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Abstract

This thesis contains results on two related projects.

In the first project, we explore non-axisymmetric instabilities in general relativistic accretion

disks around black holes. Such disks are created as transient structures in several astrophysical

scenarios, including mergers of compact objects and core collapse of massive stars. These disks

are suggested for the role of cenral engines of gamma-ray bursts. We address the stability of

these objects against the runaway and non-axisymmetric instabilities in the three-dimensional

hydrodynamical fully general relativistic treatment. We explore three slender and moderately

slender disk models with varying disk-to-black hole mass ratio.

None of the models that we consider develop the runaway instability during the time span

of the simulations, despite large radial axisymmetric oscillations, induced in the disks by the

initial data construction procedure. All models develop unstable non-axisymmetric modes on a

dynamical timescale. In simulations with dynamical general relativistic treatment, we observe

two distinct types of instabilities: the Papaloizou-Pringle instability and the so-called Interme-

diate instability. The development of the nonaxisymmetric mode with azimuthal number m = 1

is enhanced by the outspiraling motion of the black hole. The overall picture of the unstable

modes in our disk models is similar to the Newtonian case.

In the second project, we experiment with solving the Einstein constraint equations using

finite elements on semistructured triangulations of multiblock grids. We illustrate our approach

with a simple example of Brill wave initial data, with the constraints reducing to a single lin-

ear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-

structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uni-

form refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of

the finite element basis with respect to local spatial inversions. We show that in the superconver-

vii



gent case subsequent unstructured mesh refinements do not improve the quality of our initial

data. As proof of concept that this approach is feasible for generating multi-block initial data in

three dimensions, we evolve the constructed initial data using a high order finite-differencing

multi-block approach and extract gravitational waves from the numerical solution.
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Introduction

Almost a hundred years have passed since the General theory of Relativity (GR) was discovered

by Albert Einstein [1, 2]. Throughout this time, no experimental evidence has been found that

would have contradicted the predictions of this theory. New experiments and observations re-

main in a perfect agreement with the conclusions, derived from the basic principles of General

Relativity, despite the increasing accuracy of measurements that has become available with ad-

vancement of new technologies. These basic principles represent the most remarkable insights

into the geometric nature of space, time and gravity. Their discovery opened the door to cosmol-

ogy as a field of science and allowed to pose as well as answer questions which had previously

belonged solely to the realm of philosophy.

One of the predictions of GR is the existence of gravitational waves. So far, only indirect

experimental evidence of this natural phenomenon has been found. According to GR, an orbit

of a binary should shrink over time because of the loss of energy to gravitational radiation. This

effect can be measurable only when the binary consists of two compact objects that are suffi-

ciently close to each other. One example of such system is the famous pulsar PSR B1913+16 in

a binary system, discovered by Hulse and Taylor in 1974 [3]. The orbit of this binary is shrink-

ing in precise agreement (up to the accuracy of measurements) with the predictions of GR. This

outstanding discovery was one of the motivations to initiate efforts for a direct experimental

detection of gravitational waves. As of today, several gravitational wave detectors have been

constructed and achieved design sensitivities around the world: LIGO [4], VIRGO [5], GEO-

600 [6], TAMA [7]. Despite all the effort, no detection has yet been made, partly because the

expected distortion of the metric is incredibly small (relative change in length for a ”strong”

gravitational wave is δl/l ∼ 10−20), and partly due to the low event rate of the kind of events

which produce detectable signals. Such events include mergers of two compact objects, i.e. black
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holes or neutron stars, supernova explosions, rotating non-axisymmetric neutron stars and some

others [8].

The next two generations of gravitational wave detectors are planned to have increased sen-

sitivity, allowing for a much higher detection probability. These include the detectors under con-

struction (Advanced LIGO [9], Advanced VIRGO [10]) and those in the design phase (LISA [11],

Einstein Telescope [12,13]). Chances are high that the next decade will witness the long-awaited

direct observation of gravitational waves, opening a new window on the Universe and putting

our existing theories and models to the test.

Arguably one of the most important and influential concepts of GR is that of a black hole

(BH). In recent decades astronomers have accumulated convincing observational evidence that

BHs exist [14–17]. Curiously enough, these objects were originally brought forward as an ar-

gument against GR, because they harbor a singularity – a point where most of the currently

established physical laws must break down. Although further investigation of the properties of

BHs revealed that the singularity is ”hidden” from external observers by the event horizon and

could never be seen from or affect the outside world, the problem posed by the BH singularity

requires a deeper and more general theory, which includes GR as a special case. This is one of

the main reasons why we are interested in BHs.

Another reason is that BHs create extreme physical conditions impossible to achieve in a

laboratory. The power for some of the most luminous and dramatic cosmic phenomena, such as

quasars and active galactic nuclei, is generated by accretion onto a BH. The same mechanism is

also believed to power gamma-ray bursts (GRBs) in some models.

GRBs are intense flashes of γ-rays, produced at cosmological distances with an estimated

power ∼ 1051 erg/s (∼ 1018 solar luminosities, which is equivalent to ∼ 0.01 M� being an-

nihilated per second) [18–20]. They can be roughly divided into two classes: short gamma-ray

bursts (SGRBs) last . 2 s and have a harder spectrum, while long ones (LGRBs) last longer than

2 s and have a softer spectrum. LGRBs constitute the majority of all currently observed GRBs.

Several alternative scenarios exist to explain GRBs. In the standard scenario, short GRBs are

believed to be produced by binary neutron stars (NS) or a NS-BH merger events [21], while long

GRBs are associated with core collapse supernovae (CCSNe) events [22]. In both cases, the role
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of the central engine which powers the burst is played by a solar mass BH surrounded by a thick

massive accretion disk (note: alternative scenarios exist, such as the magnetar model [23])

The work reported in this thesis explores the stability of self-gravitating disks around BHs

in a fully dynamical GR treatment. For the models of GRBs mentioned above to be plausible,

a sufficiently massive disk needs to be present in order to supply matter for a quasi-stationary

accretion process lasting for a time span of a few seconds [18]. However, previous studies of

thick disks in Newtonian and Cowling approximation have shown that such disks develop

non-axisymmetric instabilities of several different types [24–31], and sometimes such instabil-

ities lead to disk fragmentation [32]. When GR effects are taken into consideration, massive

self-gravitating disks around BHs could additionally develop the so-called runaway instabil-

ity [33–43], in which case the disk could be completely consumed by the BH on the timescale

of milliseconds. Models of the GRB central engine which rely on the existence of thick massive

disk around BH must account for such instabilities, because they could interrupt the accretion

powering the burst or make it too irregular.

There are several motivations to study disk instabilities using full GR treatment. First of all,

the conclusions about the development of runaway instability in previous works vary depend-

ing on which approximation was used. Second, it is not clear if and how the inclusion of GR will

modify the growth rates and types of non-axisymmetric unstable modes. Finally, disk oscilla-

tions and non-axisymmetric motions could produce potentially detectable gravitational waves.

That is why in this work we evolve the spacetime metric along with the disk fluid in a coupled

manner, using the complete system of Einstein equations.

In the second part of the thesis we report the results of our work on a somewhat unrelated

project, in which we experimented with solving Einstein constraint equations on semistructured

multiblock triangulations using finite element (FE) methods. Semistructured triangulations of

the finite differencing (FD) grids provide a direct approach to transform the solution between

the FD and FE representations, which is exact and does not require interpolation. Additionally,

such triangulations provide superconvergent solutions at the points collocated with FD grid. We

demonstrate that the FE solution to an elliptic equation, generated for the given FD grid, is suffi-

ciently accurate and convergent for 3D relativistic simulations with independent FD hyperbolic
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solver (QUILT).

The thesis is organized as follows. The first Chapter 1 describes the formulations and numer-

ical methods used in both parts of the thesis, including multiblock grids (Section 1.1), high-order

finite differencing operators (Section 1.2), and the formulations used to evolve the hydrodynamic

(Section 1.3) and general relativistic (Section 1.4) equations. Chapter 2 presents validation tests

of the coupling between the GR and hydrodynamic subsystems of the evolution code. Chapter 3

introduces the subject of self-gravitating disks and their instabilities. Chapter 4 describes the

grid setup, initial data construction procedure and the data analysis for the non-axisymmetric

instabilities. In particular, Section 4.3 describes the curvilinear grid, adapted to the disk evolu-

tion problem and designed to maximize the efficiency and save computational costs. Chapters 5

and 6 present the results of the time evolution of self-gravitating disks and the analysis of non-

axisymmetric instabilities.

Chapter 7 opens the second part of the thesis by describing motivations for using finite el-

ement methods on semistructured triangulations of FD multiblock grids. Chapter 8 gives an

overview and a weak formulation example for the Finite Element Toolkit (FETK) [44], which

is used for solving the Einstein constraint equations using finite elements. Chapter 9 discusses

our approach to multi-block triangulations and, in particular, why we expect our solutions to be

superconvergent. In Chapter 10 we evaluate the accuracy of our approach by solving for several

three-dimensional elliptic test problems on multi-block domains with known exact solutions.

Finally, in Chapter 11 we solve the Brill wave equation, which is a particular case of the Einstein

constraints, and in Chapter 12 we use the FD multi-block evolution solver to evolve the Einstein

equations and accurately extract a pulse of gravitational waves from the numerical solution. The

last Chapter 12 lists two separate conclusions for the two project reported in this thesis.

Throughout the thesis, we use a geometrized system of units where G = c = 1. Unless noted

otherwise, the BH in our models has mass 2.5M�. In tensor notations below, Latin indices from

the beginning of the alphabet (a,b,...) run from 0 to 3, Latin indices i, j, etc. run from 1 to 3, and

the usual Einstein summation rule is assumed.
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Chapter 1. Formulations and Numerical Methods

The numerical time-evolution scheme used in our study can be split into two main parts: the

Einstein evolution equations, and the fluid dynamics equations. These two parts are evolved

in a coupled manner. The numerical code that we use has been developed within the CAC-

TUS computational infrastructure [45], and uses the CARPET mesh refinement and multi-mesh

driver [46, 47]. A separate module based on CARPET provides a range of multiblock systems

to represent a variety of computational domains for 3D evolution codes [48]. The module for

evolving the GR hydrodynamics equations uses the THOR multiblock code [49], which has been

coupled to the multiblock-based module QUILT for evolving spacetime [50]. The latter imple-

ments the Generalized Harmonic formulation of the Einstein equations in first-order form [51].

In the following sections, we give a brief description of the methods implemented in each mod-

ule.

1.1 Multiblock Approach

For our three-dimensional simulations we use finite differences (FD) discretization with multi-

ple blocks infrastructure developed by [48]. It is a common approach in differential geometry

to define a manifold via a set of overlapping blocks, with each block mapped into an open,

simply-connected subset of Euclidean space (see, for example, [52]). The blocks are connected

by coordinate transformations in the areas where they intersect or overlap. This approach al-

lows to describe manifolds with arbitrary topology. Finite differences discretization introduces

a discrete multidimensional grid into every block, which can be thought of as a discrete coor-

dinate chart, mapped into a region of Z3. It is then required to communicate data between

the FD grids of any two neighboring blocks in order to supply boundary conditions on the in-

terpatch boundaries. In the multi-block approach the blocks abut rather than overlap, and the
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grids are constructed in such a way that neighboring grids share boundary points. In this case,

the boundary conditions can be imposed either directly or by adding penalty terms (so-called

penalty boundary conditions). If two neighboring blocks do not share common points, then

interpolation can be used; this approach is commonly referred to as overlapping-grids [53].

The multiblock approach is widely used in astrophysical and numerical relativity simulations

(see [53–72] and references therein). In many cases the domain of interest is asymptotically flat.

If it contains one or more black holes, then each hole can be excised from the computational do-

main by introducing an inner smooth boundary around the singularity. If appropriately chosen,

this boundary does not require any physical boundary conditions, since all characteristic modes

leave the domain. It is preferable that this boundary is smooth, which in general requires the use

of multiple blocks; this approach is called the BH excision with multiple blocks [63,73,74]. Simi-

larly, the preferred shape for the outer boundary when simulating asymptotically flat spacetimes

is a sphere, as this is the topology of null infinity J +, which is best suited for extracting gravi-

tational waves. A multipatch domain structure easily accommodates both types of boundaries

while avoiding coordinate singularities, such as those associated with spherical or cylindrical

coordinates. The use of multiple blocks can also be helpful in cosmological simulations with

highly complex non-trivial topologies.

(a) (b) (c) (d)

Figure 1.1: Cross-sections of the block systems used in this work in the xz-plane: (a) seven-
block system; (b) thirteen-block system; (c) six-block system with straight coordinate lines; (d)
six-block system with distorted radial coordinate lines, described in Section 4.3 below.

Figure 1.1 shows meridional cuts of the patchsystems (cuts in the xz-plane), that are used in

this thesis. The first two block systems on Fig. 1.1 are the seven-block and the thirteen-block

systems, which realize different representations of a spherical domain. They both have spherical
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outer boundary and no coordinate singularities. The seven-block system is also known as the

”cubed sphere” [75]. The thirteen-block system additionally has spherical grid coordinate sur-

faces in the outer layer of blocks, which is very convenient for computing spherical harmonics

and extracting gravitational waves. The thirteen-block system is well adapted for simulating

radiation processes: the central cubical block has high resolution and can be used to accurately

model the dynamics of a source, the intermediate layer can represent a near zone, while the

outer layer of blocks models the radiation zone, which carries the outgoing radiation away from

the source while maintaining the constant angular and radial resolution. These two systems are

used in the Chapter 2 below for evolutions of rotating and non-rotating polytropic stars.

The remaining two block systems on Fig. 1.1 are the six-block system and the adapted six-

block system for simulating accretion disks around black holes (described in details below in

Section 4.3). Both block systems contain empty spherical region in the middle, which is suit-

able for simulating BHs with the so-called excision approach. We use the BH excision in our

simulations.

It is also necessary to mention that the additional advantage of multiple blocks is their effi-

ciency from the point of required computational resources. For example, if we want to simulate

a radiating system, then the number of points in outer blocks of the systems such as displayed

on Fig. 1.1 grows linearly with radius of the domain, while both the angular resolution and the

radial resolution stay the same. This allows to simulate very large domains at relatively low

cost compared to Cartesian rectangular grids, where the number of points is proportional to the

cube of the domain size. This is a very important advantage of the numerical method, because

modern 3D codes can take several months to complete, and any improvements in terms of their

speed or memory resources need to be appreciated. Finally, large domain size makes it possible

to causally disconnect the system dynamics from the outer boundary, which is often the main

source of numerical noise in a simulation.

1.2 High-order SBP Operators

In our multi-block evolutions, we use new efficient high-order finite differencing (FD) operators

satisfying the summation-by-parts (SBP) property developed by [76]. If D is a one-dimensional
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differential operator, the SBP property means that for any grid functions u and v on a segment

[a, b] with a constant grid spacing h, the following condition is satisfied

〈Du, v〉+ 〈u, Dv〉 = u(b)v(b)− u(a)v(a),

where 〈·, ·〉 denotes the scalar product between two grid functions, defined by the SBP matrix

Σ = ||σij|| associated with D:

〈u, v〉 = ∑
i,j

σijuivj

In our code we can select from a range of high-order FD operators: D2−1, D4−2, D4−3, D6−3,

D6−5 and D8−4. The pair of numbers in the FD operator’s subindex reflects the convergence

order at interior points and at points at and close to the boundary. In more detail: for a generic

FD operator Da−b, the convergence order in the interior is a and at and close to the boundaries it

is b ≤ a. The convergence of the numerical derivative in the l2 norm is at least of order b + 1 [77]

and in the l∞ norm – it is at least of order b.

The operators D2−1, D4−2, D6−3 and D8−4 are diagonal norm (scalar product) based, as they

satisfy SBP with respect to certain diagonal scalar product (norm) of grid functions. D4−3 and

D6−5 are so-called ”full restricted norm” operators. They satisfy SBP with respect to norms

which are not necessarily diagonal, but only restricted to be diagonal at the boundary points.

The diagonal norm FD operators have several advantages compared to full restricted norm ones

in terms of stability properties. However, they exhibit lower order of convergence at and close to

boundary points. While the full restricted norm operators are only one order less convergent at

the boundary, diagonal norm operators lose half the convergence order compared to the interior

points.

1.3 Hydrodynamics Equations

The evolution equations of a relativistic ideal fluid are derived from the covariant equations

of conservation of mass ∇a(ρua) = 0 and the energy-momentum ∇bTab = 0, with the latter
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assumed to have the following form [49, 78]:

Tab = (ρ + u + P)uaub + Pgab,

where P is the fluid pressure, ρ is the rest mass density, u is the internal energy density 1, and

gab is the spacetime metric in contravariant form. The quantities {ρ, u, ui} then form a set of

primitive variables that uniquely define the state of the relativistic fluid at every point in space.

The evolution equations read:

∂t(
√
−gρut) + ∂i(

√
−gρui) = 0,

∂t(
√
−gTt

a) + ∂i(
√
−gTi

a) =
√
−gTc

dΓd
ac,

where t is the time coordinate, g ≡ det(gab) is the determinant of the spacetime metric and Γd
ac

are the Christoffel symbols associated with this metric. After introducing a set of conservative

variables {D ≡ √−gρut, Qa ≡
√−gTt

a} the equations can be cast into a flux-conservative form

(as in [81]; see details specific to our scheme in [49]):

∂tD + ∂iDi = 0,

∂tQa + ∂iQi
a = Sa,

where Di, Qi
a are the fluxes of the conserved variables D, Qa, while the Sa are the source terms

for Qa. These equations are then solved using a finite volume cell-centered scheme in the local

block basis. The reconstruction of the primitive variables on the cell interfaces is done using the

piecewise-parabolic monotonous (PPM) [82] method, while the fluxes through the interfaces are

calculated using a Harten-Lax-van Leer (HLL) [83] Riemann solver. In order to compute fluxes,

source terms and the stress-energy tensor Tab, the conservative variables need to be converted

into primitive ones at every timestep. This is done using a Newton-Rhapson iterative 2DW

solver [84] with the Γ-law equation of state. If at a particular cell on the grid the procedure of

primitive variables recovery fails to produce physically meaningful values (which can happen
1It is also common to define a specific internal energy ε = u/ρ [79, 80]
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for number of reasons; see [84]), we use a 1DP solver with a polytropic equation of state.

The boundary conditions for the hydrodynamic variables are imposed on the interpatch

boundaries using interpolation from neighboring blocks. The overlap regions where interpo-

lation is done are created by adding extra layers of grid points on each block face. For the outer

boundary, outflow boundary conditions are imposed. Further details on the grid setup and nu-

merical methods can be found in [49].

1.4 Spacetime Evolution Equations

For the evolution of the spacetime metric gab we use the generalized harmonic (GH) formulation

of the Einstein equations in the first-order representation developed by Lindblom et al. [51] In

this formulation, the coordinate gauges are fixed using a set of four gauge source functions

Ha, which need to be prescribed a priori. In our simulations, we have chosen the so-called

”stationary gauge” [51,85], in which the gauge source functions stay frozen at their initial values,

Ha(t, xi) = Ha(t0, xi). Such a choice of the gauge is convenient for quasi-stationary spacetimes,

such as a perturbed BH [50] or an accretion disk around BH.

The first-order representation that we use has advantages of being linearly degenerate, sym-

metric hyperbolic [86–88] and possessing the constraint damping property. Linear degeneracy

guarantees that the system will not develop gauge shocks during the evolution [89]. Symmetric

hyperbolicity with boundary conditions imposed on incoming characteristic fields is the neces-

sary condition for well-posedness of the initial boundary value problems (see e.g. Chapter 6 of

Gustafsson et al. [90]).

The constraint damping property, which is one of the most important advantages of the cho-

sen formulation, means that the constraints on the variables are included into the evolution

equations in such a way that they are automatically damped out in the process of evolution.

Such a property not only reduces the error in the solution, but also eliminates variety of numer-

ical instabilities associated with unbounded growth of the constraints.

The spacetime metric evolution equations are discretized using finite differences on multiple

grid blocks that cover the computational domain [48, 49]. Advantages of using multiple blocks

were outlined in the Section 1.1 above. The grids on any two neighboring blocks in the system
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are designed so as to share a 2D interface grid, where the so-called penalty boundary conditions

are imposed [91]. For the spatial numerical differentiation, we employ high-order convergent

finite differencing operators, that satisfy summation by parts (SBP) property [76], as described

in the Section 1.2 above. The SBP property together with penalty boundary conditions guaran-

tee strict linear numerical stability [91]. All simulations of self-gravitating disks with dynamical

treatment of relativistic gravity are performed with the finite differencing operators of 8-th order

convergence in the bulk of the grid, and 4-th order convergence at the boundaries. Time inte-

gration is performed with a 3-rd order accurate Runge-Kutta method of lines, satisfying total

variation diminishing (TVD) property [92].

1.5 Constraint Damping

The constraint damping scheme depends on two freely-specifiable parameters, κ and γ2. These

parameters can be assigned per-point, i.e. the system of equations does not depend on their

spatial or temporal derivatives. Here we describe how these parameters are specified in our

simulations.

In this formulation, the set uα = {gab, Φiab, Πab} of dynamical fields consists of the metric gab

and linear combinations of its derivatives Φiab = ∂igab, Πab = −nc∂cgab, where nc is normal to a

t = const. hyperslice. The fields evolution equations can be written in the following form,

∂tgab = Gab(xa, uα), (1.1)

∂tΦiab = Fiab(xa, uα)− γ2Ciab, (1.2)

∂tΠab = Pab(xa, uα)− κCab − γ2βiCiab, (1.3)

where Cab, Ciab are the constraints, βi is the shift vector, and Gab, Fiab, Pab are right-hand sides of

the formulation without the constraint damping terms. At the continuum limit, the constraints

are zero, and the system (1.1) reduces to the original Einstein equations. At the discrete level,

the constraints can be non-zero, and the constraint damping terms provide a non-vanishing

contribution to the right-hand sides of the system (1.1). Since constraint damping terms should

act only as small corrections to the evolution system, their contribution should not exceed that
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of functions Gab, Fiab, Pab. Otherwise, the evolution of the system will be dominated by the

numerical constraint violations.

10-4

100

 1  10  100

κ(r)

r

Figure 1.2: Radial dependence of the constraint damping coefficient κ in logarithmic scale. This
coefficient stays approximately constant close to the BH and falls off like 1/r4 as r → ∞.

We noticed that in our simulations the functions Fiab, Pab on the right-hand sides of (1.1) fall

off as 1/rα with α ∼ 4 beyond r > rdisk, where rdisk is the approximate outer radius of the disk.

At the same time, the constraint violations Cab, Ciab fall off as 1/rβ with β ∼ 1. This means that if

we use constant values for γ2 and κ, the constraint damping terms will dominate the dynamics

of the system for sufficiently large r. In order to avoid this situation, functions κ and γ2 must fall

off with radius as ∼ 1/r3.

We have found that the following radial profiles of κ and γ2 for our simulations lead to

satisfactory results:

κ(r) = κ∗

[
1− 2

π

(
r∗

1 + r2
∗

+ arctan r∗

)]
(1.4)

γ2(r) = γ∗

[
1− 2

π

(
r∗

1 + r2
∗

+ arctan r∗

)]
(1.5)

where r∗ = (r− r0)/σ, and κ∗, γ∗, r0, σ are (positive) constants. This radial profile (as depicted

on Fig. 1.2) approaches a constant value of ∼ κ∗ (or ∼ γ∗) for r < r0, and falls off as ∼ 1/r3 for

r � r0. The parameter σ determines the extent of the smooth transition region between these

two regimes.
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We used κ∗ = γ∗ = 4, r0 = 12, and σ = 8 in our simulations. This profile of the con-

straint damping coefficients allows to impose strong constraint damping near the BH and the

disk without introducing spurious dynamics far away from the origin.
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Chapter 2. Code Tests

Numerical methods for solving the general relativistic hydrodynamics equations are inherently

complex and the codes need to be thoroughly tested before they can be successfully applied to

physical problems (see e.g. [93,94]). The code used in this work is based on an existing and well

tested computational infrastructure. Our contribution was to couple the two existing codes and

to test the resulting coupled system.

The hydrodynamics code THOR was tested by Zink et al. in [49], where it was demonstrated

that the code can handle models representative of many astrophysical situations, including rel-

ativistic shocks, rotating polytropes and equilibrium tori around BHs [95].

The spacetime evolution code QUILT was tested by Pazos et al. [50], who used this code to

study a perturbed Schwarzschild and Kerr metric in the context of an accurate wave extrac-

tion. Another test of the QUILT is presented in Chapter 12 of this thesis, where we demonstrate

convergent evolutions of nonlinear Brill waves with wave extraction.

In this chapter, we report the results of two tests of the coupled hydrodynamics and space-

time evolution codes: the stable convergent evolution of a rapidly rotating polytropic star is

reported in Section 2.1, and reproducing fundamental frequencies of a non-rotating polytropic

star is reported in Section 2.2, These tests serve as prerequisites to our main work (reported

in Chapters 5 and 6), which is to study non-axisymmetric instabilities in self-gravitating disks

using 3D simulations in full GR.

2.1 Stable Evolution of a Uniformly Rotating Polytrope

In this section, we present results of testing the time evolution of a uniformly rotating polytropic

star for numerical stability and convergence. In our tests, we use geometrized units based on

the solar mass, in which G = c = M� = 1. The parameters of the star in the geometrized and
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Table 2.1: Physical parameters of the uniformly rotating polytropic star used for the code tests,
in geometrized and CGS units, where: Rp/Re is the ratio of the polar to equatorial radii of the
star, J/M2 is its angular momentum, normalized with the square of the ADM mass of the star
M, and T/|W| is the ratio of the kinetic to binding energy of the star.

geom. CGS
polytropic scale K 100 1.46 · 105 cm5g−1s−2

polytropic index Γ 2 2
central rest-mass density ρc 0.001 6.17 · 1014 g cm−3

ratio Rp/Re 0.7 0.7
ADM mass M 1.49 1.49
rest mass M0 1.59 1.59
equatorial radius Re 12.32 1.823 · 106 cm
angular momentum J 1.32 1.16 · 1049 g cm2s−2

normalized ang. mom. J/M2 0.59 0.59
kinetic / binding en. T/|W| 0.0748 0.0748
angular velocity Ω 0.0215 4300 s−1

Keplerian angular velocity ΩK 0.0286 5801 s−1

rotational period P 292.1 1.44 · 10−3 s

CGS units are summarized in Table 2.1. We use thirteen-block cubed sphere system that was

described in [49] (see Fig. 1.1b and the related discussion in Section 1.1 above). For the current

setup, we fix the sizes of the blocks by choosing a = 2.5, Rmed = 9 and Rout = 14 (see Fig. 10.1b

for definition of a, Rmed and Rout), with each block having an equal number of N3 grid cells. The

sizes of the domain and its blocks are selected in such a way that the star occupies ≈ 90% of the

entire domain in radial equatorial direction, and the inner seven blocks of the system lie inside

the star. This setup allows to test how much the accuracy and convergence of our numerical

scheme are affected by interpolation errors on the interblock boundaries which thread the bulk

of the star.

The stability of the numerical scheme for evolving the spacetime metric depends on the

numerical dissipation parameter ε [76] and the constraint damping coefficients κ, γ2 (see Sec-

tion 1.5). In general, higher values of numerical dissipation restrict the timestep, while lower

values are undesirable because they do not provide enough suppression of the numerical noise,

which needs to be dissipated for stability [96]. For the current setup, we choose ε = 0.2 and

κ = γ2 = 0.1. The values of the constraint damping parameters higher than ≈ 0.5 lead to
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numerical instabilities in our simulations of stars.

Initial data for the time evolution is generated by the RNSID code [97], which uses the KEH(SF)

method [97, 98] to produce equilibrium models of stationary rotating relativistic stars. Since the

RNSID is a 2D solver which uses its own grid that is different from the 3D multiblock grid of our

time evolution code, we interpolate the data from 2D grid to the 3D multiblock grid using the 4-

th order Lagrange interpolation. Also, because the variables in the GH formulation contain first

derivatives of the metric and because the resolution on the 2D grid is usually much higher than

on the multiblock 3D grid, we perform numerical differentiation on the 2D grid. The resulting

derivatives are then interpolated onto the 3D grid. Note that the interpolation procedure is not

consistent with the Einstein constraint equations, and hence produces constraint violations.

The system is evolved up to t = 350, which corresponds to 1.73 ms, or 10 dynamical timescales

of the star1. In vacuum regions outside the star, we use artificial atmosphere, which has density

of ρatm = 10−7ρmax(0), where ρmax(0) is the maximum density at t = 0. If during the evolu-

tion the density in a cell drops down below a threshold value set to ρthr = 2 ρatm, the density

in this cell is reset to the artificial atmospheric value. To estimate the accuracy of our code, we

have performed convergence study using three different resolutions with N3 = 20× 20× 20,

40 × 40 × 40 and 80 × 80 × 80 grid points in each block. We have analyzed various integral

norms of the errors in all evolved variables, including 50 spacetime variables, 5 primitive vari-

ables and 5 conserved variables. We have also analyzed integral norms of the Hamiltonian and

momentum constraints, as well as the behavior of conserved integral quantities such as total rest

mass and total angular momentum.

In all cases, we observe the expected 2-nd order convergence. As an example, Fig. 2.1a shows

the time evolution of the L1 norm of the normalized density deviation δρ ≡ [ρ(t)− ρ(0)] /ρmax(0)

for the three resolutions. Due to accumulation of truncation errors, this deviation exhibits a

steady growth (modulo small variations because of oscillations of the star) throughout entire

evolution. The deviation for N = 40 is larger than that for N = 80 by a factor of ≈ 4, which is a

clear signature of 2-nd order convergence. However, the deviation for N = 20 is larger than that

1The dynamical time tD is defined as tD = Re
√

Re/M, where Re is a proper equatorial circumferential radius,
and M the ADM mass of the star. It corresponds to the inverse of the orbital frequency Ω =

√
M/R3

e at Re.
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for N = 40 by a smaller factor of ≈ 1.5, which means that the resolution N = 20 is insufficient

for achieving a convergent regime. A similar convergent behavior is observed for integral norms

of the deviations of all of the rest of the variables.
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Figure 2.1: Time evolution of (a) L1 norms of the Hamiltonian constraint; and (b) density solu-
tion error δρ/ρmax(0) for three different resolutions.

Figure 2.1b shows the plot of the L1 norm of the Hamiltonian constraint violation as a func-

tion of time. This quantity is not zero at t = 0, since initial conditions were interpolated from the

2D grid and interpolation errors were introduced. However, because of the constraint damping

scheme, the Hamiltonian constraint violation significantly drops for medium and high resolu-

tions within the first 0.2 ms. During subsequent evolution the value of the Hamiltonian con-

straint remains stable and clearly shows the 2-nd order of convergence with resolution, i.e. the

values of the Hamiltonian constraint for N = 20, 40 and 80 are in an approximate ratio 16 : 4 : 1.

Momentum constraints show a similar behavior.

Figure 2.2 demonstrates time evolution of the total rest mass (left panel) and total angular

momentum (right panel) of the star. In our numerical simulations these quantities are not con-

served mostly due to interpolation errors on the interblock boundaries that pass through the

bulk of the star. By the end of the simulation, for N = 20, 40 and 80, the total rest mass decreases

by 0.88, 0.84 and 0.25 percent, while the total angular momentum decreases by 0.07, 0.12 and 0.05

percent. These numbers show that the smallest necessary resolution for the convergent regime

is N = 40, which amounts to ≈ 70− 100 points across the star.
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Figure 2.2: Time evolution of: (a) the total rest mass, and (b) the total angular momentum for
three different resolutions. Both quantities are normalized to their values at t = 0.

2.2 Fundamental Modes of a TOV Star

As another test of the coupling between the GR and hydro parts of the code, we evolved a

Tolman-Oppenheimer-Volkoff (TOV) solution on a seven-block system, and measured the fre-

quencies of its fundamental oscillations both in the Cowling approximation and in full GR. In

these tests, we use geometrized units in which G = c =M� = 1. We choose a star with Γ = 2,

K = 100 and the value of rest-mass density in the center ρc = 1.28 · 10−3. These parameters

produce a TOV star with gravitational mass M = 1.4 and circumferential radius Re = 9.8. This

system has already been extensively studied in the literature and used for the assessment of rela-

tivistic hydrodynamical codes (e.g. [99,100]). The seven-block cubed sphere system that we used

(see Fig. 10.1a) has the outer radius Rout = 12, which makes the star occupy 82% of the domain in

radial direction and leaves extra room for small oscillations. The size of the cubical block in the

center is 2a = 4.8, placing it completely inside the star. The bulk of the star is therefore threaded

by interpolation boundaries between the blocks. The cubical block contains N3 volume cells,

and the outer blocks have N2 × (2N) cells. For the tests, we used resolutions N = 20, 40 and 80,

which roughly correspond to 40, 80 and 160 points across the star.

To observe and measure the fundamental mode, we artificially add a small initial perturba-
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Figure 2.3: Time evolution of the density ρc(t) at the center of a TOV star, normalized by its
initial value ρ0, for three different resolutions. Left panel: Cowling approximation. Right panel:
fully dynamical GR case.

tion, roughly corresponding to the shape of the mode:

δρ

ρ
= A cos

πr
2Re

,

The amplitude was chosen to be A = 0.005. Fig. 2.3 displays the resulting oscillatory behavior

of the rest-mass density in the center of the star for three different resolutions. Left and right

panels correspond to fixed (Cowling approximation) and dynamical spacetime geometries, re-

spectively. Oscillations of the density are accompanied by a secular drift, which reflects accumu-

lation of truncation errors and converges away with resolution at approximately second-order

convergence rate. Conserved quantities such as the total rest mass and the total angular momen-

tum (not shown) also exhibit the second-order convergence, as expected. In particular, for the

Cowling approximation case, the simulation continued up to 20 ms, and the final rest mass is

conserved up to 8.3, 3.7 and 1.1 percent for resolutions with N = 20, 40 and 80. For the full GR

case, the simulation continued for 6 ms and the rest mass is conserved up to 3.2, 1.3, 0.4 percent

for the same three resolutions. This shows that the rate of the mass loss in Cowling and full GR

simulations is approximately the same, as expected. Because the bulk of the star is threaded by

interpolation boundaries between the blocks, the mass loss is significantly higher in this setup

than in case of a regular Cartesian grid, where we normally observe that the mass is conserved

up to 7-8 significant digits for a similar resolution.
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Figure 2.4: Power spectrum of the density oscillations ρc(t) at the center of a TOV star for the
highest resolution simulations in Cowling approximation (red solid line) and in full GR (green
solid line). Also shown are derivatives of the power spectrum with respect to the frequency,
obtained using the central finite-differencing scheme. The derivatives allow to localize peaks in
the power spectrum more accurately. Vertical axis has arbitrary units.

A Fourier transform of ρc(t) allows to measure the frequencies of the dominant oscillation

modes. Fig. 2.4 shows the Fourier power spectrum of ρc(t) in Cowling and full GR cases for

simulations with the highest resolution N = 80. Both spectra contain three easily identifiable

peaks corresponding to the fundamental radial modes F, H1 and H2. The same plot also shows

derivatives of the spectral power with respect to the frequency, computed using the central finite

differencing scheme. Zeroes of these numerical derivatives provide accurate estimates of the

location of frequency peaks. The frequency of the F-mode in Cowling approximation is ν(F) =

2.684(40) kHz, which is in agreement with the value of 2.706 kHz, found in [100]. In the fully

general relativistic case, we obtain the frequency ν(F) = 1.440(50) kHz, which also agrees with

the value 1.458 kHz, found in [101]. Note that the error in the values of fundamental frequencies

above is estimated as the distance between the root of the power spectrum derivative and the

nearest point with a non-zero value.
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Chapter 3. Self-gravitating Disks

Thick relativistic accretion disks and tori around BHs can form as transient structures in several

astrophysical scenarios, including core-collapse of massive stars [22, 102] and merger of NS-NS

and NS-BH binaries [103, 104]. In the general picture of relativistic figures of equilibrium [105,

106], the sequence of self-gravitating equilibrium tori around BHs branches off the sequence of

quasi-toroidal stars [105, 107, 108].

Many models of gamma-ray bursts (GRBs) rely on the existence of massive dense accretion

disks around BHs [102,109,110]. The observed∼ 1051 erg energy powering GRBs [20,109,111] is

believed to be coming either from the accretion disk and/or rotation of the central object. If this

energy comes from the disk1, then – assuming that the efficiency of converting disk energy into

that of GRB can at most be ∼ 10% as in many other astrophysical scenarios [114] – the accretion

disk should have a mass of & 0.01M�. Recent numerical simulations have demonstrated that

the mass of the disk resulting from binary NS-NS (BH-NS) mergers – which are thought to be

candidates for central engine of short GRBs – can be in the range of ∼ 0.01− 0.2M� [104, 115]

(∼ 0.01 M� [116]). Due to their larger initial mass, core-collapse of massive stars, which are

believed to be progenitors of long GRBs2 [22, 102], can perhaps produce much more massive

disks.

The neutrino-annihilation mechanism for triggering GRBs [110], in which neutrinos emitted

by the disk annihilate predominantly at the rotation axis to produce e+ − e− pairs and deposit

energy behind the jet, rely on super-Eddington accretion rates, which can take place only in

1In alternative models, the GRB is powered by the rotation energy of the central object. If the latter is a BH, then
the rotation can be converted through Blandford-Znajek mechanism [112]. If the central object a NS, then its energy
can be transformed through magnetic fields [23, 113].

2Note that although all of the long GRBs are believed to be produced by core-collapse of massive stars, not all
of the latter can produce long GRBs: In order to produce a GRB, precollapse star is probably required to be rapidly
rotating [102, 117, 118].
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high-density (ρ ∼ 1012 g cm−3) disks. Moreover, the efficiency of neutrino annihilation at the

rotation axis and the requirement of a small baryon load of the relativistic ejecta [109, 111, 119]

strongly favors a toroidal structure for accreting matter [120, 121].

The duration of prompt GRB emission is & 2 s (. 2 s) for long (short) GRBs, while that of the

later-time X-ray emission can be as long as ∼ 105 s (e.g., [18]). Recent observations of GRB X-ray

afterglows have revealed a variety of late-time emission processes, including plateaus, bright

X-ray flares, chromatic breaks, some of which can persist up to ∼ 105 s following the initial GRB

prompt emission (see, e.g., [20] for a recent review). The amount of energy released in the late-

time emission phase can be comparable to that produced during the prompt emission phase.

Both the prompt and the late-time emissions can be explained as the result of the activity of the

central engine (see, e.g., [18, 20]), although alternatives models exist [122–124]. If the emission

energy comes from the disk, such a long duration of the observed GRB emission requires the

disks to accrete in a quasi-stable manner for a sufficiently long period of time.

3.1 Runaway Instability

Early studies of the stability of accretion disks have revealed that they can be subject to several

types of axisymmetric and/or non-axisymmetric instabilities in a number of circumstances [24,

25,27,41,82,125,126]. Instabilities can lead to highly variable and unstable accretion rates, posing

a serious challenge to the viability of “accretion-powered” GRB models. The so-called dynamical

runaway instability of thick accretion disks around BHs was first discovered by Abramowicz,

Calvani & Nobili [125]. This instability is similar to the dynamical instability in close binary

systems, when the more massive companion overflows its Roche lobe. In such a case, the radius

of the Roche lobe shrinks faster than the radius of the companion, leading to a catastrophic

disruption of the latter. In disk+BH systems, a toroidal surface analogous to the Roche lobe can

be found. A meridional cut of this surface has a cusp located at the L1 Lagrange point. If the disk

is overflowing this toroidal “Roche lobe”, then the mass-transfer through the cusp will advance

the cusp outwards inside the disk. This can result in a catastrophic growth of the mass-transfer

and disruption of the disk in just a few dynamical timescales.

Abramowicz et al. [125] studied the properties of mass transfer using many simplifying as-
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sumptions: a pseudo-Newtonian potential for BH gravity [127], constant specific angular mo-

mentum of the disk, and approximate treatment of the disk self-gravity. They found that the

runaway instability occurs for a large range of parameters, such as the disk radius and the disk-

to-BH mass ratio MD/MBH. Subsequent and somewhat more detailed studies found that the

rotation of the BH has a stabilizing effect [37, 128], while non-constant radial profile angular

momentum was found to strongly disfavor the instability [35, 37, 42, 129]. Moreover, studies

using a Newtonian pseudopotential for the BH [38, 130] and relativistic calculation with fixed

spacetime background [126, 131] found indications of the self-gravity of the disk to favor the

instability. However, Montero et al. [43] recently performed the first self-consistent and fully

general relativistic simulations of thick accretion disks around BHs in axisymmetry for a few

dynamical timescales. They found no signatures of a runaway instability during the simulated

time, perhaps implying that the self-gravity of the disk does not play a critical role in favoring

the instability, at least during the first few dynamical timescales.

3.2 Non-axisymmetric Instabilities

The problem of the existence and development of non-axisymmetric instabilities has a long his-

tory. For thin Keplerian self-gravitating disks it was found that the Toomre parameter [132–134]

can be used to determine stability against both local clumping or fragmentation, and forma-

tion of global non-axisymmetric modes. For thick pressure-supported disks, Papaloizou and

Pringle discovered [24] the existence of a global hydrodynamical instability that develops on a

dynamical timescale in disks with negligible self-gravity and constant specific angular momen-

tum. A follow-up publication [25] found this instability also in disks with power law distribu-

tion of specific angular momentum `(r) = `0(r/rc)2−q for all q >
√

3. Kojima [27, 28] found the

Papaloizou-Pringle (PP) instability in equilibrium tori on a fixed Schwarzschild background [95]

using a linearized perturbative approach.

Subsequent works clarified the nature of the PP instability [26, 29, 135, 136], established how

it redistributes specific angular momentum [137] and discovered that accretion has a stabiliz-

ing effect on the disk [138, 139]. In particular, Narayan et al. [26] showed that the PP modes

are formed by two boundary wave-like perturbations with energy and angular momentum of
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opposite signs that are coupled across a forbidden region near the mode corotation radius. For

wide disks around BHs, the accretion suppresses the development of the inner boundary wave

and therefore has a stabilizing effect on PP modes [138,139]. For slender disks, the development

of PP modes is mostly unaffected by accretion [139]. The PP instability itself amplifies accretion

by exerting torques on the disk and redistributing specific angular momentum [137].

When the self-gravity of the disk has been taken into account, it was found [30–32] that two

new types of non-axisymmetric instabilities appear, while the PP instability disappears for most

of the models and remains only in slender models with a low value of self-gravity. The first

type of unstable modes (J-modes) appears in strong self-gravity regime, and it is an analog of

the classical Jeans instability. The second type of unstable modes was found in the strong and

medium self-gravity regimes [30]. The modes of this type are referred to as intermediate modes

(I-modes) and represent elliptic deformations of the disk (or triangular, square, etc. deformations

for higher azimuthal numbers – see e.g. [32]).

Yet another type of instability, so-called ”eccentric instability” was discovered in [140] for thin

nearly Keplerian self-gravitating disks when the central mass was allowed to move. An elab-

orate mechanism called ”SLING amplification” [141] was proposed to describe this instability.

Subsequent investigation [142] of this instability in thin disks suggested a different mechanism

and predicted that the system is dynamically unstable only when the mass of the disk exceeds

the mass of the central object.

In [82], Woodward, Tohline and Hachisu presented an extensive parameter study of thick

self-gravitating disks in Newtonian gravity to determine the type, growth rate and pattern speed

of non-axisymmetric modes. The central mass in their simulations was allowed to move, and

they used 3D time evolutions of the disk models with wide range of parameters, including disk-

to-central object mass ratios MD/Mc = 0, 1/5, 1 and ∞. Another study of the principal modes

in thick self-gravitating disks with fixed central objects was performed in [143].

Several recent publications address accretion disks and instabilities in these disks in context

of GRB central engines. In [115], Rezzolla et al. studied the properties of accretion disks resulting

from binary NS mergers. They obtained almost Keplerian accretion disks with masses ∼ 0.01−

0.2M� and no evidence of growing non-axisymmetric modes or runaway instability. In [144],
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Taylor, Miller, and Podsiadlowski used 3D SPH simulations with detailed microphysics and

neutrino transport to follow a collapse of an iron core up to the formation of a thin massive

accretion disk and development of global non-axisymmetric modes. They found that torques

created by the non-axisymmetric modes provide the main mechanism for angular momentum

transport, leading to high accretion rates of ∼ 0.1 − 1 M�/s, which may create a favorable

conditions for powering GRBs.

3.3 Purpose of This Work

Despite significant theoretical and computational effort, previous studies of the runaway insta-

bility do not give a definite answer to the question of its existence in general case. Additionally,

it remains unclear if and how the non-axisymmetric dynamics may affect the likelihood of the

runaway instability in such models. It is important to create a comprehensive overall picture of

the stability of accretion disks for wide range of parameters. The aim of the work reported in this

paper is to investigate stability of the disk against non-axisymmetric and runaway instabilities

using three-dimensional hydrodynamical simulations in full GR. We study slender and moder-

ately slender disks with constant distribution of specific angular momentum, which are expected

to be more unstable both to runaway [35, 129] and to non-axisymmetric instabilities [138, 139].

We model our disks using the ideal fluid approximation (i.e. without viscosity) with a Γ-

law equation of state (EOS) and Γ = 4/3. We do not include additional physics such as mag-

netic fields or neutrino and radiation transport due to the complexity and computational cost

of the resulting problem. Nevertheless, the adopted approach will allow us to identify GR

effects which can operate in more complex setting that include more realistic microphysics,

neutrino/radiation transport and magnetic fields. Also, we limit ourselves to the case of non-

rotating BHs, while the case of rotating BHs will be studied in our future publications.
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Chapter 4. Initial Setup

We set up initial equilibrium disk configurations by solving Einstein constraints using a version

of the RNSID solver [97] adapted to the problem of equilibrium tori. The method of solution

is similar to the one used in [145]. The spacetime is assumed to be stationary, axisymmetric,

asymptotically flat and symmetric with respect to reflections in equatorial plane. The metric is a

general axisymmetric metric in quasi-isotropic coordinates:

ds2 = −λ2dt2 + e2α(dr2
∗ + r2

∗dθ2) + B2/λ2r2
∗ sin2 θ(dϕ−ωdt)2. (4.1)

where (t, r∗, θ, ϕ) are the coordinates, and λ, α, B and ω are metric potentials which depend only

on r∗ and θ. The RNSID code implements the KEH(SF) method [97, 98], in which the Einstein

equations for the metric potentials λ, B and ω are transformed into integral equations [145]

using Green’s functions for the elliptical differential operators. The remaining metric potential α

can then be found by integrating an ordinary differential equation, once the rest of the potentials

are known. The KEH(SF) method uses compactified radial coordinate s which maps the region

[0, ∞) into a segment [0, 1]:

s ≡ r
r + r+

where r+ is the outer radius of the disk. The boundary conditions are imposed at symmetry

interfaces and at the event horizon. The latter can always be transformed to a sphere of com-

pactified radius sh, while preserving the form of the metric given above [145]. At the horizon, we

impose the boundary conditions for a non-rotating BH: λ = B = ω = 0, and we set B/λ = eα

at the symmetry axis. The corresponding integral equations are then solved using Newton-

Raphson iterations [97] in the upper quadrant θ ∈ [0, π/2], s ∈ [0, 1] of the meridional plane.

The resulting quasi-isotropic metric is degenerate at the event horizon, which is very prob-
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Figure 4.1: Conformal Penrose diagram of an axisymmetric spacetime, consisting of a non-
rotating BH, distorted by a massive stationary disk around it. Each point on the diagram cor-
responds to a spheroid, located at a given geodesic distance from the BH horizon. Blue lines
represent a quasi-isotropic foliation of the spacetime, while red lines show a horizon-penetrating
foliation.

lematic for the evolution with excision of the BH interior using the generalized harmonic for-

mulation, since this method requires coordinates without pathologies at the event horizon. This

situation is best illustrated by a conformal picture of the complete spacetime, shown in Fig. 4.1.

All quasi-isotropic slices meet the horizon of the BH at its throat, which makes the metric de-

generate at the horizon. Regions II and IV are not covered by the quasi-isotropic foliation. It is

necessary for our time evolution methods to have a time-independent foliation which penetrates

the horizon and continues in region II rather than region III.

There are several options to address this issue:

(1) solve the complete system of equations in horizon-penetrating coordinates rather than

quasi-isotropic ones;

(2) use puncture initial data, as developed in [146], and choose such a gauge for the evolution

that after some time the spatial slices move from region III to region II, similarly to what

happens with punctures in the BSSN formulation and 1 + log slicing [147];

(3) apply a spacetime coordinate transformation from quasi-isotropic to horizon-penetrating

coordinates. Since there is still no solution provided in region II, it needs to be extrapolated

into that region.

We use option (3), since it is easier to implement in the context of the generalized harmonic

system, and fits more naturally in the gauge choice employed by RNSID. Details on the spacetime
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transformation that we apply to the initial data can be found in Appendix A.

4.1 Blending Numerical and Analytical Metrics

We could not extrapolate the initial data produced by the elliptic solver to the region II inside

the horizon, because the data does not have enough smoothness near the horizon. The problem

with initial data at the horizon seems to be similar to the problem with Gibbs phenomena, when

solutions exhibit an oscillatory behavior and a lower order of convergence near a stellar surface.

To handle this problem, we use an approximation, which combines the numerical metric in the

region where it is accurate with the analytic Kerr-Schild solution of the same mass. We use a

finite-size blending zone between the two metrics to avoid discontinuities. The blending of two

different metrics introduces constraint violations in the system.

Figure 4.2: Blending the analytic (A) and numerical (N) metrics. The red line signifies location
of the event horizon. Two metrics are added with smooth weight functions which add up to 1.

Fig. 4.2 illustrates how the blended initial data are constructed. The blended metric is a

weighted sum of two metrics with smooth weight functions which add up to 1. The weight

functions are non-constant only in a narrow spherical layer located outside the horizon.

Blending two metrics introduces constraint violations at the continuum level, but they quickly

subside due to the constraint damping. The constraint damping scheme, however, doesn’t re-

spect the conservation of mass, so after the constraint violations are suppressed, the system

arrives at a different state, which can be characterized as a close equilibrium configuration with
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an imposed axisymmetric gravitational perturbation.

The location and width of the blending layer can be adjusted to minimize the initial unphys-

ical jump in a BH mass and constraint violations. For the evolutions presented below, we used

the radius of the blending layer 1.1rAH and the width 0.05rAH, where the rAH is the radius of the

apparent horizon.

4.2 Initial Disk Models

We have prepared three initial disk models with disk-to-BH mass ratios MD/MBH = 0.235, 0.174

and 0.108, labeled A, B and C. Model C is slender, which means that its width is much smaller

than the radius the torus, i.e. rc � (r+ − r−). Models A and B are moderately slender, i.e. for

these models rc ≈ (r+ − r−). Fig. 4.3 shows the contours of the disk surfaces for our models

and the location of black hole horizon in the meridional plane. All models are constructed using

a polytropic equation of state with polytropic index Γ = 4/3, constant specific entropy, and a

constant specific angular momentum distribution.

Figure 4.3: Contours of the disk surfaces for models A, B and C, and the location of black hole
horizon in the meridional plane.

Table 4.1 lists physical and geometrical parameters of the disk, including the ratio of disk

to BH mass MD/MBH, the ratio of kinetic energy T to potential energy W and the self-gravity

parameter τ. The self-gravity parameter τ can be defined as ρc/ρsph, where ρsph ≡ Ω2
c /4πG

is the density of a uniform sphere with radius rc, that creates equivalent gravity at that radius.

Notice that T/|W| correlates to the ”slenderness” of the disk r−/r+. The value of specific an-
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Table 4.1: Physical parameters of the self-gravitating initial disk models, used in our simulations.

Model A B C
Specific angular momentum `[MBH] 4.50 4.32 4.87
Polytropic constant K[1014cm3g−1/3s−2] 1.28 1.04 0.519
Maximum density ρc[1013g/cm3] 1.23 1.17 0.755
Disk-to-BH mass ratio MD/MBH 0.235 0.174 0.108
Kinetic to potential energy T/|W| 0.479 0.497 0.499
Central radius rc/rg 6.51 5.58 8.23
Ratio of inner to central radius r−/rc 0.655 0.655 0.756
Ratio of inner to outer radius r−/r+ 0.385 0.407 0.600
Orbital frequency at rc, Ωc[s−1] 1713 1912 1121
Self-gravity parameter τ = 4πGρ/Ω2

c 3.52 2.68 5.04

gular momentum ` is given in units of the BH mass. These parameters allow us to make qual-

itative and quantitative comparisons between our models and the models studied in previous

works [30–32, 82, 143].

4.3 Adapted Curvilinear Grid

In order to accurately resolve both the disk and the BH while minimizing the computational cost,

we have designed a series of curvilinear multiblock grids adapted to each of the disk models. To

obtain such a grid, we start from a six-block system (displayed on Fig. 1.1c) that was previously

used in QUILT for computationally efficient and numerically accurate simulations of perturbed

BHs [50]. We apply a radial stretching and an angular distortion to the six-block system so as

to create a uniformly high resolution near the BH, nearly cylindrical grid near the disk, and

approach a regular six-block spherical grid in the wave zone. These mappings are described in

detail below. Figure 1.1d shows an illustration of the grid distortion, while Fig. 4.4a shows the

actual curvilinear grid used in some of our simulations.

A regular six-block system consists of two polar blocks (near the z-axis) and four equatorial

blocks (near the xy-plane). We can assign quasi-spherical coordinates {r, θ, ϕ} and {r, θ1, θ2} to

the equatorial and polar blocks, respectively. They can be related to the Cartesian coordinates

{x, y, z} by the following transformation:
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(a) for an equatorial block in the neighborhood of the positive x axis:

x = r/
√

1 + tan ϕ2 + tan θ2,

y = x tan ϕ,

z = x tan θ,

(b) while for a polar block in the neighborhood of the positive z axis:

x = z tan θ1,

y = z tan θ2,

z = r/
√

1 + tan θ1
2 + tan θ2

2.

(c) The remaining blocks are obtained by applying symmetry transformations.

We set the coordinate ranges for the polar blocks to be r ∈ [Rmin, Rmax], θ1, θ2 ∈ [−θ∗, θ∗],

where the value of θ∗ controls an opening angle of the polar blocks. For equatorial blocks, r ∈

[Rmin, Rmax], θ ∈
[
−π

2 + θ∗, π
2 − θ∗

]
and ϕ ∈

[
−π

4 , π
4

]
. The size of the numerical grid for each

block is fixed by three numbers: Nr, Nx and Nz. The equatorial blocks have Nr × Nx × Nz cells,

and the polar ones have Nr × Nx × Nx cells (see Fig. 10.1c).

In order to obtain a variable radial resolution, we apply a smooth one-dimensional radial

stretching S : r → r̄ that yields the desired resolution profile ∆r(r). This profile is chosen

based on several stringent requirements imposed by an accuracy and available computational

resources. First, there need to be at least 8 grid points between the excision radius and the BH

horizon in order to prevent constraint violations from leaving the interior of the BH (this ques-

tion is considered in some detail in [148]), as well as to allow for some (restricted) BH move-

ment. Second, our convergence tests show that near the disk, the grid needs to allow for at

least 40 points across the disk in order to achieve a global convergent regime in hydrodynamical

evolutions. For this purpose, the radial resolution profile is adapted to have sufficiently high

resolution near the disk as well. Third, in the wave zone, there is no need to maintain very high

radial resolution. However, this resolution needs to be uniform (rather than, for example, expo-

nentially decreasing) to be able to carry the radiation accurately without dissipation. All these
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requirements result in the radial resolution profile ∆r(r) shown on Fig. 4.4b.

The resolution in the θ direction ∆θ near the disk also needs to have at least 40 points across

the disk for convergence. However, simple increase of Nθ in the six-block system leads to a very

small minimal grid step ∆min at the excision radius Rmin that is too restrictive for the time step

due to CFL condition. To increase the grid resolution in the θ-direction near the disk only, we

apply a radial-dependent distortion to the angular coordinates θ, θ1 and θ2:

θ(θ̄, r) = θ̄(1− β(r) cos 2θ∗
π−2θ∗

),

θi(θ̄i, r) = θ̄i(1 + β(r) sin 2θ∗
2θ∗

), i = 1,2

where the function β(r) is the amplitude of the distortion, chosen to have a Gaussian profile

β(r) = β∗ exp(−(r − r0)2/σ2), in which the parameters β∗, r0 and σ are chosen to satisfy the

above requirements. This distortion bends diverging radial coordinate lines towards equatorial

plane around the radius r0, making the grid resemble a cylindrical shape near that radius (as

illustrated by Fig. 4.4a). Figure 4.4b shows the dependence of ∆θ on r along the x-axis (dotted

black line) and along the z-axis (dash-dotted red line). The radial-dependent θ-distortion in-

creases ∆θ on the x-axis at the expense of ∆θ on the z-axis near the disk. Away from the disk, the

distortion vanishes and ∆θ approaches the linear dependence ∆θ(r) ∝ r.

Figure 4.4 shows an example of the resulting curvilinear grid. For this example, θ∗ = 30o,

Nθ = 49 and Nϕ = 25. These parameters make the grid spacing approximately uniform in

angular direction near the BH and at large r. The inner (excision) radius is Rmin = 1.3 and the

outer one is Rmax = 500, while the minimum grid spacing is ∆min = ∆θ(rmin) ≈ 0.06. The

apparent horizon has radius of ≈ 1.7, so that as many as 8 grid points can be placed inside the

horizon without decreasing the minimum grid spacing. Distortion parameters of the Gaussian

have values r0 = 12, σ = 8, and β∗ = 1.3, which is sufficient to concentrate about 40 grid points

across the disk in the vertical direction. The radial resolution is adapted to be (∆r)BH ≈ 0.06 at

the excision sphere, (∆r)disk ≈ 0.25 around the disk, and (∆r)wz ≈ 5.2 in the wave zone.

All of the time evolutions described in the next two Sections 5 and 6 use adapted six-block

curvilinear grids. Table 4.2 summarizes dimensions and resolutions of the grids for each of the
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Figure 4.4: The top panel: meridional cut of an adapted curvilinear grid used in one of our
simulations, combined with the logarithmic density contours of the disk at t = 0. The intersect-
ing radial coordinate lines belong to the neighboring blocks in the overlapping (interpolated)
regions. The thick black circle marks a location of an apparent horizon of the BH. The inset in
the lower left corner of the plot shows the high-resolution grid around the BH, adapted in such a
way that the resolution is uniformly high in every direction. The bottom panel: radial profile of
the resolution in the r (red solid line) and the θ (dotted lines) directions for the grid shown in the
top panel. The radial coordinate is plotted in logarithmic scale. The top horizontal axis shows
the values of the radius in numerical units. The marks on the lower axis are: rex is the radius of
the BH excision sphere; rg is the gravitational radius of the BH; r−, r+ is the inner and outer radii
of the disk; rc is the radius of the density maximum; rW is the “wave extraction” radius; Rout is
the outer radius of the domain. The black dotted line is the resolution in the θ-direction on the x
axis, and the red dashed-and-dotted line is the resolution in the θ-direction on the z axis.
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simulations used in these two sections. The first column lists simulation names, which con-

sist of two or three symbols. Models K1-K6 are considered in Section 6.1. In the rest of the

model names, the first letter denotes the initial disk model (A, B or C), the second letter signifies

whether the simulation is evolved in full GR (F) or Cowling (C) approximation (see correspond-

ing Sections 6.2 and 6.3). The next number (if present) is the azimuthal number m of an added

non-axisymmetric perturbation (as explained in Section 6). Simulations AFc, AF and AFf rep-

resent disk model A evolved in full GR using coarse, medium and fine resolution grids. These

models are used in Chapter 5 for convergence studies. Finally, note that the adapted curvilinear

grid example above (displayed in Fig. 4.4) corresponds to the the grid used in simulation AF, and

the grids of simulations AFf and AFc are obtained by increasing and decreasing the resolutions

in the AF grid by a factor of 3/2.

4.4 Data Analysis

To identify and characterize non-axisymmetric instabilities, we will adopt an approach com-

monly used in linear perturbative studies of accretion disks (e.g. in [28, 82]). Namely, we ana-

lyze first few terms in Fourier expansion in angle ϕ of the disk density ρ(r, ϕ) on a sequence of

concentric circles in the equatorial plane:

ρ(t, r, ϕ) = ρ̄(t, r)

(
1 +

∞

∑
m=1

Dme−i(ωmt−mϕ)

)
.

where ρ̄ is a ϕ-averaged density at a given radius. The quantity Dm represents the (complex)

amplitude of an azimuthal mode m, the real part of the quantity ωm determines a mode pattern

speed, while its imaginary part determines a mode growth rate. Following [82, 149], we quan-

tify the growth rate and the pattern speed of a non-axisymmetric mode by two dimensionless

parameters y1 and y2, defined as

y1(m) =
Re(ωm)

Ωorb
−m, y2(m) =

Im(ωm)
Ωorb

.

We calculate a value of the parameter y2(m) from a slope of log |Dm| versus t at an arbitrary

radius, while y1(m) is obtained from a slope of the mode phase angle ϕm = ϕm(t). Notice that
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Table 4.2: Parameters of numerical grids for all the simulations of accretion disks used in this
study. The naming convention of the simulations is explained in the main text in Section 4.3
on adapted curvilinear grids. All resolutions and linear dimensions are given in computational
units. The first column, which lists the values of the BH gravitational radius rg, allows to convert
all quantities from computational to CGS units. The remaining columns contain: Rmin, Rmax are
radial extents of the computational domain; Nx is the number of grid points in the horizontal x-
or y-direction; Nz is the number of grid points in the vertical direction; Nr is the number of grid
points in the radial direction; ∆min is the minimal grid step size, in θ direction at the excision
sphere; (∆r)disk is the resolution in the r-direction at radius rc; (∆θ)rc,x is the resolution in the
θ-direction on the x-axis at radius rc; (∆θ)rc,z is the resolution in the θ-direction on the z-axis
at radius rc; (∆r)wz is the radial resolution in the wave zone (not used for simulations on fixed
background).

Model rg Rmin Rmax Nx × Nz × Nr ∆min (∆r)disk (∆θ)rc,x (∆θ)rc,z (∆r)wz
K1 2.0 4.0 30 25× 49× 96 0.07 0.25 0.32 0.72 –
K2 2.0 4.0 25 25× 49× 96 0.07 0.25 0.32 0.72 –
K3 2.0 4.0 22 25× 49× 96 0.09 0.20 0.17 1.28 –
K4 2.0 6.0 17 25× 49× 96 0.08 0.18 0.13 1.68 –
K5 2.0 7.0 16 25× 49× 96 0.03 0.10 0.05 0.50 –
K6 2.0 8.0 14 25× 49× 96 0.02 0.08 0.03 0.53 –
AC, AC1, AC2 1.760 1.7 25 37× 73× 144 0.05 0.17 0.21 0.48 –
BC, BC1, BC2 1.806 1.7 25 37× 73× 144 0.05 0.17 0.21 0.48 –
CC, CC1, CC2, CC3 1.812 1.7 25 37× 73× 144 0.05 0.16 0.16 0.54 –
AF, AF1, AF2 1.760 1.3 500 25× 49× 280 0.06 0.25 0.22 0.95 5.2
AFc 1.760 1.3 1000 17× 33× 180 0.09 0.37 0.33 1.43 7.8
AFf 1.760 1.3 1000 37× 73× 420 0.04 0.17 0.15 0.62 3.4
BF, BF1, BF2 1.806 1.3 1000 25× 49× 280 0.06 0.25 0.22 0.95 5.2
CF, CF1, CF2, CF3 1.812 1.3 1000 25× 49× 280 0.06 0.22 0.22 1.01 5.2

because the modes that we consider are global, their growth rates and pattern speeds do not

depend on a radius.

We use the parameter y1(m) to obtain the value of a corotation radius rcr for a given mode:

using the mode pattern speed,

Ωp = Ωorb

(
1 +

y1(m)
m

)
,

and the radial profile Ω = Ω(r) of a fluid angular velocity in the disk, we can calculate rcr from

the equation Ω(r = rcr) = Ωp.

In those simulations where the disk is oscillating radially, the values of the mode amplitudes

at a given radius oscillate with the disk, which makes it more difficult to extract their growth

rates. For such cases we found that more accurate growth rates can be obtained if we use nor-
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malized root mean squared (RMS) mode amplitudes Gm, defined as:

Gm = 〈Dm〉2 / 〈D0〉2

where the angle brackets 〈. . . 〉2 denote an RMS value over radii from r− to r+:

〈Dm〉2 ≡
1

r+ − r−

(∫ r+

r−
|Dm|2dr

)1/2
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Chapter 5. Time Evolution

In this chapter, we present the results of the fully general relativistic time evolution of the ini-

tial data for the reference model A, constructed as described above in Section 4. Overall, the

dynamics of model B is qualitatively similar to that of A, while model C exhibits a qualitatively

different time evolution. The BH initial mass in all of our models is 2.5M�, as in some of the

previous works [39, 41, 42], and the disk rotational period tc = 3.667 ms is used as a unit of time

in all of the plots in this section.

At the beginning of time evolution, the metric blending procedure (described earlier in Sec-

tion 4.1) introduces axisymmetric constraint-violating perturbation to the spacetime near the

BH, causing an unphysical oscillation in the BH mass, which damps out in about one orbital

period of the disk. We discard the first orbital period when drawing physical conclusions and

analyzing simulation data. In the meanwhile, the axisymmetric perturbation propagates out-

wards and triggers axisymmetric disk oscillations. Disk oscillations lead to formation of shock

waves, which transform kinetic energy of the shock to the thermal energy, resulting in damping

of the oscillations. We discuss different aspects of the dynamics of the disk in more detail below.

After about three orbital periods, the disk develops an m = 1 non-axisymmetric mode, which

we have identified as Papaloizou-Pringle (PP) type instability [24, 25] (discussed in more detail

below in Chapter 6). The same type of mode develops in model B, while the more slender model

C develops an m = 2 mode of an intermediate type (see Section 6.3). As the m = 1 mode grows,

the center of mass of the disk drifts away from its initial position along a spiral-like trajectory,

as shown in Fig. 5.1 (red squares). As a result of gravitational interaction between the deformed

disk and the BH, the latter also starts spiraling away, mirroring the motion of the disk center

of mass, as shown in Fig. 5.1 (black line). This plot also shows dashed lines that connect the

positions of the center of mass of the BH and the disk at different moments of time. As we can
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Figure 5.1: Trajectories of the center of mass of the accretion disk (red line) and the BH (black
line). Dashed lines show four consecutive simultaneous locations of the two centers of mass,
and a small red circle at the origin marks the location of their common center of mass. The spiral
motion of the BH is caused by the development of the non-axisymmetric m = 1 mode in the
disk.

see, all of the these lines intersect with each other at one point at the initial location of the center

of mass of the disk-BH system, implying that the center of mass of the system does not move,

as should be the case for BH motion caused by physical interaction with the disk (but not gauge

effects). Notice that the mass loss due to emission of GWs is negligible in this case.

Fig. 5.2 shows the time evolution of the amplitude |D1| of the m = 1 PP non-axisymmetric

mode and the distance rBH (normalized to rg) from the BH center to its initial position. As we

can see, both |D1| and rBH have the same growth rate. This feature provides another evidence

that the BH motion is a result of the physical interaction with the m = 1 disk deformation, but

not due to gauge effects.

We point out that, as a result of the interaction of the m = 1 deformed disk with the BH,

the latter acquires significant orbital angular momentum from the disk. Fig. 5.3 illustrates how

angular momentum of the disk (JD), BH (JBH)1 and BH+disk system (JBH + JD) changes with

1We calculate the total angular momentum of the disk using expression JD =
∫

d3x
√−gTt

ϕ [150], while the
orbital angular momentum of the BH is calculated using a simple Newtonian estimate: using the BH speed rϕ̇ and
its distance from the origin r, we get JBH ' MBHr2 ϕ̇.
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Figure 5.2: Time evolution of the amplitude |D1| of the non-axisymmetric m = 1 mode in the disk
and the length of the BH position vector rBH/rg. The growth of these quantities is correlated, i.e.
they develop at the same time and with the same rate.
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Figure 5.3: Illustration of the angular momentum transfer from the disk to the BH. The solid
(red) line shows the orbital angular momentum of the BH JBH, the dotted (magenta) line shows
the decrease in the angular momentum of the disk JD − J0, and the dashed (blue) line shows the
total decrease of the angular momentum of disk+BH (JD + JBH)− J0. All quantities are divided
by the initial value of angular momentum of the disk J0. The noticeable angular momentum
transfer can only be seen in the last orbital period, when the m = 1 distortion reaches significant
amplitude. The gradual decrease in total angular momentum is due to the mass loss at the
interpolation boundaries. This is a numerical artifact which converges away with resolution.
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time with respect to initial disk angular momentum (J0). The total angular momentum of the

disk+BH system decreases by ∼ 1.5% (∼ 3%/∼ 0.7%) in ∼ 7 orbital periods due to numerical

errors such as interpolation at the block boundaries and evaporation to the artificial atmosphere

in the case of medium (coarse/high) resolution simulations. As a result of angular momentum

transfer, JD/J0 additionally decreases by ∼ 1.5%, which is completely compensated by the ∼

1.5% increase of JBH/J0.

Unfortunately, the continued outspiraling motion of the BH ultimately leads to the inter-

section of the apparent horizon with the excision boundary. At this point, the inner excision

boundary conditions become ill-posed, and we have to terminate our simulations.

Similarly to the findings of Montero et al [43], we did not observe runaway instability in all

three models. We also do not expect this instability to occur at a later time. In the most likely

scenario of the subsequent evolution, the development of non-axisymmetric instabilities will

redistribute disk angular momentum and lead to a profile of specific angular momentum that

increases outwards [32, 137]. Such angular momentum profile was shown to strongly disfavor

runaway instability [35]. Moreover, the damping of radial disk oscillations in models A and B

reduces and eventually completely terminates mass transfer from the disk to the BH, preventing

onset of runaway instability.

To determine how much our results depend on numerical resolution, we have performed

simulations of model A for three different resolutions with grid cell size scaling as 1 : 1.5 : 1.52.

We refer to these resolutions as coarse, medium and fine resolutions hereafter. The curvilinear

geometry of the blocks was chosen to be the same for all of the three resolutions. We list the

parameters of the resulting coarse, medium and fine (denoted as AFc, AF and AFf, respectively)

grid models in Table 4.2.

Figure 5.4a shows the L1- and L∞-norms of Hamiltonian constraint violation for the coarse,

medium and fine resolution simulations. This plot shows that there are two distinct regimes in

the evolution of the constraints: initial exponential decrease and subsequent steady plateau. The

former is due to the constraint damping mechanism of our evolution scheme, which saturates at

the plateau when the constraints reach the level of discretization errors. Since the discretization

error depends on grid cell size, the value of the plateau decreases with increasing resolution. In

40



 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7

H

time, orbital cycles

coarse
medium

fine

 0.9

 0.925

 0.95

 0.975

 1

 0  1  2  3  4  5  6  7

m
as

s,
 M

/M
0

time, orbital cycles

coarse
medium

fine

(a) (b)

Figure 5.4: Damping of the constraints and its influence on the black hole mass for simulations
using the coarse, medium and fine resolution grid. (a) L∞- and L1-norms of the Hamiltonian
constraints. For the cases of coarse and medium resolutions, the plot shows that the constraints
are reduced down to the discretization error level during the first orbital period. See further dis-
cussion in the main text. (b) BH mass, measured from the area of apparent horizon, normalized
by its initial value. After the initial transitional oscillatory phase, the BH mass settles down to
∼ 97.5% of its initial value. The oscillation in the first orbital period is caused by the constraint
violations due to blending procedure in the construction of our initial data (see Section 4.1).

the case with the highest resolution, the “plateau regime” is not reached during the time span

of the simulation. Fig. 5.4a also shows that there is a small region of a rapid growth of the

constraints at the very end of the simulations. This increase is caused by the approach of the BH

apparent horizon too close to the inner excision boundary as a result of the interaction of the BH

with the m = 1 deformation of the disk described above.

Figure 5.4b shows the time evolution of the BH mass 2. Because the constraint violations due

to the metric blending are introduced at the continuum limit, the BH mass shows an unphysical

oscillation that does not converge away with resolution, but which completely damps out in

about one orbital period. The BH mass then stabilizes at 97.5 ± 0.5% of its initial value and

remains near this value until the end of the simulation.

We now proceed to the analysis of the induced axisymmetric disk oscillations. Fig. 5.5 shows

the time evolution of the maximum disk density ρmax (solid line) and the radial position of the

disk center rc (dashed line), normalized to their values at t = 0. As can be seen from this plot,

2We measure irreducible BH mass MBH using the area of apparent horizon [151].
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Figure 5.5: Time evolution of the maximum rest-mass density, the location of a rest-mass density
maximum r(ρmax), and r(ΩK = Ω f l), a point where the radial profiles of Keplerian angular
velocity ΩK(r) and fluid angular velocity Ω f l(r) on the x axis at t = 0 intersect with each other.

the evolution of both ρmax and rc is dominated a single mode of oscillation. The disk expands

while moving away from the BH, and contracts while moving towards the BH. This can be seen

on four panels of Fig. 5.6, which shows meridional cuts of the disk in the xz-plane in different

phases of the oscillation.

The radial oscillation of the disk has frequency of ∼ 164 Hz, a value that is slightly smaller

than the epicyclic frequency κ = 201 Hz at r = rc for a Schwarzschild BH of the same mass 3.

Rezzolla et al. [153] studied relativistic axisymmetric oscillations of accretion disks in Cowling

approximation using disk models that have the same Γ (= 4/3) and (constant) specific angu-

lar momentum profile as the ones studied here. They found that the disks with rc = 3.860 rg

have the radial oscillation frequency of ' 261 Hz (= 0.02017 for their c2 model in normalized

units [153]), which is higher than the ∼ 164 Hz frequency that we obtain in our case. Part of this

difference stems from the difference in the disk models: while model of [153] has rc = 3.860 rg,

our disk model A has rc = 6.51 rg (cf. Table 4.1). Rezzolla et al. [153] has found that the oscil-

lation frequency f depends on the disk extent L in a particular way. Namely, f decreases with

increasing L, and in the limit of very thin disks (L → 0), f approaches the local value of the

epicyclic frequency κ (see Fig. 4 of [153]). If we assume this dependence f (L) to hold for any

3The relativistic epicyclic frequency for the Schwarzschild metric is given by κ = 1
2π

√
GM
r3

(
1− 3rg

r

)
[152].
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Figure 5.6: Meridional cuts of the disk and the BH horizon in the xz-plane at several consecutive
phases ϕ ∼ 0 − 2π of the radial oscillation. Each frame shows six density contours, equally
spaced in logarithmic scale between the initial maximum density ρmax(0) and 10−6 times that
value. Also shown is the velocity field in the meridional plane and the location of the density
maximum. The bottom two frames show the position of the shock that is propagating outwards.
The last frame shows a brief episode of accretion.
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rc, we can obtain the value of radial oscillation frequency for a disk with the same L and rc as

our model. This frequency turns out to be ∼ 168 Hz, which is very close to f = 164 Hz that we

obtain in our simulations. This result might indicate that for the disks that are similar to the ones

considered here, the disk self-gravity does not significantly affect the frequencies of the radial

oscillations. Note that in the case of NSs, the frequency of the fundamental quasi-radial modes

was found to differ by a factor of ∼ 2 between Cowling and full GR simulations [93], perhaps

implying that the self-gravity plays more important role in the case of NSs. However, since it

is unclear whether such dependence of f on L holds exactly for other values of rc, this result

should be taken with caution. We will revisit this issue in a future publication.
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Figure 5.7: This plot illustrates the mechanism of disk oscillations by showing a combined
radial profiles of ΩK(r), Ω f l(r) and the rest mass density ρ(r) at two moments of time, t0 = 0
and t1 = 2.75torb. A small black circle marks the location of the intersection point ΩK = Ω f l, and
the small black triangle marks the density maximum. In equilibrium, the location of the density
maximum has to coincide with the location of the intersection point ΩK = Ω f l. See the main text
for further discussion of the mechanism of radial oscillations.

To understand the mechanism of the oscillations, we consider the behavior of radial profiles

of the fluid angular velocity Ω f l(r) and Keplerian velocity ΩK(r) 4. Left (right) panel of Fig. 5.7

shows the profiles ΩK(r), Ω f l(r) and the density ρmax at the initial time t0 (at a later time t1 =

2.75torb). As can be seen in the left panel of this figure, functions Ω f l(r) and ΩK(r) intersect at

4The Keplerian velocity is defined in a usual way [150] as that of a test particle on a circular orbit of radius r in
the reference frame of remote observers: ΩK(r) = uϕ/ut (where uϕ and ut are the nonzero components of 4-velocity
of the particle). We point out that although this definition of ΩK(r) is only valid in assumption of axisymmetry and
stationarity of the spacetime, we can consider it as a reasonable approximation for the first six orbital periods of the
disk, before the non-axisymmetric instability becomes significant.
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the location of density maximum rc, as indeed should be the case for equilibrium tori. At a later

time, when the equilibrium is violated, the intersection point rΩ, where Ω f l(rΩ) = ΩK(rΩ), does

not coincide with rc. This can be seen in the right panel of Fig. 5.7.

Figure 5.5 (dotted line) shows time evolution of rΩ. The initial perturbation of gravitational

field modifies the radial profile of ΩK, resulting in an outward displacement of rΩ and violation

of the disk equilibrium. This triggers the motion of the disk, so that rc follows rΩ. It eventually

reaches rΩ but because of the obtained outward radial momentum rc overshoots rΩ, resulting

in the deceleration and inward motion of rc. The location of rΩ is mainly determined by rc,

and the inward motion of rc leads to the inward motion of rΩ. rc again overshoots rΩ, and

this process repeats in oscillatory manner, reflecting the radial oscillations of the disk. Such

oscillatory motion, when rc follows rΩ, cannot be a gauge effect. This oscillation also cannot be

driven by the pressure gradients, because they are zero at rc. We note that the radial profile of

Ω f l does not change noticeably with time, while that of the density oscillates significantly. This

implies that the conservation of total angular momentum can only be achieved by compensating

oscillations in the metric. Therefore, the dynamical spacetime plays significant role in this type

of oscillations.

The oscillating disk emits gravitational waves at the frequency f0. Their amplitude can be

estimated from the quadrupole formula [154], which gives AE2
20 ' 210 cm. The average gravita-

tional luminosity due to the axisymmetric wave emission,

LGW =
c3

32πG

(
dAE2

20
dt

)2

' 2.0 · 1047 erg/s,

produces overall energy loss during the evolution to the gravitational radiation ∆EGW ' 5 ·

1045erg. This is five orders of magnitude smaller than the average kinetic energy of radial disk

motion T ' 1.37 · 1050erg, and can not be responsible for the damping of the oscillations.

Therefore, the main process responsible for the damping of oscillations is the shock heating:

shock waves convert the kinetic energy of the oscillations into the thermal one. At the end of the

contraction phase of the disk, the high-density inner part of the disk bounces back earlier than

the lower-density outer part. The collision of the former with the still-infalling lower-density
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Figure 5.8: Time evolution of the maximum density of the disk evolved with polytropic and Γ-
law EOSs. In the case of polytropic EOS, disk oscillations show little damping, while in the case
of Γ-law EOS, oscillation amplitude decreases by a factor of ∼ 2 during ∼ 4 orbital periods due
to shock heating.

outer material leads to formation of an outward-propagating shock wave (see two bottom pan-

els on Fig. 5.6). The shock accelerates during propagation and reaches relativistic velocities of

∼ 0.3c in the rarefied outer disk shells. In order to quantify the amount of the shock dissipation,

we evolve this model with isentropic polytropic EOS with the same Γ = 4/3 (in addition to

the evolution with the non-isentropic Γ-law EOS), which does not allow entropy changes and

thus shock heating. Fig. 5.8 shows time evolution of the maximum density for models evolved

with polytropic and Γ-law EOSs. In former case, the oscillations exhibit little damping, while

in the latter case, amplitude of ρmax decreases by a factor of ∼ 2 in ∼ 7 orbital periods. Note

that dissipation of oscillation kinetic energy into heat has been found to operate in many as-

trophysical scenarios: damping of NS oscillations in a migration from an unstable to a stable

branch [155, 156], in phase-transition-induced collapse of NSs [157], damping of ring-down os-

cillations of nascent proto-NSs in core-collapse supernovae and accretion-induced collapse of

white-dwarfs (e.g., [158]).
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Chapter 6. Non-axisymmetric Instabilities

In this chapter, we discuss non-axisymmetric instabilities in the disks. First, we test our method

by reproducing results obtained by Kojima [28] for thick tori with negligible mass on a Schwarz-

schild background. In the next two sections we analyze the non-axisymmetric instabilities in our

models first on fixed background, and then with fully dynamical general relativistic treatment.

In various astrophysical scenarios, the disk might be formed with different non-axisymmetric

structures, leading to preferential excitation of unstable non-axisymmetric modes. The subse-

quent nonlinear evolution of the disk is determined not only by the growth rates of the modes,

but also by the sequence in which the modes were excited. In other words, depending on the

azimuthal number m of the initial perturbation, the disk may take different evolution paths and

arrive into different final states. In order to account for these possible scenarios, in our work we

evolve initial disks with added small non-axisymmetric perturbations.

We expect [27, 29, 82] our thick disk models A and B to be dominated by non-axisymmetric

unstable modes with azimuthal numbers m = 1 and m = 2, while for more slender model C

instabilities with m = 3 and m = 4 should also play an important role. In our simulations

without initial perturbations, these modes are triggered by numerical errors and start to grow at

random moment in time. In order to explore evolutionary scenario in which a particular mode is

excited initially, we add small density perturbation of the form ρ̃ = ρ[1 + A cos m(ϕ− ϕ0)] to our

initial disk models. We use a perturbation amplitude A = 0.001, which we have found to be both

large enough to trigger the instability, and sufficiently small to remain in the linear regime. The

amount of constraint violations due to these artificial perturbations, which is quickly suppressed

by our constraint damping scheme is too small to significantly affect the subsequent evolution

of the disk.

For each initial disk model A, B and C we have completed a sequence of evolutions both
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in Cowling and in full GR treatment. As explained in the end of Section 4.3, corresponding

simulations are referred to by two- or three-letter notation (such as AC, AC1, AC2, AF, etc.), in

which the first letter denotes the initial disk model (A, B or C), the second letter is either ’C’ for

Cowling or ’F’ for full GR treatment, and the third one is the azimuthal number m of the initial

perturbation (absent if evolved without initial perturbation).

6.1 Comparison with Previous Work

Below we present the growth rates of PP instability in evolutions of equilibrium tori in Cowl-

ing approximation and compare them with the results obtained by Kojima [28], who studied

PP instability in thick disks around Schwarzschild BHs using a linear perturbative approach.

Kojima analyzed tori with constant distribution of specific angular momentum, constructed in a

relativistic framework using the Abramowicz-Sikora-Jaroszynski (AJS) prescription [95]. Kojima

calculated the m = 1 mode growth parameter y2 for several sequences of disk models with dif-

ferent values of specific angular momentum ` (= 3.8, 4.0, 4.2) . In particular, [28] found that, due

to relativistic redshift effects, y2 for GR models is generally smaller than in Newtonian case [27].

We have constructed a sequence of AJS tori of varying radial extent with the same physical

parameters as in [28]. All these models have polytropic index Γ of 4/3 and specific angular

momentum ` of 4.0. The mass of the black hole is set to MBH = 1. The models in this sequence

are labelled as K1-K6, and their parameters are listed in Table 6.1. To excite the m = 1 mode, we

add a small non-axisymmetric perturbation as described above, and evolve the disk in Cowling

approximation, using a curvilinear grid (as described in Section 4.3), adapted to each of the

models. Parameters of the curvilinear grids for each model are listed in Table 4.2. We then

measure the growth rate y2 as described in Section 4.4 above and compare it with the results of

Kojima.

Figure 6.1 shows the values of y2 as a function of the disk radial extent for our models and

for those of Kojima. As we can see, y2 for our models are within estimated error bars from the

values, calculated by Kojima in [28], as should be the case.
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Figure 6.1: Comparison of the m = 1 PP mode growth rates y2 obtained by Kojima [28] in linear
perturbative approach with the values measured from the evolutions of the same initial data
models in Cowling approximation. The abscissa represents the ratio of the inner radius of the
disk r− to the radius of the maximum disk density rc. The error bars of the measured growth
rates originate from the uncertainty in determining the time span of a clear exponential growth
of the mode.

Table 6.1: Physical parameters of the initial disk models, used for comparison with calculations
by Kojima [28]. Here, rc/rg is the location of the density maximum in units of the BH gravita-
tional radius rg, r− (r+) is the inner (outer) radius of the torus, and ρmax is the maximum den-
sity. For all models, the mass of the BH isM�, specific angular momentum has constant value
` = 4.0, and polytropic constant K = 0.06 (the latter two quantities are given in the normalized
system of units, in which G = c =M� = 1).

Model rc/rg r−/rc r+/r− ρmax
K1 5.236 0.60 3.952 1.715 · 10−4

K2 5.236 0.65 2.956 5.321 · 10−5

K3 5.236 0.70 2.351 1.472 · 10−5

K4 5.236 0.75 1.939 3.522 · 10−6

K5 5.236 0.80 1.640 5.809 · 10−7

K6 5.236 0.85 1.419 8.682 · 10−8
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Table 6.2: Parameters of the m = 1 PP instability, measured for the dynamical evolutions of
Kojima disk models K1-K6. y1 and y2 are the pattern speed and growth rate parameters, Ωp is
the mode pattern speed, and rcr is the mode corotation radius.

Model y1 y2 Ωp/Ωc rcr/rc Type
K1 -0.174 0.097(6) 0.826 1.136 PP
K2 -0.147 0.124(3) 0.853 1.112 PP
K3 -0.113 0.153(3) 0.887 1.083 PP
K4 -0.084 0.145(4) 0.916 1.041 PP
K5 -0.048 0.120(3) 0.952 1.060 PP
K6 -0.011 0.093(5) 0.989 1.007 PP

6.2 Fixed Background

In this section, we analyze non-axisymmetric instabilities which develop when our initial disk

models are evolved on fixed spacetime background (so-called Cowling approximation). We

find that all of our models develop Papaloizou-Pringle (PP) instability. More specifically, for

moderately slender models A and B the fastest growing mode is m = 2, while for more slender

model C it is m = 3. Below, we first describe instabilities in models A and B, after which we focus

on model C. As mentioned above, we evolve our models with and without artificial density

perturbations. For models A and B, we add m = 1, 2 and for model C we add m = 1, 2, 3

perturbations. Notice that all simulations contain small spurious m = 4 perturbation which is a

numerical artifact of interpolation at the boundaries between four blocks near equatorial plane.

The evolutions without artificial perturbation are therefore similar to the ones in which an m = 4

density perturbation is added.

To analyze the non-axisymmetric modes, we adopt an approach from Woodward et al [82].

Namely, we expand the disk density in equatorial plane in Fourier series, as explained in Sec-

tion 4.4 above. Then we construct the following four diagrams:

(a) Dm − t diagram: logarithm of the normalized mode amplitude Dm as a function of time at

some radial location close to the disk density maximum rc. The slope of this curve yields

the growth rate y2.

(b) Dm − r diagram: a radial profile of the normalized mode amplitude Dm.
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(c) ϕm − t diagram: a phase angle of the non-axisymmetric mode m as a function of time

at a specified radius. The slope of this function determines the mode pattern speed and

parameter y1, related to it.

(d) ϕm − r diagram: mode phase angle as a function of radius. This diagram provides very

convenient way to identify the type of the mode.

Such diagrams allow to identify types of non-axisymmetric modes [82] and extract their quanti-

tative characteristics such as mode growth rate y2 and pattern speed parameter y1. These quan-

tities for our evolutions are summarized in Table 6.3.

We found that instabilities which develop during evolutions of models A and B are very

similar. Therefore we present the properties of these instabilities on example of model A.

Figure 6.2 shows the four mode diagrams for the case of model AC1, which represents

time evolution of initial disk model A in Cowling approximation with an added m = 1 non-

axisymmetric density perturbation. Panel (a) shows the Dm − t diagram for the first six non-

axisymmetric modes with m = 1, 2, . . . , 6. Three lowest-m modes exhibit clear exponential

growth, with m = 1 being the dominant mode throughout the time span of the simulation (first

6.5 orbital periods). This is the case because an m = 1 perturbation is artificially added from the

beginning and has more time to grow and to remain the dominant mode. The mode m = 2 has

higher growth rate, but appears subdominant, since it is triggered later than the m = 1 mode

and has less time to develop. It may eventually overshoot the m = 1 mode at a later time, when

both modes reach nonlinear regime. Notice that the relatively high values of the m = 4 mode

amplitude are due to the effect of interpolation errors on four interpatch boundaries of the grid

near the equatorial plane.

Panels (b) and (d) of Fig. 6.2 demonstrate the radial structure of the m = 1 mode at t = 4 torb,

when it is sufficiently developed. The Dm − r diagram on Fig. 6.2b represents the radial profile

of the amplitude of the mode. This amplitude is highest near the edges of the disk, it does not

have nodes (does not become zero), and it reaches its minimum near the radius of corotation.

Previous works on PP instability in Newtonian gravity [24, 29] suggest such radial behavior for
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Table 6.3: Quantitative characteristics and types of the non-axisymmetric modes for the simulations studied in Section 6.

Cowling Full GR
Model m type y1 y2 Ωp/Ω0 rcr/rc Model m type y1 y2 Ωp/Ω0 rcr/rc

AC 2 PP -0.10(5) 0.21(1) 0.89(2) 1.07(1) AF 1 PP -0.17(5) 0.300(8) 0.83(5) 1.12(4)
AC1 1 PP -0.08(4) 0.17(1) 0.93(2) 1.04(1) AF1 1 PP -0.18(5) 0.294(8) 0.82(5) 1.11(4)
AC2 AF2 1 PP -0.17(3) 0.30(1) 0.83(3) 1.12(3)

2 PP -0.09(5) 0.22(1) 0.95(2) 1.03(1) 2 I -0.6(1) 0.17(3) 0.68(5) 1.26(6)
BC 1 PP -0.04(5) 0.16(1) 0.96(5) 1.03(3) BF 1 PP -0.16(5) 0.28(3) 0.84(5) 1.12(4)

2 PP -0.12(6) 0.18(1) 0.94(3) 1.04(2)
BC1 1 PP -0.06(5) 0.16(1) 0.94(5) 1.04(3) BF1 1 PP -0.12(5) 0.270(8) 0.88(5) 1.08(4)
BC2 1 PP -0.04(5) 0.17(1) 0.96(5) 1.03(3) BF2 1 PP -0.13(5) 0.29(2) 0.87(5) 1.09(4)

2 PP -0.08(6) 0.17(1) 0.96(3) 1.03(2) 2 I -0.5(1) 0.11(2) 0.75(5) 1.19(5)
CC 3 PP -0.06(5) 0.21(2) 0.98(2) 1.01(1) CF

4 PP -0.04(5) 0.14(1) 0.99(2) 1.00(1) 4 I -0.84(8) 0.16(1) 0.79(2) 1.14(2)
CC1 3 PP -0.04(5) 0.24(1) 0.99(2) 1.00(1) CF1 1 PP∗? ?? ?? – –

4 PP -0.04(5) 0.16(2) 0.99(2) 1.00(1) 4 I -0.84(8) 0.15(1) 0.79(2) 1.14(2)
CC2 2 PP -0.04(5) 0.20(1) 0.99(2) 1.00(1) CF2 2 I -0.6(1) 0.279(7) 0.66(5) 1.26(5)

3 PP -0.06(5) 0.22(1) 0.98(2) 1.01(1) 4 I -0.8(2) 0.16(1) 0.80(5) 1.14(4)
CC3 3 PP -0.07(5) 0.23(1) 0.98(2) 1.01(1) CF3 3 I -0.7(1) 0.318(8) 0.76(3) 1.17(3)

4 PP -0.04(5) 0.15(2) 0.99(2) 1.00(1) 4 I -0.80(8) 0.16(2) 0.80(2) 1.14(2)
∗For the simulation CF1, it was not possible to accurately determine the growth rate and pattern speed of the m = 1
mode. We classified this mode as a PP-type due to the character of its ϕm − r and Dm − r diagrams, which are
typical for the PP-modes.
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Figure 6.2: The behavior of the dominant non-axisymmetric modes and the radial character of
the m = 1 (0,0) PP-mode in the simulation AC1: (a) Dm − t diagram shows the time evolution
of the mode amplitudes Dm for m = 1− 6; (b) Dm − r diagram shows the radial character of the
m = 1 mode amplitude (in logarithmic scale); (c) ϕm − t diagram shows the time evolution of
the Fourier angle ϕm, which allows to determine a pattern speed and a corotation radius for each
mode; (d) ϕm − r diagram shows the dependence of the mode Fourier angle from the radius r in
equatorial plane at t/torb ' 4. The Dm − r and ϕm − r diagrams on panels (b) and (d) also show
the locations of the mode corotation radius.

the principal PP mode, or a mode of (0,0)-type in Blaes and Hawley classification [139]. The

ϕm− r diagram on Fig. 6.2d has a specific S-shaped structure, which is also a well-known feature

of the PP instability, discovered in previous Newtonian works [29, 82].

Finally, panel (c) of Fig. 6.2 shows the ϕm − t diagram for the m = 1− 3 modes. It shows

that while all modes initially have arbitrary phases and pattern speeds, they eventually settle to

the pattern speed of the dominant m = 1 mode possibly due to nonlinear interaction between

the modes. The pattern speed of the m = 1 mode is slightly below the speed of the disk at
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rc, which means that the mode corotation radius rcr lies just outside rc. The close proximity of

the mode corotation radius to the radius of the disk density maximum is also typical for PP

non-axisymmetric instabilities, as discovered in previous Newtonian works [24,26,82]. All these

features allow us to conclude that the observed m = 1 mode is indeed the PP instability.

Figure 6.3 shows the set of four diagrams for simulation AC2, in which an m = 2 density

perturbation is added initially. Panel (a) represents Dm − t diagram for the modes with m =

1− 6. In this case, only the mode with m = 2 exhibits pronounced exponential growth. The

rest of the modes remain either stable or not excited, showing rapid growth only in the very end

of the simulation, when the amplitude of m = 2 mode reaches nonlinear regime and coupling

between the modes becomes important. Panels (b) and (d) of Fig.6.3 show the radial profile and

azimuthal shape of the mode. These are again typical for the principal (0,0)-type PP instability

with m = 2. Fig. 6.3c shows the ϕm − t diagram for the m = 1 − 3 modes. The dominant

m = 2 mode rotates uniformly in the same direction as the disk, while other two modes do not

exhibit clear rotation pattern until after ∼ 4 orbital periods, when they align in phase with the

m = 2 mode. The pattern speed of the dominant mode inferred from this plot corresponds to

the corotation radius just outside of rc. Similarly to the simulation AC1 above, all these features

are typical of the PP instability, studied in previous works in Newtonian approximation.

While unstable modes in model B are very similar to those of model A, in model C higher

order PP modes become dominant. This is expected [27] since model C is more slender than

models A and B. Indeed we observe that the most unstable mode for the model C is the m = 3 PP

mode, while m = 2 and m = 4 have comparable but smaller growth rates. The four diagrams for

m = 3, 4 modes are not qualitatively different from those for the m = 1, 2 modes in simulations

AC1 and AC2 above. They also exhibit all the features typical of the PP instability described

above.

We can therefore conclude that the PP instability with various values of azimuthal number m

is observed in all of our disk models. For reader’s reference, the parameters of unstable modes

calculated for all of our simulations are summarized in Table 6.3.
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Figure 6.3: The behavior of the dominant non-axisymmetric modes and the radial character of
the m = 2 (0,0) PP-mode in the simulation AC2 (see captions to Fig. 6.2 for details).

6.3 Dynamical Background

We now turn to the analysis of non-axisymmetric instabilities, which develop when the disks

are evolved in a fully dynamical general relativistic framework. We again consider evolutions

with and without artificial density perturbation, adding m = 1, 2 perturbations for models A

and B and m = 1, 2, 3 perturbations for model C. While in the Cowling case we observe only

instabilities of PP type for all models, in the fully dynamical GR case we observe two distinct

types of instabilities, the Papaloizou-Pringle (PP) type and a GR analog of Newtonian so-called

intermediate type (I-type) instability [30, 32]. Similarly to the Cowling case, instabilities in the

moderately slender models A and B have very similar properties, so it suffices to present the re-

sult only for the case of model A. Model C is more slender and therefore favors instabilities with
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higher azimuthal numbers than those of models A and B, so we consider this model separately.

For the analysis of non-axisymmetric modes we adopt the same approach as in Section 6.2

above for simulations on a fixed background, with one exception: for evaluating mode growth

rates y2, instead of Dm, we use quantities Gm introduced in Section 4.4 above. This is necessary

because the values of the mode amplitudes Dm at a fixed radial location oscillate due to disk

oscillations, making it hard to infer accurate growth rates of the modes. We have found that

mode growth rate y2 can be calculated more accurately from a time behavior of Gm, because it

is expressed in terms of integrals over the radius and as such it is much less affected by radial

oscillations. With this exception, we follow the approach described in Section 6.2 to determine

mode types, growth rates and pattern speeds. These quantities for all models are tabulated in

Table 6.3 for reference.

In most of the simulations with fully dynamical GR treatment the BH responds to the ex-

citation of the m = 1 mode by developing an outspiraling motion, as described earlier in the

Chapter 5. Position vector r̄BH of the BH starts to rotate with approximately constant angular

velocity ΩBH, while the length of this vector grows exponentially. In order to characterize this

motion and study it in the context of the development of non-axisymmetric modes, we plot the

time evolution of the BH position vector length rBH/rg and phase angle ϕBH on the Gm − t and

ϕm − t diagrams respectively. From these plots we can calculate the quantities ΩBH/Ω0 and

y2(BH) that can be directly compared to those of non-axisymmetric modes. These quantities are

also listed in the Table 6.3.

Figure 6.4 shows the time evolution and radial profiles of the amplitudes and Fourier angles

of the dominant unstable modes for the simulation AF1, which represents fully dynamical GR

evolution of the initial disk model A with an added m = 1 density perturbation. The top left

panel contains the time evolution of Gm for m = 1− 4 and the normalized coordinate length of

the BH position vector rBH/rg. The diagram shows that the m = 1 mode is the dominant one. It

also shows that the BH responds to the growth of the m = 1 mode and the distance from the BH

to the origin grows exponentially at the same rate as the dominant m = 1 mode.

Panel (c) of Fig. 6.4 shows the time evolution of the Fourier phase angles ϕm for m = 1, 2, 3,

measured at a fixed radial coordinate location near the inner edge of the disk r−. The phase

56



10-5

10-3

10-1

101

 0  1  2  3

G
m

time, orbital cycles

m=1, y2= 0.292(8)
m=2
m=3
m=4
rBH/rg, ΩBH/Ωc= 0.294(8)

-4

-3

-2

-1

 2 r- rc   rcr  10 r+ 20

ln
 D

1

r / rg

t/torb=2.5

(a) (b)

-1

 0

 1

 2

 0  1  2  3

ϕ m
/2

π

time, orbital cycles

m = 1, y1=-0.18
m = 2
m = 3

rc rcr

(c) (d)

Figure 6.4: The behavior of the dominant non-axisymmetric modes and the radial character of
the m = 1 (0,0) PP-mode in the simulation AF1 (see captions to Fig. 6.2 for details).

of the dominant m = 1 mode after short initial readjustment exhibits almost uniform linear

growth. Readjustment of the mode happens because the added artificial perturbation initially

does not have the right shape of the mode and needs some time (less than one orbital period) to

readjust itself. Similar behavior is observed in the corresponding Cowling simulation, but it is

less pronounced (see the m = 1 phase angle during the first half orbit on Fig. 6.2c). Phases of the

rest of the modes initially do not show uniform linear growth, but as the amplitude of the m = 1

mode increases, the higher order modes start to align in phase with the dominant m = 1 mode,

most likely due to nonlinear modes interaction. Notice that the pattern speed of the m = 1 mode

calculated from this diagram is lower compared to the Cowling case.

Panels (b) and (d) of Fig. 6.4 show the radial and angular profiles of the dominant m = 1
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mode at t = 2.5 torb. The location of r−, r+ and rc shown on the plot refers to the same time.

Because the disk undergoes radial oscillations, special care must be taken when calculating the

mode corotation radius rcr, which is an important quantity that characterizes non-axisymmetric

modes. To find rcr, we solve an equation between the mode pattern speed Ωp and the disk

angular velocity: Ω(rcr) = Ωp. The latter changes during the evolution of the disk, so strictly

speaking the value of rcr will also depend on time. However, we have found that in all our

simulations the change of the profile of Ω in the course of evolution is very small, therefore

within the measured accuracy the corotation radius is independent of time. The values of rcr/rc,

calculated in this way for all simulations on a dynamical background are also listed in Table 6.3.

For simulation AF1, rcr lies outside of rc with rcr/rc ≈ 1.17. Such a value of rcr/rc is typical for

a PP instability and comparable to the values observed in previous Newtonian studies with a

moving central object and a massive self-gravitating disk [82].

Similar to the Cowling case, the radial profiles of Dm and ϕm show structural features that

are typical for a PP instability of (0,0)-type in the Blaes and Hawley classification [139]. In par-

ticular, the mode amplitude displayed on Fig. 6.4b is higher near the edges of the disk and has

a minimum near the corotation radius rcr. The mode amplitude does not vanish anywhere in

the disk, which characterizes the mode as having type (0,0). The profile of the Fourier angle of

the mode, shown on Fig. 6.4d, has a specific S-shaped structure, that consists of a trailing spiral

pattern outside the corotation radius 1, a leading spiral pattern inside the corotation radius and

a short segment near rcr that connects the two spiral patterns.

However, compared to the Cowling approximation, the growth rate of the m = 1 mode is

amplified by almost a factor of 1.5, and there are reasons to believe that the outspiraling mo-

tion of the BH is responsible for this amplification. The mechanism which drives the unstable

outspiraling motion of the BH is similar to the one described in [142]. The disk creates a hilltop

potential, which has a maximum at the origin, so the BH initially is located at the point of unsta-

ble equilibrium. The BH can reduce its potential energy by converting it into kinetic energy of

orbital motion around common center of mass (CM) of the disk+BH system. Such orbital motion

requires angular momentum which can be borrowed from the disk through the development of

1We remind the reader that the disk rotates counterclockwise on all ϕm − r diagrams.
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a non-axisymmetric m = 1 mode. Because the orbital motion of the BH requires a compen-

sating displacement of the disk CM, removing angular momentum from the disk increases the

amplitude of the m = 1 mode, in this case the PP-mode.

Next we consider the dominant non-axisymmetric modes that develop in the simulation AF2,

in which an m = 2 density perturbation was added. Fig. 6.5 presents the time evolution and

radial profiles of Gm and ϕm of these modes. Comparing Fig. 6.5 to Fig. 6.2 which presents the

same set of diagrams for the Cowling simulation AC2, we can see that the type of the m = 2

mode in this simulation is quite different from the PP one observed in the simulation AC2. First,

on the Dm− r diagram in Fig. 6.5b, the minimum of Dm lies inside rc, unlike the case of PP mode

where such minimum is located close to the mode corotation radius rcr. Second, the ϕm − r

diagram of the m = 2 mode in Fig. 6.5d consists only of trailing spirals and does not have a

leading spiral pattern inside corotation, specific for PP modes. Finally, as Fig. 6.5d illustrates,

the mode phase angle makes an abrupt turn by π/2 radians near rc, which is the case when the

disk were subjected to an elliptic (bar-like) deformation.
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Figure 6.5: The behavior of the dominant non-axisymmetric modes and the radial character of
the m = 2 I-mode in the simulation AF2 (see captions to Fig. 6.2 for details).

Overall, this mode looks very similar to the so-called intermediate type (I-type) modes found

in earlier studies using Newtonian gravity (see, e.g. [30–32, 82]). In particular, [82] observed

the I-modes in 3D Newtonian simulations of self-gravitating disks with various disk-to-central

object mass ratios MD/Mc and values of parameter T/|W| (see Section 4 in [82]). A subset

of their models that develop the I-mode instability (namely E31 and E32) have parameters

MD/Mc = 0.2, T/|W| ∼ 0.47 and 4πGρ/Ωc ∼ 4, which are comparable to those of our models

A or B (listed in Table 4.1) 2.

Notice that in this simulation the m = 1 mode is also excited, as can be inferred from Fig. 6.5a.

2Note that in order to study the development of m = 2 modes [82] used a different approach from ours. Instead
of adding an artificial perturbation with m = 2, they simulated only half of the domain, imposing the so-called
π-symmetry, which leaves only even modes. In this regard, our method is more physically motivated.
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The growth rate and pattern speed of this mode is the same as in simulation AF1 (cf. Table 6.3).

The m = 1 mode development is again correlated in time with outspiraling motion of the BH,

which is apparent in Fig. 6.5a. The analysis of the mode character, similar to the one performed

above confirms that in this simulation the m = 1 mode has the same (0,0) PP type as in the

simulation AF1. It grows faster than m = 2 mode, so that both modes become of comparable

amplitude by the end of the simulation. The radial character of the two co-existing modes is

depicted on Fig. 6.6, which shows a sequence of snapshots of the ϕm − r diagrams at different

times, superimposed with the disk density in equatorial plane.

In the case of model C, we used artificial density perturbations with m = 1, 2, 3 and observed

the development of four unstable modes. The same analysis that we have done before for mod-

els A and B reveals that only the m = 1 mode has PP type, while the modes with m = 2, 3, 4

have I-type. The I-modes with m = 3 and m = 4 represent triangular and square deformations

of the disk. Such modes were previously observed in Newtonian simulations of narrow self-

gravitating annuli [31]. Fig. 6.7 shows the time behavior of Gm and rBH/rg for simulations of

model C with different added perturbations. As can be seen from these plots, the fastest grow-

ing mode is the I-mode with m = 3, while the slowest one is the m = 1 PP mode (also, cf.

Table 6.3). The latter remains subdominant in all simulations, its growth does not show clear

exponential behavior and it is poorly correlated with the outspiraling motion of the BH. This

happens because the m = 1 mode does not have enough time to form a global coherent pattern,

which could counterbalance the BH with respect to their common center of mass. However, as

soon as the amplitude of the m = 1 mode reaches Gm ∼ 10−4, it shows better correlation with

the motion of the BH, as can be seen on Fig. 6.7 for simulations CC1 and CC3.

Finally, we need to point out that the comparisons with the Cowling simulations presented

in this chapter should be taken with a grain of salt. The initial perturbation introduced by the

blending of two metrics in the initial data changes the BH mass by small amount (∼ 2%), which

not only drives the disk out of equilibrium, but also changes the equilibrium configuration itself.

Therefore, strictly speaking, the disks in Cowling and full GR represent different objects and

cannot be compared. As a result, these disks will have different evolutionary paths not only due

to dynamical GR effects, but also due to differences in BH masses. However, because the latter
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Figure 6.6: A sequence of four successive snapshots of the disk density in the equatorial plane,
combined with the corresponding ϕm − r diagrams for the m = 1 and m = 2 modes for the
simulation AF2. The radial character of the m = 1 and m = 2 modes is represented by a sequence
of red and blue dots resp.
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Figure 6.7: Gm − t diagrams for modes with m = 1− 4 in simulations with disk model C

is small, we assume that the differences in evolution are mainly caused by the former, implying

that the comparison can indeed reveal GR effects.
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Chapter 7. Solving Einstein Constraints with
Finite Element Methods*

This work is part of an effort to numerically solve Einstein equations on general domains

with arbitrary shapes and topologies. Accurate simulations on such domains require multiple

numerical grids covering different areas of the domain, possibly refined where the solution has

interesting features. For the numerical discretization one can use either finite differences (FD),

spectral methods, or finite elements (FE). Current research in the numerical relativity community

is dominated by finite differences methods, not the last reason for that being the relative ease of

finite differences implementation and parallelization. A lot of important results in the areas

of hyperbolic solvers, boundary conditions, domain representation, apparent horizon finders,

wave extraction, stability proofs etc., were established and successfully implemented using the

FD methods (see [159, 160] and references therein).

Spectral methods are also widely used [161, 162], mainly for solving elliptic equations, such

as those arising in initial value problems [62, 163–166], constrained evolution [167] and appar-

ent horizon finders [168, 169]. They can as well be applied to hyperbolic problems [170], as in

the recent very successful simulations of the binary black holes merger [71] (using an approach,

developed by the Cornell-Caltech collaboration [65, 171–173]). Spectral methods can produce

exceptionally accurate results, but in order to use these results in a FD evolution code one needs

to perform an additional interpolation step. The interpolation can be too slow for some applica-

tions, for instance, in constrained evolution schemes. In our approach, the interpolation is trivial,

and the number of degrees of freedom on FE and FD grid is the same, which allows to exchange

∗This chapter and the subsequent chapters are reprinted from the Article in a journal reference below. The

Journal Permission to retain author rights to reprint the Article are given in Appendix B.

O. Korobkin, B. Aksoylu, M. Holst, E. Pazos, M. Tiglio, “Solving the Einstein Constraint Equations on Multi-block

Triangulations Using Finite Element Methods”, Class. Quant. Grav. 26 (2009) 145007
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solution between the FE and FD solvers without reducing its accuracy by interpolation. Another

advantage of FE methods compared to spectral methods is that the matrices resulting from FE

discretizations are sparse.

Finite element methods can also be applied to hyperbolic problems, however, stable and ac-

curate discretizations require using discontinuous Galerkin (DG) flavor of finite elements (oth-

erwise the approximation is suboptimal: order of convergence falls to (p− 1) and the solution

is not necessarily stable).

Figure 7.1: Types of FE meshes. Top left: unstructured mesh, top right: regular mesh, bottom:
semistructured meshes.

In the following chapters, the term grid is used in reference to the finite differences grid (an or-

dered set of points), as opposed to the term mesh for the finite element triangulation. Domain tri-

angulations can be classified as regular, unstructured or semistructured, depending on their degree

of symmetry (see Fig. 7.1). Finite element methods can handle domains of arbitrarily complex

shapes and topologies, since every geometrical shape admits approximation with successively

refined unstructured symplectic triangulations. However, the domains encountered in numer-

ical relativity are relatively simple in the sense that they can be covered with semistructured
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meshes. We argue in favor of using semistructured meshes over unstructured ones. One of the

motivations is that they can be quickly constructed on top of existing FD grids without the need

to explicitly maintain all the information about mesh elements, such as edges, faces etc. Rais-

ing the order of finite elements, one can essentially achieve the spectral convergence; however,

here we concentrate on lower-order finite elements (first- and second-order), and show how the

superconvergence on semistructured grids for second-order elements can be exploited to obtain

accurate 4-th order convergent solution, suitable for use in finite differences simulation.

This method is tested on the particular example of multiblock FD grid, introduced in Sec-

tion 1.1. As described in that Section, this type of grid has several advantages over simple or

refined rectangular grid with respect to solving the Einstein equations in 3D.

Einstein equations can be written in such a form that the equations split into hyperbolic

(evolution) and elliptic (constraint) sub-systems. When solving the Einstein vacuum (that is, in

the absence of matter) evolution equations, these can be cast in linearly-degenerate form, and

the solutions are in general expected to be smooth. Those cases are ideally suited for high order

or spectral methods. When including matter, on the other hand, for example when dealing with

the general relativistic hydrodynamics equations, shocks are expected. In those cases a possible

choice is high resolution shock capturing methods [80, 174] adapted to the presence of several

blocks for the hydrodynamical sub-system and high order or spectral methods for the metric

sub-system [49, 175].

This work is concerned with the elliptic sector of Einstein equations, more precisely with

the generation of initial data needed for evolutions on multipatch geometries. Initial data on a

space-like hyperslice has to satisfy a set of Einstein constraints, which can be cast into a cou-

pled nonlinear elliptic system of partial differential equations (PDE). This elliptic PDE system

has been studied extensively for many years, with a complete solution theory developed in the

case of domains which are closed (i.e. compact without boundary) 3-manifold spatial slices of

spacetime with constant or nearly-constant mean extrinsic curvature [176, 177]. More recently,

this solution theory has been extended to both closed 3-manifolds and to compact 3-manifolds

with boundary, having mean extrinsic curvature far from constant [178–180]. It has also been

shown recently [44, 181, 182] that geometric partial differential equations of this type can be
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solved accurately and efficiently using adaptive finite element methods on manifolds with gen-

eral topologies. For general multi-block systems, the additional structure allows one to construct

semi-structured triangulations, which generate superconvergent finite element solutions. The

property of superconvergence holds at the vertices of the multi-block grid triangulation, which

simplifies transport of the solution to the finite difference grid, since no interpolation is required.

The above considerations define the approach of this work, which involves solving the Ein-

stein constraint equations on semi-structured multi-block triangulations using finite element

methods. We apply this approach to the Brill wave initial data problem, which represents a

linear vacuum case with zero extrinsic curvature, with the constraints system reducing to a sin-

gle elliptic equation ∆ψ− Vψ = 0 for the conformal factor ψ (where ∆ is the flat 3-dimensional

laplacian and V is a potential function related to the Ricci scalar of the freely given metric).

Nevertheless, the results presented are expected to hold in general case, because the property of

superconvergence is the property of the mesh and the finite element spaces used. If this property

holds for a linearized problem, it is also expected to hold for the full nonlinear one (see Chapter

9 of [183]).
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Chapter 8. Finite Element Toolkit (FETK)

In this paper we use the Finite Element ToolKit (FETK) [44] (see also [182, 184]) to solve the Ein-

stein constraint equations. FETK is an adaptive multilevel finite element code developed over

a number of years by the Holst research group at UC San Diego and their collaborators (see

also [185]). It is designed to produce provably accurate numerical solutions to nonlinear ellip-

tic systems of tensor equations on (Riemannian) multi-dimensional manifolds in an optimal or

nearly-optimal way. We will summarize the main features of FETK here; more detailed discus-

sions of its use for general geometric PDE may be found in [44, 181], and specific application to

the Einstein constraint equations may be found in [182, 186].

FETK contains an implementation of a “solve-estimate-refine” algorithm, employing inexact

Newton iterations to treat non-linearities. The linear Newton equations at each inexact Newton

iteration are solved with unstructured algebraic multilevel methods which have been construc-

tured to have optimal or near-optimal space and time complexity (see [187,188]). The algorithm

is supplemented with a continuation technique when necessary. FETK employs a posteriori error

estimation and adaptive simplex subdivision to produce provably convergent adaptive solutions

(see [189, 190]).

Several of the features of FETK are somewhat unusual, some of which are:

• Abstraction of the elliptic system: The elliptic system is defined only through a nonlinear

weak form along with an associated linearization form over the domain manifold. To use

the a posteriori error estimator, a third function F(u) must also be provided (essentially the

strong form of the problem).

• Abstraction of the domain manifold: The domain manifold is specified by giving a poly-

hedral representation of the topology, along with an abstract set of coordinate labels of the
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user’s interpretation, possibly consisting of multiple charts. FETK works only with the

topology of the domain, the connectivity of the polyhedral representation.

• Dimension independence: The same code paths are taken for two-, three- and higher-

dimensional problems. To achieve this dimension independence, FETK employs the sim-

plex as its fundamental geometrical object for defining finite element bases.

8.1 Weak Formulation Example

We give a simple example to illustrate how to construct a weak formulation of a given PDE. Here

we assume the 3–metric to be flat so that∇ is the ordinary gradient operator and · the usual inner

product. LetM represent a connected domain in R3 with a smooth orientable boundary ∂M,

formed from two disjoint 2-dimensional surfaces ∂0M and ∂1M.

Consider now the following semilinear equation onM:

−∇ · (a(x)∇u(x)) + b(x, u(x)) = 0 inM, (8.1)

n(x) · (a(x)∇u(x)) + c(x, u(x)) = 0 on ∂1M, (8.2)

u(x) = f (x) on ∂0M, (8.3)

where n(x) : ∂M 7→ R3 is the unit normal to ∂M, and where

a :M 7→ R3×3, b :M×R 7→ R, (8.4)

c : ∂1M×R 7→ R, f : ∂0M 7→ R. (8.5)

If the boundary function f is regular enough so that f ∈ H1/2(∂0M), then from the Trace

Theorem [191], there exists ū ∈ H1(M) such that f = ū|∂0M in the sense of the Trace operator

(where H1(M) is the Hilbert space of all real L2-integrable functions onM with L2-integrable

weak derivative [192].) Employing such a function ū ∈ H1(M), the weak formulation has the

form:

Find u ∈ ū + H1
0,D(M) s.t. 〈F(u), v〉 = 0, ∀ v ∈ H1

0,D(M), (8.6)
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where the nonlinear form is defined as:

〈F(u), v〉 =
∫
M

(a∇u · ∇v + b(x, u)v) dx +
∫

∂1M
c(x, u)v ds. (8.7)

The “weak” formulation of the problem given by equation (8.6) imposes only one order of dif-

ferentiability on the solution u, and only in the weak or distributional sense. Under suitable

growth conditions on the nonlinearities b and c, it can be shown that this weak formulation

makes sense, in that the form 〈F(·), ·〉 is finite for all arguments, and further that there exists a

(potentially unique) solution to (8.6). In the specific case of the individual and coupled Einstein

constraint equations, such weak formulations are derived and analyzed in [178, 179].

To analyze linearization stability, or to apply a numerical algorithm such as Newton’s method,

we will need the bilinear linearization form 〈DF(u)w, v〉, produced as the formal Gateaux deriva-

tive of the nonlinear form 〈F(u), v〉:

〈DF(u)w, v〉 =
d
dε
〈F(u + εw), v〉

∣∣∣∣
ε=0

=
∫
M

(
a∇w · ∇v +

∂b(x, u)
∂u

wv
)

dx +
∫

∂1M

∂c(x, u)
∂u

wv ds. (8.8)

Now that the nonlinear weak form 〈F(u), v〉 and the associated bilinear linearization form 〈DF(u)w, v〉

are defined as integrals, they can be evaluated using numerical quadrature to assemble a Galerkin-

type discretization involving expansion of u in a finite-dimensional basis.

As was the case for the nonlinear residual 〈F(·), ·〉, the matrix representing the bilinear form

in the Newton iteration is easily assembled, regardless of the complexity of the bilinear form

〈DF(·)·, ·〉. In particular, the algebraic system for w = ∑n
j=1 β jφj has the form:

AU = F, Ui = βi, (8.9)
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where

Aij = 〈DF(ūh +
n

∑
k=1

αkφk)φj, ψi〉, (8.10)

Fi = 〈F(ūh +
n

∑
j=1

αjφj), ψi〉. (8.11)

and {φi}N
i=1, {ϕj}N

j=1 are the bases of the test and trial N-dimensional finite element spaces. As

long as the integral forms 〈F(·), ·〉 and 〈DF(·)·, ·〉 can be evaluated at individual points in the

domain, then quadrature can be used to build the Newton equations, regardless of the com-

plexity of the forms. This is one of the most powerful features of the finite element method,

and is exploited by FETK to make possible the representation and discretization of very general

geometric PDEs on manifolds. It should be noted that there is a subtle difference between the

approach outlined here (typical for a nonlinear finite element approximation) and that usually

taken when applying a Newton-iteration to a nonlinear finite difference approximation. In par-

ticular, in the finite difference setting the discrete equations are linearized explicitly by comput-

ing the Jacobian of the system of nonlinear algebraic equations. In the finite element setting, the

commutativity of linearization and discretization is exploited; the Newton iteration is actually

performed in function space, with discretization occurring “at the last moment.”
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Chapter 9. Semistructured Multiblock Triangulations

In order to avoid the extra step of interpolating the finite element numerical solution to a multi-

block grid, we use finite element meshes with vertices located at the multi-block grid points. We

construct such meshes by dividing a convex hull of the set of grid points into simplices with

vertices only at those points. This procedure of building a simplicial mesh based on a set of

points is usually referred to as triangulation. Delaunay’s triangulation (see, for instance, [193])

is an example of such a procedure, generating meshes with simplices of the highest possible

quality in flat space. Although Delaunay’s triangulation minimizes a condition number in a

resulting linear system, it is mostly used for sets of points of general position since it generates

completely unstructured meshes; for more regular grids its algorithm is unnecessarily complex.

Here we use a simpler and more straightforward algorithm to generate semi-structured meshes

with the additional advantage of having superconvergent properties.

The term superconvergence applies in various contexts, when the local or global convergence

order of a numerical solution is higher than one would expect [183, 194–196]. The type of su-

perconvergence we are interested in is superconvergence by local symmetry [183], which occurs

in function values for discretizations of second order elliptic boundary value problems, and

amounts to an additional 0 < σ ≤ 1 in the convergence order. It occurs at any given point in

which the finite element basis is locally symmetric, or approximately symmetric, with respect

to local spatial inversion at that point (see Fig. 9.1). The triangulation method that we use pro-

duces simplicial meshes with this type of symmetry at all vertices inside each block, and at some

vertices at the interblock boundaries. Therefore, in our meshes we expect superconvergence

everywhere but at the non-symmetric interblock boundary points. For second order elliptic

equations and piecewise polynomial finite elements of even degree superconvergence occurs in

the solution itself, while for odd degree it occurs in the first derivatives of the solution [197,198].
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Figure 9.1: Example of two-dimensional symplectic mesh, locally symmetric with respect to the
point [197].

With this in view, the quadratic Lagrange finite elements at the nodal points of the meshes

that we use are expected to give solutions with convergence order 3 + σ (for some 0 < σ ≤ 1).

This is an important advantage of multi-block triangulations: the resulting grid solutions have

a convergence rate which is even higher than the global convergence rate of the original finite

element solution, almost everywhere.

We start by dividing a cell, then combine cells into a block, and finally combine blocks to-

gether in a conforming way. Next we explain how these procedures are performed. The main

complexity in building multi-block triangulations comes from the last step, since triangulations

of each block are not necessarily conforming at their interfaces. We will show, however, that our

method guarantees conforming simplicial triangulations.

Cell triangulation. For a cubical cell, there exist two possible triangulations (see Fig. 9.2):

the cell can be divided into either five or six tetrahedra. The former is known as middle cut trian-

gulation [199], and the latter as Kuhn’s triangulation [200]. While Kuhn’s triangulation produces

simplices of equal shape and can be more easily extended to an arbitrary number of dimen-

sions [201], the middle cut triangulation produces higher quality tetrahedra, in the sense that

their angles are less acute than in a Kuhn triangulation, which produces to a finite element ma-

trix system with better condition number. Usually, the quality of tetrahedra is described by the

ratio R/3r of radii of circumscribed (R) to inscribed (r) spheres. For a middle cut triangulation

the central tetrahedron has, obviously, minimum possible aspect ratio R/3r = 1, while for cor-

ner tetrahedra we have R/3r = 1+
√

3
2 ≈ 1.37. At the same time, in Kuhn’s triangulation all
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tetrahedra have aspect ratio 1 + 1/
√

3 ≈ 1.58.

Figure 9.2: Middle cut triangulation and Kuhn’s triangulation: dividing a cube into five or six
tetrahedra, respectively.

Block triangulation. A block can be triangulated in many possible ways. We will consider

the two most straightforward and symmetric ones, referring to them as uniform and clustered

block triangulations. Both types of triangulation are locally symmetric with respect to local

space inversion at any inner vertex of the mesh. In uniform block triangulation, exactly the same

cell triangulation, with the same orientation, is applied to all cells in a block (see Fig. 9.3). This

produces a conforming mesh for Kuhn’s triangulation, but fails to produce a conforming one for

the middle cut one, since the triangulation patterns between neighboring cell interfaces are not

compatible.

Figure 9.3: Uniform (left) and clustered (right) block triangulations. With Kuhn’s triangulation
of each cell, both types of block triangulation can be done in conforming way for neighboring
cells. Cells, triangulated by middle cut, can only be arranged into clustered configuration.

To handle this compatibility problem, it is convenient to group neighboring cells into 2 ×

2× 2 clusters and triangulate each cluster as shown in Fig. 9.4, with ”union jack” patterns on

each side. This guarantees conformity between neighboring clusters. We will label this type of

triangulation as clustered block triangulation. It can be used with both types of cell triangulation.
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Figure 9.4: Union jack triangulation of 2× 2× 2-cell cluster. The triangulation pattern on each
side of the cluster is the same. Inside, each cluster can have either middle cut (left) or Kuhn
(right) triangulations.

Multi-Block triangulation. In a multi-block system, both uniform and clustered triangula-

tions of each block can be arranged into a conforming simplicial mesh. Obviously, clustered

triangulations of each block with even number of cells on the interfaces between the blocks

assemble themselves in a conforming manner. A uniform triangulations arrangement can be

constructed from clustered triangulation of the same system by first removing and then replicat-

ing layers of cells with Kuhn’s triangulation. Two different types of semi-structured multi-block

triangulations, used in this paper, are shown in Fig. 9.5.

Figure 9.5: Seven-block system for the sphere (left), and its triangulations, generated using
clustered (center) and uniform (right) block triangulations.
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Chapter 10. Superconvergent FE Solutions

In this chapter we perform a numerical study of the quality of our finite element solutions ob-

tained using semi-structured multi-block triangulations. We investigate not only the solution

itself, but also answer the question of whether this solution is appropriate for finite-difference

evolution codes with high-order numerical derivative operators. After introducing the domain

structure and weak formulation of the second-order elliptic equation, we evaluate the solution

convergence order, and show superconvergence for quadratic finite elements. Then we evaluate

the finite element solution at the multi-block gridpoints, apply various high-order finite differ-

ence operators and check the convergence orders of its first and second numerical derivatives.

The observed convergence orders are consistent with the expected values.

10.1 Domain Structure

Both FETK and QUILT were developed to handle equations on general manifolds, with an ar-

bitrary number of charts. However, for the domain structures considered in this paper we can

embed the computational domain into a reference Euclidean 3-dimensional space with a single

fixed Cartesian system of coordinates to label all vertices and nodes of the mesh, and we do

so. The domain of interest here will then be a spherical domain of radius R, equipped with a

seven-blocks or thirteen-blocks system (see Fig. 10.1), with local block coordinate transforma-

tions defined as in [76], [91]. The seven-block geometry (see Fig. 10.1) is fully specified by fixing

the outer sphere radius Rout and the side of the inner cubical block ac. In the innermost, cubical

block, there are Nx × Ny × Nz points, where Nx = Ny = Nz := N. Since the grids are conform-

ing, in the six blocks surrounding the inner one there are N × N × Nr points. The thirteen-block

geometry, in turn, can be seen as a seven-block one of radius Rmed and N × N × Nr,in points,

surrounded by six additional blocks with N × N × Nr,out points each, with a total radius Rout.
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(a) (b) (c)

Figure 10.1: An equatorial cut of (a) seven-block and (b) thirteen-block systems. (c) Grid dimen-
sions for the seven-block system.

The advantage of the thirteen-block setup is that the transversal grid layers in the outermost

system are perfectly spherical surfaces. These are very convenient in certain applications which

require integration over such surfaces, as in the the study of the multipole structure of radiation

in the wave zone (see, for example, [50]), since no interpolation is needed for those integrations

(resulting in both higher accuracy and speed). Throughout this paper, when we change the res-

olution we keep the ratios N : Nr and N : Nr,in : Nr,out in the seven- and thirteen-block systems,

respectively, fixed. Multiple domains with different values of N produce a sequence of domain

triangulations {Th} with maximal simplex diameters h inversely proportional to N. Therefore,

it is convenient to use N as a scaling factor in convergence tests, and we do so.

10.2 Test Problem

Let SR represent our spherical domain with radius R, centered at the origin, and let ∂SR be its

outer boundary. The equations of interest in this paper are of the form:

−∇2ψ(x̄) + V(x̄)ψ(x̄) = 0 in SR, (10.1)

ψ(x̄) = ψD on ∂SR (10.2)

where ψD is a Dirichlet boundary condition, and∇2 is the Laplace operator. We only consider

the case when both the potential V and the boundary conditions ψD are axisymmetric. Following

the weak formulation example above (Section 8.1), we obtain the nonlinear weak form and the
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bilinear linearization form:

〈F(ψ), φ〉 =
∫

SR

(∇ψ · ∇φ + ψVφ) dx (10.3)

〈DF(ψ)χ, φ〉 =
∫

SR

(∇χ · ∇φ + χVφ) dx (10.4)

with ψ(x̄) ∈ ψ̄ + H1
0(SR), and φ(x̄) , χ(x̄) ∈ H1

0(SR) as discussed in Chapter 8. These

two forms and the Dirichlet boundary function are everything we need to specify the problem

in FETK.

We also consider the same problem with more complex Robin boundary conditions:

∂rψ(x̄) =
1− ψ(x̄)

r
on ∂SR , (10.5)

which has the following nonlinear weak and bilinear linearization forms,

〈F(ψ), φ〉 =
∫

SR

(∇ψ · ∇φ + ψVφ) dx +
1
R

∫
∂SR

(ψ− 1)φ ds (10.6)

〈DF(ψ)χ, φ〉 =
∫

SR

(∇χ · ∇φ + χVφ) dx +
1
R

∫
∂SR

χ φ ds (10.7)

where now ψ(x̄), φ(x̄), χ(x̄) ∈ H1(SR). We will use these Robin boundary conditions when

solving for Brill waves below in Section 11.

10.3 Convergence of the Solution

As a test problem for our approach to solving elliptic equations on a semi-structured grid using

finite elements, we solve equation (10.1) with three different potentials:

VA = −3ω2,

VB(r) =
2(r2 − 3r2

0)
(r2 + r2

0)2
,

VC(ρ, z) = − 2
Z

(
1 +

4z2

R
(S +

σrr2
0

Z
)

)
+

2(2C + 3S)
R

+ 2
(

2rS
R

)2

,
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where R = r2 − σrr2
0 cosh r2

r2
0
, Z = z2 + σ2

z , C = σr cosh r2

r2
0
, S = σr sinh r2

r2
0
− 1.

These are such that they produce the following solutions:

(A) Plane wave: ψA(x, y, z) = cos(ωx) cos(ωy) cos(ωz)

(B) Spherically-symmetric pulse with width r0, concentrated at the origin, falling off with or-

der 1/r2 as r → ∞: ψB(r) = 1
1+r2/r2

0

(C) Toroidal solution, with radius ∼ r0 and width ∼ σr in the radial direction and σz in the

vertical one: ψC(ρ, z) = (cosh ( r2

r2
0
)− r2

σrr2
0
)−1(1 + z2/σ2

z )−1
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Figure 10.2: Convergence of the solution error, in the l2 and l∞ norms, with respect to the number
of points N, for linear and quadratic finite elements. The plots (a), (b) and (c) correspond to the
potentials VA, VB(r) and VC(ρ, z), respectively. From each pair of lines, the upper one represents
the l∞ norm, and the lower one the l2 norm. Each plot shows the convergence orders n, obtained
by linear fit using the four points with highest resolution. The numbers in brackets give the
convergence orders in the l∞ norm.
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These three potentials are chosen such that the solution for ψ is known in closed form, and

they all differ in the way they are adapted to the underlying multi-block grid. The first po-

tential, VA, represents a simple periodic wave, with the mesh not adapted to the shape of the

wave. Second potential is supposed to model a situation where the wave is concentrated near

the origin, in the central cubical block of the ”cubed sphere” domain. In this case, the grid reso-

lution is adapted to the solution, but not the coordinate lines. Finally, for the potential VC (which

has toroidal shape), both the resolution (in the θ and r directions), and coordinate lines (in ϕ

direction) are adapted to the solution.

All the test problems were solved on the same seven-block spherical domain, with dimen-

sions Rout = 10, ac = 2.5, and fixed grid size ratios N : Nr = 1 : 2. The test problems

used the following set of parameters: for VA: ω = 0.1, for VB(r): r0 = 4, and for VC(ρ, z): r0 = 8,

σr = 1.2, σz = 4.

It is well-known (see, for example, [202], [203], [204]) that in case of the optimal approxima-

tion, the convergence rate of continuum-level error norms, ||uh − ue||2 and ||uh − ue||∞, defined

in a usual manner,

||uh − ue||2 =
(∫
M

(uh(x)− ue(x))2dx
)1/2

, (10.8)

||uh − ue||∞ = max
x∈M
|uh(x)− ue(x)| (10.9)

for the standard uniform refinement, is determined by the approximation power of the finite

element function spaces (here, ue(x) is the exact solution, uh(x) is its finite element approxi-

mation, and index h denotes the maximum simplex diameter in the domain triangulation Th). If

piecewise polynomials of fixed order p are used, then the order of convergence of the continuum-

level error norms is p + 1.

In order to measure the error of the grid solutions, we use discrete l2 and l∞ norms, sampled

at the nodes and normalized by the corresponding norm of ue:
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εh,2 =

(
1
N ∑N

k=1(uh,k − ue(xk))2
)1/2

(
1
N ∑N

k=1 ue(xk)2
)1/2 εh,∞ =

maxk |uh,k − ue(xk)|
maxk |ue(xk)|

The plots on Fig. 10.2 show the convergence of εh,2 and εh,∞ with N (N is inversely propor-

tional to the maximum mesh diameter h, see Section 10.1). Note that the convergence orders

in the l2 and l∞ norms agree, which means that the pointwise convergence order is the same

everywhere. The observed convergence order for linear elements is 2, which is supposed to be

the case, since the order of piecewise polynomials is odd. For quadratics, we expect to have

superconvergence, and indeed, the observed convergence rate is ≈ 4.

10.4 Convergence of Numerical Derivatives of the Solution

To set up initial data for our General Relativity evolution codes, we need not only the solution

itself but also its first spatial derivatives, because we use a first-order formulation of the Ein-

stein evolution equations. In total, our finite element solution has to be differentiated twice:

once, when setting initial data, and one more time when computing the evolution equations. In

this section we numerically study how our obtained finite element solutions behave under two

numerical finite-difference differentiations in terms of convergence.

If we were using completely unstructured meshes and interpolated the finite element solu-

tion to the multi-block grids used in our evolutions, the resulting grid solution would have an

error of order O(hp+1). Two numerical differentiations in this case would take away two or-

ders of convergence, leading to an unacceptable low convergence order. However, as discussed

above, when using semi-structured grids special conditions which lead to superconvergence can

be met, and the convergence rate of numerical derivatives improve.

The procedure for converting the finite element solution into the grid solution is trivial: the

value of the solution u(x) = ∑N
i=1 ciφi(x) at a node i is simply the corresponding nodal coefficient

ci. In order for the nodes to coincide with the curvilinear gridpoint in the blocks, we restrict our

finite element solutions only to vertex nodes, and omit other types of nodes, such as mid-edge

ones.
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Figure 10.3: (a) Convergence of the solution error in the l2-norm, for linear and quadratic finite
elements, for the test problem with potential VA and ω = 0.1. (b,c,d) Convergence in the l2-norm
of the first (left) and second (right) numerical FD derivatives of: (b) the exact solution, restricted
to the FD grid; (c) the numerical solution obtained using linear finite elements; (d) the numerical
solution obtained using quadratic finite elements. In all cases several FD operators are used to
compute the derivatives, and the resulting convergence factors (denoted by n) are shown
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In our multi-block evolutions we use high-order finite differencing (FD) operators satisfying

the summation-by-parts (SBP) property, as described in the Section 1.2 above.

After the finite element solution is converted to a grid function and then numerically dif-

ferentiated with FD, the resulting convergence factor for the numerical derivatives depends not

only on the order of the finite element basis polynomials, but also on the order of the FD opera-

tor. In general one expects that FD operators of sufficiently high order will preserve the original

convergence of the finite element solution. This is a very nontrivial mathematical result in super-

convergence theory (see Section 8.2 of [183] and references therein). In this section we test it for

first and second FD derivatives (where by ’second FD derivative’ we mean ’first FD derivative,

applied two times’, as opposed to a second-order FD derivative). The second FD derivative is

expected be one order less convergent.

The results of our numerical experiments are illustrated by the Fig. 10.3 and summarized

in tables 10.1 and 10.2. These tables list convergence orders in the l2 and l∞ norms for each

SBP operator, applied once and twice to three different grid functions: the exact solution, the

numerical solution obtained with linear elements, and the numerical solution obtained with

quadratics. Test problem is the equation 10.1 with three test potentials: VA with ω = 0.1, VB

with r0 = 4 and VC with parameters σr = 10, σz = 5, r0 = 1.5. For the potentials VA and VB we

use a spherical domain with seven blocks, Rout = 10, ac = 2.5, and grid size ratio N : Nr =

1 : 2. For VC we use 13 blocks with Rout = 20, Rmed = 7, ac = 1.5, and grid size ratios

N : Nr,in : Nr,out = 1 : 1 : 1.

Figure 10.3 shows in more details some of this information, displaying log-log plots of the

l2-norms of the errors of the solution and its first and second numerical derivatives, computed

with various FD operators, for the problem 10.1 with the potential VA.

Several conclusions can be drawn from these tables. In general, one expects the convergence

order of the first FD derivative to be the smallest between the convergence order of the finite el-

ement solution itself and the convergence order of the SBP operator used to compute the deriva-

tive. Our results support this expectation: a) the first numerical derivative of the exact solution

converges with the order of SBP operator used to compute it. b) The convergence order for the

first derivative of the numerical solution obtained with linear elements approaches 2 for all SBP
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Table 10.1: Top table: convergence orders of the solution error in the l2-norm, for linear and
quadratic finite elements, for the three test potentials. Middle and bottom tables: convergence
orders of the first and second numerical derivatives, computed with different SBP operators.

potential linear quadratics
VA 2.00 3.71
VB 1.98 3.96
VC 1.53 3.79

FE V D2−1 D4−2 D4−3 D6−3 D6−5 D8−4

ue

VA 1.55 2.53 4.26 3.84 4.73 4.84
VB 1.52 2.60 3.68 3.42 6.00 4.91
VC 1.59 2.59 3.98 3.85 6.34 5.61

u1

VA 1.73 1.95 1.94 1.95 1.95 1.95
VB 1.82 1.97 1.97 1.97 1.97 1.97
VC 1.47 1.47 1.47 1.47 1.47 1.47

u2

VA 1.55 2.52 3.81 3.87 2.85 4.86
VB 1.52 2.61 2.68 3.39 2.45 3.35
VC 1.60 3.15 3.91 3.93 3.82 4.06

FE V DD2−1 DD4−2 DD4−3 DD6−3 DD6−5 DD8−4

ue

VA 0.55 1.52 3.12 2.54 4.34 3.81
VB 0.51 1.60 2.65 2.36 4.69 3.72
VC 0.50 1.54 3.52 2.82 5.29 4.34

u1

VA 0.51 0.99 0.95 0.96 0.90 0.96
VB 0.49 1.26 0.93 1.01 0.87 0.97
VC 1.10 1.00 0.38 1.04 0.47 0.21

u2

VA 0.55 1.51 2.89 2.56 2.06 3.82
VB 0.52 1.60 2.06 2.33 1.61 2.86
VC 0.50 1.54 2.60 2.83 3.09 3.43

operators. c) The convergence order for the first derivative using quadratics improves as the SBP

order increases. Eventually, when the operators D8−4 and D6−5 are used, the convergence order

is either equal to the convergence of the finite element solution, or to the convergence order of

the corresponding SBP operator.

The numerical results also show that second numerical differentiation takes away one order

of convergence for all three grid functions. In particular, the second numerical derivative of

linear elements solution fails to converge in the l∞ norm (see table 10.2). Similarly, the second

numerical derivative computed with the D2−1 operator fails to converge as well.

The most important conclusion from these results is that taking successive numerical deriva-

tives of the grid function is only efficient for quadratics, i.e. when superconvergence takes place.

In this case, the finite element error can be smaller than finite differencing one, and the conver-
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Table 10.2: This table displays the same type of information of the previous one, but this time in
the l∞ norm.

potential linears quadratics
VA 1.92 3.68
VB 1.98 3.37
VC 1.52 3.76

FE V D2−1 D4−2 D4−3 D6−3 D6−5 D8−4

ue

VA 0.99 2.02 4.70 3.33 4.32 4.69
VB 0.90 1.99 3.15 2.92 5.37 3.98
VC 1.04 2.14 3.63 3.47 6.26 4.99

u1

VA 0.95 0.99 0.98 0.98 0.98 0.98
VB 0.97 0.65 0.84 0.82 0.83 0.84
VC 1.47 1.47 1.47 1.47 0.55 1.46

u2

VA 1.00 2.02 2.13 3.19 2.00 4.52
VB 0.91 1.99 2.09 2.73 1.96 2.40
VC 1.04 2.09 3.03 3.70 3.13 3.35

FE V DD2−1 DD4−2 DD4−3 DD6−3 DD6−5 DD8−4

ue

VA 0.09 1.02 2.27 1.80 4.31 3.77
VB -0.07 0.98 2.16 1.95 4.21 2.79
VC 0.05 1.10 2.09 2.29 4.89 3.80

u1

VA 0.11 -0.06 -0.05 -0.04 -0.07 -0.04
VB -0.07 -0.27 -0.17 -0.10 -0.22 -0.08
VC -0.47 -0.55 -0.60 -0.54 -0.61 -0.92

u2

VA 0.06 1.08 1.07 1.33 0.92 1.13
VB -0.07 0.99 1.26 1.55 0.92 1.63
VC 0.05 1.11 2.42 1.65 2.56 2.41

gence rate of the latter is observed. For linear elements (and other elements of odd order), other

techniques are required. One of the possible solutions is superconvergent gradient recovery,

when the finite element solution is differentiated and then its discontinuous derivative is pro-

jected back onto original finite element space (sometimes with additional postprocessing, see,

for example, [205], [206], [196], [207] ) We do not pursue this direction, because superconvergent

gradient recovery for linear element solution will only produce no more than second-order ini-

tial data, while for quadratics we already have third-order convergent initial data without extra

effort.

10.5 Remarks about AMR

One of the main advantages of the finite element method in general and FETK in particular is

fully adaptive mesh refinement (AMR). We have explored AMR in our semi-structured grids
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through the following strategy: we start from a multi-block triangulation, adaptively refine it

until the error reaches some predefined level, and read off the final result at the original multi-

block triangulation nodes 10.4. In doing so, we have learned that for the type of problems we

are solving for in this paper, AMR is not necessarily the most efficient strategy.
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Figure 10.4: Error in the l2-norm for the solutions obtained with linear and and quadratic finite
elements with adaptive mesh refinement. The test problem used is that one of Section 10.3
with potential VC. The straight lines represent the fitted convergence exponents. For linear
elements, at each resolution we started with a semi-structured multi-block triangulation and
did four AMR iterations. The l2 norms of errors for these iterations are plotted with the same
abscissa, corresponding to the initial resolution. For each resolution, the set of iterations done
with quadratic finite elements is the result of p-refinement on the linear element meshes.

First of all, no matter how much the mesh is refined, in the end the finite element solution has

to be restricted to the same FD grid. What matters for our purposes is the ability of the FD code

to properly approximate the solution on this grid, and not at the refined FE mesh. The original

FD multi-block grid is already adapted to be sufficiently fine to resolve all important features of

the solution.

Second, in the cases here treated both the final solution is a rather regular smooth function,

and the domain has regular boundaries. For such cases, standard uniform refinement gives just

as good error reduction as AMR. AMR should be advantageous, though, in cases where, for

example, the solution has non-smooth features or the domain has non-smooth boundaries.
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Finally, the set of grid points where we sample the solution (that is, the multi-block ones)

is very special. As already explained, the convergence order at these points is generally higher

than one might expect. The special status of these grid points implies local symmetry of the finite

element function spaces with respect to these points, which in turn implies superconvergence.

AMR can easily break this symmetry and degrade both the error and the convergence order to

the level of “ordinary” points. If we wanted to keep this symmetry and have superconvergence,

we would have to refine at least within the entire block, but this would be almost as expensive

as refining the entire domain uniformly.

Our experiments do not show particular advantage of using AMR compared to the uniform

refinement of semi-structured multi-block triangulations. In our experiments we found that, in

general, after a few refinement steps the AMR error saturates, while uniform refinement error

continues to decrease. We have found that often, while decreasing the global l2 norm, AMR leads

to an increase in the l∞ norm of the solution, because the local symmetry is broken at several grid

points in the refined mesh.

We have also tried a simple form of p-refinement. Namely, using the same set of refined

meshes for linear and quadratic elements (see Fig. 10.4). We chose several initial multi-block

triangulation meshes with different resolutions and did four AMR iterations with linear ele-

ments. Then we used the same meshes to increase the order of finite elements to quadratics

(p-refinement). It turns out that at high resolutions the meshes which give the best error reduc-

tion when going from linear to quadratic elements are initial triangulation meshes with no AMR.

It happens so because the refined mesh loses the property of local symmetry at some of the grid

points, the pointwise superconvergence for quadratic elements is lost and the global L2-norm

error is observed instead.
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Chapter 11. Brill Wave Initial Data

In General Relativity, initial data on a spatial 3D-slice has to satisfy the Hamiltonian and mo-

mentum constraint equations [150, 208],

3R− KijKij + K2 = 0 (11.1)

∇i(Kij − gijK) = 0 (11.2)

where Kij and K are the extrinsic curvature of the 3D-slice and its trace, respectively, and 3R the

Ricci scalar associated with the spatial metric gij.

Brill waves [209] constitute a simple yet rich example of initial data in numerical relativity. In

such a case the extrinsic curvature of the slice is zero, and the above equations reduce to a single

one, stating that the Ricci scalar has to vanish:

3R = 0 . (11.3)

If the spatial metric is given up to one unknown function, Eq. (11.3) in principle allows us to

solve for such function and thus complete the construction of the initial data. The Brill equation

is a special case of (11.3), where the 3-metric is expressed through the conformal transformation

gij = ψ4 g̃ij of an unphysical metric g̃ij, with an unknown conformal factor ψ. Equation (11.3)

then becomes [210]:

(−∇2
g̃ +

1
8

R̃)ψ = 0 (11.4)

where R̃ and∇2
g̃ are the Ricci scalar curvature and Laplacian of the unphysical metric g̃ij, respec-

tively.

88



Here we will focus on the axisymmetric case with the unphysical metric given in cylindrical

coordinates by

g̃ij = e2q(ρ,z)(dρ2 + dz2) + ρ2dϕ2 , (11.5)

where q(ρ, z) is a function satisfying the following conditions:

1. regularity at the axis: q(ρ = 0, z) = 0, ∂q
∂ρ |ρ=0 = 0,

2. asymptotic flatness: q(ρ, z)|r→∞ < O(1/r2), where r is the spherical radius r =
√

ρ2 + z2

.

The Hamiltonian constraint equation (11.3) becomes a second order elliptic PDE, which with

asymptotically flat boundary conditions at r → ∞ takes the form

−∇2ψ(ρ, z) + V(ρ, z)ψ(ρ, z) = 0, (11.6)

ψ|r→∞ = 1 +
M
2r

+ O(1/r2), (11.7)

with the potential V(ρ, z) given by

V = −1
4
(q′′ρρ + q′′zz).

We numerically solve this equation using FETK on the 13-block multi-block spherical do-

main described in Section 10.1 (see Fig. 10.1). We use domain parameters Rout = 30, Rmed = 7,

ac = 1.5, and grid dimension ratios N : Nr,inner : Nr,outer = 2 : 3 : 12. Our low-medium-high

resolution triple is N = 32, N = 36 and N = 40, except for pointwise convergence tests on the

x-axis (see Fig. 11.3), where we use N = 16, N = 24 and N = 36 (since they all differ by powers

of 1.5).

We impose Robin boundary conditions, as in equation (10.5). The weak form (10.6) and bilin-

ear linearization form (10.7) for this problem are given in Section 10.2. Since first order elements

lead to unacceptably low convergence orders for most general relativistic applications, from
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here on we restrict ourselves to quadratic ones (which should give fourth order convergence if

superconvergence is exploited).

(a) (b)

Figure 11.1: Potentials for the two types of Brill waves considered: Holz’ (a) and toroidal (b)
forms.

We work with two specific choices for q(ρ, z):

(a) Holz’ form [211]: qH(ρ, z) = aHρ2e−r2
, with amplitude aH = 0.5;

(b) toroidal form: qt(ρ, z) = atρ
2 exp

(
− (ρ−ρ0)2

σ2
ρ
− z2

σ2
z

)
, with amplitude at = 0.05, radius ρ0 =

5, width in ρ-direction σρ = 3.0 and width in z-direction σz = 2.5.

Holz potential is chosen for historical reasons. It is suitable for evolutions using the cubed

sphere system, because initially the wave is concentrated near the origin (at the central block),

and later decays into a sequence of spherical waves. The cubed sphere grid resolves the wave

well both at the initial moment, and during the subsequent evolution. For the toroidal potential,

the cubed sphere system is adapted even better, since it efficiently removes the dependence on

one of the angular coordinates, ϕ.

11.1 Importing the Initial Data into QUILT

Once we have constructed the initial data sets, we analyze and evolve them by importing them

into QUILT. For evolutions we use the Generalized Harmonic (GH) first order symmetric hy-
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perbolic formulation of the Einstein equations introduced in [51], which features exponential

suppression of short-wavelength constraint violations; our multi-block implementation is de-

scribed in [50].

The set of evolved variables in this system includes the 4-metric gab, its spatial derivatives

Φiab = ∂igab and quantities Πab = −tc∂cgab, where tc is the unit normal vector to the spatial slice.

To set up the initial data, we first compute the 3 + 1 quantities and then convert them to GH

variables. The 3-metric gij(x, y, z) is computed from the conformal factor ψ(x, y, z), in Cartesian

coordinates, using the expressions (which follow from 11.5):

gxx = ψ4(e2qx2 + y2)/ρ2, gxy = ψ4(e2q − 1)xy/ρ2,

gyy = ψ4(x2 + e2qy2)/ρ2, gzz = ψ4e2q,

gxz = gyz = 0

where ρ =
√

x2 + y2. Then we construct the rest of the evolved variables, including the

gauge source functions Ha = −gbcΓa,bc (here Γa,bc = 1
2(∂bgac + ∂cgab − ∂agbc) are the Christoffel

symbols). The extrinsic curvature is assumed to be zero, Kij = 0, we also use unit lapse α = 1,

zero shift βi = 0, and zero time derivative of lapse and shift: ∂tα = ∂tβi = 0.

11.2 Convergence of Initial Data and Hamiltonian Constraint

To estimate the quality of our initial data, we evaluate the Hamiltonian constraint violation using

the SBP operators, which is in fact equivalent to an independent residual evaluation for the Brill

equation (11.6). As is the case with just numerical derivatives, we find that the magnitude and

convergence order of the Hamiltonian constraint violation depends on both the order of the

SBP operator, and the order of finite elements. In total, computing the Hamiltonian constraint

involves two numerical differentiations, therefore it has to converge with the same order as

second numerical derivatives. We can see this convergence rate for different SBP operators in

Fig. 11.2. Table 11.1 summarizes those results, along with the expected convergence orders for

second numerical derivatives.

Consistent with what one expects, for finite difference operators of sufficiently high order
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Table 11.1: Convergence orders of the Hamiltonian constraint for the two initial data sets in the
l2-norm.

q D2−1 D4−2 D4−3 D6−3 D6−5 D8−4
Holz 0.59 1.42 2.03 2.01 1.86 2.58

Toroidal 0.58 1.75 2.55 3.08 2.55 3.96

the constraints converge with the same order as the finite element solution itself, which should

be 3 + σ for some 0 < σ ≤ 1 (depending on the level of superconvergence obtained). Simi-

larly, below in Chapter 12 we will show that the extracted gravitational waves have a similar

convergence order.
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Figure 11.2: Convergence of the Hamiltonian constraint in the l2-norm for Brill waves of Holz
(left) and toroidal (right) type, computed using quadratic finite elements and different numerical
SBP operators.

It is not difficult to see why the convergence order is lower for problem (a). This is the order

we might expect for quadratic elements on completely unstructured meshes, without supercon-

vergence. The reason that no superconvergence is observed in this case is the following. We

have chosen the domain and the width of the Brill wave in such a way that around the bound-

ary of the inner cubical block the solution varies significantly (see Fig. 11.3). Recall that the size

of that block is ac = 1.5 and the width of the gaussian in the function q is 1. But this is exactly the

place where the local symmetry property is violated most (especially at the corners of the cube),

and conditions for superconvergence are the least favorable. Everywhere else the solution varies

very slowly and the error is small compared to the error at the boundary of the central cubical
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Figure 11.3: (a) 1-d cut through the Brill wave conformal factor ψ f ine for problem (a) along the
x-axis. (b) Errors ψcoarse − ψmedium, ψmedium − ψ f ine, and pointwise convergence order on the 1-d
cut along the x-axis.

block. With increasing resolution this error dominates in both l2 and l∞ norms. The situation

is better for the problem with toroidal potential, because most of the variation of the solution

is located outside the central cube (recall that the radius of the toroidal wave we use is r0 = 5);

though this is still in the inner-blocks region (the radius of the spherical boundary between inner

and outer blocks is rmed = 7).
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Chapter 12. Evolutions of Brill Wave Spacetimes

We now demonstrate that our approach for generating initial data on multi-block grids using

finite element methods can be successfully used in practice in fully nonlinear relativistic simu-

lations. We do so by presenting results of multi-block evolutions of the Holz set of Brill initial

waves constructed above.

In the notation of [51], we fix the damping parameters of the GH formulation to γ0 = γ2 =

1. We used the SBP operator D6−3 for spatial differentiations, a 4-th order Runge-Kutta time

integrator with adaptive time stepping, and maximally dissipative outer boundary conditions.

The Brill wave amplitude aH = 0.5 is in the subcritical regime (the critical value is around

acr ≈ 4.85 [211]). As a result the wave, initially concentrated near the center, dissipates and

leaves the domain after a while. Fig. 12.1 shows a convergence plot in time for the Hamiltonian

constraint during such evolution. We see that the Hamiltonian constraint converges with a factor

of 2− 3 in the l2 norm. This has to be one order less convergent than the solution itself, therefore

we anticipate the solution to converge with a factor of 3 − 4, which is in agreement with the

pointwise convergence order of the conformal factor at the initial time (see Fig. 11.3).

We compute gravitational waveforms using a generalized Regge-Wheeler-Zerilli formalism,

along the lines of [50, 212]. The four-dimensional spacetime metric is decomposed into a spher-

ically symmetric “background” plus a small perturbation [213,214]. The background part of the

metric is identified with the Schwarzschild solution and the radiation content with the difference

between the numerically computed solution and the background.

The background metric is written as

ds2 = g̃ρτ(t, r)dxρdxτ + f 2(t, r)ĝABdxAdxB. (12.1)
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Figure 12.1: Convergence of the Hamiltonian constraint as a function of time during a multi-
block evolution of the Brill wave initial data generated with finite element methods.

with the four-dimensional background manifold split as the product space of a two-dimensional

one M endowed with coordinates xρ (with ρ, τ = 0, 1 usually denoting the time and radial

coordinate) and a unit 2-sphere S2 with coordinates xA (with A = 2, 3 commonly taken as the θ

and φ polar spherical coordinates). Here g̃ρτ is the metric of the manifoldM and f 2 is a positive

function of xρ. If using the areal radius as a coordinate we have f = r. The metric of the 2-sphere

is taken to be ĝAB = diag(1, sin2 θ) in polar spherical coordinates.

The metric perturbation is decomposed in terms of scalar, vector and tensor spherical har-

monics [50, 215, 216]. The decomposition naturally splits the different (`, m) modes into even

(−1)` and odd (−1)`+1 parity under reflections about the origin. The two different parities are

handled separately. Odd and even-parity perturbations are described by the Regge-Wheeler [213]

and Zerilli [214] functions, respectively.

The dominant modes in the evolutions of the Brill data constructed above are the ` = 2, 4

even parity, axisymmetric ones (see Fig. 12.2). Figs. 12.3 and 12.4 display the corresponding

Zerilli functions and their convergence behavior, extracted at a radius re = 12.75. The observed
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Figure 12.2: Nonzero components of gravitational radiation ` = 2 and ` = 4, m = 0, extracted
at radius re = 12.75.
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Figure 12.3: Zerilli function (left) and self-differences (right) for the (` = 2, m = 0) mode, scaled
according to fourth order convergence.

convergence factors for the ` = 2 and ` = 4 modes are around four and three, respectively, which

are consistent with the convergence factors from quadratic elements with superconvergence for

the initial data and the D6−3 SBP operator and fourth-order Runge-Kutta for the evolution.
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Figure 12.4: Zerilli function (left) and self-differences (right) for the (` = 4, m = 0) mode, scaled
according to third order convergence.
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Conclusion

• Self-gravitating Disks

In the work reported in this thesis we have explored the problem of non-axisymmetric instabil-

ities in self-gravitating disks around black holes (BHs). To address this problem, we used 3D

general relativistic hydrodynamical simulations including a full treatment of the Einstein equa-

tions. We studied several moderately slender and slender models with disk-to-BH mass ratio

ranging from 0.11 to 0.24. The parameters of these models are listed in Table 4.1.

To obtain a self-consistent equilibrium disk model outside BH, we solve the coupled system

of Einstein constraints and Euler equations using iterative Green functions approach, imple-

mented in the RNSID code [97]. To avoid coordinate singularities, we transform the stationary

initial data outside the BH horizon from quasi-isotropic to non-singular horizon-penetrating co-

ordinates. We set the missing data inside the BH horizon to analytic Kerr-Schild solution and

smoothly blend it with the computed data outside the horizon.

We evolve the metric using first-order form of the Generalized Harmonic formulation of the

Einstein equations with adaptive constraint damping. The metric evolution equations are dis-

cretized on multiblock grid and solved using 8th order finite difference operators. We evolve

the matter with relativistic Euler equations in flux-conservative form, using a finite volume cell-

centered discretization scheme. We also use a Γ-law as the matter equation of state. Our numeri-

cal approach makes extensive use of the curvilinear mesh adaptation in order to achieve desired

resolutions in different parts of the domain.

We have not observed the runaway instability in our models, which could have developed

due to the disk overfilling its toroidal Roche lobe in the process of radial oscillations. Such

radial axisymmetric oscillations of the disk around its equilibrium state are triggered in all of
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our simulations by an axisymmetric perturbation in the metric. The latter is introduced into the

initial data by the blending of two metrics inside and outside the BH horizon. Although our

initial disk models are close to overfilling the toroidal Roche lobe, the radial oscillations do not

lead to the development of the runaway instability within several initial orbital periods that we

have simulated. However, this result may be specific to the particular model that we focused on;

we can not exclude the possibility of the quick runaway instability development in models with

different initial parameters.

In all models that were explored we observed unstable non-axisymmetric modes. We have

performed detailed analysis of these modes to determine their types, growth rates, radial profiles

and pattern speeds (see Table 6.3). For all simulations in Cowling approximation we observe

the development of Papaloizou-Pringle (PP) instability with m = 1− 4. For the simulations in

full GR we observe two distinct types of instabilities. The unstable mode with m = 1 has PP

type, similar to the one observed in Cowling case. Unstable modes with m > 1 become the

intermediate modes (I-modes), representing elliptical, triangular or square deformations of the

disk.

In full GR case, the development of the m = 1 PP mode is accompanied by outspiraling

motion of the BH, which is correlated in time with the growth of the mode. Due to this motion,

the m = 1 mode growth rate is higher by approximately ≈ 1.5 compared to the Cowling case.

The overall picture of the unstable modes is qualitatively similar to the Newtonian case and

consistent with previous works [28, 31, 82]

• Superconvergent Finite Elements

In this work we followed a finite element approach for generating initial data satisfying the

Einstein constraint equations on semi-structured, multi-block three-dimensional domains.

In Section 10 we used semi-structured multi-block triangulations to solve for some test prob-

lems with known closed-form solutions. The obtained linear and quadratic finite element solu-

tions were then restricted to the multi-block grid, and their convergence, as well as the conver-

gence of their first and second derivatives, was evaluated numerically using independent high-

order finite difference operators satisfying summation by parts (SBP). While the linear elements
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solution showed usual 2-nd order convergence (unacceptably low for many relativistic applica-

tions), for quadratic elements we obtained superconvergence with order 3 + σ (with 0 < σ ≤ 1)

on the grid, due to the approximate local symmetry at the mesh vertices with respect to the local

inversion of the multi-block triangulations.

Initial data for a first-order formulation of the Einstein equations involves first derivatives of

the solution of the constraints equation. Computing the constraints or right-hand sides of the

evolution equations requires taking derivatives twice. In Section 10.4 we analyzed convergence

of the first and second numerical derivatives, taken with different high-order SBP operators. For

quadratic elements, the first numerical derivative was observed to converge with either the su-

perconvergence order 3 + σ, or the order of SBP operator. The latter is a transient error behavior

and happens when the FE error is still smaller than the error of numerical differentiation.

In Section 10.5 we discussed three factors which make adaptive mesh refinement (AMR)

unnecessary and/or less efficient for the problems here considered when compared to global

refinement: the fact that the multi-block grid is already tailored to resolve fine features of the

solution, the need to restrict the finite element solution to the same grid, and the superconver-

gence properties of the quadratic elements solution. Because we lose superconvergence when

using completely unstructured meshes, adaptively refining the solution sometimes makes the

errors larger (see Fig. 10.4 for an example). However, we also noted that AMR would likely

become advantageous for other problems with more singular solution features.

Finally, in Chapter 11 we presented numerical experiments with Brill waves. The constraint

equations in this case reduce to a single elliptic one (11.6) on the conformal factor ψ, which has to

be differentiated once to obtain the full set of initial data variables in the generalized harmonic

formulation (Section 11.1). Section 11.2 presented a convergence analysis of the initial data and

Hamiltonian constraint, and confirmed that the initial data computed with quadratic finite el-

ements shows the desired order of convergence > 3 (see table 11.1). Finally, in Chapter 12 we

demonstrated stable, > 3-rd order convergent multi-block evolutions of subcritical Brill waves

with finite differences, summation by parts operators, and extracted the first two dominant ra-

diation modes from the numerical solution.

Our experiment with semistructured triangulations of multiblock grids have demonstrated
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that the second-order FE initial data on such triangulations generates superconvergent evolution

when evolved using high-order FD solver. Therefore, this approach is feasible for producing

accurate and convergent initial data on multiblock grids. Future work in this direction will

include testing this approach on full set of the Einstein constraints equations and producing

more physically motivated 3D initial data.
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Appendix A. Transforming Initial Data to Horizon-penetrating
Coordinates

Here we present the transformation of the stationary axisymmetric initial data in quasi-isotropic

coordinates to time-independent horizon-penetrating coordinates which is used in Chapter 4 in

order to remove metric degeneracy at the BH horizon. In our initial data, the metric is given

in general form (4.1) and represents an axisymmetric deformation of Schwarzschild BH by a

massive equilibrium torus. The sought transformation has to satisfy the following requirements:

• metric in the new coordinates is time-independent;

• metric does not have pathologies (degeneracy or divergence) at the event horizon;

• 3-metric on t = const. foliation is positive definite (i.e. the t = const. foliation is spacelike).

We build our transformation by analogy with the transformation from isotropic Boyer-Lindquist

coordinates [217] to horizon-penetrating Kerr-Schild coordinates [218] of Schwarzschild space-

time (see also [219] for a general case of rotating BH). In this case, the line element has the

following form:

ds2
is = −

(
1−m/2r∗
1 + m/2r∗

)2

dt2 + ψ4(dr2
∗ + r2

∗dΩ2),

where m is the BH mass, r∗ is the isotropic radius, dΩ2 ≡ dθ2 + sin θ2dϕ2 is the solid angle ele-

ment, and ψ ≡ 1 + m
2r∗ is the conformal factor. At the event horizon r∗,h = m/2 the determinant

of the isotropic metric is zero.

In the horizon-penetrating Kerr-Schild coordinates, the line element will be:

ds2
ks = −(1− H)dt̄2 + 2Hdt̄dr + (1 + H)dr2 + r2dΩ2

where H ≡ 2m/r and r ≡ r∗ (1 + m/2r∗)2 is the Schwarzschild radial coordinate.
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The Jacobian of transformation from the isotropic (t, r∗, θ, ϕ) to the horizon-penetrating coor-

dinates (t̄, r, θ, ϕ) has the following form:

D(t, r∗, θ, ϕ)
D(t̄, r, θ, ϕ)

=



1 − H
1−H 0 0

0 r∗
r
√

1−H
0 0

0 0 1 0

0 0 0 1


.

Notice that at the event horizon the components of the transformation have to become infinite

in order to compensate for the degeneracies in the isotropic metric.

The metric in the new coordinates remains independent of time, which is also true for an

arbitrary transformation with the following Jacobian:

D(t, r∗, θ, ϕ)
D(t̄, r, θ, ϕ)

=



1 f (r, θ) h(r, θ) 0

0 g(r, θ) p(r, θ) 0

0 0 1 0

0 0 0 1


, (A1)

where the functions { f , g, h, p} do not explicitly depend on time and are only constrained by the

regular Jacobian integrability conditions:

∂ f (r, θ)
∂θ

=
∂h(r, θ)

∂r
,

∂g(r, θ)
∂θ

=
∂p(r, θ)

∂r
.

For the case of a general axisymmetric spacetime, the metric in quasi-isotropic coordinates is

given by:

gis ≡



gtt 0 0 −ωgϕϕ

0 e2α 0 0

0 0 r2e2α 0

−ωgϕϕ 0 gϕϕ
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where gtt ≡ −λ2 + ω2gϕϕ and gϕϕ ≡ B2λ−2r2
∗ sin θ2. We can select the set of functions { f , g, h, p}

in the Jacobian (A1) above to construct a transformation from the quasi-isotropic to horizon-

penetrating coordinates, which satisfies the above requirements for an arbitrary stationary axi-

symmetric deformation of Schwarzschild if we choose:

f (r, θ) = 1− 1/λ2(r, θ), g(r, θ) = e−α(r,θ)/λ(r, θ).

Since the metric potentials λ(r∗, θ) and α(r∗, θ) are known as functions of r∗ and not r, we need

to express the new radial coordinate r in terms of r∗. The required relations in the following

differential form are obtained by inverting the Jacobian (A1):

(
∂r∗
∂r

)
θ=const.

=
1

g(r∗, θ)
,
(

∂r∗
∂θ

)
r∗=const.

= 0.

These need to be integrated along the radial coordinate from r∗,h to r∗ for each θ:

r(r∗, θ)− rh =
∫ r∗

r∗,h

dζ

g(ζ, θ)
=
∫ r∗

r∗,h
λ(ζ, θ)eα(ζ,θ)dζ.

where rh is the radius of the event horizon in new coordinates. The remaining two unknown

functions h and p can be calculated by 1D integration of the Jacobian integrability conditions:

h(r, θ) =
∫ r

rh

dr′
∂ f (r′, θ)

∂θ
= 2

∫ r∗

r∗,h

λ′θ(ζ, θ)eα(ζ,θ)

λ2(ζ, θ)
dζ,

p(r, θ) =
∫ r

rh

dr′
∂g(r′, θ)

∂θ

= −
∫ r∗

r∗,h

(
α′θ(ζ, θ) +

λ′θ(ζ, θ)
λ(ζ, θ)

)
dζ.
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After the transformation, the metric in the new horizon-penetrating coordinates has the fol-

lowing form:

gks =



gtt f gtt hgtt −ωgϕϕ

. . . e2αg2 + gtt f 2 f hgtt + e2αgp −ω f gϕϕ

. . . . . . h2gtt + e2α(p2 + r2
∗) −ωhgϕϕ

. . . . . . . . . gϕϕ


where ellipsis indicate matrix elements which can be filled in by symmetry. In the limit of r → rh,

the functions f and g tend to infinity, while h and p vanish. The resulting metric at the horizon

remains finite and non-degenerate:

lim
r→rh

gks =



0 1 0 0

1 2 C 0

0 C e2αr2
∗ 0

0 0 0 gϕϕ


where C ≡ limr→rh [ f hgtt + e2αgp] is a finite constant.
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