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Abstract

We present a study of key aspects of the evolution of binary stars with emphasis on
binaries consisting of two white dwarf stars. The evolution of such systems is driven
by the loss of angular momentum by gravitational wave radiation. Effects like mass
transfer and other modes of angular momentum loss and redistribution influence
the evolutionary fate of the binary, and can lead to a merger, the tidal disruption
of one of the components or its survival as a long-lived AM Canum Venaticorum
(AM CVn) type system. Our study takes into account some of these effects; like
mass loss, tides, accretion disk formation and direct impact accretion. We find that
under some circumstances, the tidal coupling between the spin of the components
and the orbit of the binary leads to oscillations in the orbital separation and the
mass transfer rate. We also find that as compared to previous studies, a larger
fraction of the systems should survive to form AM CVn type systems. We also
consider systems in which the mass transfer rate exceeds the critical Eddington
rate, leading to mass loss from the system. It is possible that some of the lost mass
settles into a disk around the binary to form a circumbinary disk. In the second
part of the thesis, we present a toy model for disks in general, and find that the
coupling of such a circumbinary disk to the binary has a destabilizing effect on the
binary.
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Part I: Evolution of Compact Binaries
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1. Introduction

1.1 Historical Background
It is now a well known fact that most of the stars in the solar neighborhood are
in fact, multiple stars, most of which are binary stars (Kallrath & Milone, 1999).
That the ‘stars’ we observe in the night sky are not always single stars like our
Sun has been known for a long time – Father Giovanni Baptista Riccioli being the
first to realize on observing ζ Ursae Maioris (Mizar) that in fact it was a ‘double
star’ in 1669. Most of the early discoveries of ‘double stars’ were serendipitous with
no attempt made to explain the proximity of the two components, and it was not
until the year 1767 that the Reverend John Michell proposed that these curious
objects were indeed objects held together by their mutual gravitation (Kopal,
1977). Despite (or probably due to) his initial skepticism, it was William Herschel
who embarked on generating a systematic catalogue of the ‘double stars’ in 1782
and 1785 which led to further strengthening of the statistical argument that the
observed frequency of the ‘double stars’ far exceeded the chance association of stars
uniformly distributed in space. Around the same time, Goodricke identified Algol
as (what we would today call) an eclipsing binary in order to explain its periodic
changes in brightness. Finally in 1889, Vogel laid to rest any doubts about the true
binary nature of Algol (and many other ‘double stars’ by extension) by identifying
it as a spectroscopic binary.

Unlike the pioneering days of Herschel when the theoreticians anticipated the
properties of the ‘double stars’ based primarily on geometry and the laws of grav-
itation, the trend now has been of new observations leading the way and having
theoreticians come up with models to explain the observations. The advent and
development of higher power telescopes and light collecting apparatus has revealed
a rich diversity in the observational properties of these objects and has led to an
equally rich field in modelling the formation and evolution of different classes of
binary stars.

1.2 Importance of Binary Systems in

Astrophysics
Before we proceed with our study of binary evolution, it is appropriate to under-
score the importance of binary systems to astrophysics. By design, binary systems
reveal more about themselves than single stars do; like the masses, the radii and the
orbital separation. This is especially true in the case of eclipsing binaries, which are
binaries for whom our line of sight happens to be in the orbital plane of the binary.
Moreover, each component in the binary can be at different stages of its evolution,
which itself can be influenced by the presence of the companion as is the case in
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interacting binaries. All this information is critical in providing constraints and
observational checks on theoretical models of stellar structure and evolution (See
Shore et al. (1992) for an excellent overview of the interplay between observations
and theory of binary stars).

The sheer richness of the different classes of binaries, and the fact that these
objects reveal much information about themselves, in itself, makes binary systems
worth studying. Binaries can be classified on the basis of their component stars,
for example: Cataclysmic Variables (CVs, main sequence + white dwarf), Low
Mass X-Ray Binary (LMXB, main sequence + neutron star/black hole), Algols
(main sequence or subgiant pair), RS Canum Venaticorum & BY Draconis stars
(F-type stars with strong magnetic activity) and so on (Carroll & Ostlie, 1996).
Each of these classes provides unique opportunities for study of stars, sometimes
in extreme environments not reproducible in terrestrial laboratories.

Most of the objects and classes listed above, apart from being binary systems
also undergo mass transfer at some stage in their evolution. Accretion due to Roche
lobe overflow is one of the most important phenomena in stellar astrophysics (Frank
et al., 2002)– it alters the fate of the binary systems and results in a dizzying array
of observational effects, which help us observe these objects in the first place. An
inevitable consequence of accretion is the formation of an accretion disk around the
accreting star, unless the accretion stream impacts the surface of the accreting star
(see below). Accretion disks are a common phenomena in astrophysics. They are
found not only in binary stars, but also in protoplanetary disks and active galactic
nuclei (AGN) as well. A large fraction of the effort in understanding astrophysical
objects and the corresponding observations entails accretion disk modeling. Since
binaries are the most accessible of all objects that contain accretion disks, disks in
binaries are of utmost importance to astrophysicists.

Compact binaries (Section 1.4), on the other hand, are useful targets to test the
predictions of general relativity. As we shall see later, compact binaries like dou-
ble white dwarfs (DWDs), AM CVns, and neutron star binaries profusely radiate
gravitational wave radiation (GWR), which can be detected by gravitational wave
detectors like LIGO (Laser Interferometer Gravitational-Wave Observatory, Ab-
bott et al. (2005)) and LISA (Laser Interferometer Space Antenna, Bender (1998)).
The Hulse-Taylor pulsar, PSR 1913+16 (Hulse & Taylor, 1975), provides striking
indirect evidence of the same – the rate of orbital decay in this system exactly
matches the predicted rate of angular momentum loss by GWR in the quadrupole
approximation. With the advent of highly sensitive GWR detectors, modeling of
such compact binary systems and their populations has attracted much attention
(Nelemans (2001a, b, c)). For efficient detection, one needs accurate templates of
the gravitational wave strain and frequency for these systems (Section 5.4).

1.3 The Roche Potential
Binary systems can be classified according to the type of their constituent stars
or their observational properties; for example as CVs, LMXBs, and HMXBs and

3
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FIGURE 1.1. The Roche equipotentials in the equatorial plane for a mass ratio q = 2/3.
The Lagrangian points L1, L2 & L3 are also shown along with the center of mass of
the system and the centers of the two components. The contours represent equipotential
surfaces associated with the Lagrange points. The contour corresponding to the L1 point
is shown in bold, whilst the contour passing through L2 is shown as a dashed line.

so on (see above). However, we are interested in a more theoretical approach to
classifying binaries. In order to do this, we introduce here, the concept of the Roche
potential which leads us to a way of classifying binary stars on the basis of their dy-
namic properties. The French mathematician Edouard Roche introduced a model
for stellar configurations as a limiting case of binary objects whose components
are centrally condensed. As it turns out, this is quite a good approximation for
most stars. Kopal (1955) introduced the concept of Roche potential and Roche
equipotential surfaces. In the co-rotating reference frame, for synchronously rotat-
ing binary stars with components with masses M2 and M2 at r1 and r2 respectively,
one can write the Roche potential as

Φ(~r) = − GM1

|~r− ~r1| −
GM2

|~r− ~r2| −
1

2
(~Ω×~r)2 (1.1)

Here, Ω =
(
GM/a3

)1/2

is the angular velocity of the binary, pointed perpendicular

to the plane of rotation. ‘a’ is the separation, and ‘M ’ is the total mass of the sys-
tem. In Fig. 1.1, we plot the equipotential contours in the equatorial plane for the
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FIGURE 1.2. Roche Potential along the line of centers. The x-axis is normalized to the
separation a0.

Roche potential. At large distances from the binary (r >> a), the equipotentials
are similar to a point mass of total mass M . Also close to the centers of the com-
ponent stars, we have spherical contours resulting from the strong gravitational
potential of the highly condensed (point mass) stars with minimal perturbations
from the other component. The overall shape of the equipotentials is a function of
the mass ratio q = M2/M1 whilst the scale is governed by the binary separation
a. The equipotential of most significance is the 8-shaped potential contour (shown
in bold in Fig. 1.1) which constitutes a dumbbell shaped critical surface for each
component – it is called the “Roche lobe” of a given component. The dumbbell is
joined at a saddle point (see Fig. 1.2) known as the inner Lagrange point L1. The
material within the Roche lobe of each component is bound to that component
though it is influenced by the tides generated by the other component. Around the
critical L1 point, the material inside one of the lobes can flow freely onto the other
side. This is indeed what happens when one of the stars is big enough to fill up its
Roche lobe. As long as the star is within its Roche lobe, hydrostatic equilibrium
can be maintained for either component. As soon as one of the components fills
up its Roche lobe, material leaks through the L1 point onto the other side in a
phenomenon called Roche Lobe Overflow (RLOF). Two other extremal points lie
along the line joining the centers of the two components and the center of mass
(CoM) – L2 (near the less massive component) and L3 (near the more massive com-
ponent), which are also points of unstable equilibrium. The equipotential surface
corresponding to the L2 point (shown as dotted contour in Fig. 1.1) is sometimes
referred to as the outer critical surface. We are now in a position to classify binary
stars based on how the components fill up their respective Roche lobes:

1. Detached binary: In these systems, neither of the two components fills up its
Roche lobe.
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2. Semi-detached binary: In this case, one of the stars fills up its Roche lobe
and transfers mass to the other component via RLOF.

3. Contact binary: Both components fill up their respective Roche lobes, and
can extend up to a level between the inner and outer critical surfaces (Fig.
1.1).

A given system can evolve from one of these classes to the other – for example,
a detached binary can become a semi-detached binary as one of the components
comes into contact by loss of orbital angular momentum. Similarly during the
course of its evolution a system may become a contact binary after going through
a phase of being semi-detached.

In this work, we will primarily be concerned with semi-detached binaries. Many
interesting binaries fall into this category – Cataclysmic binaries, AM CVn binaries,
Algol-type binaries, Low and High Mass X-ray Binaries (LMXB, HMXB) to name a
few. Most of these objects involve one component filling its Roche lobe (the donor
or secondary), transferring mass to a compact star (the accretor or primary).
Another interesting facet to this is that the mass leaking out of the L1 point
forms an accretion disk around the accretor in most cases, and we shall deal with
accretion disk theory in detail in Chapter 6. For now we continue with categorizing
different types of binaries on the basis of its geometric or dynamic properties. An
individual star evolves as time goes along and usually it expands – from the main
sequence to the red giant branch and then off to the asymptotic giant branch.
Now, if a star is a member of a binary star system, then it is possible that as the
components evolve, one of them (or both) can fill up its Roche lobe. Kippenhahn
and Weigert (1967) classify mass transferring binaries on the basis of what state
of evolution the donor is in as follows:

• Case A : A normal main-sequence star fills up its Roche lobe as it gradually
evolves over the extremely long timescale of nuclear evolution.

• Case B: Mass transfer occurs when the star evolves off the main sequence
onto the red giant branch.

• Case C : The donor can fill up its Roche lobe only after expanding sufficiently
which occurs when it evolves off to the Asymptotic giant branch.

Another mechanism by which a detached binary can become a semi-detached
binary is by losing angular momentum, which results in the shrinking of the orbit,
which in turn results in the shrinking of the Roche lobe. As we shall see later, two
stars in orbit around one another emit gravitational wave radiation (GWR), which
carries with it a small amount of angular momentum. Thus, even if the radii of
the component stars are not changing, the respective Roche lobes can gradually
shrink until the Roche lobe radius of one of the stars equals its radius, and mass
transfer can commence. This is exactly what happens in compact binaries, which
we study next.
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1.4 Compact Binaries
A binary consisting of two main sequence stars does not remain so forever. If the
binary separation is high, one of the stars (the more massive star) will eventually
evolve off the main sequence and fill up its Roche lobe to trigger mass transfer to
the less massive star. A variety of outcomes await such a binary, depending mostly
on the total mass of the system (M), the mass ratio (q) and the separation (a)
of the binary (Iben & Tutukov, 1984). We summarize one of these possibilities
to illustrate the general outline of this mechanism in which massive, wide, main
sequence binaries evolve to low mass, compact, degenerate binaries. In Fig. 1.3,
we depict the evolution of a 3.2 M¯ - 3.8 M¯ main sequence binary with an
orbital period P ∼ a few days to 1 yr. The more massive component evolves to
fill up and extend beyond its Roche lobe, which leads to the formation of what
is called a ‘common envelope’. This is the phase in which the cores of the two
components orbit within the expanding envelope of the more massive star. This
results in significant mass and angular momentum loss from the system1; the first
helium white dwarf is formed, and the orbital period decreases to . 30 days.
Eventually the other main sequence star also evolves off the main sequence and
another common envelope phase ensues. Mass and angular momentum are again
lost from the system, and the degenerate helium core of the latter star is exposed.
Thus we are left with a compact binary (P ∼ 10 mins - 1 hr) with degenerate
components. As mentioned earlier, other combinations of masses and separations
lead to different outcomes, such as binaries with components made up of Carbon-
Oxygen (CO), Oxygen-Neon-Magnesium (ONeMg) and so on.

In any case, once a compact binary is formed as a result of common envelope
evolution, the emission of gravitational wave radiation (GWR) becomes highly
efficient, which carries a small but significant amount of angular momentum with
it (Landau & Lifshitz, 1975). Loss of angular momentum drives the system closer,
which in turn results in the shrinking of the Roche lobe (see Chapter 2) which
gradually contracts onto the star. This again, can lead to mass transfer.

AM CVn systems are white dwarf - white dwarf binaries undergoing mass trans-
fer and are objects of particular interest because a) they are observable by tradi-
tional observational means since they are undergoing mass transfer and, b) they
are the only guaranteed sources of GWR for the space-based gravity wave detector
LISA (Laser Interferometer Space Antenna, Bender (1998)). AM CVn systems are
a particular sub-class of the wider class of binaries known as Degenerate White
Dwarf (DWD, also Double White Dwarf) binaries. They have extremely short peri-
ods (a few minutes to an hour) and their spectra are dominated by helium emission
lines. Apart from the mechanism outlined above, a number of other theories have
been proposed for the formation of the DWD population in the Galaxy: for ex-
ample, see Iben & Tutukov (1986), Tutukov & Yungelson (1994) and Han (1998).

1The exact physical mechanism by which the common envelope achieves this is not accurately known, though
traditionally it is widely believed that the common envelope phase does result in loss of angular momentum and
mass from the system.
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FIGURE 1.3. Formation of a helium-helium white dwarf pair. (Reproduced from Iben
& Tutukov (1984)).
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FIGURE 1.4. Formation channels of AM CVn systems (Reproduced from Nelemans
(2005)).

DWD systems can consist of He+He WD, CO+CO WD, CO+He WD or He+CO
WD pairs. Each of these are outcomes of slightly different evolutions, but each of
these involves at least one phase of common envelope evolution and loss of mass
and angular momentum from the system (Nelemans et al., 2001) as in the exam-
ple described above. Detailed calculations to generate the population of compact
objects in the galactic disk have been performed by Nelemans et al. (2001) and
Yungelson et al. (1994). Nelemans et al. report a detached DWD birth rate of
2.5× 10−2 and a merger rate of 1.1× 10−2 per year with a total of 1.1× 108 such
systems in the galactic disk. On the other hand, the AM CVn formation rate is
3.3× 10−3 systems per year, with a total of 4.2× 107 systems in the galactic disk.
The numbers obtained by other investigators are comparable but vary, depending
on the details of the models. From their analysis, Nelemans et al. estimate that
of the ∼ 12124 potential detached DWD systems in the galactic disk, about 6000
would be above the noise threshold of LISA sensitivity curve (See Section 5.4).

Returning now to AM CVn systems, which, as mentioned above are a subset of
DWD systems, can also form via different channels (Nelemans, 2005):

• From DWD systems, by the loss of angular momentum via GWR. The sys-
tems evolve to shorter periods initially, get into contact and then evolve to
higher orbital periods once mass transfer commences,

• From a pair consisting of a degenerate WD and non degenerate, Helium rich
star which evolves through a period minimum when the latter star becomes
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TABLE 1.1. Observational properties of AM CVn systems. The periods are in seconds,
distances in parsec and V represents the apparent V-magnitude. Adapted from Nelemans
(2005) & Espaillat et al. (2005). See text for details.

Name V Porb Psh q d
(s) (s) (pc)

ES Cet 16.9 621 – –
AM CVn 14.1 1029 1051 0.101 235
HP Lib 13.7 1103 1119 0.072 330
CR Boo 13.0-18.0 1471 1487 0.06 > 250
KL Dra 16.8-20.0 1500 1530 – –

V803 Cen 13.2-17.4 1612 1618 – 250
CP Eri 16.5-19.7 1701 1716 0.04 800
2003aw 16.5-20.3 – 2042 – –

SDSS J1240-01 – 2242 – – –
GP Com 15.7-16.0 2794 – 0.02 70
CE 315 17.6 3906 – – 77

RX J0806+15 21.1 321 – – < 500
V407 Vul 19.7 569 – – –

semi-degenerate (analogous to CVs). After this, the system evolves to higher
periods with decreasing mass transfer rate,

• From evolved donors in cataclysmic variables, which blow off their envelopes
to expose the Helium rich core.

In Fig. 1.4, we have shown the different scenarios for the formation of AM CVn
systems and in Table 1.1, we tabulate the observational properties of the known
AM CVn systems. The last two systems, RX J0806 and V407 are suspected to
be AM CVn progenitors because they are ultra-compact objects in which observa-
tions suggest that the orbital period is decreasing (Hakala et al. (2003); Strohmayer
(2002)). As we shall see in Chapter 4, the orbital period of AM CVn systems is
expected to increase once mass transfer commences, even though it loses angular
momentum due to GWR. A number of explanations have been sought for this
apparent discrepancy, for example it has been proposed that these objects are ei-
ther double degenerate polars (Cropper et al., 1998), direct impact (DI) accretors
(Marsh & Steeghs, 2002) or an ‘Electric Star’ Wu et al. (2002). Each of these mod-
els has its advantages and drawbacks (Cropper et al. (2003); Marsh & Nelemans
(2005)) and a series of observations are being carried out to shed more light on the
behavior of these systems (Ramsay et al., 2006).

The theoretical understanding of the other systems in Table 1.1 is much more
sound and is based on the disk instability model (Tsugawa & Osaki, 1997). The
observed systems are categorized into 3 types: high, low and outbursting (interme-
diate state) systems based on the mass transfer rate in a particular system. The
shortest period systems are expected to have a higher mass transfer rate because of
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the higher rate of loss of angular momentum due to GWR, whilst the longer period
systems have lower mass transfer rates. We summarize the “standard theory” for
AM CVn disk systems below:

• “High state” systems: These are the systems with relatively short periods
and thus a high mass transfer rate due to the high driving rate. Though the
mass transfer rate is high, it is “stable”: the depth of contact is proportional
to the rate of driving, which itself is secularly falling due to the increasing
separation. Of the three objects in this category, AM CVn – the prototype –
and HP Lib are known to show a Superhump period (Psh, see Table 1.1) along
with an orbital period. The superhump period corresponds to the periodic
modulation of light from the system, which is a consequence of a precessing
eccentric disk. The third object, ES Cet, is sometimes considered to be of
the ‘atypical variety’ of AM CVn’s because of uncertainty in the sign of Ṗ ,
but we consider it to be in a high state because of the high inferred mass
transfer rate and short period.

• “Low state” systems: Low state systems are of the longest periods, believed
to be systems undergoing stable mass transfer at low rates. The evolution of
the system is thus correspondingly slow. Their optical spectra is dominated
by strong Helium emission lines, and a weak underlying blackbody radiation
emanating from the accreting white dwarf.

• “Outbursting” systems: These are systems of intermediate periods and their
optical brightness varies between that of high and low state systems. These
are considered to be a result of unstable accretion disks. In the high state,
these systems exhibit He absorption lines whilst in the low state they show
He emission lines.

As we shall see in Chapter 2 and Section 5.2, for a variety of mass ratios q,
DWD systems have a geometry that suggests that the stream does indeed impact
the accretor directly. However, for the mass ratios for typical AM CVn systems
(Table 1.1), systems tend to be disk accretion systems which is consistent with
the observations. Thus, it is possible that the progenitors of AM CVn systems
– the DWD systems – are unstable Direct Impact (DI) accretion systems which
eventually evolve into stable AM CVn systems.

1.5 Outline of This Dissertation
The study of compact DWD binaries provides useful clues into binary evolution,
accretion disks, type Ia supernova progenitors and are important sources of grav-
itational waves that can be detected by the proposed space based detector LISA.
Ideally, one would like our theoretical understanding to be such that given a DWD
binary of arbitrary mass and composition, one can reconstruct its previous evo-
lutionary pathway and the subsequent evolution to a merger, tidal disruption or
stable mass transfer. A survey of published literature on this subject reveals that
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we still lack a uniform theoretical understanding of these binaries for all possible
mass ratios and other orbital parameters. One reason for this is that understand-
ing double white dwarf binaries evolution can be quite complex and demanding,
necessitating detailed hydrodynamics, nuclear physics, radiative transfer and stel-
lar structure. Therefore it is natural that different assumptions and techniques are
used when one attempts to answer a question relevant to different classes of phe-
nomena. For example, the approach adopted in studying the putative progenitors
of supernovae of type Ia, or the sources of gravitational waves for LISA, or the
progenitors of AM CVn binaries, are all very different. In this work, we do not
attempt to cover all the rich physics that may be ultimately necessary to have a
uniform and reliable treatment of all possible outcomes of these phenomena, but
instead describe them within a single semi-analytic framework.

In the first part of the thesis, we develop analytic and numerical tools to deal with
the evolution of binary systems that are undergoing mass transfer. We concentrate
on compact DWD binaries, but our model is quite general and as we show in Chap-
ter 4, can be easily extended to other types of binary systems. In Chapter 2, we
outline the basic astrophysical mechanisms and phenomena that can influence the
evolution of a binary. We then derive the equations for binary evolution, including
terms associated with GWR, mass transfer and tides. We discuss the significance
of the tidal instability, and show that in the case of semi-detached DWD systems,
mass transfer commences before the instability sets in, which leads to the system
evolving away from the instability. In Chapter 3, we derive analytic solutions to
the evolution equations developed in Chapter 2. These analytic solutions provide
physical insight into the evolution equations, and are useful for comparison with
the numerical integrations of the equations, which we carry out in Chapter 4. First,
we illustrate the differences between the analytic and numerical solutions. Then,
we apply the evolution equations to CVs, DWDs and contact binary systems and
obtain their evolutionary trajectories. In Chapter 5, we apply the tools developed
in the previous chapters to a variety of DWD systems with different initial condi-
tions. We observe ‘oscillation cycles’ induced by the spin-orbit coupling and obtain
stability limits and boundaries for super-Eddington accretion. Then we compare
the results obtained in a full 3-D hydro-dynamic code with those predicted by the
formalism developed in this work. Finally, the implications of the various phenom-
ena involved in the evolution of DWD binaries for LISA, the space-based GWR
detector are outlined.

In the second half of the thesis, we study the behavior of accretion disks, in par-
ticular ‘circumbinary disks’ (CBDs) and their influence on the binary. In Chapter
6 we develop equations for global parameters like the surface density, temperature
and viscosity for the steady state and time evolving disks. The formalism we de-
velop, in the form of the torque equation also provides insight into the behavior of
the disk boundary layer and the distribution of angular momentum and torques
through the disk. Finally, we combine the formalism from Part I with that of
Chapter 6 to study the effects of the coupling between a CBD and a DWD binary
undergoing super-Eddington mass transfer.
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2. Physics of Binary Stars

In this chapter we develop the basic set of equations we will use in later chapters
to describe the evolution of a binary system. We use the Roche approximation and
assume that the stars are centrally condensed and that Kepler’s laws are valid. The
equations we derive are “orbit averaged” – for example, the GWR rate we use is
averaged over an orbit. Where quantities cannot be derived from first principles or
from the geometry of the problem at hand, we assign values based on observations,
numerical calculations or treat them as free parameters. In the final section of this
chapter, we study the tendency of some binary configurations to be prone to what
is called the ‘tidal instability’. We realize that semi-detached DWD binaries get
into contact well before they reach the minimum separation and thus avoid tidal
disruption due to this instability.

2.1 Astrophysical Phenomena Affecting Binary

Evolution
As mentioned in Chapter 1, the Roche approximation is valid when we consider
centrally condensed components that are synchronized with the orbit. One can
then consider the behavior of a parcel of gas which itself has infinitesimal mass
as compared to the components, in the sense of a restricted 3-body problem. The
centrally condensed stars themselves can be, to a good approximation, treated as
point masses orbiting around their common center of mass. Moreover, for most
situations Newtonian equations of motion suffice – it is only whilst dealing with
neutron stars and black holes that general relativistic effects need to be accounted
for. Here, we deal with only white dwarf accretors either in the case of CV’s or
DWD’s. From Kepler’s third law, the orbital frequency Ω is given by

Ω2 =
GM

a3
(2.1)

where M = M1 + M2 is the total mass, M1 and M2 being the accretor and donor
mass respectively1. The total angular momentum of the system is given by

Jtot = Jorb + J1 + J2

= µa2Ω + k1M1R
2
1ω1 + k2M2R

2
2ω2 (2.2)

where ki are dimensionless constants depending on the internal structure of the
components, µ = M1 M2/M is the reduced mass of the system and ωi are the
angular spin frequencies. The first term in eq. (2.2) represents the orbital angular

1the subscript ‘1’ refers to the accretor and ‘2’ to the donor unless otherwise stated.
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momentum of the components, and the two other terms represent the spin angular
momenta of the stars. The form of the orbital angular momentum term adopted
above assumes the binary revolves at the Keplerian frequency Ω, which is a good
approximation if the stars are centrally condensed. Before we develop the equations
describing the evolution of the binary, let us enumerate the physical mechanisms
that influence this evolution.

2.1.1 Gravitational Wave Radiation
The rate at which two bodies in circular orbit lose energy to gravitational waves
is given by Landau & Lifshitz (1975)

−dE
dt

= I =
32Gµ2ω6a4

5c5
(2.3)

E is the mechanical energy of the system and I is the orbit-averaged intensity of
the GWR. The result of this loss of energy from the system is the secular inspiral
of the binary at a radial velocity

ȧ = a
Ė
E =

2a2

GM1M2

dE
dt

= − 64G3M1M2M

5c5a4
(2.4)

Also, for circular orbits, the rate of loss of energy is related to the rate of loss of
angular momentum: Ė = J̇Ω. Using Eqs. 2.1 and 2.3 we have

J̇tot = − 32G7/2M1M2M
1/2

5c5a7/2
(2.5)

From the above equations, one notices that the rate of emission of GWR is a
rather strong function of the orbital separation a, and the radial velocity also
increases strongly at smaller separations. Thus, the emission of GWR results in
the binary moving radially closer in the co-rotating frame and viewed from the
inertial frame, the components of the binary spiral into the common center-of-mass
at an ever increasing rate. In general, we expect that compact binaries (Section
1.4) to be prodigious emitters of GWR as compared to more extended objects like
binaries containing main sequence stars like CV’s and LMXB’s. Unless some other
phenomenon intervenes, the inevitable result of emission of GWR is a merger and
that is indeed the case for (say) neutron star - neutron star binaries. However,
in the case of CV’s and DWD’s, mass transfer commences when the Roche lobe
radius equals the radius of the donor star which alters the evolution of the binary,
sometimes dramatically (Section 2.2). Since AM CVn type binaries can also be
detected in other more traditional wavelengths like visible and X-ray, the quality
of information that can be extracted from a GWR detection by LISA is significantly
enhanced (See Section 5.4).

2.1.2 Mass Transfer Rate
As mentioned in Section 1.3, one of the components of the binary gets into contact
with its Roche lobe either due to the expansion of the star (the donor) and/or due
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to shrinking of the Roche lobe as a result of angular momentum loss by GWR or
other mechanisms. In order to determine exactly when a binary with given total
mass and mass ratio q becomes semi-detached, one needs to specify the radii of the
component stars and their corresponding Roche lobes. From Roche geometry and
following Paczyński (1971), the Roche lobe radius can be crudely approximated as

RL

a
∝

(M2

M

)1/3

= 0.462
(M2

M

)1/3

= 0.462
( q

1 + q

)1/3

(2.6)

A better fit to the Roche lobe radius was determined by Eggleton (1983) and is
given by

RL

a
=

0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)
(2.7)

The two are plotted for different values of the mass ratio q = M2/M1 for compar-
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FIGURE 2.1. Comparison of Paczynski (Eq. 2.6, dotted curve) and Eggleton (Eq. 2.7)
formulae for the Roche radius, normalized to the binary separation. The simple form of
Eq. 2.6 is a reasonable approximation to the more accurate Eggleton formula for mass
ratios q ≤ 0.6.

ison in Fig. 2.1. Thus we see that the Roche lobe radius is directly proportional to
the separation for a fixed mass ratio. Now, the radius of the star can be defined
in several ways depending on the problem at hand. For example one can provide
a mass-radius relation for the type of donor star we are concerned with. It could
be a main sequence star in case we are dealing CV’s or a white dwarf in case of
DWD’s. One can also have a polytrope as the donor – this is especially useful
whilst predicting the behavior of 3-D hydrodynamic simulations or comparing the
equations of our linear equations with more complicated situations (see Section
5.3). In general, we represent the the logarithmic derivative of the radius with
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respect to mass as

ζ2 =
d ln R2

d ln M2

(2.8)

which is a measure of how the radius of the donor changes as its mass changes as
a result of mass transfer. Strictly, ζ2 can be interpreted as the mass-radius expo-
nent of the equilibrium mass-radius relationship only when the thermal relaxation
timescale τth < τM2 , the mass transfer timescale. This is almost always true for
degenerate objects, but in the case of CVs, ζ2 may vary significantly from the
equilibrium value (See discussion following Eq. 2.23 below).

Given Roche geometry and the structure of the star, we can now specify the
mass transfer rate. In general, we expect the mass transfer to be a strong function
of the ‘depth of contact’, defined as the amount by which the donor overflows
its Roche lobe ∆R2 = R2 − RL and of the structure of the star, which can be
described in different ways depending on the problem at hand. Two of the most
commonly used approximations are a) Polytropes and b) Isothermal atmospheres
with a characteristic scale height H. Thus, we write (Gokhale et al., 2006)

Ṁ2 = −Ṁ0(M1,M2, a)f(∆R2) (2.9)

where Ṁ0 is a relatively gentle function of the binary parameters and f is a
strong function of ∆R2. For example, for polytropic donors with index n, f =
(∆R2/R2)

n+3/2 (Paczyński & Sienkiewicz, 1972); whilst for a donor with an atmo-
spheric pressure scale height H, f = exp (∆R2/H) (Ritter, 1988). As we shall see
later, the exact value of Ṁ0 is not very important to determine the overall evo-
lutionary behavior of the binary except in extreme conditions which are usually
transient (see below). The depth of contact, on the other hand, is a function of the
driving rate, i.e., the rate at which angular momentum is lost from the orbit.

2.1.3 Tidal Effects
By design, the component stars in close binaries influence the evolution and ob-
servational properties of each other by altering the gravitational potential. Tidal
effects play an important role in the circularization and synchronization of the
orbit and thus influence the evolution significantly. For example, an initially ec-
centric orbit is circularized by the action of tides on a characteristic ‘circularization
timescale’. Though the fact that tidal effects can influence binary evolution has
been known for a long time, traditionally, these effects have been largely ignored.
Usually, it is common to assume that the spins of the components are synchronized
with the orbit throughout the evolution of the binary. This is not always the case,
and in fact, following the exchange of spin angular momentum of the individual
stars and orbital angular momentum could be critical in determining the fate of
the binary.

For our work here, where we are dealing with degenerate white dwarfs, we
adopt Campbell’s (1984) prescription to calculate the tidal timescales. According
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to Campbell, the synchronization timescale is given by

τs1 ∝
(M1

M2

)2 ( a

R1

)6

τs2 ∝
(M2

M1

)2 ( a

R2

)6

(2.10)

The actual timescale is not very well known and consequently we choose a nor-
malization factor (τs0) to obtain a desired initial timescale. In any case, in the
limit that the timescales are very short, we should have the spins of the stars syn-
chronized with the orbit, just as is assumed usually; whilst when the timescales
are long, the asynchronism between the spin and orbit should build up as the
system evolves. As we shall see later (Section 5.1), especially after mass transfer
commences, there is a possibility of significant asynchronism to be built up in the
accretor and then the tidal coupling between the accretor spin and the orbit can
influence the evolutionary outcome of the binary significantly.

2.1.4 Other Effects
• Magnetic Braking (MB): Verbunt & Zwaan (1981) proposed a mecha-

nism for explaining the observed mass transfer rates for Cataclysmic Variable
stars and low mass X-ray binary stars. They realized that the traditionally
accepted mechanism, gravitational wave radiation, was inadequate to explain
the observed (high) mass transfer rates. The basic idea behind this mecha-
nism is that “the cool, main-sequence donors in CVs and LMXBs undergo
rotational breaking by a magnetically coupled stellar wind, similar to single
main-sequence stars” (Verbunt & Zwaan, 1981). The donor star loses angular
momentum via winds which is given by:

dJ2

dt
= −0.510−18f−2k2M2R

4
2ω

3 (2.11)

where, f is a numerical factor of order 1. Tides lock the Roche-lobe fill-
ing donor to the orbit, and hence there is a net loss of angular momentum
from the orbit, which in turn drives the mass transfer. For main sequence
donors, Verbunt & Zwaan (1981) note that for typical values of the compo-
nent masses and orbital periods, the breaking rate (Eq. 2.11) is at least one
order of magnitude greater than the GWR rate (Eq. 2.5). Moreover, the MB
model also is quite successful in explaining the ‘period gap’ observed in the
distribution of CVs (Verbunt & Zwaan, 1981). To obtain Eq. 2.11, one needs
to know the equatorial rotation velocity on the surface of the star, as a func-
tion of time. This is known for some (with considerable uncertainty though)
main-sequence type stars (Andronov, Pinsonneault & Sills, 2003), but is not
known for compact objects. Thus we will not consider this mechanism in our
analysis of compact binary evolution, noting however, that in principle whilst
dealing with CVs for example, one can replace the GWR driving rate νL by
a MB rate νmb given by Eq. 2.11 in our evolution equations (Section 2.2).
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• Mass Loss: As mentioned above, single main-sequence stars as well as white
dwarfs lose mass at a slow rate via stellar winds. This is evident from the
P Cygni profiles that are observed in such objects, which is a characteristic
of radiation driven winds. Mass loss can occur in stars as a result of winds
emanating from the stars surface because of ‘heating’ due to incident ener-
getic photons (Systemic mass loss); or mass loss can occur as a result of
“super-Eddington mass transfer” (Consequential mass loss, See section
4.2). Systemic mass loss effectively represents an additional driving term in
the evolution equations, analogous to the GWR and MB terms. On the other
hand, the consequential mass loss terms influence the stability properties of
the binary (see Section 2.2 and Chapter 4).

• Circumbinary disks (CBD): Material can accumulate around a binary
as a result of mass loss via winds or mass outflows due to mass transfer,
or the remnants of a common envelope which tends to accumulate in the
orbital plane of the binary. This can lead to formation of a ‘circumbinary
disk’ (CBD). If this CBD is tidally coupled to the binary, then the resulting
tidal torques will alter the angular momentum distribution in the binary and
thus, influence the binary evolution. We shall study the properties of CBDs
and their influence on binary evolution in Section 7.1.

2.2 Evolution Equations
Now that we have enumerated some of the physical mechanisms that can influence
the evolution of a binary, we can proceed to derive mathematical expressions in
order to quantify these effects. To reiterate, we work under the following assump-
tions: i) Roche potential describes the gravitational field, ii) Kepler’s laws are valid,
and that the stars orbit around their common center of mass in circular orbits, iii)
the spin and orbit axes are all parallel to one another and, iv) tidal effects are
included even though we ignore the effects of the distortion of the stars, i.e., we
assume spherically symmetric stars.

Now, rearranging Eq. 2.2 we have

Jorb = Jtot − (J1 + J2) ⇒ J̇orb = J̇tot − (J̇1 + J̇2) (2.12)

where J1 and J2 are the spins of the accretor and donor respectively. J̇tot represents
the systemic angular momentum loss (= J̇sys) whilst J̇i represents the rate of change
of the components (i=1,2). As can be verified, this form allows for the possibility
of spin-orbit coupling of the angular momenta. Furthermore, the rate of change
of the spin momenta can be given as the sum of an advective or a consequential
angular momentum term and a tidal term as (Gokhale et al., 2006)

J̇i = Ṁiji + J̇i,tid (2.13)

where, j1 and j2 indicate the specific angular momenta of the matter arriving
at the accretor and the matter leaving the donor respectively. In a conservative
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system, these will refer to the specific angular momentum of the same material
with respect to the center of mass of each star, but at different times. The second
term in the equation above represents the tidal term, which is a function of the
degree of asynchronism (Ω − ωi) and the tidal timescale (τsi

). We write the tidal
torque as

J̇i,tid =
kiMiR

2
i

τsi

(Ω− ωi) (2.14)

Substituting Eq. 2.13 and Eq. 2.14 into Eq. 2.12 we obtain

J̇orb = J̇sys + Ṁ2(j1 − j2)− k1M1R
2
1

τs1

(Ω− ω1)− k2M2R
2
2

τs2

(Ω− ω2) (2.15)

Now, from the functional form of the orbital angular momentum (Jorb = M1M2(Ga/M)1/2)
we have

( J̇

J

)
orb

=
Ṁ2

M2

(1− q) +
1

2

ȧ

a
.

which we compare with Eq. 2.15 to obtain an expression for the rate of change of
the orbital separation

ȧ

2a
=

J̇sys

Jorb

− Ṁ2

M2

[
1− q −M2

j1 − j2

Jorb

]
− k1M1R

2
1

Jorbτs1

(Ω− ω1)− k2M2R
2
2

Jorbτs2

(Ω− ω2)

(2.16)

which we rewrite for convenience as

ȧ

2a
=

J̇sys

Jorb

− J̇1,tid + J̇2,tid

Jorb

− Ṁ2

M2

[qa − q] (2.17)

qa = 1−M2
j1 − j2

Jorb

, (2.18)

The sign of the terms on the right hand side of Eq. 2.17 determines if the orbit is
shrinking or expanding. qa represents the net effect of the consequential (advective)
transfer of angular momentum. Ignoring the tidal terms for the moment, in the
absence of mass transfer, the orbit shrinks as a result of the systemic angular
momentum loss, for example, via GWR. But once mass transfer commences, the
sign of the quantity in square brackets in Eq. 2.17 comes into play as well – if
q > qa then the binary continues to shrink which as we shall see later (Chapters 4
& 5), is a sign of increased instability. On the other hand, for systems with q < qa,
mass transfer leads to the orbit expanding or least not shrinking as rapidly as it
would in the absence of mass transfer.

The tidal terms have a more complicated behavior because the sign of the tidal
torque Ji,tid is a function of the difference in the spin frequencies and the orbital
frequency, Ω−ωi. In general though, if the spin frequency of a given component is
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higher than the orbital frequency, then tides will tend to pump angular momentum
into the orbit and thus help increase the separation. Conversely, if the orbital
frequency is higher than the spins, it can lead to a runaway instability since the
tides will tend to suck more angular momentum out from the orbit which in turn
will increase the orbital frequency even more. It is even possible, as we shall see
later (Section 5.1), to have a system alternate between a phase where the spin is
higher or lower than the orbital frequency, in which case the system can undergo
oscillations – this has interesting observational consequences for both traditional
astronomy and GWR detectors.

We now determine how the depth of contact evolves to complete the set of
equations we need to specify the evolution of the binary system. From Eq. 2.7, we
can write

ṘL

RL

= ζrL

Ṁ2

M2

+
ȧ

a
,

where ζrL
≈ 1/3 is the logarithmic derivative of rL with respect to M2

2. Thus we
have

ṘL

RL

=
2J̇sys

Jorb

− 2
J̇1,tid + J̇2,tid

Jorb

− 2Ṁ2

M2

[qa − ζrL

2
− q] (2.19)

Symbolically, generalizing the meaning of the symbols introduced by Webbink &
Iben (1987)

ṘL

RL

= νL + ζL
Ṁ2

M2

(2.20)

νL =
2J̇sys

Jorb

− 2
J̇1,tid + J̇2,tid

Jorb

(2.21)

ζL = ζrL
+ 2(q − qa), (2.22)

where the symbol ν stands for driving terms and ζ denotes logarithmic derivatives
with respect to donor mass. In the same spirit, we write the logarithmic time
derivative of the donor radius R2 ≡ R2(M2, t) as:

Ṙ2

R2

= ν2 + ζ2
Ṁ2

M2

(2.23)

where ν2 represents the rate of change of the donor radius due to intrinsic pro-
cesses such as thermal relaxation and nuclear evolution, whereas ζ2 usually de-
scribes changes resulting from adiabatic variations of M2 as described above. We
derive here a simple analytic approximation to the effective mass-radius exponent

2In the range 0 < q ≤ 1, the function ζrL takes values between 0.32 and 0.46, and is well approximated by
ζrL ≈ 0.30 + 0.16q for 0.1 ≤ q ≤ 1
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when the response of the donor is a combination of the adiabatic and thermal
adjustments to mass loss. Our starting point is Eq. (2.23)

Ṙ2

R2

= ζ2
Ṁ2

M2

= ν2 + ζs
Ṁ2

M2

where ζ2 is the effective mass-radius exponent we seek, ν2 stands for the thermal
radial reaction rate, and ζs is here the purely adiabatic mass-radius exponent. As
a consequence of mass loss, the donor’s radius R2 will differ from the equilibrium
radius corresponding to its instantaneous mass Req(M2). With these definitions we
write

Ṙ2

R2

=
Req(M2)−R2

R2τ
+ ζs

Ṁ2

M2

(2.24)

where we have adopted a simple linear approximation for the thermal adjustment
term. The secular evolution of the binary takes place on a mass-transfer timescale
τM2 = −M2/Ṁ2. Differentiating Eq. (2.24) with respect to time, we get

d2 ln R2

dt2
=

1

τ

Req

R2

(
ζeq

τM2

− ζ2

τM2

)
− ζs

τ 2
M2

(2.25)

If the effective mass-radius exponent is to have any meaning, it must not change
much over the evolutionary phase one is considering. Thus, we require

d2 ln R2

dt2
= −ζ2/τ

2
M2

. (2.26)

Finally, setting Req = R2 in Eq. (2.25), and solving for ζ2, we obtain

ζ2 =
ζeq + ζsτ/τM2

1 + τ/τM2

. (2.27)

This expression shows that if the evolution is much slower than the thermal relax-
ation (τ ¿ τM2), the donor radius follows the equilibrium radius closely, whereas
if mass transfer occurs rapidly, the donor reacts adiabatically.

Eqs. 2.9, 2.14, 2.16, 2.19 and 2.23 (referred to as ‘the evolution equations’ from
now on) completely specify the evolution of the binary and can be integrated
numerically which we shall discuss in detail in Chapters 4 and 5. Before we proceed
though, we firstly provide semi-analytic expressions for the advective terms that
depend primarily on the geometry of mass transfer. We also obtain expressions
for the evolution of the spins of the two components. We then proceed to derive
analytic solutions by simplifying the above equations for certain special cases.

2.2.1 The Advective Terms and Spin Evolution
Though the evolution equations defined above form a complete set of equations
which define the evolution of the binary system, we still need to specify the exact
form of the advective terms j1 and j2 in order to follow the evolutionary outcome
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of a given binary. Defining these terms will also allow us to study the evolution
of the spin angular momenta of the individual components. As mentioned above,
we shall parameterize the advective terms in terms of geometry (dynamics) of the
mass transfer stream on the basis of the Roche approximation.

The Stream Trajectory: The material spilling over the L1 point as a result of
RLOF has a high specific angular momentum relative to the accretor and hence
it cannot fall directly on the accretor. Instead, in most cases, the material misses
the accretor and goes through a rossette patterned trajectory. The stream then
interacts with itself, eventually settling down in a ring in circular orbit around the
accretor – thus leading to formation of an accretion disk due to viscous dissipation.
We shall discuss disks in detail in Chapter 6 – here we only follow the stream
trajectory in order to specify the amount of angular momentum it carries with it,
the torques it encounters and the amount of angular momentum that is supplied
or sucked out of the orbit and the individual stars as a result. Firstly, we note that
the stream spilling over the L1 point is supersonic. Let v⊥ represent the velocity of
the stream perpendicular to the lines of centers of the stars in a frame comoving
with the accretor. We have, v⊥ ∼ b1ω where, b1 = (0.500 − 0.227 log q)a is the
distance of the L1 point from the center of the primary (Plavec & Kratochvil,
1964). For typical values of q and ω, v⊥ turns out to be a few hundred Km/sec. As
the stream is further accelerated by the gravitational force of the accretor almost
always v⊥ > cs, the sound speed. As a result, we can treat the stream as a ballistic
trajectory, since the pressure forces on the stream can be ignored. In Fig. 2.2, we
show the trajectory of a test particle as it oozes out of the L1 point. As can be
seen, the particle follows a rossette shaped trajectory, and a continuous stream
would indeed interact with itself, resulting in dissipation of energy due to shocks.
On the other hand, the gas cannot easily get rid of its angular momentum, and as
a consequence the stream settles into a circular orbit around the accretor at some
characteristic radius Rcirc. The velocity of the gas is then given by

vφ(Rcirc) =
(GM1

Rcirc

)1/2

(2.28)

From angular momentum conservation, assuming no torques act between the stream
and the orbit or spins of the stars, the angular momentum of the gas at the L1

point must equal the angular momentum at Rcirc –

Rcircvφ(Rcirc) = b2
1ω

Substituting for b1 and using the above equations, we can write

Rcirc

a
= (1 + q)[0.500− 0.227 log q]4 (2.29)

Thus the specific angular momentum carried by the stream as it approaches the
accretor is given by

j1 ≡ jcirc = (GM1Rcirc)
1/2 ∼ [(1 + q)rh]

1/2Jorb

M2

(2.30)
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FIGURE 2.2. Stream trajectory for 2 different mass ratios; q = 0.05 (top panel) and q
= 0.25 (bottom panel). The blue and red circles represent the radii of the donor and
accretor respectively, whilst the green curve denotes the circularization radius. For q
= 0.05, the circularization radius is well outside the accretor, and the stream follows a
rossette shaped trajectory in the ballistic case. On the other hand, for a mass ratio of
0.25, Rcirc < R1, and consequently the stream directly impacts the accretor.

Due to the geometry of DWD systems, it is possible for the stream, which follows
a ballistic path to a good approximation, to hit the surface of the accretor. We
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see from Fig. 2.2 that the point of closest approach for the stream in well within
the circularization radius, and much closer to the accretors surface. The closest
distance to the surface of the accretor the stream reaches to is given by Lubow &
Shu (1975) as

Rmin

a
≈ 0.04948− 0.03815 log(q) + 0.04752 log2(q)− 0.006973 log3(q) (2.31)

The stream misses the surface of the accretor when Rmin > R1 and goes on to
form a disk, whilst if Rmin < R1, we have ‘direct impact’ accretion (DIA). In the
latter case, the amount of angular momentum lost from the orbit is the same as
the amount carried by the stream – it all goes into spinning up the accretor. If,
however, we have an accretion disk, the tidal torques generated between the disk
and the orbit lead to efficient return of most of the angular momentum back to
the orbit. In that case, we replace Rcirc with R1 in Eq. 2.30, since the amount of
angular momentum lost at the inner edge of the disk is (GM1R1)

1/2.
The situation with the advective term j2 is not as obvious. The exact value of j2

depends on the details of the flow in the vicinity of the L1 point, which we are not
in a position to access. For our purposes, on physical grounds we adopt j2 = R2

2ω2.
This term has often been ignored in the analysis of evolution of binaries, but as
pointed out by Savonije (1978) and Gokhale et al. (2006), it plays an important
role in binary evolution (see Section 5.2). Thus we can write

qa = 1− ζc = 1−M2
j1 − j2

Jorb

= 1− [(1 + q)rh]
1/2(1− R2

2ω2√
GM1Rcirc

) (2.32)

where ζc = d log Jorb/d log M2 represents the consequential angular momentum
loss.

The net effect of the consequential redistribution of angular momentum in the bi-
nary depends on the sign of ζc. For DWD binaries, j1 > j2 during the direct impact
stage, and this holds even after the onset of disk accretion, when j1 =

√
GM1R1

and ζc becomes smaller but remains positive. In cataclysmic variables and low-mass
X-ray binaries, the accretion disk returns via tides most of the angular momentum
advected by the stream, the donor is almost synchronous, and the tidal coupling
of the accretor to the orbit is very weak. However, in this case R1 ¿ a and thus
it is more likely that j2 > j1. While all the additional terms in eqs. (2.17, 2.18)
are relatively small, yielding qa ≈ 1, in some cases ζc < 0, and thus qa ≥ 1 making
these systems slightly more stable.

2.2.2 Spin Angular Momentum Evolution
We now derive explicit equations to describe the evolution of the spin angular
momenta of the two stars. The spin angular momenta of the accretor and donor
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can be written in terms of their moment of inertia, Ii = kiMiR
2
i and spin frequency

(ωi) as
J1 = k1M1R

2
1ω1 (2.33a)

J2 = k2M2R
2
2ω2 (2.33b)

Taking the logarithmic derivative, and assuming the radii of gyration ki do not
change significantly we can write

J̇1

J1

=
Ṁ1

M1

(1 + 2ζ1) +
ω̇1

ω1

(2.34a)

J̇2

J2

=
Ṁ2

M2

(1 + 2ζ2) +
ω̇2

ω2

(2.34b)

The assumption that the ki’s do not change implies that the shape of the stars
does not change significantly during the evolution. While this is almost certainly
true for stable mass transfer situations, for unstable mass transfer via direct impact
accretion, the stars could get significantly distorted (D’Souza et al., 2006). How-
ever, we believe that in the unstable case, other effects dominate the evolution of
the binary and hence we ignore the distortion of the components for our analysis.
Now, using eqs. 2.13, 2.14 & 2.34 along with eq. 2.33, we get on simplification

ω̇2

ω2

=
Ṁ2

M2

(2ζ2) +
1

τs2

(ω − ω2

ω2

)
(2.35a)

ω̇1

ω1

= −Ṁ2

M2

[jcircM2

J1

− (1 + 2ζ1) q
]

+
1

τs1

(ω − ω1

ω1

)
(2.35b)

Eqs. 2.35 describe the evolution of the spin frequency of the components. The first
term represents the advective component whilst the second term is the tidal term.

2.3 Stability of Mass Transfer
In Section 2.2 we have described the evolution equations in some detail. We now
introduce the concept of the equilibrium mass transfer rate, which is the mass
transfer rate that a stable, semi-detached binary undergoes for a given rate of
driving. The equilibrium mass transfer rate is a function of the driving rate, the
consequential angular momentum loss mechanisms and the value of the mass ratio
q. The mass transfer rate can be written quite generally as

Ṁ2 = −Ṁ0(M1,M2, a)f(∆R2)

Under the assumption that Ṁ0 is a gentle function of the binary parameters, whilst
f is a strong function of the depth of contact ∆R2, we can write

M̈2 = −Ṁ0
∂f

∂∆R2

(Ṙ2

R2

− ṘL

RL

)
(2.36)
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For equilibrium mass transfer, we demand M̈2 = 0, i.e. the mass transfer rate itself
does not evolve very fast. Thus, using the evolution equations and Eq. 2.36 we
have

(Ṁ2

M2

)
eq

=
νL − ν2

2(qstable − q)
=

νL − ν2

ζ2 − ζL

(2.37)

where

qstable = qa − ζrL

2
+

ζ2

2
, (2.38)

is the critical mass ratio for stability of mass transfer. For example, for a polytropic
donor with n = 3/2 (which is representative of a white dwarf donor) ζ2 ∼ −1/3,
ζrL

∼ 1/3 and so

(Ṁ2

M2

)
eq

=
J̇sys/Jorb

2/3− ζc − q

which is the familiar form in case of direct impact DWD’s (Marsh et al., 2004),
except that here ζc is reduced by the contribution from the donor as given by Eq.
2.32.

On the other hand, for a main sequence donor in the case of CVs, R2 ∝ M2, in
which case ζ2 ∼ 1 and so

(Ṁ2

M2

)
eq

=
J̇sys/Jorb

4/3− ζc − q

In general one can write from Eq. 2.36

M̈2 = −2
Ṁ0

M2

∂f

∂∆R2

(qstable − q)
(
Ṁ2 − (Ṁ2)eq

)
. (2.39)

When q < qstable, the pre-factor on the RHS is negative and thus the mass transfer
rate tends toward the equilibrium value implying that the mass transfer is stable.
On the other hand, when q > qstable, we can see that the system cannot reach the
equilibrium value and this implies that the mass transfer is unstable. It is possible
during the course of the evolution that a system that initially has q > qstable can
evolve into a system with q < qstable – thus an initially unstable system can survive
as a stable system (see Chapter 4 & Section 5.2).

2.4 Timescales
Each of the astrophysical effects we have enumerated in Section 2.1 are associated
with a characteristic timescale. A relatively short timescale corresponds to that
particular effect being highly efficient, whereas a relatively long timescale usu-
ally implies inefficiency and relative unimportance. The effect with the shortest
timescale at a given point in the evolution is more likely to be the dominant effect
in determining the evolutionary fate of the binary.
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• Mass transfer timescale: The mass transfer timescale is defined by τM2 =
M2/Ṁ2, and it is a function of the driving rate and the depth of contact ∆.
The mass transfer timescale is extremely short during unstable mass transfer,
and can result in the tidal disruption of the donor due to mass transfer
instability.

• GWR timescale: In the case of compact binaries, the GWR timescale τGWR

corresponds to the driving timescale of the binary. It represents the rate at
which angular momentum is lost from the system. If this timescale is shorter
than the other timescales in the binary, the inevitable result is a merger
with a characteristic chirp signal (Section 5.4). During stable mass transfer,
τGWR ∼ τM2 , where as during unstable mass transfer, τGWR À τM2 .

• Tidal timescale: The tidal timescale τsi represents the level of spin-orbit
coupling between the spins of the component stars and the orbit. This is
the parameter that is most uncertain in our study, and we treat it as a free
parameter. Usually one assumes that the donor, which is tidally locked with
the orbit, has an extremely short tidal timescale (as compared to say τGWR

or τM2) where as the accretor has an extremely long tidal timescale, and
is effectively decoupled from the orbit. When an accretion disk is present
around the accretor, the outer radius of the disk almost fills up the Roche
lobe radius of the accretor. As a result, the tidal timescale of the disk is also
very short.

• Mass loss timescale: We can define a timescale over which mass is lost from
the binary system. This can either be a systemic mass loss or a consequen-
tial mass loss (Section 2.1.4). If the mass loss timescale, τM , is shorter than
the GWR timescale, then the system will evolve on the mass loss timescale.
In case of consequential mass loss, for example during super-Eddington ac-
cretion (Section 4.2), it is possible that τM is extremely short as compared
to the other timescales in the system. This can result in the formation of a
common envelop around the binary, which alters the behavior of the system
significantly (Webbink & Iben, 1987).

• Dynamic timescale: The dynamical timescale is defined by

tdyn =
( 3π

16Gρ̄

)1/2

(2.40)

where ρ̄ is the average density of the astrophysical object under consideration.

2.5 The Tidal Instability and the Contact

Condition
For a fully synchronous configuration, it is easy to show using Eq. 2.2 that the total
angular momentum and the total energy have a minimum at the same separation
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amin = [3(I1 + I2)/µ]1/2, where the Ii = kiMiR
2
i are the moments of inertia of

the components, and µ is the reduced mass. Even if the orbital frequency and
the spin frequency are not synchronized but remain proportional to one another
(ωi = fiΩ), there is a minimum of Jtot at some amin. Also the total energy of the
system will have a minimum but in general it will not occur at amin. It can be shown
that for Riemann-S and Roche-Riemann sequences dE = ΩdJ + ΛdC, where Λ is
the angular velocity of internal motions and C is the equatorial circulation (Lai
et al., 1993b). Thus, as a binary evolves driven by gravitational wave radiation,
circulation is conserved and the minima of E and J will coincide. However tidal
dissipation does not preserve C and thus in general the minima will not coincide
in the presence of tidal spin-orbit coupling.

For our purposes, it will be sufficient to work with the approximate form of
equation (2.2) given above. A more complete and thorough discussion of the secular
and dynamical stability of polytropic binaries has been presented in two well-known
series of papers by Lai, Rasio & Shapiro (LRS1-LRS5) and further developed with
SPH simulations in papers by Rasio & Shapiro (RS1-RS3), who also addressed the
role of mass-transfer.

For binary configurations with the orbital separation a < amin, tidal synchro-
nization leads to an unstable situation due to the positive feedback between the
spins and the orbit. For example, when a < amin, any loss of angular momen-
tum from the system (say, by GWR emission), must result in the breakdown of
synchronism, for if the system were to remain synchronous, according to Fig. 2.3
we see that the total angular momentum actually should increase (which is im-
possible since we are draining angular momentum from the system). Now, loss of
angular momentum results in decreasing the separation a, and an increase of the
orbital frequency Ω, whilst the spin frequencies of the components remain at best
constant (if all of the angular momentum lost comes from the orbit), or decrease.
Tides try to restore synchronism by supplying some of the excess orbital angular
momentum to the spins, which in turn leads to further decrease in the orbital
separation, and a further increase in Ω. Thus the positive feedback between the
spin and the orbit when a < amin leads to an unstable situation, which is referred
to as the ‘tidal instability’. If, however, a system gets into contact before reaching
amin, then the effects of mass transfer and the resulting angular momentum re-
distribution can lead to an increase in the orbital separation, away from the tidal
instability. Whether the system gets into contact before or after amin depends on
the mass-radius relationship and the compactness of the component stars under
consideration.

Let us consider for simplicity, polytropic stars which obey a mass radius rela-
tionship:

Ri =
( Ki

NnG

) n
3−n

M
n−1
n−3

i (2.41)

where, Ki is the polytropic constant, n is the polytropic index and Nn is a numerical
factor which is a function of n (Chandrasekhar, 1939). Consider the case when q =
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FIGURE 2.3. Minimum separation and the separation at contact for n=1/2 and n=3/2
for semi-detached (polytropic constant K1 = K2) and contact binaries (K1 6= K2).
Top Panel: Plot of amin/acont as a function of q for a n = 1/2 polytrope and n = 3/2
polytrope for Contact binaries. In the case of n = 3/2 (ki ∼ 0.2) polytropes, for mass
ratios q ≤ 0.2, the binary reaches the tidal instability before it becomes semi-detached.
On the other hand, the n = 1/2 (ki ∼ 0.4) polytropes are unstable for q ≤ 0.4. Notice
that minimum value of the mass ratio qmin ∼ ki for each case. Bottom Panel: Plot
of amin/acont as a function of q for a n = 1/2 polytrope and n = 3/2 polytrope for
Semi-detached binaries. In the case of n = 1/2 polytropes, for mass ratios q ≤ 0.2,
the binary reaches the tidal instability before it becomes semi-detached. On the other
hand, the n = 3/2 polytropes are stable for all values of q.

1 for a n = 1/2 polytrope and ki = 1/5. This corresponds to a contact binary with
components satisfying a ‘stiff’ equation of state, which corresponds to say, a binary
consisting of neutron stars. Thus in this case we find, amin/2R ∼ (6/5)1/2 > 1, i.e.,
the binary reaches the instability limit before it can get into contact. This implies
that for stiff equations of state like n = 1/2, the tidal instability can quickly set in,
which leads to merger over dynamical timescales. On the other hand, for ki = 1/5,
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corresponding to softer equations of state (for example n=3/2), and in this case
amin/2R ∼ (3/5)1/2 < 1, and thus the system gets into contact before it reaches
the tidal limit.

In nature, one finds contact binaries with mass ratios different from unity. From
the mass-radius relation we are considering here, in order for the masses of the
components of a contact binary to have different masses and yet for both of them
to fill up their Roche lobes, they must have different Ki’s. Specifically, the more
massive component (which has a smaller radius if the K’s are the same but a larger
Roche lobe), has to have a larger polytropic constant in order to puff-up the star
upto its Roche surface. Thus, for such contact binaries, the moment of inertia of
the more massive component is much greater than the less massive component,
I1 >> I2. In such cases, we have

amin = ki

[3(1 + q)

q

]1/2

R1 (2.42)

The contact condition for such systems can be obtained by requiring Ri = RLi
,

i.e., the radii of the stars equal their respective Roche lobe radii. For n = 3/2 (ki

= 0.2) polytropes, we thus have a value of q below which the the system always
reaches this minimum before it gets into contact. Rasio (1995) realized that an
(fortuitous) approximate relationship exists between this minimum value of the
mass ratio qmin and the dimensionless radius of gyration ki given by ki ≈ qmin (Fig.
2.3).

In the above discussion we are considering contact binaries, which allows us to
make certain simplifications. In general, for semi-detached binaries, whether acont

is greater than or less than amin, will depend on both the equation of state and the
mass ratio (See Fig. 2.3, bottom panel). If the donor has a relatively soft equation
of state and if q 6= 1, the binary tends to become semi-detached and mass-transfer
occurs before it falls prey to the tidal instability mentioned above. Mass transfer
changes the initial configuration as the system evolves and may either drive the
system to smaller separations and thus closer to the onset of the tidal instability
or to larger separations and toward stability.

In Fig. 2.4, we plot the total angular momentum for a synchronous n = 3/2
polytrope as a function of orbital separation using Eq. 2.2 (dashed curve). This
curve can be thought of as a series of equilibrium models with the same total mass
and mass ratio, but achieving contact at smaller and smaller separations. Alterna-
tively, one can think of the red curve as the evolution of a detached system, slowly
driven to smaller orbital separations by the loss of orbital angular momentum.
The white dwarf, represented here as a n = 3/2 polytrope, achieves contact much
before the minimum separation corresponding to the tidal instability amin (solid
curve in Fig. 2.4), and evolves to a higher separation. On the other hand, a n =
1/2 polytrope, which is a much stiffer equation of state corresponding to say a
neutron star, achieves contact much closer to amin, and is much more prone to the
tidal instability.
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FIGURE 2.4. Plot of the total angular momentum for the synchronous case against
the orbital separation. The dashed curve represents a series of models when contact is
reached, for a fixed total mass. The solid curve represents the evolution of a DWD binary
with q = 0.2, which gets into contact much before amin and evolves to higher separation
as indicated by the arrows, thus avoiding the tidal instability.

Note that in the above analysis, we have assumed that the stars are not tidally
distorted, and that the Roche limit serves as the point at which the donor gets into
contact, which are both rather crude approximations, especially whilst considering
neutron stars (n = 1/2). We thus expect our results to be a fair representation at
least in a qualitative sense, though the exact values of qmin, amin and so on may be
different.
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3. Analytic Solutions

Before embarking upon studying the complete numerical solutions for the evolution
equations we derived in Chapter 2 for different astrophysical scenarios, we obtain
analytic solutions for the time evolution of the mass transfer rate. We can do this
only on the assumption that most of the parameters characterizing the binary
remain constant or evolve slowly as compared to the evolution of the mass transfer
rate. Webbink and Iben (1987) were among the first to attempt such analysis and
following them, we generalize their results to an arbitrary polytropic index and to
isothermal atmospheres. Analytic solutions are useful in providing physical insights
into the expected behavior of the binary system in the limit where the assumptions
imposed to obtain the analytic solutions are valid approximately.

3.1 Polytropic Binaries
Polytropic stars are used in many 3-D hydrodynamic simulations to study the dy-
namic behavior of binaries D’Souza et al. (2006) because of their simple structure.
We shall thus obtain analytic as well as numerical solutions for a general polytropic
index n to compare our results with those obtained from a full numerical evolu-
tion. The mass transfer rate for a polytropic donor is given by Jȩdrzejec (1969)
assuming laminar flow, and quoted by Paczyński & Sienkiewicz (1972) is given by

−Ṁ2 = Ṁ0

(R2 −RL

R2

)n+3/2

(3.1)

Raising both sides of the above equation to the power 2/(2n+3) and differentiating,
we obtain

d

dt
(−Ṁ2)

2/2n+3 = (Ṁ0)
2/2n+3[(ν2 − νL) +

Ṁ2

M2

(ζ2 − ζL)], (3.2)

where we have set the factor RL/R2 to unity, given that in most situations ∆R2 ¿
R2. The analytic solutions discussed here assume that the driving rates ν2 and νL

remain constant while the depth of contact changes. This is only approximately
true; and a self-consistent solution will require numerical integrations. It is instruc-
tive to first look at the implications of equation (3.2) when no driving is present.
This is a situation we encounter in some large-scale hydrodynamic simulations of
mass transfer in polytropic binaries (D’Souza et al., 2006). Defining a positive di-
mensionless mass transfer y = (−Ṁ2/Ṁ0)

2/(2n+3), and a characteristic time scale
τ = M2/Ṁ0, eq. (3.2) becomes

dy

dt
= −ζ2 − ζL

τ
yn+3/2. (3.3)
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The solution can be easily inverted to yield

y(t) = y(0)
[
1 + y(0)n+1/2(n + 1/2)(ζ2 − ζL)t/τ

]− 2
2n+1 , (3.4)

where y(0) is the initial mass transfer rate, normalized as above. We note that in
the stable case, ζ2 > ζL (q < qstable), the mass transfer decays asymptotically to
zero over a characteristic time τchr = τ/[(n + 1/2)y(0)n+1/2(ζ2 − ζL)], whereas in
the unstable case, ζ2 < ζL (q > qstable), it will blow up in finite time equal to τchr.
Thus, the essence of the stability of mass transfer in a binary is already contained
in the simple case of no driving. The presence of driving exacerbates the natural
instability or, in the stable case, it settles asymptotically to a non-zero stable mass
transfer, which we observe in AM CVns, CVs and LMXBs.

Returning now to Eq. (3.2), with the same definitions as above for y and τ , we
obtain for the general case in which driving is present,

dy

dt
= −ζ2 − ζL

τ
(yn+3/2 − yn+3/2

eq ) , (3.5)

where y
n+3/2
eq ≡ −(Ṁ2)eq/Ṁ0 = (ν2−νL)τ/(ζ2−ζL) is the equilibrium value normal-

ized to Ṁ0. Note that in the stable case, this value is positive; while it is negative
in the unstable case. Before we attempt to solve the above differential equation,
it is clear from its form and the signs just discussed, that it describes a stable
solution in which y → yeq when q < qstable. If, however, q > qstable, the r.h.s is
positive even if the mass transfer vanishes initially, and it just gets bigger as the
mass transfer grows. Since y diverges for the no-driving case in a finite time, the
driven case diverges even sooner.

Considering Eq. 3.2 again, we define y∗ ≡ [Ṁ2/(Ṁ2)eq]
2/(2n+3), and 1/τ∗ ≡

(ν2 − νL)(Ṁ2/|(Ṁ2)eq|)2/(2n+3). The differential equation for the evolution of mass
transfer now becomes

dy∗
dt

= sgn(y∗)
1

τ∗
(1− sgn(y∗)|y∗|n+3/2) (3.6)

where sgn(y∗) is the sign of y∗. Thus, for the stable case y∗ > 0, while y∗ < 0 for the
unstable case, and τ∗ is defined positive. The general analytic solution comprising
both the stable and the unstable case can be given in terms of the hypergeometric
function, as follows

t

τ∗
= y∗2F1(1,

1

n + 3/2
; 1 +

1

n + 3/2
, sgn(y∗)|y∗|n+3/2) (3.7)

Though it is not possible to invert this general solution to obtain the mass transfer
rate y as a function of time, particular solutions for specific values of n can be
inverted to obtain simple solutions. For example, n = 3/2 yields the Webbink-Iben
solution

t

τ
= −1

2
ln

[(1− y)3

(1− y3)

]
+
√

3 [arctan
(2y + 1√

3

)
− π

6
] (3.8)
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where, y = (−Ṁ2/µ)1/3, τ = 1
3

{
Ṁ0

M2
(ζ2 − ζL)(ν2 − νL)

}−1/3

.

Likewise, n = 1/2 yields

y∗ = − tan (t/τ∗) y∗ < 0 unstable
y∗ = tanh (t/τ∗) y∗ > 0 stable (3.9)

3.2 Isothermal Atmospheres
In case of isothermal atmospheres, the mass transfer rate Ritter (1988) is given by:

Ṁ2 = −Ṁ0 e(R2−RL)/H (3.10)

where, H is the scale height. This form of the mass transfer equation is much
simpler to integrate than the one for the polytropes considered above. With the
same approximations and notation as in the steps leading to Eq. (3.5), and defining
y = −Ṁ2/Ṁ0 = exp ((R2 −RL)/H), we obtain

1

y

dy

dt
= −ζ2 − ζL

τ

R2

H
(y − yeq) . (3.11)

This is easily integrable and invertible to get the following:

y =
yeq

1− (1− yeq/y0)e−t/τiso
(3.12)

where τiso ≡ H/R2(ν2− νL) is the timescale required for the driving to change the
depth of contact by ∼ H, and y0 is the initial value, always positive for physically
meaningful cases. In the stable case yeq > 0, and y → yeq, while yeq < 0 for the
unstable case and y diverges in a finite time tdiv = τiso ln (1− yeq/y0). If no driving
is present, we may set yeq = 0 and integrate Eq. (3.11) for an isothermal donor.
The result is again simple and instructive

y =
y0

1 + (ζ2 − ζL)y0
R2

H
t
τ

. (3.13)

In the stable case, for any initial mass transfer, the system will detach and mass
transfer will tend to zero. In the unstable case, any non-zero initial mass transfer
will grow and diverge in a finite time.

3.3 The Webbink-Iben Binary

It is worthwhile to describe the binary parameters used by Webbink & Iben (WI,
Webbink & Iben (1987)) in their pioneering analysis in some detail, since we are
using it as a comparison to our numerical solutions in Chapter 4. In Table 3.1 we
specify the parameters of the binary at its initial state. For the initial parameters
for the WI binary, it turns out that the adiabatic coefficients ζ2 ∼ -0.64 and ζL2 ∼
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FIGURE 3.1. The Webbink-Iben solutions for the stable (dotted line) and unstable cases.

-0.48. Note that since |ζ2| > |ζL2|; the radius of the star increases at a rate faster
than the Roche lobe radius, and the resulting mass transfer is unstable.

The analytic solutions, both the stable and the unstable, are shown in Fig.
3.1. Note that initially, the stable and unstable solutions almost exactly overlap.
This is true as long as the system is either detached or the depth of contact
is relatively small. As soon as the binary evolves to deeper contact, the unstable
solution diverges rapidly and blows up in a finite time. This corresponds physically
to catastrophic mass transfer in the binary – either super-Eddington accretion,
tidal disruption of the donor or more likely, a merger over dynamic timescales
after a brief phase of common envelope evolution (Webbink & Iben, 1987). Note

TABLE 3.1. Initial parameters of the Webbink-Iben binary

Primary Secondary

Mass M (M¯) 1.1 0.62
Radius R (R¯) 0.0072 0.0124

Roche Lobe Radius R (RL) 0.429 0.331
Orbital Separation a (R¯) 0.0376

Orbital Period P (s) 55.8

35



that this outcome is predicted by the unstable analytic solution which has been
obtained by assuming that the basic primary parameters: the mass ratio q, driving
rate νL and the masses of the components do not change during the evolution.
This is obviously not true, especially in the unstable case, since by definition in
the unstable case these parameters are evolving rather rapidly. As we shall see in
the next chapter, when the system parameters are allowed to change, the binary
can transit from an unstable to a stable system and follow the red curve in Fig.
3.1.
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4. Numerical Solutions

In the previous two chapters, we have derived the evolution equations and the cor-
responding analytic solutions for different cases, under certain restrictive approxi-
mations. These analytic solutions are a useful reference to compare our numerical
results to, since in the limit that the assumptions used to derive the analytic solu-
tion are met, the numerical solutions should approach the analytic ones. However,
in general, the analytic solutions cannot explain the behavior of a given system
accurately and especially when the system evolves rapidly, solving the evolution
equations numerically leads to a different outcome than what one would expect
analytically. In the following sections, we describe some of the numerical results for
a generic binary Webbink & Iben (1987), followed by more examples of different
classes of binaries that can be described by numerically integrating the evolution
equations.

4.1 Limitations of the Analytic Solutions
The analytic solutions of Chapter 3 are obtained under the following assumptions:

1. The driving rate given by νL is constant throughout the evolution,

2. The separation a of the binary is effectively constant even though the mass
transfer rate changes, which is not true for a ‘real system’ (see Eq. 2.16).

3. The tidal effects are effectively ignored,

4. Super-Eddington accretion (See Section 4.2) is not accounted for,

5. A system that is initially unstable (q > qstable), remains so throughout the
evolution, since q is assumed to be the same throughout. As we shall see
below, since q is itself evolving, it is possible for an initially unstable system
to evolve to a stable configuration.

In order to overcome some of these shortcomings one has to numerically integrate
the evolution equations in a self-consistent way. In particular, in what follows, we
allow for the changes in the masses of the components assuming conservative mass
transfer (and hence the mass ratio q), allow the binary separation to change as a
result of any driving present, and compute the values of ζ2 and ζL as they evolve.
The values of ζ2 depend on the adopted mass-radius relationship for the donor.
To calculate ζL, we need to specify how the mass and angular momentum are re-
distributed in the binary during mass transfer – which depends on the particular
case at hand. For example, it depends on whether the stream impacts the accretor
or if an accretion disk is present; if the mass transfer is subcritical and conservative,
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FIGURE 4.1. Numerical and Analytic Solutions for Polytropes. Comparison of numerical
integrations with the analytic solution by Webbink and Iben. The mass transfer rate
normalized to the initial equilibrium rate as a function of time in units of the initial τ :
Analytic (Black curve) and numerical – green (q = 0.663), orange (0.613), cyan (0.563
same as WI), blue (0.543), magenta (0.523) and red (0.513).

or if mass and angular momentum are being ejected from the system following
supercritical mass transfer.

We begin our investigation by considering one of the simplest cases – the WI
binary – the analytic solution for which we derived in Chapter 3. We simulate
exactly the same initial conditions as the ones assumed to derive the analytic
solution – a constant driving rate and the same mass-radius relationship. We then
relax the constraints and let the system evolve in a self-consistent manner for
different values of the mass ratio q. The results are shown in Fig. 4.1 where we plot
the mass transfer rate normalized to the equilibrium rate against time normalized
to the initial τ . We observe that initially all the curves overlap, but as the depth of
contact increases, the mass transfer rate increases. The rate of increase is a function
of q − qstable which defines how unstable the initial configuration is. Consequently,
the curves begin to deviate with the most unstable curve having the sharpest spike.
As the system evolves, the orbital separation, which is decreasing initially, begins
to increase as per Eq. 2.16 which in turn decreases the driving rate. At some point
during the evolution q becomes less than qstable and the system evolves to stable
mass transfer rates. From our analysis in Section 2.3, we expect the systems with
q > qstable to be unstable, and the higher the mass ratio, the more unstable the
system is. This is indeed what we observe in the numerical solutions. We observe
that though some of the systems are initially unstable, they evolve to stable mass
transfer after an initial spike. As we have seen in Chapter 3, qstable ∼ 0.49 for
the WI binary. Consequently, the analytic solutions for any q > 0.49 follow the
unstable curve and diverge in a finite time. On the other hand, the numerical
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FIGURE 4.2. Comparison of numerical integrations with the analytic solutions for
isothermal atmospheres. The natural logarithm of the mass transfer rate normalized
to the initial equilibrium rate for the case with q = 0.663, is shown as a function of time
in units of τiso: Analytic (Black curve) and numerical – green (q = 0.663), orange (0.613),
cyan (0.563 same as WI), blue (0.543), magenta (0.523) and red (0.513).

solutions reach a peak in the mass transfer rate in a finite time, but turn around
and a stable mass transfer is established. We must keep in mind though, that the
OAE we use for our numerical integrations themselves break down whenever the
system parameters change significantly over timescales of approximately an orbital
period. In any case, our results suggest and demonstrate that at least some of the
binaries that start off unstable do survive the mass transfer instability and evolve
into systems like AM CVn – evolving to higher separations and diminishing mass
transfer rates. This result, which is not predicted by the analytic solution, has
important consequences for population synthesis, understanding AM CVn type
systems and for understanding 3-D hydro-simulation results, as we shall see in
Chapter 5.

In Fig. 4.2, we plot the analytic and numerical solutions for an isothermal donor
for different values of the mass ratio. Unlike the polytropic donor case, which
has a fixed reference point where the donor fills its Roche Lobe (R2 = RL), the
isothermal case does not have a fixed reference point to which we can normalize
our results. We, rather arbitrarily start the integrations when the depth of contact
is R2 − RL = −11.5H, corresponding to an initial mass transfer rate of 10−5 of
the reference rate. The behavior of the systems is qualitatively the same as the
polytropic donors. Note that the y-axis in Fig. 4.2 is the natural logarithm of y
which from Section 3.2, is just the depth of contact R2−RL in units of the pressure
scale height H, normalized to the reference depth corresponding to the equilibrium
rate for q = 0.663.
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Another aspect of mass transfer that can alter the evolution of the binary which
the analytic solutions are unable to account for, is mass loss due to super-Eddington
accretion. We discuss this next followed by some simple examples of binary evolu-
tions based on our OAE.

4.2 Super-Eddington Accretion
Han & Webbink (1999) discuss the possibility of mass transfer at rates higher than
the Eddington rate, which results in mass loss from the system. The Eddington
Luminosity (Frank et al., 2002) is given by

LEdd =
4πR2

1cg

κ
(4.1)

where, κ = 0.2(1+X)cm2g−1 is the opacity of the accreted gas. X is the hydrogen
mass fraction of the gas, which we assume is zero. The accretion luminosity is a
function of the potential difference between the L1 point and the surface of the
accretor R1 and given by

Lacc = Ṁ2(φL1 − φR1), (4.2)

Thus the Eddington mass transfer rate is given by

ṀEdd =
4πR2

1cḡ

κ(φL1 − φR1)
(4.3)

where ḡ is the mean surface gravity on the accretor –

ḡ =
GM1

R2
1

− 2

3
R1

GM

a3
(4.4)

If −Ṁ2 > ṀEdd, radiation pressure is capable of driving mass away from the
accretor even as it approaches the accretor via the L1 point. As described by
Han & Webbink (1999), we assume that any accretion luminosity in excess of the
accretion luminosity helps in driving mass loss from the system, but the radiative
losses do not contribute to the mass flow. Assuming that a fraction β of the mass
is lost from the system such that Ṁ2 = −βṀ1 we have from energy conservation

β =
LEdd

φR1Ṁ2

+
φL1

φR1

(4.5)

The evolution equations we have derived before need to be modified to account
for the mass loss from the system. We thus have

J̇1 = −βṀ2j1 + J̇1,tid , (4.6)

J̇2 = Ṁ2j2 + J̇2,tid , (4.7)

J̇orb = J̇sys −
(
−Ṁ2[βj1 − j2 + (1− β)jw] + J̇1,tid + J̇2,tid

)
, (4.8)

ȧ

2a
=

J̇orb

Jorb

− Ṁ2

M2

(
1− βq − 1− β

2(1 + q)

)
. (4.9)
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FIGURE 4.3. Super-Eddington Accretion. Various parameters for super-Eddington ac-
cretion with direct impact with q = 0.25, just above qstable and q = 0.35, well above
qstable. The panels show from the top down: the accreted fraction β; the logarithm of the
mass transfer rate and the corresponding critical rate (dashed line) in M¯/yr; the mass
ratio q; and the total mass normalized to the initial value. The abscissa shows times in
years from the time of first contact. The lower q accretes at super-Eddington rates for
less time as compared to the higher q; and it does so more gradually losing less mass
(last panel). Even for the initially more unstable mass transfer (larger q), the fraction of
mass lost is below 3%.
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It is reasonable to assume that the specific angular momentum of the material
blown away equals that of the stream in case of a DI system : jw = j1. When the
stream forms a disk around the accretor, the specific angular momentum carried
by the wind is more difficult to calculate since it depends on the details of the
flow. These considerations are beyond the scope of our study, and for simplicity
we assume that jw = j1 throughout. Thus Eq. 4.8 reduces to Eq. 2.15 and Eq. 4.9
reduces to Eq. 2.17 if we define

qa ≡ 1 + (1− β)q − 1− β

2(1 + q)
−M2

βj1 − j2 + (1− β)jw

Jorb

, (4.10)

Note that when β = 1, the above expression reduces to eq. (2.18), as it should.
Also, the explicit appearance of q above implies that qa must be calculated self-
consistently during the evolution. Notice that since the mass loss is proportional
to the mass transfer rate, the critical value of q which determines the stability
properties of the initial configuration of the binary, qstable, is different than what
it would be in the absence of mass loss due to Super-Eddington mass transfer.

Fig. 4.3 shows two examples of evolutions with a super-critical mass-transfer
phase. Because the OAE do not include tidal distortions of the components or
dissipative effects (arising for example from friction during a common envelope
phase) they always predict survival, no matter how high the mass transfer rate
gets during an unstable phase.

4.3 Examples
In the next chapter, we shall employ the evolution equations to investigate differ-
ent aspects of compact binary evolution in detail. Before we embark on this, we
illustrate below simple applications of the OAE in order to demonstrate that when
the proper limiting conditions or approximations are imposed (like ignoring tides
or direct impact accretion or the advective terms), known results can be extracted
from our generalized treatment.

4.3.1 Double White Dwarfs & AM CVn Type Systems
As discussed in Section 1.4, DWD binaries are compact binaries in which both
components are either Helium or C/O white dwarfs. AM CVn systems are a par-
ticular type of DWDs; characterized by mass transfer and extremely short orbital
periods. Because of the mass-radius relation for white dwarfs, the radius of a less
massive white dwarf is greater than the radius of a white dwarf with higher mass.
Indeed, a mass transferring donor is expected to increase in size as a consequence
of mass transfer. One consequence of this is that the orbital separation of an AM
CVn type systems increases as a result of mass transfer. We have described the
observational properties and models to explain the observations in Section 1.4.
Here we concentrate on the dynamical properties of the binary and how our orbit
averaged equations (OAE) predict the evolution of these systems. The mass-radius
relationship for old, cold white dwarf donors is given by Verbunt & Rappaport
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FIGURE 4.4. Evolution of typical AM CVn systems under simplified conditions: AM
CVn (left panel) and RXJ0806 (right panel). Notice the relatively rapid rate of evolution
for RXJ0806, which in its initial state is marginally unstable (ζ2−ζL < 0), but evolves to
a state of stability (ζ2 − ζL > 0) eventually. The overall mass transfer rate for RXJ0806
rises to at least 3 orders of magnitude over AM CVn. Note that the initial periods for
the two systems are ∼ 350 s (RXJ0806) and ∼ 1120 s (AM CVn) resulting in a much
higher driving rate in the former system.
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(1988)

Ri = 0.01125
[( Mi

Mch

)−2/3

−
( Mi

Mch

)2/3]1/2[
1 + 3.5

(Mi

Mp

)−2/3

+
(Mi

Mp

)−1]−2/3

R¯

(4.11)

where Mch = 1.44M¯ and Mp = 0.00057M¯. This relation has the advantage that
it can be used over the entire range of relevant white dwarf masses: 0 < Mi <
1.44M¯. In the range where Mi >> Mp and Mi < Mch, Ri ∝ M

−1/3
i as is expected

for white dwarfs. We plot the mass-radius relation for a white dwarf in Fig. 4.5.
Using Eq. 2.6 and Ri ∝ M

−1/3
i , the orbital period at the point of initial contact

can be calculated be demanding R2 = RL2 which yields

P ≈ 2π
[0.014

0.462

( 1

Mch

)−1/3]3/2(R3
¯

G

)1/2 1

M2

= 63.39
(M¯

M2

)
seconds (4.12)
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FIGURE 4.5. The Nauenberg Mass-Radius Relationship (black curve). The red curve
represents the standard polytropic relationship R2 ∝ M

−1/3
2 .

This implies that for a donor of mass 0.1M¯, the period at which contact occurs
is approximately 634 seconds, which is of the order of the shortest periods in Table
1.1. In general, the period of contact also depends on the total mass and the mass
ratio q – we have used simplified equations for R2 and RL to derive Eq. 4.12. We are
now in a position to explore the evolution of a typical AM CVn system. We choose
a couple of systems with typical values of the known AM CVn systems: RXJ0806
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(M1 = 0.4M¯, M2 = 0.12M¯) and AM CVn itself (M1 = 0.5M¯, M2 = 0.033M¯)
for illustrative purposes. Note that RXJ0806 is ‘peculiar’ in that the orbital period
of this object appears to be decreasing. We shall explore some possibilities as to
why this might be the case in the next chapter. Here, for the sake of simplicity, we
ignore complicating physical mechanisms like tides, and instead assume that the
donor is completely synchronized with the orbit, and the accretor is completely
decoupled. This is close to the ‘standard’ treatment of binary evolution, and serves
as one extreme limit in our calculations – the limit in which the accretor essentially
acts as an angular momentum sink and returns none of the angular momentum it
gains from the orbit via the accretion stream or the inner edge of the disk.

In Fig. 4.4, we have plotted several of the parameters like the separation a,
mass ratio q and the mass transfer rate Ṁ2 in units of solar masses per year.
We have also plotted the parameter ζ2 − ζL (Section 2.3) which indicates whether
the system undergoes stable or unstable mass transfer. Initially, as both systems
evolve towards contact, the separation decreases and keeps decreasing for a short
duration (∼ 1000 yr) even after contact is established. After this, as is expected
for AM CVn type systems, the separation increases monotonically. We notice the
relatively slow rate of evolution of AM CVn as compared to RXJ0806. The mass of
the donor for AM CVn in much smaller as compared to RXJ0806 and so the former
gets into contact at a much higher separation than does the latter. As a result the
driving rate for AM CVn is much lower than RXJ0806. Since we have excluded the
effects of tides for simplicity, the GWR timescale is the only relevant timescale,
especially for AM CVn. In the second panel we have plotted ζ2 − ζL, which is
positive for AM CVn indicating stability, whilst for RXJ0806, it starts negative
(indicating unstable mass transfer) and becomes positive after about 20000 yrs of
evolution. The higher mass transfer rate, and the resulting high rate of change of
the mass ratio q, for RXJ0806 is a direct consequence of the fact that the driving
rate is much higher in this system and that it begins mass transfer in the unstable
state. Thus, RXJ0806 (q ∼ 0.3), considered to be an AM CVn ‘progenitor’ system
evolves at a much higher rate than AM CVn (q ∼ 0.066).

In the next chapter we shall study DWD systems with a wide variety of masses
and mass ratio’s, undergoing mass transfer along with tidal effects. The above
discussion illustrates that, in general, the more massive the donor, the higher the
driving rate and the subsequent mass transfer rate and the overall evolution rate of
the system. The presence of tides introduces another timescale (tidal) into the sys-
tem evolution equations, which leads to interesting phenomena like tidally induced
oscillation cycles.

4.3.2 Cataclysmic Variables
Cataclysmic Variables (CVs) are a class of mass transferring binary stars in which
the main sequence donor fills its Roche lobe and transfers mass to a white dwarf
accretor. The orbit averaged equations derived above can be used to study the
evolution of such objects. The mass-radius relationship for main sequence stars
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can be written as

R2

R¯
=

M2

M¯
(4.13)

i.e., R2 ∝ M2: the more massive star has the bigger radius and fills up its Roche
lobe first. The Roche lobe radius is given by Eq. 2.7 as before. Following the
analysis in Section 2.3, in the case of CVs we have

(Ṁ2

M2

)
eq

=
J̇sys/Jorb

4/3− ζc − q

One can readily show that for CVs, M2/M¯ ∼ 0.11 Phr. Phr denotes the period
at contact in hours. Since the mass-radius relationship is linear for main-sequence
stars, we expect that the donor will shrink as a result of mass transfer. As a result,
the binary separation a also decreases as the system loses angular momentum.
Assuming that the loss of angular momentum is due to GWR, given by Eq. 2.5,
one can also show (King, 1988)

Ṁ2 ' 10−10
(Ph

2

)−3/2

M¯ yr−1 (4.14)

For orbital periods above 3 hrs., the mass transfer rate given by Eq. 4.14 is much
lower than what the observations suggest, but below about 2 hrs., the mass transfer
rate is consistent with Eq. 4.14. Thus for P > 3 hrs., GWR is not the dominant
mechanism which drives the mass transfer. It is suggested that this mechanism is
magnetic braking (section 2.1.4), in which case (King, 1988)

Ṁ2 ' 6 × 10−10
(Ph

3

)5/3

M¯ yr−1 (4.15)

In either case, there exists a relationship between the driving mechanism, the cor-
responding mass transfer rate and the period of the binary. Unfortunately, observa-
tions imply a much wider spread in the inferred mass transfer rates than the above
equations suggest. Several explanations have been proposed (see Patterson (1984)
for an entertaining overview of theoretical and observational aspects of CVs), and
we shall consider one such possibility in section 7.1 in Part II of this work.

4.3.3 Contact Binaries
Contact binary systems involve components that are both filling up their Roche
lobes simultaneously. The simplest case that one can expect this to occur is when
the mass ratio q = 1, i.e., both components have equal mass and hence the same
radii and Roche volumes. However, in nature, of the systems for which the mass
ratio can be determined with any reasonable accuracy, contact binaries with mass
ratios different from unity have been observed commonly. WUMa type contact
binaries are some of the most common of contact binaries. These objects contain
stars with convective envelops – usually O to K spectral type. The main theoretical
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difficulty in understanding these systems is the near impossibility to construct
structurally stable configurations with components in physical contact, sharing a
common convective envelope (Webbink, 2003). We do not attempt here to address
this problem, but instead use our binary evolution equations to obtain insight into
the dynamical properties of contact binaries. This analysis is useful in interpreting
results from more involved 3-D hydrodynamic simulations of contact binaries. From
Section 2.5 we know that for a n = 3/2 polytrope, a contact binary with q < 0.2 is
tidally unstable, whilst for a n = 1/2 polytrope, contact binaries with q < 0.4 are
tidally unstable. We also realize that when the mass ratio is different from unity,
the components can remain in contact with their respective Roche lobes only if
they have different entropies (or different polytropic constants Ki).

We first write an effective mass transfer rate as:

Ṁ2eff
= Ṁ2 − Ṁ1 ≡ −Ṁ1eff

(4.16)

The labels on the components “2” and “1” are arbitrary as long as the mass ratio,
q = M2/M1, is exactly 1. However as soon as q deviates from one (for whatever
reason) we shall adopt the convention that M2 is the donor and M1 is the accretor
(irrespective of which one of the two components is more massive).

The instantaneous mass transfer rates in Eq. 4.16 are given as

Ṁi = −Ṁ0

(Ri −RLi

Ri

)3

(4.17)

with ‘i’ standing for each of the components respectively. Here RLi
and Ri stand

for the Roche lobe radii and the stellar radii of the components. As before (Section
2.2), ζi and ζLi

define the rate of change of the radii of the two components as a
result of mass transfer. The rate at which the binary separation a changes is given
by

ȧ

a
=

2J̇

J
− 2Ṁ2eff

M2

(1− ζc − q), (4.18)

where ζc represents the consequential angular momentum losses (Eq. 2.32) and
2J̇/J includes both, the GWR and tidal terms. Also, the Roche lobe radii of the
stars (given by 2.6) evolve as

ṘL1

RL1

=
1

3

Ṁ1eff

M1

+
ȧ

a
=

2J̇

J
− Ṁ2eff

M2

(1− ζc − 5

6
q) (4.19)

ṘL2

RL2

=
1

3

Ṁ2eff

M2

+
ȧ

a
=

2J̇

J
− Ṁ2eff

M2

(
5

6
− ζc − q) (4.20)

In the above, note that the equations are symmetric, i.e., if we interchange label 1
and 2, we recover the original equations. This should indeed be the case, because
as we have mentioned before, the labels ‘1’ and ‘2’ are assigned arbitrarily.

Once the mass-radius relationship is defined, we can numerically integrate the
above equations and obtain the behavior of contact systems as a function of time.
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We first consider DWD contact binaries and then consider main sequence contact
binaries, for cases when the mass ratio is equal to or very close to unity. Due
to the inherent symmetry of such configurations, we can then assume that the
mass transferred from one component to the other has the same specific angular
momentum as from the other component, and that whatever angular momentum
is carried by the mass is returned to the orbit via tides. Thus, we simply set ζc and
the tidal terms to zero. In principle, we can also follow systems with q different from
1 by explicitly estimating the specific angular momentum of each stream, applying
the different tidal timescales and so on. However, these systems will have different
polytropic constants, and we cannot incorporate the effect of mixing material with
different entropies in the present formulation. We will not pursue these type of
systems here, but it is certainly possible to generalize our formulation to unequal
mass contact binary systems.

DWD Contact Binary System
In this case, we can use either the Nauenberg mass radius relation (Eq. 4.11) or

a simpler form of a n = 3/2 polytrope.

Ki = 0.42422GM
1/3
i Ri (4.21)

i.e., essentially, Ri ∝ M
−1/3
i . In the numerical integration we use the Nauenberg

form, but for our analysis we use the polytropic form on account of its simplicity.
Thus,

Ṙi

Ri

= −1

3

Ṁieff

Mi

and so the mass transfer rate (or the depth of contact) itself evolves as,

d

dt

(Ṁ1eff

Ṁ0

)1/3

∝ Ṙ1

R1

− ṘL1

RL1

= −2J̇

J
+

2Ṁ2eff

M2

(1− 2

3
q) (4.22)

d

dt

(Ṁ2eff

Ṁ0

)1/3

∝ Ṙ2

R2

− ṘL2

RL2

= −2J̇

J
+

2Ṁ2eff

M2

(
2

3
− q) (4.23)

When q = 1 exactly, then from Eq. 4.16 we see that Ṁ2eff
= 0 and so from Eq. 4.18

we see that the binary shrinks at twice the rate of GWR. Also, the mass transfer
rate increases at the driving rate as well. The binary thus merges, maintaining a
mass ratio of unity. On the other hand, if q is slightly less than unity, say q = 0.999,
the ‘accretor’ loses contact with its Roche lobe and the ‘donor’ mass transfer rate
increases as the system evolves. Since q > qstable, the mass transfer is extremely
unstable, but returns to stability once q < qstable.

In Fig. 4.6, we plot two q = 1 contact binary systems and a ‘near contact binary’
(q ∼ 1 = 0.999) and these plots confirm our analysis above. The q=1 binary evolves
toward smaller separations due to the loss of angular momentum by GWR and
eventually merges in a finite time. The q=0.999 binary evolves rapidly to a stable
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configuration (q < qstable) after an extremely unstable mass transfer phase. Note
that, since our OAE do not account for tidal disruption and here we have ignored
the effects of super-Eddington accretion, the q=0.999 binary survives as a stable
binary. Strictly speaking, this outcome is unrealistic, since for such an extreme
mass ratio tidal disruption of the accretor is almost guaranteed.

Main Sequence Contact Binary System
In this case, we assume simply that Mi ∝ Ri and so

Ṁieff

Mi

=
Ṙi

Ri

(4.24)

In this case, the radius of the star increases with an increase in mass. Thus we get

d

dt

(Ṁ1eff

Ṁ0

)1/3

∝ Ṙ1

R1

− ṘL1

RL1

= −2J̇

J
+

2Ṁ2eff

M2

(1− 4

3
q) (4.25)

d

dt

(Ṁ2eff

Ṁ0

)1/3

∝ Ṙ2

R2

− ṘL2

RL2

= −2J̇

J
+

2Ṁ2eff

M2

(
4

3
− q) (4.26)

When q = 1 exactly, the effective mass transfer rate Ṁ2eff
= 0, and so the system

evolves at the driving rate, which in this case is given by magnetic breaking (Eq.
2.11). The binary eventually merges with ever increasing Ṁi’s as the depth of
contact increases with decreasing separation. When q & 1, the donor M2 transfers
mass to the accretor M1 until q = 1 exactly, after which it evolves as above. Since
q < qstable (for q & 1) this happens at the steady, equilibrium mass transfer rate 1.

In fig. 4.7, we have plotted the evolution of 2 systems, one with q = 1 and
the other with q = 1.1. As with the DWD contact system, the q=1 binary slowly
plunges into catastrophic merger as a result on an inspiral due to the loss of orbital
angular momentum via GWR. The behavior of the q = 1.1 system is different from
the DWD case of q = 0.999. In case of main sequence stars, the more massive star
fills up its Roche lobe first, and thus transfers mass to the lower mass star. As a
result, the mass ratio always tends towards unity. But as and when the mass ratio
q =1, the binary follows the evolutionary trajectory towards merger as described in
the case above. Thus, by design, double main sequence stars evolve towards being
contact systems unless one of the stars evolves much faster than the other, and
leaves the main sequence before the mass transfer can drive the system towards a
mass ratio of 1. On the other hand, DWD contact binaries tend toward unstable
mass transfer for mass ratios of the order of 1.

1The value of qstable for main sequence donors is ∼ 4/3.
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FIGURE 4.6. The evolution of DWD contact binary. System parameters for a DWD
contact binary system as a function of time for q = 1.0 and total mass M = 0.4M¯,
and for q = 0.999 and M = 0.4002M¯: the mass ratio q (blue), the separation a, the
Roche lobe radii: RL1 (magenta) and RL2 (green). In the q = 1 case, the Roche lobe
radii overlap exactly.
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FIGURE 4.7. The evolution of main sequence contact binary. System parameters as a
function of time for q = 1.0 and total mass M = 1.0M¯, and for q = 1.1 & M = 0.955M¯
for a binary with main sequence components: the mass ratio q (blue), the separation a,
the Roche lobe radii: RL1 (magenta) and RL2 (green). Once q = 1, the Roche lobe radii
overlap exactly.
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5. Applications

Having established the basic binary evolution equations in Chapter 2 and seen some
simple applications of them in Chapters 3 and 4, we are now ready to investigate in
detail the behavior of the binary when all physical mechanisms described in Section
2.1 are in play at the same time. We concentrate on DWD systems in particular,
but since our evolution equations are quite general, some of the effects we are
studying in the following sections are applicable even for other types of binaries.
We begin first by investigating an important consequence of the tidal coupling
of the spin and orbit – that of possible tidally induced oscillations. Following
this, we evolve a grid of binaries with different initial masses and describe the
expected behavior of the systems in the M2 − M1 parameter space. Following
this, we compare our OAE based results to full 3-D hydro-simulation results. This
study is useful in interpreting the complicated and often intractable behavior of
the hydro-simulations. Finally, we investigate the impact of some effects like DI
accretion, unstable mass transfer and tidally induced oscillations on the GWR
signature of typical AM CVn systems with respect to GWR detectors like LISA.

Before we proceed we note that the kinds of system we are considering in the fol-
lowing are old systems which follow the cold white dwarf mass-radius relationship
(Eq. 4.11). As DWDs emerge from common envelope evolution, it is reasonable to
assume that some of the systems are young. For these young systems, it is possible
that the donor is surrounded by a massive hydrogen envelope which can survive
for long periods supported by nuclear burning (D’Antona et al., 2006). In such a
situation, the radial variation rate ν2 is non-zero, and in fact can reduce the net
driving rate νL − ν2, leading to a lower value for the equilibrium mass transfer
(see Eq. 2.37). Also, it is likely that ζ2 > 1 as long the non-degenerate envelope is
present. This clearly affects the stability and evolution at the onset of mass transfer
and can lead to shrinking orbits even if the mass transfer is stable with M̈2 ≈ 0.

Unless the system is very young, the depth of contact required to sustain the
equilibrium rate exceeds the scale height of the envelope. Consequently, in our
subsequent analysis, we set ν2 = 0 and use the zero-temperature mass-radius rela-
tionship. We note that for the study of the onset of mass transfer in young, finite
entropy systems like the ones addressed by D’Antona et al. (2006), a more realistic
model for the donor is required.

5.1 Tidally Induced Cycles
In the usual treatment of binary evolution, it is implicitly assumed that the donor
star is synchronized with the orbit. As far as the accretor is concerned, in the case
of disk accretion, the amount of angular momentum advected at the inner edge of
the disk is usually quite small, and so the accretor spin-up is relatively minor and
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FIGURE 5.1. The Evolution of the Roche Lobe Radius and Radius of Donor. The ratio
of the radius of the donor and the Roche lobe radius for q = 0.2 (dotted curve) and q =
0.28 (solid curve) for τs1 = 5000 yrs. Whenever R2 < RL2 , the system detaches and the
mass transfer rate goes to zero.

can be neglected in most cases. But in case of DWD binaries, even through disk
accretion the accretor can be spun up significantly. This spin-up is much enhanced
in the case of DI accretion as we shall see presently. We have seen in the previous
chapter that the tendency of an AM CVn system is to evolve to higher separations
(lower orbital frequencies) once mass transfer is well underway. Thus it is possible
that the orbit and the accretor are significantly ‘out of sync’ and consequently,
the tidal terms in Eq. 2.17 are no longer negligible. On the other hand, the rate
of change of the donor radius depends only on the mass of the donor (Eq. 2.23).
Thus using Eq. 2.19 & Eq. 2.23, we have

ṘL

RL

− Ṙ2

R2

=
2J̇sys

Jorb

− 2
J̇1,tid + J̇2,tid

Jorb

− 2Ṁ2

M2

[qa − ζrL
+ ζ2

2
− q]

=
2J̇sys

Jorb

− 2
J̇1,tid + J̇2,tid

Jorb

− 2Ṁ2

M2

[
ζ2 − ζL

2
] (5.1)
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FIGURE 5.2. The orbital separation, normalized to the initial separation, as a function
of time for q = 0.2 (dotted curve) and q = 0.28 (solid curve) for τs1 = 5000 yrs.

The right side of Eq. 5.1 tells us the evolutionary trend for a given binary system.

ṘL

RL

− Ṙ2

R2

= 0 ⇒ Stable Mass transfer

< 0 ⇒ Unstable Mass transfer

> 0 ⇒ Detachment

Usually the tidal terms are negligibly small, and consequently the only timescale
in the equation is that of the driving – in our case the gravitational radiation rate.
The mass transfer rate will tend to adjust itself to this rate and equilibrium mass
transfer holds as long as q < qstable. When q > qstable, the radius of the donor
increases at a faster rate than its Roche lobe radius and unstable mass transfer
results. Now, when the tidal terms cannot be ignored, the behavior of the system is
not easily predictable because we have a new timescale involved which may be very
different from the GWR timescale. Moreover, the tidal timescale itself evolves as
per Eq. 2.10. Considering Eq. 5.1 again, it is possible that the sum of the driving
terms (GWR + tidal terms) can indeed be positive if the tidal timescale is of
the same order as the mass transfer timescale and sufficient asynchronism has
been built up in the accretor. Consequently, the Roche lobe radius increases at
a faster rate than the donor radius and this results in detachment. To illustrate
the above situation, we consider two hypothetical DWD systems, one with a mass
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ratio q = 0.2 and the other with q = 0.28. The reason for this choice is that the
former has a mass ratio of q < qstable and hence is expected to undergo stable
mass transfer whilst the latter is expected to have unstable mass transfer at first
contact. In Fig. 5.1 we plot the ratio of the donor radius and the Roche lobe radius,
R2/RL2 as a function of time for both cases. The corresponding evolution of the
orbital separation is shown in Fig. 5.2. Also in Fig. 5.3 we plot the spin frequencies
of the accretor and donor, normalized to the orbital frequency as a function of
time. Notice first that for the unstable case, the accretor is violently spun up on
relatively short timescales (a few hundred years) for the unstable case, whilst the
spin up is not very significant for the q = 0.2 case. This is a consequence of the
mass transfer rate, which as mentioned above is high for the unstable case. Notice
also that in both cases, the donor spin frequency is not significantly different from
the orbital frequency, and for the moment we neglect the asynchronism between
the donor and the orbit. From our discussion in Section 2.1.3, we realize that the
tidal synchronization timescale for WDs is not well known, and so we treat it as
a free parameter and try different values to study the consequences. In this case,
we choose τs0 in Eq. 2.10 to be such that that initial timescales are τs1 = 5000 yrs
and τs2 = 10 yrs, but let these evolve as per Eq. 2.10.

Once the accretor has spun up sufficiently, the tidal torque between the accretor
and the orbit leads to the return of angular momentum to the orbit. As a conse-
quence, the separation and the Roche lobe increase at an enhanced rate, even as
the mass transfer rate begins to drop due to the decreasing driving rate (GWR is
proportional to a−4). As we have discussed above this leads to detachment, and
the ratio R2/RL2 < 1 (Fig. 5.1). The accretor spin down continues till such time
that the net driving rate becomes negative again, i.e. the GWR rate dominates.
The orbit then begins shrinking and the donor approaches contact again with
the components approximately synchronized with the orbit. If the new mass ratio
q > qstable, the above mentioned phenomenon can recur – unstable mass transfer,
accretor spin up, tidal torques returning excess accretor spin to the orbit and ulti-
mately detachment. In fact, as can be seen from Fig. 5.1, this cycle can recur several
times until finally the binary reaches a state where q < qstable and accretor spin up
becomes inefficient on mass transfer. The magnitude of the tidal term in Eq. 5.1,
depends on the amount of asynchronism and the tidal timescale. The asynchronism
as we have seen above depends on how unstable the binary mass transfer is, i.e. it
depends on q−qstable. The more unstable the mass transfer, the higher the accretor
spin up and for a given tidal timescale, the more violent the oscillations. In Fig. 5.4
we investigate the effect of different synchronization timescales on the evolution
of the binary. In general we observe that the higher τs1 is, the more violent the
oscillations and so also the number of oscillations. This is due to the fact that a
longer tidal timescale allows for a higher spin up of the accretor. As the timescale
gets shorter, the intensity of the oscillations decreases, and for the shortest tidal
timescales, the system is synonymous to a disk system, where tides are extremely
efficient in returning most of the spin angular momentum back to the orbit. This
efficient coupling does not allow for any substantial spin up of the accretor, and so
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FIGURE 5.3. The evolution of the spin frequencies. The spin frequencies of the accretor
(top panel) and donor (bottom) for q = 0.28 (solid curve) and q = 0.2 (dotted curve) for
τs1 = 5000 yrs. The amount of spin up of the accretor decreases as the system evolves
towards stability. The donor remains approximately synchronous throughout for both
cases.

we do not observe oscillations in this limit. Thus, in the extreme cases – for short
tidal timescales the system behaves like a disk system and for long timescales the
spin and orbit are effectively decoupled. It is also interesting that asymptotically,
all systems seem to converge to the same rate of evolution – the tidal effects do
not influence the long term evolution of the systems. This is expected, since the
overall angular momentum content of all these systems is the same and once the
tidal effects have petered out, the system should evolve on GWR timescales.

Tidally induced detachment has implications for ultra-compact DWD systems;
in particular RX J0806 and V407. In these systems it is observed that the orbital
period is decreasing at a rate consistent with GWR, but mass transfer is obviously
underway in these systems. This is at odds with the theoretical expectation that
the orbital period should increase. We see that it is possible for the binary to
detach, especially in the case of unstable, direct impact systems. If indeed this
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FIGURE 5.4. The orbital separation a with the tidal effects included. The orbital sep-
aration, normalized to the initial separation for a binary with q = 0.28 with the initial
tidal synchronization timescale different for each run – τs1 = 5000 yrs (Red curve), 2500
yrs (green) and 500 yrs (blue). The donors initial tidal timescale is taken to be 10 yrs in
all cases.

occurs in ‘real systems’, then this increases the probability of us catching one of
these systems in a phase where it is in contact and yet the orbit is shrinking. In
fact, since the systems also spend quite a significant fraction of time out-of-contact,
there should be many more systems with short periods than can be observed. Of
the observable ones, we expect that some of them will have Ṗ > 0 and some
to have Ṗ < 0. The system parameters like the mass of the donor, accretor and
the various angular momentum loss mechanisms are not accurately known for the
observed AM CVn systems. However, for the observed decrease in orbital period
to be attributed to tidally induced detachment, the binary parameters should be
such that q & qstable (See Fig. 5.9) and the stream must impact directly onto the
accretor’s surface and not form a disk.

In Table 5.1 we have recorded the relevant timescales as a function of the mass
ratio q and the tidal timescale τs1 of the accretor. Tosc = T1+T2+T3 is the timescale
for which the oscillations last after initial contact. T1 represents the time when the
binary is in contact but the separation is decreasing, T2 is the time when the
system is in contact and the separation is increasing, whilst T3 represents the time
for which the system is out-of-contact. Nosc represents the number of oscillations a
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TABLE 5.1. Time spent (in years) in different regimes during the oscillation phase as a
function of the mass ratio q and tidal timescale τs1 .

q τs1 Tosc T1 T2 T3 Nosc

0.28 1000 3200 1260 1000 936 1
0.28 2500 23000 4450 4125 14425 4
0.28 5000 64000 4025 11655 48320 5
0.26 1000 0 985 ∀t > T1 0 0
0.26 2500 5400 1750 810 1840 1
0.26 5000 15200 1600 4100 9510 2
0.24 1000 0 710 ∀t > T1 0 0
0.24 2500 3600 1130 1820 650 1
0.24 5000 5500 1110 2300 2100 1

system encounters during its evolution. We see that for a given mass ratio, a system
tends to spend an increasing amount of time out of contact with increasing tidal
timescales. Moreover, the more unstable the mass ratio, the larger the number of
oscillations and the timescale for which the oscillations last.

A binary can spend a considerable amount of time in which tides are effective,
especially in the case of unstable mass transfer. In fact, since the systems also
spend quite a significant fraction of time out-of-contact, there should be many
more systems with short periods than can be observed. However, even in the most
favorable case, a given system spends less than 30% of its time in a regime where
the system is in contact and the orbit is shrinking. Thus it is unlikely that tidally
induced oscillations are responsible for the observations of Ṗ < 0 for RX J0806 and
V407. Nevertheless, the probability that we catch a system in contact with Ṗ < 0
is enhanced significantly as compared to the case when there are no oscillations
Willems & Kalogera (2005). For example, for the q = 0.26 case the system does
not undergo any oscillations and T1 ∼ 1000 yrs for τs1 = 1000 yrs.

5.2 Exploring Evolutionary Outcomes
In this section we study the long term evolution of a grid of systems in the M2−M1

parameter space. We select the initial masses of the binary components and evolve
them for 109 yrs. The aim of this study is to demarcate the regimes where the
mass transfer is either stable or unstable, super-critical or sub-critical, undergoes
DI accretion or disk accretion etc. Also in some of the high mass systems, the
accretor can gain enough material to exceed the Chandrasekhar limit and these
could be potential Type-Ia Supernova progenitors. This kind of study has been
previously undertaken by Marsh et al. (2004) but we have the following additional
aspects:

• We include the donor spin effects and the possibility of donor asynchronism.
Also, as we shall see the advective term associated with the specific angular
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momentum of the material on the donor has a significant impact on the
stability properties of DWD systems.

• We study the effects of intermediate tidal synchronization timescales for the
accretor, which leads to the interesting phenomenon of tidally induced de-
tachment as described in Section 5.1.

The only ‘free parameter’ we have in these evolutions is the tidal synchronization
timescales for the accretor and the donor. We specify arbitrary initial values for
these and let the timescales evolve (according to Eq. 2.10) along with other system
variables in a self-consistent manner.

FIGURE 5.5. The stability curves: Mass-transfer stability limits (dash-dot lines) and
super (above) and sub-Eddington (below) accretion boundaries (solid lines) with (blue)
and without (magenta) the donor terms included. The thin dashed black line divides
direct impact systems from disk accretion systems (Marsh & Steeghs, 2002). Because the
transition from direct impact to disk accretion makes mass transfer more stable, both
the stability limits and Eddington accretion rate boundaries follow closely the locus of
that transition toward higher donor masses (see text for details).

Before presenting the results of the grid, it is useful to study the expected behavior
of the systems, focussing on the stability limits and whether the mass transfer is

59



super-critical or not. In Fig. 5.5, we plot the locus of points corresponding to stable
and unstable mass transfer with the donor spin accounted for (blue dotted line)
and without the donor spin term (magenta dotted line). These points are obtained
numerically by setting q − qstable = 0 in Eq. 2.37 at the initial point of contact.
By design, the tidal terms are set to zero, since we assume that at the point of
contact the binary is synchronous. Also plotted are the points corresponding to
the transition between super-critical and sub-critical accretion with the donor spin
affects included (blue solid line) and without the donor spin affects accounted for
(magenta solid line). These points are obtained by setting Ṁ2,eq = ṀEdd from Eqs.
2.37 and 4.3. Firstly, we notice that for low accretor masses, all the stable systems
are sub-Eddington in both cases. Around an accretor mass of 0.3M¯ (0.55M¯ if
donor terms are neglected) till about 0.5M¯ (0.65M¯ if donor terms are neglected),
the stability curves and the curves for super/sub critical accretion overlap. From
then on, even some of the stable systems are super-critical and the super/sub
critical curve begins to flatten off around a donor mass of 0.215M¯ (0.165M¯ if
donor terms are neglected). This is because for such high donor masses, Ṁ2,eq >
ṀEdd. It should be noted that these systems are all DI systems mainly because of
the relatively low accretor masses which imply larger accretor radii. As we move
toward higher accretor masses (and thus lower accretor radii), the systems transit
from DI systems to accretion disk systems. This has the effect of increasing qstable,
which is a stabilizing effect since the specific angular momentum lost at the inner
edge of the disk is given by

√
GM1R1 as against

√
GM1Rh (R1 < Rh). As a result,

the equilibrium mass transfer rate for the disk systems drops and this is enough
to let Ṁ2,eq < ṀEdd around about M1 ∼ 1.0M¯ (M1 ∼ 0.9M¯ if donor terms are
neglected). From there on, the stability curves and the super/sub critical curves
overlap the DI-disk transition curve but only for a short region in the parameter
space. Eventually, Ṁ2,eq > ṀEdd again, even for disk systems with a donor mass
of M2 ≥ 0.24M¯ (M2 ≥ 0.225M¯ if donor terms are neglected).

We also note that the stability curves with the donor spin included are much
higher than the stability curves with the donor spin ignored. Thus many more sys-
tems are potentially stable when the donor spin contributes to angular momentum
redistribution during the evolutions.

To demonstrate more clearly the effect the DI to disk transition has on super
or sub-Eddington accretion, we plot on Fig. 5.6 the equilibrium mass transfer rate
(Eq. 2.37) and the Eddington mass transfer rate (Eq. 4.3) for a fixed donor mass M2

as a function of the accretor mass M1, at the point of contact. Again, the tidal terms
are effectively zero, since the components are assumed synchronized at the point
of contact. We plot the mass transfer rate for different values of the donor mass:
0.21 M¯, 0.23 M¯ and 0.25 M¯. Notice that for the first case, the mass transfer
rate is super-Eddington until M1 ∼ 0.75 M¯, after which it is sub-Eddington. For
M2 = 0.23 M¯, the mass transfer rate is appreciably super-Eddington, but as the
accretor mass increases, at some point (around M1 ∼ 1.05 M¯), the systems transit

60



FIGURE 5.6. Mass transfer rates compared to the Eddington rates. Comparison of the
initial equilibrium mass transfer rate (in M¯/yr) with the initial Eddington rate for
different donor masses M2 = 0.21 M¯ (+), 0.23 M¯ (∗) and 0.25 M¯ (♦). The solid line
denotes the Eddington rate for the M2 = 0.21 case, the Eddington rate for the other
donor masses almost exactly overlaps this curve.

from DI accretion to disk accretion and the equilibrium mass transfer rate abruptly
decreases in accordance with the enhanced stability corresponding to disk accretion
(Sections 2.2 & 5.2). Thus, for M2 = 0.23 M¯ systems with M1 > 1.05 M¯ are
expected to accrete sub-critically. On the other hand, for systems with a donor
mass M2 = 0.25 M¯, we notice that the mass transfer rate is much higher than
for the other two cases we have considered here. In fact, even when the systems
transit from being DI systems to disk accretion systems around a accretor mass of
1.1 M¯, the mass transfer rate is still super-critical! Comparing this with Fig. 5.5,
we notice that indeed, systems with donor masses in excess of ∼ 0.25 M¯ accrete
at super-critical rates.

We are now in a position to interpret the results of the full evolutions across the
grid. We emphasize that the above analysis is carried out at the initial configura-
tion of the systems and that the tidal effects are effectively ignored since the binary
is assumed synchronous at the point of initial contact. Thus we expect that only
in the case where the tidal timescale of the accretor is extremely long, and hence
the tidal spin-orbit coupling is highly inefficient, that the evolutions should match
our naive expectations depicted in Fig. 5.5. When the accretor’s tidal timescale is
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such that the tidal coupling is efficient, one would expect the systems to behave
differently.

In order to compare our results to that of Marsh et al. (2004), we first evolve the
systems in the grid by setting the same initial conditions as theirs, i.e. we ignore the
advective and tidal terms associated with the donor. We set the tidal timescales to
1015 yrs (top panel) and 10 yrs (bottom panel) and evolve the systems for 109 yrs.
As expected, we see that for the longer timescale, the tidal effects are negligible
and the evolutions faithfully follow the limits shown in Fig. 5.5. Note especially,
the slight incursion that occurs around M1 ∼ 0.85M¯ where the super-critical
systems encroach into the stable domain. This is also observed in Marsh et al.
(2004), and as we can infer from Fig. 5.5, this is a result of the transition of the DI
systems to disk systems. Specifically, as mentioned above, the systems with donor
mass M2 > 0.165M¯ tend to be super-critical for DI systems. But once the accretor
mass exceeds 0.9M¯, the systems transit to disk systems and consequently the mass
transfer rates are lower due to the relatively enhanced stability of the disk systems.
From there on the stability and critical curves follow the curve corresponding to
the DI-disk transition until a donor mass of 0.24M¯ from where on all systems
are super-critical. We have also shown the systems for which the accretor mass
exceeds the Chandrasekhar limit during the evolution for 109 yrs. The bottom
panel shows the systems with a tidal synchronization time of 10 yrs. Since the tides
are extremely efficient in this case, this is analogous to what one would expect in
the standard accretion disk case with practically no angular momentum lost to
the accretor spin (j1 ∼ 0). The efficient return of the orbital angular momentum
from the spin results in the effective driving rate to be much lower than that due
to pure GWR. Consequently, the mass transfer rate is much lower and as can be
seen in Fig. 5.7, is sub-critical even for otherwise ‘unstable’ systems. However for
donor masses M2 > 0.28M¯ again, the mass transfer rates exceed the Eddington
rate irrespective of the efficient coupling or DI-disk transitions.

In Fig. 5.8 we present the results with the effects of the donor spins included
in the evolution. We see immediately that for the case with τs1 = 1015 yrs, the
systems follow the stability curve corresponding to the one including the donor
spins in Fig. 5.5 (the blue curves). Thus, the domain in which we have stable
mass transfer and sub-Eddington accretion is greatly enhanced when we include
the donor spin effects. As expected from our discussion above, the transition from
super to sub-critical accretion overlaps the stability boundary until M2 ≈ 0.21 M¯
after which it follows the stability curve defined by the DI to disk transition. Above
a donor mass of 0.25 M¯ though, all systems accrete super-critically.

Similar to the case considered above, when the tidal synchronization timescale
is short, the efficient return of angular momentum to the orbit results in a net re-
duction in the driving. Consequently, the region of sub-critical accretion is greatly
enhanced. However, above a donor mass of ∼ 0.28M¯, the accretion rate is always
above the Eddington limit. Note that at very high accretor masses (∼ 1.3M¯),
the curve that defines the boundary between sub and super critical accretion dips
towards lower donor masses. This is because the Eddington rate for such high ac-
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FIGURE 5.7. Behavior of systems across the parameter space – I. Evolution for 109 yrs
for an initial τs1 of 1015 yrs (top panel) and for τs1 of 10 yrs (bottom panel) with the
affects of the donor spin ignored. This synchronization time is for the initial configura-
tion and evolves according to Eq. (2.10). The red symbols represent Super-Eddington
accretion, the green are Sub-Eddington, the pluses (+) and hollow diamonds (♦) rep-
resent systems with total mass below and above the Chandrasekhar limit respectively.
Among the latter asterisks over diamonds indicate systems in which the accretor does
not reach the Chandrasekhar limit in 109 yr. The magenta line is the stability boundary
without these effects. The blue dash-dot line is the initial stability boundary with all
donor effects included shown here for comparison.

63



FIGURE 5.8. Behavior of systems across the parameter space – II. Evolution for 109

yrs for an initial τs1 of 1015 yrs (top panel) and for τs1 of 10 yrs (bottom panel). This
synchronization time is for the initial configuration and evolves according to Eq. (2.10).
τs2 is calculated based on whatever τs0 is required to obtain the desired value of τs1 . The
red symbols represent Super-Eddington accretion, the green are Sub-Eddington, the
pluses (+) and hollow diamonds (♦) represent systems with total mass below and above
the Chandrasekhar limit respectively. Among the latter asterisks over diamonds indicate
systems in which the accretor does not reach the Chandrasekhar limit in 109 yr. The
blue dash-dot line is the initial stability boundary with all donor effects included. The
magenta line is the stability boundary without these effects, shown here for comparison.
Note the transition in the Super and Sub-Eddington accretion rate around an M2 of 0.2
M¯ to the latter stability curve.
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cretor masses is relatively smaller, and so the threshold for super critical accretion
is relatively lower at accretor masses close to the Chandrasekhar limit.

In Fig. 5.9 we show the locus of systems that undergo oscillations in their sepa-
ration and orbital period. As is described in Section 5.1, when a system first gets
into contact and if the mass transfer timescale is much shorter than the tidal syn-
chronization timescale of the accretor, the accretor can spin up appreciably. This
is especially so in the case of unstable mass transfer. Eventually, as the separation
increases, the mass transfer rate begins to fall and τM2 increases rapidly (See Fig.
4.1). τs1 does not evolve as rapidly as the mass transfer rate and eventually, the
synchronization timescale (τs1) becomes of the order of (or shorter than) the mass
transfer timescale (τM2). In this situation, the angular momentum stored in the
spin of the accretor is efficiently returned to the orbit. If enough asynchronism has
been built up in the accretor during the accretion phase, the additional injection
of spin angular momentum to the orbit can cause the system to detach. Thus the
appropriate matching of timescales is critical for tidally induced detachment to
operate, and as a result the oscillations are observed only in a particular domain
in the M2−M1 parameter space. Since the tidal synchronization timescale is a ‘free
parameter’ not determined from first principles, this domain is also a function of
the choice of the tidal timescale. We choose, rather arbitrarily, tidal timescales of
500 yrs, 2500 yrs and 5000 yrs for our study. From Fig. 5.9 we notice firstly that
the systems that do undergo oscillations are less stable or unstable systems. Al-
most all the systems lie above the magenta stability curve (See Fig. 5.5 and related
discussion) and are almost evenly distributed on either side of the blue stability
curve. We also observe that systems with high donor mass (M2 > 0.35M¯) do not
undergo oscillations. This is because the mass transfer rates are high in this domain
and thus the tidal timescales (considered here) are much higher as compared to
the mass transfer timescales. Consequently, the radius of the donor keeps up with
the increase in the Roche lobe radius throughout the evolution, and the systems
stay in contact. On the other hand, systems to the bottom right, the ones with
low donor mass and high accretor mass are stable systems and are more likely to
be disc systems. Thus the accretor is not spun up as much as in the case of less
stable or unstable systems and consequently these systems do not undergo any
oscillations either.

5.3 Comparison with Hydrodynamic

Simulations
A class of equilibrium configurations result from a relationship between the pres-
sure (P ) and the density (ρ) given by

P = Kρn+1/n, (5.2)

is called the “Polytropic” equation of state which is widely used in both, the
analytic and numerical studies of stellar models. K is called the polytropic constant
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FIGURE 5.9. Tidal effects across the parameter space. Top Panel: Systems which un-
dergo ‘oscillations’ at least once during their evolution for τs1 = 500 yrs (pluses, +), 2500
yrs (crosses, ×) and 5000 yrs (hollow diamonds, ♦). As before, red indicates super-Ed-
dington transfer during any part of the evolution, whereas green indicates subcritical
transfer throughout the 109 yr evolution. The magenta and blue lines are the stability
limits as in previous figures. τs2 is held at a constant 10 yrs initially for all the points.
Bottom panel: The same cases, but with τs2 = 100 yrs.
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TABLE 5.2. Parameter values in code and real units for hydrocode model Q0.5

System Parameter Initial Initial
Parameter SCF value “real” value

q . . . . . . . . . . . . . . . . 0.500 0.500
M1 . . . . . . . . . . . . . . 3.073 × 10−3 1.0 M¯
M2 . . . . . . . . . . . . . . 6.143 ×10−3 0.5 M¯
a . . . . . . . . . . . . . . . . 0.8764 0.052 R¯
Ω . . . . . . . . . . . . . . . 0.1174 0.0655
K1 . . . . . . . . . . . . . . 0.016 3.12 ×1012

K2 . . . . . . . . . . . . . . 0.016 3.12 ×1012

and n is the polytropic index. In the case of spherical polytropes with uniform
entropy in mechanical equilibrium, one can show that (Chandrasekhar, 1939)

Ri ∝ M
(1−n)/(3−n)
i (5.3)

Motl, Tohline & Frank (2002) developed a 3-D code comprising of a Self-Consistent
Field code which generates synchronous polytropic binaries in circular orbits and a
gravitational hydrodynamics code to follow the evolution of such binaries in time.
This code was improved upon by D’Souza et al. (2006), and is currently capable of
following self-consistently the evolution of model white dwarf binaries through the
rapid phases of mass transfer, tracking mass and angular momentum with high ac-
curacy for well over 30 orbital periods. Detached, Semi-detached or contact binaries
can be generated using the self-consistent field code. These systems may be driven
by either imposing angular momentum loss from the system or by an arbitrary
rate of pseudo-thermal expansion of the donor. The resultant evolution is quite
complicated, and hence a simpler approach like our OAE helps in understanding
some of the aspects of these 3-D hydro-evolutions.

To this end, we apply the same initial conditions to our OAE as have been
used in the various runs carried out by D’Souza et al. (2006). In this work, several
models are generated and evolved under different conditions. Here, we concentrate
on the runs with q = 0.5. The initial parameters of the binary are given in Table
5.2 for ready reference. In these runs, the binary was evolved at a constant driving
rate of 1% per orbital period for 2.7 orbits (Q0.5-a, blue curve), 5.3 orbits (Q0.5-b,
green curve) and throughout the evolution (Q0.5-c, red curve) as shown in Fig.
5.10. In order to compare these runs with the results from our OAE, we apply
the same initial conditions as that imposed in D’Souza et al. (2006). We have the
tidal normalization factor (τs0 , see eq. 2.10) and the mass transfer rate scaling (m)
– such that Ṁ2 = −mṀ0f(∆) – as ‘free parameters’, which we adjust so as to
obtain as close a match to the hydro-runs as we can. In the particular run shown
in Fig. 5.10, τs0 = 0.75 and m = 35.0. This choice is not unique – indeed, we get
reasonable ‘fits’ even for other combinations of these ‘free parameters’. It should
be noted that in the numerical simulations of D’Souza et al. (2006) the minimum
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FIGURE 5.10. Comparison of the OAE numerical integrations with some of the numerical
simulations (q = 0.5 run) in D’Souza et al. (2006). Three simulations were performed
for the same initial conditions but the binary was driven by angular momentum losses
at the level of 1% per orbit for different times in order to achieve increasing depths of
contact: Q0.5-a (blue; driven initially for 2.7 orbits), Q0.5b (green; driven for the first 5.3
orbits) and Q0.5-c (red; driven throughout). The solid black curves show the accretion
rate in donor masses per period, the binary mass ratio, the separation normalized to the
initial separation, and the spin angular momenta as predicted by the OAEs, while the
colored curves show the same quantities as derived from the results of the simulations.
We arbitrarily change τsi of the donor and accretor to match the Q0.5-a run and then
predict the outcomes of the other simulations. Here, τs1 ∼ 150P and τs2 ∼ 3.5P initially.

resolvable mass transfer was on the order of ∼ 10−5M/P , which translates for
short period AM CVn binary parameters to ∼ 104ṀEdd! Also, in the case of the
hydro-runs, one observes severe distortion of the accretor and the formation of an
accretion belt around the accretor towards the end of the 3-D simulations. These
features cannot be easily incorporated in the OAEs, and so the later stages of
evolution especially in the case of Q0.5-c, cannot be properly represented in the
OAE. An added complication is that for the hydro-runs, the driving was cut off
after the systems were thought to have reached a deep enough contact. Since the
effective density levels, especially near the edge of the stars in the 3-D numerical
model differs from an ideal n = 3/2 polytrope due to the finite numerical resolution
of the code, the depth of contact achieved after a certain amount of driving for a
certain period of time is not necessarily the same for the hydro-runs and the OAE
runs. This is especially true for Q0.5-a, because it is the one which is most sensitive
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to the depth of contact at the instant the driving is cut-off. For runs Q0.5-b and
Q0.5-c, the depth achieved is deep enough to make small differences between the
hydro-runs and the OAE unimportant. The LSU group (Motl, Tohline & Frank,
2006) is working on another set of runs in which the driving is not cut off and the
systems are driven at slightly lower (and more realistic) rates. We hope that this
will eliminate another source of discrepancy between the hydro-runs and the OAE.

Despite the above mentioned shortcomings, the OAEs do reproduce reasonably
well the behavior of the binaries we have studied. One notices that the hydro-
runs have a gentler slope initially which progressively gets steeper as compared
to the OAE runs. This, we believe, is a consequence of the complicated fluid flow
around the L1 point and the distortion of the donor star. Moreover, during the
initial stages of the evolutions, the 3-D hydrodynamic simulations are subject to
numerical noise which is not the case for our numerical integrations. The relative
significance of this noise diminishes as the mass transfer rate increases during the
evolution. Also, the epicyclic motion that one encounters in the hydro-runs (see
D’Souza et al. (2006) for details) cannot be reproduced in our results, since we
assume circular orbits. Thus the behavior of the OAE is much smoother than the
numerical hydro-runs with no abrupt changes in slopes of the various parameters.

We conclude from the above discussion and Fig. 5.10, that the OAEs confirm
that: a) tidal effects play an important role in the numerical simulations of the
binary, b) direct impact accretion is an important effect and can lead to significant
spin-up of the accretor at the expense of orbital angular momentum, and c) the
OAE prediction that systems that are initially unstable can indeed survive mass
transfer seems to bear out in the hydro-runs despite the rather extreme conditions
the binaries in the hydro-runs are subjected to. Moreover, the tidal timescales that
most closely match the behavior observed in the simulations serve as a measure of
the numerical dissipation present in the simulations.

5.4 DWD GWR Sources and LISA
As mentioned in the introduction, DWD binaries and AM CVn binaries in partic-
ular are guaranteed sources for the space based gravitational wave detector LISA
(Bender, 1998). Numerous studies are being carried out to generate accurate ‘wave
templates’ for GWR sources, in order to detect and analyze these intrinsically weak
signals. The GWR strain, which is the quantity the detector measures, has two
polarizations given by

h+ =
2G2M1M2

aDc4
cos 2ωt (5.4)

h× = −2G2M1M2

aDc4
sin 2ωt (5.5)

where, D is the distance of the source from the detector. The GWR luminosity of
a binary is given by:

L =
2G4

5

(M

ac

)5

(5.6)
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FIGURE 5.11. The LISA sensitivity curve along with the known AM CVn systems for
mission time of 1 yr. The cyan curve represents a S/N of 1 and the black curve is a S/N
of 5. The arrow represents the direction of evolution of RX J0806, which will end up
near the arrowhead in 109 yr. The source is assumed to be at a distance of 300 pc, unless
the distance is known (See table 1.1). The vertical black (inefficient tidal coupling) and
red (efficient tidal coupling) dotted lines are the frequencies corresponding to the initial
masses of the donor, above which DWD systems are likely to undergo super-Eddington
accretion.

where, M is the total mass of the system. Thus the GWR luminosity is a strong
function of the separation a. From our formulation (Chapter 2), it is straightfor-
ward to calculate the strain, since it is only a function of the orbital separation a
and the mass of the components M1 and M2 which we can track self-consistently.
Moreover, we can also include the effects of the spin-orbit coupling, direct impact
accretion and also mass loss due to super-critical accretion. It is instructive to
study the ‘strain sensitivity curve’ (Hughes et al., 2001), where the height of the
source above the sensitive curve is the S/N with which the source will be detected
in ideal conditions (perfect template and no background or confusion noise). The
sensitivity curve (Fig. 5.11) represents the fractional change in the LISA detector
arm length due to various sources of noise, integrated over one year. The sensitivity
curve is itself a function of the integration time: the longer the integration time,
the more sensitive the instrument and the higher the S/N for a given source. Note
that in order to be able to integrate the signal for a period of one year, accurate
templates need to be generated for the possible evolution trajectories of the DWD
systems.

In general, one can distinguish between two types of sources for LISA – a)
sources with evolution slow enough that ḟ ≈ 0 through the integration time, and
b) sources for which ḟ 6= 0. In the first case, since the systems are not evolving very
rapidly, in principle one can use a sine-wave as a template. But for the systems
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FIGURE 5.12. Oscillation cycles and the sensitivity curve. Short term evolution of a
DWD binary undergoing oscillation cycles on the LISA strain curve. The binary is as-
sumed to be at a distance of 300 pc. The green arrow represents the approximate direc-
tion of evolution of a detached system, whilst the black arrow represents the direction
of evolution of a system undergoing conservative mass transfer.

that evolve rapidly, one needs proper templates in order to integrate the signal over
the observational timescale. Strictly speaking, one needs to develop detailed 3-D
models of mass transferring binaries in order to generate accurate templates for
these objects. This is however, a time and resource consuming option. Though our
orbit averaged equations do a reasonable job in tracking the evolution of the 3-D
hydro-dynamic simulation (Section 5.1), we shall not present the strain curves for
individual systems, but instead concentrate on the overall evolution of the system in
the log(f)− log(h) domain. In Fig. 5.11, we show the LISA sensitivity curve, along
with the known AM CVn systems from Table 1.1. The arrow points in the direction
of evolution – as a given system transfers mass, its orbital separation increases and
consequently, the amplitude and the frequency decrease. Also, we have seen in
Section 5.2 that for inefficient tidal coupling all the systems with a donor mass
M2 & 0.25 M¯ (0.28 M¯ in the case of efficient tidal coupling) undergo super-
Eddington accretion. Since the orbital period, and hence the GWR frequency,
for a system in contact is a strong function of the donor mass (Eq. 4.12) this
corresponds to a particular frequency above which the systems will tend to accrete
super-critically, at least for a brief phase in its evolution. Note that this frequency is
independent of the distance of the object, but depends strongly on the mass-radius
relationship and the consequential angular momentum loss mechanisms from the
system (which determine the stability properties of the system and hence the mass
transfer rate).

We now translate the results from Sections 5.1 & 5.2 displayed in Figs. 5.7, 5.8
& 5.9 onto the LISA sensitivity curve.

Short Term Evolution
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DWD systems with intermediate tidal synchronization timescales with mass ra-
tio’s q ∼ qstable which are undergoing direct impact accretion tend to undergo
oscillation cycles (Gokhale et al., 2006). As we have seen in Section 5.1, the oscilla-
tion cycles tend to last for ∼ 105 years after the system initially gets into contact.
This should be reflected in the short-term behavior of DWD systems on the LISA
sensitivity curve. In Fig. 5.12 we plot the evolution of a system (M2 = 0.125 M¯,
q = 0.28, τs1 = 2500 yr) over 20,000 yr as it evolves on the log(f) - log(h) plane.
Initially (top right corner of Fig. 5.12), the system evolves towards the top right
(indicated by the green arrow): to higher amplitudes and frequencies, since the
separation decreases due to loss of angular momentum by GWR. Once the system
gets into contact, and sufficient depth of contact is achieved, the system begins to
separate, leading to a decrease in amplitude and frequency (indicated by the black
arrow in Fig. 5.12). This persists until the system detaches and the GWR term
dominates again in Eq. 2.17. Once this happens, the system evolves again along
the direction depicted by the green arrow until it gets into contact again. After this
the system follows, as before, the trajectory toward the bottom left of the figure.
Thus, due to the tidal oscillations, the amplitude and the frequency of the GWR
signal also oscillates – increasing whenever the system is detached and decreasing
whenever it is in contact and the separation is increasing. This example illustrates
an added complication in the generation of accurate templates; for example, if the
system is undergoing oscillations, the same point on the log(f) - log(h) plane can
be traversed by the same system multiple times, at least for a few years after initial
contact.

Long Term Evolution
We start with a uniformly distributed grid of initial component masses, and let

the systems evolve for 109 yrs and plot the strain at the initial and final times on
the sensitivity curve. We start with a uniform distribution of masses in the M2 -
M1 parameter space, just as we did in section 5.2, and determine the gravitational
wave strain and frequency at the point of contact for each of these systems. These
are shown in Fig. 5.13 by the red (super-Eddington systems) and green dots (sub-
Eddington systems). Systems with the same donor masses lie almost parallel to the
abscissa since the orbital period at contact is a strong function of the donor mass
alone (Eq. 4.12). The top panel in Fig. 5.13 represents the case of inefficient tidal
coupling whilst the bottom panel represents efficient tidal coupling. As we have seen
in Fig. 5.8, the direct impact systems with inefficient coupling tend to accrete super-
critically and so many more systems in the top panel undergo super-Eddington
accretion. We notice that systems above a particular frequency (log(fEdd) ∼ -2 in
the top panel and log(fEdd) ∼ -1.8 in the bottom panel) always undergo super-
Eddington accretion, irrespective of the mass ratio q as was described earlier. There
are systems below these frequencies that also undergo super-Eddington accretion
– these are usually systems with mass ratio’s q & qstable.

The systems tend to evolve (as denoted by the arrow in Fig. 5.11) towards
lower frequencies and lower values of the GWR strain. We notice that all systems,
irrespective of their initial masses tend to collect in a small area towards the
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FIGURE 5.13. Evolution of DWD systems on the sensitivity curve. The initial and final
location of DWD systems on the LISA sensitivity curve for inefficient spin-orbit coupling
(τs1 ∼ 1010 yrs, top panel) and extremely efficient coupling (τs1 ∼ 10 yrs, bottom panel).
All systems are assumed to be at a distance of 300 pc. The green and red points running
parallel to the abscissa represent sub and super-Eddington systems at the initial state,
just as they become semi-detached. We have chosen a uniform initial distribution of
donor mass with M2 ranging from 0.01 M¯ to M2 = 0.41 M¯ in steps of 0.05 M¯. The
initial accretor mass is also changed in steps of 0.05 M¯ from 0.05 to 1.4 M¯ for systems
having total mass M < Mch. The final state represents the state of the system after 109

yrs, the blue points being the sub-Eddington and the magenta being the super-Eddington
systems. The cyan and black lines indicate the LISA sensitivity curves with a S/N of 1
and 5 respectively.
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bottom left of the plots. This is because the GWR timescale (τGR) approaches our
integration timescale of 109 yrs as the systems evolve to higher separations. In
effect then, the systems stall and the evolution timescale is much higher than the
Hubble timescale. The systems which undergo super-Eddington accretion at some
point in their evolutions have a larger spread in their final distribution since mass
loss from the system alters their evolutionary tracks.

Kopparapu & Tohline (2006) present population boundaries in the log(f)−log(h)
plane, which represent limits on the domain in which one would expect to ‘see’
GWR signals from mass transferring AM CVn systems. The GWR frequency fEdd,
which corresponds to the maximum donor mass that a AM CVn system can have
in order to undergo sub-Eddington accretion, serves as another such ‘boundary’.
Above this boundary, we expect that the evolution of the binary will be influenced
by mass loss from the system, and in extreme cases (higher frequencies), by the
formation of a common envelope.

The next logical step in this type of analysis is to incorporate the above results
in a population synthesis study. For this, an appropriate initial mass function
is required which specifies the initial distributions of the total mass, mass ratio,
orbital periods and so on. Then, treating for example, the tidal synchronization
timescale as a free parameter, one can study the evolutionary outcomes of the
entire population of DWD systems in the galaxy. Stroeer et al. (2005) and others
have done such studies, but without incorporating the effects of intermediate tidal
timescales and the advective donor spin term.
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Part II: Extensions to Accretion Disk Theory
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6. Accretion Disks: Theory

6.1 Background
Accretion refers to the phenomenon of accumulation of matter onto a massive
central body. In nature, one encounters accretion processes at different scales,
ranging from planets to the centers of galaxies. Kuiper (1941) was one of the
first modern scientists to consider the accretion of matter onto a massive object
during his study of contact binaries. He immediately realized that as matter was
transferred from one star to the other, it invariably formed a ring around the
central star. Despite this early insight, Kuiper’s work remained rather obscure and
it was Salpeter (1964) & Prendergast & Burbridge (1968) who resurrected the
idea of an “accretion disk” to explain the details of the mass transfer in massive
compact objects like black holes and X-ray binaries. It was, however, the seminal
paper by Lynden-Bell (1969) that firmly entrenched the paradigm that accretion
disks were indeed the central power houses of quasars along with the central black
hole. This paper by Lynden-Bell (1969) and those by Shakura & Sunyaev (1973)
and Lynden-Bell & Pringle (1974) laid the foundations of accretion disk theory as
we know it today.

The basic concept involved in accretion and the formation of a disk is simple
to understand. As an example, consider the formation of a star out of a tenuous
gas cloud. As the cloud collapses under its own self-gravity, the internal energy
generated is promptly radiated away, but the gas does not have the opportunity to
rid itself of angular momentum. As a consequence, an initially spherical blob of gas
tends to rotate faster and flatten in the plane to form a disk. The disk thus acts as
a repository for the excess angular momentum as the gas contracts under its own
weight. Thus, an originally spherically symmetric distribution, in the presence of
a small amount of rotation, is transformed into a disk with most of the matter
moving inwards and a small amount of matter carrying away the excess angular
momentum outward to infinity.

Accretion disks are a common phenomenon in astrophysics. As mentioned in
Chapter 1, they are of significance in mass transferring binary systems, active
galactic nuclei, protoplanetary disks and so on. In what follows, we shall concen-
trate on disks found in binary systems though our treatment is quite general, as
we shall see in Section 7.2. As we have seen in Section 2.2, a binary is driven into
contact either by the loss of angular momentum or the evolution of one the com-
ponents, so that the donor fills up its Roche lobe. Matter begins to leak through
the L1 point, and is attracted towards the accretor due to gravity. These parcels of
gas have high specific angular momentum, and if the accretor is a compact object,
the gas swirls around the accretor. As we have seen in Section 2.2, to a good ap-
proximation, we can assume the stream to follow a ballistic trajectory (Fig. 2.2).

76



Thus, we expect the stream to follow an elliptical orbit in the plane of the binary.
The potential around the accretor is not a pure 1/r potential, but is a perturbed
potential due to the presence of the donor. As a consequence, the ballistic trajec-
tory does not close on itself, but is instead rosette shaped. If we have a continuous
stream of parcels of gas instead of a single test particle, the stream would inter-
acts with itself, resulting in dissipation of energy via shocks (Frank et al., 2002).
However, the stream does not have the means to lose angular momentum and so
it forms a circular (lowest energy) orbit around the accretor. Shocks and viscous
dissipation result in the conversion of the energy in the bulk motion of the gas
into heat energy, which is radiated away. As the gas loses more and more energy,
it tends to circularize since for a gas with fixed amount of angular momentum, a
circular orbit is the orbit with least energy. Now, the gas has to sink deeper into
the potential well because it is loosing energy, but it can only do so if it can rid
itself of some of its angular momentum. In the absence of external torques, this can
occur only if angular momentum is transferred outwards by the internal torques in
the “disk”. Thus, the initial configuration with a ring of gas at R = Rcirc, spreads
out into a disk in the plane of the orbit, with the bulk of the gas spiralling in and
a small amount of material spiralling outwards, carrying away the excess angular
momentum.

6.2 Basic Equations
In this section, we develop the basic equations which govern the structure and
evolution of accretion disks, concentrating on disks in binary systems for concrete-
ness. Our treatment is quite general, though, and can easily be extended to disks
in other scenarios. We have outlined above, how the material leaking out of the L1

point settles into an accretion disk. In most cases, the disk is confined close to the
orbital plane and to a good approximation, one can consider the disk to be a two-
dimensional flow. This is called the thin disk approximation, and for the most part
it is quite successful in accounting for many of the observational characteristics of
binary systems with accretion disks.

Consider the orbital plane of a binary to lie in the z=0 plane of an (R, φ, z)
co-ordinate system centered on the primary star with mass M1 and radius R1. The
gas has a circular velocity (vφ) given by

vφ = RΩ(R) (6.1)

where, Ω is the angular velocity of the disk given by

Ω(R)2 =
1

R

∂Φ

∂R
(6.2)

In most cases of interest when a compact object is at the origin, the potential
(Φ(R)) near the origin is dominated by the central mass. Also note that the spe-
cific angular momentum (the angular momentum per unit mass) is given by h =
R2Ω(R). Apart from the circular velocity vφ, the gas also has a small radial ve-
locity vR. The disk itself is characterized by a surface density Σ(R, t), which is
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obtained by integrating the gas density ρ along the z-direction. We now use the
conservation of mass and angular momentum to obtain the transport equations
for the accretion disk due to the radial motion (Frank et al., 2002). Consider an
annulus of the disk lying between a radius R and R + ∆R. The total mass in this
annulus is 2πR∆RΣ, and the rate at which the mass in this annulus changes is
given by the net flow across its boundaries from the neighboring annuli. Thus

∂

∂t
(2πR∆RΣ) = vR(R, t)2πRΣ(R, t)− vR(R + ∆R, t)

× 2π(R + ∆R)Σ(R + ∆R, t)

' −2π∆R
∂

∂R
(RΣvR)

In the limit that ∆R → 0, we obtain the mass conservation equation

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0,

∴ 2πR
∂Σ

∂t
+

∂Ṁ

∂R
= 0 (6.3)

where, Ṁ = 2πRΣvR is the vertically and azimuthally integrated outward mass
transfer through the disk. Similarly, the amount of angular momentum in an an-
nulus lying between R and R + ∆R is given by 2πR∆RΣR2Ω, and the rate of
change of angular momentum in this annulus is also given by the net flow across
the boundaries of the annulus. This leads to an equation for the conservation of
angular momentum in the disk:

R
∂

∂t
(ΣR2Ω) +

∂

∂R
(RΣvRR2Ω) =

1

2π

∂G

∂R

∴ 2πR
∂

∂t
(Σh) +

∂

∂R
(Ṁh) =

∂G

∂R
(6.4)

Here, G(R, t) represents the total viscous torque exerted in the disk by the stuff
outside of R on the stuff inside of R. On combining Eqs. 6.3 & 6.4, we obtain

Ṁ(R, t) =
∂G(R, t)

∂h
. (6.5)

Using this last result in the second term on the left-hand side of equation (6.3),
we get:

2πR
∂Σ

∂t
= − ∂

∂R

∂G

∂h
. (6.6)

The above form was used by Lyubarskij & Shakura (1987) for their treatment of
non-stationary disk accretion in the Keplerian case, but in fact it is valid also in
the more general case considered here. Eq. 6.6 can be written in a more familiar
form as

∂Σ

∂t
= − 1

2πR

∂

∂R

[ 1

(R2Ω)′
∂G

∂R

]
. (6.7)
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In the case of a Keplerian disk, the angular frequency is given by

ΩK(R) =

(
GM

R3

)1/2

(6.8)

and so using Eq. 6.8, Eq. 6.6 reduces to the well-known diffusion equation:

∂Σ

∂t
=

3

R

∂

∂R

{
R1/2 ∂

∂R
(νΣR1/2)

}
(6.9)

6.3 The Role of Viscous Torques
Viscosity plays an important role in the formation and evolution of the accretion
disk. Theoretically, the origin of viscosity in a disk was not well understood for a
long time even though it was invoked in the standard theory of disks right from
the beginning. Balbus & Hawley (1991) discovered that magnetohydrodynamic
(MHD) turbulence results in a viscosity of the right magnitude and sign. In fact,
the weak-field instability which leads to the turbulence was already known to
Velikhov (1959) & Chandrasekhar (1961). In any case, we shall see below that the
detailed knowledge of the origin of viscosity is not critical in understanding the
evolution of disks.

The gas in the disk rotates differentially, for example in a Keplerian disk. This
leads to a shear in the gas given by A = RdΩ/dR. The presence of any viscosity,
whatever its origin, leads to viscous dissipation in the disk that damps out the
shearing stresses. This results in the conversion of the kinetic energy of the gas in
the disk to heat energy which is radiated away. Thus the gas loses energy and has
to sink deeper into the potential well, which it can do only by ridding itself of some
angular momentum. This is achieved by the spreading of the disk both inward and
outward from the initial ring – most of the mass moves inward, but a small amount
of material moves outward, carrying with it the excess angular momentum. The
local viscous timescale which is of the order tvisc ∼ R2

ν
, is the timescale over which

the disk spreads. In general, this timescale is much longer than the timescale over
which the gas loses energy. As a result, even though the gas spirals in – it follows a
near circular orbit which is the lowest energy configuration for gas with a specified
amount of angular momentum.

The viscous force per unit length is given in terms of the rate of shearing as νΣA
and hence the torque exerted by an annulus at R + dR on an annulus centered at
R is given by

G(R, t) = 2πRνΣAR

= 2πRνΣR2Ω′ (6.10)

where, Ω′ = dΩ/dR and ν is the kinematic viscosity.
Since we are not in a position to derive an expression for the viscosity from first

principles, we utilize a parametrization following Shakura & Sunyaev (1973). Quite
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generally, one can assume that the primary mechanism for redistribution of angu-
lar momentum within the disk is turbulent motion of some kind. The kinematic
viscosity is then given by (Pringle, 1981)

ν ∼ λṽ (6.11)

where λ is scale and ṽ is the velocity of the turbulence. In an accretion disk, the
maximum scale of the turbulence has to be of order H, the scale height of the disk.
Also, the turbulence cannot be supersonic since that would lead to shocks that
would damp out the turbulence efficiently. Hence we can write

ν = αcsH (6.12)

with α ≤ 1. This is the famous α-prescription (Shakura & Sunyaev, 1973), which
allows us to model disks despite our ignorance about the origin of the viscosity. The
parameter α is usually a free parameter in disk modeling, though it is somewhat
constrained by observations. Semi-empirical studies usually assign α ∼ 0.1-0.01.

Apart from driving the angular momentum transport within the disk, the viscous
torques also are responsible for converting rotational energy into heat energy at a
rate GΩ′dR per ring of width dR within the disk. This heat energy is eventually
radiated away from the upper and lower faces of the disk. Thus, the rate of energy
dissipation per unit area in the disk is given by

D(R) =
GΩ′

4πR
(6.13)

and thus the total disc luminosity is

Ldisk = 2

∫ ∞

R?

D(R)2πRdR (6.14)

where R? represents the surface of the central star and hence the inner edge of the
disk. In the Keplerian case, it is easy to show that (Pringle, 1981)

Ldisk =
1

2

GMṀ

R?

(6.15)

Note that the amount of energy available is approximately equal to the total po-
tential drop from infinity to the surface of the star at R?, and is simply GM/R?.
We see that the disk luminosity accounts for only one-half the amount of energy
available. The rest of the energy is emitted by the boundary layer, and in general,
the contribution from the boundary layer to the overall luminosity of the disk is
just as significant as the rest of the disk (See Section 6.4.2).

Turning back to the viscosity ν, we expect ν to be a function of both the local
surface density Σ(R) and the temperature T (R) (the sound speed is a function
of T ). Thus ν ≡ ν(T, Σ) and if T (R) is known, one can write ν ≡ ν(R, Σ). We
shall deal with general solutions to the disk equation in Section 6.5. In the next
section we deal with the simpler time-independent case, especially in the case of
the Keplerian potential to obtain explicit expressions for the temperature, surface
density and viscosity within the disk.
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6.4 The Steady State
To obtain a steady state, we set the time derivative in (6.6) to zero and we obtain
immediately the equilibrium torque in terms of h:

G(R)−G0 = Ṁ(h(R)− h0) , (6.16)

where R0 is some reference radius at which the torque G0 = G(R0) is known,
h0 = h(R0), and Ṁ is the constant mass transfer rate. Substituting the general
expression for the viscous torque (6.10) in the above equation, we can solve for the
combination νΣ:

νΣ =
Ṁ(R2Ω− h0) + G0

2πR3Ω′ =
1

2π

d ln R

d ln Ω

[
Ṁ

(
1− h0

h

)
+

G0

h

]
. (6.17)

This is a convenient starting point for the complete solution for the structure of
the steady state disk if the viscosity is known. It has to be supplemented by the
vertical pressure balance equation, the vertical radiative transfer equation and the
required opacities. While this may not be trivial in every case since ν in general
may depend on Σ, the problem is solved in principle as we shall see in the following
sections. Presently, we will obtain below a few explicit examples of steady disks,
some already well-known, to illustrate the insight that can be gained from equation
(6.17).

6.4.1 The Standard Keplerian Disk
In the standard treatments of the accretion disk around a white dwarf rotating
slower than break-up velocity, the viscous torque vanishes at the inner boundary
of the thin disk near the stellar radius R∗. Our equations neglect any radial pressure
gradients and thus cannot be used in the above form to solve for the structure of
the boundary layer (See however Section 6.4.2 below). Setting Ω = ΩK, R0 = R∗,
and G0 = 0, we obtain from equation (6.17) the well-known result

νΣ = −Ṁ

3π

(
1−

√
R∗
R

)
, (6.18)

where Ṁ is negative for accretion. Note that this solution explicitly requires the
presence of a large negative torque at the outer boundary, usually assumed to
originate from tidal forces.

Near the outer boundary of the disk a rapid transition from viscous to tidal
torques takes place and the stream material, which carries the specific angular mo-
mentum hcirc of the circularization radius, is mixed and accelerated up to the local
Keplerian angular velocity (see Fig. 6.1). A simple model of this tidal dissipation
and stream mixing region can be formulated as follows. Let hout denote the largest
specific angular momentum of the disk for which equation (6.16) is valid. At some
slightly larger radius the disk is truncated by tides and thus the viscous torque

81



hh0h*

hout

BL STD TM

ADV

VIS T
ID

FIGURE 6.1. Angular momentum fluxes and torques shown schematically as functions
of the specific angular momentum h. The regions labeled BL, STD and TM indicate
respectively the boundary layer, the standard thin disk, and the tidal truncation and
stream mixing region at the outer boundary.

must vanish there since there is no material beyond this radius. In steady state
the total angular momentum of this outer layer must remain constant, therefore

−Ṁ(hout − h0)− Ṁhcirc + Ṁhout + Gtides = 0 . (6.19)

The first term in the above equation is the viscous torque exerted by the disk
on the inner boundary of the layer, Gtides is the total tidal torque, and the other
two terms represent the advection of angular momentum in and out of the layer
respectively. This yields the physically reasonable result Gtides = Ṁ(hcirc − h0),
showing that tides simply remove the excess angular momentum from the disk
while viscous torques transport this excess to the outer boundary.
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6.4.2 Boundary Layer
Radial pressure gradients become important in the boundary layer (BL) and are
important in determining the structure of this layer as mentioned above. However,
as long as no significant azimuthal pressure gradients develop, we can extend our
treatment of the angular momentum flux through the BL. This will enable us
to derive an expression for the viscous dissipation in the BL based on energy
and angular momentum conservation alone. In a narrow layer whose width b is
determined by pressure gradients (Pringle, 1981; Frank et al., 2002), the angular
velocity in the disk drops from a nearly Keplerian value to the stellar rotation rate.
Let the specific angular momentum at the surface be h∗, then the BL satisfies
h∗ < h < h0. While the radial extent of the BL is usually much less than the
thickness of the disk, b ¿ H, the difference h0−h∗ is not negligible unless the star
is spinning near break up speed.

Since the torque vanishes at h = h0, the net angular momentum flux into the
star in steady state is −Ṁh0. In fact this must be the net angular momentum
flux at all radii in steady state. In the standard thin disk region h is Keplerian, or
more generally given by equation (6.2), but becomes sub-Keplerian in the BL. The
advected angular momentum is at all radii given by −Ṁh, even in the BL, where
we do not know the radial variation of h with R until we solve for its structure.
Thus the viscous torque, given by equation (6.16) in the standard disk region
(STD), must be such in the BL that the net angular momentum flux is −Ṁh0.
Consequently the viscous torque in the BL has the same form in terms of h given
by equation (6.16) and is shown schematically on Fig. 6.1. As the angular velocity
decreases in the BL to match the stellar surface value, the advective flux falls while
the viscous stress rises contributing to the spin up of the star, in such a way that
the net flux of angular momentum remains equal to −Ṁh0.

The rate of dissipation of energy in the BL can now be computed as the difference
between energy fluxes at the top, where Ω ≈ ΩK(R∗) and the bottom where Ω = Ω∗,
plus any work done by torques at these boundaries. The torque at the top vanishes
while the viscous torque at the stellar surface is G∗ = Ṁ(h∗ − h0). To first order
in b/R∗ we take h0 ≈ R2

∗ΩK, and the rate of energy dissipation in the BL to the
same order is given by

LBL =
1

2
(−Ṁ)(Ω2

K − Ω2
∗)− Ṁ(h∗ − h0)Ω∗ =

GM(−Ṁ)

2R∗

(
1− Ω∗

ΩK

)2

. (6.20)

This is always less than the commonly adopted expression

LBL =
GM(−Ṁ)

2R∗

(
1− Ω2

∗
Ω2

K

)
, (6.21)

which ignores the work done by viscous torques at the stellar surface (King, priv.
comm.; Frank et al. (2002)), except at both extremes when either the star does not
spin at all, or when it spins at break up. Note also that the our treatment holds
even if the star were spinning in a retrograde sense, in which case the BL would

83



dissipate more than in the zero spin case, an effect not captured by the incorrect
expression (6.21).

6.4.3 Temperature Distributions in Accreting and Passive
Disks

A disk that is subject to torques at the boundaries such that no accretion is taking
place, i.e. Ṁ = 0, carries a constant torque G = G0, and thus from Eq. 6.17 we
get

νΣ =
1

2π

d ln R

d ln Ω

G0

h
, (6.22)

Such passive disks are unlikely in astrophysical settings, but hold some academic
interest. The surface temperature distribution of a disk is obtained by equating
the outward vertical radiative flux to the local viscous dissipation rate given by

D(R) =
1

2
νΣ(RΩ′)2 (6.23)

For example, in the optically thick case one obtains generally, for both passive and
accreting disks

σT (r)4 =
1

4π
Ω2

∣∣∣∣
d ln R

d ln Ω

∣∣∣∣
[
|Ṁ |

(
1− h0

h

)
+
|G0|
h

]
(6.24)

As an example let us consider the case when Ṁ = 0, which is the case of a passive
accretion disk. For a Keplerian disk, we obtain from Eqs. 6.10 & 6.23:

G0 = −3π(GMR)1/2νΣ and,

D(R) =
9

8
GM(νΣR1/2)R−7/2 (6.25)

Now, using the α prescription for the viscosity, and using the fact that for a thin,
Keplerian disk we must have cs = (kT/mp)

1/2 and H = (cs/vK) R where vK is the
Keplerian velocity, we can write

ν =
αk

mp(GM)1/2
T (R)R3/2 (6.26)

where, mp is the mass of a proton and k is the Boltzmann constant. Using Eqs.
6.24, 6.25 & 6.26 one obtains the following set of equations for the disk parameters

T (R) =
[ 3

8πσ
(GM)1/2(−G0)

]1/4

R−7/8

ν(R) =
αkb

mp

1

(GM)1/2

[ 3

8πσ
(GM)1/2(−G0)

]1/4

R5/8

Σ(R) =
(−G0)mp

3παk

[ 3

8πσ
(GM)1/2(−G0)

]−1/4

R−9/8 (6.27)
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Note that the quantity in the square bracket is always positive since G0 itself is
negative (Eq. 6.25).In the case of optically thin disks, one needs to specify the
optical depth τ as well, since

D(R) = σT 4τ (6.28)

in this case. Usually, one assumes the Rosseland mean opacity (κ) such that τ =
κΣ. In this case, the disk parameters turn out to be

T (R) =
[ 3

8πσκ
(GM)1/2(−G0)

]1/4

Σ(R)−1/4R−7/8

ν(R) =
αk

m

1

(GM)1/2

[ 3

8πσκ
(GM)1/2(−G0)

]1/4

Σ(R)−1/4R5/8,

Σ(R) =
[(−G0)m

3παk

]4/3[ 3

8πσκ
(GM)1/2(−G0)

]−1/3

R−3/2 (6.29)

where, κ itself can be a function of Σ and T .
As mentioned before, setting G0 = 0 in Eq. 6.17, yields the well-known surface

density and temperature distributions for accreting Keplerian disks (Frank et al.,
2002).

6.5 Time Dependent Solutions
In the most general case, it is not possible to find analytic solutions for the diffusion
Eq. 6.7 unless some simplifying assumptions are made. Here, we consider some
special cases for which it is possible to reduce Eq. 6.7 to a simple diffusion equation
which has known analytic solutions, which help us in understanding the evolution
of the disk when the proper boundary conditions are applied.

Using Eqs. 6.7 & 6.10, we can write quite generally

∂Σ

∂t
= − 1

2πR

∂

∂R

[ 1

(R2Ω)′
∂G

∂R

]
(6.30)

= − 1

R

∂

∂R

{ 1

(R2Ω)′
∂

∂R
(νΣR3Ω′)

}
(6.31)

Here we have made no assumption about the central potential and hence the orbital
frequency Ω can be non-Keplerian. We now assume the angular velocity to be a
power-law in R: Ω = Ω0(R/R0)

a, and change the variable R via the substitution,
x → (R/R0)

(a+2). On substitution and some algebra, one obtains:

∂Σ

∂t
= −a(a + 2)

R2
0

x
a

a+2
∂2

∂x2
(νΣx) (6.32)

Now, we also assume a power law dependance for the viscosity:

ν = ν0(R/R0)
n(Σ/Σ0)

m = ν0 (Σ/Σ0)
m xn(a+1) (6.33)
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and so,

∂Σ

∂t
= −a(a + 2)ν0

R2
0

x
a

a+2
∂2

∂x2

[( Σ

Σ0

)m( x

x0

)n(a+1)

Σ x
]

Defining

S =
Σ

Σ0

( R

R0

)−a/2(a+2)

& τ = −a(a + 2)ν0

R2
0

t ≡ t

tvi

,

where tvi = R2
0/(−a(a + 2)ν0), we have

∂S

∂τ
=

∂2

∂x2

[
Sm+1x

a
a+2

(m+1)+2n+1
]

(6.34)

This is the general form of the non-linear diffusion equation that governs the evo-
lution of the accretion disk. In the Keplerian case, when a = -3/2, we have

∂S

∂τ
=

∂2

∂x2

[
Sm+1x2n−3m−2

]
(6.35)

which is the form used by Pringle (1991) to obtain self-similar solutions to an
“external accretion disk”. We shall review some of those results later, but for
now we consider the simple case when the viscosity is just a function of R and is
independent of Σ (m = 0).

6.5.1 Special Cases
Let us set a = −3/2 to represent the Keplerian case and m = 0. Then Eq. 6.35
reduces to

∂S

∂τ
=

∂2

∂x2

[
S x2(n−1)

]
(6.36)

It is useful to re-write the above equation by rearranging the terms. Firstly note
that for m = 0, we have ν = ν0(R/R0)

n = ν0x
2n. Multiplying by ν on both sides

we obtain after some algebra

∂

∂τ
(νΣx) = x2n−2 ∂2

∂x2
(νΣx)

and so,

∂σ

∂τ
= x2n−2∂2σ

∂x2
(6.37)

where, σ(x, τ) = νΣx. Though the above equation does not have a general solution,
it is possible to obtain analytic solutions for different values of n. For example let
us consider the case when n = 0, which represents a constant viscosity throughout
the disk (Frank et al., 2002). The evolution equation for the disk then reduces to

∂

∂τ
(x Σ) =

1

x2

∂2

∂x2
(x Σ)

86



0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

S

FIGURE 6.2. The evolution of surface density for ν = constant. The surface density Σ
(in arbitrary units) as a function of the dimensionless radial coordinate x for different
times (τ = 0.1 (red), 0.5 (green), 1.0 (blue), 2 (magenta) & 5 (black)).
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FIGURE 6.3. Evolution of Surface Density for ν ∝ R. The surface density Σ (in arbitrary
units) as a function of the dimensionless radial coordinate x for different times (τ = 0.01
(red), 0.05 (green), 0.5 (blue), 1.0 (magenta) , 1000 (cyan) & 5000 (black)). In the initial
stages, the disk evolves oblivious to the inner boundary condition, until it reaches the
inner edge. Once it reaches a peak surface density at the inner edge, corresponding to
the maximum torque at the inner edge, it then evolves to ever decreasing Σ (and the
torque) in a self-similar fashion.
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For concreteness, let us assume that initially, we have a ring of matter at R0

around the binary –

Σ(R, 0) =
m

2πR0

δ(R−R0) (6.38)

where δ(R − R0) is the Dirac-delta function. Thus the solution for the surface
density Σ(x, τ) is given by

Σ(x, τ) =
m

πR2
0

τ−1x−1/4exp
[
− (1 + x2)

τ

]
I1/4(2x/τ) (6.39)

The solution given by Eq. 6.39 is plotted in Fig. 6.2 for different values of τ . We
notice that the initial configuration spreads into a disk due to the viscous torques
in the disk. The disk spreads out on a viscous timescale defined as tvisc ∼ R/vR

where vR is the effective radial velocity of the annulus centered at R.
Another straight-forward illustrative example is the case when the viscosity is

a linear function of the radial co-ordinate R (Pringle, 1991). In this case, the
evolution equation reduces to

∂

∂τ
Σx3 =

∂2

∂x2
Σx3 (6.40)

which on separation of variables leads to the general solution

σ(x, τ) =

∫ ∞

−∞
(Aλcos λx + Bλsin λx) e−λ2τ dλ (6.41)

Here σ(x, t) = Σx3, and Aλ & Bλ are constants of integration to be determined
by the initial and boundary conditions. For a particular solution, consider the
boundary condition ∂σ/∂x = 0 at x = xin. We obtain

σ(x, τ) =

∫ ∞

−∞
Aλ

cosλ(x− xin)

cosλxin

e−λ2τ dλ

As for the previous example, consider an initial ring of mass at some radius x1,

σ(x, 0) = σ0δ(x− x1) (6.42)

where σ0 is a constant, and δ(x − x1) is a delta function centered at x1. On sub-
stitution and a bit of algebra one arrives at the solution

σ(x, τ) =
σ0τ

−1/2

4π1/2

[
e−(x−x1)2/4τ + e−(x+x1−2xin)2/4τ

]
(6.43)

Since ν ∝ R, the above solution also shows how the surface density Σ varies as
x and τ , and we have plotted Σ as a function of x at different τ in Fig. 6.3. The
boundary condition for this solution implies that the disk mass is constant and a
finite torque is applied at the inner edge of the disk. The initial ‘ring’ of matter
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at first evolves oblivious to the inner boundary condition, and spreads into a disk
due to its inherent diffusive nature. On reaching the inner edge, the disk builds up
sufficient surface density at the inner edge to match the required torque. At later
times, it evolves to lower surface densities as the viscous torques carry mass out
to infinity as a result of gaining angular momentum at the inner edge.

The solutions to both the cases considered above show similar characteristics
which can be summarized as follows:

1. The disk evolves and spreads inwards till it reaches the inner boundary. This
inner edge is determined by the torque being applied by the central object
at that location.

2. A quasi-stationary accretion stage in which the disk gradually spreads out-
wards. Here the mass accretion rate is practically constant or increases slowly.

3. After a long time, the disk enters a new stage of equilibrium. The accretion
may cease at this stage and the disk gradually spreads outward (especially in
the case of circumbinary disks) with the surface density falling continuously.

The first stage occurs on relatively short timescales, and is the transient stage in
the entire evolution of the disk. The second and third stages occur on long time-
scales and are independent of the initial conditions. These stages can be modeled
by quasi-stationary solutions. In fact, if accretion ceases, i.e. if Ṁacc → 0, as in the
third stage, the solution is steady stage as mentioned above. These characteristics
are not unique to the cases considered above, and indeed other values of n also
yield solutions that show similar behavior. In fact, the solutions at later times
already resemble what is called “Self-Similar” behavior, i.e. at later times, the
solutions have lost memory of the initial conditions and the solutions preserve
their functional form or shape.

6.5.2 Self-Similar Solutions
In general, as mentioned above, the viscosity is a function of both R and Σ, and
thus we have a non-linear diffusion equation for the evolution of the accretion disk;
the solutions to which have to be obtained numerically. However, if we let ν be
a power law in R and Σ, it is possible to solve the resulting equation (Eq. 6.35)
using the method of similarity variables. Even in this case, strictly speaking, the
solutions can be obtained only when it is possible to set the inner edge of the disk
Rin = 0. This can be done for the case ν ∝ R, but in general not when ν varies
as a higher power of R. The reason for this is that one can obtain a self-similar
solution only when the equation under consideration does not have any explicit
length or timescales. If one can transform the inner boundary condition to the
origin, only then does the equation not have any explicit length scale; and if the
mass transfer is constant, there is no timescale either (Spruit & Taam, 2001). The
solutions are still asymptotically self-similar though, and as t →∞ the length scale
Σin/∂rΣin À R. One can then replace the inner edge at Rin to 0 without causing
too much error.
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The general solution to Eq. 6.35 has been derived by Pringle (1991) and we shall
not reproduce it here. Instead, we illustrate how the self-similar solution obtained
for a simpler case matches that obtained above by using the separation of variables.
We again assume that ν ∝ R and is independent of the surface density Σ for this
purpose, noting that the most general solution is obtained in a similar fashion,
albeit requiring more elaborate algebra. We have again, from Eq. 6.37

∂σ

∂τ
=

∂2σ

∂x2

for n = 1. We now define the similarity variable ξ = xτλ and look for solutions of
the form (Zeldovich & Raizer, 1986)

σ = τµf(ξ) (6.44)

The parameters λ and µ are determined by substituting the solution into the
equations and the boundary conditions. The boundary conditions are set by the
particular case in hand. Since we shall consider circumbinary disks (CBDs) in the
next chapter, we choose the boundary conditions: σ → 0 as x → ∞ and that the
mass input rate at the inner edge of the disk Rin is given by

(∂σ

∂x

)
in

= −δṀ2 (6.45)

where δ = ε(1−β) is the fraction of the mass which settles into the CBD 1. Under
these conditions, we obtain on substitution λ = −1/2 and µ = 1/2. Thus Eq. 6.37
reduces to an ordinary differential equation for f :

f ′′(ξ) +
1

2
ξf ′(ξ)− 1

2
f(ξ) = 0 (6.46)

subject to the condition f ′(0) = −1. Note that in the linear case, we can simply
translate the x co-ordinate by the transformation x → x− 1 without loss of gener-
ality and thus the inner boundary condition at x = xin is replaced by the condition
at x = 0. The solution for Eq. 6.46 can be written as

f(ξ) = −ξ +
2√
π

e−ξ2/4 + ξErf
(ξ

2

)
(6.47)

where Erf(ξ/2) is the error function. Asymptotically, one expects Erf(ξ/2) → 1
and so f(ξ) → 2/

√
πe−ξ2/4. Writing this in terms of the physical variables Σ and

ν we obtain

Σ =
( t

tvi

)1/2 (−δṀ2)

3πν0

( R

R0

)−3/2

e−ξ2/4 (6.48)

11 − β represents the fraction of mass lost from the system as a result of super-Eddington mass transfer, see
Section 4.2
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Thus, asymptotically, the surface density Σ goes as e−ξ2/4. Also, at large times, Σ
increases as t1/2 and within the disk, the surface density decreases with distance
as R−3/2.

We shall use this form of the solution in the next section to illustrate the effects
of a CBD on the evolution of a binary system. As mentioned earlier, it is possible
to obtain approximate self similar solutions for the case when the viscosity is non-
linear and also depends on the surface density Σ (Pringle, 1991).
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7. Accretion Disks: Extensions to the
Standard Theory

7.1 Circumbinary Disks and Binary Evolution
In Part I of this work, we have noted that the evolution of binary systems is strongly
influenced by the angular momentum redistribution in, and angular momentum
loss from the system. We have studied the effects of tides, mass transfer & loss
and GWR loss in different regimes and also alluded to other effects (section 2.1.4)
such as magnetic breaking and circumbinary disks (CBDs). Having reviewed some
of the properties of disks in the previous chapter, we are now in a position to
study the influence of a CBD on the central binary system, and also the effect of
the binary on the evolution of the CBD. In the case of the CBD, the orbit of the
binary provides the central angular momentum source which is fed to the CBD by
tidal torques. Thus angular momentum is drained out of the orbit and fed to the
disk, whose outer edge spreads outward due to viscous torques within the disk.

One can envision a disk formed from the remnant debris left around at the time
of the formation of the binary itself. For example, it can be formed out of the
material from a common envelope phase during the formation of DWD systems
or cataclysmic variables (CVs). Moreover, stellar winds or material being ejected
during super-Eddington accretion can settle into a disk around the binary and exert
appreciable torques on the orbit once sufficient surface density has been built up
in the disk.

The physics of the CBD and its influence on the binary has been studied in the
case of cataclysmic variables in a series of papers by Spruit & Tamm, and Dubus,
Spruit & Tamm (hereafter DST) (Spruit & Taam, 2001; Taam & Spruit, 2001;
Dubus, Taam & Spruit, 2002; Taam, Sandquist & Dubus, 2003). Cataclysmic vari-
able stars are widely studied observationally, and many models have been proposed
to explain the observations. One of the problems that has beset the models is the
observed spread in the inferred mass transfer rates for a given orbital period. For
CVs, the mass transfer rate is related to the orbital period of the binary, if one
assumes that the system is undergoing stable mass transfer (See Eq. 4.12 for the
corresponding relation for DWDs). As a possible explanation for this discrepancy,
DST proposed that an additional mechanism might be in play leading to the dif-
ferent mass transfer rates – and proposed that the presence of a CBD can account
for the spread in the mass transfer rates, and also account for other unexplained
observations like excess IR radiation from the CVs, presence of emission lines and
so on. While they have shown that it is possible to account for some of the discrep-
ancies, other problems surface; like the presence of the CBD will effectively lead
to the disappearance of the ‘period gap’ that is observed in CVs. Moreover, if the
CBDs are ubiquitous, they are bound to have a detectable observational signature,
but not many systems seem to even suggest that they have CBDs around them.

92



At the very least, this puts a limit on the amount of mass a CBD can contain, and
consequently on how much it can influence the binary.

In the following, we use some of the tools developed by DST, and it is our
aim to eventually employ them in the context of the DWD systems we studied in
Part-I. As we have seen, DWDs are formed via common envelope evolution and
are also prone to super-Eddington accretion, both of which imply that there is
a possibility of mass being expelled to condense into a disk around the binary.
Though we are not in a position to model in any detail either the disk, or its effect
on the binary, we present some preliminary results of the coupling between the
CBD and the binary at the end of this chapter. Eventually, our aim is to carry
out calculations for DWDs, analogous to what DST have carried out in the case
of CVs. The observational properties of the CBD and dynamic effects of the CBD
on the central DWD can then be carried out, which is likely to have an impact on
both traditional astronomy and GWR astronomy.

7.1.1 Effect of a CBD on Binary Evolution
The presence of a CBD results is an additional angular momentum loss from the
binary, as the inner edge of the disk exerts a torque on it. Thus,

J̇orb = J̇tot − J̇1 − J̇2 − J̇cbd (7.1)

where, J1 and J2 are the spins of the component stars. In the case of CVs above
the period gap, J̇tot is given by the magnetic breaking rate whilst in the case of
DWD binaries and CVs below the period gap, it is given by the GWR rate. For the
moment, let us assume that the spins are synchronized with the orbits. Then the
term which dominates on the right hand side of the above equation determines the
evolution of the binary. Now, the tidal torque exerted by the disk on the binary
can be given by

J̇cbd = 3πνinΣin(GMRin)
1/2 (7.2)

We concentrate on disks that are fed mass from the inner binary due to mass
loss associated with super-Eddington accretion. The term 3πνinΣin in the equation
above then represents the mass flow at the inner edge of the disk, whilst the term
(GMRin)

1/2 represents the specific angular momentum of the material at the inner
edge of the disk. In writing Eq. 7.2, we have assumed that the tidal interaction
torque between the disk and the binary is localized at the inner edge. This is a
good assumption in the case of CBDs that are fed by mass loss from the binary,
since we expect a build-up of mass near the inner edge. Moreover, Eq. 6.48 implies
that the surface density falls as R−3/2.

Having specified the form of the CBD torque, we include this term in our evolu-
tion equations for the binary from Part I. Firstly, we make the assumption that as
the mass is lost from the binary, it is decoupled from the orbit, i.e., the outgoing
mass does not exert any torque on the binary. This mass wind then settles into
the disk near its inner edge. As and when the disk has accumulated a large enough
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mass and a high enough surface density, it can exert appreciable tidal torques on
the binary. Thus the CBD torque term is a consequential term, since its magnitude
depends on the presence of mass loss associated with the mass transfer. The surface
density of the disk (and hence the torque) are proportional to the mass transfer
rate. The mass transfer rate itself depends on the rate at which the CBD torques
the binary orbit – thus there exists a positive feedback between the mass-fed disk
and the mass transfer rate. In terms of the equilibrium mass transfer rate from
Part I, the CBD torque term (Eq. 7.2) appears in the denominator of Eq. 2.37,
and affects the stability properties of the binary.

It is possible that the CBD is formed out of material not associated with mass
transfer, for example, from the remnants of a common envelope evolution. The disk
would still influence the binary via tidal torques until the disk dissipates away. In
this case, the CBD torque acts as a driving term, and appears in the numerator
of Eq. 2.37.

In general, the boundary condition at the inner edge of the disk should contain
contributions from both the consequential and the tidal terms. The gravitational
torque we are concerned with here is not of viscous origin, and so it would be
unphysical to impose it as a boundary condition for the evolution equation for
the viscous torques. To circumvent this problem, one can assume that there exists
a thin boundary (inside the inner edge of the original disk) over which the tidal
torques operate and that one can have both an advective term (∝ Ṁ) and a tidal
term (Gtides c.f. Eq. 6.19, Fig. 6.1) at the inner edge of the original “standard
disk”. It is important to correctly classify the consequential and the secular terms
because, as we have seen in Section 2.3, the consequential terms can significantly
affect the value of qstable and change the evolutionary fate of a binary with a given
mass ratio q.

As a simple illustration of the above arguments, we present the case of a DWD
binary undergoing super-Eddington accretion for a certain phase in its evolution,
in which a fraction of the mass lost from the binary settles into a circumbinary
disk at some radius Rin. In this case, Eq. 4.8 has an additional term

J̇orb = J̇sys −
(
−Ṁ2[βj1 − j2 + (1− β)jw + jcbd] + J̇1,tid + J̇2,tid

)
, (7.3)

where jcbd = δ(GMRin)
1/2 is the specific angular momentum of the material at

the inner edge of the disk. Following the same treatment as in Section 2.3, we can
write

(Ṁ2

M2

)
eq

=
νL − ν2

ζ2 − ζL

(7.4)

with ζL is given by Eq. 2.22 but with qa defined as

qa ≡ 1 + (1− β)q − 1− β

2(1 + q)
−M2

j1 − j2 + jcbd

Jorb

(7.5)

Note that as far as the binary evolution is concerned, we need only follow the
evolution of the inner edge of the disk since the binary is coupled only to the inner
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edge by construction. For simplicity, we also ignore the tidal terms implying that
the spins and the orbit are decoupled. We assume also that δ = ε(1 − β) is the
fraction of the mass lost (1 − β) that is accreted onto the inner edge of the CBD
and the rest is lost from the system without further influencing the binary or the
disk in any way. In Fig. 7.1 we plot the evolution of two systems (the same as Fig.
4.4) which are coupled to the CBD according to the prescription described above.
For comparison, the red curve in Fig. 7.1 represents the same cases as Fig. 4.4, i.e.,
effectively there is no CBD, since we do not couple the disk to the binary orbit.
The green curve corresponds to an ε =0.1, i.e., we let 10% of the mass ejected due
to super-Eddington accretion settle into the disk at the inner edge, whilst the blue
curve represents the same for ε = 0.15. The values of ε chosen here are arbitrary,
since we are not in a position to determine how much mass that is lost from the
binary due to super-Eddington accretion can settle into the disk. However, it is
clear from Fig. 7.1, that if a CBD is present and has a sufficient surface density,
it can exert appreciable torques on the central binary and lead to accelerated
evolution. The greater the value of ε, the greater is the instability induced by the
positive feedback between the surface density of the disk, the corresponding torque
and the mass transfer rate in the binary. This is because the greater the value of ε,
the greater is the value of jcbd in Eq. 7.5. In fact, it is even possible that qa < 0 for
certain extreme cases of mass loss – at least for short phases during the evolution
of the binary. qa < 0 is a situation of extreme instability because any value of qa <
1/3 implies that the binary is unstable (c.f. Eq. 2.38). Thus the overall effect of
the coupling of the CBD fueled by mass loss from the binary during mass transfer
and the binary can be extremely destabilizing, and could lead to rapid merger or
tidal disruption of the binary.

In Fig. 7.1, we have also shown the surface density at the inner edge of the disk
as a function of time. We note that the surface density rises to a high value in a
relatively short time after super-Eddington accretion commences in the binary. In
the first case, where we have not coupled the binary to the disk, we notice that the
surface density remains constant as long as super-Eddington accretion occurs in
the binary. On the other hand, for the other two cases, Σ rises, and then rises even
more. This is because of the positive feedback between the disk and the binary –
this lasts until the super-Eddington accretion ceases. Note that since the evolution
is accelerated, the binary separation increases at a faster rate, and the net driving
falls more rapidly. This leads to a shorter duration of super-Eddington transfer
when the disk and the binary are coupled, but to higher net loss of mass from the
binary, due to the enhanced mass transfer rate. The positive nature of the feedback
between the disk and the binary is also apparent from the plots of β. Note that
in the cases where the disk and the binary are coupled, 1− β increases to an even
higher value (top panel in Fig. 7.1) after the initial phase. It falls rapidly to zero
(i.e., β → 0) only when the system begins to recover, which happens when the
q value has fallen sufficiently and the driving has decreased sufficiently to allow
sub-Eddington mass transfer to occur.
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FIGURE 7.1. The evolution of two DWD systems with initial mass ratios q = 0.25 (left
panel) and q = 0.35 (right panel). The three curves represent no coupling with the CBD
(solid curves), CBD coupled to the binary with ε = 0.1 (dashed curves) and with ε =
0.15 (dot-dashed curves). Note the accelerated evolution when the binary and the CBD
are coupled, and also the increased rate of evolution when the surface density of the disk
is higher (greater ε).

The above illustration is highly artificial, in that several of the parameters can
have values wildly different from what we have assumed. Even if super-Eddington
accretion were to occur in a system, there is no guarantee that a CBD would form,

96



or how much mass it would contain. Moreover in our numerical integrations, we
have assumed that the disk evolves according to the solution corresponding to
ν ∝ R, an ad-hoc assumption made for the sake of simplicity. We have ignored
the detailed evolution of the disk itself, and assumed that only the inner edge of
the disk and the binary interact, and that the rest of the disk has no influence
on the binary evolution. Nonetheless, the above illustration gives us an idea of
the destabilizing influence of a CBD replenished by the mass loss from a binary
undergoing mass transfer.

7.2 Non-Keplerian Potentials
In this section, we review some of the work done in the field of disks around
active galactic nuclei (AGNs), which are thought to contain supermassive black
holes (Mbh ∼ 108M¯) surrounded by a disk, which fuels the central black hole.
The high luminosity’s (∼ 1044 erg s−1) of AGNs implies very high accretion rates
(Ṁ ∼ 1.0 M¯yr−1). We first show that the disk equations from Chapter 6 can be
generalized to include non-Keplerian potentials, and that the profiles of the global
parameters like the torque and the angular momentum distribution in the disk are
consistent with more rigorous treatments. This treatment can also be applied to
stellar mass black holes and as Paczyński & Wiita (1982) and Paczyński (1998)
have shown, can be extended to geometrically thick disks, which also have non-
Keplerian profiles. We then consider the case of a particular AGN; NGC 1068,
which is one of the most studied Seyfert galaxies.

7.2.1 Paczynski’s Toy Model
As we have mentioned before, the formalism we use for describing the evolution of
an accretion disk, is quite general and can be used also when the potential in which
the disk finds itself is non-Keplerian. For example, Paczyński & Wiita (1982) de-
vised an approximate way of treating thin and thick disks around a Schwarzschild
black hole by introducing a pseudo-Newtonian potential (ΦPW, hereafter PW po-
tential) which reproduces the most important features of the geodesic motion on
circular orbits. In fact, they use explicitly the integrated torque Eq. 6.16 to obtain
their disk solutions. The pseudo-Newtonian potential is given by

ΦPW(R) = − GM

r − rs

(7.6)

with rs = 2 GM/c2 being the Schwarzschild radius. Here r = (R2 + z2)1/2 is the
spherical radius with the cylindrical coordinates (R, z, φ) fixed at the center of the
black hole. This way of representing the potential has the property that the last
marginally stable orbit around the black hole is at rms = 3 rs and the marginally
bound orbit is at rmb = 2 rs, which is a faithful representation of particles orbiting a
Schwarzschild black hole (Paczyński & Wiita, 1982). As in the case of the Keplerian
potential, one can write the specific angular momentum of the material orbiting
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the black hole at a distance R as

j = (GMR)1/2
( R

R−Rs

)
(7.7)

Following Paczyński (1998), we can then write the general form for thin as well as
thick disks in the steady state, and the form is similar to Eq. 6.16. Note that in
the case of black hole accretion disks the inner edge is at the innermost marginally
stable orbit rms and so

G = Gms + (−Ṁ)(j − jms) (7.8)

is the corresponding torque equation. The ‘no torque’ condition at the inner edge
usually applies to disks around black holes, and so Gms = 0. This is because,
as Paczyński (2000) points out, “no information could propagate upstream in the
supersonic region inward of rms”. Paczyński (1998) goes on to apply this toy model
to thick, advection dominated disks and study its properties. We shall not pursue
this further, but instead proceed to show that the torque and angular momentum
distribution throughout the disk in the PW potential almost exactly matches the
exact values calculated relativistically.

7.2.2 Relativistic Torque and Angular Momentum
The theory of geometrically thin accretion disks was generalized to the relativistic
case by Novikov & Thorne (1973). We first begin by defining the viscous stress
tensor, which in the case of thin disks where the azimuthal component of the
velocity vφ dominates, is given by

TRφ = ρν
(∂vφ

∂R
− vφ

R

)
= ρνR

∂Ω

∂R
(7.9)

and the torque between two adjacent rings is

G =

∫
dφ R

∫
dz R Trφ (7.10)

and so we have

ṀΩ

2π
f(R) = −

∫
dz Trφ (7.11)

which is completely equivalent to the Keplerian case with

f(R) = 1−
(Rin

R

)2 Ω(Rin)

Ω(R)
= 1− hin

h
(7.12)

where the subscript ‘in’ refers to the inner edge of the disk. Thus on determining
Ω2 = 1/R ∂Φ/∂R in various potentials, we can determine the torque profile in the
disk.
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Now, it is possible (Krolik, 1999) to write the equation for the stress, and hence
the torque in the same form as Eq. 7.11, by explicitly replacing Ω by the Keplerian
angular velocity, ΩK

ṀΩK

2π
RT (x) = −

∫
dz Trφ (7.13)

and replacing f(r) by the relativistic reduction factor RT (x) which is given by:

RT (x) =
C(x)

A(x)
(7.14)

x = r/rg, rg = GM/c2 is the gravitational radius. The functions C(x) and A(x)
are given by:

A(x) = 1− 2

x
+

a2
∗

x2
(7.15)

C(x) = 1− yms

y
− 3a∗

2y
ln

( y

yms

)
− 3(y1 − a∗)2

yy1(y1 − y2)(y1 − y3)
ln

( y − y1

yms − y1

)

− 3(y2 − a∗)2

yy2(y2 − y1)(y2 − y3)
ln

( y − y2

yms − y2

)

− 3(y3 − a∗)2

yy3(y3 − y1)(y3 − y2)
ln

( y − y3

yms − y3

)
(7.16)

with y = x1/2. Also, yms is the value of y at the marginally stable orbit, and y1,2,3

are the three roots of y3 − 3y + 2a∗ = 0. The parameter a is the spin of the black
hole and a∗ is the black hole spin a normalized to GM/c. For a Schwarzschild
(non-spinning) black hole, a = 0.

Thus, the torque is given by:

G(R) =

∫
dφ R

∫
dz R TRφ

= 2πR2
(
ṀΩ +

Gms

R2

)
RT (R)

=
(
Ṁh(R) + Gms

)
RT (R) (7.17)

From Fig. 7.2 we plot the torque according to Eq. 7.8, with j calculated in a
Keplerian potential, PW potential and Eq. 7.17. For the sake of concreteness, we
take the mass of the Schwarzschild black hole to be 1.5 ×106M¯, and a luminosity
of ∼ 5×1044L¯, which sets the accretion rate. We see that the relativistic and PW
torques match almost exactly. We have set the torque Gms at the inner boundary,
which is pegged at the marginally stable orbit (rms = 6rg in the Schwarzschild
case), to zero. Similarly, the specific angular momentum profile across the disk is
identical for the PW and relativistic case, both of which deviate from the Keplerian
profile near the inner edge of the disk. As we have seen before, the inner boundary
contributes to almost half of the luminosity of the disk, and hence it is important
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FIGURE 7.2. The torque profile in a non-Keplerian potential. Keplerian (dashed), PW
(solid) and the relativistic-torque (dotted curve). The latter two overlap almost exactly
beyond the inner edge of the disk, which in these units is at x = 6.

to follow the distribution of the viscous dissipation and hence also the torque
accurately. We have shown the the PW potential, despite is simple form, faithfully
represents the relativistic correction terms in the case of Schwarzschild black holes.
Of course, far away from the inner edge (R À Rms) it is reasonable to neglect the
effects of the black hole, and one can assume that the potential is purely Keplerian.

7.2.3 NGC 1068
The nucleus of NGC 1068 is known to host a supermassive black hole, striking
evidence for which is provided by the study of the Doppler shifts of the water
maser lines (Greenhill & Gwinn, 1997). This method is unique in that it provides
some of the most reliable information about the mass of the central object, since
it probes the gravitational potential to very small distances (< 1 parsec). In the
case of NGC 1068, the water maser emission is seen from the center of the nucleus
to a radius of about 1 pc, and is believed to be emitted from gas rotating in an
accretion disk which happens to be edge-on along our line of sight (See Maloney
(2002) for an excellent review of masers in AGNs). The rotation profile obtained
by the maser observations suggests strongly that the rotational velocity in the
disk falls off as R−0.31 (Greenhill et al., 1996) instead of R−0.5, which is what one
would expect for a Keplerian disk 1. Many models have been proposed to explain
this sub-Keplerian rotation, see for example, Kumar (1999), Pier & Krolik (1992)
and Lodato & Bertin (2003). Kumar (1999) for example, proposes a “clumpy disk

1The rotation profile of another such AGN, NGC 4258, is consistent with a Keplerian disk (See Miyoshi et al.
(1995))
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model” to explain the observed rotation profile for NGC 1068, whilst Pier & Krolik
(1992) argue that radiation pressure may reduce the rotational velocity in the disk.
Here, we consider a simple model for NGC 1068 which consists of a central black
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FIGURE 7.3. The Rotation curves and the corresponding velocity exponent k for NGC
1068. The black curve corresponds to a central black hole of mass 1.5 × 107M¯ and a
stellar cluster of mass Msc = 1.5 × 107M¯. The dotted line is for Msc = 5 × 107M¯ ,
the dashed curve corresponds to Msc = 1.5 × 108M¯ and the dot-dashed curve is for
Msc = 5× 108M¯. The parameter b is set to 10 pc. Also note that the systemic velocity
of 1126 Km/sec is added to the velocity plotted here.

hole and a dense cluster of stars surrounded by a massive, but thin accretion disk.
The star cluster is modeled by using a ‘Plummer sphere’, the potential of which is
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given by

Φsc = − GMsc√
r2 + b2

(7.18)

where, Msc is the mass of the cluster and b is a free parameter which represents
the extent over which the mass is distributed (Binney & Tremaine, 1988). We now
define the velocity exponent k as

k =
∂ ln vφ

∂ ln R
= 1 +

d ln Ω

d ln R
(7.19)

where Ω2 = 1/R ∂Φ/∂R and Φ = Φbh + Φsc is the potential due to the central
black hole and the star cluster. Note that in the Keplerian case, as expected, we
obtain k = − 0.5. In the presence of the star cluster, k will deviate from -0.5 and
is a function of R and b.

In Fig. 7.3, we plot the rotation curve for the water maser curve for our model,
with and without the star cluster. We notice that when the stellar cluster has to be
much more massive that the central black hole itself in order to have an appreciable
effect on the potential and hence the rotation curve of the disk. Kumar (1999) notes
that the mass contained in the central 50 pc of the disk is about 5×108M¯. Setting
the parameter b = 10 pc in our calculations, implies that the inner 10 pc contains
almost half this mass. We have noted that the presence of the cluster affects the
velocity exponent k, which we plot in the bottom panel of Fig. 7.3. We note that
the presence of the cluster does lead to sub-Keplerian rotation and k ∼ −0.31
around a parsec.

There are several problems with this picture. Firstly, the cluster density needed
to make k consistent with observations is much higher than what is suggested
observationally (Kumar, 1999), unless the cluster consists of low luminosity objects.
Also, one has to take into account the interactions between the stars at such high
densities (Goodman, 2003) and also the observational signatures of such a cluster.
Moreover, it is possible the disk becomes massive enough and becomes unstable to
axisymmetric perturbations, leading to its fragmentation (Goodman, 2003).
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8. Discussion and Conclusions

We have presented a simple, semi-analytic approach to describe the evolution of
binary star systems in which we track the mass of each component, the total mass
of the system, the orbital angular momentum and the spin angular momenta of
each component. We have included the effects of mass and angular momentum loss
from the system and also the exchange of mass and angular momentum between
the components of the binary. We have generalized the orbit-averaged equations
(OAE) that describe the evolution of the binary to include both the advective and
tidal exchange of angular momentum between the components and the orbit.

We find that the material flowing across the L1 point has two effects on the
internal redistribution of angular momentum in the binary: a) it spins up the ac-
cretor by transferring a specific angular momentum jcirc to the spin at the expense
of the orbital angular momentum and, b) it reduces the spin angular momentum
of the donor by an amount ∼ R2

2ω2. This second effect has not been accounted
for in previous studies of DWD binary systems, and we find that it has a mildly
stabilizing effect on the binary evolution.

We have presented analytic solutions for the evolution of binary systems, gener-
alizing the results of Webbink & Iben (1987) to binaries with any polytropic index
and to binaries with isothermal atmospheres. We have also studied the effects of
letting the binary parameters evolve in a self-consistent fashion; rather than keep-
ing them fixed as in the analytic case. The analytic solutions always predict that if
a binary attains contact when the mass ratio q is such that the ensuing mass trans-
fer is unstable, the binary merges in a finite time. On the other hand, the numerical
integrations of the OAE always predict that a binary that undergoes unstable mass
transfer at initial contact can evolve to a state of stable mass transfer, survive and
evolve into an AM CVn type system.

For systems with the mass ratio q much greater than qstable, the mass transfer
rate can reach arbitrarily high values, but the amount of matter the accretor can
accrete is limited by radiation pressure. To account for this, we have included
the effects of super-Eddington mass transfer (Han & Webbink, 1999). We find
that when tides are inefficient, almost all the systems with an unstable mass ratio
(q > qstable) undergo super-Eddington accretion. Stable systems with donor masses
& 0.25 M¯ also tend to undergo super-Eddington accretion, irrespective of the
mass ratio. We have assumed that the mass lost from the system is expelled from
the system without further interacting with the binary. This assumption breaks
down when the mass loss rate is so high that it results in the formation of an
optically thick envelope, which is likely to cause the merger of the binary due to
frictional angular momentum loss. Nevertheless, we have shown that the systems
tend to return to stability, and so we suspect that many of the systems previously
believed to merge as a result of this effect would survive provided that the peak

103



mass transfer rate, and the corresponding mass loss rate, is not too high. Further
investigation using 3-D hydrodynamic simulations which include radiative effects
is required to fully understand this possibility.

An interesting consequence of efficient tidal coupling is that the domain over
which mass transfer is sub-Eddington is significantly enhanced, thus increasing
the possibility of survival of these systems. Another interesting consequence of the
tidal coupling is that for intermediate tidal synchronization timescales, we observe
mass transfer oscillation cycles. These cycles occur for a relatively short duration
after ‘first contact’. They tend to occur in systems around the stability boundary,
where the mass transfer rates are high or rise to a high value rapidly. We find that
direct impact systems around the stability boundary are more likely to undergo
these oscillation cycles whereas none of the disk systems we studied show the cycles.

The extremely short period DWD binaries listed in Table 1.1, RX J0806+15 and
V407 Vul, are considered to be progenitors of AM CVn type binaries. Observations
suggest that the orbital period in these systems is decreasing, which is at odds
with the expectation that the orbital period of mass transferring DWD systems
should increase. We have shown that it is possible, at least for a short duration
after ‘initial contact’, that the systems undergo oscillation cycles which implies an
enhanced probability for observing one of these systems with a negative Ṗ , even
as it is transferring mass. Recently, however, D’Antona et al. (2006) have proposed
that if these systems are very young and contain a donor with a significant non-
degenerate atmosphere, then it is possible that the donor star actually contracts,
and so does the orbital period. The advantage of this model is that if nuclear
reactions help in keeping that donor star warm and hence non-degenerate, the
atmosphere can be sustained for timescales > 107 yrs. We are in the process of
studying the implications of this model on the general population of close DWD
systems.

We have used the OAEs with suitably adjusted tidal coupling time scales to
analyze and interpret the results of some of the simulations described by D’Souza et
al. (2006). The mass transfer rates that these hydrodynamic simulations can resolve
are much higher than the Eddington critical rate and probably much higher than
the rates likely to arise during the onset of mass transfer in most realistic cases.
Nevertheless they describe correctly the dynamical aspects of the mass transfer
and tidal interactions under these conditions. These simulations did not include
enough physics to tackle common envelope evolution, but they should be viewed
as the first steps toward that goal. In the meantime, we have used the OAEs to
analyze and interpret the results of the 3-D simulations. Comparing the predictions
of the OAEs with the simulations, we have been pleased to find that they predict
the outcome of the simulations reasonably well. It is only in the final stages of
the hydro-simulations when the components (especially the donor) get severely
distorted that the OAEs, which assume spherically symmetric components, fail to
reproduce the behavior of the simulations.

DWD systems are some of the most common compact systems in the Galaxy
and are of particular importance for the space based GWR detector LISA. AM
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CVn systems are guaranteed sources for LISA and the knowledge of possible evo-
lutionary trajectories is valuable. The framework we have outlined in this paper
can be used to generate templates for short period DWD’s in general and AM
CVn systems in particular. Similar work has been done already (see for example,
Kopparapu & Tohline (2006) and Stroeer et al. (2005)); but the effects of the tidal
coupling, the advective term associated with the donor spin and so on, which we
have introduced here, need to be incorporated into these studies.

Mass lost from a system undergoing super-Eddington mass transfer can settle
into a disk around the binary to form a circumbinary disk. In the second part of the
thesis, we present a simple toy model for the evolution of accretion disks in general.
We investigate the flow of angular momentum and energy in the disk, especially
near the boundary layer, and derive a expression for the energy dissipated at the
boundary layer. We apply the formalism to develop steady, time-dependent, active
and passive disks as well as to circumbinary disks. From our preliminary studies,
we find that if the mass lost from a DWD system during super-Eddington accretion
settles into a circumbinary disk, the evolution of the DWD is accelerated. The effect
of the disk which is fed mass as a consequence of mass transfer is destabilizing and is
a function of the amount of mass that settles into the disk. Our results suggest that
it is possible that in certain extreme cases, the formation of a circumbinary disk
can lead to rapid disruption of the binary. Further work is required to accurately
follow the evolution of both the disk and the binary in a self-consistent way, in
order to fully appreciate the effects of such a disk on DWD binary evolution.
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Appendix A: The Binary Evolution
Equations
We summarize here, the basic evolution equations first introduced in Chapter 2
for ready reference and convenience. The evolution of a mass transferring binary
system depends primarily on two factors: a) the loss and redistribution of angular
momentum and b) the loss and redistribution of mass. Another factor that can
influence the evolution of such a system is the evolution of one of the components
itself: for example, a main sequence star can evolve off the main sequence and fill
up its Roche lobe, thus altering the evolution of the system.

The mass transfer rate is a strong function of the depth of contact, and thus we
write

Ṁ2 = −Ṁ0(M1,M2, a)f(∆R2) =

{
−Ṁ0(∆R2/R2)

n+3/2 polytropic donors,

−Ṁ0 exp (∆R2/H) isothermal atmospheres.
(1)

where Ṁ0 is a relatively gentle function of the binary parameters and f is a strong
function of the depth of contact, ∆R2 = R2 − RL. The depth of contact can vary
because of a change in the radius of the either the donor star or the Roche lobe.
Symbolically, we can write the logarithmic time derivative of the donor radius as

Ṙ2

R2
= ν2 + ζ2

Ṁ2

M2
(2)

where ν2 represents the rate of change of the donor radius due to intrinsic processes
such as thermal relaxation and nuclear evolution, whereas ζ2 = d ln R2/d ln M2 ≈
−1/3 (for white dwarf donors) usually describes changes resulting from adiabatic
variations of M2. Similarly, one can write for the Roche lobe radius

ṘL

RL
= νL + ζL

Ṁ2

M2
(3)

where,

ζL =
d ln RL

d ln M2

=
2(1 + q)

3

ln(1 + q1/3)− q1/3/(1 + q1/3)

0.6q2/3 + ln(1 + q1/3)
+ 2((1 + q)rh)

1/2 − 2(1− q)

and,

νL =
2J̇sys

Jorb

− 2
J̇1,tid + J̇2,tid

Jorb

The first term in νL represents systemic angular momentum loss, whilst the second
term represents the effect due to tides. The systemic term usually represents angu-
lar momentum loss either by gravitational wave radiation or by magnetic braking
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(Section 2.1). The tidal torque, in its simplest form, is a function of the degree of
asynchronism (Ω−ωi) and of the tidal synchronization timescale (τsi) and is given
by

J̇i,tid =
kiMiR

2
i

τsi
(Ω− ωi) (4)

Here ki represents the dimensionless moment of inertia of the ith component. In
our case, the synchronization time cannot be calculated from first principles, and
hence is a free parameter. The evolution of the tidal timescale however, is followed
using the prescription given by Campbell (1984).

Finally, one can also write the rate of the change of the orbital separation in
terms of the mass and angular momentum loss & redistribution terms. For this we
rearrange Eq. 2.17 and use the definition of νL to write

ȧ
a

= νL − 2Ṁ2

M2
[qa − q] (5)

where

qa ≡ 1 + (1− β)q − 1− β

2(1 + q)
−M2

βj1 − j2 + (1− β)jw

Jorb

.

where, β represents the fraction of mass accreted by the primary, and is calculated
following Han & Webbink (1999) in the case of Super-Eddington accretion. Setting
β to 1 above implies conservative mass transfer. Also, j1 and j2 represent the
specific angular momenta of the stream near the surface of the accretor and the
surface of the donor respectively whilst jw is the specific angular momentum of any
wind emanating from the binary (See discussion in Section 2.2.1). Once the mass
radius relationship is specified, the terms in Eq. 2 can be determined. Similarly,
the terms in Eq. 3 can be calculated under the assumption of Roche geometry and
once the angular momentum loss and redistribution mechanisms are specified. This
information is then used to calculate the rate of change of the orbital separation
(Eq. 5). Once mass transfer commences, Eq. 1 is non-zero and is calculated self-
consistently as the radii and the separation evolve. Thus the set of linear, coupled
equations 1, 2, 3, 4 & 5 completely specify the evolution of the binary system.

These equations are integrated using the following logic: At every time-step, we
know the mass, radii and Roche lobe radii of the components along with the orbital
separation. Initially, we assume the components to be synchronized with the orbit,
and specify some value for the tidal synchronization time (τsi). We calculate the
intrinsic change in the donor radius (ν2), GWR driving rate (νL) and the mass
transfer rate (Ṁ2) at every time-step. We also check if the mass transfer rate
exceeds the Eddington limit, and if it does, a certain fraction of the mass being
transferred is lost from the system (as described by Han & Webbink (1999)). This
information is then used to calculate the new masses, radii and orbital separation
for the next time-step. The driving rate, mass transfer rate and so on are calculated
with the new values of the radii, orbital separation, tidal timescales etc. and the
integration continues.
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Appendix B: Permission to Reproduce
Figure 1.3

Vayujeet

From: "Icko Iben" <icko@astro.uiuc.edu>
To: <gokhale@theory.phys.lsu.edu>
Sent: Thursday, October 19, 2006 3:23 PM

10/19/06

Dear Varyujeet, 

By all means include any figure I've ever published. 
The whole point of publishing is to provide information 
that other folks might find useful and/or interesting. 
Best wishes for constructing a useful and interesting 
thesis. 

Cheers, Icko Iben, Jr. 
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Appendix C: Permission to Reproduce
Figure 1.4

Vayujeet

From: "Gijs Nelemans" <Nelemans@astro.ru.nl>
To: "Gokhale Vayujeet" <gokhale@theory.phys.lsu.edu>
Sent: Thursday, October 12, 2006 3:37 PM
Subject: Re: permission to use figure... 

Dear Vayujeet, 

Of course you can use that figure, at least if you refer to the original paper. 

Best wishes, 

  Gijs 

> i am a graduate student at the Louisiana State University, Physics & 
> Astronomy dept. i would like to include a figure from one of your 
> publications in the introductory chapter of my thesis titled "Mass 
> Transfer and Evolution of Compact Binaries". The said figure is fig. 1 
> from astroph/0409676v2, outlining the various channels of AM CVn 
> formation. 
>
> i would greatly appreciate it if you could grant me permission to include 
> this figure in my thesis. It succintly outlines the different 
> possibilities for the formation of such systems, which greatly helps the 
> narrative. 
>
> thanking you very much in advance, 
>
>                                  - Vayujeet. 
>
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