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Abstract

In this thesis we will theoretically investigate three potentially useful physical systems, after
first developing the theoretical framework necessary for studying them. First, we will study
the multiphoton absorption properties of maximally path entangled number (NOON) states.
This is directly relevant to quantum lithography, and beating the Rayleigh diffraction limit.
Next, we will develop a new scheme for quantum interferometry: dubbed coherent-light
boosted super-sensitive quantum interferometry, which has the potential to reach below
the shot noise limit for high photon fluxes, and requires no esoteric detection protocol,
or technological elements that have yet to be developed. Finally we propose a method
to perform parity detection on the output modes of a Mach-Zehnder interferometer that
has been fed with two-mode squeezed vacuum. This detection scheme relies on a double
homodyning technique, that makes intensity correlation measurements at a series of chosen
bias phases. Sub-Heisenberg sensitivity scaling is expected for this setup.



1 Introduction

It is my intention that the first two sections of this introduction be accessible to the layperson,
with no advanced knowledge of physics or mathematics.

1.1 General Introduction

Out of all the sciences, physics is the most difficult to properly define. At its extremes it
seems to infringe on the territory of other areas of study. At its most theoretical it becomes
difficult to distinguish from abstract mathematics. As more complex atomic structures are
considered it is more like chemistry. Analysis of emergent phenomena makes physics almost
appear to be biology. It is so tied to astronomy that the two university curricula typically
only differ by a few courses. Sometimes physics even encroaches on the domain of philosophy.

What makes physics so difficult to define is that it is fundamental. It lies at the root of our
rational understanding of the world. The antiquated term for physics is natural philosophy;,
which fits well, as physics is Man’s attempt to penetrate the secret order and law of the
material universe.

When people only had access to the phenomena that they could see with their eyes or
touch with their hands, the study of physics was more or less confined to a single discipline,
what we now call classical mechanics. It was — and remains — the study of macroscopic forces
and objects interacting in mathematically precise ways.

As we developed tools to expand our range of perception, our knowledge deepened, and
the single discipline of natural philosophy fragmented into many different realms of study. As
ever more minute objects and interactions (such as atoms and their relationship to light and
each other) came under study, new theories needed to be created to describe the paradoxical
behavior of these systems. Quantum Mechanics (quantum referring to small discrete objects)
filled this need as the descriptor of the world of the very small. Study of the fundamental
nature of light as a quantum object became known as Quantum Optics, and is the subject
of this dissertation.

The first beachhead made in man’s ongoing exploration of the quantum world occurred
because of the observation of light. When many objects are heated to a sufficient temper-
ature, they begin to emit light. First, as heat felt from the invisible infra red radiation,
then a dull red glow transitioning to a bright orange, and eventually white. This pattern
is called black-body radiation — because an idealized object called a black-body follows this
pattern very well, as do stars. Theorists worked for years trying to describe this pattern
mathematically, but failed. That was until 1900 when Max Planck was able to do so. His
breakthrough was to assume that the light was emitted only in discrete packets of energy.
A mathematical framework built on this idea correctly described the black-body radiation
curve.

The idea that the world may be made of discrete pieces, in the early years of the 20"
century, led directly to all the following advances in the field of quantum mechanics.

Today quantum optics continues to be one of the pillars of the larger structure of quan-
tum theory. Furthermore, the technological applications of quantum optics are becoming
of greater interest. Quantum cryptographic networks [1], allowing completely secure com-
munication over tens of miles, are already in limited production. Quantum imaging and



lithography [2] promise to create a plethora of technological improvements: smaller mi-
crochips, better microscopes, improved information storage, and more accurate imaging and
ranging for radar-like devices. The study of meta-materials [3] may fulfil the science fiction
dream of creating optically invisible objects. And, over the rest of this, looms the possibil-
ity of constructing a quantum computer [4], a device so powerful it could break previously
unbreakable codes in a matter of hours or even minutes — among other impressive feats.

It is this interest in formidable technologies that drives much of the funding in quantum
optics, but at its core the discipline is concerned with fundamental science. Quantum optics
is driven by one, seemingly childish, yet eternally confounding question:

1.2 What Is Light?

At first the question seems harmless, even obvious. The simplest — modern — answer is that
light is electromagnetic radiation.

In many ways this is an inadequate answer and says very little about one of the most
complex, paradoxical, mysterious, important, and ever-present components of our world. It
gives us life, warmth, and sight; but what is it? Let us begin by inspecting the history of
Man’s thoughts on light:

Many ancient philosophical traditions thought of light as being related to fire. This is
not surprising as the most readily non-astronomical source of light in early man’s experience
was flame. Philosophers of India and Greece supposed that light was made of small particles
of fire which operated with certain set laws. These particles interacted in various ways,
producing radiant heat, and creating the sense of sight.

Euclid in Optica (~ 300BCE) demonstrated that light travelled in straight lines, and
he also began to develop the modern discipline of geometrical optics by mathematically
examining reflection. Ptolemy expanded on these concepts in Optics (sometime in the 2"
century CE) by studying refraction: the way light bends as it passes through different
materials.

In 1021CE the great Middle Eastern scientist Alhazen completed The Book of Optics.' In
this book he postulated that light was not a physical object, but a ray of particles with “no
sensible quantities but energy” that came eerily close to the modern understanding of light
as composed of photons. Alhazen was the first to form an image with a camera obscura (a
pinhole camera capable of projecting an image from outside of a darkened room onto a screen
in the room). Using the information about the geometry of light that the camera obscura
revealed, he correctly stated that light was reflected in all directions from every point of an
object, and that the eye formed an image from those rays. Alhazen further developed the
science of geometrical optics by carrying out extensive experiments with mirrors, lenses, and

1“Alhazen” is the European name given to Abu ‘All al-Hasan ibn al-Hasan ibn al-Haytham, one of the
greatest scientists to ever have lived. It is a great shame that he is rarely — if ever — mentioned in the
American scientific education system. He made large contributions to nearly every area of study, from
anatomy to number theory. He is credited with developing the scientific method in a form that is very close
to the modern definition. He has been called “The First (True) Scientist” by some modern physicists and
historians of science. He wrote The Book of Optics under house arrest while feigning madness to avoid the
ire of a capricious caliph.



other objects. He proved Euclid’s hypothesis that light travels in straight lines in free space;?
He was also the first person to split light into its constituent colors, and to magnify an object
with a lens. He inferred that light travelled non-instantaneously and that refraction was due
to light travelling at different speeds in different materials. Alberuni, a contemporary of
Alhazen, and also a great Middle Eastern polymath, showed that the speed of light was
indeed finite, yet much greater than the speed of sound.

In 1637, René Descartes published a paper in which he deviated from the tradition of
thinking of light as a particle. Regarding it solely as a property of the object radiating
the light, and thus he also concluded that light propagated as waves through a “plenum”.
Descartes reasoned that there was no such thing as vacuum, and that all space was filled with
an invisible material capable of carrying waves. This began a schism in our understanding of
the nature of light: between those who advocated the wave theory and those who maintained
the particle theory. This split, in some sense, remains to this day.

Isaac Newton became the standard bearer for the opposing camp: what would become
known as the corpuscular theory of light (a corpuscle being defined as a little particle).
Newton argued in his Opticks, published in 1704, that the mechanics of light suggested it
was composed of small particles, and not waves. Newton suggested that only a particle
theory of light could explain the straight-line geometrical optics that had been developing
for centuries. After all, sound, well known to be a wave, could be heard around a corner
— whereas an image cannot be seen unless there is a direct line from the eye to the object.
However, Newton’s theory could not adequately explain some of the other behaviours of
light, such as refraction and diffraction (the latter being — in this context — light’s tendency
to split into its component colors when passing through a transparent material). In order to
compensate for these short-comings, Newton invented the concept of the luminiferous aether,
ironically coining the preferred terminology of his rivals. To Newton’s mind, the aether was a
material that filled all space, like Descartes’ plenum, capable of transmitting waves. However,
unlike the supporters of the wave school of thought, Newton did not believe that vibrations in
aether were light — but that they were caused by light particles as they travelled through the
aether. These waves travelled faster than the light particles themselves, and then acted back
on them at the boundaries of materials causing the phenomena of refraction and diffraction.

The battle between the two conceptions of light continued for centuries, with the weapons
of theoretical arguments and painstaking experiments arrayed on either side.?

The next great leap came in 1864 when the Scottish mathematician and physicist James
Clerk Maxwell published A Dynamical Theory of the Electromagnetic Field. Maxwell was
concerned with studying the laws of electricity and magnetism. In this paper he laid out
a series of equations (now known as Maxwell’s Equations), which accurately described the
behavior of electric and magnetic fields. He also discovered that these equations could be

2 Actually, light does not travel in straight lines, but along “null geodesics”, which are bent by gravity.
However, the difference can only be noticed near very massive astronomical objects, and even then usually
only with great care.

3A complete history of this debate could easily fill a separate doctoral thesis. The interested reader is
referred to any one of dozens of books on the subject (for example Newton to Finstein: The Trail of Light:
An Ezcursion to the Wave-Particle Duality and the Special Theory of Relativity by Ralph Baierlein), and to
Wikipedia.



rearranged in such a way that they became wave equations.* These equations described an
electric field and a complimentary magnetic field travelling at exactly the known speed of
light! Maxwell correctly deduced that light must be an electromagnetic wave.[5]

In the modern era, it is a mater of general knowledge that light is an electromagnetic
phenomenon. So, it is illuminating to point out that before Maxwell there was no reason to
believe that there was a connection between the two concepts. Electromagnetism governed
currents and compasses, light — apparently — had nothing to do with these types of things.
The fact that the speed of light popped out of Maxwell’s Equations was a surprise to everyone.
It is this conceptual discontinuity that makes Maxwell’s revelation so significant.

Maxwell considered electromagnetism and light to be two manifestations of the same,
subtle, ever-present, continuous aether (or ether) — which both provided light with a medium
through which to travel and allowed the electric and magnetic forces to act at a distance
from their sources. Not long after Maxwell’s discoveries, Heinrich Hertz experimentally
demonstrated Maxwell’s theory of light by transmitting and receiving radio waves for the
first time (radio is simply light at a wavelength longer than what our eyes can detect).[6]
Later, radio waves were seen to obey all the same laws of reflection and refraction that had
been developed to describe visible light. Oddly, Hertz didn’t see any use for radio-frequency
light beyond proving Maxwell’s theory. When asked what potential application his discovery
might have had, he famously replied, “...nothing, I guess.”

At that time, the particle theory of light fell into obscurity and physicists concentrated
on developing evermore sophisticated models of how the ether behaved.

However, problems began to develop. It was reasoned that if there existed an all-
encompassing ether then, as the Earth rotated, the ether would be perceived by observers
on Earth to be moving. Following this line of thought, since light was apparently a kind of
vibration moving through this material, light should be seen to move with different speeds
depending on whether it was travelling upstream or downstream. Sophisticated devices were
designed and built to search for this effect, but without success. The speed of light was
measured to be the same no matter the direction.

This failure to detect traces of the ether did not deter the hypothesis’ apologists. The
mechanics of the ether became more and more elaborate in the minds of the physicists of
the day, until this supposed ever present substance almost seemed to be conspiring to keep
itself hidden.

While the majority of researchers were ministering to their ailing ether, other break-
throughs were being made that would eventually become a new system of more accurate
theories: quantum mechanics and relativity.

Quantum mechanics began with the discoveries of Max Planck who, as previously men-
tioned, showed that the radiation field of a black body must be made of discrete pieces.
Although Planck himself believed that this was a mere mathematical expediency, and not
indicative of any deeper principle, this idea did plant the seeds that would grow into a whole
new system of theories.[7] Not long after, the next breakthrough followed. Philipp Lenard
first showed in 1902 that the amount of electric current a piece of metal would produce
when light was shined on it was not only proportional to the intensity of the light (as was

4A wave equation is exactly what one would expect: An equation which describes how a wave moves.
This can be anything from a vibrating guitar string, to water waves travelling across the surface of the ocean.



expected), but it also depended on the frequency of the light.[8] Furthermore, below a cer-
tain frequency threshold, no current would be produced at all — no matter the intensity. In
1905, Albert Einstein successfully explained this curious phenomenon when, taking Planck’s
“mathematical expediency” literally, he supposed that light, instead of being a continuous
wave, was made of discrete pieces or quanta — photons.[9] Each photon carries with it a set
amount of energy proportional to its frequency. Each photon then interacts with an electron
bound to an atom in a one-to-one relationship. If the photon does not have enough energy
to eject the electron from the atom, then additional photons of the same energy will not help
the electron escape to create current.

Einstein also proposed a new theory of time and space — his theory of relativity — which
asserted that the speed of light would be measured to be the same, regardless of the motion
of the observer. In this formulation, light was the constant, and time and space were made
relative. This theory successfully explained why no experiment was ever able to find two
beams of light moving a different speeds (in the same material).

The particle theory, now called quantum theory, became resurgent. But physicists were
still unable to reconcile the wave nature of light, which had been demonstrated time and time
again, with the new necessity of calling it a particle as well. This conundrum was further
compounded when, in 1924, Louis de Broglie proposed that all matter, not just light, was
in truth composed of both particle and wave elements.[10] Not long after his hypothesis was
confirmed when experiments showed electrons diffracting — behaving like waves — just as de
Broglie predicted.

In quantum mechanics, every particle would be described by a wave equation (similar to
Maxwell’s wave equations for light), the famous Schrédinger equation.

Scientists now have to contend with the strange fact that all matter is both particle and
wave at the same time. This is a paradox that remains today. The reason that we do not
notice the wave nature of matter in our daily lives is because as the mass of the particle
increases, its wave nature becomes less apparent, however the fact of wave-particle duality
remains. Some scientists still grapple with this incongruity, trying to resolve it through
somewhat convoluted means; others merely accept it.

But where does this leave us with respect to our question. “What is light?” Modern
physicists typically treat the photon as a “wave packet,” a self-contained rippling of elec-
tromagnetic waves that constitutes a discrete unit. Thus, it is a wave that does not wave
through anything. It is a self sustaining swell of electromagnetic energy which travels through
free space at 299,792 458 meters per second.

This answer is simple, direct, and sufficient for most purposes. There is more to the story
though, and the study of photons can — and does — fill libraries where topics like photon
statistics, gauge theories, information content, and entanglement are discussed. And the real
complexity of light emerges when it begins to interact with matter. It can slow down, speed
up, or even stop. It can split into different colors, bend, be reflected, be turned into other
photons: light can be endlessly transmuted. Light is not just a particle and a wave at the
same time, but also simultaneously simple and complex; at once an everyday presence, yet
deeply mysterious.

The study of light is a richly rewarding enterprise. It provides us with a cornucopia of
technologies that have become necessary for modern life. Equally importantly is the fact
that the investigation of light has opened up whole new fields of science and changed the



way we think about space, time, and matter.

1.3 The Roots of Quantum Optics: Basic Theoretical Structure

In this section we will lay out the fundamental theoretical framework of quantum optics,
with particular emphasis on those concepts and mathematical methods which will be needed
in this thesis. At this point it becomes necessary to abandon the broad accessibility which
was the goal of the previous two sections.

The notation and derivation of the equations in the following sections are based on my
own class notes and several fine texts, most notably: Introductory Quantum Optics by C. C.
Gerry and P. L. Knight. Specifically section 1.3.1 draws from chapter 2 of that text, section
1.3.2 and 1.3.4 from chapter 3, and section 1.3.5 from chapter 7. Section 1.3.6 draws from
chapter 1 of the book Nonlinear Optics by Robert W. Boyd.

1.3.1 Maxwell and Schrodinger on a Ladder: The Quantum Light Field

The most natural place to begin is with Maxwell’s equations

B = oJ oo™,
V x W +,ueat
, OB
EFE = ———
VX ot
V-B = 0,
vV.-E = &£
€o

Now assume that there are no charges or currents

q OF
B = — 1
V x Hofo g (1)
. 0B
V x B = —E, (2)
V-B = 0,
V-E =

—,

Take the curl of the Eq.(1) and Eq.(2) and use the vector identity V x (V x A) = V(V -
A) — V2A to obtain

— 8 —
’B = —u,e,— E
\Y uoeogth :
vii = 9B
ot



using the fact that the divergence of the electric and magnetic fields, in the absence of charges
and currents, is zero. Now substituting the original expressions for the curl of E and B and
rearranging

0’B ﬁ
¥ —v’V?B = 0,
O’ FE ,

We have arrived at two wave equations which describe electric and magnetic fields propagat-
ing through free space with a speed of v, = 1/,/Ji0€, >~ 3 X 10%m/s, reproducing Maxwell’s
revelation that light is an oscillating electromagnetic field.

Let’s take a special case: A light field trapped inside two parallel planes of perfectly
conducting material. We will assume that the electric field is defined along one dimension:
x, parallel to the conducting planes. This introduces the concept of polarization which is
defined to be the direction the electric field of a photon points along. The electric field must
be zero at the surfaces of the conductor, creating a boundary value problem. First, assume
the equation for the electric field is factorizable: E = £(t)E(z)é,, where &, is the basis vector
in the x direction.” The general solution for Eq. (3) for each part is then

E(z) = A;sin(B;z)+ Cicos(D;z), (4)
E(t) = Aysin(Bat) + Cycos(Dat). (5)

Imposing the boundary condition E(0) = 0 requires that C; = 0. The second boundary
condition F(L) = 0 requires that By = wm/L where m = 1,2,3... ignoring the trivial
solution where m = 0. The fact that the standing electromagnetic wave equation can take
only discrete values is sometimes called first quantization, and is purely a classical effect.
The wave equation itself imposes the restrictions By = Dy = v.B;. We will collect and
rename the overall factors which the boundary value problem does not constrain as F,. And
so we have

E = E,sin(kyz) {sin(wnt) + cos(wnt)} &, (6)

where w,, = v.mm/L, and k,, = w,,/v.. Note that we have taken A = C5, though this is a
valid solution, it is not the only one.

The interpretation of Eq. (6) is obvious. It is a standing electric wave with a frequency
of w,,, a wave-number of k,,, and and an amplitude of E,. Since we have a field with one
specific frequency, our equations thus far describe monochromatic light.

Maxwell’s equations demand that, where ever there is an electric field that changes with
time, there must be a magnetic field. Start with Eq.(2)°

5T will use basis vectors with the notation € instead of ¢ in order to avoid confusion with quantum
mechanical operators

6Strictly speaking to have my calculation flow from this statement I should use Eq.(1). However in order
to do the calculation this way I would need to “uncurl” the magnetic field, which is much less direct. I have
chosen the simplest conceptual explanation and matched it with the simplest calculation. This does create
a slight incongruity, which the careful reader may have noticed.

7



~— = -VxE
BT V x E,
= —FE, {sin(wnt) + cos(wnt)} aﬁ sin(ky,2)éy,
2
B = —Eykpycos(kyz) /dt {sin(wy,t) + cos(wpt)} €,
_ Dok cos(kp2) {cos(wpt) — sin(wmt)} €, (7)
Wm

which describes a companion magnetic field oscillating perpendicular to the electric field.
The fields are self sustaining. In a sense they generate each other, forming a symbiotic
relationship, trapping energy in a stable, ever-changing pattern.

To illustrate this we will examine the energy content of the light field, given by’

]_ — — ]_—» —
UE§/dVleoE-E+—B-B = Ve, E2,
Ho

where V' is the volume between the conducting plates. As we expected, the energy content
is independent of time. This also provides a normalization for the amplitude E, = /U/V'e,.

Now let’s take the electric field at a specific value of z, so we can examine the time
dependent portion of the electric field by itself. We'll choose 7 /(2k) so that sin(kz) = 1 for
the sake of simplicity. Equation (6) becomes

- T U ) .
E (ta ﬁ) =4 Ve {sin(wy,t) + cos(wmt)} €x.

This equation is familiar, it is the equation of motion of a classical harmonic oscillator:
x(t) = sin(wt) 4 cos(wt). So the electric field at each point along z is oscillating as an un-
dampened simple harmonic oscillator (SHO). The magnetic field is behaving similarly but
out of phase by 7/2.

This should give us some inspiration for our task of deriving the quantum theory of the
light field. The quantum theory of the harmonic oscillator is well known.

The object of deriving the quantum theory of anything, is to solve Schrodinger’s equation
for the physical system in question. Schrodinger’s equation, given in its most general (one
dimensional) form, for a single particle is

oV n? 9?0
th— =————+ VU, 8
ot 2m Ox? + (®)
where A is Dirac’s constant, m is the mass, ¥ is the total wave-function, x is the position,

and V is the potential the particle experiences. As long as V is time independent we may

"See any text on electricity and magnetism. Griffiths’ Introduction to Electrodynamics is recommended.



separate Eq. (8), a partial differential equation, into two ordinary differential equations®:
U(z,t) = P(x)p(t). In its most convenient form, the solution is

h? d?
Ugte) =~ TV 4 vyg),

U(z,t) = h(x)e Val/h,

Where Ug is a separation constant, which conveniently turns out to be the total energy of
the system. Note that when we perform a measurement we only ever see [ T*Ov (where O is
some observable), which is independent of time. So, while the wave-function is evolves with
time, the expectation values of observable quantities do not, so separable wave-functions
with time-constant potentials are called stationary.

The SHO has a simple time independent potential, so it is stationary. Since our light-field
trapped in a cavity appears to be — on some level — behaving as a SHO we will write down
its Schrodinger’s equation

2 712 1

_;—m% + §mw2:v2¢ = Uy, 9)
Already we have problems with our attempt to build the quantum theory of a light field from
the quantum theory of the SHO: the light field has no mass, and the particle in question has
no defined position — spread out as it is throughout the cavity between the two plates.” It is
clear we can not proceed entirely by direct analogy. However, what we do have is an object
with a defined energy and a temporal component which behaves as the position variable of
a SHO.

For now let’s ignore the conceptual problems and focus on the mathematics of the sit-
uation. If the mathematical description of two things are the same, than mathematically
they are the same. So let’s call the time dependent part of the electric field the canonical
position and define it as £(t), sticking a hat (caret) on it to signify that it is now a quantum
mechanical operator. We will associate it with x.

Now let’s consider the first term of Eq. (9); —ihd, is the momentum operator in quantum
mechanics!®: p, this is because that first term p?/2m is the kinetic energy. So if we've defined
a mathematical object to be canonical position, we ought to be able to define a canonical
momentum in a similar way. For a classical SHO the momentum is given by

d
p=mv= md—f = mw {cos(wt) — sin(wt)}.
Again we are struck by a similarity, this time with the magnetic field given in Eq.(7). The

momentum p has a mathematical description analogous to the temporal component of the

81 will skip the derivation as it proceededs fairly straightforwardly

90ne might think, that because no quantum mechanical objects have a defined position until observation,
that this point is not a problem. However, the light field does not have a set position even classically, so we
must be more careful about drawing analogies.

107 will sometimes use the notation 9, to mean 0

55 in in-line equations, as a mechanism for saving space.



magnetic field, which we will now define as B(t) = w,[cos(wpt) — sin(wy,t)]. So now pro-
ceeding with our analogy we’ll put a hat on B, call it the canonical momentum, and make
the identification p = mB(t). The normalization factor of w,, in our definition of B comes
from the fact that as canonical momenta and positions [ dtB = £ should be enforced. We
have just completed the first step of second quantization: promoting classical variables to
the status of quantum mechanical operators.

In light of all of this, let’s substitute our canonical position and momentum (i.e. the
temporal components of the electric and magnetic fields respectively) into the SHO wave-
equation (9)

%m B2(t) + wmé2(t)| ¥ = Ugn. (10)
Here we can see that the constant m (the mass for the SHO, an abstract mathematical object
in our analogy) factors out of the left hand side of the equation. So we can treat it as an
overall scale factor and subsume it into the energy which we will now relabel Up,.

We have successfully written down Schrodinger’s equation for a light field trapped in
a cavity. What remains is to solve it, and interpret our results in accordance with the
knowledge, from Einstein, that light must come in discrete packets — photons.

Now it is convenient to switch to Dirac’s linear algebra notation where wave functions are
represented by state vectors in an abstract parameter space called Hilbert space: ¢ becomes
|1); and operators are represented by matrix transformations on these vectors. States which
are eigenvectors of operators return the value of the physical quantity associated with that
operator. For example, for a state of definite momentum p: pli,) = p|b,).*! In this notation
Eq. (10) becomes

5 [B0) + )] 10) = U o) (11)

It would be useful in solving this equation to be able to factor the left hand side. We “guess”
the non-commuting objects

it — 271%) wmé (1) — iB(1)]. (12)
i = e [wmé(t) + iB(1)] (13)

v 2hw,,

Note that though a and a' are time dependent we have dropped the parenthetical ¢, in order
to avoid unnecessary clutter. In situations where there is some ambiguity we will write out
the time dependence explicitly.

Using these two new operators, Eq.(11) becomes

UThis is a wholly inadequate introduction to this rich and useful notation. The uninitiated reader is
directed to one of the many very good books which deal with this subject. Recommended are Griffiths’
Introduction to Quantum Mechanics and Sakurai’s Modern Quantum Mechanics. By necessity I will proceed
assuming the reader has a working knowledge of this topic.
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ey, (a*m%) Wy = Uble)
Hly) = E|v) (14)

This is not a complete factorization, though it is a more revealing form than we had previ-
ously. In the second line we have written the left side of the equation as H — the Hamiltonian
— the operator which, has as its eigenstate, the total energy of the system. We have also
renamed Uf, as E.'?

Since @ and a' are composed of non-commuting operators we should work out their
own commutation relations. Starting from the canonical commutation relation between
position and momentum [z, p] = ih (and keeping in mind our mathematical analogy) it is
straightforward to find that [a,af] = 1.

But what is the significance of these two new operators? Lets us take ' and then H
acting on a quantum state

Halld) = hwn, (a*a + %) at ),

= al (H + huwy) [0),
= (B + hwy,)a'|).

Where we have used the commutation relation from above. Examining the first and last lines
we see that the state af|)) has an energy that is higher than [¢) by fiw,,. A similar analysis
shows that the state a|i)) has an energy which is lower than |¢)) by Aw,,. In the general case
of a harmonic oscillator these operators are called ladder operators because they move the
state up and down on an energy ladder, the rungs of which are separated by a distance of
hw,,. For our case, of a light field in a cavity there is a further interpretation. We know from
Einstein’s work on the photoelectric effect that a single packet of electromagnetic radiation
(photon) has an energy of fiw. Thus a' represents the addition or creation of a photon in
the light-field, and a represents the removal or annihilation of a photon. These two italicised
words are most often used as the names of these operators.

Since we have operators that raise and lower the photon number of a field it is useful to
create a basis which is defined by photon number.'® This basis will be composed of states of

2Previously F was reserved for the electric field and U used for the energy to avoid confusion. Now,
however, there will be little ambiguity between which of the two quantities is being spoken of. So, we return
to the more natural notation of E as energy.

131 have not defined the concept of a basis. If someone without a strong background in quantum mechanics
is still reading, then I again refer you to Griffiths’ Introduction to Quantum Mechanics and Sakurai’s Modern
Quantum Mechanics. 1 will not make any further note of the use of undefined fundamental concepts and
methods in quantum mechanics, focusing instead on the development of the theory of quantum optics.
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definite photon number n and written in the Dirac notation as |n). The creation operator
acting on this state will cause the photon number to be raised by one: af|n) = c,41|n + 1).
Likewise the annihilation operator will raise the state by one: aln) = ¢,|n — 1). The ¢’s
are normalization constants associated with the new state. Note that the index of ¢ for
the creation of a photon is written as the photon number of the new state, whereas for the
annihilation of a photon it is the number of the old state. The reason for this convention
is best seen by taking a simple example: We would like a state containing one photon after
a single photon is added to be mathematically equivalent to a state containing one photon
after a single photon has been removed — as these two states are physically the same. Thus
we want (for instance)

a'l0) = al2),

which is maintained if we follow the above convention.

Much like a conventional ladder, the energy ladder must rest on a floor — a state below
which there can be no further lowering. It is simple to see that one can not remove a photon
from a field which contains no photons. Therefore the annihilation operator acting on the
state with no photons in it (from here on called the vacuum state): a|0) = ¢y|0) must have
the normalization ¢y = 0, as the probability amplitude of this process must vanish. We wish
to find the expression for the normalization constants in the general form. Towards this end
take

aa'l0) = (a'a +1)|0) = |0),

where the commutator has been used, and compare with aa'|0) = ¢2. Thus, by equating
the two expressions we have ¢; = 1. Now let’s take aa'a’|0). Using the same procedure as
above — continuously applying the commutator until we have an annihilation operator acting
on the vacuum, and then comparing this with what we get when we apply the operators
in their unaltered order — we obtain ¢; = v/2. Applying this procedure recursively we can
find in general that ¢, = y/n, yielding our final expressions for the creation and annihilation
operators acting on a number state

a'ln) = Vn+1ln+1), (15)
aln) = njn—1). (16)

An arbitrary number state may therefore be written as

(@ah"

n!

In) = 10)-

Taking the conjugate transpose of Egs. (15 and 16) we see that a creation operator acting on
a left hand state (bra) behaves as annihilation operator on that state, likewise an annihilation

operator acting left behaves as a creation operator.

12



Now we wish to determine the value of the inner product (m|n), which given the above,
we may write as

am_(ah"
Vm! V/nl

Now note that if m > n, and we act the operators on the right-hand state (ket) there will
be enough annihilation operators to remove all the photons from the state that the creation
operators put there; with one or more left over to act on the vacuum state and cause the
expression to evaluate to zero. Furthermore if m < m we can act the operators on the
left-hand state (bra) with the same result. The only case in which the expression does not
evaluate to zero is when m = n in which case the result is unity. Therefore (m|n) = d,un,
the number states are orthonormal.

A monochromatic light field in a pure state may exist in a quantum mechanical superpo-
sition of containing different numbers of photons. Thus when a measurement is performed
on the state it is found to have a specific number of photons. Mathematically this may be
expressed, for some state [1)), as

0]

0)-

¥ = i_o:opn|n>,

where the p,’s are the probability amplitudes of the various definite photon number states.
Since any quantum state may be decomposed in the number basis we can call it complete.
Also, since orthonormality includes linear independence we can state that the the basis of
definite number states (also called Fock states after Vladimir Fock, the Soviet Physicist)
constituent a true and compete mathematical basis.

Now let’s examine the expectation value of the product a'a with respect to an arbitrary
state

o0 o o0
(pla‘aly) = Z mepn mlataln) = 3" > phpanbmn =Y [pal’n.
n=0

m=0n=0 m=0n=0

Which is simply the average number of photons in the light field. Thus we shall now rename
the operator a'a the “number operator” and write it as 7. It has as its eigenstates the
number states. This sheds some further insight on Eq. (14) which we can now rewrite in its
final form

o (+ 5 ) 19) = Ealu),

where the subscript m has been dropped from w (in situations where there is some ambiguity
in the frequency it will return). Unsurprisingly, the energy of the field is directly proportional
to the number of photons. However what is surprising is that if there are no photons (i.e. n
returns zero) the field still has energy! Put another way: the empty vacuum contains energy.

13



Not only that, but because this term exists in the Hamiltonian for every frequency, and there
is no upper limit on the values frequency may take, the energy is infinite. This is called the
vacuum energy or zero-point energy.

The obvious question is, “If the universe is pervaded by an omnipresent field with infinite
energy, why don’t we see it?” The answer is that it is precisely because of the fact that it
is everywhere that we do not detect it. Imagine that we wanted to build an engine that
ran off of the zero-point energy. In order to have this machine do work what we need is
an energy difference. All engines take advantage of systems where there is an imbalance in
energy content. A good example is a waterfall. There is a body of water above the waterfall
and a body below. The higher reservoir has a larger potential energy than the lower one.
As the water falls it may be used to turn a waterwheel, and do work. Note that the lower
reservoir, as mass in a gravitational field, still contains potential energy, but if we can not
find a lower place for the water to fall to we can not use it to do any work. This is exactly
the same situation as the vacuum energy, since it is everywhere we can never find a “lower
place”, and set up an engine. This is why we usually don’t notice it, because of its ubiquity.

There are ways we can observe its presence however. The most famous is the Casimir
effect: If two parallel conducting plates are held very closely together (as in our model of the
quantum light field) then a force of attraction will be observed between them. A somewhat
involved calculation in quantum electrodynamics will show that this force is due to the
vacuum energy.'* But we can offer a good conceptual explanation by using our model. The
zero-point energy exists in every frequency mode of the field. Due to the boundary conditions,
however, the cavity can support no lower frequencies than the fundamental (first harmonic).
However, the region outside the plates is not constrained in this way, and thus may have
many more frequency modes of larger wavelength. The pressure of all these additional light
modes can be seen as pushing the plates together.

Let’s return to the time-dependent parts of the electric and magnetic fields (the canonical
position and momentum). We had guessed Egs. (12) and (13) in order to partially factor
the Hamiltonian. If we invert these formulae we arrive at expressions for £ and B in terms
of the creation and annihilation operators,

EW) = \oelalt) +a'(1)]
By = —iy) fa(r) (1),

where the time dependence has been made explicit. We can solve for the time dependence
of the annihilation operator by using the equation of motion for an operator

da 1

dt h

14The situation is actually somewhat more complicated than this. This force may be equally well explained

by radiation reaction (an electric self-force). It is currently unknown which of the two effects is a better
description. The vacuum energy is usually preferred as the calculations are typically easier to perform.

[H,al,
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_ ! {hw <aﬁa+—) &

= —wa,

which has the solution a(t) = a(0)e=™*. And taking the conjugate transpose we get the
expression for the creation operator af(t) = af(0)e™?. This allows us to recast the electric
(singly polarized) field as an operator

E(t, z) = Eysin(kz)[ae™ ™" + afe™"]. (17)

We can rewrite this in terms of two dimensionless quantities called quadrature operators
defined as

X, = 5(a+a*), (18)
o 1 ~
X, = Q—i(a—aT). (19)

Inverting these equations and substituting into Eq. (17) yields

E(t,2) = 2F,sin(kz) P(l cos(wt) + Xs sin(wt)} :

From this it is clear that the two quadrature operators are always 7/2 out of phase, and thus
always in different quadratures (hence the name). These operators are related to £ and B
by constant factors.!> It is standard to define an uncertainty relation using the generalized
Heisenberg uncertainty principle for non-commuting operators AAAB > %\([fl, B])|. This
obtains

1
AXAX, > 3 (20)

The usefulness of this notation will be further developed in section 1.3.3.

We have extracted a rich quantity of information and insight from what is, physically, a
very simple toy system. But, it should be pointed out that despite this there is much the
model does not describe. Most prominently it does not describe travelling light — a realistic
photonic wave packet. These can be modelled though by superimposing many (possibly
infinity many) standing, or plane, waves with periodic boundary conditions. An example of
this can be seen in section 2.4.3, when we define a realistic pulse of quantum light.

15T will use X; and X, interchangeably with ¢ and p as the quadrature operators. This is not a good
practice but it is common in the literature.
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1.3.2 The Coherent State: The Friendliest State

In this section we will define a very user friendly quantum mechanical state of a light field.
In order to derive this state let’s start with the question of whether the annihilation operator
has an eigenstate. Calling this hypothetical state |a), we would have

ala) = ala). (21)

Since we know from the previous sections that the number states constitute a complete basis,
and therefore any quantum state, may be expanded as a series of weighted number states
we can write

:i@@. (22)

If we can find a set of C,,’s that cause Eq. (21) to be satisfied then it means that these states
do exist. Combine Eq. (21) and Eq. (22) to obtain

=> Covnln—1) =a > Cyln).
n=1 n=0

By taking the terms of equivalent photon number in the infinite sums we have the recursion
relation C),v/n = aC,,_1. Applying this in succession looks like

a o? a™

=—Ch1=———"Cphy=..= ——
NN T T Val

until we reach the photon number ladder floor of Cy, which we can regard as a normalization
constant of the state

007

o0

la) =Co )

n=0

aTL
n).
n!
We can find this normalization constant without too much difficulty

|2n

(67 2
n|m |Co? Z o™ = |Cp|?elel”.

1 = {a|a) =|Co|? Z Z

nOmO

Now that we have shown that the state has a well-defined expansion and is normalizable we
can write down the general expression

n). (23)



This expression defines the coherent state. It should be noted that the creation operator
does not have a left eigenstate (an attempt to define one will lead to an expression, which
is not normalizable), it can only have a right eigenstate, which we can find by taking the
conjugate transpose of Eq. (21),

(ala’ = a*{(al. (24)

Likewise the annihilation operator does not have a right eigenstate.
It is useful to determine some properties of the coherent state. Using Eqgs. (21) and (24),
we find that the number of photons in a coherent state is

(alnfa) = (ala’ala) = |af?,

meaning that the absolute value of « is the the square root of the average number of photons
in the field. One very useful property of the coherent state is that, when taking expectation
values of operators, which may be very complicated functions of @ and a', one only needs to
normally order the function (place all the creation operators to the left of all the annihilation
operators) for things to become simple to calculate.

Another property of the coherent state is that if we take two arbitrary states |a) and |3)
and calculate their inner product, we get,

(Bl = c3[87a—par—p—al?]

So the coherent states are not orthogonal, and as such are called over complete. Nonetheless
they span the Hilbert space and thus may be used as a basis. Like any complete basis, we
can use it to decompose unity. So for the coherent basis

i - % | [ are(a)dnm(a)o) o], (25)
where the factor of 1/m compensates for the over-completeness of the basis. Since « is a
continuous complex quantity we have a double integral instead of a single sum.

Before discussing another interesting property of coherent states, let’s return to the vac-
uum state, discussed previously. It is useful to speak of the uncertainties of a state in its
quadratures (recall that these are the dimensionless € (or ¢) and B (or p) operators) defined
in Egs. (18) and (19). For the vacuum state they are given by

N

AXy = (XD - (X1)2

1 1
- \/(O|Z(d2 +aat +ata +at)|0) = (015 (a+a1)]0)?,
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) 1 1
A%, = 00— S —aat—ata i) - 0 - 00

1
—0==
27

where the commutator [G,a'] = 1 has been used. Which leads to

fo S 1
AXlAXQ = 1

Compare this to Eq. (20), the general expression for the quadrature uncertainty relation, and
we see that vacuum states minimize the uncertainty relation. Vacuum states consequently
receive the designation minimum uncertainty states.

We can compute the same relation for coherent states

. 1 1
AX, = \/<a\1(d2—l—ddT—l—de—l—dT2)\a>—(Oé|§(d+€”)|0‘>2a
1 1
= 7@+ 20 +14+a?) = Z(atar),
1
= 5
R 1 . L 1, .
A%y = ol - (@ - aat — ata + i) — (o] (o — o)
T
4 4 ’
1
= 5

Which again minimizes the uncertainty relation. So apparently coherent states are also
minimum uncertainty states. This implies that the vacuum states are related to the coherent
states on some level. In fact it is possible to mathematically generate the coherent states
from the vacuum states. As it turns out this description is extremely useful, and will be
expanded upon in the next section. To begin take Eq.(23) and rewrite in terms of the
creation operators

—Lla2 = ant n
o) = e 21" Zm(oﬁ) 0), (26)
n=0 """
which can be recast as
la) = e73llee|o),
= D|0), (27)
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where we have defined D. Apparently we now have an operator which changes a vacuum
state into a coherent state. We would like the conjugate transpose of this operator to change
the coherent state back into the vacuum state (we would like it to be unitary) however the
operation D”a) just generates a different coherent state. Unitary states have the property
that UTU = 1.6 Let’s assume that there is some operator D’ which will make the combination
D'D unitary while still generating the same coherent state, i.e.:

We guess

_ —a*a
=Ce ,

where C' is some normalization constant. Now rewriting the first condition as,

I = DIDIDD,

2 S L
e|a\ _ |C‘2ea ap—adl , ozaeoza7

= |C]Pe* % x h.c. (28)

Where h.c. stands for the hermitian conjugate. Utilizing the disentangling theorem!”, which
states that

o i
AP — A+Bo3lAB]

as long as A and B both commute with their commutator, we obtain

a*a —aat a*a—aal —1L|af?
e* ‘e =e e 21",
Plugging this back into Eq. (28), we get

€2|a\2 — ‘C|26a*&—a&Tea&T—a*& — ‘C|2

where in the last equality we have again used the disentangling theorem. So evidently our
choice of D was correct as long as we define C' to be exp(]a|?). Now we need to test the
second condition

,ZA)/T)|0> — e|o¢\26—o¢ a ——\o¢|2 aaT|O>
6_%|a\2e aaTea a|0>’
_ e—%|a\2e—a6ﬁ ‘O>,

= |a).

16This is, in fact, the definition of unitary.
17 Also called the the Campbell-Baker-Hausdorff theorem.
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Where in the second line we have again used the (very useful) disentangling theorem. Note
that when we expand the exponential of annihilation operators only the first term 1 survives,
leaving the vacuum state unaltered for D to act on. So we now have the mathematical
operator which generates coherent states from vacuum states, it is called the displacement
operator D(«) (for reasons which will become apparent in the next section). Using the
disentangling theorem again we can write it in its most common form

D(a) = elod’-o"a), (29)

Now we move along to another important property of the coherent states. Take the
expectation value of the electric field operator with respect to a coherent state

(alE(zt)]a) = (o] Eysin(kz) [ac™™ + ale™] |a),

= Epsin(kz) {oze_w + a*ei“t} :

Any complex number may be decomposed into polar form as a = |ale??; we shall do this for
a and o* in the above equation to get,

(E(z,1)) = Epla|sin(kz) [e /@0 4 e/ert0)]
= 2Ep|a|sin(kz) cos(wt + 0).

We had previously claimed that |«| (the radial part of the decomposition) was proportional
to the intensity of the of the light — this is reinforced by seeing that it constitutes part of the
amplitude of the electric field. We can now interpret the angular part of the decomposition
as the phase of the electric field and thus of the coherent light. It is most important to note
that this is the classical expression for the electric field. For this, and other reasons, coherent
light is frequently called the most classical quantum state of a light field.!® It behaves in a
way that — sometimes — is very familiar to us from classical optics.

1.3.3 Quadrature Diagrams

We now move on to one of the most useful conceptual tools in quantum optics. We wish to
define a two dimensional phase space spanned by the the expectation values of the quadrature
operators (X;) and (X,). But first we should note that there is a key difference between
a quantum phase space diagram and a classical phase space diagram, that is that vari-
ables may not be defined by exact quantities for conjugate observables. Thus states in our
quantum-mechanical phase space will be defined by areas instead of points, these areas will
be determined by finding the variances of the quadrature in question.

By way of example we’ll take the most simple state we have found, the vacuum state,
and plot it in quadrature space. The expectation value of both quadrature operators is zero
for the vacuum state. Thus the centre of the vacuum state will be on the origin. We have

18Some of these other reasons will be discussed in section 4.1.
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Figure 1: The quadrature-space diagram of the vacuum state. Its position at the origin
represents that the expectation values in both quadratures is zero. The circular area repre-
sents is equal uncertainty (variance) with respect to ¢ and p. Note that we have switched
from X; and X, to q and p to be more in line with the predominate convention. In my
previous notation ¢ and p were the canonical position and momentum, the difference is only
a constant scale factor.

already calculated the uncertainties in both quadratures for a vacuum state: AX; = 1 /2
and AX, = 1/2. So the shape of the state will be a circle. See Figure (1).

Note that we have switched from Xl and Xg to ¢ and p to be more in line with the
predominate convention. In my previous notation ¢ and p were the canonical position and
momentum, the difference is only a constant scale factor. I will use the X’s in the text but
use ¢ and p in graphs.

Recall that for a coherent state the variances in quadrature are the same as for vacuum,
since both are minimum uncertainty states. Now we’ll calculate the average position in
quadrature space

These results are easily interpreted as transformations from linear to polar coordinates. The
the coherent state’s radial distance from the origin is |a| — the root of its intensity. The
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polar coordinate is # which, as we showed in the previous section, is the phase of the light
field. The polar representation of the quadrature diagram is thus more useful. We can now
interpret the displacement operator ﬁ(a) as a physical displacement of the vacuum state in
quadrature space into the coherent state. Coherent states are sometimes called displaced
vacuum states. See Figure 2.

Another state that’s useful to represent in quadrature space is the number state. Like the
vacuum state the number state has no phase, and the expectation values of the quadratures
is zero. However the number states have a definite non-zero photon number and are thus
represented as rings in quadrature space. Their phase is undefined, but they have perfectly
defined intensities. See Figure 3.

There are more sophisticated ways of visualizing the phase space behaviour of the quan-
tum state of a light field. These methods provide a greater degree of mathematical rigor.
These mathematical constructions will be the topic of the next section.

(p)

Figure 2: The displacement operator acting on a vacuum state to create a coherent state.
The amplitude and phase of the light field are interpreted as the radial and polar coordinates,
respectively, in phase space.

1.3.4 Quasi-Probability Distributions

In this section I will carefully develop the language of quantum quasi-probability distribu-
tions. But first I will review classical and quantum probabilities, and highlight the differences
between them.

In classical mechanics it is frequently useful to define a probability distribution for a
physical system. Probability distributions arise when, due to a lack of complete information
about a system, we can not exactly determine the outcome of some physical process. A
good example is a six-sided die. We know that when we roll the die we will get one of six
different results: 1,2,3,4,5,6. We also know (for a fair die) that the probability of obtaining
one of these results is equal to the probability of obtaining the others. We could say that
the probability distribution is flat i.e. P(z) = 1/6, where P is the probability that we will
get result z, where x is some integer number between one and six.
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Figure 3: A vacuum state and a number state. The number state has completely definite
photon number, but completely undefined phase.

Now let’s make things a little more interesting. Suppose the die has spent some time in
a microwave, six-side up.!” Now the probability distribution might look like P(6) = 1/4,
P(2,3,4,5) = 1/6, P(1) = 1/12; where the probability distribution has now been weighted
(like the die).

The system of the die was very simple. But, it is possible to imagine much more elaborate
systems, with a multitude of different outcomes, dependent on initial conditions in some
complicated way. No matter the system though, some rules must be followed. All the
probabilities must add up to one as something must happen (which could be violated for a
total of less than one) and a process can not have two or more exclusive outcomes (which
could be violated if the total was more than one).

Leaving behind classical mechanics we can consider a quantum die. The analogue of
the probability distribution P in quantum mechanics is the density matriz p, which is an
operator which describes the quantum mechanical state of a system. We could write a density
matrix for the above example of our die as

) 1 1 1 1 1 1
Po-side = 1)1+ £[2)(2] + £[3) (3] + £[4) (4] + £[5) (5] + £[6)(6].

Which we could alternately represent in matrix form p,,, = (n|ps_siac|m),

19This is a method used by unscrupulous individuals to change the internal density of a plastic die so that
it is more likely to roll a six. As the interior melts slightly, gravity causes the bottom of the die to become
more dense than the top.
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If we wish to extract the probability of a specific outcome from this we take the expectation
value of that outcome, for example

R 1
(2] Ps—side|2) = G’

which is the probability of observing the die to have landed two-side up. However we can
now consider a “quantum die”, which may exist in a quantum mechanical superposition of
existing in all six states simultaneously. The state vector for this die would be given as

L
NG

Which given the fact that for pure states?® p = [¢)(¢|, in matrix form this becomes

[Ye) = —= (1) +2) + [3) +|4) +[5) +6)).

(31)

=

pnm -

— = e
— = e
— = e
— = e
— s e
— e e

This looks quite different from Eq. (30). What is the physical difference? For the die to
be in a quantum mechanical superposition it must be unobserved. 1 will not get into the
fascinating and sticky topic of what it means to observe an object. I will just say that the die
must be completely isolated from the environment. Imagine the die is in a perfectly sealed
box with some kind of automated (and fair) die-rolling robot. After the robot rolls the die,
but before we open up the box to see inside, the die remains in the pure state described by
the density matrix in Eq. (31). A die described by Eq. (30) would in truth be represented by
a collection of die in a box, which is not well isolated from the surrounding environment. We
could simply shake this box about and then reach in and pull out a die, which would have
a one in six chance of having landed any particular side up. This kind of system is called a
statistical mixture. On a fundamental level the difference is that before observation all the
dice in the mixture are in defined states of having a single side up, whereas the quantum
die in superposition has all sides up simultaneously until we look at it. These states may

20This term will be explained in a moment.
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be completely defined by their state vectors (pure states). Systems in a statistical mixture
must be described by a density matrix.

Mathematically the difference comes from the off-diagonal terms in the density matrix
(also called coherence terms). The density matrix can represent not only pure states and
mixtures but also physical systems which are between the two. Perhaps our little robot rolls
the die, but the isolation of the box is not perfect and some of the coherence leaks out through
the slightly porous walls. Another way to look at this, is that the outside environment is
performing a partial measurement on the die. In this case the off diagonal terms of the
matrix are reduced, but they do not become zero.

Another important property of the density matrix is that the trace (sum of diagonal
terms) of the density matrix must add up to one. This is similar to the condition that the
sum of probabilities must be one in the classical case.

A pernicious problem with the density matrix representation is the difficulty in visualizing
what is going on. For our simple example of a six sided die we need a matrix of thirty six
complex numbers. This may be very accurate and useful but it is not intuitive.

We can, however, extract from the density matrix a form of information which is more
closely analogous to classical probability distributions. It will also lend itself, more directly,
to visualization. Take a density matrix and multiply on both sides by Eq. (25)

p=[ || ] dRe(@)dim(a)aRe(3)dim()la)alpl5) (5]

Making the definition («|p|8) = P'(«, §), and doing the integrals over (3 yields

p= / / dRe(a)dIm(a) P(a)|a) {(a].

This shows that the density matrix may be completely represented by a single (complex)
parameter function P(«) called the Glauber-Sudarshan P function. That is, as long as the
density matrix represents only a single mode. The P function works in much the same way
as a classical probability distribution, and if we define a space by Re(a) and Im(a) we can
generate three dimensional plots of this quantity.

There are two other distributions, similar to P, that are used frequently in quantum
optics: the Husimi-Bopp @ function, and the Wigner function. The Wigner function will be
important in section 5.2. They differ in their derivation and uses, but share the ability to
graphically represent quantum probability distributions.

The question of how to obtain these distributions in a direct manner is best addressed
by recourse to the quantum characteristic functions, defined as

Cp(\) = Tr {ﬁe)‘ﬁe_)‘*&} )
Co(N\) = Tr {ﬁe‘A*&Te)‘&} ,
Cw(N) = Tr [ﬁe)‘ﬁ_’\*d] :
The first is associated with the P function, the second with @), and the last with Wigner.

Cw can also be interpreted as the expectation value of the displacement operator Cy =
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Tr [ﬁﬁ(k)} = (D(\)). These functions are connected to their related distributions via a
Fourier transform, something I state without proof. For example the Wigner function is
related to Cy by

W(a) = % / / dRe(A\)dIm(\)eX 2" Oy (\).

It is more or less straightforward to calculate the Wigner distributions for a coherent
state |5), and a number state |n)

2
W/|B>(Oé) = %6 2a=h )

2. a2
Wigla) = =(=1)"La(dal)e e,

where L,(z) is a Laguerre polynomial. W is a Gaussian, peaked at (3, which is rather
unsurprising. W),), however, displays some more interesting behaviour. First of all, it has
negative values. This is part of the reason that the P, ) and Wigner functions are called
quasi-probability distributions, because it is nonsensical to speak of an event having a neg-
ative probability. Furthermore some of these functions take on values at certain points,
which are more singular than delta functions. The interpretation of these functions as prob-
ability distributions is therefore limited. Negatively, or singularly, valued quasi-probability
distributions are a sign of non-classicality which will be further discussed in section 4.1.

The Wigner functions also relate back to the quadrature diagrams. If we take a planar
slice through the Wigner distribution of a vacuum or coherent state, we get circles which
correspond nicely with the quadrature diagrams for these states. Likewise, for the number
states, we get a ring centred on the origin, at a distance corresponding to the root of photon
number.

1.3.5 The Squeezed States

I will now move on to a very interesting and beneficial state: the squeezed state. We have
seen in our discussion of the quadrature diagrams that there is some area of uncertainty for
a quantum-mechanical light field. The minimum areas are determined by the appropriate
Heisenberg uncertainty relations. However, only the total area must be maintained, the
uncertainty relations make no demands on the shape the uncertainty may take in quadrature
space. So, we may squeeze the uncertainty in one direction — more closely defining, say, the
canonical momentum — at the cost of making the canonical position less certain. We can
graphically represent this with the example of a squeezed vacuum state |£) in Figure 4.

I will write down, without proof or derivation, the operator that mathematically squeezes
a quantum state

5(6) = e[ (€ - )] (3)
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Figure 4: A squeezed vacuum state. We have increased our knowledge about the canonical
momentum by decreasing our knowledge of the canonical position.

Where £ is known as the squeezing parameter and quantifies the amount of squeezing. Acting
on a mode operator this produces

ST(€)asS(E) = acosh(r) — a'e sinh(r),
S1(€)a’S(§) = alcosh(r) —ae™" sinh(r),

where we have used the polar decomposition ¢ = re?. Equivalently we can have the squeezing
operator acting on a state. Here the vacuum,

. 0 2n)!
5010) = &) = ———— 3 (<1 L ot 2.

cosh(r) n=o 2mnl

Apparently squeezed vacuum states can only have an even number of photons. The reason
for this will be explained in the next section. Figure 5 is a plot of a squeezed vacuum state
in quadrature space.

This diagram demonstrates how a squeezing operator with a specific » and 6 act on a
vacuum state. The circular vacuum state is transformed into an ellipse, the major axis of
which is rotated relative to the (g) axis by 6. So squeezed vacuum states, unlike regular
vacuum states, have definable phases. Recall that the uncertainties in the quadratures AX,
and AX, for a vacuum state were calculated to be 1 /2 each. Now we find, for the squeezed
vacuum, that these uncertainties have been multiplied by the factors e” and e™" respectively.
Note that (X;) and (X,) are not the quadratures that define the diagram but the ones in
the frame of reference of the squeezing. That is they constitute a coordinate system rotated
from (G) and (p) by the angle 6.

There is another interesting revelation to be made about the squeezed vacuum. If we
take the expectation value of the number operator with respect to the vacuum state

27



I _,
AXQ = 3()_7

Figure 5: The circular vacuum state is transformed into an ellipse, the major axis of which is
rotated relative to the (§) axis by 6. The uncertainties in AX; and AX, have been multiplied
by the factors " and e~ respectively. Here (X;) and (X,) constitute a coordinate system
rotated from (g) and (p) by the angle 0.

lnlg) = (0

= sinh?(r),

where in the second line we have used the fact (which I have not proven) that the squeezing
operator is unitary, so we can insert 1 between a' and @.2! So not only does the squeezed
vacuum state have phase but it also contains photons. Properly it should not be called
a vacuum state at all, but it follows the same convention as calling the coherent state a
displaced vacuum state.

Squeezed light apparently comes in packs of two. So far we have discussed the case
of both photons of each pair existing in the same optical mode. It is possible to define a
two-mode squeezed vacuum state where the photons exist in separate modes. The action of
two-mode squeezing is represented by

Sa(€) = exp (§7ab — €aldl) |

which transforms mode operators and the vacuum state by,

S1(€)aSy (&) = acosh(r) — e?bt sinh(r),

21T chose to transform the operators instead of the states as working with the |£)’s is usually incredibly
onerous.
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SHE)bSy(€) = beosh(r) — e?al sinh(r),

SO0.0) = 16 = s 3 (-1 franb()] I )

Where G and b represent different (usually physical) modes, as do the two positions in the
state vector.

The kind of squeezing we have discussed so far is known as quadrature squeezing. There
exist other types of squeezing: such as number or phase. But, I will do no more than mention
them in passing, as they have little bearing on this thesis. Furthermore it is possible to
squeeze other states than the vacuum — most notably the coherent state. That particular
kind of squeezed light will play a large part in this thesis and will be discussed at more
length in section 4.2. Squeezed coherent states may be visualized in quadrature space as a
vacuum state that has been first displaced than squeezed.?? Mathematically, when dealing
with this kind of light, it is most direct to squeeze the mode operators and take expectation
values with respect to coherent states. Attempting to employ the equivalent description, of
solving for the squeezed coherent states and using these to take expectation values, is the
fever dream of a madman.

We have discussed at length the mathematical description of squeezing. The next section
will be devoted to describing physically what squeezed light is, and the methods which are
employed to generate it in a lab.

1.3.6 Generating Squeezed Light and Other States of Interest with Optical
Nonlinearities

Linearity of light fields has been, up until this point, a tacit assumption. That is, when light
fields spatially coincide their component electric (and magnetic) fields simply add as vectors.
This is a fine assumption in free space, but inside of certain materials this condition is no
longer met. Consider the expansion of the polarization of a general dielectric material

P;
o = Z XE;)EJ' + Z XE?/ZEJEk + Z Xz(;?l)flEjEkEl + ...
o j gk Jkl

The polarization P represents how a dielectric material reacts to the presence of electric fields.
The index ¢ runs over the three-dimensional vector components. The constant XS ) is called
the first order (or linear) susceptibility and it is a complex vector constant®?; Likewise Xg,l
is the second order susceptibility (a tensor constant), and on and on in that manner. Most
materials have only a non-negligible ). In this case as an electric field interacts with the
material it induces an oscillating dipole moment, which in turn creates an oscillating electric
field, and so on. Therefore the light propagates through the material with a dispersion and

absorption determined by the real and imaginary parts of x(!), respectively.

22 A state that has been first squeezed than displaced is not in general equivalent to one that has been first
displaced than squeezed. Though they may be for specific cases.

23The vector nature of the constant takes into account that the material may not be symmetric, and that
electric fields may propagate differently in different directions.
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However, now consider the case where the other terms in this series are non-negligible.
We will be interested in materials with a large Y. Take an electric field that has two
separate frequency components

E(t) = E, (eiwlt + e—z‘wlt) 1 B, (eint + 6—iw2t) 7

and input it into the second term of the polarization (ignoring the tensor nature of y(?)?

P® (t) _ €oX(2) [Ef (62iw1t + 6—2iw1t) + E22 (e2iw2t + 6—2iw2t)
+2E1E2 (ei(wl-i-wz)t 4 e—i(wl-i-wzt))
+2E, By (@17t eilimen)) 4 9p? 4 2] (33)

Where we have assumed that the electric amplitudes are real. Eq. (33) gives rise to several
interesting phenomena, but we will be interested in the effect caused by the terms that
oscillate as wy — wy. This tells us that, given two light beams of different frequencies, a
material with a large y(® generates a new light beam at a frequency of ws = w; — w,. This
is called “difference frequency generation”. Let’s examine the level diagram for this process
given in Figure 6.

Wi

Figure 6: A level diagram for difference frequency generation for the case of wy = w3. Some
of the field at frequency w; gets split into two fields at frequencies wy and ws.

The graph is for the case of wy = w3. Some of the field at frequency w; gets split into two
fields at frequencies wo and ws.

Quantum mechanically the wy mode need not be populated by photons (that is, it may
be in the vacuum state) for the process to occur. In this case the interpretation is that a
photon from a strong beam (called the pump) splits into two daughter photons inside the
optical nonlinearity. If the two daughter photons are in the same spatial and spectral modes
then we can write the interaction Hamiltonian for this process as

oy = inx® (%' — a'b)

24i e. assuming co-linearity.
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where b represents the pump mode and a represents the mode of the daughter photons.
The second term expresses one photon being transformed into two, the first term is present
because the Hamiltonian must be Hermitian. Suppose the pump beam is in a coherent
state (this is called the parametric approximation, meaning that the pump is undepleted: no
photons are lost), then we can write for the daughter fields alone

]ff — ihv® B a2etwrt _ gi2p—iwnt
(B|H1|B) X 7
= iﬁx(z’\ﬁl (d2ei(w1—2w2)t _ dT2€—i(w1—2w2)t) _

Where in the second line the time dependence of @ and a' has been made explicit. Recall
though that we have chosen w; = 2w,, so the Hamiltonian, is in fact time-independent and
we can write the time evolution operator for the system simply as

Ut) = o~ ifrt/h _ x| (a~af?)

Now compare this to Eq. (32) and we see that we have the single mode squeezing operator
where ¢ = 2hx?t|3|. Furthermore we could get two mode squeezing for the case where
the daughter photons are not in the same modes. So we have a way to physically squeeze
vacuum (and other) states.

Also, if we take U (t) acting on the vacuum and expand it as a power series

U (#)[0) = 10) + ax®¢]8][2) + (Rx®|8)|4) + ..

For a coherent pump |5| which is strong we can get several of these terms. In this case one
pump photon can split into two (second term), two pump photons can combine and then split
into four (third term) and so on. However if the pump is not very strong only the first two
terms will be non-negligible. In this case we get spontaneous parametric down-conversion.
Both of these processes are of great general use and will be discussed at length in this thesis.

The physical realization of a squeezed light source is a material with a large x® non-
linearity, typically a noncentrosymmetric crystal, such as -barium borate, pumped with a
strong pulsed laser.

31



2 Quantum Lithography and Multiphoton Absorption

2.1 The Electric Brain and the World of Tomorrow

“Computers in the future may weigh no more than 1.5 tons.”
-Popular Mechanics article from 1949

Computers have become such a ubiquitous and integrated part of daily life that it is
unnecessary to extol their usefulness and power here. Sixty years ago, however, the coming
information revolution was unforeseen. Rapid, disruptive advances in the ability to manu-
facture logic circuits made possible the information-steeped world we now live in.

The processing power of computers is proportional to the number of transistors that
can be written on a chip. This quantity has been increasing exponentially in accordance
with Moore’s Law. This growth is facing a challenge though. It has been estimated by
Intel™ that by about 2018 the current program of increasing transistor density by continuing
improvements in photolithography will no longer be tenable. This is due to the fact that
the smallest feature that may be written on a chip is restricted by the Rayleigh diffraction
limit. Which states that the smallest resolvable feature is on the order of the wavelength of
the light used. As more and more energetic photons are used the optics become extremely
difficult to make and operate. Eventually going to a yet higher energy regime will become
intractable and progress will stall.

In order to avoid this it may be possible to fundamentally alter the method of lithography
to work around the diffraction limit. We will discuss one such program: quantum lithography.

2.2 The Nature and Advantage of Quantum Lithography

With the technique of interferometric lithography the smallest feature size (s) which may be
etched into a material is limited by the equation s = A/2, where A is the wavelength of the
coherent (laser) light used.

The first attempt to circumvent this limit was the novel proposal by Yablonovitch and
Vrijen who suggested that by taking advantage of two photon absorption in the photo-resist,
and by using some optical techniques, the smallest feature size could be improved by a factor
of two. [11]

Inspired both by this, and by the super-sensitive properties of entangled light, Boto et
al. proposed a scheme in 2000 to use highly quantum mechanical®® states of light to beat
the Rayleigh diffraction limit. [2]

The premise is to use number states of the form

[V)al0)s + €™?0)a| N}y
\/i )

where the subscripts a and b represent the two paths through the interferometer. This state
is entangled because it can not be written as a product state such that |W),, = [1¥).|¥), and

|\Il>ab =

2What it means to say that light is quantum vs. classical will be the topic of Section 4.1.
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Figure 7: This diagram illustrates the general n-th order multiphoton absorption process.

also because they may be used to violate a Bell-inequality. [12] Not only is it entangled, but
it is also maximally entangled. This terminology is applied when all the objects in the state
are part of the entanglement, which is the case of the above state. |¥) is also commonly
called a NOON state, after the way the state vector is written.

If these states were to be used in an interferometric-lithographic setup they would decrease
the smallest resolvable object by a factor of N. Meaning that N? more features could be
written on a chip, when compared to coherent light of the same wavelength.

2.3 Multiphoton Absorption and Its Relationship To Quantum
Lithography

Critical to the quantum lithography scheme is that the photons from the NOON state arrive
at the same place, at the same time, and be absorbed as one unit by the photo-resist.
Quantitatively we would like the photons to have a high degree of both spatial and temporal
correlation. Our objective in this chapter will be to study the multiphoton absorption
properties of NOON states, but first a bit about the multiphoton absorption process itself.

A multiphoton absorption event is, in general, a n-th order process by which an atom
(or other absorber) absorbs n photons while making only a single, real, level transition.
Each photon posses a roughly proportionate fraction of the total energy required to make
the full transition. The process is mediated by intermediate (or virtual) levels. See Fig.7.
The physical interpretation of the virtual levels is that they are the levels in the atom (or
other absorber) to which transitions would typically not be allowed. For example, in two
photon absorption the electron first makes an energy non-conserving transition to a regularly
inaccessible state, and then a second energy non-conserving transition to the final state.
Although the individual transitions do not conserve energy the total process does. This
behaviour is predicted by the second order term in the Dyson series, or in the general n-
photon case the n-th order term in the Dyson series. For more detail see for example Ref.[21].
The n-th order quantum correlation function [13] arises from this formalism naturally as the
main quantity of interest.
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We do not consider the fact that multiphoton absorption events may be competing with
lower order absorption. In the ideal case only the n-th order process will be resonant with a
transition.

2.4 Characterizing and Improving the Multi-Photon Absorption
Properties of Maximally Path Entangled Number States (NOON
States)

In this section we investigate the multiphoton absorption probabilities of NOON states:
IN :: 0) = (|N,0) +1]0,N))/+/2. Again these states are of interest due to the fact that
they greatly improve the resolution and sensitivity of interferometry for metrology. Also,
as it has been shown, they would improve the resolution with which lithographic features
may be written. We show that (monochromatic) NOON state absorption fares poorly as N
increases, reinforcing through separate means a more sophisticated model presented in [14].
Thus when considering possible applications of these states, such as to quantum lithography
2, 15] or metrology [16, 17|, we need to keep an eye towards maximizing these absorption
rates by varying their spectral parameters. We do this knowing that it has been found that
squeezed light can exhibit novel two photon absorption properties, such as linear growth of
absorption rate with intensity and decreasing absorption, for increasing field [18, 19, 20].

We consider in detail the case of a |2 :: 0) state used in a quantum lithography or
quantum metrology setup. We include spectral information and derive a general expression
for the two-photon absorption probability. Then we numerically maximize the probability
function and find the setup which maximizes the two-photon absorption. The absorption
probability can be improved by several orders of magnitude by carefully adjusting the filter
bandwidths, pump pulse length, and the length of the crystal. The absorption probability
of |2 :: 0) is shown to be much better than analogous coherent light. Though the |2 :: 0)
state would not be a desirable source for quantum lithography, our work shows that the
absorption enhancement that the spectral properties of entangled light sources provide can
compensate for their poor production rates. We go beyond most previous studies in that
we obtain the two photon absorption probability directly, instead of only considering the
second-order correlation function.

In section 2.4.1 we compare the absorption properties of ideal NOON states to other
states of light. In section 2.4.2-2.4.7 we calculate the biphoton amplitude in the general
case and then examine the absorption properties of this type of light in two regimes: the
pulse-pumped, and the continuous-wave-pumped.

This chapter is based on my work with Drs. Anisimov, Dowling, and Wildfeuer.

2.4.1 Absorption Properties of Ideal NOON States

Initially one may consider the ideal NOON state: |N :: 0) [2]. This state contains no spectral
information. It is an abstraction that can only exist in an optical cavity. Nonetheless it will
provide some insight into how the absorption properties of NOON states compare to other
sources.

Agarwal studied how multiphoton absorption rates are influenced by the specific prop-
erties of the incident light [22]. He found that the equation of motion for the field can be
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written as

dlata)
ot

= —2nA\M (aman).

Here, \(™ is the absorption coefficient for the n-photon absorption process and contains
information about the medium that is acting as the absorber, which is assumed to be much
smaller spatially than the field (alternatively the field may be regarded as being spatially
mode pure). Classically, n-photon absorption is proportional to n-th order intensity. Since
we are comparing light sources of like intensities we make the substitution

where r,, represents the degree to which the quantum statistical characteristics of the light
affect the n-photon absorption. Now the rate of change of the field due to multiphoton
absorption is equivalent to r, and a factor of several constants. Collecting these constants
into one factor x and renaming r,, as the relative absorption rate R, we arrive at

where k is some constant which we set to one in the interest of simplicity. We can use
this information to produce a graph to see how the multi-photon absorption rate of NOON
states scale with N, when compared to quantum states that are not path entangled such as
thermal, number, and coherent.

Thermal states are described by the following density matrix

ﬁthermal Z 6_EJ /kT|j
B e—hw/2kT - . 1
Z_il_e—hw/lﬂ“’ E]—hw<j+§)

Obtaining the matrices for number, coherent, and NOON states is straightforward. For a
two mode state the annihilation operator is given as @ = 1/v/2(G; + ds) where one and two
label the two paths the photon may take [2]. See Fig. 8. Thermal states clearly have the
greatest rates of multiphoton absorption. This can be attributed to the fact that thermal
states exhibit bunching. That is that photons from thermal radiation tend to be tightly
correlated in time. Fock (number) states fare the worst. This feature of Fock states is
connected to the fact that number states represent standing waves where the locations of
the individual photons are evenly spaced out (or anti-bunched) in space and time with no
definable phase. The multiphoton absorption properties of coherent states stay constant
with respect to photon number. Since photons in coherent states are randomly dispersed in
space and time the chance of two or more photons being correlated is simply proportional to
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Figure 8: Multiphoton absorption rate of various sources as a function of the average number
of photons in the field (N** order absorption vs. N average photons). All rates normalized
relative to coherent states (solid line). The dashed line is a thermal state. The dotted line
is a Fock (number) state, and the dot-dashed line is a NOON state.

the intensity (average photon number). Since we are considering how n-photon absorption
scales against average photon number, the graph is flat, providing a convenient measuring
stick to gauge other fields.

For NOON states the multiphoton absorption behaves as

Ry =1 for N =1,
= 2% for N > 2,
where x has been set to one. NOON states fare a factor of two better than Fock states,
although absorption rates are still far from optimal. The reason NOON sates have this
factor of two is due to the path entanglement. Mathematically this two comes from the
normalization constant that path entanglement requires.

These results seem to reinforce the findings of Tsang in Ref. [14]: generally the absorption
properties of NOON states are poor. It should be re-emphasized that these states, containing
no spectral or temporal information, are idealizations. Fig. 8 can only be seen as providing
a rough idea of how absorption scales.

Quantum lithography or metrology will only be useful if the detector or material needs
to be exposed to the field for a reasonable period of time. The above ideal-field results seem
to make this unlikely. However, they show only that the quantum mechanical properties (i.e.
the bare state vector) of NOON states lead to poor absorption rates. They say nothing about
how the spectral properties of realistic NOON state pulses effect the multiphoton absorption
probability. We thus examine in detail a specific well known case: the |2 :: 0) state. Though

36



Mi -
|rro Filter 1

Signal

50:50 B.S.

Pump

o]

UV Filter

P.B.S.

Figure 9: The basic setup. A nonlinear crystal (BBO in this case) creates a degenerate pair
of photons. Each photon is subjected to a filter. A polarization rotator ensures that the
two photons are indistinguishable. A beam splitter creates a |2 :: 0) state that results in an
interference pattern.

this state is not practical for metrology or lithography its optimization would provide a proof
of principle that the absorption properties of higher N states could be improved in a similar
manner.

2.4.2 Absorption Properties of Realistic |2 :: 0) States

It is possible to write realistic states, which include the spectral information of the light of
interest. Furthermore, after these states are used to obtain absorption rates, the arrangement
of optical elements which optimizes absorption can be found.

Several works have examined how biphotons produced by parametric down conversion or
electromagnetically induced transparency may be compressed or otherwise modified so that
they exhibit tighter correlations [23, 24, 25, 26, 27, 28]. There is an excellent paper by Dayan
which studies the properties of a semi-stationary, undepleted beam of squeezed light produced
by a spectrally narrow pump [29]. Also worthy of particular note is a paper by O’Donnell
and U'Ren which demonstrates experimentally the ultrafast nonclassical correlation between
entangled photons [30].

We consider the case of a |2 :: 0) state used in a quantum lithography [2, 15] or remote
quantum metrology [16, 17] setup. The |2 :: 0) state we investigate is produced by co-linear
type II degenerate down conversion and a beam splitter (see Fig. 9). This setup is very
simple, but by tuning these few basic optical elements we can see a large improvement in
two photon absorption rates, without recourse to exotic techniques. We make no assumptions
about stationarity or about the relative sizes of the field bandwidths (apart from one very
broadly applicable assumption — that the field’s bandwidth is narrower than the atomic
transition frequencies; which will be discussed further).

2.4.3 The Type-II Biphoton

The output state of the crystal during type-II down conversion is described by Ref. [31]
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for a co-linear pump. The sum extends over all possible wavevector modes. A polarizing
beam splitter separates the ordinary and extraordinary beams into different spatial modes.
The operators a and b represent these modes. The object Ay is the phase mismatch,
defined: k, — k — k', w, is the frequency of the pump laser, and the z integral extends over
the length of the crystal. Also, (2, and o, are the central frequency and the spectral FWHM
of the pump, respectively. Also, e and o label the extraordinary and ordinary beams. The
factor D is defined as 4In(2). We are assuming the pump laser is Fourier-transform-limited.

This state corresponds to squeezing just above threshold, such that mainly |0,0) and
|1,1) are produced. The |0, 0) term is then dropped because it can not effect the two photon
absorption process.

Since the two beams are distinguishable after the polarizing beam splitter, one of the
beams must be subject to a polarization rotator in order for it to be made indistinguishable
from the other. The beams must be indistinguishable so that the |1,1) states interfere
destructively and produce |2 :: 0) [32].

To study the two photon absorption probability of this state we utilize the well confirmed
[33][34] Egs. (2.15) and (2.16) from Mollow [35]

Py = //dW’dwg*(w’)S(Q) (w — ', whwp — w,w)g(w). (35)

Where g(w) is the atomic response function, wy is the frequency of the final state, and S ) ig
the spectral correlation function (the Fourier transform of the temporal correlation function),
which in our case is

5(2)(w1,w§;w1,w2) = Z(wy,ws)* Z (w1, ws), (36)

where,

Z(wy,we) = //dtclldtgeiwltileiWthA(tf,tg).

Here, w] and w) represent the negative frequency components of the field associated with
t’ld and t’zd. The factors w; and wo represent the positive frequency components of the field
associated with ¢;? and t,%. The above equation does not include the effects of natural
linewidth, which will be discussed later. We should note that other equations, also derived
by Mollow [35], assume that the field is stationary, something which is not true in general
for our calculation here. A is the biphoton amplitude, defined below.

We start with the two-photon correlation function [13]

GO = (U EOHDEC (1, ED (6,9 ED (1,7 D). (37)
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The primed and unprimed time variables represent the possibility of the biphoton travelling
via two different paths of different lengths, as is the case in an interferometric setup, and
d labels the times as being detection times. E(+)(t) is the positive-frequency electric field
operator defined by

. heow, \ /2 —p(2
E® N =iy <2:;’;/ ) e D( °f ) e 4", 1 (0). (38)

Where the approximation e*™7* = 1 has been made and s denotes either horizontal or
vertical polarization The time t? = 0 is defined as the time the photon is created. Note
that E(Dt = . Also, €2y and o are the central frequency and the FWHM of the filter
in a specific arm, respectlvely

Now, by inserting a complete set of number states in the correlation function, and ob-
serving that all but the |0)(0| term will cancel, we can rewrite Eq. (37) as

G® = (W EC (") EC 1)[0) (0] ED (1) B (01| W) = A1, 157) At 127).

The above equation defines the biphoton amplitude A(t,%,t,%). The expressions for A for
SPDC were first calculated by Keller and Rubin in Ref. [36] and elaborated upon in Refs.[37,
38, 39]. We follow their calculations somewhat closely.

We start with a field at the detector, given by Eq. (38). Using the standard 50:50 beam
splitter transformation we write out the electric field operator at the crystal

2
—iw1T

2 2 2
Dw 'Dwkl R e 'DWﬁA 6_iw27
E(t) = 52( gakl"‘w 7 bkl) NG +5Z( Oak2+e o2 bkz) Vol

where constants have been subsumed into the overall factor of {. The polynomials wy,
have been ignored because they vary slowly when compared to the exponential terms. The
operators a and b are the annihilation operators acting on the first and second modes. The
two mode annihilation operators are used to signify that the amplitude is dependent on the
fields in both spatial modes. 7 = t¢ —1/c where [ is the distance between the crystal and the
detector. We only consider the case where the interferometer is path balanced. This implies
we calculate the absorption properties of the central fringe. We assume that the absorption
properties of the other fringes will behave similarly.

Now using the above and Eqs. (34, 37) we can find an expression for the biphoton
amplitude of our setup

At 61 = At 6 + AL 1Y) (39)
where A is the biphoton amplitude for just the output of BBO and filters

_Dp Wko*Qo 2 _D Wk~ wkg‘“"ke*Qp
At %) = iC¢? e ’° e irott’e e _W’“Et2 / dze P ”Akoke
; .

koke
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We have dropped the factor of e #/¢ as it just introduces an overall phase. The central

frequencies of the filters have been chosen to be the same as for the e and o rays.
Now, define the following variables,

Vo = Wo — Qm
Ve = We — Qe>
Vp = wp — Q. (40)

Due to the delta function in Eq. (34), Q, + Q. = Q, and v, + v. = 1v,. Now, Taylor-series
expand the wavevector out to second order

dk(vy) vj

k(vj) = k(Q;) + v l—ﬂ = k(Q)) + 5.

’ PO dwy ], g, ()

Where j = e,0,p and U is the group velocity, and U = dw/dk. Taking into account that
kp(€,) = ke(S2e) + Ko(£2,), the phase mismatch can now be rewritten as

Ak L= Vp _ V, _ Ve _ Vo + Ve . Vo . Ve . (41)
T U()  Us(R)  Ue(e)  Up(€y)  Un()  Ue(2)

Taking the continuous limit of Eq. (39) and utilizing Eqs. (40) and (41) we obtain

L 2 2
8l = 0 [dk, [dk. | dzeP(E2) e P(5)
A% t7) iC¢ / / /0 ze e

_ vo+ve .
eI et Qo) —ilrot o)t D(—"Up ) o (uevetuovo)

Where u, = U%, — Ui and u, = U%, — U%, Note that dk = %dw = %dw = %du, so that up to a
constant we may switch integration variables between momentum and frequency. (Actually
the U’s are frequency dependent, however they do not vary significantly over the bandwidth
of the field.) Here we diverge from Kim and Shih in that we integrate over v, and v, instead
of v_ = v, — v,, and v, and we do not take the filter bandwidths to be equivalent. Now

J 2 L Yo Ve
A(tld, t2d) = /Lc’—ge_i(ﬂotld'f‘ﬂetZd)/dVO/dVe/ dze_'D(;)Qe—'D(;>2
Uer 0
2

d _D(Vo+ue

—iuetgde—iuotl e op ) eiz(uel/e—i-uouo)

Xe

We have the unitary Fourier transform over v,, v, (up to a factor of v/27), and the
integral over z given by

2miCe? . L. .
A(tld,tgd) _ %e_l(ﬂotld—l—geth)/ de(Ve—>t2d)./_"(V0%tld)T(Vo,Ve,Z),
eVo 0
2
D | (retre ) () (ke 2] .
T(vo,ve,2) = € {( ,,) () =) ei#(uevetuoto) (42)
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Where we have defined the biphoton kernel Y(v,, v, z). In the interest of clarity, the Fourier
transforms have been written as operators

.7:(56 — y) / dxe™ Y

Using Mathematica™, we perform these operations in the above order. Note that another
ordering will lead to the problem becoming intractable. The result is given by Eq.(43). For
the sake of simplicity in most of our calculations we will take £ = 1.

- d 4y _ %o 7o tty’ ‘eyoe)? U U,Upo 0,0
A1, 1p1) = ¢mi(Qeta+ 00t ) o~ Wp [Exf(T) — Exf(T +1)]. (43)

Where
7, _ (tld — tgd)PUO'eUO + tldEUO'OO'p — thOUO'eUp
2U\/D(ae2 + 0,2 + 0,?)
;o LU
2U.U,Up\[D(0.2 + 0,2 + 0,2)
And

Py =U,(U, - U,)oc0,, Ey=U.(U,—U,)o,0,
Oy = U,(U, — Uy)oeo,, U* = Py? + Ey* 4+ Op”.

The error function is commonly defined as

Erf(z / dye” v,

The terms U,, U,, and U, represent the group velocities of the extraordinary, ordinary, and
pump beams, respectively. The factors o, and o, are the bandwidths of the filters in the
arms of the interferometer. The term o, is the bandwidth of the pump. The factors €2,
and (), are the central frequencies of the extraordinary and ordinary beams. For now the
normalization constant has been left off for the sake of simplicity as it will only effect the
height of the amplitude, not its overall shape.

Hence we give the general biphoton amplitude in its most general form, which is a new
result.

In order to evaluate this expression we must find the group velocities of the pump,
ordinary and extraordinary beams inside of the y® crystal. The index of refraction as a
function of wavelength can be found using the Sellmeier equations. Below are the Sellmeier
equations for f-Barium Borate (BBO) [40]
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where the wavelength is given in micro-meters. In type-II down conversion in BBO the
pump beam experiences the same index of refraction as the extraordinary beam. It is also
important to consider the angle the beams form with respect to the optical axis of the
crystal. Since we are investigating the degenerate co-linear case with planar phase matching
the optical axis must be set to be 42.4° off the pump beam’s direction of propagation for
a 400nm pump (the ordinary and extraordinary beams are co-linear with the pump and
selected with a pinhole downstream) [38]. For the pump and extraordinary beams we must
use the effective index of refraction, given by

cos?(6) sm2<¢>] E

where ¢ is the angle between the beam and the optic axis of the crystal. We can now
calculate the group velocity

-1
Ueop(Aerop) = niocAeon)  Aeop MioePenn) |
c ¢ O,

And n¢® = n,. We then find for the degenerate case (€2, = Q.) for A, = 400nm that
Uy(9) = 1.781 x 108m/s, U,(€,) = 1.756 x 10%m/s and U.(.) = 1.845 x 10%m/s.

Fig. 10 contains a contour plot of the absolute value of the biphoton amplitude for our
setup (A). This graph displays an interesting splitting which is symmetric about a line
given by t{ — t¢ = 0. Each point on this line represents a different average arrival time
of the biphoton (¢ + t4)/2, a line drawn perpendicular to this line of symmetry represents
another axis. That axis defines an entanglement time (the temporal distance between the
two photons) as t¢ — t4. The symmetric splitting represents the fact that two photons
generated far away from the exit-surface of the crystal will drift apart in time. Thus, as the
average arrival time increases (a delay being indicative of more time spent in the crystal)
the photons drift apart. The symmetry is a result of the interferometer scrambling the
inform