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ABSTRACT

Volumetric modulated arc therapy (VMAT) is a rotational IMRT technique that uses a 

radiotherapy linear accelerator gantry with a dynamic MLC, variable dose rate, and variable 

gantry speed.  These new degrees of freedom of VMAT delivery introduced complexities for 

treatment planning, and Pinnacle3 SmartArc treatment module was recently developed as a 

solution.  However, it was unclear how varying each SmartArc parameter affected the resulting

plan quality.  The purpose of this study was to systematically examine all planning parameters 

and quantify the effect of varying each on the quality of a reference plan.

Parameters were separated into two categories: commissioning parameters and planning 

parameters.  Commissioning parameters were those available to the user during the machine 

commissioning process in Pinnacle, i.e. dose rate, gantry speed, MLC size, and MLC speed.  

Planning parameters were those available to the user during routine treatment planning, i.e. beam 

energy, collimator angle, arc length, and final gantry spacing.  A "baseline" set of commissioning 

and planning parameters was created that provided clinically acceptable plans for a cylindrical 

phantom case, simple prostate case, and complex (multi-target) prostate case.  Each parameter 

was independently varied while keeping all other parameters set to the baseline values.  The 

resulting change in each plan was evaluated using dose volume histograms, dose homogeneity 

indices (DHI), conformity indices (CI) and normal tissue dose metrics.

The DHI and CI for the phantom and simple prostate cases varied by less than 0.02 from 

the baseline values for most parameters.  The DHI and CI for the complex prostate case varied 

by more than 0.02 from the baseline values for most parameters.  The dose to normal tissues 

changed by less than 3% as parameters were varied for the simple prostate case and more than 

3% as parameters were varied for the complex prostate case.
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Most SmartArc parameters had little effect on DHI, CI, and normal tissue sparing for the 

phantom and simple prostate treatment geometries, but showed significant variations for the 

complex prostate case.  We conclude that SmartArc optimization is largely user-independent and 

hardware-independent for non-complex prostate treatment geometries.  However, certain 

parameters (especially planning parameters) create a significant change in resulting plan quality 

for complex prostate treatment geometries.  
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1 INTRODUCTION

1.1 Background and Significance 

1.1.1 History and Development of VMAT 

Intensity modulated arc therapy (IMRT) is a radiation treatment modality that provides 

accurate, reliable, and highly conformal dose to a planning target volume (Khan 2003). Several 

techniques of delivering IMRT have been established: static-gantry techniques, such as fixed-

beam IMRT; and rotational-gantry techniques, such as helical tomotherapy (Mackie et al. 1993; 

Bortfeld and Webb 2009).  Fixed-beam IMRT has been shown to provide better dose 

conformality and normal tissue sparing than 3-D conformal treatments (Staffurth 2010), but it is 

still limited by only using a finite number of beams for delivery.  Helical tomotherapy also 

provides highly conformal dose distributions, but requires specialized delivery hardware and 

treatment planning software.  Both fixed-beam IMRT (except for compensator-based IMRT) and 

helical tomotherapy increase treatment delivery time compared to 3-D conformal treatments, 

which could lead to greater problems in dose accuracy due to intra-fractional motion.

The idea of using a traditional linear accelerator gantry for a rotational IMRT treatment 

was first suggested by Yu et al. in 1995 as an alternative to tomotherapy, which necessitated 

specialized equipment and struggled with abutment problems between treatment slices at that 

time.  Yu's alternative was called intensity modulated arc therapy (IMAT) and utilized a large 

field size, traditional linear accelerator, continuous gantry rotation, and dynamic MLC.   To 

create an intensity distribution, IMAT was delivered in multiple overlapping arcs.  Each arc 

delivered only one level of intensity; therefore multiple arcs were required for multiple levels of 

intensity.  The two-dimensional intensity distribution at each angle was a composition of 

multiple radiation fields of uniform intensity with different shapes and sizes.  Shortly after IMAT 
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was proposed, helical tomotherapy was created, alleviating abutment problems without the 

necessity of developing new software for optimization and delivery of IMAT.  As such, IMAT 

was never used in mainstream clinical practice.

Developments in rotational delivery capabilities of traditional linear accelerators in the 

last few years, specifically variable dose rate and variable gantry speed, have sparked a new 

interest in rotational IMRT delivery and IMAT (Bortfeld and Webb 2009).  Volumetric 

modulated arc therapy (VMAT) has been developed using the basic principles of IMAT, coupled 

with these new machine capabilities.  During a VMAT treatment, MLC leaves dynamically 

shape the beam to treat the entire volume of the planning target volume (PTV) with every 

rotation, and the dose rate and/or gantry rotation speed is continuously varied as the gantry of the 

linear accelerator rotates around the patient.  Because of the ability of the linear accelerator to 

vary dose rate and gantry speed during rotation, it is no longer necessary to use multiple 

overlapping arcs to create modulated intensity, and an entire fraction of treatment can often be 

delivered in a single arc (Bortfeld and Webb 2009).

Both Elekta, Inc. (Stockholm, Sweeden) and Varian Medical Systems (Palo Alto, 

California) have developed VMAT capabilities on their traditional linear accelerators.  Varian 

has named this new version of VMAT "RapidArc," while Elekta refers to it as "VMAT."  In this 

study "VMAT" is used as a generic term for a dynamic arc IMRT treatment modality that uses 

dynamic MLC, variable dose rate, and variable gantry speed, and is not meant to be vendor-

specific.  

1.1.2 Technical Description of VMAT 

Three key components of VMAT are rotational delivery, dynamic MLC, and variable 

dose rate and gantry speed.  To describe these components, it is useful to compare and contrast 



3

VMAT to both fixed-beam IMRT and tomotherapy.  Although VMAT and tomotherapy are both 

rotational treatment modalities, their delivery methods are very different.  Tomotherapy, 

meaning ‘slice therapy,’ uses a fan beam and ring gantry to treat one transverse slice of the PTV 

at a time (Mackie et al. 1993).  In helical tomotherapy, much like helical computed tomography, 

the couch moves perpendicularly to the gantry plane while the gantry rotates around the patient, 

creating a spiral-treatment (Yang et al. 1997). With VMAT, however, the entire PTV is treated 

with every rotational pass of the gantry (Cao et al. 2007).  This means VMAT has the potential 

to treat the entire PTV to the desired dose using a single arc (Otto 2008).  In other words, 

tomotherapy can be considered a planar delivery technique, whereas VMAT is a volumetric 

delivery technique.  A schematic of the difference in delivery is shown in Figure 1-1.  Both 

gantries rotate around the patient, but the tomotherapy couch moves into the gantry to create a 

helical slice delivery while the VMAT couch remains stationary as the beam treats the entire 

PTV.

The next key component of VMAT treatments is the dynamic MLC.  Treatment plans for 

fixed-beam IMRT are comprised of a finite number of beams at fixed angles around the patient.  

Figure 1-1.  Tomotherapy slice delivery (left) vs. VMAT volumetric delivery (right).
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In order to produce an optimized fluence pattern for each fixed beam, the MLC leaves move 

either dynamically (Svensson et al. 1994) or in a step-and-shoot fashion (Wu et al. 2001) across 

the beam, creating several segments with different intensities to modulate the beam.  

Compensator-based IMRT does not use MLCs, but instead a tissue compensator is fabricated for 

every beam angle and attached to the machine before the beam is delivered.  In tomotherapy 

treatments, beams are optimized for 51 arc segments in each slice, and the binary MLC leaves 

are either open or closed for some specific amount of time during the arc segment in order to 

modulate the beam (Mackie et al. 1993).  For both fixed-beam IMRT and helical tomotherapy, 

the beam modulation is determined by the amount of time the leaves spend in each position.  

VMAT treatments must use a dynamic MLC because the beam is on during the entire treatment 

as the gantry rotates around the patient.  For VMAT treatments, the MLC leaves move as a 

Figure 1-2.  Sample MLC segments for VMAT delivery for 6 consecutive control 
points.  MLC leaves (white) do not simply follow the shape of the PTV (red) as the 
gantry rotates around the patient. 
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function of gantry position, not time (Bortfeld and Webb 2009).  The leaves reposition according 

to where the gantry is located in its rotation, and each angle of rotation sees only one segment 

shaped by the MLC.  However, because the leaves do not simply conform to the shape of the 

PTV, VMAT can still be considered a form of IMRT, not 3-D conformal therapy.  An example 

of MLC segment positions as the gantry travels around the arc is shown in figure 1-2.  The 

leaves are used to modulate the intensity distribution.

Rotational delivery adds the flexibility of treating at every angle, which can be greatly 

advantageous for some treatment sites, but the limited MLC range of motion per gantry angle 

somewhat limits this flexibility (Otto 2008).  Because the MLC leaves have a maximum speed, 

the distance they travel is limited by how slowly the gantry can rotate. Limited leaf motion and 

continuous beam delivery can quickly lead to unwanted dose to normal tissues.  To obtain a 

sufficient intensity resolution without the necessity of using overlapping arcs (Yu 1995; Earl et 

al. 2003), the dose rate and/or gantry speed are varied throughout the VMAT treatment.  This 

creates a direct modulation of beam output that is unique to VMAT delivery.  During VMAT 

treatment, the beam output is changed according to gantry position, whereas intensity modulation 

in both tomotherapy and fixed-beam IMRT results from changing the beam-on time for each 

MLC segment.  VMAT delivery combines varying leaf motion with varying dose rate and/or 

gantry rotation speed to modulate beam intensity.  

1.1.3 Advantages and Disadvantages of VMAT

The most frequently-mentioned and advertised benefits of VMAT are decreased 

treatment time and increased monitor unit (MU) efficiency.  If only a single arc is used, the 

beam-on time is reduced to the time it takes the gantry to rotate from the start angle to the stop 

angle position (including variations in gantry speed).  This can accomplish a substantially shorter 
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overall treatment time than both helical tomotherapy and fixed-beam IMRT (Webb and McQuaid 

2009).  It has been shown that for prostate and head and neck treatment sites, VMAT plans with 

similar or better quality than fixed-beam IMRT could be delivered in less than 3 minutes, 

compared to 8-12 minutes for fixed-beam IMRT delivery (Bzdusek et al. 2009; Verbakel et al. 

2009; Shaffer et al. 2009; Zhang et al. 2009).  The shorter overall treatment time has been 

advertised to lead to greater patient compliance as well as greater throughput for the radiation 

treatment facility.  Alternatively, shorter beam-on time may allow for use of more advanced

image-guidance tools, such as on-board cone beam computed tomography that is now becoming 

widely available, without sacrificing overall treatment time.  

VMAT also has much higher MU efficiency than other forms of IMRT delivery, with the 

exception of compensator-based IMRT.  This means VMAT can treat the PTV to the same dose 

using fewer MU than fixed-beam IMRT and helical tomotherapy.  Fixed-beam IMRT and 

tomotherapy keep the dose rate constant and change the amount of beam-on time for each MLC 

segment to modulate intensity.  With these techniques, much of the beam is “wasted” for small 

fields.  Because VMAT directly varies the dose rate of the beam to change the beam’s intensity, 

it is much more efficient in terms of MUs than both tomotherapy and fixed-beam IMRT.  

Verbakel et al. found that VMAT reduced the number of monitor units used per fixed-beam 

IMRT treatment by 40 percent for head and neck geometries (2009).  Bzdusek found MUs were 

decreased up to 23 percent for lung geometries, 13 percent for whole brain, and less than 10% 

for tonsil and prostate, where MU for one of three prostate cases actually increased 29 percent 

(2009).  Also, photon x-ray beams with energy less than 10MV are typically used for IMRT 

because IMRT treatments require more MUs than conformal treatments, causing increased 

secondary radiation to normal tissues outside the radiation field due to leakage and scatter.  For 
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energies greater than 10MV, neutron production from photon interactions in the machine head 

also increases with increasing MU (Reft et al. 2006).  By requiring fewer MUs, VMAT can 

potentially allow for usage of higher energy photons with reduced risk of secondary cancers.

Disadvantages of VMAT include a limited beam size, which makes VMAT incapable of 

treating long PTVs (e.g. craniospinal cases) without abutment of two arcs.  Also, multiple 

superimposed arcs may be required for VMAT to achieve comparable modulation and dose 

distributions to those achieved by Tomotherapy.  

1.2 Optimization of VMAT 

Along with the evolution of rotational delivery capabilities of the treatment machine, 

substantial changes in the optimization algorithms used for fixed-beam IMRT were necessary in 

order to make VMAT clinically possible.  These included techniques for creating an effective 

360 degree fluence map and the addition of several new optimization parameters.  The 

optimization module used in this study was SmartArc, developed for the Pinnacle3 treatment 

planning system (Philips Medical Systems, Andover, MA).

Though the beam treats in a continuous arc, there are a finite number of control points 

(CPs), or samples around the arc used for optimization and delivery.  This produces a tradeoff 

between dose delivery accuracy and optimization computation time (Otto 2008); more CPs leads 

to better plan accuracy but longer computation time.  Otto proposed implementing “progressive 

sampling” as a compromise.  First, coarse sampling is used to create intensity maps for several 

angles around the arc, and then subsequent CPs are added in smaller degree increments to 

increase plan dosimetric accuracy.  Figure 1-3 shows a diagram of progressive sampling.  

Bzdusek et al. (2009) incorporated progressive sampling in their VMAT optimization 

solution for the SmartArc treatment planning module.  First, an initial coarse sampling increment 
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of 24 degrees is used, and fluence maps are generated, optimized, and converted to leaf segments 

for these angles. Then, intermediate MLC segments are linearly interpolated between the coarse 

segments, creating a finer CP spacing (Bzdusek et al. 2009).  

SmartArc optimization module is outlined in Figure 1-4. First, intensity maps are 

optimized every 24 degrees around the arc and converted to 2-4 different MLC segments.  The 

Figure 1-3.  Diagram of progressive sampling. An initial coarse CP spacing is chosen (a) 
and intermediate CPs are added between existing CPs until desired CP frequency is 
reached (b-d).  Figure reprinted from Otto 2007, Medical Physics, Vol. 35 p 312

Figure 1-4.  Outline of SmartArc optimization.��Figure 
reprinted from Bzdusek et al. 2009, Medical Physics, Vol. 
36 p 2330
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two MLC segments that have the most open space are selected and redistributed 8 degrees above 

and below the point along the arc where the intensity map was initially created (every 24 

degrees).  The two segments with the most open space are selected in order to minimize leaf 

travel between CPs.  The remaining MLC segments generated for that point are discarded.  

Additional MLC segments are then linearly interpolated to create the CP resolution, or final 

gantry spacing, selected by the user (2, 3, 4, or 6 degrees).  Figure 1-5 shows the filtering, 

redistribution and sequencing of MLC segments.  

After initial arc MLC segments have been interpolated, machine parameters are 

optimized, followed by a convolution dose calculation and segment weight optimization.  Then 

the process is repeated until the number of iterations is reaches its limit.  The result is that every 

2, 3, 4, or 6 degrees, the treatment control system is given a new set of directions until it arrives 

at the next CP.  The set of directions includes MLC configuration, leaf speed, dose rate and 

gantry rotation speed.

Figure 1-5.  Diagram of MLC segment creation for SmartArc 
optimization.  2-4 segments are generated at the initial CP spacing 
(24º), then 2 are selected and redistributed (crosses) while the 
others are discarded.  Additional MLC segments are interpolated 
between the initial segments (first blue circles, then red).  Figure 
reprinted from Bzdusek et al. 2009, Medical Physics, Vol. 36 p 2330
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1.3 Motivation for Research

Clinical treatment planning requires commercialized software and tested protocols to 

accurately construct radiation therapy treatment plans that maximize the capabilities of available 

technology.  While such tools have long been established for tomotherapy and fixed-beam 

IMRT, analogous tools for VMAT are still in the development stages.  Recently a commercial 

utility, Phillips Pinnacle3 SmartArc (described above), has been created to optimize VMAT 

treatments; however, the optimization process contains numerous parameters and options that 

have not yet been fully explored (Bzdusek et al. 2009).  It is currently unknown how each of 

these parameters may be used to generate an optimal treatment plan for any particular treatment 

site.  

The goal of this study was to systematically vary and examine new parameters introduced 

by VMAT (such as variable dose rate) and previously existing parameters (such as maximum 

gantry speed) that had potential to influence resulting VMAT plans.  A comprehensive study of 

all parameters related to VMAT treatment planning is clinically relevant and useful for future 

treatment planning.

1.4 Hypothesis and Specific Aims

Our hypothesis was that a set of parameters for the Phillips Pinnacle3 SmartArc treatment 

planning module could be determined that produce dynamic arc plans with 

1) treatment times less than half that of corresponding fixed-beam IMRT plans, and 

2) better than !3% dose homogeneity in the PTV of a water phantom, !5% dose 

homogeneity in the PTV of a simple prostate patient, and !5% dose homogeneity in the 

primary PTV of a multi-target complex prostate patient

while maintaining sufficient sparing of critical structures.  
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Specific Aim 1:  Determine a set of baseline parameters for planning VMAT 

treatment for a spherical PTV in a simple water-equivalent phantom, and then vary 

parameters systematically.  The baseline plan was considered acceptable if it maintained !3% 

dose homogeneity within the PTV.  All parameters were kept identical to the baseline set except 

the parameter actively being studied.

Specific Aim 2: Determine a set of baseline parameters for planning VMAT 

treatment for a simple prostate patient, and then vary parameters systematically.  A 

previously treated, simple prostate patient involving a single target was selected.  The baseline 

plan was considered acceptable if it maintained !5% dose homogeneity within the PTV and 

sufficiently spared surrounding critical structures.

Specific Aim 3: Determine a set of baseline parameters for planning VMAT 

treatment for a complex, multi-target prostate patient, and then vary parameters 

systematically.  A previously treated, complex prostate patient involving multiple targets was

selected.  The baseline plan was considered acceptable if it maintained !5% dose homogeneity 

within the PTV and sufficiently spared surrounding critical structures.
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2 METHODS

To determine how optimization parameters affect resulting plan quality, parameters were 

varied and resulting plans evaluated for three treatment sites with increasing complexity.  All 

cases were planned and optimized using Pinnacle3 version 8.1y (Philips Medical Systems, 

Andover, MA). Version 8.1y was the first release of Pinnacle to include the SmartArc planning 

module, and it was the most current version at the time of the study.  All parameters used in this 

study are introduced here, followed by a detailed description of the methods common to all 

specific aims and, finally, an explanation of details unique to each specific aim.

2.1 Description of Parameters

2.1.1 Commissioning Parameters

A list of parameters relevant to SmartArc planning was created and categorized into two 

groups: commissioning parameters and planning parameters.  Commissioning parameters were 

those parameters available for selection during the commissioning and configuration of the linear 

accelerator in the treatment planning system.  These parameters included dose rate, gantry speed, 

MLC size and maximum leaf speed, and maximum MU per degree of rotation.  These 

parameters are typically chosen based on the physical and mechanical capabilities of the linear 

accelerator used for treatment, and are briefly described here:

" Dose rate is a measure of the output of the beam in MU per time.  The Philips Pinnacle 

treatment planning system allows for the dose rate to be varied either continuously or 

discretely.  The user must also specify a maximum allowable dose rate.  If the dose rate is 

varied continuously, the user must only provide the maximum allowable dose rate as 

input to Pinnacle.  If the dose rate is varied discretely, the user must provide each 

allowable dose rate in a table provided in the commissioning window of Pinnacle.  Elekta 

linear accelerators vary dose rate discretely, stepping down from the maximum dose rate 
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by a factor of two until reaching some minimum dose rate (i.e. 600, 300, 150, 75, 37 

MU/min).  Varian linear accelerators, however, have a continuously variable dose rate.  

In this study, trials for both continuously variable and discretely variable dose rates were 

examined for maximum dose rates of 400, 600 and 800 MU/min.

" Maximum gantry speed describes the maximum angular velocity of the gantry, and is 

given in units of degrees per second.  The maximum gantry speed would theoretically 

influence resulting VMAT plans because the gantry is continuously rotating as the beam 

is continuously delivering.  A faster maximum speed implies the possibility of a shorter 

overall delivery and perhaps a better dose distribution.  The faster gantry lowers the 

minimum possible dose delivered per control point arc.  Maximum gantry speeds of 4, 6, 

8, and 12 deg/sec were used in this study.

" Maximum MLC leaf speed is a measure of how far the leaves can travel in a certain 

amount of time in units of cm/sec.  The relevance of this parameter is connected to gantry 

rotation speed.  The distance the leaves can travel per gantry rotation determines how 

much the beam shape can change between control points, and how much the beam can be 

modulated by the MLC.  Only IMRT delivery techniques using dynamic MLC would be 

influenced by this parameter.  Maximum MLC leaf speeds used in the study were 1, 2, 

and 3 cm/sec.

" MLC leaf size describes the width of the individual MLC leaves and varies among linear 

accelerator vendors.  Leaves in the 80-leaf MLC of Elekta linear accelerators have 1cm 

thickness, while the 120-leaf Varian MLC combines 5mm leaves in the center of the field 

with 1cm leaves toward the edges of the field.  It would be intuitive to assume a smaller 

MLC leaf size would produce a more conformal dose to the PTV and spare normal 
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tissues surrounding the PTV more effectively.  In fact, it has been shown that this is not 

necessarily the case for fixed-beam IMRT (Su et al. 2007).  Leaf widths of 1cm and 5mm 

were both used in this study.

" Maximum MU/degree limits how much output the beam can deliver per degree of 

rotation.  The starting value for this study was 100 MU/deg, and then 1 MU/deg was 

chosen to determine how the optimization algorithm would respond to an unreasonably 

low value.

Commissioning parameters do not necessarily have an effect on optimization of fixed-beam 

IMRT treatments.  For example, the leaf speed and gantry rotation do not affect the plan quality 

of a step-and-shoot treatment because the leaves are not moving and the gantry is not rotating 

while the dose is being delivered.  However, commissioning parameters could have an important 

influence on plan quality for VMAT treatments because the gantry rotates and the MLC moves 

continuously during beam delivery.  A list of commissioning parameters and the range of values 

for which each parameter was varied is given in Table 2-1.  The intervals of values chosen for 

parameter variation were selected to bind the possible capabilities of a linear accelerator around a 

Table 2-1.  List of commissioning parameters and range 
of values used in the study.  Baseline values shown in 
bold type.

Commissioning Parameters Range of values
Gantry Speed Variability yes/no
Maximum Gantry Speed 4, 6, 8, 12 deg/sec

Maximum Dose Rate 400, 600, 800 MU/min
Dose Rate Variability Continuous/Discrete

Maximum MLC Leaf Speed 1, 2, 3 cm/sec
MLC Leaf Size 1cm/5mm

Maximum MU/degree 1, 100 MU/deg
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baseline value, shown in bold type in Table 2-1.  Baseline values were chosen according to 

recommendations from Pinnacle (Friberger 2009) and existing machine capabilities.  

2.1.2 Planning Parameters

Planning parameters were defined as those parameters available for selection during 

routine treatment planning.  Planning parameters examined in this work included beam energy, 

arc length, collimator angle, dose grid resolution, final gantry spacing, and maximum delivery 

time, and are briefly described here:

" Beam energy depends on a selection of megavoltage energies available for any specific 

machine.  The machine used in the present study had 6, 10, and 15 MV energies 

available.

" Arc length is determined by setting the start and stop angle of the continuous arc.  

Pinnacle version 8.1y used in this study could only optimize for a single, maximum 360-

degree arc.  For this study, total arc lengths were varied to 60, 120, 180, 270, and 360 

degrees.

" Collimator angle ranges from 0 to 360 degrees and remains stationary throughout the 

entire treatment.  MLC leaves move in only one dimension, so the collimator can move 

parallel to gantry rotation direction (90 degree collimator angle for this study) or 

perpendicular to gantry rotation direction (0 degree collimator angle  for this study) or at 

some angle in between.  A 45 degree collimator angle covers the longest distance in the 

superior-inferior dimension.  Collimator angles of 0-90 degrees represent a complete 

range of collimator orientations with respect to gantry rotation direction.  For instance, 

collimator angles of 0 and 180 degrees represent the same orientation to gantry rotation, 

and collimator angles of 90 and 270 degrees represent the same orientation to gantry 
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rotation.  For this reason, only collimator angles ranging from 0 to 90 degrees were used 

in this study.

" Dose grid resolution determines the dose calculation sampling resolution for the Pinnacle 

treatment planning system.  The standard dose grid resolution used in our treatment 

facility is 0.400 cm.  Dose grid resolution was also varied to 0.300cm and 0.500 cm to 

determine the effects on resulting plan quality.

" Final gantry spacing is the final spacing of control points around the VMAT delivery arc.  

Because of progressive sampling, described earlier, the optimization always starts at a 24 

degree spacing of control points, and the final spacing is chosen by the user to be 2, 3, 4, 

or 6 degrees.

" Maximum delivery time is requested by the user to keep overall treatment time less than 

some maximum value.  Maximum delivery times used in this study were 60, 120, and 

240 seconds for all treatment geometries, with varying supplemental treatment times for 

each geometry.

" Allow backup jaw motion parameter determines if the jaws remain stationary or if they 

are allowed to follow the MLC leaves during treatment.  Allowing back-up jaw motion 

during optimization created an artifact in the computed final dose in version 8.1y, so jaws 

were opened enough to cover the PTV with a 0.5cm margin from all gantry angles at 

specified collimator setting and fixed in position for optimization for this study.  In more 

recent versions of Pinnacle (9.0), this problem has been resolved.  

Planning parameters are not necessarily limited by linear accelerator capabilities, but are an 

integral part of the optimization process for SmartArc treatment planning.  They are typically 
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variable within the machine’s capabilities and chosen by the planner to create the best possible 

plan.  

In addition to planning parameters used for several different delivery techniques, there 

are a few planning parameters specific to SmartArc optimization.  One of these parameters, final 

gantry spacing, determines the final spacing of control points around the delivery arc.  Maximum 

delivery time is also unique to SmartArc optimization and allows the user to minimize overall 

treatment time per treatment fraction.  A complete list of planning parameters used in this study 

and the interval of values for which they were varied is given in Table 2-2.  Baseline values are 

shown in bold type.  These values were chosen according to recommendations by Pinnacle and 

common values used for fixed-beam IMRT in our treatment facility.

2.2 Research Design

This study focused on three treatment sites to determine the effect of varying each of the 

previously mentioned parameters on plan quality: a spherical target within a cylindrical phantom, 

a single-target prostate, and a multi-target prostate.  Each of the three specific aims tested the

hypothesis for one and only one of these treatment sites.  The process for creating treatment 

plans and evaluating commissioning and planning parameters was common to all aims and is 

described in the following paragraphs.  First, a clinically acceptable baseline plan was generated 

for each treatment geometry.  Then, parameters were varied independently and systematically

Table 2-2.  List of planning parameters and range of 
values used in this study.  Baseline values are shown in 
bold type.

Planning Parameters Range of values
Beam Energy 6, 10, 15 MV
Arc Length 60, 120, 180, 270, 360 deg

Collimator angle 0, 30, 45, 60, 90 deg
Dose grid resolution 0.3, 0.4, 0.5 cm

Maximum delivery time 60, 120, 240 sec
Final gantry spacing 2, 3, 4, 6 deg
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from their baseline values. Finally target homogeneity data, conformity data, and normal tissue 

data were collected in order to quantify and evaluate the quality of resulting plans.

2.2.1 Baseline Plan

For each treatment site, a baseline plan was created that provided acceptable dose 

homogeneity and sufficient normal tissue sparing.  To determine sufficient normal tissue sparing 

and clinical acceptability, all baseline plans were approved by a radiation oncologist.  Initial 

parameter values for each baseline plan were set based on recommendations from Pinnacle or 

taken as values from an Elekta linear accelerator used for IMRT treatment at our facility.  

Baseline parameter values are shown in Table 2-3.

2.2.2 Parameter Variation

Once a baseline plan was created, all commissioning and planning parameters were 

varied systematically.  Figure 2-1 shows a diagram of how each parameter was varied.  After the 

treatment geometry was selected and the baseline parameter values were chosen, the baseline 

Table 2-3. Baseline parameter values for all three 
treatment geometries.

Parameter Baseline Value
Gantry Speed Variability yes
Maximum Gantry Speed 6 deg/sec

Maximum Dose Rate 600 MU/min
Dose Rate Variability Discrete

Maximum MLC Leaf Speed 2 cm/sec
MLC Leaf Size 1cm

Maximum MU/degree 100 MU/deg
Beam Energy 6 MV
Arc Length 360 deg

Collimator angle 0 (prostate), 90 (phantom) deg
Dose grid resolution 0.4 cm

Maximum delivery time 120 sec
Final gantry spacing 4 deg
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plan was copied several times, creating a new plan for each parameter in order to study 

parameters separately.
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Figure 2-1. Diagram of steps taken to create new trials for each parameter studied.  First 
patient geometry is selected, then a baseline plan is created and copied several times to create a 
new plan for each parameter studied.  The baseline trial is then copied within each plan in order 
vary that parameter while keeping all other parameters set to their baseline values.
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Several trials were created within each plan corresponding to different input values for 

that parameter.  For example, a plan entitled “Maximum gantry speed” was created for each 

patient, and several trials were created inside that plan with different maximum gantry speeds.  

To examine commissioning parameters, it was necessary to commission a new machine for each 

trial.  

Copying the baseline plan generated a baseline trial within every plan.  Each parameter 

was varied from a copy of this baseline trial.  In other words, the baseline plan was copied 

several times to create new plans (one plan for every commissioning and planning parameter), 

and the baseline trial was copied several times to create new trials within those plans.  This 

assured that all parameters remained fixed at the baseline values except for the parameter being 

studied in that plan.  The number of trials in each plan depended on the range of variability of the 

parameter being studied.  Some parameters consisted of a yes or no option; therefore these plans 

contained only two trials.  The range of variability was chosen to expand above and below the 

baseline value for each parameter, and is shown for commissioning and planning parameters in 

Tables 2-1 and 2-2.  Table 2-1 shows 6 commissioning parameters with 16 unique settings, and 

Table 2-2 shows 6 planning parameters with 23 unique settings.  For this study, parameters were 

varied independently to determine their individual effect on resulting plan quality, as varying all 

combinations of parameters (almost 800,000 possibilities) together would be impractical using a 

systematic approach.

2.2.3 Plan Evaluation

Plans from each trial were compared and evaluated using the dose volume histograms 

(DVHs) calculated by Pinnacle, the dose homogeneity index (DHI) for each PTV, the conformity 
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index (CI) for the primary PTVs of each treatment geometry, and the dose to normal tissue 

metrics.  The DHI was calculated as
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where Dmin(99%) is the dose exceeded by 99% of the target volume and Dmax(1%) is the dose 
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high and low dose regions created by Pinnacle’s dose computation and/or small volumes of little 

clinical interest.  A perfectly homogenous dose to the PTV would result in a DHI of 0.0.  The 
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where PIV is the volume covered by the prescribed isodose value, TV is the volume of the target, 

and TVPIV is the volume of the target within the prescribed isodose value.  Ideally the PIV, TV, 

and TVPIV would be equal, making the CI equal to 1.  

For the two cases involving normal tissue constraints (simple prostate and complex 

prostate), normal tissue metrics were also used to evaluate the plan quality.  “Hard” constraints 

for normal tissues for intact prostate cancer treatment are described by Pollack et al. (2005): 
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receives 8*=:;B%%C'/%+,%-./%&D7+24-/%1+'(6-6+'7%,+0%126'61&2%&11/?-&D626-;%+,%-./se prostate plans 

was that 95% or greater of the PTV received 100% of the prescribed dose.  For this reason, all 
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prostate plans in our study were normalized so that 95% of the PTV received the prescription 

dose.  Normal tissue metrics were taken from Pollack et al., and evaluated at 17% and 35% of 

the rectum, 25% and 50% of the bladder, and 10% of the femoral heads.  The maximum dose to 

the femoral heads were also evaluated, taken at Dmax(1%).  The phantom case had no normal tissue 

constraints, so only the DHI and CI were used in evaluating parameter trials for the phantom 

case.

2.3 Specific Aims

Three treatment geometries of increasing complexity were chosen for this study in order 

to determine the effect of varying both commissioning and planning parameters on resulting plan 

quality.  Each specific aim examined a single treatment geometry.  The following sections

describe the details unique to each specific aim.  

2.3.1 Specific Aim 1: Phantom Case

The first geometry, a phantom, was chosen to represent an ideal case for treatment.  

Because it was important to start with the simplest conceivable case to determine an upper 

threshold for the capabilities of SmartArc optimization, the phantom geometry can be described 

as a simple approximation of a prostate PTV without any dose limiting structures.  For the 

phantom geometry, a spherical target was contoured in the center of a cylindrical, homogeneous, 

water-equivalent phantom.  The target was 7.5 inches in diameter, and it was centered inside the 

30-inch diameter cylinder.  A cylindrical phantom was chosen instead of a rectangular phantom 

because it was believed to better represent the contour of the human body.  The spherical target 

was drawn using Pinnacle software in the center of the phantom, and there were no avoidance 

structures identified.  The prescription given to the phantom target for optimization was 200 cGy 

to 95% of the PTV in 1 fraction, which represents a typical fractional dose for prostate cancer at 
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our treatment facility.  Because the tabular DVHs calculated by Pinnacle show dose in cGy, the 

phantom plans were later prescribed 7600 cGy in 38 fractions to achieve a better dose resolution 

for gathering data from the DVHs.  Changing the number of fractions in the prescription did not 

change the fractional DVH; all data points were merely multiplied by a factor of 38.  A 

transverse view of the phantom geometry is shown in Figure 2-2.

2.3.2 Specific Aim 2: Simple Prostate Case

The second geometry was a single-target prostate patient.  This case was chosen because 

it represented a relatively standard, simple prostate case.  The patient selected had previously

been treated at our facility with fixed-beam, 7-field step-and-shoot IMRT.  The original 

prescription was 7600 cGy to the PTV in 38 fractions delivered with a 6MV beam, and 

avoidance structures included the rectum, bladder, and left and right femoral heads.  The 

prescription for this study was kept the same as the original prescription.  Transverse, sagittal, 

and coronal views of the simple prostate geometry are shown in Figure 2-3.

Figure 2-2.  Transverse view of phantom 
case.  PTV is shown in red.
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2.3.3 Specific Aim 3: Complex Prostate Case

The third geometry used in this study was a complex prostate case with multiple PTVs.  

This treatment site was chosen to represent a more complicated geometry.  The patient was 

previously treated at our facility with helical tomotherapy.  The original prescription was 56 Gy 

in 28 fractions to the extended prostate bed with a 22 Gy boost to the prostate bed; 61.6 Gy in 28 

fractions to a positive node; and 46.2 Gy in 28 fractions to the entire nodal region. Avoidance 

structures included the rectum, bladder, and left and right femoral heads.  The prescription for 

the SmartArc optimization was 78 Gy to the prostate bed (PTV 1), 61.6 Gy to the positive node

(PTV 2), 56 Gy to the extended prostate region (PTV 3), and 46.2 Gy to the extended nodal 

region (PTV 4) in 28 fractions.   Transverse, sagittal, and coronal views of the complex prostate 

treatment geometry are shown in Figure 2-4.

���

Figure 2-3.  Transverse (top), sagittal (left), and coronal (right) view of simple prostate 
case.  PTV is shown in red.
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Figure 2-4.  Transverse (top), sagittal (left), and coronal (right) views of complex 
prostate geometry.  PTV1: red, PTV2: green, PTV3: blue, PTV4: orange.
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3 RESULTS

This chapter describes the resulting plans based on metrics taken from the dose volume 

histograms (DVHs), dose homogeneity indices (DHI), conformity indices (CI), and normal tissue 

metrics. The results for the three baseline plans are described first, and then data for each 

commissioning and planning parameter is presented simultaneously for all three specific aims.

3.1 Baseline Results

3.1.1 Phantom Baseline Results

A baseline plan was created to achieve acceptable dose homogeneity to the target for the 

phantom case.  A transverse image of the baseline plan is shown in Figure 3-1, where the red 

shaded area represents the PTV.  The corresponding DVH for the phantom baseline plan is 

shown in Figure 3-2.  A single, 360-degree dynamic arc beam with energy 6MV was used for the 

baseline plan, and the isocenter for this beam was placed in the center of the target volume.  The 

plan was allowed 35 iterations, but a solution was found in only 21 iterations.  The convolution 

dose calculation started at iteration 8.  The only optimization objectives set for this aim, listed in 

Table 3-1, were maximum and minimum dose to the PTV.  The prescription isodose line 

(7600cGy) is shown in Figure 3-1, along with the prescription ±3% isodose lines (7372cGy and 

7828cGy).  All baseline commissioning and planning parameter values were discussed 

previously and are shown in Table 2-3.  All trials were normalized so that at least 95% of the 

PTV received 100% of the prescribed dose.  The optimization took approximately 15 minutes for 

each trial (excluding smaller arc lengths) for the phantom case, and final dose computation took 

about 20 minutes to complete for each trial.

       Table 3-1.  Optimization objectives for phantom case, Aim 1
ROI Type Target cGy Weight
PTV Max Dose 205 10
PTV Min Dose 195 10
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3.1.2 Simple Prostate Baseline Results

A baseline plan was created to achieve ±5% dose homogeneity to the simple prostate 

target.  A single, 360-degree dynamic arc beam with an energy of 6MV was used for the baseline 

plan, and the isocenter for this beam was placed in the center of the prostate PTV.  The 

optimization was allowed 45 iterations, with the convolution dose calculation starting at iteration 

Figure 3-1.  Phantom baseline plan isodose lines (blue: 97%, 
yellow: 100%, green: 103% of prescribed dose)

Figure 3-2.  DVH for the phantom baseline plan.  PTV: 
red, no avoidance structures.
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8.  Figure 3-3 shows a transverse slice of the baseline plan for the simple prostate patient 

including isodose lines for the prescription dose (7600cGy) and ± 5% of the prescription dose 

(7372cGy and 7828cGy).  Optimization objectives for the simple prostate case were kept very 

similar to the optimization objectives of the original plan with only minor tuning in order to 

reach homogeneity goals.  A complete list of optimization objectives for the simple prostate case 

Table 3-2. Optimization objectives for simple prostate case, Aim 2
ROI Type Target cGy % Volume Weight

PTV 76 Max dose 7800 - 10
PTV 76 Min dose 7300 - 10
PTV 76 Min DVH 7600 95 45
76 only Max dose 7600 - 1

Ring Max dose 3800 - 1
Rectum Max DVH 3500 45 1
Rectum Max DVH 7000 8 1
Rectum Max DVH 6500 15 1
Bladder Max DVH 4000 45 1
Bladder Max DVH 6000 20 1

LFH Max dose 4300 - 1
RFH Max dose 4300 - 1

Figure 3-3.  Simple prostate baseline plan isodose lines 
(blue: 95%, yellow: 100%, green: 105% of prescribed 
dose)
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is given in Table 3-2.  All baseline commissioning and planning parameter values for the simple 

prostate case were discussed previously and are shown in Table 2-3.  After the baseline plan was 

created, the DVH for the plan, shown if Figure 3-4, was approved by a radiation oncologist.  It 

was determined that the baseline plan was clinically acceptable for treatment based on dose 

homogeneity to the target volume and normal tissue constraints.  All trials were normalized so 

that at least 95% of the PTV received 100% of the prescribed dose.  The optimization took 

approximately 40 minutes for each simple prostate trial (excluding smaller arc lengths), and final 

dose computation took roughly 50 minutes to complete for each trial.

3.1.3 Complex Prostate Baseline Results

A baseline plan was created for the complex prostate case, attempting to achieve ±5% 

dose homogeneity to the primary PTV.  This homogeneity goal was not achieved, and the better 

of two possible baseline plans was chosen by a radiation oncologist.  Figure 3-5A and 3-5B show 

transverse and saggital views of the patient where all 4 PTVs are visible.  The prostate bed

Figure 3-4.  DVH for the simple prostate baseline plan.  
PTV: red, rectum: brown, bladder: yellow, right femoral 
head: purple, left femoral head: blue.
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is shown in red (PTV 1; 7800 cGy), the extended prostate shown in dark blue (PTV 3; 5600

cGy), the positive node in purple (PTV 2; 6160 cGy), and the extended nodal region in light blue 

(PTV 4; 4620 cGy).  Figure 3-6 shows the DVHs for all PTVs and critical structures for the 

complex prostate case.  A single, 360-degree dynamic arc beam with energy 6MV was used for 

Table 3-3.  Optimization objectives for complex prostate case, Aim 3
ROI Type Target cGy % Volume Weight

PTV 78 Max Dose 7900 - 100
PTV 78 Min Dose 7600 - 100
PTV 78 Uniform Dose 7800 - 100

7800 ring Max Dose 7800 - 1
PTV 6160 Uniform Dose 6160 - 75
6160 ring Max Dose 6160 - 1
PTV 56 Min DVH 5600 95 1

5600 only Uniform Dose 5600 - 1
PTV 4620 Min DVH 4620 95 30
4620 only Uniform Dose 4620 - 25

Ring 1 Max Dose 3500 - 1
Rectum Max DVH 6500 17 20
Rectum Max DVH 4000 35 30
Bladder Max DVH 6500 25 20
Bladder Max DVH 4000 50 20

LFH Max Dose 4200 - 40
RFH Max Dose 4200 - 40

Figure 3-5.  Complex prostate baseline plan transverse (A) and sagittal (B) views.  
Shaded areas represent PTVs, and corresponding lines represent 100% of the 
prescribed dose for each PTV.  PTV1 (7800cGy): red, PTV2 (6160cGy): blue, PTV3 
(5600cGy): green, PTV4 (4620cGy): orange.

A B
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the baseline plan, and the isocenter was placed in the center of the composite target volumes.  

The plan was allowed 35 iterations, with the convolution dose starting at iteration 10.  

Optimization objectives for the complex prostate case baseline plan are shown in Table 3-3.  

Because the patient was previously treated with helical tomotherapy, there was no previous set of 

optimization objectives for the Pinnacle treatment planning system.  Optimization objectives and 

additional regions of interest (such as rings) were created to achieve a clinically acceptable 

baseline plan.  The baseline plan for the multi-target prostate case was determined to be 

clinically acceptable by a radiation oncologist, though the "hard" normal tissue constraints

described by Pollack et al., for the most part, were not met.  The baseline set of parameters was 

identical to the single-target prostate case.  Baseline commissioning and planning parameters are 

shown in Table 2-3.  

All trials were normalized so that at least 95% of the PTV received 100% of the 

prescribed dose.  The optimization took approximately 45 minutes for each complex prostate 

A B

Figure 3-6.  DVH for the complex prostate baseline plan.  
PTV1: red, PTV2: dark blue, PTV3: green, PTV4: orange, 
rectum: brown, bladder: yellow, right femoral head: purple, 
left femoral head: light blue.
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trial (excluding smaller arc lengths), and final dose computation took roughly 80 minutes to 

complete for each trial.

3.1.4 Baseline DHI and CI Values

Values of DHI , CI, and normal tissue metrics for the baseline plans are shown in Tables 

3-1 to 3-3. DHI was lowest for the phantom case and highest for the PTVs of the complex 

prostate case.  CI was highest for the simple prostate case and lowest for the complex prostate 

case.  It is believed that CI performed better for the simple prostate case than the phantom case 

because the phantom case had no avoidance structures.  Normal tissue sparing was better for the 

simple prostate case than the complex prostate case.  

Table 3-4.  Baseline values for DHI, Dmax, and Dmin for PTVs of the three treatment 
geometries, shown in cGy.
Geometry (Dose Rx to 95% PTV) PTV Dmin(99%) PTV Dmax(1%) DHI
Phantom (76 Gy) 7540 7812 0.0358
Simple Prostate (76 Gy) 7447 8006 0.0736
PTV 1 (78 Gy) 7481 8744 0.1619
PTV 2 (61.6 Gy) 6133 6918 0.1274
PTV 3 (56 Gy) 5333 8721 0.6050
PTV 4 (46.2 Gy) 4047 7456 0.7379

Table 3-5.  Baseline values for CI for the three treatment geometries.
Geometry CI
Phantom 0.8777
Simple Prostate 0.9106
Complex Prostate (PTV1) 0.7900

Table 3-6.  Baseline values for normal tissue metrics for prostate geometries, shown in cGy.

Geometry
Rectum Bladder Rt. Fem. Head Lt. Fem. Head

D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate 5297 3893 4420 1927 3702 3927 3855 4248

Complex Prostate 6666 5066 6054 4811 4250 4748 4477 4868

Pollack et al. (2008) limit 6500 4000 6500 4000 5000 -- 5000 --
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3.2 Commissioning Parameters

3.2.1 Gantry Speed Variability

DHI, CI, and normal tissue values for gantry speed variability are shown in Tables 3-4

and 3-5.  The DHI showed no change for the phantom and complex prostate cases and varied less 

than 2% for the simple prostate case.  In fact, the phantom and complex prostate cases showed 

identical plans for both trials, and the simple prostate case showed little difference in the

resulting plans.  

The CI showed no change for the phantom and complex prostate cases and differed by 

less than 0.03 between trials for the simple prostate case.  

Table 3-7.  DHI and CI values for Gantry Speed Variability (PTV 1: 78Gy, PTV 2: 
61.6Gy, PTV 3: 56Gy, PTV 4: 46.2Gy).

Dose Homogeneity Index

Gantry Speed Phantom Simple Prostate
Complex Prostate

PTV 1 PTV 2 PTV 3 PTV 4
Variable (max 6 deg/sec) 0.0358 0.0736 0.1619 0.1274 0.6050 0.7379
not variable (6 deg/sec) 0.0358 0.0866 0.1619 0.1274 0.6050 0.7379

Conformity Index
Gantry Speed Phantom Simple Prostate Complex Prostate
Variable (max 6 deg/sec) 0.8777 0.9106 0.7900
not variable (6 deg/sec) 0.8777 0.8956 0.7900

Table 3-8.  Normal tissue metrics for Gantry Speed variation for simple and complex 
prostate cases.  All normal tissue dose metrics are shown in cGy.

Gantry 
Speed

Norm. 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
variable 95.4 5297 3893 4420 1927 3702 3927 3855 4248

not variable 95.4 5371 3955 4458 1906 3767 4023 3820 4209
Complex Prostate

variable 95 6666 5066 6054 4811 4250 4748 4477 4868
not variable 95 6666 5066 6054 4811 4250 4748 4477 4868
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Absolute dose values for normal tissue metrics for the two prostate cases are shown in 

Table 3-5.  Normal tissue metrics were within 3% of the baseline values for the simple prostate 

case, and did not change for the complex prostate case.  Resulting plans showed no significant 

dependence on allowing the gantry speed to vary during treatment.  

3.2.2 Maximum Gantry Speed

The maximum gantry speed was varied above and below that of the baseline plan (6 

deg/sec) to determine if a faster or slower rotation speed would improve or degrade the plan 

quality.  The resulting DHI and CI are graphed in Figures 3-7 to 3-9.  

Figure 3-7 shows that DHI values for the phantom were the lowest, and DHI values for 

the complex prostate PTV 1 were highest.  This was the case for all parameters studied.  The 

DHI for the phantom and simple prostate cases varied by less than 0.02 as the maximum gantry 

speed increased from 4 deg/sec to 12 deg/sec.  The variation in DHI for the baseline trial and 

DHI for 12 deg/sec trial for PTV1 was 0.026, and the 12 deg/sec trial performed best.  

Figure 3-7.  DHI for “Maximum Gantry Speed” parameter: 
phantom (green), simple prostate (red), and PTV 1 (blue) of 
complex prostate case.
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The data in Figure 3-8 shows that the DHI values for PTV 3 and PTV 4 were much 

greater than the DHI values for PTV 1 and PTV 2.  This indicates that the dose to PTV 3 and 

PTV 4 was less homogeneous than the dose to PTV 1 and PTV 2.  

Resulting CI values are plotted for varying maximum gantry speed in Figure 3-9.  The 

variation in CI values across all maximum gantry speeds for the phantom and simple prostate 

Figure 3-8.  DHI for “Maximum Gantry Speed” parameter: 
PTV 1 (blue), PTV 2 (red), PTV 3 (green), and PTV 4 (purple) of 
complex prostate case.

Figure 3-9.CI for “Maximum Gantry Speed” parameter: 
phantom (green), simple prostate (red), and complex prostate 
(blue) cases.
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cases was less than 0.02.  The variation in CI values between the baseline trial and 12 deg/sec 

trial for the complex prostate case was 0.044, improving as the maximum gantry speed 

increased. 

Normal tissue metrics for variation of maximum gantry speed are plotted in Figure 3-10 

for the two prostate cases.  The normalized dose is plotted against the maximum gantry speed for 

all normal tissue metrics.  The two dotted lines represent 2% above and below the baseline dose 

value.  Dose values for all metrics were normalized to those of the baseline plan; therefore, all 

plots intersect at 6 deg/sec, the baseline setting for this parameter.  It is evident from the simple 

prostate graph that all variations for normal tissue dose metrics were within 2% of the baseline 

dose value.  The complex prostate normal tissue metrics varied more than 2% for some normal 

tissue metrics, but generally improved (lower dose) as the maximum allowable gantry speed 

increased.

3.2.3 Maximum Dose Rate

Figures 3-11 and 3-12 show DHI values plotted for the phantom case, simple prostate 

case, and complex prostate case.  Both continuously variable dose rates (circles) and discretely 

Figure 3-10.  Normal tissue metrics for “Maximum Gantry Speed” parameter for simple 
prostate and complex prostate cases.  All doses normalized to dose values for the baseline 
trial (6deg/sec).
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variable dose rates (triangles) are plotted for all PTVs.  As the maximum dose rate increased 

from 400 MU/min to 800 MU/min, the DHI values for the phantom, simple prostate, and 

PTV1of the complex prostate varied by less than 0.02 for both continuously variable and 

discretely variable dose rates.  Figure 3-12 shows DHI values for all PTVs of the complex 

prostate case.  The DHI values for PTV2 for 400 MU/min differed by 0.052 and 0.023 from the 

Figure 3-11.  DHI for “Maximum Dose Rate” parameter: 
phantom (green), simple prostate (red), and PTV 1 (blue) of 
complex prostate case.

Figure 3-12.  DHI for “Maximum Dose Rate” parameter: PTV 1 
(78 Gy, blue), PTV 2 (61.6 Gy, red), PTV 3 (56 Gy, green), and 
PTV 4 (46.2 Gy, purple) of complex prostate case.
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baseline DHI value (at 600 MU/min max) for discretely and continuously variable dose rates, 

respectively.  The DHI values for PTV3 varied by 0.026 and 0.039 for discretely and 

continuously variable dose rates, respectively.  The DHI for PTV4 varied by 0.042 and 0.029 for 

discretely and continuously variable dose rates, respectively.  For all maximum dose rates and all 

treatment sites shown, the DHI for the continuously variable dose rates differed from the DHI for 

the discretely variable dose rates by less than 0.025.  Only the DHI for PTV2 and PTV3 differed 

by more than 0.02 between continuous and discretely variable dose rates for the 600 MU/min 

maximum dose rate trials.

CI values for all maximum dose rates and all treatment sites are shown in Figure 3-13.  

CI for the phantom, simple prostate, and complex prostate cases varied by less than 0.02 over all 

maximum dose rates, both continuously and discretely variable.  For all maximum dose rates and 

all treatment sites shown, the CI for the continuously variable dose rates differed from the CI for 

the discretely variable dose rates by less than 0.02.

Figure 3-13.  CI for “Maximum Dose Rate” parameter: phantom 
(green), simple prostate (red), and complex prostate (blue)cases.
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Normal tissue metrics for maximum dose rate variation are shown in Table 3-9.  Dose 

values for all trials were normalized to the baseline plan.  For a given maximum dose rate, the 

difference in dose values between continuously variable dose rates and discretely variable dose 

rates was less than 3% for most metrics across both treatment sites.   The variation in dose to 

normal tissue metrics for changing maximum dose rates, however, was greater than 3% for 

every metric for the simple prostate case except for D25 of the bladder.  For the complex prostate 

case, only D50 for the bladder (800 continuous) and D10 for the right femoral head (400 discrete) 

had greater than a 3% variation from the baseline value.

3.2.4 Maximum MLC Leaf Speed

Figures3-14and 3-15 show the effect of varying maximum leaf speed on DHI for the 

phantom, simple prostate, and complex prostate cases.  As the maximum leaf speed was 

Table 3-9.  Normal tissue metrics for Dose Rate variations for simple and complex 
prostate cases.  All normal tissue dose metrics are normalized to baseline values.  

Maximum 
Dose Rate

Norm 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
400 Disc* 95.7 1.053 1.058 1.021 1.033 0.897 0.922 0.971 0.997
400 Cont* 95.4 1.053 1.052 1.024 1.052 0.907 0.930 0.948 0.979
600 Disc 95.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
600 Cont 95.3 1.024 1.019 1.015 1.031 0.985 0.982 0.955 0.972
800 Disc 95.7 0.996 0.967 1.003 1.002 1.108 1.095 0.914 0.944
800 Cont 95.5 0.999 0.980 1.013 1.029 1.031 1.036 0.930 0.951

Complex Prostate
400 Disc 95 1.014 1.016 0.995 1.015 1.031 0.999 1.012 0.997
400 Cont 95.3 1.020 1.022 1.010 1.018 1.028 1.007 1.000 0.987
600 Disc 95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
600 Cont 95.3 0.997 0.991 0.996 0.989 0.986 0.976 0.996 0.983
800 Disc 94.9 1.006 1.027 1.026 0.996 1.002 0.979 0.991 0.996
800 Cont 94.9 1.009 1.005 0.773 1.230 1.016 0.988 1.002 0.986

* Disc = discretely variable dose rate, Cont = continuously variable dose rate
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increased, the DHI for the phantom and simple prostate cases showed less than 0.02 variation

while PTV 1 of the complex prostate case showed a variation of 0.025 in DHI values between 

Figure 3-14.  DHI for “Maximum MLC Leaf Speed” 
parameter: phantom (green), simple prostate (red), 
and PTV 1 (blue) of complex prostate case.

Figure 3-15.  DHI for “Maximum MLC Leaf Speed” 
parameter: PTV 1 (78 Gy, blue), PTV 2 (61.6 Gy, 
red), PTV 3 (56 Gy, green), and PTV 4 (46.2 Gy, 
purple) of complex prostate case.



41

2cm/sec and 3cm/sec maximum leaf speed.  DHI for PTV 1, PTV 2, and PTV 4 varied by 0.025, 

0.085 and 0.128, respectively, and generally improved as maximum leaf speed increased.  The 

DHI for PTV 3 varied by less than 0.02 among all maximum leaf speeds.  

CI for maximum leaf speed variation is plotted in Figure 3-16.  For the phantom and 

simple prostate cases, the CI varied by less than 0.02 across all maximum leaf speeds.  For the 

complex prostate case, the CI variation was 0.022, and the CI improved as maximum leaf speed 

increased.  

Normal tissue metrics for changing maximum MLC leaf speed are shown in Table3-10.  

All dose values are normalized to the baseline trial.  For the simple prostate case, metrics that 

exceeded a 3% variation in dose across all trials were D17 for the rectum, D25 for the bladder, and 

all metrics for the femoral heads.  Metrics that exceeded 3% variation for the complex prostate 

case were D17 for the rectum, both bladder metrics, and all metrics for the femoral heads except 

for Dmax(1%) for the right femoral head.  With only 2 exceptions, metrics for the rectum and 

Figure 3-16.  CI for “Maximum MLC Leaf Speed” 
parameter: phantom (green), simple prostate (red), and 
complex prostate (blue) cases.
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bladder performed worse than the baseline plan for both 1 cm/sec and 3 cm/sec trials, while 

metrics for the femoral heads performed better.

3.2.5 MLC Leaf Size

DHI and CI results for varying MLC size are shown in Table 3-11.  DHI values for the 

two leaf sizes for the phantom and simple prostate cases differed by less than 0.02.  The variation 

in DHI for PTV1, PTV2, and PTV4 of the complex prostate case was also less than 0.02, while 

the DHI value for PTV3 was 0.043 lower for 1cm leaf size.  

The difference in CI values for the two leaf sizes for phantom and simple prostate cases 

was less than 0.02.  The CI value for PTV1 was 0.03 greater for the 5mm leaf size.

Table 3-10.  Normal tissue metrics for Maximum MLC Leaf Speed variations for simple 
and complex prostate cases.  All normal tissue dose metrics are normalized to baseline 
values.

Max MLC 
Leaf Speed

Norm 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
1 cm/sec 95.9 1.031 1.022 1.085 1.007 0.937 0.945 0.963 0.958
2 cm/sec 95.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 cm/sec 95.9 1.027 1.016 1.050 1.030 0.994 0.982 0.961 0.972

Complex Prostate
1 cm/sec 95.3 1.030 1.029 1.073 1.066 1.007 0.985 0.975 0.955
2 cm/sec 95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 cm/sec 95 0.995 0.999 1.014 1.006 0.951 0.994 0.965 0.942

Table 3-11.  DHI and CI values for MLC Leaf Size (PTV 1: 78Gy, PTV 2: 
61.6Gy, PTV 3: 56Gy, PTV 4: 46.2Gy).
Dose Homogeneity Index

Leaf Size Phantom Simple Prostate
Complex Prostate

PTV 1 PTV 2 PTV 3 PTV 4
1 cm 0.0358 0.0736 0.1619 0.1274 0.6050 0.7379
5mm 0.0426 0.0768 0.1473 0.1068 0.6482 0.7091

Conformity Index
Leaf Size Phantom Simple Prostate Complex Prostate

1 cm 0.8777 0.9106 0.7900
5mm 0.8634 0.8946 0.8196
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Normal tissue metrics for the different MLC leaf sizes are shown in Table 3-12.  For the 

simple prostate case, dose metrics for the rectum and D25 for the bladder were less than 3% 

different between the two trials.  All other metrics differed by up to 10% and performed better 

for the 5mm leaf size.  For the complex prostate case, all metrics differed by more than 3% 

between the two trials except for D17 of the rectum.  The greatest discrepancy was about 8% for 

both metrics for the right femoral head.  Dose metrics for the complex prostate case performed 

better for the 5mm leaf size trial.

3.2.6 Maximum MU/degree

Two trials were run to investigate the effect of changing the maximum MU/degree: 100 

MU/deg and 1 MU/deg.  DHI and CI results are shown in Table 3-13.  Phantom and complex 

Table 3-12.  Normal tissue metrics for MLC Leaf Size variation for simple and 
complex prostate cases.  All normal tissue dose metrics are shown in cGy.

Leaf 
Size

Norm 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
1 cm 95.4 3893 4420 1927 3702 3927 3855 4248 4248
5 mm 95.6 4014 4541 1965 3373 3800 3476 3815 4147

Complex Prostate
1 cm 95 6666 5066 6054 4811 4250 4748 4477 4868
5 mm 94.8 6627 4960 5810 4543 3937 4383 4239 4628

Table 3-13.  DHI and CI values for Maximum MU/degree (PTV 1: 78Gy, 
PTV 2: 61.6Gy, PTV 3: 56Gy, PTV 4: 46.2Gy).
Dose Homogeneity Index

MU/degree Phantom Simple Prostate
Complex Prostate

PTV 1 PTV 2 PTV 3 PTV 4
100 MU/deg 0.0358 0.0736 0.1619 0.1274 0.6050 0.7379
1 MU/deg 0.0358 0.0728 0.1619 0.1274 0.6050 0.7379

Conformity Index
MU/degree Phantom Simple Prostate Complex Prostate

100 MU/deg 0.8777 0.9106 0.7900
1 MU/deg 0.8777 0.9127 0.7900
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prostate cases showed identical resulting plans for this parameter, and the simple prostate case 

varied less than 0.02 for both DHI and CI.  Allowing only 1 MU/degree would result in a plan 

with a maximum of 360 MU for a 360 degree total arc length.  All resulting plans for 1MU/deg 

trials exceeded 360 MU.  The control point data was reviewed for these trials, and hand 

calculations for MU/degree verified that the treatment planning system ignored the 1 MU/deg 

limitation.

Normal tissue metrics for MU/degree trials are shown in Table 3-14.  Values for the 

simple prostate case varied less than 3% between trials.  

3.3 Planning Parameters

3.3.1 Beam Energy

Figures 3-17 and 3-18 are plots of the resulting DHI for energies of 6MV, 10MV, and 

15MV.  DHI values for the phantom and simple prostate cases varied by less than 0.02 for all 

three energies.  The difference in DHI for PTV1 between the 6MV trial and the 15MV trial was 

0.038, and the DHI performed better for lower energies.  The differences in DHI for PTV2, 

Table 3-14.Normal tissue metrics for Maximum MU/degree variations for simple and 
complex prostate cases.  All dose values are shown in cGy.

MU/degree Norm. 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D35 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
100 MU/deg 95.4 5297 3893 4420 1927 3702 3927 3855 4248

1 MU/deg 95.5 5381 3930 4405 1963 3647 3877 3760 4147
Complex Prostate

100 MU/deg 95 6666 5066 6054 4811 4250 4748 4477 4868
1 MU/deg 95 6666 5066 6054 4811 4250 4748 4477 4868
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Figure 3-17.  DHI for “Beam Energy” parameter: phantom 
(green), simple prostate (red), and PTV 1 (blue) of complex 
prostate case.

Figure 3-18.  DHI for “Beam Energy” parameter: PTV 1 (78 
Gy, blue), PTV 2 (61.6 Gy, red), PTV 3 (56 Gy, green), and 
PTV 4 (46.2 Gy, purple) of complex prostate case.
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PTV3, and PTV4 (between the baseline DHI value and the DHI value with greatest variation 

from the baseline value) were 0.028, 0.038, and 0.071, respectively, and there was no consistent 

trend for DHI performance as beam energy increased.  

The CI for all treatment sites and all energies is shown in Figure 3-19.  The variation in 

CI across the three beam energies was 0.056, 0.022, and 0.07 for the phantom case, the simple 

prostate case, and the complex prostate case, respectively.  There was no common trend for 

target conformity as beam energy increased.  

Figure 3-19.  CI for “Beam Energy” parameter: phantom 
(green), simple prostate (red), and complex prostate (blue) 
cases.

Table 3-18.  Normal tissue metrics for Beam Energy variations for simple and complex 
prostate cases.  All normal tissue dose metrics are normalized to baseline values.

Beam 
Energy

Norm. 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
6 MV 95.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 MV 96.1 0.986 0.915 1.036 1.020 1.078 1.091 1.038 1.034
15 MV 96.2 1.026 1.000 1.042 1.118 1.007 1.028 1.011 1.014

Complex Prostate
6 MV 95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 MV 95.2 1.000 1.017 1.019 1.016 1.058 1.045 0.987 0.978
15 MV 95.2 1.011 1.035 1.008 0.995 1.120 1.060 1.017 1.016
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Normal tissue metrics for the three beam energies are shown in Table 3-18 for the simple 

and complex prostate cases, normalized to the baseline plan.  With few exceptions, the higher 

energies performed worse for sparing normal tissue, and most metrics had greater than 3% 

variation across all energies for both treatment sites.

3.3.2 Arc Length

DHI for varying arc lengths are shown in Figure 3-20 for the phantom, simple prostate, 

and PTV1 of the complex prostate.  DHI for varying arc lengths are shown in Figure 3-21 for all 

PTVs of the complex prostate case.  The DHI improved as the arc length increased for all PTVs. 

The larger arc lengths involved more control points, which allowed for better modulation of the 

dose to the target volume.  Pinnacle version 8.1y does not have double arc optimization 

capabilities,so 360 deg was the largest arc studied here.  From 60 to 180 degrees total arc length, 

there is an extreme improvement in DHI as arc length is increased.  Between 180 degrees and 

360 degrees total arc length, DHI continues to improve, but the rate of improvement is not as 

severe.  This is due to exit dose generated by the photon radiation.  The entire PTV is treated 

with a 180-degree arc, but a 360-degree arc allows for improvement in dose homogeneity. 

Figure 3-20.  DHI for “Arc Length” parameter: phantom 
(green), simple prostate (red), and PTV 1 (blue) of 
complex prostate case.
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The CI for arc length trials are plotted in Figure 3-22.  As expected, the CI also improved 

as arc length increased because more control points allowed for better conformity of the

prescription dose to the PTV.  The rate of improvement in CI also declined at 180 degrees total 

arc length.

Normal tissue metrics for arc length variations are shown in Figure 3-23.  For the smaller 

arc lengths, normal tissue sparing depended greatly on how the arc was oriented.  With the 

Figure 3-21.  DHI for “Arc Length” parameter: PTV 1 
(78 Gy, blue), PTV 2 (61.6 Gy, red), PTV 3 (56 Gy, 
green), and PTV 4 (46.2 Gy, purple) of complex prostate 
case.

Figure 3-22.  CI for “Arc Length” parameter: phantom 
(green), simple prostate (red), and complex prostate 
(blue) cases.
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exception of the femoral heads, which were partly spared for smaller arcs, normal tissue sparing 

improved as arc length increased.

3.3.3 Collimator Angle

The collimator angle was varied from 0 to 90 degrees for all treatment sites.  For the 

phantom case, the baseline collimator angle was 90 degrees.  For both the simple and complex 

prostate cases, the baseline collimator angle was 0 degrees.  Figures 3-24 and 3-25 show the DHI 

values for all three treatment sites for all collimator angles studied.  The DHI variation across all 

collimator angles for the phantom case was less than 0.02.  The greatest variation in DHI values 

all collimator angles for the simple prostate case was 0.027.  For the complex prostate case, 

changing collimator angle had the biggest effect on the DHI for PTV4, where DHI values varied 

by 0.294 from a collimator angle of 0 degrees to a collimator angle of 90 degrees.  PTV1, PTV2, 

and PTV3 had DHI variations of 0.047, 0.061, and 0.062, respectively.  

Figure 3-23.Normal tissue metrics for “Arc Length” parameter for simple prostate and 
complex prostate cases.  All doses normalized to dose values for the baseline trial (360 deg).
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CI for collimator angle variations are shown in Figure 3-26.  The CI values for the 

phantom and the simple prostate cases varied across all collimator angles by 0.059 and 0.069, 

respectively.  The largest variation in CI values was 0.127 for the PTV1 of the complex prostate 

case.  

Figure 3-24.  DHI for “Collimator Angle” parameter: 
phantom (green), simple prostate (red), and PTV 1 (blue) of 
complex prostate case.

Figure 3-25.  DHI for “Collimator Angle” parameter: PTV 1 
(78 Gy, blue), PTV 2 (61.6 Gy, red), PTV 3 (56 Gy, green), and 
PTV 4 (46.2 Gy, purple) of complex prostate case.
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Normal tissue metrics for the simple and complex prostate cases are plotted against

collimator angle in Figure 3-27.  Metrics for the simple prostate case generally varied more than 

metrics for the complex prostate case.  The simple prostate case had fewer optimization goals 

and constraints than the complex prostate case, allowing the optimization more room to diverge 

from the baseline plan.  For the simple prostate case, D50 for the bladder varied over 40% by 

changing the collimator from 0 degrees to 90 degrees.  All other metrics, except for the left 

femoral head varied between 17% and 25% from 0 to 90 degrees.  The most variation from the 

Figure 3-26.  CI for “Collimator Angle” parameter: 
phantom (green), simple prostate (red), and complex 
prostate (blue) cases.

Figure 3-27.  Normal tissue metrics for “Collimator Angle” parameter for simple prostate 
and complex prostate cases.  All doses normalized to dose values for the baseline trial (360 
deg).
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baseline plan for the complex prostate case was 12% for D25 for the bladder with a collimator 

angle of 60 degrees.

3.3.4 Dose Grid Resolution

Trials were run for 0.3cm, 0.4cm, and 0.5cm resolution.  Figures 3-28 and 3-29 show 

DHI values for the phantom, simple prostate, and complex prostate cases.  For the complex 

prostate case, only dose grid resolutions of 0.4cm and 0.5cm were used due to software failures 

Figure 3-28.  DHI for “Dose Grid Resolution” 
parameter: phantom (green), simple prostate (red), and 
PTV 1 (blue) of complex prostate case.

Figure 3-29.  DHI for “Dose Grid Resolution” 
parameter: PTV 1 (78 Gy, blue), PTV 2 (61.6 Gy, red), 
PTV 3 (56 Gy, green), and PTV 4 (46.2 Gy, purple) of 
complex prostate case.
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of the treatment planning system.  The variation in DHI values across all dose grid resolutions 

for the phantom case was less than 0.02.  The variation in DHI values for the simple prostate 

case was only 0.021.  The difference in DHI values between both dose grid resolutions for PTV1 

and PTV2 of the complex prostate case was less than 0.02, while the difference in DHI values 

for PTV3 and PTV4 between both dose grid resolutions was 0.023 and 0.060, respectively.

The CI for all treatment sites is plotted against the dose grid resolution in Figure 3-30.  

The variation in CI values was 0.050 for the phantom case and 0.031for the simple prostate case. 

Figure 30.CI for “Dose Grid Resolution” parameter: 
phantom (green), simple prostate (red), and complex 
prostate (blue) cases.

Table 3-19. Normal tissue metrics for Dose Grid Resolution  variations for simple and 
complex prostate cases.  All normal tissue dose metrics are normalized to baseline 
values (0.4cm).

Dose Grid 
Resolution

Norm 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head
D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(1%)

Simple Prostate
0.3 cm 95.3 0.970 0.968 1.034 1.070 0.928 0.979 0.967 0.965
0.4 cm 95.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 cm 95.4 1.054 1.062 1.056 1.061 0.940 1.015 0.932 0.935

Complex Prostate
0.4 cm 95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 cm 95 1.013 1.001 1.036 1.013 0.930 0.933 0.832 0.907
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A dose grid resolution of 0.3cm provided the worst CI for both the phantom and simple prostate 

cases.   The two CI values for the complex prostate case differed by less than 0.02.

Normal tissue metrics for dose grid resolution variation are shown in Table 3-19, 

normalized to the baseline values.  All metrics for the simple prostate case and most metrics for 

the complex prostate case showed greater than 3% variation from the baseline values.  The dose 

to both rectum metrics and to D50 of the bladder varied by less than 3% between the 0.5cm trial 

and the baseline trial for the complex prostate case.

3.3.5 Final Gantry Spacing

The setting for final gantry spacing determines the spacing of control points around the 

final arc.  The options for final gantry spacing were 2, 3, 4, or 6 degrees.  It is recommended in 

the literature to start with a spacing of 4 degrees (RaySearch Laboratories, 2009). DHI values 

are shown for all spacing options for all treatment sites in Figures 3-31 and 3-32.  Trials with 2 

Figure 3-31.  DHI for “Final Gantry Spacing” parameter: 
phantom (green), simple prostate (red), and PTV 1 (blue) of 
complex prostate case.
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and 3 degrees final spacing could not be run for the complex prostate case due to software 

failures of the treatment planning system.  For the phantom case, the variation in DHI values 

across all final gantry spacing options was less than 0.02.  The variation in DHI values for the 

simple prostate case was less than 0.02 for 2, 3, and 4 degrees final gantry spacing, but for 6 

degree final gantry spacing, the DHI increased by 0.027 from the baseline value (4 degrees).  

Similarly, the DHI value for 6 degree final gantry spacing for PTV1 of the complex prostate case 

was 0.030 higher than the baseline, and the DHI value for 6 degree final gantry spacing for 

PTV3 was 0.028.  The difference in DHI values for PTV2 and PTV4 was less than 0.02 between 

4 and 6 degrees final gantry spacing trials.  

The CI values for final gantry spacing trials are shown in Figure 3-33.  Similar to the DHI 

plots, the variation in CI values for the phantom and simple prostate cases remained less than 

0.02 for 2, 3, and 4 degree final gantry spacing.  The difference in CI values between 4- degree 

final gantry spacing and 6-degree final gantry spacing was 0.049 for the phantom case, 0.032 for 

the simple prostate case, and 0.117 for the complex prostate case.  Target conformity was worst 

Figure 3-32.  DHI for “Final Gantry Spacing” 
parameter: PTV 1 (78 Gy, blue), PTV 2 (61.6 Gy, red), 
PTV 3 (56 Gy, green), and PTV 4 (46.2 Gy, purple) of 
complex prostate case.
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for 6 degree final gantry spacing for all treatment sites, most dramatically for the complex 

prostate.

All normal tissue metrics for final gantry spacing variations are shown in Table 3-20, 

normalized to the baseline values (4 degrees).  For the simple prostate case, 6-degree final gantry 

spacing, all metrics showed greater than 3% difference from the baseline plan except Dmax(!%) for 

both femoral heads.  The only other metrics that showed greater than 3% difference from the 

Figure 3-33.  CI for “Final Gantry Spacing” parameter: 
phantom (green), simple prostate (red), and complex 
prostate (blue) cases.

Table 3-20.  Normal tissue metrics for Final Gantry Spacing  variations for simple and 
complex prostate cases.  All normal tissue dose metrics are normalized to baseline 
values (4 deg).

Final 
Gantry 
Spacing

Norm 
%

Rectum Bladder Rt. Femoral Head Lt. Femoral Head

D17 D35 D25 D50 D10 Dmax(1%) D10 Dmax(!%)

Simple Prostate
2 deg 95.9 0.993 0.965 0.997 1.024 1.020 1.022 1.005 1.034
3 deg 95.5 1.003 0.978 0.992 0.983 0.985 0.997 0.981 1.009
4 deg 95.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 deg 95.2 1.061 1.048 1.040 0.929 0.935 0.980 0.955 0.997

Complex Prostate
4 deg 95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 deg 95 1.031 1.064 1.012 1.019 1.071 1.016 1.023 0.999
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baseline values for the simple prostate case were D35 of the rectum, and Dmax(!%) of the left 

femoral head for 2 degree final gantry spacing.  For the complex prostate case, 6 degree final 

gantry spacing, both rectum metrics and D10 of the right femoral head showed greater than 3% 

difference from the baseline values.

3.3.6 Maximum Delivery Time

The data collected in this study for maximum delivery time was based on the user-

requested maximum delivery time, not the actual delivery time estimated by Pinnacle after 

optimization.  Table 3-21 shows both the input maximum delivery times (user-requested) and 

estimated delivery times for the three treatment sites.  Trials were run for all treatment sites with 

60-second, 120-second, and 240-second maximum delivery times, along with intermediate 

maximum delivery times that were different for each treatment geometry.  

The data for DHI values for different maximum delivery times is shown in Figures 3-34 

and 3-35.  The phantom case resulted in identical plans for both 20-second maximum delivery 

time and 45-second maximum delivery time.  The actual estimated delivery time for both plans 

was approximately 60 seconds, indicating that the 20-second and 45-second limitations were 

rejected by the treatment planning system for those trials.  The variation in DHI values for all 

other trials for the phantom case were within 0.02 of the baseline DHI value (120 seconds).  The 

Table 3-21. Input maximum delivery time and estimated delivery time for all trials, all 
treatment sites.

Phantom Simple Prostate Complex Prostate
Input (sec) Est. Delivery (sec) Input (sec) Est. Delivery (sec) Input (sec) Est. Delivery (sec)

20 60 20 60 -- --
45 60 -- -- -- --
60 60 60 60 60 64
-- -- 90 88 -- --

120 98 120 110 120 119
-- -- -- -- 150 143

240 194 240 211 240 194
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variation in DHI values for the simple prostate case remained within 0.02 of the baseline DHI 

values for 20-second, 60-second, and 90-second trials.  The DHI value for the 240-second trial 

for the simple prostate case, however, was 0.028 greater than the DHI for the baseline trial.  For 

the simple prostate case, the longest maximum delivery time requested resulted in worse dose 

homogeneity across the PTV.  DHI values for the 60-second and 150-second trials for PTV1 of 

the complex prostate case were within 0.02 of the baseline DHI value, but the DHI value for the 

240-second trial was 0.028 less than the baseline value.  For PTV1 of the complex prostate case, 

Figure 3-35.  DHI for “Maximum Delivery Time” 
parameter: PTV 1 (78 Gy, blue), PTV 2 (61.6 Gy, red), 
PTV 3 (56 Gy, green), and PTV 4 (46.2 Gy, purple) of 
complex prostate case.

Figure 3-34.  DHI for “Maximum Delivery Time” 
parameter: phantom (green), simple prostate (red), 
and PTV 1 (blue) of complex prostate case.
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the longer maximum delivery time resulted in better dose homogeneity across the target volume.  

DHI values for all PTVs of the complex prostate case are plotted in Figure 3-35.  The DHI for 

the 60-second trial for PTV2 differed by 0.028 from the baseline trial, while DHI values for all 

other trials for PTV2 were within 0.02 of the baseline DHI value.  For PTV3, the 150-second 

trial resulted in a DHI value 0.032 greater than the baseline DHI value.  DHI values for PTV4 

were mostly within 0.02 variation from the baseline plan, but the DHI for the 60-second trial was 

0.051greater.

The CI as a function of maximum delivery time is shown in Figure 3-36.  All trials for 

the phantom case resulted in a variation of CI values of less than 0.02 from the baseline CI value 

(120 seconds).  CI values for the simple prostate case were within 0.02 of the baseline value for 

the 20-second, 60-second, and 90-second trials, but the CI value for the 240-second trial was 

0.036 lower than the CI value for the baseline trial.  All CI values for the complex prostate case 

were within 0.02 of the baseline CI value.  

Normal tissue metrics for varying maximum delivery time are plotted in Figure3-37, 

normalized to the baseline trial.  For the simple prostate case, the right femoral head received 

Figure 3-36.  CI for “Maximum Delivery Time” 
parameter: phantom (green), simple prostate (red), and 
complex prostate (blue) cases.



60

greater dose as the maximum delivery time increased, but both rectum metrics received less dose 

for greater maximum delivery times.  The left femoral head showed no trend as requested 

delivery timed increased, but performed worst for the baseline trial.  The bladder metrics showed 

no consistent trend, but were lowest for the baseline trial.  For the complex prostate case, all 

normal tissues generally performed better for longer maximum delivery times, with the 

exception of the femoral heads.

3.4 Monitor Units and Delivery Time

Two of the most advertised advantages of VMAT treatments are monitor unit and time 

efficiency. Table 3-22 shows the monitor units and estimated delivery time per fraction for each 

trial and each treatment geometry in this study.  In general, the phantom case required the fewest 

MU and had the shortest fractional treatment times, while the the complex prostate case required 

the most MU and had the longest fractional treatment times.  The phantom case also showed the 

least variation in MU and treatment times for any given parameter, while the complex prostate 

showed the most.  

Figure 3-37.  Normal tissue metrics for “Maximum Delivery Time” parameter for simple 
prostate and complex prostate cases.  All doses normalized to dose values for the baseline 
trial (120 sec).
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The original fixed-beam IMRT plan for the simple prostate patient required 719 

MU/fraction.  The estimated delivery time for this patient was between 8 and 11 minutes.  The 

baseline VMAT plan (with comparable plan quality) required 34% fewer MU and 77% less time 

to deliver than the original IMRT plan for the simple prostate case.  The complex prostate patient 

was originally treated with tomotherapy and required MU is unknown.
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Table 3-22.  MU and estimated delivery times for all parameters, trials, and treatment 
sites.  All baseline trials are shown in bold.

Parameter Trial
Phantom Simple Prostate Complex Prostate

MU Delivery 
Time MU Delivery 

Time MU Delivery 
Time

Gantry speed variability yes 329 98 478 110 826 119
no 329 98 474 114 826 119

Maximum Gantry Speed 6 deg/sec 329 98 478 110 826 119
4 deg/sec 329 97 479 110 805 117
8 deg/sec 329 95 477 109 837 116
12 deg/sec 329 95 476 109 845 117

Maximum Dose Rate Disc 600 329 98 478 110 826 119
Cont 600 329 98 474 113 812 119
Disc 400 329 99 455 117 737 121
Cont 400 329 97 461 120 705 120
Disc 800 329 99 488 110 791 99
Cont 800 329 97 482 106 789 106

Maximum MLC Leaf Speed 2 cm/sec 329 98 478 110 826 119
3 cm/sec 329 98 469 112 763 115
1 cm/sec 329 98 439 107 722 115

MLC size 1 cm 329 98 478 110 826 119
0.5 cm 332 105 449 99 870 118

Maximum MU/degree 100 
MU/deg 329 98 478 110 826 119

1 MU/deg 329 98 473 107 826 119
Beam Energy 6 MV 329 98 478 110 826 119

10 MV 279 112 407 113 855 118
15 MV 266 98 387 107 760 115

Arc Length 60 deg 384 109 506 120 930 129
120 deg 355 112 379 122 935 140
180 deg 345 100 463 106 924 115
270 deg 329 105 402 108 804 117
360 deg 329 98 478 110 826 119

Collimator Angle 0 deg 331 97 478 110 826 119
30 deg 331 107 432 106 737 119
45 deg 336 104 442 114 772 127
60 deg 334 98 402 113 841 118
90 deg 329 98 399 122 756 119

Dose Grid Resolution 0.4 cm 329 98 478 110 826 119
0.3 cm 334 120 506 113 -- --
0.5 cm 329 97 458 110 832 121

Final Gantry spacing 4 deg 329 98 478 110 826 119
2 deg 329 98 493 108 -- --
3 deg 329 103 481 106 -- --
6 deg 332 120 460 83 665 96

Maximum Delivery Time 120 sec 329 98 478 110 826 119
60 sec 330 60 424 60 618 64
240 sec 329 194 482 211 892 194
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4 DISCUSSION

In this study, we varied several parameters independently for 3 treatment geometries of 

increasing complexity to determine their effect on resulting plan quality for VMAT treatment 

planning.  We found that most parameters had a small effect (<0.02 variation from baseline 

values) on DHI and CI for both phantom and simple prostate cases and a larger effect (>0.02 

variation from baseline values) on DHI and CI for the complex prostate case.  Even though 

greater than 0.02 variation from baseline DHI and CI values was found for most parameters for 

the complex prostate case, the data was inconclusive of predictable trends for varying any 

parameters other than total arc length.  Similarly, the normal tissue metrics showed less than 3% 

change for most parameters for the simple prostate case and greater than 3% change for the 

complex prostate case with few predictable trends.

We observed that in effect, one can use a wide variety of values for any set of parameters 

with very little change in the resulting plans for non-complex cases.  In some instances, this is 

because parameters are subject to an override by Pinnacle (i.e. maximum delivery time, 

maximum gantry speed).  We also speculate that because all parameters are optimized together, 

there are enough degrees of freedom built into VMAT optimization to compensate for any one 

parameter that would otherwise cause the optimization algorithm to struggle (i.e. maximum 

gantry speed, maximum MLC leaf speed).  This was especially true when varying 

commissioning parameters for the two non-complex cases.  For these reasons we have 

determined that for non-complex treatment sites, SmartArc optimization is largely user-input-

independent and hardware independent, whereas complex treatment sites show a greater 

dependency on input parameter values.
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4.1 Comparison to Previous Literature

Literature concerning how varying certain parameters affects the resulting plan quality is 

limited.  Su et al. used DMPO optimization for fixed-beam IMRT treatments to study the effects 

of varying leaf width from 5mm to 1cm on resulting plan quality and accuracy (Su et al. 2007).  

They concluded that leaf width showed no significant difference in CI or DHI for head and neck, 

prostate, or spine geometries, but that there was slightly better dose accuracy for 1cm leaves.  

Our study showed similar results for CI and DHI; all but one PTV (PTV3 of the complex 

prostate case) had DHI changes of less than 2%, and the greatest difference in CI was only 3% 

for the complex prostate case.  The issue of beam energy has also been studied previously for 

IMRT treatments.  Pirzkall et al. showed that prostate IMRT treatments with less than 9 fields 

could result in dose increases in tissues distant to the target volume (i.e. near the skin surface) for 

lower energies (6MV), even though PTV and avoidance structure metrics were the same for 6, 

10, and 18MV.  Studies have also shown that with a greater number of fields (>9), the difference 

between dose distributions for different beam energies disappears (Pirzkall et al. 2002; Fox et al.

2008).  We found that there was no identifiable trend for increasing beam energy of VMAT 

plans, but significant changes were seen in the DHI values of the complex prostate PTVs and the 

CI and normal tissue metrics for all treatment geometries.  However, we speculate that the 

effects of beam energy may not translate directly from fixed-beam IMRT to VMAT treatment 

plans, as the beam shape modulation is more restricted for VMAT planning.  

While previous studies focus on one or two parameters of interest, we conducted a 

systematic one dimensional examination of all the major VMAT parameters (commissioning and 

planning) for geometries of varying complexity.  This allowed us to provide information 

comparing capabilities of different machines and different vendors.  This study concludes that 



65

two major differences between Varian and Elekta machines (MLC leaf width and continuously 

or discretely variable dose rates) are largely inconsequential. 

4.2 Limitations and Future Work

There were several limitations to this study. First, only one parameter was varied at a 

time, while all the others were held fixed.  Possible interdependencies between the parameters 

might have a larger effect on resulting plan quality if multiple parameters were changed 

simultaneously.  For example, the beam shape modulation between control points depends on 

both the maximum MLC leaf speed and the maximum gantry speed.  Varying several parameters 

at once to study their combined effects on resulting plan quality could be valuable future 

research.  This could be done by randomly sampling a multi-dimensional complex space, as it 

would be impossible to vary all parameters systematically (over 800,000 possible combinations 

for the parameter values varied in this study).  

In addition to varying multiple parameters together, it would be beneficial to investigate 

how changing parameters effects plan accuracy, not just resulting plan quality.  While this study 

thoroughly investigated how each parameter effects the resulting DHI, CI, and dose metrics 

calculated internally by the treatment planning system, it remains unknown how well the 

calculated doses match what is actually being delivered by the treatment machine.  

4.3 Clinical Relevance

Since the time this study was done, a clinical version (9.0) of Pinnacle including the 

SmartArc module has been released, improving upon the research version (8.1y) by including 

double arc capabilities and allowing the jaws to move with the MLC to provide additional 

collimation.  To check the clinical validity of the plans created using the research version, test 

plans for the complex prostate case were run on Pinnacle 9.0.  A new baseline plan was created 
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on Pinnacle 9.0 that provided dose values equal to or better than those provided by the 8.1y 

baseline plan.  Trials were run for 4 degree and 6 degree final gantry spacing using Pinnacle 9.0, 

and compared to the 4 degree and 6 degree trials run on Pinnacle 8.1y.  The results for DHI and 

CI for both versions of Pinnacle are shown in Table 4-1.  The change in DHI from 4 degree final 

gantry spacing to 6 degree final gantry spacing is similar for the research and clinical versions of 

Pinnacle.  The CI showed a change for the research version, but not for the clinical version.  The 

CI also performed better for the clinical version of Pinnacle.

4.4 Optimization Noise

We considered a 0.02 variation in DHI or CI values to be a significant change, and a 3% 

difference in normal tissue metrics to be a significant change.  These increments were based on 

what we determined to be clinically significant changes.  In other words, changes of this 

magnitude would make one plan favorable to another in a clinical setting.  In order to assess a 

statistically significant difference, it was necessary to determine the uncertainty in the 

optimization algorithm, or "optimization noise."  To do this, very small changes were made to 

the baseline plans for each treatment geometry, either to the original optimization goals or to the 

dose grid resolution.  These slightly modified plans were re-optimized and the doses re-

computed.  The trials for determining optimization noise by modifying an optimization goal are 

described in Table 4-2.  Dose grid resolution was also slightly modified to determine 

optimization noise and dose calculation uncertainty.  In trials 6 and 7 for the phantom, simple 

Table 4-1.  DHI and CI results for varying final gantry spacing on the research (8.1y) 
and clinical (9.0) versions of Pinnacle.

Version Trial DHI (PTV1) DHI (PTV 2) DHI (PTV 3) DHI (PTV 4) CI

8.1y
4 deg 0.16 0.13 0.61 0.74 0.79
6 deg 0.19 0.11 0.63 0.75 0.67

9.0
4 deg 0.15 0.11 0.57 0.77 0.83
6 deg 0.18 0.12 0.61 0.79 0.83
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prostate, and complex prostate cases, the dose grid resolution was changed to 0.401cm and 

0.399cm, respectively, from the original resolution of 0.400cm.  After the dose grid resolution 

was modified for trials 6 and 7, plans were re-optimized and the dose was re-computed.  The 

dose grid resolution for trials 8 and 9 was modified similarly to trials 6 and 7, but the plans were 

not re-optimized – only the dose was recomputed.  Trials 6 and 7 are meant to show a combined 

effect of optimization noise and dose calculation uncertainty, while trials 8 and 9 only show the 

dose calculation uncertainty.  Table 4-3 describes trials 6 through 9.  

Results for determining optimization noise are shown in Table 4-4.  Metrics used in the 

study for all PTVs (DHI and CI) were normalized to the baseline values.  The table shows the 

difference between the values for DHI and CI for each trial and the baseline DHI and CI values

(EFGH%&'(%EIHJ.  For trials 2-5 for all treatment geometries, the differences in DHI and CI were 

Table 4-2.  Description of trials used to determine optimization noise by modifying an 
optimization goal.

Geometry Trial Weight ROI Type Original Goal New Goal

Phantom
Trial 2 10 PTV Max Dose 205 204
Trial 3 10 PTV Max Dose 205 206

Simple Prostate
Trial 2 45 PTV Min DVH 7600 7601
Trial 3 45 PTV Min DVH 7600 7599

Complex Prostate

Trial 2 25 4620 only Uniform 4620 4621
Trial 3 25 4620 only Uniform 4620 4619
Trial 4 100 PTV 1 Uniform 7800 7801
Trial 5 100 PTV 1 Uniform 7800 7799

Table 4-3.  Description of trials used to determine optimization noise and dose 
calculation uncertainty by modifying the dose grid resolution.

Geometry Trial Re-
optimization?

Original Dose Grid 
Resolution (cm)

New Dose Grid 
Resolution (cm)

Phantom, Simple Prostate, 
Complex Prostate

Trial 6 yes 0.400 0.401
Trial 7 yes 0.400 0.399
Trial 8 no 0.400 0.401
Trial 9 no 0.400 0.399
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less than 0.002, the criteria for clinical significance.  For trials 6 and 7 (re-optimization and re-

calculation of dose), the greatest difference in DHI was 0.04, and the greatest difference in CI 

was 0.03.  The average of all numbers in trials 6 and 7 was 0.013, which is less than the value for 

clinical significance.  DHI and CI values for trials 8 and 9 (no re-optimization) showed no 

difference from the baseline DHI and CI values.  Though there is undoubtedly both optimization 

noise and dose calculation uncertainty in the treatment planning system, we determined that the 

values for optimization and dose calculation uncertainty are less than our criteria for clinical 

significance.

Table 4-4.  Results for optimization noise.  Values represent the change in DHI and CI 
values from the baseline values for each trial.

Trial
Phantom Simple Prostate Complex Prostate

!DHI !CI !DHI !CI PTV1 PTV2 PTV3 PTV4
!DHI !CI !DHI !DHI !DHI

Baseline 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

4 -- -- -- -- 0.01 0.02 0.00 0.02 0.00

5 -- -- -- -- 0.00 0.02 0.00 0.00 0.00

6 0.00 0.01 0.02 0.03 0.00 0.01 0.03 0.01 0.01

7 0.00 0.00 0.01 0.01 0.01 0.01 0.04 0.02 0.02

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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5 CONCLUSIONS

In conclusion, we used the Pinnacle SmartArc treatment planning module to 

systematically examine the effects of varying parameters on resulting VMAT treatment plans.  

The study was intentionally robust, allowing us to answer our initial hypothesis in a clinically 

relevant way.  We were able to create better than ±3% dose homogeneity in the PTV of a 

phantom, and better than ±5% dose homogeneity in the PTV of a simple prostate patient for a 

wide range of input parameter values, while keeping treatment times better than half of 

corresponding fixed-beam IMRT plans.  We were unable to achieve better than ±5% dose 

homogeneity in the primary PTV of a complex prostate patient, though the baseline plan we 

created was clinically acceptable and treatment times were still less than half of standard fixed-

beam IMRT treatments.  We found that SmartArc is largely user-independent and machine 

hardware-independent for non-complex treatment geometries, but significant changes (>0.02 

variation from baseline values for DHI and CI and >3% variation from baseline values for 

normal tissue metrics) in plan quality can be seen when varying parameters for complex 

geometries.  This is useful information for centers when implementing protocols for VMAT 

treatment planning or investigating which vendor provides the most compatible machine 

hardware to their facility.  



70

REFERENCES

Bortfeld T and Webb S 2009 Single-Arc IMRT? Phys Med Biol 54 N9-20

Bzdusek K, Friberger H, Erksson K, Hardenmark B, Robinson D and Kaus M 2009 Development and 
evaluation of an efficient approach to volumetric arc therapy planning Med Phys 36 2328-39

Cao D, Holmes T W, Afghan M K and Shepard D M 2007 Comparison of plan quality provided by 
intensity-modulated arc therapy and helical tomotherapy Int J Radiat Oncol Biol Phys 69 240-50

Earl M A, Shepard D M, Naqvi S, Li X A and Yu C X 2003 Inverse planning for intensity-modulated arc 
therapy using direct aperture optimization Phys Med Biol 48 1075-89

Friberger H 2009 SmartArc in Pinnacle 9: A description of the algorithm RaySearch Laboratories

Fox C, Romeijn H E, Lynch B, Men C, Aleman D and Dempsey J 2008 Comparative analysis of 60Co 
intensity-modulated radiation therapy Phys Med Biol 53 3175-88

Khan F M 2003 The physics of radiation therapy (Philadelphia: Lippincott Williams & Wilkins)

Lee T K, Rosen, II, Gibbons J P, Fields R S and Hogstrom K R 2008 Helical tomotherapy for parotid 
gland tumors Int J Radiat Oncol Biol Phys 70 883-91

Mackie T R, Holmes T, Swerdloff S, Reckwerdt P, Deasy J O, Yang J, Paliwal B and Kinsella T 1993 
Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy Med Phys 20 1709-19

Otto K 2008 Volumetric modulated arc therapy: IMRT in a single gantry arc Med Phys 35 310-7

Palma D, Vollans E, James K, Nakano S, Moiseenko V, Shaffer R, McKenzie M, Morris J and Otto K 
2008 Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-
modulated radiotherapy and three-dimensional conformal radiotherapy Int J Radiat Oncol Biol Phys 72 
996-1001

Pirzkall A, Carol M P, Pickett B, Xia P, Roach M 3rd and Verhey L J 2002 The effect of beam energy 
and number of fields on photon-based IMRT for deep-seated targets Int J Radiat Oncol Biol Phys 53 434-
42

Pollack A, Price R, Dong L, Feigenberg S and Horwitz E M 2005 Intact Prostate Cancer: Overview 
Intensity Modulated Radiation Therapy: a clinical perspective eds. Mundt A and Roeske J 436-45

Reft C S, Runkel-Muller R and Myrianthopoulos L 2006 In vivo and phantom measurements of the 
secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT Med Phys 33 3734-42

Shah A P, Chen S S, Strauss J B, Kirk M C, Coleman J L, Coon A B, Miller C and Dickler A 2009 A 
Dosimetric Analysis Comparing Treatment of Low-Risk Prostate Cancer With TomoTherapy Versus 
Static Field Intensity Modulated Radiation Therapy Am J Clin Oncol 

Shaffer R, Morris W J, Moiseenko V, Welsh M, Crumley C, Nakano S, Schmuland M, Pickles T, and 
Otto K 2009 Volumetric Modulated Arc Therapy and Conventional Intensity-modulated Radiotherapy for 
Simultaneous Maximal Intraprostatic Boost: a Planning Comparison Study Clin Oncol



71

Staffurth J 2010 A review of the clinical evidence for intensity-modulated radiotherapy Clin Oncol 22 
643-57

Su Z, Kim S, Liu C and Palta J 2006 Is Dosimetric Effect of Leaf Width of MLC Clinically Significant in 
IMRT IFMBE Proceedings eds. Kim S and Suh T S 14 1766-69

Svensson R, Kallman P and Brahme A 1994 An analytical solution for the dynamic control of multileaf
collimators Phys Med Biol 39 37-61

Verbakel W F, Cuijpers J P, Hoffmans D, Bieker M, Slotman B J and Senan S 2009 Volumetric intensity-
modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and 
dosimetric study Int J Radiat Oncol Biol Phys 74 252-9

Webb S and McQuaid D 2009 Some considerations concerning volume-modulated arc therapy: a stepping 
stone towards a general theory Phys Med Biol 54 4345-60

Wu Y, Yan D, Sharpe M B, Miller B and Wong J W 2001 Implementing multiple static field delivery for 
intensity modulated beams Med Phys 28 2188-97

Yang J N, Mackie T R, Reckwerdt P, Deasy J O and Thomadsen B R 1997 An investigation of 
tomotherapy beam delivery Med Phys 24 425-36

Yu C X 1995 Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to 
tomotherapy Phys Med Biol 40 1435-49

Zhang P, Happersett L, Hunt M, Jackson A, Zelefsky M and Mageras G 2009 Volumetric modulated arc 
therapy: planning and evaluation for prostate cancer cases Int J Radiat Oncol Biol Phys



72

VITA

The daughter of Tom Scott Talbert, Jr. and Elizabeth Kay Turner Talbert, Catharine 

Elizabeth Talbert grew up in Wichita Falls, Texas.  After graduating 9th in her class of 389 at 

Rider High School in 2003, she went to Texas Christian University in Fort Worth, Texas, where 

she studied mathematics and modern dance.  In the fall of 2004, she transferred to Austin 

College in Sherman, Texas.  She majored in physics, minored in philosophy and received a 

Bachelor of Arts degree in May, 2007.  She entered the Medical Physics and Health Physics 

Program at Louisiana State University in the fall of 2007 and will receive the Master of Science 

degree in medical physics in 2010.  She married Michael Haveman of Bloomington, Minnesota,

in April 2010.


	Louisiana State University
	LSU Digital Commons
	2010

	Comprehensive study of parameters for volumetric modulated arc therapy (VMAT) treatment planning
	Catharine Elizabeth Talbert
	Recommended Citation


	tmp.1483774927.pdf.PIfhZ

