass that we use here is somewhat higher.
Note that this ordering ambiguity is only of concern in the case of finite nuclei. In
uniform matter, which is the relevant approximation for neutron stars, the problem
does not exist.

The results for the binding energies and charge radii are shown in Table 5.2.
The charge densities are calculated with the proton form factor usually employed
in the Skyrme-HF calculations [107]. From Table 5.2 one can see that QMC-HF
gives results which are in reasonable agreement with the experimental values. The
agreement is not quite as good as that given by the recent Skyrme or RMF models,
but one should keep in mind that in these models the experimental values for the
binding energies and radii are included in the fitting procedure (which involves many
additional parameters), which is not the case for the QMC functional.

In Figs. 5.2, 5.3 we show the proton and neutron densities calculated with the
QMC model and with the Sly4 Skyrme force [108]. In the proton case we also show
the experimental values [109]. Once again the two models give rather similar results,
with the largest differences noticed for the neutron skin of 208Pb. More precisely, for
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Table 5.2: Comparison of the QMC Hartree-Fock calculated binding energies and
charge radii of several nuclei with the measured experimental values.

EB(MeV, exp) EB(MeV, QMC) rc(fm, exp) rc(fm, QMC)
16O 7.976 7.618 2.73 2.702
40Ca 8.551 8.213 3.485 3.415
48Ca 8.666 8.343 3.484 3.468
208Pb 7.867 7.515 5.5 5.42

this nucleus the neutron skin (i.e., the difference between the neutron and proton
rms radii) is equal to 0.12 fm for QMC, compared to 0.16 fm for the Skyrme force.
With respect to experiment the QMC model tends to overestimate the density in
the central region, but the overall agreement is quite good given that the model has
no parameter adjusted to fit the properties of finite nuclei.

5.3 Conclusion

We have explored the possibility of including the effects of the nucleon struc-
ture in describing the nucleon many body interaction in finite nuclei and nuclear
matter. Employment of the MIT bag model to describe the quark content of the
nucleon and the quark meson exchange hypothesis for the nucleon-nucleon interac-
tion allowed for a fully relativistic formulation of the problem and a derivation of
the Hamiltonian for the system which yields density-dependent many body force
of nucleon-nucleon interaction. A nonrelativistic expansion of the Hamiltonian al-
lowed for a good description of the finite nuclei in the Hartree-Fock approximation,
as well as a favorable comparison with a well-established phenomenological Skyrme-
type interaction. The further application of this formulation to the cold uniform
nuclear matter, which includes the full SU(3) strange baryon octet, described in the
Ref. [103], allows the derivation of an equation of state for nuclear matter. This
equation of state was applied to the calculation of the maximum masses and radii
of the neutron stars close to most recent observations, yielding a maximum density
of the nuclear matter in the neutron star of only six times the nuclear saturation
density, favoring it over more traditional models, which give higher central densities
and raise questions of the applicability of the models in the domain of high densities,
where the relativistic effects are important and nucleons might start to merge into
quark-gluon matter.

While this model does not provide a true “ab-initio description” of the nuclear
many body interaction in terms of their quark-gluon content, it allows for arguably
the most realistic approach to the problem, at least in the foreseeable future. While
the development of the effective field theories (EFTs) in describing the nuclear
many body interactions, guided by the fundamental symmetries of QCD, have been
very successful, (for example, Weinberg’s power counting scheme [110], allowed for
calculation to date of 2-, 3- and 4-nucleon forces up to next-to-next-to-next-to-
leading order [111], [112], [113], [114]), the EFT approach has severe limitations in its
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Figure 5.2: Comparison of the QMC calculated proton densities in selected, closed
shell nuclei with the experimental measurements. The Skyrme Sly4 results are also
shown for comparison.

112



0

0.02

0.04

0.06

0.08

0.1

ρ(
fm

-3
) Neutron (QMC)

Neutron (Sly4)

16
O

0

0.02

0.04

0.06

0.08

0.1

40
Ca

0 5 10
r(fm)

0

0.02

0.04

0.06

0.08

0.1

ρ(
fm

-3
)

48
Ca

0 5 10
r(fm)

0

0.05

0.1

208
Pb
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range of applicability. EFTs rely on the existence of a small and a large parameter,
for example, in the case of nuclear many body interactions, the low energy transfer in
comparison with the typical hadronic mass scale, which allows one to apply order-
by-order perturbation theory in this small parameter and number of interacting
nucleons. It is clear that for high-density nuclear matter, where the energy transfer
in the interaction can become large, one needs to sum over all orders in perturbation
theory, including all possible many-body interactions. Another attractive initiative
is to calculate the nucleon-nucleon interaction using lattice QCD, as proposed by the
NPLQCD collaboration [115], [116]. While this approach is very attractive, since it
amounts to solving the problem directly from QCD in the limit of infinitely large and
fine lattices, the current limitations on computational power and several theoretical
and technical obstacles will probably delay the calculations for any sizable nuclei
into the far future. Thus, phenomenological models like QMC will provide important
information on the role of the baryon structure in describing the atomic nuclei and
dense nuclear matter.
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Chapter 6

Concluding Remarks

In this work we have outlined a path for constructing models to link the proper-
ties of the nuclear force to the underlying quark-gluon structure of the nucleons and
the theory (QCD) widely believed to govern the interaction of these constituents.
While a straight forward approach to solving this problem is far beyond our under-
standing at present, we tried to build a phenomenological approach and justify these
models by comparing some key quantities calculated from these models to those ob-
tained by “first principle” approaches to solving QCD, as well as to experiment.

First, we explored the consequences of improving the model of dressing the
quark-gluon vertex function on the calculated masses and binding energies of the
ground-state pseudo-scalar and vector mesons in the framework of the Dyson-Schwin-
ger equations. At first, we improved the ladder-dressed approximation by making
the dressing model self-consistent and constructing the chiral symmetry preserving
Bethe-Salpeter quark-antiquark scattering kernel. The model was then solved for
quark propagator functions and the masses of the bound states. This showed that
the ladder-rainbow truncation, widely employed in this framework for calculating
various physical observables, yields very close results to our model calculations, as
compared to previous studies with more limited models for the vertex. This result
encouraged further exploration of the quark-gluon vertex dressing, which is a key
ingredient in describing the low-energy phenomena in QCD. We further included all
possible 2-point gluon lines in the model vertex function, which yielded surprising
results. The solutions of the corresponding equations for the quark GAP equa-
tion showed large variations from the solutions corresponding the ladder-rainbow
truncation, yielding solutions in Wigner-Weyl mode at some orders of calculation,
thus strongly indicating the importance of the omitted 3- and 4-point gluon func-
tions in dressing the vertex and in describing the dynamics of QCD at the infrared
momentum scale.

Simulated by these calculations, we reviewed ’t Hooft’s proposed 1/Nc counting
scheme in QCD and found an insufficient description of the expansion and some
“classic” examples being wrongfully treated in the further review articles of this
expansion. This review allowed us to formulate a complete set of Feynman rules
for this expansion, which, unlike in the previous case is valid beyond the leading
order of the 1/Nc expansion. These new rules were applied to correctly describe
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1/Nc expansion of the quark-gluon vertex dressing diagrams included in our work,
as well as the next-to-leading order diagram in a closed quark loop system, widely
described in the literature with a wrong sign. This work allowed us not only to
further develop a rigorous approach of solving QCD to obtain properties of the
bound systems in the low-energy region, but to also gain some insight into dynamical
aspects of the theory. In particular, dynamical quark mass generation through the
contributions of the self-energy type diagrams as entailed by the GAP equation,
yielded a quark mass at low momentum transfer of about 300 MeV, close to the
mass of the constituent quarks employed in phenomenological models of baryon
structure. In these phenomenological models the effects of the strong dressing of the
current quarks of the baryons are approximated by introducing slowly moving quasi-
particles, namely the constituent quarks, with masses fixed by fitting the calculated
physical observables to the experiment.

Next we turned our attention to alternative methods for describing the baryons
in terms of QCD. The Lattice QCD calculated nucleon electromagnetic form factors
allow us to describe the structure of the nucleons from the first principle calculations
in the limit of large and very fine lattices, as well as high computing capabilities. We
have explored the possibility of describing these calculations with well-established
models for the nucleon structure, like the Light Front Cloudy Bag Model (LFCBM)
and one of the most advanced variations of the Vector Meson Dominance (VMD)
models. This allowed us to first test these models against a first principle QCD
calculation, to try to test how experimental data-dependent they are and if they will
be able to describe the QCD predictions at some other mass scale without dramatic
modifications. After we have established that one of the models applied, LFCBM,
was able to successfully describe the Lattice QCD calculations with parameters of
the model varying very smoothly with the mass scale, we were able to extrapolate
the Lattice calculations to the physical mass region, where we found a surprising
overlap with the current experimental measurements of the ratio of the electric to
magnetic form factors of the proton. We also presented predictions that will be
tested by the planned experiments at Jefferson Lab and elsewhere. This allowed
us to ensure the viability of these phenomenological models in describing the key
features of nucleon structure, while having sufficiently simple structure for real-world
applications.

The exploration of hadron structure and the development of different ap-
proaches for describing it gave us unique and clear understanding of its importance
in considering atomic nuclei and nuclear matter. This gave us a great opportunity
to participate in the development of a model for the nuclear interaction, where the
quark-gluon structure of the nucleons was explicitly included, even at the level of
the phenomenological modeling. The Quark-Meson Coupling (QMC) model, first
formulated almost two decades ago, presently allows for a self-consistent, relativis-
tic description of nuclear matter with active quark degrees of freedom. The nuclear
many-body interaction is modeled by a self-consistent mean field mediated by ex-
change of scalar and vector mesons and the nucleon structure is described by the
MIT bag model. The new formalism we have developed in the last chapter avoids the
strict approximations, where the mean scalar field variations are small and allows
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for the derivation of a density-dependent nuclear many-body force that provides a
good description of a wide range of nuclei and some well-measured properties of the
nuclear matter. The new formulation is also easily adaptable for describing dense
nuclear matter, including the induced strangeness at higher densities as an impor-
tant mechanism for “softening” the equation of the state of the matter. As shown in
our work in Ref. [103], this model allows for a very plausible description of nuclear
stars, with low central density and a range of maximum mass and radius in a good
agreement with observational data.

In conclusion we think that the path of directly linking the nuclear forces to the
QCD origin, lies through inclusion of the hadron structure by means of proven and
effective models that would allow for reasonable quantitative calculations. Advances
in our understanding of hadrons and the structure of the low-energy QCD will result
in a deeper derivation and development of these models, while clearer understanding
of the features of the QCD like dynamical mass generation will help us to justify
and adjust these models. For example, the efforts towards solving the puzzle of
confinement in the DSE framework will help us to better understand the behavior
of the QCD Green’s functions in the infrared region, which will have direct impact
on the concept of the constituent quarks, leading towards hadron models that will
have an even closer resemblance to QCD solutions than the present models. This
in turn will allow us to construct better models for nuclear many body interactions
and a better description of the nuclear force.

This approach might seem too model dependent, but this might be one of the
very limited options for positive progress at present. Improvements in these models
with a better understanding of hadronic structure will help us to formulate a clear
and unambiguous theory of the nuclear interactions starting from the quark-gluon
degrees of freedom and fundamental symmetries of QCD.

The perspectives for immediate advances following our work are the follow-
ing. In exploring the models of the quark-gluon vertex function the first step in
improving them will be to consider a more realistic, momentum-dependent, gluon
2-point function in dressing the quark-gluon vertex and the corresponding DSEs and
BSEs. An order-by order approach in this case will be limited to very low orders
of calculation, since the momentum loop integrals are difficult to evaluate beyond
two or three loops. An interesting way of including the diagrams at all orders is by
writing a model DSE for the vertex for the class of the diagrams considered. This
procedure usually involves only a single loop integral, thus making it affordable for
calculations. The further developments will necessarily need to explicitly include the
3- and 4- point gluon functions in dressing. While it will be very interesting to em-
ploy more realistic gluon propagators in solving the quark GAP equation, the main
goal should be to solve the coupled quark-gluon-ghost 2-point function DSEs with
model higher n-point functions involved in the equations. This will give us a better
understanding of the infrared behavior of the QCD Green’s functions and probably
resolve the inconsistency of the calculations for some of the meson masses in com-
parison with experiment. This should establish the DSE approach more firmly as a
framework for treating hadronic physics.
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Advanced lattice calculations of the nucleon electromagnetic form factors are
currently in progress by several LQCD collaborations, where improved lattice actions
and state-of-the-art computational facilities help to reduce the systematic errors
and remove the quenching approximation while decreasing the statistical errors and
reducing the masses closer to the physical scale. These results, when available, will
become a more stringent test for models of nuclear structure as high precision data
will help to rule out the inconsistent models. Furthermore, the models successfully
tested for consistency will be used to extrapolate the LQCD calculations to the
physical mass scale and over a wide range of momentum transfer to compare with
the experiment at very small statistical and extrapolation errors. While several
experiments at Jefferson Lab are set to measure the form factors of both the proton
and neutron, it is critical to make accurate theoretical predictions ahead of the
completion of those experiments to prove the reliability of both the models and
LQCD calculations.

The development of the QMC approach will necessarily involve the employ-
ment of a more sophisticated model for the nucleon structure than the MIT bag
model. A favorable candidate for us is the LFCBM, which might improve the de-
scription of the nuclear observables like the nuclear incompressibility and give a
more detailed description of the nuclear spectrum. A more detailed overview of
the density limit where the nuclear matter starts to fuse into quark-gluon matter
will also be very interesting in determining the physical limit of the QMC model in
applications to the description of dense nuclear matter and neutron stars.
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Appendix A

Padé Approximant for the Quark

Self-Energy Term

The solutions of the GAP equation (2.35) for the quark propagator amplitudes
A(s) and B(s) depend on the number n of the included gluon lines in the calcula-
tions through the Dirac projections of the quark self-energy term with appropriately
dressed quark-gluon vertex function on the RHS of Eqs.(2.36) and (2.37) (the terms
under the tr). We re-summed the perturbative solutions of the GAP equation and
obtained a solution at n = ∞ by employing a Padé approximant in n for these
self-energy terms.

In order to construct a Padé approximant for each of these terms we estab-
lished their dependence on n by introducing a fictitious coefficient, ω, to the bare
quark-gluon vertex coupling g in dressing the vertex function and constructing the
projections of the self-energy term in Eqs. (2.36) and (2.37). In each case a Padé
approximant of the following form

f(λ) =
a0 + a1λ+ a2λ

2

1 + b1λ+ b2λ2
, (A.1)

where λ = ω2, was used to match the appropriate self-energy projection term by
solving for the coefficients ai and bi. We considered the self-energy projection terms
with the quark-gluon vertex dressed to order n = 3 in the number of gluon loops to
determine all the parameters in (A.1).

After determining the coefficients ai and bi, the parameter ω was set to 1 and
the corresponding coupled equations for A(s) and B(s) were solved. For the case
C = 0.375, the solutions obtained with the approximant self-energy projection terms
are finite and continuous in the space-like region.
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Appendix B

The Leading Order Non-Analytic

Chiral Behavior of the Nucleon

Charge Radius Square from the

LFCBM Form Factors

In this appendix we will follow the original work by G. Miller to demonstrate
that the leading non-analytic behavior as mπ → 0 of the nucleon isovector charge
radius square from the LFCBM form factors agrees in the leading order of Q2 with
the relativistic calculations of Ref. [90] :

〈
r2
1

〉v →
(
g2

4π

3

πM2
+

1

8π2

1 − g2
A

f 2
π

)
ln

(
M

µ

)
(B.1)

κv
〈
r2
2

〉v →
(
g2

4π

1

2M2

)
M

µ
+

(
g2

4π

6

πM2

)
ln

(
M

µ

)
(B.2)

Here µ ≡ mπ is the pion mass, fπ is the pion decay constant and κv = κp − κn is
the nucleon isovector anomalous magnetic moment.

The LFCBM form factors are defined in Eqs. (4.13-4.18) with the quark core
contribution for the proton shown in Eqs. (4.23, 4.24). The nucleon charge radius
is related to the appropriate form factor via full derivative with respect to Q2. Thus
the first step is to take the chiral limit of the LFCBM form factors at low Q2. We
expand the expressions for the form factors and keep only the terms up to Q2, and
then take the chiral limit mπ → 0 considering only the singular terms with respect
to mπ. The quark-core contribution doesn’t contain any non-analytic terms in the
limit µ→ 0, so we need to consider only the pion-loop terms.
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For a simplification we first examine the integral

∫

N

≡ g2

2(2π)3

∫
d2L⊥

dα

α

α2

M2α2 + (L⊥ + α/2q⊥)2 + µ2(1 − α)
1

M2α2 + (L⊥ − α/2q⊥)2 + µ2(1 − α)
(B.3)

It is useful to define

D0 ≡ M2α2 + L2
⊥ + µ2(1 − α) (B.4)

Then the integral (B.3) can be expressed as:

∫

N

=
g2
0

2(2π)3

∫
d2L⊥

dα

α

α2

D2
0

1

1 + (L⊥ · q⊥α/D0) + (αq⊥/2)2/D0
(B.5)

1

1 − (L⊥ · q⊥α/D0) + (αq⊥/2)2/D0

=
g2
0

2(2π)3

∫
d2L⊥

dα

α
α2 1

D2
0

[
1

1 − (L⊥ · q⊥α/D0)2 + 2(αq⊥/2)2/D0
]

=
g2
0

2(2π)3

∫
d2L⊥

dα

α
α2 1

D2
0

[1 + (L⊥ · q⊥α/D0)
2 − (αq⊥)2/(2D0)]

=
g2
0

2(2π)3

∫
d2L⊥

dα

α
α2 1

D2
0

[1 + α2L2
⊥Q

2/(2D2
0) − α2Q2/(2D0)]

=
g2
0

2(2π)3

∫
d2L⊥α

dα

D2
0

[1 + α2Q2/(2D0)(L
2
⊥/D0 − 1)]

We note that

L2
⊥ = D0 −M2α2 − µ2(1 − α), L2

⊥/D0 − 1 = −(M2α2 + µ2(1 − α))

D0
(B.6)

then
∫
N

can be expressed as:

∫

N

=
g2
0

2(2π)3

∫
d2L⊥α

dα

D2
0

[1 − α2Q2 (M2α2 + µ2(1 − α))

2D2
0

] (B.7)

The following integrals will be needed in the calculations:

In ≡
∫
d2L⊥

1

Dn
0

(B.8)
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The integral for the non-convergent case of i = 1 is regularized using a cutoff
on L⊥ at some ∆ ∼M :

I1 = π ln
∆2 +M2α2 + µ2(1 − α)

M2α2 + µ2(1 − α)
(B.9)

I2 = π
1

M2α2 + µ2(1 − α)

I3 =
π

2

π

(M2α2 + µ2(1 − α))2

I4 =
π

3

1

(M2α2 + µ2(1 − α))3

Using the relations (B.7) and (B.9) the F1bn then can be transformed to:

F1bn(Q
2) =

g2
0

(2π)3
(2M2)

(
Fπ(Q

2) → 1
) ∫ 1

0

dαα

∫
d2L⊥RN (L(+)2, α)RN(L(−)2, α)

[(
α2

(
M2 − Q2

4

)
+ L2

)
−
(
F

(0)
2p (Q2) +

F
(0)
2n (Q2)

2

)
α2Q2

2

]

=
g2
0

(2π)3
(2M2)

∫ 1

0

dαα

∫
d2L⊥

D2
0[{(

D0 − µ2(1 − α)
)(

1 − α2Q2M
2α2 + µ2(1 − α)

2D2
0

)

−α
2Q2

4

}
−
(
F

(0)
2p (Q2) +

F
(0)
2n (Q2)

2

)
α2Q2

2

]

=
g2
0

(2π)3
(2M2)

∫ 1

0

dαα
[
I1 − µ2(1 − α)I2

− (I3 − µ2(1 − α)I4)α
2Q2M

2α2 + µ2(1 − α)

2

−α
2Q2

4
I2 −

(
F

(0)
2p (Q2) +

F
(0)
2n (Q2)

2

)
α2Q2

2
I2

]

We note that

lim
µ→0

∫ 1

0

dααI1 = π lim
µ→0

∫ 1

0

dαα ln
∆2 +M2α2 + µ2(1 − α)

M2α2 + µ2(1 − α)
(B.10)

= π

∫ 1

0

dαα
[
ln
(
∆2 +M2α2

)
− ln

(
M2α2

)]
= finite
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lim
µ→0

∫ 1

0

dααµ2I2 = lim
µ→0

∫ 1

0

dααµ2π
1

M2α2 + µ2(1 − α)
= finite (B.11)

lim
µ→0

∫ 1

0

dαα2µ2I2 = finite (B.12)

lim
µ→0

∫ 1

0

dαα3I2 = finite (B.13)

lim
µ→0

∫ 1

0

dαα(I3 − µ2(1 − α)I4)α
2Q2M

2α2 + µ2(1 − α)

2
(B.14)

→ Q2 lim
µ→0

∫ 1

0

dαα3(I2 − µ2(1 − α)I3) = finite

Thus it follows:
lim
µ→0

F1bn(Q
2) = finite (B.15)

The F1bn is finite and it does not contribute to the non-analytic behavior of
the charge radius square.

Analogous calculations can be performed for the F2bn

F2bn(Q
2) = − g2

0

(2π)3

∫ 1

0

dαα

∫
d2L⊥

D2
0

[(
1 − α2Q2 (M2α2 + µ2(1 − α))

2D2
0

)
(B.16)

(
(2α2M2) + (F

(0)
2p (Q2) +

1

2
F

(0)
2n (Q2))α2M2(1 −Q2/4M2)

)

+(F
(0)
2p (Q2) +

1

2
F

(0)
2n (Q2))

(
(L2

x − L2
y) → finite

)]

→
∫ 1

0

dαα

[
I2 − α2Q2 (M2α2 + µ2(1 − α))

2
I4

]

(
(2α2M2) + (F

(0)
2p (Q2) +

1

2
F

(0)
2n (Q2))α2M2(1 −Q2/4M2)

)

→ finite

From the above expression shows that F2bn does not contribute to the charge
radius square’s non-analytic behavior.

Next we treat the expression for F1cn:

F1cn(Q
2) = −g2

0Fπ(Q
2)

∫ 1

0

dαα

∫
d2K⊥

(2π)3
R(K

(+)
⊥

2
, α)R(K

(−)
⊥

2
, α)

[
K2

⊥ +M2α2 − (1 − α)2Q
2

4

]
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→ −g2
0

(2π)3

∫ 1

0

dαα

∫
d2K⊥

D2
0{[

D2
0 − µ2(1 − α)

] [
1 − (1 − α)2Q2(M2α2 + µ2(1 − α))

2D2
0
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− (1 − α)2Q

2

4

}

=
−g2

0

(2π)3

∫ 1

0

dαα
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I1 − µ2(1 − α)I2-

(1 − α)2Q2(M2α2 + µ2(1 − α))

2
I3
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µ2(1 − α)3Q2(M2α2 + µ2(1 − α))

2
I4 −

(1 − α)2Q2

4
I2

}

→ −πg2
0

(2π)3

∫ 1

0

dαα

{
ln
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M2α2 + µ2(1 − α)
− µ2(1 − α)
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4(M2α2 + µ2(1 − α))
+

µ2(1 − α)3Q2

6(M2α2 + µ2(1 − α))2

−(1 − α)2Q2

4

1

M2α2 + µ2(1 − α)

}

→ −πg2
0

(2π)3

∫ 1

0

dα

{(
α ln

∆2 +M2α2 + µ2(1 − α)

M2α2 + µ2(1 − α)
−→ 0

)

−
(

α(1 − α)µ2

M2α2 + µ2(1 − α)
−→ 0

)
− α(1 − α)2Q

2(M2α2 + µ2(1 − α))

+

(
α(1 − α)3µ2Q2

6(M2α2 + µ2(1 − α))2
−→ finite
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→ g2
0

8π2

Q2

2M2
ln

(
M

µ

)
(B.17)

The non-analytic behavior of the Dirac isovector form factor is then determined
by the F1cn, since

F v
1 = F p

1 − F n
1 → −2F1cn (B.18)

It is easy to extract the leading non-analytic term for the isovector charge
radius 1 square:

〈
r2
1

〉v
= −6

d

dQ2
F v

1 (Q2) → g2
0

8π2

6

M2
ln

(
M

µ

)
(B.19)

Substituting gA/fπ = g/M we arrive at the final expression:

〈
r2
1

〉v → 6g2
A

8π2f 2
π

ln

(
M

µ

)
(B.20)
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Analogous manipulations with F2cn yield:

F2cn(Q
2) = −g2

0(2M
2)Fπ(Q

2)

∫ 1

0

dαα2(1 − α)

∫
d2K⊥

(2π)3
R(K

(+)
⊥

2
, α)R(K

(−)
⊥

2
, α)

(B.21)

= −g2
0(2M

2)(Fπ(Q
2) → 1)

∫ 1

0

dαα2(1 − α)

∫
d2K⊥

(2π)3

FπN (K
(+)
⊥

2
, α) → 1

M2α2 + µ2(1 − α) + K
(+)
⊥

2

FπN (K
(−)
⊥

2
, α) → 1

M2α2 + µ2(1 − α) + K
(−)
⊥

2

=
−2g2

0M
2

(2π)3

∫ 1

0

dαα2(1 − α)

{
I2 − (1 − α)2Q2M

2α2 + µ2(1 − α)

2
I4

}

=
−2g2

0M
2π

(2π)3

∫ 1

0

dαα2(1 − α)

{
1

M2α2 + µ2(1 − α)

−1

3

(1 − α)2Q2

2

1

(M2α2 + µ2(1 − α))2

}

→ 2
πg2

0

6(2π)3

Q2

M2

{
πM

4µ
+

3

2
ln

(
µ2

M2

)}

The isovector Pauli form factor is then expressed as:

F v
2 = F p

2 − F n
2 → −2F2cn (B.22)

The leading non-analytical term of the isovector charge radius 2 is:

κv
〈
r2
2

〉v
= −6

d

dQ2
F v

2 (Q2) → 4π

(2π)3

g2
0

M2

{
π

4

M

µ
+

3

2
ln

(
µ2

M2

)}
(B.23)

Finally by substituting gA/fπ = g/M we obtain:

κv
〈
r2
2

〉v → g2
A

8πf 2
π

M

µ
− 12

g2
A

8πf 2
π

ln

(
M

µ

)
(B.24)

The results (B.20) and (B.24) agree with (B.1) and (B.2) of Ref. [90] in the
leading order of Q2, given that gA/fπ = g/M and gA ∼ 1.
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Appendix C

Derivation of the QMC Density

Functional

C.1 General Concepts

Our goal is to express the QMC density functional

〈H(~r)〉 = 〈K(σ̄)〉 − 1

2
σ̄

〈
∂K

∂σ
(σ̄)

〉
+

1

2

〈
δσ
∂K

∂σ
(σ̄)

〉
, (C.1)

in terms of the C number densities defined as

ρm(~r) =
∑

i∈F

∑

σ

∣∣Φi(~r, σ,m)
∣∣2 , ρ(~r) =

∑

m

ρm(~r) (C.2)

τm(~r) =
∑

i∈F

∑

σ

∣∣∣~∇Φi∗(~r, σ,m)
∣∣∣
2

, τ(~r) =
∑

m

τm(~r) (C.3)

~Jm(~r) = i
∑

i∈F

∑

σσ′

~σσ′σ ×
[
~∇Φi(~r, σ,m)

]
Φi∗(~r, σ′, m), ~J(~r) =

∑

m

~Jm(~r) (C.4)

in the Hartree Fock approximation work frame.
Here we simply rewrite the expressions needed for our derivations from the

Chapter 5:

K|σ̄ = D(~r)Meff [σ̄(~r)] +
ξ(~r)

2M

(
1 +

gσσ̄

M

)
(C.5)

∂K

∂σ

∣∣∣∣
σ̄

= D(~r)
∂Meff

∂σ̄
+ gσ

ξ(~r)

2M2
(C.6)

∂2K

∂σ2

∣∣∣∣
σ̄

= dg2
σD(~r) (C.7)

gσσ̄ =
Gσ 〈D〉

1 + dGσ 〈D〉 −Gσ
〈ξ〉

2M2
+Gσ

∇2 〈D〉
m2
σ

, (C.8)
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δσ =
1

m̃2
σ

(
−∂K
∂σ

(σ̄) +

〈
∂K

∂σ
(σ̄)

〉)
+

1

m̃2
σ

∇2 1

m̃2
σ

(
−∂K
∂σ

(σ̄) +

〈
∂K

∂σ
(σ̄)

〉)
, (C.9)

Here we want to also write down the meson Hamiltonian and derive the cor-
responding density functional

Hω,ρ =
Gω

2

∫
d~rD

(
D +

∇2

m2
ω

D

)
+
Gρ

2

∫
d~r ~DIV ·

(
~DIV +

∇2

m2
ρ

~DIV

)
, (C.10)

where

Gω =
g2
ω

m2
ω

, Gρ =
g2
ρ

m2
ρ

(C.11)

and the isovector operator density is defined as

~DIV (~r) =
∑

i,j

∑

σ

∑

mm′

Φi∗(~r, σ,m)~I tmm′Φj(~r, σ,m′) a†iaj =
∑

i,j

~DIV,ij(~r) a
†
iaj, (C.12)

with m, m′ representing isospin projection indices and ~I tmm′ is the isospin matrix,
with t = 1/2 for the nucleons.

We assume that the variational state has the form

|F 〉 =
(
a†i1f1a

†
i2f1

...a†iNf1

)(
a†i1f2a

†
i2f2

...a†iNf2

)
etc... |vacuum〉 (C.13)

that is a product of states with given flavour.
In our model the Hamiltonian density involves the product of one body oper-

ators:

H = H(~r) =

∫
d~r : AB...Z : (C.14)

with
A =

∑

i,j

Aija
†
iaj , B = ... (C.15)

As shown in the next section, the expectation values

〈F | : AB...Z : |F 〉 (C.16)

are conveniently written in terms of the Fermi traces T̃ r defined as

T̃ r[AB...Z] =
∑

i,jk...m∈F

AijBjk...Zmi. (C.17)

In particular, for a two body operator one has

〈F | : AB : |F 〉 = T̃ r[A]T̃ r[B] − T̃ r[AB] (C.18)

We note, that the Hartree approximation would correspond to

〈F | : AB...Z : |F 〉|Hartree → T̃ r[A]T̃ r[B]...T̃ r[Z] (C.19)
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Thus our task boils down to expressing the expectation values of the products
of one body operators in terms of the corresponding Fermi traces and evaluating
the Fermi traces of various combinations of the operators.

A quick examination of the relations for the density functional Eq. (C.1) and
Eqs. (C.2-C.8) shows that we need to evaluate the following quantities:

〈Dn〉 , 〈Dnξ〉 ,
〈
Dn~∇D

〉
,

〈
Dn
(
~∇D
)2
〉 〈

Dn∇2D
〉
,
〈
( ~DIV )2

〉
, (C.20)

〈
~DIV · ∇2 ~DIV

〉
, n ≤ 2,

where the common position argument ~r is dropped for simplicity.
In the next section we will discuss the relations of the expectation values of the

one body operators and the Fermi traces. In section C.4 we will derive expressions
for various traces that will be used in the expression for the density functional.

C.2 Many Body Operators and the Fermi Traces

Let A be a one body operator

A =
∑

i,j

Aija
†
iaj , (C.21)

and consider 〈
AN
〉
≡ 〈F | : AN : |F 〉 (C.22)

where
|F 〉 = a†i1a

†
i2
.... |0〉

and : : stands for the normal ordering with respect to |0〉. Then the following recur-
rence relation holds:

〈
AN
〉

=
〈
AN−1

〉
T̃ r[A] +

N−1∑

k=1

(−1)k(N − 1)(N − 2)...(N − k)
〈
AN−k−1

〉
T̃ r[Ak+1]

(C.23)

where 〈A0〉 = 1 and the Fermi trace symbol T̃ r is defined by:

T̃ r[A] =
∑

i∈F

Aii, (C.24)

T̃ r[A2] =
∑

i∈F

∑

j∈F

AijAji (C.25)

The proof is obvious using Wick’s theorem, simply noting, that

〈F | : a†iaj : |F 〉 = δi,jΘ(i ∈ F ), (C.26)

〈F | : aia
†
j : |F 〉 = −δi,jΘ(i ∈ F ) (C.27)

136



and using relation (C.21).
Now let {A1, A2, ...AN} be a product of one body operators which need not

be all different. Then

〈F | : A1A2...AN : |F 〉 =
1

N !

∂N

∂x1∂x2...∂xN


〈F | :

(
∑

i=1,N

xiAi

)N

: |F 〉



x1=x2=...=xN=0

(C.28)
and we can use Eq. (C.23) for further simplifications.

For convenience we present here the formulas for the expectation values of 2, 3
and 4 one-body operator products, which could be easily obtained using Eqs. (C.23,
C.28):

〈: AB :〉 = T̃ r[A]T̃ r[B] − T̃ r[AB] (C.29)

〈: A1A2A3 :〉 = T̃ r [A1] T̃ r [A2] T̃ r [A3] − T̃ r [A1] T̃ r [A2A3] (C.30)

−T̃ r [A2] T̃ r [A1A3] − T̃ r [A3] T̃ r [A1A2]

+T̃ r [A1A2A3] + T̃ r [A3A2A1]

〈: A1A2A3A4 :〉 = T̃ r [A1] T̃ r [A2] T̃ r [A3] T̃ r [A4] (C.31)

−
4∑

i<j;k<l=1

T̃ r [Ai] T̃ r [Aj] T̃ r [AkAl] +
4∑

i<j,k;k<l=1

T̃ r [AiAj ] T̃ r [AkAl]

+
4∑

i;j<k,l=1

T̃ r [Ai] T̃ r [AjAkAl] −
4∑

i<j,k,l=1

T̃ r [AiAjAkAl]

C.3 Some Properties of the Densities

First, the condition of no flavour mixing in the HF state implies:

∑

i∈F

Φi(~r, σ, f)Φi∗(~r′, σ′, f ′) = δ(f, f ′)
∑

i∈F

Φi(~r, σ, f)Φi∗(~r′, σ′, f), (C.32)

where f describes the flavor, which in our case is the isospin projection index m. In
the rest of this section the flavour index is implied.

If the HF state satisfies the time reversal condition then one has:

~J∗ = ~J (C.33)
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∑

i∈F

Φi(~r, σ, f)Φi∗(~r, σ′, f) =
1

2
δσσ′ρf(~r) (C.34)

∑

i∈F

∑

σ

Φi(~r, σ, f)~∇Φi∗(~r, σ, f) =
∑

i∈F

∑

σ

~∇Φi(~r, σ, f)Φi∗(~r, σ, f) =
1

2
~∇ρf (C.35)

Equation (C.34) is easy to prove, since the sum can be decomposed as

∑

i∈F

Φi(r, σ)Φi∗(r, σ′) = aδσσ′ +~b · ~σσσ′ , (C.36)

where

a =
1

2

∑

σ

∑

i∈F

Φi(r, σ)Φi∗(r, σ) =
ρ

2
(C.37)

and, using time reversal, that is

∑

i∈F

Φi(r, σ)Φi∗(r, σ′) =
∑

i∈F

Φi∗(r,−σ)Φi(r,−σ′)(−1)1+σ+σ′ (C.38)

and using (−1)1−σ−σ′~σ−σ′−σ = −~σσσ′ , we have

~2b =
∑

σ,σ′

∑

i∈F

Φi(r, σ)Φi∗(r, σ′)~σσσ′ =
∑

σ,σ′

∑

i∈F

Φi∗(r,−σ)Φi(r,−σ′)(−1)1+σ+σ′~σσσ′

(C.39)

=
∑

σσ′

∑

i∈F

Φi(r, σ)Φi∗(r, σ′)(−1)1−σ−σ′~σ−σ′−σ = −2~b

Thus, ~b = 0 and we arrive at Eq. (C.34). The proof of relations (C.33, C.35) go
along the same lines.

If, moreover, one assumes that the HF state is a closed j shell (i.e. it is axially
symmetric), then

∑

i∈F

Φi(~r, σ, f)~∇Φi∗(~r, σ′, f) =
1

4

[
~∇ρfδσσ′ + i ~Jf × ~σσσ′

]
(C.40)

∑

i∈F

~∇Φi(~r, σ, f)Φi∗(~r, σ′, f) =
1

4

[
~∇ρfδσσ′ + i~σσσ′ × ~Jf

]
(C.41)

The above relations can be proven by expressing the sum as

∑

i∈F

Φi(~r, σ)∇αΦi∗(~r, σ′) = aαδσσ′ + bαβσβσσ′ , (C.42)
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where, using (C.35), the first term is

~a =
1

2

∑

i∈F

∑

σ

Φi(~r, σ)~∇Φi∗(~r, σ) =
~∇ρ
4

(C.43)

and

bαβ =
1

2

∑

i∈F

∑

σ,σ′

Φi(~r, σ)∇αΦi∗(~r, σ′)σβσ′σ (C.44)

Using the identity

∇ασβ =
∇ασβ + ∇βσα

2
+

1

2
εαβγ

[
~∇× ~σ

]γ
(C.45)

and that the symmetric part of the tensor does not contribute if the HF state has
axial symmetry, we have

bαβ =
εαβγ

4

∑

i∈F

∑

σ,σ′

Φi(~r, σ)
[
~∇× ~σσ′σ

]γ
Φi∗(~r, σ′) = −iε

αβγJγ

4
, (C.46)

which leads to relations (C.40, C.41).

C.4 Fermi Traces of Density Operators

The evaluation of the quantities listed in (C.20) requires the following quanti-
ties, as we can obviously see from the relations (C.29-C.31):

T̃ r[Dn(f)], T̃ r[Dnξ], T̃ r[Dn∇2D], T̃ r

[
Dn
(
~∇D
)2
]
, T̃ r

[
~DIV

]
, T̃ r

[
( ~DIV )2

]
,

(C.47)

T̃ r
[
~DIV · ∇2 ~DIV

]

They always involve a single flavor since, due to the non flavour mixing, one
can use

T̃ r[D[(f1)D(f2)D(f3)....] = δf1f2δf2f3 ...T r[D
n(f1)]

and the same for the other cases. To simplify the notations, the fixed flavor, f , as
well as the position argument, ~r, in D(~r, f) are omitted in this section. The sums
over i, j, ... are understood to be over occupied levels.
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C.4.1 T̃ r[Dn+1]

By definition,

T̃ r[Dn+1] = (C.48)
∑

i1,i2,...in+1

∑

σ1,σ2,...σn+1

Φi1∗(σ1)Φi2(σ1)Φi2∗(σ2)Φi3(σ2)...Φin+1∗(σn+1)Φi1(σn+1),

We note that here we have n factors of the form

∑

i

Φi(σ)Φi∗(σ′) = δσσ′
ρ

2
, (C.49)

according to Eq.(C.34).
Therefore

T̃ r[Dn+1] =
(ρ

2

)n∑

i1

2∑

σ1=1

Φi1∗(σ1)Φi1(σ1) = 2
(ρ

2

)n+1

. (C.50)

C.4.2 T̃ r[Dnξ]

For n = 0 we simply have

T̃ r[ξ] =
∑

i

∑

σ

~∇Φi∗(σ) · ~∇Φi(σ) = τ. (C.51)

For n > 0

T̃ r[Dnξ] = (C.52)
∑

i1,...in+1

∑

σ1,...σn+1

Φi1∗(σ1)Φi2(σ1)Φi2∗(σ2)...Φin+1(σn)~∇Φin+1∗(σn+1) · ~∇Φi1(σn+1)

(C.53)

Again there are n− 1 factors of the form δσσ′ρ/2, which gives

T̃ r[Dnξ] =
(ρ

2

)n−1 ∑

i1,in+1

∑

σ1,σn+1

Φi1∗(σ1)Φin+1(σ1)~∇Φin+1∗(σn+1) · ~∇Φi1(σn+1)

(C.54)

=
(ρ

2

)n−1 ∑

σ1,σn+1

1

16

[
δσ1σn+1

~∇ρ+ i ~J × ~σσ1σn+1

]
·
[
δσn+1σ1

~∇ρ+ i~σσn+1σ1 × ~J
]

=
(ρ

2

)n−1
[
1

8

(
~∇ρ
)2

+
1

4
~J2

]
,

where we used Eqs. (C.40, C.41).
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In summary:

T̃ r[Dnξ] = δn,0τ + (1 − δn,0)
1

8

(ρ
2

)n−1
[(
~∇ρ
)2

+ 2 ~J2

]
(C.55)

C.4.3 T̃ r[Dn∇2D]

For n = 0 we simply have

T̃ r[∇2D] = ∇2T̃ r[D] = ∇2ρ. (C.56)

For n > 0, we have

T̃ r[Dn∇2D] = (C.57)
∑

i1,...in+1

∑

σ1,...σn+1

Φi1∗(σ1)Φi2(σ1)Φi2∗(σ2)...Φin+1(σn)∇2
[
Φ

in+1∗(σn+1)Φi1(σn+1)
]

=
(ρ

2

)n−1 ∑

i1,in+1

∑

σ1,σn+1

Φi1∗(σ1)Φin+1(σ1)∇2
[
Φin+1∗(σn+1)Φi1(σn+1)

]

This can be written as

T̃ r[Dn∇2D] = (C.58)

(ρ
2

)n−1
~∇ ·


 ∑

i1,in+1

∑

σ1,σn+1

Φi1∗(σ1)Φin+1(σ1)~∇
[
Φin+1∗(σn+1)Φi1(σn+1)

]



−
(ρ

2

)n−1 ∑

i1,in+1

∑

σ1,σn+1

~∇
[
Φi1∗(σ1)Φin+1(σ1)

]
· ~∇
[
Φin+1∗(σn+1)Φi1(σn+1)

]

We can apply the rule of the derivatives and use the already familiar expres-
sions (C.33-C.41) to derive

∑

i1,in+1

∑

σ1,σn+1

Φi1∗(σ1)Φin+1(σ1)~∇
[
Φin+1∗(σn+1)Φi1(σn+1)

]
(C.59)

=
∑

i1,in+1

∑

σ1,σn+1

Φi1(σn+1)Φi1∗(σ1)Φin+1(σ1)~∇
[
Φin+1∗(σn+1)

]

+
∑

i1,in+1

∑

σ1,σn+1

Φin+1(σ1)Φin+1∗(σn+1)~∇
[
Φi1(σn+1)

]
Φi1∗(σ1)

=
1

2
ρ~∇ρ
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and

∑

i1,in+1

∑

σ1,σn+1

~∇
[
Φi1∗(σ1)Φin+1(σ1)

]
· ~∇
[
Φin+1∗(σn+1)Φi1(σn+1)

]
(C.60)

=
∑

i1,in+1

∑

σ1,σn+1

Φi1(σ1)Φi1∗(σn+1)~∇
[
Φin(σ1)

]
· ~∇Φin∗(σn+1)

+
∑

i1,in+1

∑

σ1,σn+1

Φin(σ1)Φin∗(σn+1)~∇
[
Φi1(σ1)

]
· ~∇Φi1∗(σn+1)

+
∑

i1,in+1

∑

σ1,σn+1

Φin(σ1)~∇
[
Φin∗(σn+1)

]
Φi1(σn+1) · ~∇

[
Φi1∗(σ1)

]

+
∑

i1,in+1

∑

σ1,σn+1

~∇
[
Φin(σ1)

]
Φin∗(σn+1) · ~∇

[
Φi1(σn+1)

]
Φi1∗(σ1)

= ρτ +
1

16

∑

σ1,σn+1

[
δσ1σn+1

~∇ρ+ i ~J × ~σσ1σn+1

]
·
[
δσn+1σ1

~∇ρ+ i ~J × ~σσn+1σ1

]

+
1

16

∑

σ1,σn+1

[
δσ1σn+1

~∇ρ+ i~σσ1σn+1 × ~J
]
·
[
δσn+1σ1

~∇ρ+ i~σσn+1σ1 × ~J
]

= ρτ +
1

4

[(
~∇ρ
)2

− 2 ~J2

]

Thus, for n > 0 we have:

T̃ r[Dn∇2D] =
(ρ

2

)n−1
~∇ ·
[ρ
2
~∇ρ
]
−
(ρ

2

)n−1
(
ρτ +

1

4

[(
~∇ρ
)2

− 2 ~J2

])
(C.61)

=
(ρ

2

)n
∇2ρ+

1

4

(ρ
2

)n−1
[(
~∇ρ
)2

+ 2 ~J2 − 4ρτ

]

T̃ r[Dn∇2D] =
(ρ

2

)n
∇2ρ+ (1 − δn,0)

1

4

(ρ
2

)n−1
[(
~∇ρ
)2

+ 2 ~J2 − 4ρτ

]
(C.62)

where n ≥ 1.

C.4.4 T̃ r[Dn~∇D]

For n = 0 we simply have

T̃ r[~∇D] = ~∇T̃ r[D] =
~∇ρ
2

(C.63)
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For n > 0 we can write

T̃ r[Dn~∇D] =
(ρ

2

)n−1∑

i,j

∑

σ,σ′

Φi∗(σ)Φj(σ)~∇
[
Φj∗(σ′)Φi(σ′)

]
(C.64)

=
(ρ

2

)n−1 ρ

2
2
∑

σ

Φj(σ)~∇Φj∗(σ′) =
(ρ

2

)n
~∇ρ

where we skipped the intermediate step.

C.4.5 T̃ r
[
Dn(~∇D)2

]

For n = 0 we recall the expression from the section C.4.3:

T̃ r
[
(~∇D)2

]
=
∑

i,j

∑

σ,σ′

~∇
[
Φi∗(σ)Φj(σ)

]
· ~∇
[
Φj∗(σ′)Φi(σ′)

]
= ρτ +

1

4

[(
~∇ρ
)2

− 2 ~J2

]

(C.65)
For n > 0 we can write

T̃ r
[
Dn(f)(~∇D)2

]
= (C.66)

∑

i1,...in+2

∑

σ1,...σn+2

Φi1∗(σ)Φi2(σ)Φi2∗(σ′)...Φin+1(σn)~∇
[
Φin+1∗(σn+1)Φin+2(σn+1)

]

·~∇
[
Φin+2∗(σn+2)Φi1(σn+2)

]

=
(ρ

2

)n−1 ∑

i1,in+1,in+2

∑

σ1,σn+1,σn+2

Φi1∗(σ)Φin+1(σ)~∇
[
Φin+1∗(σn+1)Φin+2(σn+1)

]

·~∇
[
Φin+2∗(σn+2)Φi1(σn+2)

]

=
(ρ

2

)n [ρτ
2

]

+
1

16

(ρ
2

)n

 ∑

σ1,σn+1

(δσ1σn+1
~∇ρ+ i ~J × ~σσ1σn+1) · (δσn+1σ1

~∇ρ+ i ~J × ~σσn+1σ1)

+
∑

σ1,σn+2

(δσ1σn+2
~∇ρ+ i ~J × ~σσ1σn+2) · (δσn+2σ1

~∇ρ+ i ~J × ~σσn+2σ1)

+
∑

σn+1,σn+2

(δσn+1σn+2
~∇ρ+ i ~J × ~σσn+1σn+2) · (δσn+2σn+1

~∇ρ+ i ~J × ~σσn+2σn+1)




=
(ρ

2

)n [ρτ
2

+
3

8

(
~∇ρ
)2

− 1

4
~J2

]
=

1

8

(ρ
2

)n [
4ρτ + 3

(
~∇ρ
)2

− 2 ~J2

]
.
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Thus, the general formula is

T̃ r
[
Dn(~∇D)2

]
=
δn0

4

[
4ρτ +

(
~∇ρ
)2

− 2 ~J2

]
+

1 − δn0

8

(ρ
2

)n [
4ρτ + 3

(
~∇ρ
)2

− 2 ~J2

]

(C.67)

C.4.6 T̃ r[D∇α [D]D∇αD]

We can write the above expression as

T̃ r[D~∇ [D]D · ~∇D] = (C.68)

=
∑

i1,...i4

∑

σ1,...σ4

Φi1∗(σ1)Φi2(σ1)~∇
[
Φi2∗(σ2)Φi3(σ2)

]
Φi3∗(σ3)Φi4(σ3)

·~∇
[
Φi4∗(σ4)Φi1(σ4)

]

=
(ρ

2

)2∑

i,j

∑

σ,σ′

(
Φi(σ)~∇

[
Φi∗(σ′)

]
Φj(σ′) · ~∇

[
Φj∗(σ)

]
+ Φi(σ)~∇

[
Φi∗(σ′)

]

·~∇
[
Φj(σ′)

]
Φj∗(σ)

+~∇
[
Φi(σ)

]
Φi∗(σ′)Φj(σ′) · ~∇

[
Φj∗(σ)

]
+ ~∇

[
Φi(σ)

]
Φi∗(σ′) · ~∇

[
Φj(σ′)

]
Φj∗(σ)

)

=
1

8
ρ2
(
~∇ρ
)2

,

where in the first step we relabeled the remaining indices from i1, ...i4 into i, j and
σ1, ...σ4 into σ, σ′ after opening the derivatives and summing up the Φi∗(σ)Φi(σ′)
type terms.

C.4.7 T̃ r[ ~DIV ]

To evaluate T̃ r[ ~DIV ] we must write the flavour labels explicitly. Using

∑

i

Φi(σ,m)Φi∗(σ′, m′) =
ρm
2
δσσ′δmm′ (C.69)

we get:

T̃ r[ ~DIV ] =
∑

i

∑

σ

∑

mm′

Φi∗(σ,m)~I tmm′Φi(σ,m′) =
∑

m

ρm~I
t
mm (C.70)

= ~e(3)
∑

m

mρm = ~e(3)
1

2
(ρp − ρn) ,

where ~e(3) is the the regular Cartesian unit vector pointing in the third direction.
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C.4.8 T̃ r[ ~DIV · ~DIV ]

For T̃ r[ ~DIV · ~DIV ] we have

T̃ r[ ~DIV · ~DIV ] =
∑

i,j

∑

σσ′

∑

mm′

Φi∗(σ,m)~I tmm′Φj(σ,m′) · Φj∗(σ′, m′)~I tm′mΦi(σ′, m)

=
1

2

∑

mm′

ρmρm′
~I tmm′ · ~I tm′m =

1

2

∑

m

(
m2ρ2

m +
1

2
ρmρ(m±1)

)
(C.71)

C.4.9 T̃ r[∇2 ~DIV ]

For T̃ r[∇2 ~DIV ] we have

T̃ r[∇2 ~DIV ] = ~e(3)∇2
∑

m

mρm (C.72)

C.4.10 T̃ r[ ~DIV · ∇2 ~DIV ]

For T̃ r[ ~DIV · ∇2 ~DIV ] by the definition we have:

T̃ r[ ~DIV · ∇2 ~DIV ] = (C.73)

=
∑

m,m′

~I tmm′ .~I tm′m

∑

i,j

∑

σσ′

Φi∗(σ,m)Φj(σ,m′)∇2
[
Φj∗(σ′, m′)Φi(σ′, m)

]

We can express the sums on the RHS as:

∑

i,j

∑

σσ′

Φi∗(σ,m)Φj(σ,m′)∇2
[
Φj∗(σ′, m′)Φi(σ′, m)

]
=

= ~∇ ·
[
∑

ik

∑

σσ′

Φi∗(σ,m)Φk(σ,m′)~∇
[
Φk∗(σ′, m′)Φi(σ′, m)

]
]

−
∑

ik

∑

σσ′

~∇
[
Φi∗(σ,m)Φk(σ,m′)

]
· ~∇
[
Φk∗(σ′, m′)Φi(σ′, m)

]
(C.74)

We first evaluate the factor under the nabla:

∑

ik

∑

σσ′

Φi∗(σ,m)Φk(σ,m′)~∇
[
Φk∗(σ′, m′)Φi(σ′, m)

]
=

=
∑

ik

∑

σσ′

Φk(σ,m′)Φk∗(σ′, m′)~∇
[
Φi(σ′, m)

]
Φi∗(σ,m)

+
∑

ik

∑

σσ′

Φi(σ′, m)Φi∗(σ,m)Φk(σ,m′)~∇
[
Φk∗(σ′, m′)

]
=

1

4
ρm′

~∇ρm +
1

4
ρm~∇ρm′

(C.75)
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The second term is

∑

ik

∑

σσ′

~∇
[
Φi∗(σ,m)Φk(σ,m′)

]
· ~∇
[
Φk∗(σ′, m′)Φi(σ′, m)

]
=

=
∑

ik

∑

σσ′

Φi(σ,m)Φi∗(σ′, m)~∇
[
Φk(σ,m′)

]
· ~∇Φk∗(σ′, m′)

+
∑

ik

∑

σσ′

Φk(σ,m′)Φk∗(σ′, m′)~∇
[
Φi(σ,m)

]
· ~∇Φi∗(σ′, m)

+
∑

ik

∑

σσ′

Φk(σ,m′)~∇
[
Φk∗(σ′, m′)

]
Φi(σ′, m) · ~∇

[
Φi∗(σ,m)

]

+
∑

ik

∑

σσ′

~∇
[
Φk(σ,m′)

]
Φk∗(σ′, m′) · ~∇

[
Φi(σ′, m)

]
Φi∗(σ,m)

=
1

2
ρmτm′ +

1

2
ρm′τm +

1

16

∑

σσ′

[
δσσ′ ~∇ρm′ + i ~Jm′ × ~σσσ′

]
·
[
δσ′σ ~∇ρm + i ~Jm × ~σσ′σ

]

+
1

16

∑

σσ′

[
δσσ′ ~∇ρm′ + i~σσσ′ × ~Jm′

]
·
[
δσ′σ ~∇ρm + i~σσ′σ × ~Jm

]

=
1

2
(ρmτm′ + ρm′τm) +

1

4

[
~∇ρm · ~∇ρm′ − 2 ~Jm · ~Jm′

]
, (C.76)

so we get

∑

i,j

∑

σσ′

Φi∗(σ,m)Φj(σ,m′)∇2
[
Φj∗(σ′, m′)Φi(σ′, m)

]
= (C.77)

=
1

4
~∇ ·
[
ρm~∇ρm′ + ρm′

~∇ρm
]
− 1

2
(ρmτm′ + ρm′τm) − 1

4

[
~∇ρm · ~∇ρm′ − 2 ~Jm · ~Jm′

]

=
1

4

[
ρm∇2ρm′ + ρm′∇2ρm + ~∇ρm · ~∇ρm′ + 2 ~Jm · ~Jm′ − 2(ρmτm′ + ρm′τm)

]

Restoring the full indices and using the symmetry of ~I tmm′ · ~I tm′m with respect to the
exchange of m,m′, we get

T̃ r[ ~DIV · ∇2 ~DIV ]

=
1

4

∑

m,m′

~I tmm′ .~I tm′m

[
2ρm∇2ρm′ + ~∇ρm · ~∇ρm′ + 2 ~Jm · ~Jm′ − 4ρmτm′

]
(C.78)

=
1

4

∑

m

m2

[
2ρm∇2ρm +

(
~∇ρm

)2

+ 2 ~J2
m − 4ρmτm

]

+
1

8

∑

m

[
2ρm∇2ρ(m±1) + ~∇ρm · ~∇ρ(m±1) + 2 ~Jm · ~J(m±1) − 4ρmτ(m±1)

]

Since the isovector density is only 2-body, a total derivative ~∇ · (ρa · ~∇ρb) will

give zero after integration over the volume ~r, so we can replace ~∇ρa·~∇ρb → −ρa∇2ρb,
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which gives

T̃ r[ ~DIV · ∇2 ~DIV ] =
1

4

∑

m

m2
[
ρm∇2ρm + 2 ~J2

m − 4ρmτm

]

+
1

8

∑

m

[
ρm∇2ρ(m±1) + 2 ~Jm · ~J(m±1) − 4ρmτ(m±1)

]
(C.79)

C.5 Expectation Values of Operator Densities.

After evaluating all of the necessary Fermi traces, we can proceed with the
evaluation of the expectation values of the operator densities listed in (C.20), as-
suming we have N = Nf flavors of baryons (in our case of protons and neutrons
Nf = 2).

To evaluate the expectation values of the operator densities that involve sums
over all flavors, we can use the multinomial expansion. Let us consider an operator
of the following form

〈: An :〉 =

〈
:

(
∑

f=1,N

a(f)A(~r, f)

)n

:

〉
, (C.80)

where the weights a(f) are C numbers and A(~r, f) are one body operators diagonal
in flavor. From here on we will drop the position argument ~r for simplicity. To
expand the RHS of the above equation, we employ the multinomial formulae:

(
∑

f=1,N

xi

)n

=
∑

n1,n2,...nN≥0

Cn
n1n2...nN

xn1

1 x
n2

2 ...x
nN

N , (C.81)

where the multinomial coefficient is

Cn
n1n2...nN

=
n!

n1!n2!....nN !
δ(n1 + n2 + ..+ nN − n). (C.82)

We shall use the compact notation {n} for the family {n1, n2, ...nN}, including
the condition that ni ≥ 0. Due to the normal ordering we don’t need to worry about
the order of the operators and we can write

〈
:

(
∑

f=1,N

a(f)A(f)

)n

:

〉
=

∑

{n}

Cn
{n}a(1)n1a(2)n2...a(N)nN 〈: A(1)n1A(2)n2...A(N)nN :〉 . (C.83)
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Due to the assumed flavour structure of the HF state, the expectation value
of a product of different flavor operators is factorizable:

〈: A(1)n1A(2)n2...A(N)nN :〉 = 〈: A(1)n1 :〉 〈: A(2)n2 :〉 ... 〈: A(N)nN :〉 (C.84)

Thus we arrive at the master formula:
〈

:

(
∑

f=1,N

a(f)A(f)

)n

:

〉
=
∑

{n}

Cn
{n}

∏

f=1,N

a(f)nf 〈: A(f)nf :〉 . (C.85)

Let us point out that in our case, N = 2, we can simplify the notation of the
above equation using the usual binomial formula:

〈: (a (1)A(1) + a(2)A(2))n :〉 =
n∑

i=0

n!

i!(n− i)!
a(1)ia(2)n−i

〈
: A(1)i :

〉 〈
: A(2)n−i :

〉
.

(C.86)

C.5.1 〈: Dn :〉
We can easily apply the above procedure to evaluate 〈: Dn :〉, which can be

expressed as

〈: Dn :〉 =

〈
:

(
∑

f=1,N

D(f)

)n

:

〉
=
∑

{n}

Cn
{n}

∏

f=1,N

〈: D(f)nf :〉 . (C.87)

We need to evaluate 〈: D(f)n :〉 in the cases n = 0, 1, 2. Using Eq. (C.29) and
the trace formulas from the previous section, we have

〈
: D(f)0 :

〉
= 1, (C.88)

〈: D(f) :〉 = ρf ,

〈
: D(f)2 :

〉
= T̃ r[D(f)]2 − T̃ r[D(f)2] =

ρ2
f

2
, (C.89)

〈: D(f)n :〉 = 0 n > 2, (C.90)

which can be written as

〈: D(f)n :〉 = Θ(2 − n)ρnf

(
1 − n(n− 1)

4

)
, (C.91)

where Θ(x) is the usual Heaviside unit step function.
It is useful to define

∆(n) = Θ(2 − n)

(
1 − n(n− 1)

4

)
, (C.92)
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and the final result is
〈: D(f)nf :〉 = ∆(n)ρ

nf

f . (C.93)

Thus we have for the full density operator D

〈D〉 =
∑

f

ρf = ρ (C.94)

〈
D2
〉

=

N∑

f=1

〈
D(f)2

〉
+ 2

N∏

f=1

〈D(f)〉 =
∑

f

ρ2
f

2
+ 2

N∏

f=1

ρf ≡
N∑

f,f ′=1

(1 − δff ′) ρfρf ′

(C.95)
Similarly, for evaluating the other terms in the density functional, we will need

the following expectation values from (C.20), which we will evaluate one by one.

C.5.2 〈: D(f)nξ(f) :〉
we need to evaluate 〈: D(f)nξ(f) :〉 with n = 0, 1, 2.

〈: ξ(f) :〉 = τf (C.96)

〈: D(f)ξ(f) :〉 = T̃ r[D(f)]T̃ r[K(f)] − T̃ r[D(f)K(f)] (C.97)

= ρfτf −
1

8

[(
~∇ρf

)2

+ 2 ~J2
f

]

〈
: D(f)2ξ(f) :

〉
= T̃ r[D(f)]2T̃ r[K(f)] − T̃ r[D(f)2]T̃ r[K(f)] (C.98)

−2T̃ r[D(f)]T̃ r[D(f)K(f)] + 2T̃ r[D2K(f)]

=
ρ2
f

2
τf −

ρf
8

[(
~∇ρf

)2

+ 2 ~J2
f

]

which can be summarized as

Θ(2 − n) 〈: D(f)nξ(f) :〉 = ∆(n)ρn−1
f

[
τfρf −

k

8

((
~∇ρf

)2

+ 2 ~J2
f

)]
(C.99)

where ∆(k) has been defined in (C.92).

C.5.3
〈
: D(f)n~∇D(f) :

〉

For 〈: D(f)n∇αD(f) :〉 , n = 0, 1, 2 we have

〈: ∇αD(f) :〉 = ∇αρf , (C.100)
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〈: D(f)∇αD(f) :〉 = T̃ r[D(f)]T̃ r[∇αD(f)] − T̃ r[D(f)∇αD(f)] (C.101)

= ρf∇αρf −
1

2
ρf∇αρf =

1

2
ρf∇αρf ,

〈
: D(f)2∇αD(f) :

〉
=
(
T̃ r[D(f)]

)2

T̃ r[∇αD(f)] − 2T̃ r[D(f)]T̃ r[D(f)∇αD(f)]

(C.102)

−T̃ r
[
D(f)2

]
T̃ r[∇αD(f)] + 2T̃ r

[
D(f)2∇αD(f)

]

= ρ2
f∇αρf − 2

ρ2
f∇αρf

2
−
ρ2
f∇αρf

2
+ 2

ρ2
f∇αρf

4
= 0,

where we used Eq. (C.30) for the last formula.
This is summarized by

Θ(2 − n) <: D(f)n∇αD(f) :>= Θ(2 − n)
2 − n

2
ρnf∇αρf (C.103)

C.5.4

〈
: D(f)n

(
~∇D(f)

)2

:

〉

For

〈
: D(f)n

(
~∇D(f)

)2

:

〉
, n = 0, 1, 2 we have

〈
:
(
~∇D(f)

)2

:

〉
= T̃ r[∇αD(f)]T̃ r[∇αD(f)] − T̃ r[∇αD(f)∇αD(f)] (C.104)

=
1

4

[
−4ρfτf + 3

(
~∇ρf

)2

+ 2 ~Jf
2
]

〈
: D(f)

(
~∇D(f)

)2

:

〉
= (C.105)

= T̃ r[D(f)]
(
T̃ r[∇αD(f)]

)2

− 2T̃ r[∇αD(f)]T̃ r[D(f)∇αD(f)]

−T̃ r[D(f)]T̃ r[(∇αD(f))2] + 2T̃ r[D(f) (∇αD(f))2]

=
ρf
8

[
−4ρfτf +

(
~∇ρf

)2

+ 2 ~Jf
2
]
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〈
: D(f)2

(
~∇D(f)

)2

:

〉
= (C.106)

=
(
T̃ r[D(f)]

)2 (
T̃ r[~∇D(f)]

)2

−
(
T̃ r[D(f)]

)2

T̃ r

[(
~∇D(f)

)2
]
−

−T̃ r
[
D(f)2

] (
T̃ r[~∇D(f)]

)2

− 4T̃ r[D(f)]T̃ r[~∇D(f)]T̃ r[D(f)~∇D(f)]

+T̃ r
[
D(f)2

]
T̃ r

[(
~∇D(f)

)2
]

+ 2
(
T̃ r[D(f)~∇D(f)]

)2

+4T̃ r[D(f)]T̃ r

[
D(f)

(
~∇D(f)

)2
]

+ 4T̃ r[~∇D(f)]T̃ r
[
D(f)2~∇D(f)

]

−4T̃ r[D(f)]T̃ r

[
D(f)

(
~∇D(f)

)2
]
− 2T̃ r

[(
D(f)~∇D(f)

)2
]

= ρ2
f

(
~∇ρf

)2

− 1

4
ρ2
f

{(
~∇ρf

)2

+ z

}
− 1

2
ρ2
f

(
~∇ρf

)2

−4

2
ρ2
f

(
~∇ρf

)2

+
1

8
ρ2
f

{(
~∇ρf

)2

+ z

}
+

2

4
ρ2
f

(
~∇ρf

)2

+
4

16
ρ2
f

{
3
(
~∇ρf

)2

+ z

}
+

4

4
ρ2
f

(
~∇ρf

)2

− 4

32
ρ2
f

{
3
(
~∇ρf

)2

+ z

}
− 2

8
ρ2
f

(
~∇ρf

)2

= 0,

where z ≡ 4ρfτf − 2 ~Jf
2

and we used Eq. (C.31) for the last formula.
We can rewrite the formula above as:

Θ(2 − n)

〈
: D(f)n

(
~∇D(f)

)2

:

〉
=

= Θ(2 − n)
2 − n

2

ρnf
4

[
−4ρfτf + (3 − 2n)

(
~∇ρf

)2

+ 2 ~Jf
2
]

(C.107)

C.5.5
〈
: D(f)n∇2D(f) :

〉

For 〈: D(f)n∇2D(f) :〉, n = 0, 1, 2 we have:

〈
: ∇2D(f) :

〉
= ∇2ρf (C.108)

〈
: D(f)∇2D(f) :

〉
= T̃ r[D(f)]T̃ r[∇2D(f)] − T̃ r[D(f)∇2D(f)] (C.109)

= ρf∇2ρf −
(
ρf
2
∇2ρf +

1

4

((
~∇ρf

)2

+ 2 ~J2
f − 4ρfτf

))

=
1

2
ρf∇2ρf −

1

4

((
~∇ρf

)2

+ 2 ~J2
f − 4ρfτf

)
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〈
: D(f)2∇2D(f) :

〉
= T̃ r[D(f)]2T̃ r[∇2D(f)] − T̃ r[D(f)2]T̃ r[∇2D(f)] (C.110)

−2T̃ r[D(f)]T̃ r[D(f)∇2D(f)] + 2Tr[D(f)2∇2D(f)]

= ρ2
f∇2ρf −

ρ2
f

2
∇2ρf − 2ρf

(
ρf
2
∇2ρf +

1

4

((
~∇ρf

)2

+ 2 ~J2
f − 4ρfτf

))

+2

(
ρ2
f

4
∇2ρf +

1

4

ρf
2

((
~∇ρf

)2

+ 2 ~J2
f − 4ρfτf

))

= −ρf
4

((
~∇ρf

)2

+ 2 ~J2
f − 4ρfτf

)

which is equivalent to

〈
: D(f)n∇2D(f) :

〉
=

= Θ(2 − n)

[
2 − n

2
ρnf∇2ρn −

n(3 − n)

8
ρn−1
f

((
~∇ρf

)2

+ 2 ~J2
f − 4ρfτf

)]
(C.111)

C.5.6
〈
: ~D2

IV
:
〉

For
〈
: ~D2

IV ) :
〉

we have:

〈
: ~DIV · ~DIV :

〉
= (C.112)

= T̃ r[ ~DIV ]2 − T̃ r[ ~DIV
2] =

(
∑

m

mρm

)2

− 1

2

∑

m

(
m2ρ2

m +
1

2
ρmρ(m±1)

)

=

1/2∑

m,m′=−1/2

(
mm′ − 1

2
Cmm′

)
ρmρm′ ,

where

Cmm′ = δm,m′m2 +
1

2
(δm,m′+1 + δm′,m+1) (C.113)
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C.5.7
〈
: ~DIV · ∇2 ~DIV :

〉

For
〈
: ~DIV · ∇2 ~DIV :

〉
we have:

〈
: ~DIV · ∇2 ~DIV :

〉
= T̃ r[ ~DIV ] · T̃ r[∇2 ~DIV ] − T̃ r[ ~DIV · ∇2 ~DIV ] (C.114)

=
∑

m

mρm∇2
∑

m

mρm

−1

4

∑

m

m2
[
ρm∇2ρm + 2 ~J2

m − 4ρmτm

]

−1

8

∑

m

[
ρm∇2ρ(m±1) + 2 ~Jm · ~J(m±1) − 4ρmτ(m±1)

]

=

1/2∑

m,m′=−1/2

{(
mm′ − 1

4
Cmm′

)
ρm∇2ρm′ + Cmm′ρmτm′

}
,

where in the last step we ignored the terms quadratic in the spin density ~J . This
amounts to treating the spin orbit interaction as a first order perturbation.

C.6 Results

Using the expectation values of the density operator products derived above
and the multinomial expansion for flavor decomposition we can easily write down
the density functional of the (C.1) as

〈H(~r)〉 = ρM +
τ

2M
+

Gσ

2M2

(
ρτ +

1

8

∑

m

ρm∇2ρm

)
(C.115)

−
(
Gσ

2m2
σ

+
Gσ

4M2

)(
ρ∇2ρ−

∑

m

(
1

4
ρm∇2ρm − ρmτm

))

−1

2

Gσ

1 + dGσρ

(
ρ2 − 1

2(1 + dGσρ)2

∑

m

ρ2
m

)

The result for the meson part is also very easy to write down

〈: Hω(~r) :〉 =
Gω

2

∑

mm′

[(
1 − 1

2
δmm′

)
ρmρm′

+
1

m2
ω

(
ρm∇2ρm′ − 1

4
δmm′

(
ρm∇2ρm − 4ρmτm

))]
, (C.116)
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〈: Hρ(~r) :〉 =
Gρ

2

∑

mm′

{(
mm′ − 1

2
Cmm′

)
ρmρm′ (C.117)

+
1

m2
ρ

(
mm′ − 1

4
Cmm′

)
ρm∇2ρm′ +

1

m2
ρ

Cmm′ρmτm′

}
,

where we straight forwardly used the results of section C.5.
The treatment of the remaining spin-orbit part of the Hamiltonian goes along

the same lines and does not pose any difficulty.
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