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Abstract

While it is possible to numerically evolve the relativistic fluid equations using any cho-

sen coordinate mesh, typically there are distinct computational advantages associated with

different types of candidate grids. For example, astrophysical flows that are governed by ro-

tation tend to give rise to advection variables that are naturally conserved when a cylindrical

mesh is used. On the other hand, Cartesian-like coordinates afford a more straightforward

implementation of adaptive mesh refinement (AMR) and avoid the appearance of coordinate

singularities. Here it is shown that it should be possible to reap the benefits associated with

multiple types of coordinate systems simultaneously in numerical simulations. This could

be accomplished by implementing a hybrid numerical scheme: one that evolves a set of state

variables adapted to one particular set of coordinates on a mesh defined by an alternative

type of coordinate system. A formalism (a generalization of the much-used Valencia for-

mulation) that will aid in the implementation of such a hybrid scheme is provided. It is

further suggested that a preferred approach to modeling astrophysical flows that are domi-

nated by rotation may involve the evolution of inertial-frame cylindrical momenta (i.e., radial

momentum, angular momentum, and vertical momentum) and the Jacobi energy—all on a

corotating Cartesian coordinate grid.
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1. Introduction

With a network of sensitive detectors actively collecting data and future upgrades en-

abling even higher sensitivity in approximately five years, experimental detection of gravi-

tational wave signals appears to be on the horizon. Once this milestone has been achieved,

focus will shift from detection to analysis, a stage that will require reliable, detailed models

of astrophysical systems. From the standpoint of numerical relativity, the simplest type of

astrophysical event that should be observable by modern gravitational-wave observatories

is a binary black hole (BBH) merger. Numerical simulations of these types of systems are

currently well in hand (e.g. [60, 22, 62, 41, 78, 39, 16, 57, 61, 60, 56]) and intense efforts are

underway to incorporate the obtained knowledge in data analysis (e.g.[17, 1, 8, 77]).

A number of groups are engaged in studies of other promising compact binaries able to

produce strong gravitational waves (e.g. [2, 70, 31, 30, 9, 67, 64, 29, 47, 76]). These correspond

to neutron star-neutron star (NS-NS) and neutron star-black hole (NS-BH) binaries. Most

of the numerical algorithms used by these groups have been divided into two modules that

run in tandem — one that handles the relativistic hydrodynamic equations and one that

handles the Einstein equations. Some of these groups have even extended their models to

include magneto-hydrodynamic (MHD) effects. For example, the panels of Figure 1.1 show

equatorial snapshots of the rest mass density and velocity fields for a double neutron star

merger simulation published by Anderson, Hirschmann, Lehner, Liebling, Motl, Neilsen,

Palenzuela, and Tohline (see [5]). This particular model shows some intriguing physical

characteristics. Namely, double cores rotating about the center of mass, a ringing bar-like

structure in the core, and large pulsations that cause gravitational waves. The final result

of the merger is a hypermassive1, differentially rotating neutron star.

In order to guarantee the accurate results of such simulations, a number of tests are

typically performed on codes. Such tests include showing that the simulations can main-

tain stable rotating stars in stationary equilibrium, that they can reproduce the Oppen-

1Hypermassive means that the star is more massive than pressure alone could support without centrifugal
effects.

1
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Figure 1.1: Density contours and velocity fields for double neutron star mergers published
by Anderson, et al. Equatorial snapshots of the rest mass density and velocity fields for the
simulation of a double neutron star merger. Double cores can be seen rotating about the
center, and a ringing bar-like structure can be seen in the core. Figure from [5].

heimer/Snyder solution for gravitational collapse to a black hole, and that they can repro-

duce analytic solutions for shocks and nonlinear MHD wave propagation. Simulations are

tested for magnetized Bondi accretion. Moreover, simulations of one or more physical events

are compared using independent codes to verify that they are in agreement (see, e.g., [44]).

A series of tests like these gives code developers added confidence that their simulations are

reproducing actual physics.

While many of the rigorous tests imposed on general relativistic hydrodynamics (GR-

HD) codes are clearly passed, occasionally a test produces unexpected results. One such test

was performed recently (see again [44]). There is a mass limit for orbiting compact stars,

beyond which quasistable circular orbits cannot be maintained. This mass limit depends on

the separation of the orbiting stars. The limiting allowed orbit is typically referred to as

the innermost stable circular orbit (ISCO). Once the stars cross inside the ISCO, a plunge-

and-merger occurs. The recent code test initially placed binary neutron stars just outside

the ISCO. The idea was that as mass was subsequently lost through gravitational radiation,

the binary would cross below the stability cut-off and settle back down into a stable orbit.

In the simulation, however, this did not occur. One naturally wonders why numerical tests
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like this one occasionally produce unexpected results. Is it our understanding of the physics

that is at fault, or is the code underperforming our expectations?

Stellar population synthesis models have predicted that NS-NS and NS-BH inspirals are

among the most likely sources of gravitational radiation detectable by early generations of

laser interferometer experiments such as LIGO and VIRGO. In this regard, it is important

that the simulations be carried out with as high a degree of quantitative accuracy as possible

because the first detections will likely require matched-filtering techniques to pull the inspi-

ral signal out of the noise. A considerable amount of time already has been invested in the

development of numerical simulation algorithms in an effort to ensure stability and accuracy.

And codes have become increasingly economical and robust as, for example, superior flux

reconstruction methods have been adopted. Here we explore avenues through which addi-

tional improvements in algorithm design may be gained to better enable the quantitative

analysis of detected gravitational-wave signals.

Most groups employing grid-based schemes have started their modeling efforts with the

Valencia formulation [10] of the relativistic Euler equations. There are many advantages to

using this formulation. Its complete hyperbolic structure is known; it provides for the use

of high-resolution shock-capturing (HRSC) techniques in the construction of fluid advection

fluxes; and, given appropriate boundary conditions, it guarantees global conservation of key

physical variables if their associated source terms are zero.

At the implementation level, most efforts have involved adopting an underlying regular

Cartesian-like grid to discretize the Euler equations, as opposed to employing specialized co-

ordinates (like spherical or cylindrical). The resulting schemes with the Cartesian-like meshes

are flexible and applicable to general scenarios, though they typically fail to take advantage

of possible underlying symmetries of the physical system. Cartesian grids make sense from a

variety of perspectives. It is relatively straightforward to write out finite-difference/volume

expressions for the partial differential equations (PDEs) in Cartesian coordinates; Cartesian

coordinates lack singularities that arise in other familiar curvilinear coordinate systems (e.g.,

spherical and cylindrical); and the Courant limit generally is less restrictive on a Cartesian
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grid. Furthermore, adaptive mesh refinement (AMR), is implemented most straightforwardly

on such grids.

On the other hand, it has long been appreciated in the computational fluid dynamics

(CFD) community that non-Cartesian grid designs offer alternate advantages. For a given

number of grid cells (often limited by computational resources), a grid that conforms to

the principal geometry of the problem can place highest resolution where it is needed for

a particular problem; and grids structured on an orthogonal curvilinear coordinate system

(e.g., cylindrical or spherical) are generally accompanied by components of the momentum

vector that are more suitable than linear momentum as the principal conservative quantities

— angular momentum being a key example in Newtonian flows. Some recent simulations

carried out by the astrophysics group at Louisiana State University (LSU) that have fo-

cused on modeling near steady-state mass transfer in nonrelativistic (i.e., Newtonian) close

binary systems [26, 48] has benefitted significantly from adopting a cylindrical coordinate

grid and evolving the associated radial and angular momentum components as the principal

conservative variables. Despite the significant challenges of using a grid code to properly

simulate two weakly interacting stars in a binary orbit (even in the Newtonian regime), this

group has managed to conserve both angular momentum and mass to a very high degree of

precision, and consequently has successfully followed binary evolutions through many 10s of

orbits. To our knowledge, this is the only group that has successfully followed the evolu-

tion of equilibrium or near-equilibrium binaries through more than a few orbits using a grid

code.2

If, in general, grid codes are struggling to faithfully represent weakly interacting binaries

over long periods of time in the Newtonian regime, then one can imagine the difficulty

in trying to model strongly interacting binaries in the relativistic regime (such as NS-NS

mergers) with a high degree of quantitative accuracy. Groups hoping to meet with success

in this relatively new undertaking should be interested to know specifically what has helped

2Groups using SPH techniques have been somewhat more successful at maintaining an equilibrium con-
figuration for more than just a few orbits, but their simulations have more trouble resolving low-density
regions without either using a very large number of particles or introducing distinct “types” of particles with
masses that vary over several orders of magnitude.
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the LSU astrophysics group achieve such a high degree of accuracy in simulations of near-

equilibrium configurations. It appears that the primary contributing factor has been the

great deal of attention that has been paid to the manner in which integration of the Euler

equations is handled. In particular, we credit:

1. The strategic choice of a set of Euler equations for which the sources go to zero, thereby

allowing identification of meaningful conserved quantities, and

2. The strategic choice of a rotating coordinate system in order to further minimize nu-

merical diffusion by the advection term.

These two geometry choices may even be more important than a high-order treatment of

shocks given that the code that the LSU group has been using over the past decade to

successfully model Newtonian binaries has not implemented a high-order treatment of shocks,

but it has implemented the Euler equations in a way that allows/causes each of the source

terms to approach zero as the physical system approaches an equilibrium state.

One of the things that has made these two geometry choices possible is the group’s

adoption of angular momentum and radial momentum (through the choice of a cylindrical

grid) – rather than the linear (Cartesian) components of momentum – as state variables.

Generally, codes employing a Cartesian grid have had significantly more trouble than those

employing cylindrical grids in maintaining the integrity of long-term evolutions because the

corresponding Cartesian components of momentum are, of course, not conserved in nature –

even for near equilibrium flows – while angular momentum is conserved. As the community

can appreciate, choosing to evolve angular momentum results in a source that goes to zero

due to the existence of an azimuthal Killing vector field, and it is accomplished by taking

advantage of the underlying axisymmetry that is inherent to the problem. And Newtonian

flows are not the only ones to reap benefits from non-Cartesian grids. Even in the relativity

community, multiblock structures [59, 79, 83, 35, 65] have been introduced to retain the

Cartesian-like character of the relevant modules by patching together blocks adapted to

various symmetries.
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Another thing that has made the two aforementioned geometry choices possible is the

manner in which pressure terms are handled in the numerical construction of the Euler

equations. By constructing Euler equations as though all the pressure terms appear on the

right-hand side (R.H.S.) as part of the source, rather than on the left-hand side (L.H.S.) as

part of the flux, it also has been possible to obtain a radial Euler equation with a source

that vanishes in equilibrium. This has further helped to produce high-quality long-term

evolutions of near-equilibrium systems.

Since one goal of the numerical relativity community is to model interacting binary neu-

tron star systems with a high degree of precision in order to produce gravitational waveforms

that can be used effectively in the analysis of LIGO data, it will likely be important for this

community to demonstrate that their grid codes can maintain a (stable or nearly stable)

equilibrium system for more than just a few orbits. Based on the difficulties that the Newto-

nian community has encountered while trying to use grid codes to accomplish this task, other

communities (like the numerical relativity community) may also want to consider adopting

a set of state variables that are conserved (or nearly conserved) and that lead to a form of

the Euler equations that has no source (or a very small source).

Toward this end, I have spent a significant amount of time over the past few years

exploring the richness of a generalized formalism (first suggested by Font and Papadopoulos

[58]) that promises to allow the numerical relativity community to continue realizing the

aforementioned benefits of using a Cartesian grid, while simultaneously adopting a set of

generalized conservative state variables that will minimize – if not altogether eliminate – the

sources and thereby make more precise conservation possible.

In order to effectively analyze a set of generalized Euler equations, it was first necessary

to understand each of the terms appearing in the standard Euler equations — particularly

within the context of finite volume codes. In particular, I needed to understand how to

identify the conservative quantity that appears in the Euler equations, and I needed to

understand why it is conserved. Furthermore, I needed to understand precisely in what sense

and under what conditions it is conserved. I was able to accompish this and a summary

of my findings is recorded in Chapter 2, particularly §2.3. Armed with this information,
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it was possible for me to then interpret clearly the physical meaning of each of the terms

appearing in the Euler equations, as is recorded in §2.4. Next, I needed to understand the

well-used Valencia Formulation, which expresses the Euler equations in a form that places

the conservative state variables, fluxes, and sources in the forefront by arranging them into

the form of Eq. (2.28),

1

α
√
γ

(
∂0
√
γ F0

(η) + ∂j α
√
γ F j(η)

)
= S(η),

where α is the lapse, γ is the determinant of the induced metric, F0
(η) is the collection of state

variables, F j(η) is the corresponding collection of fluxes, and S(η) is the collection of sources.

In §2.5 I show how the original Euler equations can be molded into this form. Also, because

the flux term plays such a critical role in advection, it was important for me to understand

how the flux term appearing in the Euler equations relates back to a traditional flux (the

product of an area, a velocity, and the state variable). This is outlined (through a series of

progressively more complex examples) in §2.6. With this background in hand, my first step

of original work involved identifying an unphysical, naked pressure term that arises on both

sides of the Euler equations when, as a natural part of the stress-energy tensor, pressure

appears inside the advection term. In any numerical integration of the Euler equations, an

error can arise due to the lack of cancellation of this unphysical term. The conditions under

which this error will be significant enough to have a consequential impact on the physics that

is modeled by a given code are discussed in §§2.7 and 2.8. After this, I suggest an alternative

approach to code designs that will avoid this difficulty.

Chapter 3 is devoted to generalizing the Euler equations so that state variables can be

specified other than those identified by the coordinate system defining the computational

grid. The formal procedure is straightforward and has already been outlined briefly by Pa-

padopoulos and Font [58]. In §3.1, I consider the physical meaning of each step in this

procedure, which can essentially be thought of as the construction of a weighted linear com-

bination of the four original Euler equations. The particular weighting factors are specified

through the choice of a characteristic vector field which can be chosen to produce certain

benefits, like the removal of the source and, consequently, the identification of a state vari-
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able that is conserved. After the generalized Euler equations have been constructed, in §3.2

they are arranged into a format that is similar to the familiar Valencia Formulation. Within

the context of this fully-generalized Valencia formulation, I found that it is easy to become

confused about the meaning of various pieces within different terms — particularly each of

the factors appearing in the flux term. In an attempt to clarify any confusion, in §3.3 I

have written out each of the terms appearing in the various dynamical equations (continuity,

momentum, and energy) and have identified which pieces depend upon the choice of grid

geometry (i.e., the coordinates) and which depend upon the choice of state variables.

Chapter 4 addresses the question, “Given a particular relativistic astrophysical problem,

can an ideal characteristic vector field be identified?” Put another way, “How does one

choose the ideal set of state variables to evolve?” This is a very open question. Given recent

efforts that have been successful at following Newtonian binary systems through many 10s

of orbits, I suggest that it would be desirable for relativistic simulations to identify a set

of sourceless state variables since certain key quantities that are naturally conserved (e.g.,

angular momentum) tend to be better conserved numerically when the source is zero. In

Chapter 4 I identify potential benefits and drawbacks of several different approaches to

choosing the set of state variables. I also investigate the steps that can be taken in order to

find the appropriate characteristic vector field in different physical contexts.

After all the formalism has been presented, Chapter 5 contains some example applica-

tions, as well as some additional insights that have arisen from our analysis of this generalized

formalism. These insights already are providing guidance to efforts that are being made at

LSU to design even more accurate codes for simulating Newtonian astrophysical systems.

Most importantly, by strategically adopting certain hybrid numerical schemes whose con-

struction is facilitated by our generalization of the Valencia formalism, it appears that the

benefits of eliminating (or at least minimizing) the source can be obtained while still main-

taining a familiar Cartesian grid and all of the numerical advantages associated with it.



2. Formalism Surrounding the Field
Equations

2.1 Definitions

The five standard field equations of special relativity can be interpreted physically as con-

servation of mass, conservation of 3-momentum, and conservation of energy. They can be

written as

∇µJ
µ = 0 (2.1)

∇µT
µν = 0ν , (2.2)

where

Jµ ≡ ρuµ (2.3)

are the components of the proper rest mass current density, ρ is the proper rest mass density,

u is the fluid 4-velocity, and

T µν ≡ ρhuµuν + Pgµν =

(
ρ+

P

c2

γ

γ − 1

)
uµuν + Pgµν (2.4)

is the energy-momentum tensor (sometimes also referred to as the stress-energy tensor),

h ≡ (1 + ε/c2 + P/ρc2) is the proper specific enthalpy of the fluid, ε is the proper specific

internal energy of the fluid, c is the speed of light in a vacuum, γ is the adiabatic index, P

is the pressure of the fluid, and the components of gµν are the components of the inverse

metric — each of these quantities as measured in the coordinate frame. Eq. (2.1) is referred

to as the continuity equation, while the components of Eq. (2.2) are known as the Euler

equations. Collectively, (2.1) and (2.2) constitute the field equations of special relativity.

Numerical implementation of the field equations of special relativity is generally either

carried out on some type of static background metric (such as that of Minkowski space-time)

— in which case, the metric components needed for defining various tensor operations like

index contraction are assumed at the onset of the problem and do not need to be computed

9
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throughout the evolution — or on a dynamic background determined by numerically solving

the collection of Einstein equations.

2.2 Degrees of Freedom

It can be helpful to consider the degrees of freedom that are inherent to the aforementioned

field equations. When supplemented by the special relativistic constraint that the fluid’s

4-velocity field be invariant,

uµuµ = −c2, (2.5)

and by some equation of state, P = P (ρ), which is frequently assumed to take a polytropic

form,

P = kργ, (2.6)

these field equations constitute a system of seven independent equations constraining seven

unknowns: rest mass density ρ, pressure P , internal energy ε, and the four components of

the 4-velocity uµ. Whenever a static background metric is assumed, the components of the

metric are known a priori and do not add to the list of unknowns.

When a dynamic metric is used, the ten components of the metric become additional

unknowns. In order to solve for these additional unknowns, the above system of equations

are further supplemented by the ten Einstein equations,

Gµν =
8πG

c4
Tµν , (2.7)

where Gµν are the components of the symmetric Einstein tensor — a measure of the in-

trinsic curvature of a manifold, deriving its mathematical origin from a special combination

of second-order partial derivatives of the components of the metric1. These equations, of

course, can be viewed as a statement that the stress-energy tensor is the source of intrinsic

curvature of a manifold, and consequently is the agent responsible for producing any per-

1Gµν ≡ Rµν − 1
2gµνR, where Rµν ≡ Rαµαν is the Ricci tensor, R ≡ Rµµ is the Ricci scalar, and

gµν are the components of the metric. Further, Rαβµν ≡ ∂µΓαβν − ∂νΓαβµ + ΓσβνΓασµ − ΓσβµΓασν . Finally,
Γαβγ ≡ 1

2g
ασ(∂βgγσ + ∂γgσβ − ∂σgβγ) is known as a connection coefficient or a Christoffel symbol. See [46],

[81], or [25] for more details.
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ceived gravitational forces on a Lorentzian manifold.2 All together, then, we have seventeen

equations and seventeen unknowns.

No discussion of the degrees of freedom inherent in the field equations of general rela-

tivity would be complete without mentioning that there is also a four-fold gauge freedom

in the components of the metric associated with the choice of coordinates, as described in

the previous section. In fact, the gauge freedom is four-fold precisely because there are four

independent coordinates. Because of this gauge freedom, there are really only six degrees of

freedom in the components of the metric. This means that only thirteen of our seventeen un-

knowns are truly independent, and that seventeen independent equations would overspecify

our set of unknowns.

Inescapably, it turns out that there is also a four-fold degeneracy among the ten Einstein

equations, so that there are only six degrees of freedom among them. This four-fold degen-

eracy is also due to the gauge freedom that exists in the choice of coordinates, and can be

expressed mathematically by a statement known as the Bianchi identities,

∇µG
µ
ν ≡ 0. (2.8)

All together, then, we have seventeen equations (with four degrees of degeneracy among

them) and seventeen unknowns (with four degrees of gauge freedom among them), so all is

well.

2.3 Conservative Form

The work of this dissertation will focus primarily on details surrounding the numerical im-

plementation of the fluid conservation equations, (2.1) and (2.2). While Eqs. (2.1) and (2.2)

represent fundamental physical conservation laws, only the first of these has the mathemat-

ical form of a conservation equation. This is because the derivatives that appear in Eqs.

(2.1) and (2.2) are covariant derivatives, and are coordinate independent. Expressing them

in terms of the chosen coordinates produces not only terms that involve partial derivatives,

but also terms involving the coordinate-dependent connection coefficients. Writing this out

2From the standpoint of numerical simulations, boundary conditions also can act as a source.
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for Eqs. (2.1) and (2.2), and multiplying both sides through by
√
−g, we have

√
−g ∂µJµ +

√
−g ΓµµνJ

ν = 0

√
−g ∂µT µν +

√
−g ΓµαµT

αν +
√
−g ΓναµT

µα = 0ν .

The product rule, then, allows us to move the
√
−g inside the partial derivatives.

∂µ
(√
−g Jµ

)
− Jµ∂µ

√
−g +

√
−g ΓµµνJ

ν = 0

∂µ
(√
−g T µν

)
− T µν∂µ

√
−g +

√
−g ΓµαµT

αν +
√
−g ΓναµT

µα = 0ν .

By noting that ∂µ
√
−g = Γννµ

√
−g, the second and third terms on the left-hand side (L.H.S.)

of each equation can be seen to cancel. While only the term involving a partial derivative

remains in the continuity equation, an additional term involving the connection coefficients

remains in the Euler equations. This term spoils conservation. After dividing the factor of

√
−g back out, this term is usually moved to the right-hand side (R.H.S.) and is thought of

as a source term.

1√
−g

∂µ
(√
−g Jµ

)
= 0 (2.9)

1√
−g

∂µ
(√
−g T µν

)
= −T µαΓνµα. (2.10)

Alternatively, one of the indices of the stress-energy tensor could be lowered. In that

case, it can be shown, following the procedure just outlined, that Eq. (2.10) becomes3

1√
−g

∂µ
(√
−g T µν

)
= T µαΓαµν . (2.11)

The physical interpretation will be the same. Though (2.10)/(2.11) still represents a funda-

mental conservation law, the nonzero source makes it unclear just what is being conserved —

certainly not the components of the stress-energy tensor, the apparent mathematical analogs

of the (conserved) components of the current density J.

Nevertheless, each of the field equations is now written in the form,

∂µQµ(η) = S(η), (2.12)

3The different sign on the R.H.S. of (2.11) (vs. 2.10) results from the fact that the covariant derivative
in (2.2) produces geometry terms, the sign of which depend on whether the quantity to be differentiated
has covariant or contravariant indices. This should not be surprising since the Christoffel symbols are not
tensors—and do not transform like tensors.
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where S(η) is called the source (for reasons that will be shown shortly), Q(η) is a vector

density4 of weight +1, and η just counts equations5. This form of the field equations em-

phasizes the concept of conservation because in this form it is straightforward to show what

is being conserved, and under what conditions. In particular, we will see that if two certain

conditions are satisfied by (2.12), then a special quantity (closely related to Qµ(η)) will turn

out to be conserved. As a result, this quantity is known as the conservative variable.

We begin by imagining the simplest possible four-dimensional region—a hypercube in

Minkowski spacetime6; we will call this region Ω. (See Figs. 2.1 and 2.2.) An instantaneous

hypersurface of Ω is typically referred to as the control volume within the fluid dynamics

communities, and we will adopt this convention as well. If Eq. (2.12) is satisfied throughout

Ω by any physical quantity Q(η) (such as the current density
√
−g J in the case of Eq. 2.9),

and if the corresponding S(η) appearing on the R.H.S. of (2.12) should happen to be zero,

then the 4-divergence of Q(η) must be zero throughout the region.∫
Ω

∂µQµ(η) dΩ = 0. (2.13)

Furthermore, the divergence theorem,∫
Ω

∂µQµ(η) dΩ =

∫
∂Ω

Qµ(η) dSµ, (2.14)

where ∂Ω is the boundary of the region Ω and dSµ represents the oriented surface area

element7, guarantees that the inner product of Q(η) with dS must sum to zero over the

boundary of Ω. There are essentially two ways this can happen.

4A tensor density of weight w is the product of a physical tensor and
√
−gw. It is called a tensor density

because of its unique transformation properties. A tensor density of weight w transforms like a tensor, but
with an additional factor of the Jacobian to the wth power. Iµ···ν··· =

∣∣∣∂x(µ)

∂x(ν)

∣∣∣w ∂xµ

∂xα · · · ∂x
β

∂xν · · · Iα···β··· .
5The parentheses around the η’s are used to emphasize the fact that η is not a tensor index; that is, the

complete set of field equations does not compose a single tensor equation—indeed, there are five equations,
but only four dimensions.

6The local principles illustrated with this example are valid for any general relativistic metric since the
equivalence principle implies that any four-dimensional Lorentzian manifold approaches Minkowski in a small
enough region.

7The oriented surface area element is just the differential 3-volume of the boundary ∂Ω oriented outward.
On the top boundary of Ω it is the final instantaneous differential 3-volume of the hypercube (directed
forward in time), and on the bottom boundary it is the initial instantaneous differential 3-volume (directed
backward in time). On the side boundaries it is the product of a differential cross-sectional area and a
differential interval of time (directed out of the region in a spacelike direction).
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Figure 2.1: Diagram of control volume with zero net flux. The vertical direction in this
diagram represents the timelike dimension, and the two horizontal directions spacelike di-
mensions. (The third spacelike dimension is suppressed.) For the sake of visualization,
contributions to the global conservative variable are here represented by discrete “particles”
that can enter and exit the region Ω. “Particles” that exit through a side boundary are
labeled ‘+1’ to emphasize the fact that this represents a positive flux out of a hypersurface
of Ω, whereas “particles” that enter through a side boundary are labeled ‘-1’ to emphasize
the fact that this represents a negative flux out of a hypersurface of Ω. “Particles” that
enter and exit Ω through the bottom and top boundaries do not represent fluxes, but rather
contributions to the global conservative variable within the region at the beginning and end
of the indicated time interval. In the case illustrated by this figure, the flux directed inward
through the side boundaries equals the flux outward through the side boundaries, so the net
flux is zero and the global conservative variable remains unchanged – namely, ‘+2’ – within
the region during the relevant interval of time.

1. The contributions to this inner product sum through the top and bottom boundaries

could exactly cancel, along with any contributions through the side boundaries (in

which case the integral of Qµ(η) dSµ taken over the control volume – known as the

global conservative variable – remains unchanged during the time interval spanned by

Ω, as in Figure 2.1).

2. Otherwise, the nonzero net contribution from the top and bottom boundaries could
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cancel with the opposite-in-sign, but equal-in-magnitude, nonzero net contribution

through the side boundaries (in which case the global conservative variable changes

over the time interval spanned by Ω corresponding to the nonzero contribution through

the side boundaries, as in Figure 2.2).

Figure 2.2: Diagram of control volume with non-zero net flux. This figure is analogous to
Figure 2.1, but now there is a positive net flux outward through the side boundaries of Ω, so
the conservative variable within the region must decrease correspondingly — from ‘+3’ to
‘+2’ in this case. Similarly, if there were a negative net flux out through the side boundaries,
then the conservative variable would increase inside Ω.

If we should further suppose that the quantity Q(η) is proportional to the 4-velocity u,

such that

Qµ(η) ≡
√
−g ψ(η) u

µ, (2.15)

where g is the determinant of the metric and ψ(η) is any scalar function, then it becomes

possible to view Qµ(η) dSµ as a more conventional differential flux — that is, as the product

of a velocity, a differential area element, a local conservative variable (represented by the
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“particles” in Figs. 2.1 and 2.2), and a differential interval of time.

Qµ(η) dSµ = Wψ(η)︸ ︷︷ ︸
conservative

state
variable

·
√
γ√

γ{j}
(
vj − cβj/α

)
︸ ︷︷ ︸

transport
velocity

·
√
γ{j} dSj

dx0︸ ︷︷ ︸
differential

area
element

· α/c dx0︸ ︷︷ ︸
differential

time
interval

, (2.16)

where W is the relativistic Lorentz factor (1− v2/c2)
−1/2

, γ is the determinant of the induced

3-metric over the control volume, γ{j} is the determinant of the entity that results from

deleting the jth row and column of the induced metric8, v is the 3-velocity through the

control volume, β is the shift vector9, and α is the lapse10. This convenient factorization

of the flux in its most general form will be explored through the introduction of a series of

increasingly complex examples in §2.6.

Since the global conservative variable in a given region can now decrease only if some

of it exits through the boundary of the region, and it can only increase if some of it enters

through the boundary, the global conservative variable is a quantity that can now neither

be created nor destroyed. This is the definition of a conserved quantity, and the reason for

the variable’s name.11

The only mathematical conditions that were required to provide exact local conservation

of the conservative variable were:

1. That the source S(η) be zero, and

2. That Eq. (2.12) be satisfied by some quantity Q(η) ≡
√
−g ψ(η) u.

If, on the other hand, we should consider the case when the source is not zero, it can

now be thought of as giving rise to the spontaneous creation or destruction of the local

conservative variable Wψ(η). One prominent physical example of this comes from a perfectly

8Effectively, γ{j} is the determinant of the 2-metric on a bounding face of the control volume.
9The shift vector is an important part of the Arnowitt-Deser-Misner (ADM) decomposition of the metric

(detailed in Subsection 7.1.2) and essentially represents the 3-velocity of the coordinates.
10The lapse function is also a critical component of the ADM decomposition of the metric (detailed in

Subsection 7.1.2) and can be thought of as the local time dilation factor – which identifies the ratio of the
rate at which time passes as measured by a local observer to the rate at which time passes as measured by
an observer at infinity – scaled by the speed of light c.

11The name of the conservative variable holds even when the source S(η) is nonzero. “Conservative” is
understood to mean that the variable is the unique quantity associated with a particular equation that will
be conserved whenever the source vanishes.
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balanced, spherically symmetric star in equilibrium called a TOV star12. The star maintains

an equilibrium configuration because the inward gravitational force perfectly balances the

outward pressure force at every layer within the star. If a small imbalance should develop

such that a net radial force acts on a layer of the star, then this net force must give rise to

a time rate of change of momentum in the radial direction since

F =
dp

dt
. (2.17)

Mathematically, the imbalance will appear as a source term on the R.H.S. of the radial Euler

equation, and it will give rise to the spontanteous creation (if pressure overpowers gravity)

or destruction (if gravity overpowers pressure) of radial momentum.

At first glance, this may seem strange since it is a central tenet of physics that things

like mass, momentum, and energy can never be created nor destroyed within an isolated

system. This is true, and the resolution is that within the context of special relativity, it is

actually the 4-momentum that is conserved, and not its individual components. Individual

components of this quantity are conserved only when the coordinates possess certain special

symmetry properties, which will be discussed in detail in Chapter 3. In our example, radial

momentum is not conserved because the radial coordinate does not possess this symmetry

property.

2.4 Interpretation

Having explained the physical meaning of equations in the form of (2.12), we are now in a

position to interpret the terms that appear in the field equations (2.9) and (2.10 or 2.11).

Substituting the definitions of J (Eq. 2.3) and T (Eq. 2.4) into the field equations, we find

that

1√
−g

∂µ
(√
−g ρuµ

)
= 0 (2.18)

1√
−g

∂µ
[√
−g (ρhui u

µ + Pδµi)
]

= ρhuαu
µΓαµi + PΓµµi (2.19)

1√
−g

∂µ
[√
−g

(
ρhu0 uµ + gµ0P

)]
= −ρhuµuαΓ0

µα − PgµαΓ0
µα, (2.20)

12A Tolman-Oppenheimer-Volkoff (TOV) star is a fully-relativistic, spherically symmetric star in static
equilibrium. Its equation of state is (2.6). For more details, see [80], [53], and [81].
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where Greek indices range over all dimensions and Latin indices range over spacelike di-

mensions only. Here, for reasons that will yet be explained, we have chosen to base the

momentum equations upon (2.11) and the energy equation upon (2.10).

While each of the field equations is in the form of Eq. (2.12), it is now apparent that

the momentum and energy equations have Q’s that are not in the form of (2.15). This

means that, in their current form, we will not be able to think of the flux terms arising from

the momentum and energy equations as traditional physical fluxes and, consequently, it will

not be obvious how to physically interpret these equations. In order to further investigate

the exact meaning of these equations it will be necessary to use the product rule to pull

any pressure terms outside the partial derivatives on the L.H.S. This will leave Q’s that

are in the form necessary to produce a traditional physical flux, but it has the drawback of

producing additional terms involving the pressure that will appear in isolation outside the

partial derivatives on the L.H.S.

1√
−g

∂µ
(√
−g ρuµ

)
= 0 (2.21)

1√
−g

∂µ
(√
−g ρhui uµ

)
+ ∂iP + PΓµµi = ρhuαu

µΓαµi + PΓµµi (2.22)

1√
−g

∂µ
(√
−g ρhu0 uµ

)
+ gµ0∂µP − PgµαΓ0

µα = −ρhuµuαΓ0
µα − PgµαΓ0

µα. (2.23)

It is not insignificant that Eq. (2.21) is still in the form of (2.12). Furthermore, it has no

source, and the term inside the differential operator takes the form of (2.15). This implies

that proper mass density13 will necessarily be conserved.

The momentum and energy equations (2.22 and 2.23) no longer appear in the form of

(2.12). This was the cost of pulling the pressure terms outside the partial derivatives and

obtaining Q’s in the form of (2.15) so that the fluxes would be more physically meaningful.

If we now separate key spacelike terms from timelike terms, we find that the continuity

equation becomes

1√
−g

∂0

(√
−g ρu0

)
+

1√
−g

∂j
(√
−g ρuj

)
= 0. (2.24)

13More precisely, the proper baryon number density will be conserved since mass is an ambiguous quantity
in general relativity. Nevertheless, we will tend to refer to this quantity as (the more familiar) mass.
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The first term represents the time-rate-of-change of proper mass density. The second is the

net (outward) flux of mass density. By moving the second term to the R.H.S. so that

1√
−g

∂0

(√
−g ρu0

)
= − 1√

−g
∂j
(√
−g ρuj

)
, (2.25)

we see that any time-variation in the proper mass density can only be caused by a net flux.

A decrease in mass density will occur if the net (outward) flux at that location is positive,

and an increase in mass density will occur if the net (outward) flux is negative. The minus

sign on the R.H.S. can be thought of as owing to the fact that flux is defined as being an

outward quantity that tends to diminish the mass density. It is no coincidence that the

source for this conservative quantity is always zero. This can be thought of as owing to

the fact that the fundamental conserved quantity is baryon number — a scalar quantity

which has no components (and consequently, no symmetry constraints on the coordinates)

to contend with.

The momentum equations, on the other hand, now take the form

1√
−g

∂0

(√
−g ρhui u0

)
+

1√
−g

∂j
(√
−g ρhui uj

)
+ ∂iP + PΓµµi

= ρhuαu
µΓαµi + PΓµµi. (2.26)

The first term on the L.H.S. is the time-rate-of-change of one component of the proper

momentum density — clearly a coordinate-dependent quantity. The second term on the left

is the (outward) flux of this particular component of the proper momentum density. Next

is the corresponding component of the pressure gradient. The first term on the R.H.S. is

a coordinate artifact associated with the curvature of the metric and represents the local

force density of gravity. Each of these terms corresponds to an important physical quantity

that plays a role in the natural evolution of the fluids these field equations model. The

remaining term, in contrast, appears on both sides of Eq. (2.26) and is entirely unphysical.

We will hereafter refer to this term as the naked pressure term since P appears outside any

derivatives.
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Finally, the energy equation becomes

1√
−g

∂0

(√
−g ρhu0 u0

)
+

1√
−g

∂j
(√
−g ρhu0 uj

)
+ gµ0∂µP − PgµαΓ0

µα

= −ρhuµuαΓ0
µα − PgµαΓ0

µα. (2.27)

Once again, the first term on the left is the time-rate-of-change of the conservative variable

— in this case, the total energy density. The second term is the (outward) flux of total energy

density, and the third term is the time-rate-of-change of pressure measured by a coordinate

observer. The first term on the right can essentially be viewed as the rate at which gravity

does work on the fluid, and the last term on either side is the unphysical naked pressure

term associated with the energy equation.

2.5 The Valencia Formulation

In order to further emphasize the exact conservative nature of the field equations, the Va-

lencia group [10] has demonstrated that Eq. (2.9) and each of the four equations represented

by expression (2.10 or 2.11) can be cast into the form of a hyperbolic conservation law —

one which is stable and converges to the correct solution as the grid resolution is improved.

Specifically, in the Valencia formulation the equations governing the conservation of baryon

number, conservation of the three components of the fluid momentum, and conservation of

energy may be written collectively as,

1

α
√
γ

(
∂0
√
γ F0

(η) + ∂j α
√
γ F j(η)

)
= S(η), (2.28)

where the index, η = 1 → 5, tags each of the five governing equations. The relevant five-

component state vector14 is,

F0
(η) ≡ (D,Si, τ)T , (2.29)

where,

D ≡ ρW , (2.30a)

Si ≡ ρhWui = ρhW 2vi, (2.30b)

τ ≡ ρhcWαu0 − P − c2D = ρhc2W 2 − P − c2D ; (2.30c)

14In reality, this is just a collection of state variables. One can think of it as a pseudovector.
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the respective fluxes are,

F j(η) ≡
(
D
uj

αu0
, Si

uj

αu0
+
P

c
δj i , τ

uj

αu0
+
P

c
vj
)T

; (2.31)

and the respective sources are,

S(η) ≡

 0
T µν

(
∂µgνi − Γδµνgδi

)
/c

α
(
T µ0∂µ lnα− T µνΓ0

µν

)
 . (2.32)

For a detailed derivation showing how the fundamental field equations, (2.1 and 2.2), can be

manipulated to yield Eq. (2.28), see Appendix B.

It is worth pointing out that the energy equation in the Valencia formulation — obtained

by specifying η = 5 in Eq. (2.28) — is not derived directly from the ν = 0 component of

Eq. (2.10). Instead, it is obtained by constructing an appropriate linear combination of the

ν = 0 component of Eq. (2.10) and the continuity equation (2.9). The energy conservation

equation obtained in this manner is deemed more suitable for numerical implementation

because the rest-mass energy — which can be orders of magnitude larger than any of the

other components of the total energy — does not appear in the definition of the energy density

τ . Our proposed modifications and generalization of the Valencia formulation (which will be

detailed in the following chapter) should be viewed in a similar light.

2.6 Flux Terms

2.6.1 Implementation Issues

Following custom, the design of a finite-volume algorithm should begin by integrating the

Valencia equations (2.28) over the 3-volume of a grid cell and over the time interval spanned

by a given timestep. We will call this hypervolume Ω in analogy to the hypervolume of §2.3.

Then (2.28) becomes

1

α
√
γ

∫
Ω

∂0

(√
γ F0

(η)

)
dΩ +

1

α
√
γ

∫
Ω

∂j
(
α
√
γ F j(η)

)
dΩ =

1

α
√
γ

∫
Ω

α
√
γ S(η) dΩ, (2.33)

where dΩ ≡ dx1 dx2 dx3 dx0. In order to convert the two terms on the L.H.S. into flux

integrals over the boundary of the hypervolume, we next invoke the divergence theorem
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(Eq. 2.14), where dSµ ≡ dx1 dx2 dx3 dx0/dxµ and Q(η) is chosen such that Q0
(η) =

√
γ F0

(η)

and Qj(η) = α
√
γ F j(η). This produces

1

α
√
γ

∮
∂Ω

(√
γ F0

(η)

)
dS0 +

1

α
√
γ

∮
∂Ω

(
α
√
γ F j(η)

)
dSj =

1

α
√
γ

∫
Ω

α
√
γ S(η) dΩ. (2.34)

To aid in numerical implementation, it proves instructive (at least in the case of the con-

tinuity and momentum equations) to factor the various terms in this expression as indicated

by Eq. (2.16).

1
α
√
γ

∮
∂Ω
F0

(η) (
√
γ dS0) +

1
α
√
γ

∮
∂Ω
F0

(η)

( √
γ√
γ{j}

F j(η)

F0
(η)

c

) (√
γ{j} dSj

dx0

) (
α/c dx0

)
=

1
α
√
γ

∫
Ω
cS(η)

(
√
γ

dΩ
dx0

) (
α/c dx0

)
, (2.35)

where γ{j} refers to the cofactor associated with the (j, j) element of the induced metric;

that is, it is the determinant of the 2-metric that results from deleting the jth row and jth

column of the induced 3-metric. Following the lead of Stone & Norman [74], it furthermore

proves instructive to label the various terms in this expression after plugging in expressions

for the state variables from (2.29) and the fluxes from (2.31).

time update︷ ︸︸ ︷
1

α
√
γ

∮
∂Ω

S(η) (
√
γ dS0) +

flux (transport)︷ ︸︸ ︷
1

α
√
γ

∮
∂Ω

S(η)

( √
γ√
γ{j}

W 2(vj − cβj/α)

) (√
γ{j} dSj

dx0

) (
α/c dx0

)
=

1
α
√
γ

∫
Ω

cS(η)

(
√
γ

dΩ
dx0

) (
α/c dx0

)
︸ ︷︷ ︸

source

. (2.36)

Each of the separately identified factors inside the integrals on the L.H.S. of Eq. (2.36)

has a particular physical significance. The first factor that appears inside the integral in

both the time update term and the flux term is the conservative state variable—analogous

to the Newtonian variable referred to as q by Stone & Norman [74]. The second factor

inside the integral of the flux term is the transport velocity; it is the component of the fluid

3-velocity normal to the cell face, as measured by the Eulerian observer, and is constructed

by subtracting the appropriate component of the grid velocity from the corresponding com-

ponent of the fluid velocity, each as measured by a stationary (hypersurface-orthogonal15)

15A hypersurface-orthogonal observer is one whose world line is everywhere orthogonal to the hypersurfaces
it pierces.
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observer. The third factor inside the integral of the flux term is the differential area element

on the boundary of the hypervolume as measured by the Eulerian observer; the analogous

area element in the Stone & Norman presentation is referred to by the variable Ã. The last

factor inside the integral of the flux term is a differential interval of time as measured by the

Eulerian observer. Finally, the last factor inside the time update term is analogous to what

Stone & Norman refer to as the control volume (really a differential control volume as per

§2.3 of this dissertation), τ .

It is useful to keep in mind the physical significance of each of these factors when devel-

oping a numerical algorithm to perform a discrete time-integration of Eq. (2.35). As Stone

& Norman [74] point out – see especially the discussion associated with the concept of “con-

sistent transport” in their §4.4 – improved local as well as global conservation of the state

variable can be achieved if care is taken to formulate a spatial interpolation (between, for

example, discrete cell centers and cell faces) that is separately appropriate for each of the

factors in the flux term. We note in particular that the area element at each cell face may

already be known and therefore will require no interpolation once the metric (grid geometry)

has been specified. Similarly, each instance of α
√
γ, which arises from integrating over a cell

volume and over an interval of time, depends only on the chosen grid structure. Related

issues have also been discussed in [66]. For a term-by-term expansion of the momentum

equations, showing the form that the divergence term takes on each face of a grid cell, see

Appendix C.

2.6.2 Examples

Our examples are prefaced with a brief description of the metric and the two basic pieces of

information that it contains:

1. Information about the inherent geometry of the manifold, and

2. Information about the coordinate system that is chosen to describe the manifold.
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To illustrate, first consider a simple example of two Eulerian flat-space metrics,

gij =

 1 0 0
0 1 0
0 0 1

 and g̃ij =

 1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (2.37)

Although these both describe exactly the same geometry, they are not the same metric. The

first metric gij describes an intrinsically flat manifold and specifies Cartesian coordinates.

The second metric g̃ij describes the same intrinsically flat manifold, but specifies spherical

coordinates rather than Cartesian. One can also express g̃ij in terms of the Cartesian coor-

dinates, but it still describes the manifold from the point of view of a spherical coordinate

system.

g̃ij =

 1 0 0
0 x2 + y2 + z2 0
0 0 x2 + y2

 6=
 1 0 0

0 1 0
0 0 1

 = gij. (2.38)

Here g̃ij is expressed in terms of purely Cartesian coordinates, but it clearly is not the

Cartesian-coordinate metric gij. This illustrates the fact that two metrics describing the

same physical spacetime – but in terms of distinct coordinates bases – are not the same

metric and cannot be used interchangeably. (Though, they can each be expressed in terms

of the alternative coordinate system.)

The next point I want to make is that it is not possible to describe two distinct mani-

fold geometries using the same coordinate system. Any coordinate system that covers one

manifold cannot possibly cover the other — it does not fit. So, while it is possible to de-

scribe the same manifold with distinct coordinate systems, it is never possible to describe

two manifolds with distinct geometries using the same set of coordinates.16 One inescapable

repercussion of this is that there are more distinct coordinate systems than there are distinct

manifold geometries. Since the metric specifies not only the geometry, but also a particular

coordinate system, there is an n-parameter family (where n is the dimension of the manifold)

of metrics all describing the same manifold geometry.

16One may, however, be able to draw analogies between two similar sets of coordinate systems describing
distinct manifolds. The coordinates used to describe Minkowski spacetime and those used to describe
perturbations over Minkowski spacetime, for example, may appear to have identical forms, but they are
distinct in the sense that the metrics required to describe them are not identical. Additional terms appear
in the perturbed metric.



25

In this sense, there is an important distinction between Cartesian coordinates on an

intrinsically flat manifold and Cartesian coordinates on an intrinsically curved manifold, a

difference between spherical coordinates on a flat manifold and spherical coordinates on a

curved manifold, and so forth. In fact, it becomes important to specify what one means by

spherical coordinates (or cylindrical coordinates, or any other type of coordinates) in the

first place. Each of these types of coordinate systems is defined in terms of its inherent

symmetries. A spherical coordinate system, by definition, exhibits spherical symmetry (and

consequently can only exist on a spherically symmetric manifold). Schwarzschild coordinates,

for example, are spherical coordinates that are adapted to the Schwarzschild geometry.

One question that naturally arises from this discussion is how one can determine if two

distinct metrics both describe the same manifold. If both metrics describe the same manifold,

then it must be possible to transform between the two corresponding coordinate systems;

there must be an equivalence between the two line elements. Since there are 1
2
n(n+1) degrees

of freedom in the metric17, and n of them are associated with the choice of coordinates, the

remaining 1
2
n(n−1) must be associated with the geometry of the manifold. This implies the

existence of an anti-symmetric second-rank tensor that contains all the information about

the geometry and no information about the coordinate choice. It turns out that if such a

tensor can be constructed from a vector field ξ such that

∇µξν +∇νξµ = 0µν , (2.39)

then ξ is a Killing vector, and identifies a particular symmetry of the manifold. The set

of relations described by Eq. (2.39) are known as Killing’s equations. Certainly, in order

for any two metrics to describe the same manifold, they must give rise to equivalent Killing

spaces; that is, equivalent solution spaces to Killing’s equations. We will discuss Killing

vectors and their relevance to this work in more detail in Chapter 3.

There are six properties that can be used to classify different types of coordinate systems.

Each of these properties has the potential to be predetermined by the geometry of the

manifold. (For example, given a highly dynamic spacetime, it may not be possible to find

17This is because the metric is a symmetric, n-dimensional, second-rank tensor.
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an orthogonal coordinate system.) If the geometry alone does not predetermine whether the

coordinate map can possess a given attribute, then the choice of coordinates will. Each of

these properties adds a degree of generalization and complexity. They can be summarized

with the following six questions:

1. Are the coordinates Cartesian? (i.e., “Are they rectangular?”)

2. Are the coordinates orthogonal?

3. Are the coordinates static? (i.e., “Is the shift vector zero?”)

4. Are the coordinates non-deforming?

5. Is the manifold intrinsically flat?

6. Is the manifold static? (i.e., “Does there exist any coordinate system in which the shift

vector is everywhere zero?”)

Answers to each of the first three questions will have an impact on the way we think

about what a transport velocity, a cell face area, an interval of time, and a cell volume

mean to an Eulerian observer. Answers to the last three questions will introduce additional

complexity, but, somewhat surprisingly, they will not have an impact on how we think about

each of the aforementioned quantities.

The examples detailed in this section include:

1. Advection of a fluid 3-velocity normal to the cell face on a Cartesian grid in Minkowski

spacetime;

2. Advection of a fluid with a 3-velocity with an arbitrary orientation relative to the cell

face on a Cartesian grid in Minkowski spacetime;

3. Advection of a fluid with a 3-velocity with an arbitrary orientation relative to the cell

face on a cylindrical grid in Minkowski spacetime;

4. Advection of a fluid with a 3-velocity with an arbitrary orientation relative to the cell

face on a non-orthogonal grid in Minkowski spacetime;



27

5. Advection of a fluid with a 3-velocity with an arbitrary orientation relative to the cell

face on a rotating cylindrical grid in Minkowski spacetime;

6. Advection of a fluid with a 3-velocity with an arbitrary orientation relative to the cell

face on a spherically symmetric, infalling grid in Minkowski spacetime;

7. Advection of a fluid with a 3-velocity with an arbitrary orientation relative to the cell

face on a static spherical grid in Schwarschild spacetime;

Example 1: Advection of a fluid with a 3-velocity normal to the cell face on a
Cartesian grid in Minkowski spacetime

Cartesian coordinates in Minkowski spacetime18 give rise to the simplest grid structure

through which advection can be performed. The coordinates and metric are

xµ ≡


t
x
y
z

 , gµν ≡


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (2.40)

Appealing to the ADM relations detailed in Subsection 7.1.2, we can read directly from the

metric
α = c.

√
γ{x} = 1.

β = 0.
√
γ{y} = 1.√

γ = 1.
√
γ{z} = 1.

Assuming we want to advect across the x+ cell face, the advection variable, transport velocity,

face area, interval of time, and cell volume, each as given by (2.16), are

advection variable = F0
(η) = Wψ(η).

transport velocity =

√
γ√

γ{x}
(vx − cβx/α) = v.

face area =
√
γ{x} ∆3x

∆xx
= ∆y ∆z.

interval of time =
α

c
∆x0 = ∆t.

cell volume =
√
γ ∆3x = ∆x ∆y ∆z.

By cross-referencing the illustration in Figure 2.3, one can quickly verify that each of

these quantities is in accordance with what one would expect. Since (for a small enough

18Minkowski spacetime is the flat, Lorentzian spacetime of special relativity. It has no gravity and no
intrinsic curvature.
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Figure 2.3: Advection on a Cartesian grid with a fluid 3-velocity normal to the cell face. If
the fluid 3-velocity is normal to the x+ cell face, then the area of the cuboid of fluid advected
through the x+ cell face is just the product of the area of the face and the magnitude of the
fluid 3-velocity times time.

cell volume) the state variable F0
(η) will be almost homogeneous throughout the cell, the

complete advection term (given by Eq. 2.16) should measure the amount of F0
(η) that is

carried out of the cell through each cell face in a given time ∆t. In this simplest example,

the fluid velocity at a given cell face will be normal to that face, as indicated in Figure 2.3.

Then v = vx ex. The ratio of the volume of F0
(η) advected through the x+ cell face to the

volume of the grid cell will be the fraction of F0
(η) carried out of the cell through the given

cell face.

∆x+

(
F0

(η)

)
F0

(η)

=

(
volume of F0

(η) that leaves through the x+ face in time ∆t

volume of the grid cell

)
. (2.41)

So the total amount of F0
(η) that is carried out of the cell through this face is the product

of this ratio and the state variable F0
(η) measured at the cell face,

∆x+

(
F0

(η)

)
=

(
volume of F0

(η) that leaves through the x+ face in time ∆t

volume of the grid cell

)
F0

(η)

∣∣
x+ .

(2.42)
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Figure 2.4: Advection on a Cartesian grid with a fluid 3-velocity that is not normal to the
cell face. Since the fluid 3-velocity is no longer normal to the x+ cell face, the volume of fluid
advected through the x+ cell face is now a parallelepiped. The volume of the parallelepiped
is given by the product of the area of the x+ cell face and the x-component of the 3-velocity
times time.

Since the volume of F0
(η) that leaves the cell through the indicated face is equal to the face

area times the transport velocity times the interval of time, we find that

∆x+

(
F0

(η)

)
=
Vadv
Vcell

· F0
(η) =

(∆y ∆z) · v ·∆t
∆x ∆y ∆z

F0
(η)

∣∣∣∣
x+

.

Example 2: Advection of a fluid with a 3-velocity with an arbitrary orientation
relative to the cell face on a Cartesian grid in Minkowski spacetime

In the more general case (when the fluid velocity is not normal to the given cell face),

the amount of F0
(η) advected will still be given by (2.42). The only difference is that now

the volume advected (see Figure 2.4) is a parallelepiped, rather than a cuboid. But the

volume of F0
(η) that leaves through the x+ will still equal the face area times the transport

velocity times the interval of time, and the transport velocity will now just be vx, the physical

component of the velocity normal to the cell face.
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Figure 2.5: Advection on a cylindrical grid. Since the φ coordinate is not normalized in this
example, vφ must necessarily be scaled by R to produce the transport velocity.

Example 3: Advection of a fluid with a 3-velocity with an arbitrary orientation
relative to the cell face on a cylindrical grid in Minkowski spacetime

The cylindrical coordinates and metric are

xµ ≡


t

R =
√
x2 + y2

φ = arctan (y/x)
z

 , gµν ≡


−c2 0 0 0

0 1 0 0
0 0 R2 0
0 0 0 1

 . (2.43)

And the ADM relations give

α = c.
√
γ{R} = R.

β = 0.
√
γ{φ} = 1.√

γ = R.
√
γ{z} = R.

Suppose we want to advect F0
(η) in the azimuthal direction, as shown in Figure 2.5. Then,

advection variable = F0
(η) = Wψ(η).

transport velocity =

√
γ√

γ{φ}
(
vφ − cβφ/α

)
= Rvφ.

face area =
√
γ{φ} ∆3x

∆xφ
= ∆R ∆z.

interval of time =
α

c
∆x0 = ∆t.

cell volume =
√
γ ∆3x = R ∆R ∆φ ∆z.
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The advection term for this face, then, is

∆φ+

(
F0

(η)

)
=

(∆R ∆z) ·
(
Rvφ

)
·∆t

R ∆R ∆φ ∆z
F0

(η)

∣∣∣∣∣
φ+

,

where vφ is the contravariant component of the fluid velocity in the φ-direction, and Rvφ

is the physical component of the fluid velocity in the φ-direction. Meanwhile, ∆R ∆z =√
γ{φ} ∆R ∆z is the cell face area, and R ∆R ∆φ ∆z =

√
γ ∆R ∆φ ∆z is the grid

cell volume. Also, while γ is the determinant of the induced metric, γ{φ} refers to the

determinant of the 2-metric on the cell face—that is, the determinant of the entity that is

left when the row and column associated with φ are deleted from the 3-metric. This is

γ{φ} =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1.

Once again, referring to Figure 2.5, the advection term can be thought of as

∆φ+

(
F0

(η)

)
=

(
volume of F0

(η) that leaves through the φ+ face in time ∆t

volume of the grid cell

)
F0

(η)

∣∣
φ+ .

Example 4: Advection of a fluid with a 3-velocity with an arbitrary orientation
relative to the cell face on a non-orthogonal grid in Minkowski spacetime

The skewed coordinates that we will select and corresponding metric are non-orthogonal19.

xµ ≡


t

x′ = x
y′ = y − x

z

 , gµν ≡


−c2 0 0 0

0 2 1 0
0 1 1 0
0 0 0 1

 . (2.44)

Then the ADM quantities become

α = c.
√
γ{x′} = 1.

β = 0.
√
γ{y′} =

√
2.√

γ = 1.
√
γ{z} = 1.

This time we will advect F0
(η) across an x′ = constant cell face, as shown in Figure 2.6.

From (2.36), we have

19In orthogonal coordinate systems, each of the basis vectors is everywhere orthogonal to each of the other
basis vectors. This is manifest by a metric with no off-diagonal terms. (There are some manifolds that
cannot be mapped by an orthogonal coordinate system.)
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Figure 2.6: Advection on a non-orthogonal grid. The transport velocity is the component of
the 3-velocity that is normal to the x′+ cell face, not the one that points in the direction of
the x′ coordinate. The transport velocity is the necessary component for the construction of
the appropriate advection term.

advection variable = F0
(η) = Wψ(η).

transport velocity =

√
γ√

γ{x′}

(
vx
′ − cβx′/α

)
= vx

′
.

face area =
√
γ{x′} ∆3x

∆xx′
= ∆y′ ∆z.

interval of time =
α

c
∆x0 = ∆t.

cell volume =
√
γ ∆3x = ∆x′ ∆y′ ∆z.

The advection term for this face, then, is

∆x′+
(
F0

(η)

)
=

(∆y′ ∆z) ·
(
vx
′) ·∆t

∆x′ ∆y′ ∆z
F0

(η)

∣∣∣∣∣
x′+

.
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The advection term will still be the ratio of the volume of F0
(η) advected through the

x′+ cell face to the grid cell volume, times F0
(η). But because the contravariant components

of a vector field vµ are generally used with the coordinate basis vectors eµ, and the covariant

components of a vector field vµ are generally used with the covectors eµ, at first glance it

would appear that vx
′
is not the transport velocity, but the component of the fluid 3-velocity

pointing in the x′-direction (which is not normal to the cell face). (For an explanation

detailing why this is not the case, see Appendix A.) Nonetheless, it turns out that the

covariant components vµ are needed to give the physical components in the direction of

the basis vectors eµ, and the contravariant components vµ are needed to give the physical

components in the direction of the covectors eµ! Apparently, this is just one of the features

that emerge from the deep complexities of duality.

This can be shown as follows. In order to obtain the physical components of a vector

field in the direction of the covectors eµ, one needs to project the vector field onto the unit

covectors,

v(µ) = v · êµ = v · eµ

|eµ|
= v · eµ√

eµ · eµ
=

vµ√
gµµ

.

The contravariant component of the metric that appears in the denominator can be expressed

in terms of the more standard covariant components of the metric by recalling that the

contravariant components of the metric form a matrix that is the inverse of the matrix formed

by the covariant components of the metric. For that reason, the contravariant components

of the metric are sometimes referred to collectively as the “inverse metric”. Further, recall

from linear algebra that the components of an inverse matrix can be obtained from the

determinant of the matrix, and the collection of cofactors.

(A−1)ij =
1

detA
Cji, (2.45)

where Cji is the cofactor associated with the (j, i) element of A. In an analogous fashion,

gµµ can then be expressed as

gµµ =
1

g
g{µ} =

−g{µ}
−g

, (2.46)

where g is the determinant of the metric and g{µ} is the determinant of the entity that is

obtained by deleting the µ row and column of the metric. Or, in other words, g{µ} is the
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cofactor associated with the (µ, µ) component of the metric. All together, then, we have

v(µ) =

√
−g√
−g{µ}

vµ, (2.47)

for the physical component of v in the direction normal to the µ+ cell face. Because the

chosen coordinates are not moving, the factor of
√
−g/

√
−g{µ} appearing in front of vµ in

(2.47) reduces to the factor of
√
γ/
√
γ{i} appearing in front of W 2(vi−cβi/α) in Eq. (2.36).

For a description of why the latter is the more general expression for the transport velocity

measured by an Eulerian observer, see the next example. It involves a moving coordinate

system.

Example 5: Advection of a fluid with a 3-velocity with an arbitrary orientation
relative to the cell face on a rotating cylindrical grid in Minkowski spacetime

The coordinates and metric components are stationary20 in this case.

xµ ≡


t′ = t
R

φ′ = φ− ωt
z

 , gµν ≡


− (c2 −R2ω2) 0 R2ω 0

0 1 0 0
R2ω 0 R2 0

0 0 0 1

 . (2.48)

The inverse metric, then, becomes

gµν =


−1/c2 0 ω/c2 0

0 1 0 0

ω/c2 0 c2−R2ω2

c2R2 0
0 0 0 1

 , γij =

 1 0 0
0 1/R2 0
0 0 1

 , (2.49)

and the ADM quantities are

α = c.
√
γ{R} = R.

β = ω eφ′ = R2ω eφ
′
.

√
γ{φ′} = 1.√

γ = R.
√
γ{z} = R.

If we construct an advection term in the azimuthal direction, it will be very similar to the

term we constructed for the static cylindrical coordinates. The only difference is that now

the moving coordinates are chasing down the fluid. As a result, we will need to subtract the

3-velocity of the coordinates from the fluid 3-velocity.

20Static coordinates are motionless, whereas stationary coordinates can be moving as long as their global
structure never changes. The shift vector is a measure of this coordinate motion. The physical components
of the 3-velocity of the coordinates, given by (7.13), are directly proportional to the shift vector.
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advection variable = F0
(η) = Wψ(η).

transport velocity =

√
γ√

γ{φ′}

(
vφ
′ − cβφ′/α

)
= R

(
vφ
′ − ω

)
.

face area =
√
γ{φ′} ∆3x

∆xφ′
= ∆R ∆z.

interval of time =
α

c
∆x0 = ∆t′.

cell volume =
√
γ ∆3x = R ∆R ∆φ′ ∆z.

The advection term for this face, then, is

∆φ′+
(
F0

(η)

)
=

(∆R ∆z) ·
(
R
(
vφ
′ − ω

))
·∆t′

R ∆R ∆φ′ ∆z
F0

(η)

∣∣∣∣∣∣
φ′+

.

Since the grid is moving in this example, the physical component of v pointing in the

direction of eφ
′

is no longer tangent to the spatial hypersurface. This is because the covector

is normal to the t′ coordinate, which moves along with the grid. Consequently, the covector

must have a nonzero timelike component. As a result, the physical component of v in the

eφ
′
-direction is no longer the transport velocity measured by the Eulerian observer. She can

measure only hypersurface tangent components.

In the previous example, we demonstrated that the projection of the 3-velocity onto êi is

√
−g√
−g{i}

vi.

Now we want to find what part of this is tangent to the hypersurface. One can imagine what

êi would look like if t′ were deleted as a coordinate. The remaining coordinates would span

the hypersurface only. Then êi would lie tangent to the t′ = const. hypersurface. Replacing

the 4-metric gµν with the induced 3-metric γij on the hypersurface, the above expression

becomes √
γ√
γ{i}

vi.

Finally, subtracting off the 3-velocity of the coordinates, we arrive at the transport velocity

given by Eq. (2.36),

transport velocity =

√
γ

γ{i}
W 2

(
vi − cβi/α

)
. (2.50)
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Figure 2.7: Advection on a moving grid. Since the transport velocity is measured by the
Eulerian observer, it must be tangent to the hypersurface of constant t′. But since the grid is
moving in this example, the component of the 4-velocity that is normal to the φ′+ hyperface,
(
√
−g/

√
−g{φ′} ) vφ

′
, is not tangent to the hypersurface; consequently, it cannot be the

transport velocity. The transport velocity is the part of this that is tangent to the hyper-
surface. It is obtained by replacing −g with γ, which lies exclusively in the hypersurface.
Thus, (

√
γ/
√
γ{φ′} ) vφ

′
becomes the transport velocity.

Notice that the transport velocity is normal to the spatial 2-face, but not to the hyperface,

as shown in Figure 2.7.

Example 6: Advection of a fluid with a 3-velocity with an arbitrary orientation
relative to the cell face on a spherically symmetric, infalling grid in Minkowski
spacetime

The concept of infalling coordinates21 can be applied to a number astrophysical phenom-

enae. In general, the infall speed of the coordinates is ṽ (t). This results in a metric that

21Non-deforming coordinates can move, but only along a Killing vector field. (This, of course, implies that
there are some geometries—geometries that do not admit any Killing vector field—where non-deformable
coordinates are not possible.) Any non-Killing motion of the coordinates will result in a time-dependent
deformation of the grid cells. This can be measured by checking to see if the 4-velocity of the coordinates
(given by Eq. 7.14), satisfies the Killing equations (4.2). The rotating cylindrical coordinates discussed
above, for example, have a 4-velocity of

ucoords =
c e0√

c2 −R2ω2
.

One can check that this vector field does in fact satisfy Killing’s equations. Consequently, rotating cylindrical
coordinates do not deform.
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Figure 2.8: Relationship between ∆t′ and ∆t for a moving grid. One should not be alarmed
that the interval ∆t = W ∆t′ appears shorter in Figure 2.7 than does ∆t′. This is an illusion
that can be explained away by the Lorentzian character of the metric. Making use of the
principle of relativity of simultaneity, here one can see that, in fact, ∆t = W ∆t′ is a longer
interval than ∆t′, as would be expected.

takes the form

xµ ≡


t

r′ = r + r̃ (t)
θ
φ

 , gµν ≡


ṽ2 (t)− c2 −ṽ (t) 0 0
−ṽ (t) 1 0 0

0 0 r′2 0
0 0 0 r′2 sin2 θ

 . (2.51)

We also have

α = c.
√
γ{r′} = r′2 sin θ.

β = −ṽ (t) er′ = −ṽ (t) er
′
.

√
γ{θ} = r′ sin θ.√

γ = r′2 sin θ.
√
γ{φ} = r′.

The 4-velocity of the coordinates will, of course, not satisfy Killing’s equations in this case

because of the squashing that happens as the coordinates fall inward. Despite this, there is

nothing new here with respect to constructing an advection term. So let us construct the

advection term out of the +r′ face.

advection variable = F0
(η) = Wψ(η).

transport velocity =

√
γ√

γ{r′}

(
vr
′ − cβr′/α

)
= vr

′ − ṽ (t) .

face area =
√
γ{r′} ∆3x

∆xr′
= r′2 sin θ ∆θ ∆φ.
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interval of time =
α

c
∆x0 = ∆t.

cell volume =
√
γ ∆3x = r′2 sin θ ∆r′ ∆θ ∆φ.

∆r′+ (Wψ) = Wψ
(
vr
′ − ṽ (t)

) (
r′2 sin θ ∆θ ∆φ

) ∆t

r′2 sin θ ∆θ ∆φ

∣∣∣∣
r′+
.

Example 7: Advection of a fluid with a 3-velocity with an arbitrary orientation
relative to the cell face on a static spherical grid in Schwarschild spacetime

The Schwarzschild spacetime is curved22, but spherically symmetric. Its coordinates and

metric are

ξµ ≡


t
r
θ
φ

 , gµν ≡


−c2 (1− 2GM/rc2) 0 0 0

0 (1− 2GM/rc2)
−1

0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (2.52)

which implies that

α = c
√

1− 2GM/rc2.
√
γ{r} = r2 sin θ.

β = 0.
√
γ{θ} = r sin θ√

1−2GM/rc2
.

√
γ = r2 sin θ√

1−2GM/rc2
.

√
γ{φ} = r√

1−2GM/rc2
.

The only complications arising from advecting on a curved manifold are conceptual. Gravi-

tational time dilation scales the interval of time, and gravitational length contraction scales

the face area and cell volume. All of this occurs naturally inside the metric and requires no

generalization in the construction of the advection term. In this example, we shall advect

across the θ− cell face. We find that,

advection variable = F0
(η) = Wψ(η).

transport velocity = −
√
γ√

γ{θ}
(
vθ − cβθ/α

)
= −rvθ.

face area =
√
γ{θ} ∆3x

∆xθ
=

r sinφ√
1− 2GM/rc2

∆r ∆φ.

interval of time =
α

c
∆x0 =

√
1− 2GM/rc2 ∆t.

cell volume =
√
γ ∆3x =

r2 sin θ√
1− 2GM/rc2

∆r ∆θ ∆φ.

∆θ− (Wψ) = −Wψ
(
rvθ
)( r sin θ√

1− 2GM/rc2
∆r ∆φ

) √
1− 2GM/rc2 ∆t
r2 sin θ√

1−2GM/rc2
∆r ∆θ ∆φ

∣∣∣∣∣∣
θ−

.

22Flat manifolds have no intrinsic curvature, which means that all the components of the Riemann tensor
are zero.
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There are two distinct ways of thinking about where the minus sign comes from in

this case. First, one can think of advecting across the θ− cell face in the −θ direction so

that the relevant physical component of the velocity is −rvθ and the oriented face area is√
γ{θ} ∆r ∆φ. Or second, one can think of advecting across the θ− cell face in the +θ

direction. Then the relevant physical component of the velocity is +rvθ, but the oriented

cell face area is −
√
γ{θ} ∆r ∆φ. Either way, the necessary minus sign is produced.

2.7 The Naked Pressure Term

We return to dwell on the appearance of the naked pressure term PΓµµi on both sides of the

momentum equations (2.26). Analytically this unphysical term presents no formal problems

because it appears on both sides of the equation and therefore can be canceled. But numerical

implementations of the governing fluid equations in this standard form – such as elements

η = 2, 3, & 4 of expression (2.28) in the Valencia formulation – are subject to numerical

errors associated with the failure of the naked pressure terms to cancel. It is difficult for

the terms to cancel numerically because the finite-difference expressions that are used to

approximate derivatives that appear in the source term on the R.H.S. generally are different

from the numerical expressions used to approximate derivatives on the L.H.S.

It is apparent that the error made by not removing the naked pressure terms will vanish

whenever the Christoffel symbols are zero (like when Cartesian coordinates are used on a flat

manifold), and that it is greatest in regions where the Christoffel symbols are large (that is,

wherever the basis vectors change rapidly from one point to the next—like near coordinate

poles23).

Neilsen & Choptuik [49] encountered this problem in their study of the critical collapse

of spherically symmetric perfect fluids. Because they carried out their simulations on a

spherical coordinate grid, the naked pressure term explicitly contained a factor of 1/r. They

23It is useful to understand that the Christoffel symbols identify the rate at which the basis vectors change
as you move along a given coordinate. (Test it, for example, in cylindrical coordinates where the only
nonzero connection coefficients are ΓRφφ = −R and ΓφRφ = R−1 = ΓφφR and see if you get what you expect.)
This can be seen by considering the relationship ∂µeν = Γαµνeα. [46] For the unit vectors this becomes

∂µêν =
√
gαα√
gνν

Γαµν êα (α 6= ν). Incidentally, note that, with these relations, it is very straightforward to take
the total time derivatives of the basis vectors or of the unit vectors.
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found (see the discussion in their Appendix B) that the lack of perfect cancelation of the

source term with the pressure term in the flux induced errors that became quite large near

the origin of their grid. The explicit divergent (1/r) behavior of the naked pressure term

that was encountered by Neilsen & Choptuik can be avoided if a dynamical simulation is

carried out in Cartesian coordinates. But even on a Cartesian coordinate grid, curvature in

the metric can cause the naked pressure term to be large.

Consider trying to model, for example, the dynamical behavior of a near-equilibrium

neutron star represented by a spherically symmetric TOV star. In near-equilibrium, pressure

gradients will almost balance gravity throughout the star; that is, at all radii,

ρhuµuαΓαµ(x)

∂xP
≈ 1 . (2.53)

How large will the naked pressure term be in such a configuration? To illustrate, consider a

numerical scheme in which an nR
th-order accurate finite-difference stencil is used to evaluate

derivatives on the R.H.S. – in which case the error introduced in each term is O(∆xnR+1) –

and a lower nL
th-order flux reconstruction scheme is used to perform one-dimensional advec-

tion in a smooth region of some simulation domain – in which case a numerical evaluation

of each term involving spatial derivatives on the L.H.S. introduces an error O(∆xnL+1). The

numerical error εP that results from a lack of cancelation of the naked-pressure terms will

be dominated by the lower-order treatment on the L.H.S.; that is,

εP =

∣∣∣∣ PΓµµ(x)

∣∣∣
RHS
− PΓµµ(x)

∣∣∣
LHS

∣∣∣∣ = PΓµµ(x)

∣∣∣(1 +O
(
∆xnR+1

) )
−
(

1 +O
(
∆xnL+1

) )∣∣∣
= PΓµµ(x) · O

(
∆xnL+1

)
. (2.54)

The numerical error εadv introduced by the advection term on the L.H.S. is of this same

order; that is,

εadv = ∂x
(
ρu2
)
· O
(
∆xnL+1

)
. (2.55)

Therefore, the error associated with evaluation of the naked pressure terms will be more

significant than the error associated with advection unless,

PΓµµ(x) < ∂x
(
ρu2
)
. (2.56)
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But in near-equilibrium we expect dynamical motion to be small so that

∂x (ρu2)

∂xP
� 1 . (2.57)

Condition (2.56) will therefore be violated when modeling the near-equilibrium behavior of

a given neutron star configuration if, in any region of the flow, the dimensionless ratio

σ(x) ≡
PΓµµ(x)

∂xP
=

Γµµ(x)

∂x (lnP )
, (2.58)

is not small (meaning, � 1). The panel on the left of Figure 2.9 shows how the magnitude

of σ(x) (implying the use of Cartesian coordinates) varies with position inside individual,

spherically symmetric Γ = 2 TOV stars that have different total masses. (See Appendix E

for a detailed derivation of σ(x) within a TOV star.) The panel on the right of Figure 2.9

shows how the maximum value of σ(x) varies with GM/c2R (where M is the total mass of

the TOV star and R is its radius) for a wide range of TOV masses. It is evident that
∣∣σ(x)

∣∣
becomes increasingly relevant as one moves deeper into the relativistic regime, growing to

values of order unity near the center of the most massive stars.

Figure 2.9: Naked pressure term (normalized to the pressure gradient) inside several TOV
stars. The left panel shows how

∣∣σ(x)

∣∣ (as defined in Eq. 2.58) varies with radius inside Γ = 2
TOV stars having total masses GM/c2R = 0.03, 0.14, and 0.32. The right panel shows the
relationship between

∣∣σ(x),max

∣∣ and GM/c2R for TOV stars having a wide range of masses.

To illustrate this point more concretely, we have numerically determined the net acceler-

ation that would be felt at various locations inside one of our static, equilibrium TOV stars
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(the one with GM/c2R = 0.31) according to Eq. (2.10), assuming the advection term on the

L.H.S. is evaluated using the Colella & Woodward PPM24 reconstruction scheme [23]. The

acceleration resulting from a lack of cancelation of the naked pressure terms, normalized to

the equilibrium pressure gradient, is shown as a function of position r/R in the left panel of

Figure 2.10 for three different adopted grid resolutions — 64, 128, and 256 zones. Because

pressure balances gravity to a very high degree of precision in the TOV star (which was

constructed using Mathematica and a grid containing thousands of radial zones) and the

velocity everywhere is zero, the net acceleration should be many orders of magnitude smaller

than what is displayed.

Figure 2.10: Comparison of spurious numerical accelerations with momentum updates from
flux terms for a moderately relativistic, near-equilibrium TOV star. Left panel: Spurious
radial accelerations that result from a lack of cancelation of the naked pressure terms inside a
TOV star having GM/c2R = 0.3. Curves show resulting spurious accelerations, normalized
to the local pressure gradient and plotted as a function of radius, when a PPM scheme is used
to reconstruct fluxes according to Eq. (2.10) for three different radial grid resolutions — 64
(dotted), 128 (dashed), and 256 (solid) zones. Right panel: The Eulerian time-rate-of-change
of the radial momentum density that should actually be produced inside the same TOV star
when various radial velocity flow fields defined by Eq. (2.59) are introduced. Curves show
results, normalized to the local pressure gradient and plotted as a function of radius, when
the velocity amplitude A0 = 0.3 (dotted), 0.03 (dashed), and 0.003 (solid).

To assess how errors introduced by the naked pressure terms might affect the evolution of

models that are near but not precisely in hydrostatic balance, we imprinted a radial velocity

24Piecewise parabolic method.
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flow field of the form,

vr
c

= A0

(
r

R

)
, (2.59)

where A0 is a constant, onto the equilibrium structure of our 128-zone TOV star. Then, using

the same PPM reconstruction scheme as before but a form of the momentum conservation

equation in which the naked pressure terms have been canceled analytically — specifically,

Eq. (2.60a) introduced below — we again numerically determined the Eulerian-frame time-

rate-of-change of the radial momemtum density throughout the star. The right panel of

Figure 2.10 shows these results, normalized to the equilibrium pressure gradient, for three

different adopted values of A0: 0.3, 0.03, and 0.003. These are not spurious accelerations;

they arise due to the properties of our prescribed nonequilibrium flow field and are free of

errors arising from naked pressure terms. Had we used Eq. (2.10) instead, our determination

of the net acceleration would have included errors on the order of the spurious accelerations

shown in the left panel of Figure 2.10. For velocity amplitudes A0 on the order of 0.01, or

smaller, these errors would have corrupted our attempt to accurately determine the Eulerian-

frame time variation of the radial momentum density shown in the right panel of the figure.

To avoid this unnecessary source of numerical error (εP ), we propose that the Valen-

cia formulation be modified to ensure cancelation of the unphysical naked pressure terms.

Specifically, we propose that the term, Pδij/c, that appears inside the fluxes associated with

all three components of the momentum in Eq. (2.31) be moved to the R.H.S. of the mo-

mentum conservation equation and be considered part of the source. With this objective in

mind, rather than developing a relativistic formulation of the fluid equations that is built

upon Eq. (2.26), we will base our subsequent discussion and derivations on a momentum

conservation equation of the form,

1√
−g

∂0

(√
−g ρhui u0

)
+

1√
−g

∂j
(√
−g ρhui uj

)
+ ∂iP = ρhuµuαΓαµi (2.60a)

= (T µα − Pδµα)Γαµi . (2.60b)



44

2.8 The Pressure Gradient

In addition to strategically removing the naked pressure terms, there are benefits that can

be realized when the remaining pressure gradient is moved to the R.H.S. (For the energy

equation, though, we will keep the pressure term on the L.H.S. inside the expression for the

flux since it is not clear how to take explicit partial derivatives of the pressure with respect

to time.)

1√
−g

∂0

(√
−g ρhui u0

)
+

1√
−g

∂j
(√
−g ρhui uj

)
= ρhuµuαΓαµi − ∂iP (2.61a)

= (T µα − Pδµα)Γαµi − ∂iP . (2.61b)

First, moving the pressure gradient to the R.H.S. reduces the magnitude of both the

source and the divergence term in regions of near steady-state flow — minimizing the numer-

ical cancelation that needs to take place between the flux and source terms. The magnitude

of the source will be minimized because, in steady state, pressure can be expected to nearly

balance gravity; the magnitude of the divergence term will be minimized as well because

very little net fluid actually passes from one cell to another. We will elaborate further on

this point in Chapter 3.

Second, note that if we raise the i-index on both sides of (2.61a), the L.H.S. is the total

time derivative of a coordinate 4-momentum. Consequently, the R.H.S. can be thought of as

a coordinate 4-force — that is, the physical component of a 4-force pointing in the direction

of ui, plus a pseudo 4-force associated with the local acceleration of the xi coordinate. The

source will be zero if a fluid element experiences the same acceleration as the coordinate

system; otherwise it provides a measure of the deviation of the fluid element’s acceleration

from the acceleration of the coordinates. Because the unphysical naked pressure term does

not appear in these last expressions, and because the pressure gradient is now included on

the R.H.S. and thought of as a source, we will henceforth call the R.H.S. of Eqs. (2.61a) and
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Figure 2.11: Pressure and pressure gradient curves for a 1.4 solar-mass neutron star. This
figure shows visually that a pressure gradient cannot produce a global change in momentum.
The highlighted area under the pressure gradient curve represents the total integrated pres-
sure force. As long as the pressure itself tends to zero asymptotically, then the highlighted
area under the curve must necessarily add to zero. In fact, in one dimension this is just a
restatement of the Fundamental Theorem of Calculus,

∫ b
a
[−F (x)] dx = P (b)− P (a), where

dP/dx ≡ −F (x). In multiple dimensions, it is the Divergence Theorem,
∫

Ω
∇µP

µ(x) =∮
∂Ω
F µ(x) dSµ.

(2.61b) the physical source, whereas we will henceforth refer to the R.H.S. of Eqs. (2.10)

and (2.11) as the standard source.

It is also worth noting that from an analytic point of view, by moving the pressure gradient

into the source we have in no way spoiled the conservative nature of the evolution equations.

Given the appropriate boundary conditions, the gradient of the pressure must add to zero

globally, so its appearance on the R.H.S. cannot have an impact on global conservation.

In fact, any vector (including the 4-force) can be expressed as the sum of a gradient and

a curl,

F = ∇Φ +∇×A, (2.62)

(see, e.g., [37]). As pointed out in Figure 2.11, any gradient must sum to zero globally

whenever the corresponding potential function (pressure, in the context of this discussion)

goes to zero at the boundaries. So only a nonzero curl piece can spoil conservation (see
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Figure 2.12: Two vector fields and contour lines of constant potential. (a) A curl-less vector
field has a potential representation because path integrals depend only on endpoints, and
closed path integrals are zero. (b) Any curl contributing to a vector field cannot have the
traditional potential representation because path integrals now depend on the choice of path,
and closed path integrals are not necessarily zero.

Figure 2.12). And the deviation of ∇ × A from zero is a good measure of the degree to

which global conservation is lost.

We should make it clear that by separating the ∂iP term from the flux term on the

L.H.S. of the Euler equations – or even by including ∂iP on the R.H.S. as part of the

source – we are not suggesting that the effects of the pressure should be ignored when

determining the characteristic structure of the hydrodynamic flow. In Godunov schemes,

for example, pressure is a critical element of any Riemann solver that is used to compute

accurate approximations to the fluxes of conserved quantities. We are suggesting instead that

the geometry factors that give rise to the naked pressure term be strategically extracted

before spatial derivatives of the pressure are evaluated on the L.H.S. (or on the R.H.S.),

in a manner analogous to the approach that Neilsen & Choptuik [49] adopted (see their

Appendix B) to eliminate the naked pressure terms in their numerical study of the critical

collapse of spherically symmetric perfect fluids. In particular, the manner in which values

of the pressure are reconstructed at cell interfaces before spatial derivatives of the pressure
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are evaluated should be in accordance with the manner in which values of key conserved

variables are reconstructed.



3. Generalized State Variables

3.1 Construction

The central feature of the generalized formalism we are proposing is its ability to handle

generalized state variables, and thereby hopefully reduce the magnitude of the corresponding

sources. A weighted linear combination of the Euler equations (in the standard form of either

expression 2.10 or 2.11, where the pressures are still buried inside the L.H.S.) can be taken

in an attempt to manage the source term. The weighting is accomplished by contracting

the Euler equations with a vector field that will characterize some new state variable. As

a result, we will call this the characteristic vector, C. Since this will result in a single

Euler equation, we will require four independent characteristic vectors C(η) to produce four

independent Euler equations.

Contracting expression (2.11) with this characteristic vector, we find that

1√
−g

Cν
(η) ∂µ

(√
−g T µν

)
= Cν

(η) T
µ
αΓαµν .

The weighting factor, Cν
(η), appearing on the L.H.S. should be brought inside the partial

derivative, using the product rule. This, of course, produces an additional term.

1√
−g

∂µ
(√
−g T µνCν

(η)

)
− T µν ∂µCν

(η) = Cν
(η) T

µ
αΓαµν .

The extra term that is produced should then be moved to the R.H.S. and included as part

of the source so that our new Euler equation will assume the conservative form of Eq. (2.12)

with T µνC
ν

(η) now becoming the newQµ(η) for this particular Euler equation. It is important

to recognize that while the new state variable we will produce – associated with T µνC
ν

(η) –

is just a linear combination of the old state variables, the term we are moving to the R.H.S.

will supplement the linear combination of old sources we have constructed.

1√
−g

∂µ
(√
−g T µνCν

(η)

)
= T µν

(
∂µC

ν
(η) + ΓνµαC

α
(η)

)
.

48
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The source material inside the parentheses now fits the definition of an exact covariant

derivative (see, for example, [46] or [25]), so our new Euler equation can be written simply

as

1√
−g

∂µ
(√
−g T µνCν

(η)

)
= T µν∇µC

ν
(η). (3.1)

If we had started instead with Eq. (2.10), we would have obtained the equivalent form,

1√
−g

∂µ
(√
−g T µνCν (η)

)
= T µν∇µCν (η) . (3.2)

Papadopoulos and Font were the first to show [58] (see also [32, 33, 34]) that this pro-

cedure could be used to form a weighed linear combination of the Euler equations in their

standard form.1 This Euler equation can also be expressed in physical form by substituting

in the definition of the stress-energy tensor from expression (2.4) and separating the pressure

terms from the other terms. Doing so produces

1√
−g

∂µ
(√
−g ρhuνCν

(η) u
µ
)

+
1√
−g

∂µ
(√
−g PCµ

(η)

)
= ρhuµuν ∇µC

ν
(η) + P ∇µC

µ
(η). (3.3)

We can now use the product rule to break apart the second term on the L.H.S., and the

definition of covariant differentiation to break apart the second term on the R.H.S.,

1√
−g

∂µ
(√
−g ρhuνCν

(η) u
µ
)

+ P ∂µC
µ

(η) + PΓµµνC
ν

(η) + Cµ
(η) ∂µP

= ρhuµuν ∇µC
ν

(η) + P ∂µC
µ

(η) + PΓµµνC
ν

(η). (3.4)

The naked pressure term now comes in two pieces (the second and third terms on either side

of 3.4), but could be written more succinctly as P ∇µC
µ

(η). Cancelling these terms leaves

us with the analytically-equivalent physical expression,

1√
−g

∂µ
(√
−g ρhuνCν

(η) u
µ
)

= ρhuµuν ∇µC
ν

(η) − Cµ
(η) ∂µP (3.5a)

= (T µν − Pδµν) ∇µC
ν

(η) − Cµ
(η) ∂µP . (3.5b)

= T µν∇µC
ν −∇µPC

µ (3.5c)

1While Papadopoulos and Font were considering this from the context in which C is chosen to be a Killing
vector (in which case the R.H.S. vanishes entirely), one is not necessarily required to make that choice.
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Separating spacelike pieces from timelike pieces, it again becomes possible to give a

physical interpretation to each term appearing in Eq. (3.5a).

time−rate−of−change of
generalized state variable︷ ︸︸ ︷

1√
−g

∂0

(√
−g ρhuνCν

(η) u
0
)

+

traditional flux of
generalized state variable︷ ︸︸ ︷

1√
−g

∂j
(√
−g ρhuνCν

(η) u
j
)

= ρhuµuν ∇µC
ν

(η)︸ ︷︷ ︸
gravity “force”

impacting generalized
state variable

−Cµ
(η) ∂µP︸ ︷︷ ︸

pressure “force”
impacting generalized

state variable

. (3.6)

Here the word “force” really means a generalized force. Depending on the geometric character

of the chosen state variable, it may actually be a force component, a torque component, or

even a power.

dpi

dt
= F i dLi

dt
= τ i

dE

dt
= P

In practice, this generalized approach amounts to specifying a generalized momentum

density or energy density, ψ(η) ≡ ρhuνC
ν

(η), that one wants to advect during a given numer-

ical simulation. The choice of characteristic vector fields is restricted only by smoothness

conditions. Papadopoulos and Font pointed out that the R.H.S. of Eq. (3.1) vanishes if

C(η) is chosen to be a Killing vector. In Chapter 4 we explore how the properties of various

physical flows can motivate other choices of C(η).

3.2 Generalized Valencia Formulation

With a generalized Euler equation now in hand, it is possible to construct a generalized

Valencia formulation to reflect the free choice of state variable. In so doing, we also modify

the original Valencia formulation (as suggested in §§2.7 and 2.8) by first extracting all the

pressure terms from the L.H.S. of the original momentum equations (2.26), thereby leaving

them in the physical form of (2.61a). But recall that we do not remove pressure terms

from the L.H.S. of the energy equation (2.27); it is left in standard form. Fundamentally

our derivation is not new (except in its treatment of pressure terms) since Papadopoulos

and Font [58] already have shown how Eq. (3.1) can be expressed as a set of hyperbolic

conservation laws.
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Before presenting the fully-generalized Valencia formulation, we present a simplified ver-

sion of the generalized Valencia formulation that allows for the intermixing of momentum

equations, but not with the energy equation, by choosing three characteristic vectors that

satisfy the conditions,

C0
(i′) = 0 , (3.7a)

Ci
(i′) = C̃j

(i′) , (3.7b)

where i′ → 2, 3, or 4. This avoids the complication of mixing three equations that are in

physical form with an equation that is in standard form.

In this simplified version of the generalized Valencia forulation, the field equations can

still be written in the form of Eq. (2.28),

1

α
√
γ

(
∂0
√
γ F̃0

(η) + ∂j α
√
γ F̃ j(η)

)
= S̃(η), (3.8)

but the relevant state vector,

F̃0
(η) ≡

(
D, S̃(i′), τ

)T
, (3.9)

now takes the form,

D ≡ ρW , (3.10a)

S̃(i′) ≡ ρhWujC̃j
(i′) = ρhW 2vjC̃j

(i′) , (3.10b)

τ ≡ ρhcWαu0 − P − c2D

= ρhc2W 2 − P − c2D . (3.10c)

As one would expect, only the momentum state variables have been redefined. Here the

i subscript (which counts momentum equations) is primed to emphasize the fact that this

momentum equation is not equivalent to the momentum equation identified by the unprimed

subscript i in the original Valencia formulation. The fluxes become,

F̃ j(η) ≡
(
D
uj

αu0
, S̃(i′)

uj

αu0
, τ

uj

αu0
+
P

c
vj
)T

, (3.11)
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and the sources become,

S̃(η) ≡


0(

T µβ − Pgµβ
)(

gβj ∂µC̃j
(i′) +

(
∂µgjβ − Γδµβgδj

)
C̃j

(i′)

)
/c− C̃j

(i′) ∂jP/c

α
(
T µ0 ∂µ lnα− T µνΓ0

µν

)
 .

(3.12)

The quantity vjC̃j
(i′) that appears in Eq. (3.10b) represents the component of the 3-velocity

that points along C̃(i′). In this formulation the ψ’s appearing in Eq. (2.12) are

ψ(1) = ρ , (3.13a)

ψ(i′) = ρhujC̃j
(i′) , (3.13b)

ψ(5) = ρhu0 . (3.13c)

For the sake of convenience, we will tend to call these the advection variables, and they are

directly related to the conservative state variables as follows,

D ≡ Wψ(1) , (3.14a)

S̃(i′) ≡ Wψ(i′) , (3.14b)

τ ≡ cWαψ(5) − P − c2Wψ(1) . (3.14c)

Since W ≡ (1− v2/c2)−1/2 is the Lorentz factor relating the fluid frame and the coordinate

frame, and since ψ(i′)/W ≡ ρhvjC̃j
(i′) is the generalized momentum density as measured

by a comoving observer (that is, the proper generalized momentum density), the prod-

uct Wψ(i′) represents the generalized momentum density as measured by an Eulerian ob-

server. (The first Lorentz factor scales up the relativistic mass, and the second takes care

of length contraction—both tend to increase the momentum density.) Note that the orig-

inal Valencia formulation, as presented here in §2.5, can be retrieved from our generalized

formulation by choosing our three characteristic vectors to be the Cartesian basis vectors,

C̃(i′) = ei = βie
0 + γije

j, and reintroducing naked pressure terms.

Our fully-generalized Valencia formulation is not as clean as the original Valencia for-

mulation. This is because our weighted linear combination mixes (or has the potential to

mix, given an appropriate characteristic vector) momentum and energy equations and, con-
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sequently, involves pieces that are in physical form and other pieces that are in standard

form. (For a full derivation, see Appendix B.)

The field equations can still be written as Eq. (2.28),

1

α
√
γ

(
∂0
√
γ F̂0

(η) + ∂j α
√
γ F̂ j(η)

)
= Ŝ(η), (3.15)

but the relevant state vector,

F̂0
(η) ≡

(
D, Ŝ(i′), τ̂

)T
, (3.16)

takes the form,

D ≡ ρW , (3.17a)

Ŝ(i′) ≡ S̃(i′) + C0
(i′)
τ

α
= ρhW 2vjC

j
(i′) +

1

α
C0

(i′)

(
ρhc2W 2 − P − c2D

)
, (3.17b)

τ̂ ≡ τ + cSjC
j
(5) =

(
ρhc2W 2 − P − c2D

)
(c/α)C0

(5) + ρhcW 2vjC
j
(5) . (3.17c)

Only the continuity state variable maintains its original definition. The sources, though, are

by far the messiest, and can be expressed most easily as,

Ŝ(η) ≡


0

S̃(i′) + 1
c
S̃(5)

∣∣∣
C0

(5)→C0
(i′)

S̃(5) + c S̃(i′)

∣∣∣
Cj

(i′)→Cj
(5)

 . (3.18)

Fundamentally, the nonlinear nature of the three components of the momentum equation

arises from the product of velocities that appears inside the flux term. However, it is clear

from the form of Eq. (2.35) that the two velocities that make up this product carry different

physical interpretations. One is the transport velocity and the other is intimately connected

with the conservative state variable Ŝ(i′), that is, the generalized momentum density of the

fluid. While it has been customary to evolve components of the fluid momentum defined by

the same set of basis vectors that is used to specify the grid geometry (and, consequently,

the transport velocities [74, 10]), this is not necessary. There are a variety of reasons why,

in a given numerical simulation, it may be desirable to evolve components of the momentum

corresponding to some other set of basis vectors. In what follows, we highlight several such

examples and, in each case, outline an approach that can be taken to identify the appropriate



54

set of characteristic vector fields C(η). Through the definition of Ŝ(i′) given by Eq. (3.17b),

our generalized Valencia formulation provides a structure through which such state variables

can be evolved.

3.3 Generalized Flux Terms

While it is possible, using our generalized formalism, to evolve state variables defined by

characteristic vectors that are independent of the chosen coordinates/grid geometry, one

difficulty associated with choosing a state variable that is independent of the grid geometry

is that it can be very confusing to construct the fluxes that compose the divergence term.

Expressing the state variables and fluxes explicitly in terms of the primitives (blue) which

depend on the choice of coordinates and not the generalized advection variables, and the

conservatives (red) which depend on the choice of generalized advection variables and not

the coordinates, the continuity equation becomes,

1

α
√
γ

∮
∂Ω

Wψ(1) (
√
γ dS0)

+
1

α
√
γ

∮
∂Ω

Wψ(1)

[ √
γ√
γ{i}

(
vi − cβi/α

)](√
γ{i} dSi

dx0

)(
α/c dx0

)
= 0,

(3.19a)

the three momentum equations become,

1

α
√
γ

∮
∂Ω

Wψ(i′) (
√
γ dS0)

+
1

α
√
γ

∮
∂Ω

Wψ(i′)

[ √
γ√
γ{i}

(
vi − cβi/α

)](√
γ{i} dSi

dx0

)(
α/c dx0

)
=

1

α
√
γ

∫
Ω

{(
T µβ − Pgµβ

)[
gβν∂µC

ν
(j′) +

(
∂µgαβ − Γδµβgδα

)
Cα

(j′)

]
− Cµ

(j′)∂µP

}
·
(
√
γ

dΩ

dx0

)(
α/c dx0

)
, (3.19b)

and the energy equation becomes,
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1

α
√
γ

∮
∂Ω

(
cWα ψ(5) + α2PC0

(5) − c2W ψ(1)

)
(
√
γ dS0)

+
1

α
√
γ

∮
∂Ω

(
cWα ψ(5) + α2PC0

(5) − c2W ψ(1)

) [ √γ√
γ{i}

(
vi − cβi/α

)]

·
(√

γ{i} dSi
dx0

)(
α/c dx0

)
− 1

α
√
γ

∮
∂Ω

√
γ√
γ{i}

(
α2PC0

(5)v
i − cαPγijCj(5)

)(√
γ{i} dSi

dx0

)(
α/c dx0

)
=

1

α
√
γ

∫
Ω

cαT µν
(
Cν (5)∂µ lnα + ∂µCν (5) − ΓβµνCβ(5)

)(√
γ

dΩ

dx0

)(
α/c dx0

)
.

(3.19c)

The sources are very complicated hybrid expressions. While the numerical value of the

sources does not depend on the choice of coordinates, some of the pieces used to construct the

sources do depend on the coordinates. For example, anything involving the metric depends

on the coordinates. Apparently, the coordinate-dependent pieces must combine in just such

a way as to eliminate all coordinate-dependence from the sources.



4. The Characteristic Vector

The potential uses for this generalized formalism (involving generalized Euler equations)

that we have recommended are numerous. Perhaps this can best be appreciated through

the presentation of various approaches in choosing a characteristic vector. Each option

presented herein is motivated by the potential for improved numerical accuracy in standard

finite volume codes.

4.1 Coordinate Basis Vectors

Without the aid of a generalized formalism, sets of state variables have customarily been

chosen in a manner that is consistent with the chosen grid geometry; this seems like the

obvious thing to do. This approach is equivalent to choosing characteristic vectors that

equal the coordinate basis vectors; that is, it is equivalent to setting

C(η) = eη. (4.1)

By adopting this definition of C(j′), the set of conservative variables from the original Valencia

formulation is recovered. And if the basis vectors define a curvilinear coordinate system —

see, for example, the variety of orthogonal curvilinear basis sets accommodated in Stone &

Norman’s ZEUS code [74] — then via Eq. (3.13b) the characteristic vector field assignment

(4.1) will produce a new set of conservative variables that corresponds to the geometry of

that chosen coordinate system. For example, setting C = eR produces cylindrical radial

momentum as one of the state variables, and its physical source will of course not be zero

except in equilibrium when pressure exactly counterbalances gravity.

A more strategic selection of the characteristic vector fields C(η) can result in a minimiza-

tion – if not a complete elimination – of the source terms associated with Eq. (3.15). Such a

selection would be advantageous because, as we have already discussed, global and/or local

conservation of key physical quantities can be ensured when source terms are zero.

It is desirable to set the standard source to zero because this ensures global conservation

of the chosen conservative state variable, as long as the gradient of the pressure is zero on

56
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the computational boundary, and no advection occurs through the boundary. The situation

is even more desirable if the physical source can be set to zero because, beyond global

conservation, this produces local conservation everywhere. (Eliminating the standard source

does not produce local conservation because the pressure is mixed inside the advected flux.)

In the following three sections, we outline three options toward eliminating the source.

4.2 Killing Vectors

It is straightforward to show, as Papadopoulos and Font did [58], that if any of the char-

acteristic vectors is chosen to be a Killing vector — that is, a vector that satisfies Killing’s

equations,

∇µCν +∇νCµ = 0µν , (4.2)

then the standard source (the R.H.S. of Eq. 3.2 or, equivalently, of Eq. 3.1) vanishes.1

This is because the stress-energy tensor is symmetric while, by requirement of Killing’s

equations, ∇C is exclusively antisymmetric. Owing to the stress-energy tensor’s symmetry,

the standard source can be rewritten as,

T µν
(
∇µCν(η) +∇νCµ(η)

)
.

And by requirement of Killing’s equations, the term is parentheses is explicitly zero.

But generally speaking, unless the problem being studied is embedded in a highly sym-

metric manifold, it will not be possible to find even one global vector field that satisfies

Eq. (4.2). On the other hand, if a problem is being studied in which certain symmetries are

being imposed — for example, a spherically symmetric or axisymmetric manifold — then it

likely will not be necessary to solve Killing’s equations as the imposed symmetries will iden-

tify the appropriate Killing vector(s) a priori. Once one or more Killing vectors have been

identified, the associated conservative variable(s) can be constructed by using Eqs. (3.17b)

1The physical source may also vanish, but this is not guaranteed. For example, consider a near-equilibrium
problem carried out on an axisymmetric background metric. Due to the background metric’s axisymmetry,
there will be no gravitational forces in the azimuthal direction, but rather an azimuthal Killing vector.
Consequently, the standard source associated with the angular momentum Euler equation will be zero. But
if the azimuthal component of the pressure gradient is not identically zero everywhere, then the physical
source will be nonzero—despite the existence of an azimuthal Killing vector.
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and (3.17c). But some other approach will be needed to construct any remaining conserva-

tive quantities. We will present additional alternatives to choosing characteristic vectors in

the following sections, but first we pause to dwell on the richness of the Killing vector.

4.2.1 Meaning of a Killing Vector

A Killing vector field represents a metric-preserving transformation. That is, if a transfor-

mation is performed on the metric such that the coordinates are all shifted infinitesimally

along the Killing vector field,

x→ x′ = x + αC, (4.3)

then the metric will remain unchanged up to first order in the infinitesimal parameter α.

Physically, this means the Killing vector represents a symmetry in the geometry of the

manifold.

Another way of thinking about a Killing vector field is to say that it describes a coordinate

transformation that is rigid in the sense that it does not stretch or squash any region of the

manifold. When a Killing vector field exists, weighted linear combinations of the Euler

equations can be taken to produce an energy or a momentum conservation law. So Killing

vector fields also give rise to conserved quantities associated with energy and momentum.

4.2.2 Derivation of Killing’s Equations

We now show how Killing’s equations are derived directly from the metric. The covariant

components of the metric transform as

gµν (x) =
∂x′α

∂xµ
∂x′β

∂xν
g′αβ (x′) . (4.4)

This gives the relationship between the functional dependence of the old metric g on the old

coordinates x and the functional dependence of the new metric g′ on the new coordinates

x′. Of course, in order for C to be a Killing vector, we must require that g′µν have the same

functional dependence on x′ as gµν has on x. Then we have the following requirement for C

to be a Killing vector field,

gµν (x) =
∂x′α

∂xµ
∂x′β

∂xν
gαβ (x + αC) . (4.5)
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Using Taylor’s theorem (up to first order in α) on the metric, and noting that

∂x′α

∂xµ
= ∂µ (xα + αCα) = δαµ + α∂µC

α, (4.6)

we find that

gµν (x) = (δαµ + α∂µC
α)
(
δβν + α∂νC

β
) (
gαβ (x) + αCσ∂σgαβ (x)

)
. (4.7)

Expanding this, and neglecting any remaining second order terms in α brings us to

gµν = gµν + α
(
gαν∂µC

α + gµβ∂νC
β + Cσ∂σgµν

)
. (4.8)

Cancelling the gµν on either side leaves us with

gαν∂µC
α + gµβ∂νC

β + Cσ∂σgµν = 0µν (4.9)

If we do not mind picking up a few additional terms, we can write this expression using

covariant derivatives rather than partials.

gαν∇µC
α−gανΓαµβCβ+gµβ∇νC

β−gµβΓβναC
α+Cσ∇σgµν+C

σΓασµgαν+C
σΓασνgµα = 0µν (4.10)

Fortunately, all the terms involving Christoffel symbols cancel, and the covariant derivative

of the metric is identically zero. That leaves just two terms on the L.H.S. Moving the metric

inside the covariant derivative, and using it to lower the index on C in each of those terms

gives us

∇µCν +∇νCµ = 0µν . (4.11)

These are Killing’s equations as they appear in expression (4.2).

4.2.3 Common Examples of Some Killing Vectors

Let

gµν =


−c2 0 0 0

0 1 0 0
0 0 R2 0
0 0 0 1

 and xµ =


t
R
φ
z

 ,

so that

ds2 = −c2 dt2 + dR2 +R2 dφ2 + dz2.
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The azimuthal Killing vector for this metric is

C(φ) = eφ.

It implies the following coordinate transformation,

t → t′ = t
R → R′ = R
φ → φ′ = φ+ α
z → z′ = z

 =⇒ ds2 → ds′
2

= −c2 dt′2 + dR′2 +R′2 + dφ′2 + dz′2

This means that

g′µν =


−c2 0 0 0

0 1 0 0
0 0 R′2 0
0 0 0 1

 .

These are new coordinates, but the transformed metric has the same dependence on these

as the old metric had on the old coordinates. This is what it means for the transformation

to “preserve the metric.”

Consider the same Killing symmetry as before, but now from within the framework of

Cartesian coordinates. Now,

gµν =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 , and xµ =


t
x
y
z

 ,

so that

ds2 = −c2 dt2 + dx2 + dy2 + dz2.

The azimuthal Killing vector now takes the form

C(φ) = −y ex + x ey,

which implies the following coordinate transformation,

t → t′ = t,

x → x′ = x− αy,

y → y′ = y + αx,

z → z′ = z.
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Inverting this system of equations leads to

t = t′

x =
x′ + αy′

1 + α2

y =
y′ − αx′

1 + α2

z = z′


=⇒



dt = dt′

dx =
dx′ + α dy′

1 + α2

dy =
dy′ − α dx′

1 + α2

dz = dz′

Again, keeping only first-order terms in α, the line element now becomes

ds2 → ds′
2

= −c2 dt′2 +
(
dx′2 + 2α dx′ dy′

)
+
(
dy′2 − 2α dx′ dy′

)
+ dz′2.

Cancelling cross-terms, again we see that the metric maintains its original functional depen-

dence on the new coordinates,

ds2 → ds′
2

= −c2 dt′2 + dx′2 + dy′2 + dz′2.

4.2.4 A Counterexample

It may be instructive to include a counterexample. Vectors that do not satisfy Killing’s

equations will produce coordinate transformations that do not preserve the metric to first

order in the variational parameter. Choose,

C(φ̃) =
eφ
R
,

which implies the following coordinate transformation,

t → t′ = t,

R → R′ = R,

φ → φ′ = φ+
α

R
,

z → z′ = z.

Inverting this system of equations leads to

t = t′

R = R′

φ = φ′ − α

R′

z = z′


=⇒



dt = dt′

dR = dR′

dφ = dφ′ +
α

R′2
dR′

dz = dz′
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Again, keeping only first-order terms in α, the line element now becomes

ds2 → ds′
2

= −c2 dt′2 + dR′2 +R′2 dφ′2 + 2α dR′dφ′ + dz′2.

This time, the first-order term in α does not vanish. So, despite the fact that eφ/R points

in the same direction as the Killing vector eφ, its 1/R scaling precludes it from satisfy-

ing Killing’s equations and, consequently, from producing a conserved quantity. (Angular

momentum is conserved, but azimuthal momentum is not.)

4.3 Quasi-Killing Vectors

In many cases, near-equilibrium problems – involving perturbations over an underlying sym-

metry – are of particular interest. In these cases, one may be able to take advantage of

the quasi-symmetry, despite the fact that the true metric of the problem does not produce

any Killing vectors. Quasi-symmetries give rise to quasi-Killing vectors. We will now show,

through the application of variational calculus, how this can be done.

Before employing variational calculus to define and determine a quasi-Killing vector,

we will introduce the approach and techniques of variational calculus by presenting the

derivation of Lagrange’s equations.

4.3.1 Lagrange’s Equations

I hope the reader will forgive this somewhat-lengthy digression, but building a firm under-

standing of the derivation of Lagrange’s equations will endow us with a better understanding

of the quasi-Killing vector problem, and a reference from which to draw guidance. The ac-

tion, as defined by Hamilton’s principle (see e.g., [38]) is

S ≡
∫ t2

t1

L
(
x(t), ẋ(t), t

)
dt, where L ≡ T − V. (4.12)

A unique path is specified by the functions xi(t). This path can be varied slightly by defining

new functional dependences of the coordinates on t, infinitesimally distinct from the previous

ones,

xi(t, α) = xi(t, 0) + αηi(t), (4.13)
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where here α is a one-dimensional infinitesimal parameter and the ηi(t) are functions of t

that are arbitrary everywhere except at the endpoints t1 and t2; their values are required

to be zero at the endpoints since the endpoints of the path are fixed as the path is varied.

Notice that as α approaches zero, the varied path approaches the original path. With an

expression for the varied path in hand, we can now write the dependence of the action on

the variational parameter α,

S (α) =

∫ t2

t1

L
(
x (t, α) , ẋ (t, α) , t

)
dt. (4.14)

The requirement for a path to be an extremum path is that S (α) = S (0) +O (α2). This

is the requirement we will use to check our result in a simple physical example once we have

finished deriving Lagrange’s equations.

Meanwhile, now that we’ve managed to quantify the path variation in terms of a one-

dimensional parameter α, we can talk about differentiating the action with respect to this

parameter. The extremum path we seek will be the one that yields a stationary action,

dS (α)

dα

∣∣∣∣
α=0

= 0. (4.15)

We can move this differentiation inside the action integral because the operations of differ-

entiation with respect to the variational parameter and differentiation with respect to the

coordinates do not see each other. Then, using the chain rule, we find that

dS (α)

dα

∣∣∣∣
α=0

=

∫ t2

t1

(
∂L
∂xi

∂xi

∂α
+
∂L
∂ẋi

∂ẋi

∂α
+
∂L
∂t

∂t

∂α

)
dt, (4.16)

where repeated indices imply summation as is customary. The final term is zero since

the indepenedent parameter t does not depend on the variational parameter α. Next we

apply integration by parts to the second term. (The summation does not preclude us from

doing this since integration by parts can be performed independently on each term in the

summation.) We have,

dS (α)

dα

∣∣∣∣
α=0

=

∫ t2

t1

(
∂L
∂xi

∂xi

∂α
dt

)
+
∂L
∂ẋi

∂xi

∂α

∣∣∣∣t2
t1

−
∫ t2

t1

(
d

dt

(
∂L
∂ẋi

)
∂xi

∂α
dt

)
. (4.17)

The middle term is zero since ∂xi/∂α = ηi, which vanish at the endpoints. Combining

the two remaining integrals and factoring out the common term, then, leaves us with the
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condition

ds (α)

dα

∣∣∣∣
α=0

=

∫ t2

t1

(
∂L
∂xi
− d

dt

∂L
∂ẋi

)
ηi dt = 0. (4.18)

Recall that this condition must be simultaneously met for all vector functions η (t) that

vanish at the endpoints. The only way to do this is by setting the quantity in parentheses

to zero. Thus we obtain Lagrange’s equations,

∂L
∂xi
− d

dt

∂L

∂ẋi
= 0i. (4.19)

Now, the promised example. Consider the simple case of a point particle in free fall in

one dimension. The kinetic energy is T = 1
2
mż2, and the potential energy is V = mgz. Then

the Lagrangian is L ≡ T −V = 1
2
mż2−mgz. The appropriate derivatives of the Lagrangian

are:

∂L
∂z

= −mg (4.20)

∂L
∂ż

= mż. (4.21)

So Lagrange’s equation gives,

∂L
∂z
− d

dt

∂L
∂ż

= −mg −mz̈ = 0. (4.22)

The general solution for this equation is, of course,

z (t) = −1

2
gt2 + v0t+ z0. (4.23)

A small variation around this solution, then, is

z (t, α) = −1

2
gt2 + v0t+ z0 + αη (t) . (4.24)

Now, as a check of Lagrange’s equation in this example, we’ll verify that in fact the varia-

tion of the action does not contain first-order terms in α if z (t) is taken to be−1
2
gt2 + v0t+ z0,

as required by Lagrange’s equation.

S (α) =

∫ t2

t1

[
1

2
m
(
− gt+ v0 + αη̇ (t)

)2

−mg
(
−1

2
gt2 + v0 + z0 + αη (t)

)]
dt. (4.25)
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Expanding and organizing in powers of α up to first order, we have

S (α) = m

∫ t2

t1

[(
g2t2 − 2v0gt+

(
1

2
v0

2 − gz0

))
+ α

(
(−gt+ v0) η̇ (t)− gη (t)

)]
dt.

(4.26)

Notice that the coefficient of the α-term, (−gt+ v0) η̇ (t) − gη (t), is an exact differential,

d/dt
(

(−gt+ v0) η (t)
)

. Integrating gives

S (α) = m

[(
1

3
g2t3 − v0gt

2 +

(
1

2
v0

2 − gz0

)
t

)
+ α

(
− gt+ v0

)
η (t)

]t2
t1

+O
(
α2
)
. (4.27)

Notice that the α-term indeed vanishes since η is zero at the endpoints. Consequently, we

see that in this case Lagrange’s equation does, in fact, specify a path that yields a stationary

value for the action.

Suppose, instead, that we had taken z (t) to be vt, clearly not a path specified by La-

grange’s equation. Varying the action with respect to this (wrong) path will contribute a

nonzero first-order term in α. The variation of the action now gives

S (α) =

∫ t2

t1

[
1

2
m
(
v + αη̇ (t)

)2

−mg
(
vt+ αη (t)

)]
dt. (4.28)

Expanding and keeping only terms up to first-order in α, we find that

S (α) = m

∫ t2

t1

[(
−vgt+

1

2
v2

)
+ α

(
vη̇ (t)− gη (t)

)
+O

(
α2
)]

dt. (4.29)

This time the α coefficient is not an exact differential, but we can write it as an exact

differential and a remainder,

S (α) = m

∫ t2

t1

[(
−vgt+

1

2
v2

)
+ α

d

dt
vη (t)− αgη (t) +O

(
α2
)]

dt. (4.30)

Finally, we perform the integration.

S (α) = m

[(
−1

2
vgt2 +

1

2
v2t

)∣∣∣∣t2
t1

+ α
(
vη (t)

)∣∣∣t2
t1
− αg

∫ t2

t1

η (t) dt

]
+O

(
α2
)
. (4.31)

Recognize that the second term will evaluate to zero at the endpoints, but the third term,

which is also first-order in α will not evaluate to zero for all functions η (t). This demonstrates

that when we choose the wrong path, the action is not stationary.
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Before parting from our one-dimensional example and from our review of the derivation

of Lagrange’s equations, let us do one more thing. Let us check that the condition given on

the path by setting the first-order term in α to zero is identical to the condition given by

Lagrange’s equation. We’ll do this by taking the variation of the action with repect to an

arbitrary function z (t).

S (α) =

∫ t2

t1

[
1

2
m
(
ż (t) + αη̇ (t)

)2

−mg
(
z (t) + αη (t)

)]
dt. (4.32)

Once again factoring into powers of α up to first order,

S (α) =

∫ t2

t1

[(
1

2
ż2 (t)− gz (t)

)
+ α

(
ż (t) η̇ (t)− gη (t)

)
+O

(
α2
)]

dt. (4.33)

For the same reasons that were outlined in the last two examples, the first-order term will

vanish upon integration and evaluation if the first-order coefficient is an exact differential of

f (t) η (t), where f can be any function of t. Taking advantage of the product rule, we can

see that this will only be the case if z̈ (t) = −g. Bingo, this is precisely Lagrange’s equation.

Now, let us see how the calculus of variations can help us with our problem!

4.3.2 Quasi-Killing Equations

Other than a few subtle departures due to tensor transformation rules and the dimensionality

of the action integral, this calculation will be identical to the treatment in the last section.

At the end of the day, we will end up with a set of differential equations constraining C

which are analogous to the Lagrange equations just derived.

Analogous to the role played by the action in the previous section, we begin by con-

structing an action for which we will seek stationary values. For the purpose of finding

approximate symmetries, our action will be

S =

∫
Ω

ε2
(
C (x) ,∇C (x) ,x

) √
−g dΩ (4.34)

where ε2 ≡ (∇µCν)(∇nuCµ) is the scalar quantity we wish to minimize. We wish to extremize

ε2 in the region Ω by varying the vector field C. The factor of
√
−g is included because

√
−g dΩ is the volume element.2

2Tensor densities do not transform as tensors; an additional factor – the wth power of the Jacobian, where
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Our next step is to define an infinitesimal variation of our vector C. We’ll do this just

as before.

Cν (x, α) = Cν (x, 0) + α ην (x) , (4.35)

where η is an arbitrary vector function everywhere except on the boundary of the region in

question ∂Ω, where it must be zero. Then the variation of the action will become

S (α) =

∫
Ω

ε2
(
C (x, α) ,∇C (x, α) x

) √
−g dΩ. (4.36)

The condition for obtaining a stationary action is, once again, that

dS

dα

∣∣∣∣
α=0

= 0. (4.37)

Now we move the differentiation with respect to α inside the action integral, since differ-

entiation with respect to α is independent of differentiation with respect to the coordinates.

Then we use the chain rule as before to obtain

dS (α)

dα

∣∣∣∣
α=0

=

∫
Ω

(
∂ε2

∂Cν

∂Cν
∂α

+
∂ε2

∂Cν;µ

∂Cν;µ

∂α
+
∂ε2

∂xρ
∂xρ

∂α

) √
−g dΩ. (4.38)

Since ε2 does not depend explicitly on either C or x, only the ∇C term will contribute to

the L.H.S. And for the same reason that we were permitted to bring the α-derivative inside

the integral, we can now reverse the order of differentiation on C so that

dS (α)

dα

∣∣∣∣
α=0

=

∫
Ω

∂ε2

∂Cν;µ

(
∇µ

∂Cν
∂α

) √
−g dΩ. (4.39)

The next step is to integrate by parts.

dS (α)

dα

∣∣∣∣
α=0

=

∫
Ω

∇µ

(
∂ε2

∂Cν;µ

∂Cν
∂α

√
−g
)

dΩ−
∫

Ω

∂Cν
∂α
∇µ

(
∂ε2

∂Cν;µ

√
−g
)

dΩ. (4.40)

We will start by dealing with the first term. The object inside the parentheses is a con-

travariant vector field tensor density of weight +1. The covariant divergence of a contravari-

ant vector field tensor density of weight +1 is equal to the ordinary divergence of the same

w is the weight of the tensor density – is required. As a consequence of their transformation properties, only
true tensors (w = 0) can be integrated over a macroscopic region. Consequently, the appearance of

√
−g in

the volume element is necessary because dΩ is a tensor density of weight −1. Since
√
−g is a tensor density

of weight −1, their product is a true tensor and can therefore be integrated.
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vector field [81], [25], ∇αIα = ∂αIα. In other words, the additional terms in the covariant

derivative arising from the connection coefficients vanish.

Following the pattern of the last section, the next step is to perform and evaluate the

integral on the first term. The multidimensional analog of evaluating a function at its

endpoints is provided by the divergence theorem. In our notation, the divergence theorem

can be written ∫
Ω

∂αIα dΩ =

∮
∂Ω

Iα dSα, (4.41)

where dS is the oriented differential area element of the boundary. Applying this theorem

to our first term, and recognizing that ∂Cj/∂α = ηj by definition, produces the term∮
∂Ω

∂ε2

∂Cν;µ

ην
√
−g dSµ, (4.42)

which must be identically zero since η is required to be zero everywhere on the bound-

ary. That just leaves us with the second term on the R.H.S. of (4.40) in our condition for

extremizing the action. The
√
−g can be taken outside the covariant derivative because

∇µ

√
−g = 0µ. Once that is done, we have

dS (α)

dα

∣∣∣∣
α=0

= −
∫

Ω

ην ∇µ

(
∂ε2

∂Cν;µ

) √
−g dΩ = 0. (4.43)

The only way this condition can hold for all vector fields η that are zero on the boundary, is

if the term in parentheses is itself zero. What we have arrived at is analogous to Lagrange’s

equations.

∇µ
∂ε2

∂Cν;µ

= 0ν . (4.44)

In the Lagrangian formulation, the dependence of L on the coordinates and conjugate

momenta is not specified until a particular problem is outlined. But in our case, the depen-

dence of ε2 on the vector field C and its covariant derivative is outlined a priori,

ε2 ≡ εµνε
µν = (∇µCν +∇νCµ) (∇ρCσ +∇σCρ) g

µρgνσ. (4.45)

Consequently, we were able to identify early on that ε2 has no explicit dependence on C. If

we had not discarded the term arising from such a dependence, equation (4.44) would have
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been identical in form to Lagrange’s equations.

∂ε2

∂Cν
−∇µ

∂ε2

∂Cν;µ

= 0ν . (4.46)

Since we do know the dependence of ε2 in the general case, we can actually continue on by

substituting in to the indicated partial derivative.

∂ε2

∂Cν;µ

=
[(
δµαδ

ν
β + δµβδ

ν
α

)
(∇γCρ +∇ρCγ) + (∇αCβ +∇βCα)

(
δµγ δ

ν
ρ + δµρ δ

ν
γ

)]
gαγgβρ. (4.47)

Performing the indicated contractions and reorganizing a little bit, we obtain the expression,

∂ε2

∂Cν;µ

= 4 (∇µCν +∇νCµ) = 4εµν . (4.48)

Ultimately, then, we find that the condition for C to minimize the action, as given by (4.37),

is

∇µ (∇µCν +∇νCµ) = 0ν . (4.49)

Thus we have arrived at the desired set of equations. It is immediately apparent that any

vector field satisfying the first-order Killing equations will also satisfy these second-order

equations. While these equations are second-order, they can be treated one derivative at a

time by expressing them in terms of the ε tensor,

∇µε
µν = 0ν , (4.50)

Interestingly, this is identical in form to the Euler equations (2.2).

Time for a much-needed example that is both simple and informative. Consider a flat

two-dimensional manifold with Cartesian coordinates. Our objective is to find all vector fields

that satisfy Killing’s equations, as well as those that solve the quasi-Killing equations. Then

we will verify that all Killing vector fields ξ give rise to an action that is both stationary

and zero, that all quasi-Killing vector fields C not satisfying Killing’s equations give rise

to a nonzero, but stationary, action, and that all vector fields C not satisfying the quasi-

Killing equations give rise to a stationary action. We will do this by varying the action and

expanding it in powers of α, just as we did in the previous section. If the zeroth-order term

is zero, then the action is zero; if the first-order term is zero, then the action is stationary;

we will largely ignore higher order terms.
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For the given problem, the metric is the 2× 2 identity matrix,

gij =

(
1 0
0 1

)
(4.51)

There are no non-zero connection coefficients. Killing’s equations become

∂xξx = 0 (4.52)

∂yξy = 0 (4.53)

∂xξy + ∂yξx = 0. (4.54)

Whereas the quasi-Killing equations become

2Cx
,xx + Cy

,xy + Cx
,yy = 0 (4.55)

Cy
,xx + Cx

,xy + 2Cy
,yy = 0. (4.56)

From Killing’s equations, we can immediately see that

ξx = f (y) (4.57)

ξy = g (x) (4.58)

g′ (x) = −f ′ (y) = λ0, (4.59)

where f (y) and g (x) are arbitrary functions, except for the constraint placed on them by

(4.59). Solving (4.59) leads to the following solutions:

f (y) = −λ0y + λ1 (4.60)

g (x) = λ0x+ λ2, (4.61)

where the λ’s are all arbitrary constants of integration. The most general Killing vector field,

then, for this geometry is given by

ξ = g · ξ = (−λ0 + λ1)
∂

∂x
+ (λ0x+ λ2)

∂

∂y
. (4.62)

Varying this vector field gives,

ξx (x, y, α) = λ0y + λ1 + α ηx (x, y) (4.63)

ξy (x, y, α) = λ0x+ λ2 + α ηy (x, y) . (4.64)
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Now we’re in a position to compute ε2,

ε2 =
(
∂µ (ξν + α ην) + ∂ν (ξµ + α ηµ)

)(
∂σ (ξτ + α ητ ) + ∂τ (ξσ + α ησ)

)
gµσgντ . (4.65)

Performing the indicated contractions leaves us with

ε2 = 4 (ξx,x + α ηx, x)2 + 2 (ξx,y + α ηx,y + ξy,x + α ηy,x)
2 + 4 (ξy,y + α ηy,y)

2 . (4.66)

Multiplying all this out and dropping second-order terms is the next step.

ε2 = 4
(
ξ2
x,x + 2αξx,xηx,x

)
+ 2

(
ξ2
x,y + 2ξx,yξy,x + ξ2

y,x + 2αξx,yηy,x + 2αξy,xηx,y + 2αξy,xηy,x
)

+4
(
ξ2
y,y + 2αξy,yηy,y

)
+O

(
α2
)
. (4.67)

Noting that ξx,x and ξy,y are zero, and organizing into powers of α, we have

ε2 = 2
(
ξ2
x,y + 2ξx,yξy,x + ξ2

y,x

)
+ 4α (ξx,yηx,y + ηx,yξy,x + ξy,xηx,y + ξy,xηy,x) +O

(
α2
)
. (4.68)

Finally, plugging in the values from (4.63) and (4.64),

ε2 = 2
(
λ0

2 + λ0
2 − 2λ0

2
)

+ 4α
(
− λ0 (ηx,y + ηy,x) + λ0 (ηx,y + ηy,x)

)
+O

(
α2
)

= O
(
α2
)
.

(4.69)

Clearly, then, the action is both stationary and zero, as expected:

S (α) =

∫
Ω

O
(
α2
) √
−g dΩ = O

(
α2
)
. (4.70)

Next, consider the quasi-Killing vector field

C = xex (4.71)

It is not hard to see that this vector field satisfies the quasi-Killing equations (4.55) and

(4.56). It also satisfies the last two of Killing’s three equations (4.53) and (4.54), but it does

not satisfy the first (4.52). Accordingly, it cannot be a Killing vector field. An infinitesimal

variation of this vector field is given by

Cx (x, y, α) = x+ α ηx (x, y) (4.72)

Cy (x, y, α) = α ηy (x, y) . (4.73)
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We can proceed just as before. Plugging the appropriate quantities into equation (4.45)

quickly gives

ε2 = 4 + α (8ηx,x) +O
(
α2
)
. (4.74)

Consequently, the action is

S (α) =

∫
Ω

(
4 + 8αηx,x +O

(
α2
) )

dx dy. (4.75)

An integration over x can be performed on the middle term to obtain

S (α) = 4

∫
Ω

dx dy + 8α

∫
Ω

ηx|xupper bdry

xlower bdry
dy +O

(
α2
)
. (4.76)

But ηx is zero at xupper bdry and xlower bdry. Accordingly, the middle term vanishes. All

together, then, the variation of the action is

S (α) = 4

∫
Ω

dx dy +O
(
α2
)

(4.77)

for the given quasi-Killing vector field. The zeroth-order term is non-zero because this vector

field does not satisfy Killing’s equations. The first-order term is zero because the vector field

does satisfy the quasi-Killing equations.

The fundamental result of this section is Eq. (4.49), the condition for a quasi-Killing

vector. Again, however, it generally will not be necessary to solve Eq. (4.49) because in

many situations the underlying symmetry can be assumed in advance.

4.4 Vanishing Vectors

Suppose the goal is to define a set of vector fields that will ensure that the source vanishes.

Recall that a Killing vector causes the standard source to vanish3, so as long as we are talking

about the standard source, a Killing vector is also a vanishing vector. But are there any

other vectors (not satisfying Killing’s equations) that can cause the source to vanish?

Yes, but generally, this will require a brute-force solution of the expression,

T µν (∇µCν +∇νCµ) = 0, (4.78)

3And it may also cause the physical source to vanish; particularly, if the pressure possesses the same
symmetries as the metric.
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if one wants the standard source to vanish, or

ρhuµuν∇µC
ν − Cµ ∂µP = 0, (4.79)

if one wants the physical source to vanish — both of which involve a single condition on the

components of C, so locally one is guaranteed to find several families of solutions to either

equation.

Incidentally, the reason Killing’s equations (4.2) do not always admit solutions is because

there are more equations (ten) than degrees of freedom in C (four). It goes without saying

that a solution will exist only in very special circumstances (i.e., whenever the necessary

symmetries are present). Conditions (4.78) and (4.79), on the other hand, are single scalar

equations with four degrees of freedom in the choice of C.

Since the physical source represents the net 4-force density as measured by an observer

in the frame in which the state variables are measured, condition (4.79) will automatically

be satisfied by all three momentum equations whenever the fluid is in equilibrium. But via

expression (4.79) it should be possible to identify a set of source-free conservative variables

even when the fluid is not in equilibrium. For example, for a neutron star experiencing

small radial oscillations, one could locally define a frame that everywhere experiences a

radial acceleration equal to the net force density divided by the mass density. These radial

accelerations would produce a radial inertial force that should counterbalance the net radial

force experienced by the fluid. (This is equivalent to a Lagrangian treatment of the fluid.) In

practice, however, it likely would not be trivial to globally determine the needed acceleration

for the frame in which the radial variable is measured.

Most professionals in the field have an averse reaction to my suggesting that it is possible

for the source to vanish without a Killing vector. I imagine that this is because they un-

derstand that Killing vectors give rise to conserved quantities, but in their experience they

do not have any reason to believe that conserved quantities can exist without the symmetry

that a Killing vector indicates. Nevertheless, the L.H.S. of Eq. (4.78) is a scalar quantity

resulting from contracting two second-order tensors together. This is perfectly analogous to

a dot product between two vectors. Of course, the standard source term above is contracted
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over twice, whereas the dot product involves a single contraction AiBi, but the idea is the

same. There are three ways to make a dot product (A ·B) be zero.

1. You can make all the components of one vector A be zero (so that A is the zero vector),

2. You can make all the components of the other vector B be zero (so that B is the zero

vector), or

3. You can just choose A and B to be perpendicular to one another (in which case neither

A nor B needs to be the zero vector).

The first alternative requires A to be zero, but places no condition whatsoever on B. The

second alternative requires B to be zero, but places no condition whatsoever on A. The final

alternative requires neither A nor B to be zero, but imposes a condition that – if it is to be

satisfied – depends on both vectors A and B.

Similarly, whenever the stress-energy tensor is zero, condition (4.78) is satisfied without

regard to the choice of characteristic vector; whenever the characteristic vector is a Killing

vector, condition (4.78) is satisfied without regard to the stress-energy tensor; and even when

the stress-energy tensor is not zero and the characteristic vector is not a Killing vector, it is

still possible for condition (4.78) to be satisfied, but it will require information about both

the stress-energy tensor and the characteristic vector.

Though the condition for eliminating the physical source is not quite as neat as the

condition for eliminating the standard source, these ideas should carry over seamlessly, and

it should always be possible to identify conservative variables that are locally (and globally)

conserved.

Given that the physical source can be thought of as the net force per unit volume along

the direction of the characteristic vector C, one can conclude that (4.79) describes a vector

field that is everywhere orthogonal to the net force as measured in the chosen

state variable frame. This explanation also appears to be consistent with my claim that

there is not a unique choice for C that will cause the physical source to vanish. Choosing

a C with any orientation inside the 3-dimensional hypersurface that is orthogonal to the

net force will suffice. Moreover, the magnitude of C is immaterial. This implies that there



75

Figure 4.1: Three source-eliminating (and locally-conserved-variable-identifying) vector
fields. Any vector C will produce a source term that equals a generalized 4-force (as measured
in the state variable frame) along C. Clearly, then, any vector living in a three-dimensional
hypersurface which is orthogonal to the 4-force vector (like the two above) must produce a
physical source term that is zero.

is indeed a three-parameter family of possible solutions to (4.79) — an implication that is

consistent with the number of degrees of freedom in (4.79).

While it may be difficult to find a vector field that globally satisfies Eq. (4.79), in prac-

tice it may not be necessary. In fact, it may be possible to design a code that “chooses”

conservative state variables locally according to a set of solutions to Eq. (4.79). The code

could then recover the set of primitive variables from the set of conservatives at each grid

cell, and the process could begin again in the next time step.

4.5 Flow-Complementing Vectors

Another useful approach may be to base the choice of C on what one may know a priori

about the fluid flow, rather than about the underlying geometry of the manifold. For ex-

ample, if the direction of fluid flow is already known everywhere, then one or two of the

characteristic vectors can be chosen to be orthogonal to the flow direction. The corre-

sponding advection variable(s), ρhuiC
i
(η), must then be zero, so there is nothing to advect.
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Moreover, that means the source will not include contributions that are meant to cancel with

the divergence term (as will be shown near the end of this section). In cases where only the

principal part of the fluid flow is known, it may still be beneficial to use this approach to

minimize the amount of material that needs to be advected in a particular direction.

Figure 4.2: Comparison of various approaches to advection of a near-equilibrium system.
Schematic diagrams illustrating the role that advection plays in a grid cell centered on the
+x axis for four distinct treatments of fluid executing purely circular motion, such as in the
equatorial plane of an equilibrium, rotating neutron star. Upper-left diagram: Cartesian
momenta advected on a Cartesian grid; bottom-left diagram: Cartesian momenta advected
on a cylindrical grid; top-right diagram: cylindrical momenta advected on a Cartesian grid;
and bottom-right diagram: cylindrical momenta advected on a cylindrical grid.
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Now consider developing a numerical algorithm that is designed to evolve a uniformly

rotating, axisymmetric neutron star in steady-state equilibrium. We will examine only two-

dimensional transport in the equatorial plane of the star, but we will consider four approaches

to handling the problem: advection of Cartesian momenta on a Cartesian grid; cylindrical

momenta on a cylindrical grid; Cartesian momenta on a cylindrical grid; and cylindrical

momenta on a Cartesian grid. A schematic diagram of each approach is illustrated in the

various panels of Figure 4.2. Each diagram outlines one particular circular streamline of

an axisymmetric star that is rotating counter-clockwise on some grid structure, and one

cell located off-center along the +x axis is highlighted. Various features are color-coded to

emphasize their dependence on either the choice of coordinates (blue) or the choice of state

variables (red).

In each case, there are two relevant components of velocity: one that will be advected,

and one that acts as the advecting mechanism. We will call the first the state variable

velocity because it is part of the conservative state variable being advected. And the second

we will call the transport velocity because it is used to transport the other across the cell

interface. The transport velocity is always perpendicular to the cell face, whereas the state

variable velocity may point in any direction (relative to the grid cells). Consequently, in each

case, a pair a vectors (one blue and one red) is shown at each of the relevant transport faces

of the highlighted cell. The blue vector indicates the direction of transport across the cell

interface, while the red vector indicates the orientation of the component of the 3-velocity

associated with the chosen momentum state variable. No attempt is made to illustrate the

magnitude of these vectors, but only their orientation. (In cases where a particular vector

is zero, a headless arrow hooped by a small circle, representing ‘0’, is used to indicate the

relevant orientation.) We will examine the role of both the flux (transport) term and the

source term on the evolution of the fluid’s momentum in the highlighted cell. Because the

star is presumed to be in steady-state, each integration time step should leave the value of

the momentum density unchanged. This means that, ideally after numerical evaluation, the

flux term and the source term should have the same value so that the net “time update” is

zero. Because they are generally evaluated in very different ways, precise cancelation of the
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flux and source terms is unlikely to be achieved. But if the selected approach leads to an

algorithm in which the two terms are inherently small – better yet, zero – the steady-state

configuration can be better preserved throughout an evolution.

Because in our example problem the fluid is moving along circular trajectories, there is

no motion along the x-axis. Hence, in all four illustrated approaches the transport velocity

perpendicular to the right- and left-hand faces of the highlighted grid cell must be zero and,

as a result, contributions to the flux term will arise only from advection through the upper

and lower faces of that cell. Let us consider how a time update of one of the components of

the momentum density (we will call it ψ(1)) is calculated in each case.

• Advection of Cartesian momenta on a Cartesian grid (C(1) = ex), as illus-

trated in the top-left panel of Figure 4.2: In this case, the relevant transport

velocity (perpendicular to the upper and lower faces of the cell) is ±vy (a “blue” vari-

able, which depends on the choice of coordinates) and ψ(1) (a “red” variable, which

depends on the choice of conservative variables) is constructed from the vx component

of the velocity. For any numerical transport algorithm in which cell-centered state

variables are interpolated to the cell faces, positive x-momentum will be carried into

the cell from below, and negative x-momentum will be carried out to the cell above.

Hence, advection alone will tend to cause a net increase in the value of ψ(1) (and

consequently also of Ŝx) in our highlighted cell. (In other words, the divergence of

x-momentum is negative for this cell.) The physical source term is provided by the

R.H.S. of Eq. (3.19b); in this case the relevant expression inside the curly brackets is

{R.H.S.} =
{
ρhuµuβ

(
∂µgxβ − Γδµβgδx

)
− ∂xP

}
, (4.80)

provided that this expression is evaluated in Cartesian-like coordinates, and would

further reduce to

{R.H.S.} =
{
− ρh ∂xΦ− ∂xP

}
(4.81)

in a Newtonian approximation (where Φ is the gravitational potential). For the high-

lighted cell, this term must also be negative and must have the same magnitude as
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the net divergence if a steady-state is to be maintained. The source term will indeed

be negative for our equilibrium configuration because the gravitational acceleration

(obtained through the Christoffel symbols and derivatives of the metric due to the in-

herent relativistic curvature of the metric) overpowers the pressure gradient, providing

a net centripetal force that holds the fluid in circular orbit. (At least this is an inertial

observer’s description of what happens.)

• Advection of cylindrical momenta on a cylindrical grid (C(1) = eR), as il-

lustrated in the bottom-right panel of Figure 4.2: In this case, the relevant

transport velocity (perpendicular to the upper and lower faces of the cell) is ±Rvφ (a

blue quantity) while ψ(1) (a red quantity) is constructed from the vR component of the

velocity. Since there is no R-momentum anywhere, none will be carried into the cell

from below and none will be carried out to the cell above. Hence, advection alone will

not contribute to a net change in the value of ψ(1) (nor to ŜR) in our highlighted cell.

(In other words, the divergence of R-momentum is zero for this cell.) The physical

source term is provided by the R.H.S. of Eq. (3.19b); in this case the relevant expression

inside the curly brackets is

{R.H.S.} =
{
ρhuµuβ

(
∂µgRβ − ΓδµβgδR

)
− ∂RP

}
, (4.82)

provided this expression is evaluated in cylindrical coordinates, and would further

reduce to

{R.H.S.} =
{
ρh
(
Ruφuφ − ∂RΦ

)
− ∂RP

}
(4.83)

in a Newtonian approximation. For the highlighted cell, this term must also be zero if

a steady-state is to be maintained. The source term will indeed be zero for our equilib-

rium configuration because, in addition to a gravitational acceleration, the Christoffel

symbols and derivatives of the metric now produce a new geometry term (somewhat

similar to the centrifugal pseudoforce) that will supplement the pressure gradient in

providing an exact counterbalance to the gravitational acceleration. In this case, there

is no net source term to alter the value of the R-coordinate of the fluid.
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• Advection of Cartesian momenta on a cylindrical grid (C(1) = ex = (Rx eR

−yeφ ) /R2), as illustrated in the bottom-left panel of Figure 4.2: In this case,

the relevant transport velocity (perpendicular to the upper and lower faces of the cell)

is again ±Rvφ (a blue quantity), but ψ(1) (a red quantity) is constructed from the vx

component of the velocity. As happened in the “Cartesian-Cartesian” case associated

with the upper-left panel of Figure 4.2, positive x-momentum will be carried into the

cell from below, and negative x-momentum will be carried out to the cell above. Hence,

advection alone will tend to cause a net increase in the value of ψ(1) (and Ŝx) in our

highlighted cell. (In other words, the divergence of x-momentum is again negative for

this cell.) Since the source term is a scalar quantity, it cannot depend upon the choice

of coordinates, but only on the choice of C (and, accordingly, on the choice of advection

variable). Consequently, in this case, the physical source term will be the same as it

was in the “Cartesian-Cartesian” case. Written in terms of the chosen grid coordinates

(i.e., cylindrical coordinates) the bracketed term on the R.H.S. of Eq. (3.19b) becomes,

{R.H.S.} =
{
ρhuµuβ [gβR∂µ(x/R) + gβφ∂µy + (∂µgRβ − ΓδµβgδR)(x/R) + (∂µgφβ − Γδµβgδφ)y]

−[(x/R)∂R − (y/R2)∂φ]P
}
, (4.84)

where x ≡ R cosφ and y ≡ R sinφ, and would further reduce to

{R.H.S.} =
{
− ρh [(x/R)∂R − (y/R2)∂φ]Φ− [(x/R)∂R − (y/R2)∂φ]P

}
(4.85)

in a Newtonian approximation. For the highlighted cell, the net divergence and source

term are, once again, both negative and equal in magnitude, despite the fact that the

evolution is carried out on a cylindrical grid.

• Advection of cylindrical momenta on a Cartesian grid (C(1) = eR = (xex +y

ey ) /R), as illustrated in the top-right panel of Figure 4.2: In this case, the

relevant transport velocity (perpendicular to the upper and lower faces of the cell) is

±vy (a blue quantity) and ψ(1) (a red quantity) is constructed from the vR component

of the velocity. As happened in the “cylindrical-cylindrical” case associated with the
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lower-right panel of Figure 4.2, since there is no R-momentum anywhere, none will be

carried into the cell from below and none will be carried out to the cell above. Hence,

advection alone will not contribute to a net change in the value of ψ(1) (nor of ŜR)

in our highlighted cell. The physical source term is also as it was in the “cylindrical-

cylindrical” case, that is, zero. Written in terms of the chosen grid coordinates (this

time, Cartesian coordinates) the bracketed term on the R.H.S. of Eq. (3.19b) becomes,

{R.H.S.} =
{
ρhuµuβ[gβx∂µ(x/R) + gβy∂µ(y/R) + (∂µgxβ − Γδµβgδx)(x/R)

+ (∂µgyβ − Γδµβgδy)(y/R)]− (1/R)(x∂x + y∂y)P
}
, (4.86)

where R ≡ (x2 + y2)1/2, and would further reduce to

{R.H.S.} =
{
ρh (−yux + xuu)2

/R3 − (ρh/R) (x∂x + y∂y) Φ− (1/R) (x∂x + y∂y)P
}

(4.87)

in a Newtonian approximation. Both the advection term and the source term are again

identically zero, despite the fact that the evolution is carried out on a Cartesian grid.

Even though the advection and source terms cancel analytically in each of the four cases,

it would be surprising if a numerical evaluation of the source terms arising from the two

approaches involving the linear momenta as state variables produces values that exactly

cancel the corresponding flux contributions. In the two approaches involving the cylindrical

momenta as state variables, on the other hand, both the advection terms and the source

terms are identically zero, so nothing special needs to happen in order for them to exactly

cancel numerically.

From this analysis, we suspect that the choice of state variables is likely to be more

important than the choice of coordinates whenever one’s primary goal is to avoid the detri-

mental effects of an imperfect numerical balance between the source term and the advection

term. We also conclude that the choice of coordinates can be made independently of the

choice of state variables and, even if the basis vectors of the chosen coordinates are not

identified with the definition of the state variables, the balance between the source term and

the advection term is not adversely affected. But whatever the choice of state variables (and
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coordinates), Eq. (3.5c) gives the appropriate physical formulation of the Euler equations.

With a description in hand for constructing and evolving generalized state variables, we will

focus our attention in the next subsection on the application of these ideas to a specific

physical problem.



5. Additional Examples

As a simple example of the usefulness of the generalized Euler equations, consider a

simple Newtonian problem involving an incompressible dust (i.e., pressure is neglected and

the total time derivative of the density as measured in the comoving frame is zero) as viewed

in cylindrical coordinates. The metric is

gµν =


−c2 0 0 0

0 1 0 0
0 0 R2 0
0 0 0 1

 . (5.1)

Consequently, the line element, ds2 ≡ gµν dxµ dxν , can be written

ds2 = −c2 dt2 + dR2 +R2 dφ2 + dz2. (5.2)

Additionally, assume that h = 1 and that motion is restricted to two dimensions – planes of

constant z – so that ut = 1, uR = Ṙ, uφ = φ̇, and uz = 0. Then the stress energy tensor

becomes,

T µν = ρuµuν =


ρ ρṘ ρφ̇ 0

ρṘ ρṘ2 ρṘφ̇ 0

ρφ̇ ρṘφ̇ ρφ̇2 0
0 0 0 0

 . (5.3)

If the flow is further assumed to be nearly stationary, such that it can be thought of as

rotating with constant angular velocity Ω, then one ideal choice for a characteristic vector

is the helical quasi-Killing vector field C = et + ω eφ, where ω = Ω is the angular velocity

of the frame in which we want to measure angular momentum. Despite the fact that the

two angular velocities are equal in this example, we will keep the symbol ω for use in our

characteristic vector in order to emphasize that it, by definition, identifies the frame rotation

rate.

5.1 Identification of a New Coordinate That Advances

along the Chosen Characteristic Vector

It can be desirable to find a new coordinate (which we will denote using primes) such that t′

advances along the vector field C and such that the induced metric (i.e., the spatial 3-metric)

83
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does not change with time; in other words, we wish to require that the coordinate t′ follow

integral curves of the vector field C, and that the functional dependence of the induced metric

on the new spatial coordinates be identical to its dependence on the old spatial coordinates.

Beginning with the requirement on t′, we have

C = et + ω eφ = et′ =
∂t

∂t′
et +

∂R

∂t′
eR +

∂φ

∂t′
eφ +

∂z

∂t′
ez. (5.4)

Picking coefficients off of the unprimed basis vectors, we obtain four PDE’s (written in terms

of the primed coordinates) which need to be solved for the unprimed coordinates:

∂t

∂t′
= 1 (5.5a)

∂R

∂t′
= 0 (5.5b)

∂φ

∂t′
= ω (5.5c)

∂z

∂t′
= 0. (5.5d)

Fortunately, in this case the PDE’s are simple and the following coordinate transformation

can quickly be seen to satisfy all four PDE’s.

t = t′ (5.6a)

R = R′ (5.6b)

φ = φ′ + ωt′ (5.6c)

z = z′. (5.6d)

Of course, we know that this solution is correct because it identifies the set of cylindrical

coordinates associated with the rotating frame. The important thing to recognize is that

we were able to derive this coordinate transformation directly from the characteristic vector

field C.

Having found the appropriate transformation between the inertial-frame coordinates and

the rotating-frame coordinates, it is possible to calculate the line element in the primed

coordinates and pick off its coefficients to identify the new metric elements. Beginning with

the differential coordinate transformations (e.g., dφ = dφ′ + ω dt′) and substituting them
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into the line element produces,

ds2 = −c2 dt′2 + dR′2 +R′2 (dφ′ + ω dt′)
2

+ dz′2

and the corresponding metric is

gµν =


−c2 +R2ω2 0 R2ω 0

0 1 0 0
R2ω 0 R2 0

0 0 0 1

 , (5.7)

where the primes have been left off R since it remains unchanged by the transformation, and

the off-diagonal elements have appeared because of the cross term in dφ2. As required, this

metric will reduce to the inertial-frame metric in the limit as ω → 0. Next, the collection

of covariant metric components can be inverted to obtain the set of contravariant metric

components (i.e., the inverse metric),

gµν =


−1/c2 0 ω/c2 0

0 1 0 0

ω/c2 0 1
R2 − ω2

c2
0

0 0 0 1

 . (5.8)

Comparing each of these to the ADM-decomposed metric (as defined in Subsection 7.1.2),

gµν =

(
−c2α2 + β2 βj

βi γij

)
, or equivalently, gµν =

(
− 1
c2α2

βj

c2α2

βi

c2α2 γij − βiβj

c2α2

)
, (5.9)

it is evident that the characteristic vector field C gives rise to the lapse function α = 1, and

the shift vector β = R2ω eφ = ω eφ, expressed in terms of the inertial-frame coordinates.

5.2 Expression of the Field Equations in Terms of the

New Coordinate

The Euler equations,

1√
−g

∂µ
(√
−g T µν

)
= −T µαΓνµα, (5.10)

can now be expressed in terms of the corotating coordinates. The factor of
√
−g = cR in the

corotating cylindrical coordinates, just as it does in inertial-frame cylindrical coordinates.

With a little work, it can be shown that the only nonzero Christoffel symbols in the corotating
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coordinates turn out to be

ΓRtt = −Rω2 (5.11a)

ΓRtφ = ΓRφt = −Rω (5.11b)

ΓRφφ = −R (5.11c)

ΓφtR = ΓφRt = ω/R (5.11d)

ΓφRφ = ΓφφR = 1/R. (5.11e)

With each of the Christoffel symbols, writing out each of the terms appearing in the Euler

equations is straightforward. Recalling that all the primed coordinates except φ′ are inter-

changeable with the unprimed coordinates, the field equation associated with each of the

corotating coordinates becomes

t : ∂t′ (cRρ) + ∂R

(
cRρṘ

)
+ ∂φ

(
cRρφ̇′

)
= 0 (5.12a)

R : ∂t′
(
cRρṘ

)
+ ∂R

(
cRρṘ2

)
+ ∂φ

(
cRρṘφ̇′

)
= Rω2 (cRρ)

+ 2Rω
(
cRρφ̇′

)
+R

(
cRρφ̇′

2
)

(5.12b)

φ′ : ∂t′
(
cRρφ̇′

)
+ ∂R

(
cRρṘφ̇′

)
+ ∂φ

(
cRρφ̇′

2
)

= − 2ω

R

(
cRρṘ

)
− 2

R

(
cRρṘφ̇′

)
(5.12c)

z : 0 = 0, (5.12d)

where primes have additionally been left off of the partials ∂R and ∂φ because ∂R′ = ∂R and

∂φ′ =
∂t

∂φ′
∂t +

∂φ

∂φ′
∂φ = ∂φ,

but

∂t′ = ∂t + ω ∂φ 6= ∂t. (5.13)

A little simplification allows us to write

t : ∂t′ (Rρ) + ∂R

(
RρṘ

)
+ ∂φ

(
Rρφ̇′

)
= 0 (5.14a)

R : ∂t′
(
RρṘ

)
+ ∂R

(
RρṘ2

)
+ ∂φ

(
RρṘφ̇′

)
= ρR2

(
ω + φ̇′

)2

(5.14b)

φ′ : ∂t′
(
Rρφ̇′

)
+ ∂R

(
RρṘφ̇′

)
+ ∂φ

(
Rρφ̇′

2
)

= − 2ρṘ
(
ω + φ̇′

)
. (5.14c)
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With the Euler equations in this simplified form it is possible to start talking about a physical

interpretation for the source terms. Using the product rule on the remaining partials gives

t : R ∂t′ρ+ ρṘ +RṘ ∂Rρ+ ρR ∂RṘ (5.15a)

+Rφ̇′ ∂φρ+ ρR ∂φφ̇′ = 0 (5.15b)

R : R ∂t′
(
ρṘ
)

+ ρṘ2 +RṘ ∂R

(
ρṘ
)

+ ρRṘ ∂RṘ

+ Rφ̇′ ∂φ

(
ρṘ
)

+ ρRṘ ∂φφ̇′ = ρR2
(
ω + φ̇′

)2

(5.15c)

φ′ : R ∂t′
(
ρφ̇′
)

+ ρṘφ̇′ +RṘ ∂R

(
ρφ̇′
)

+ ρRφ̇′ ∂RṘ

+ Rφ̇′ ∂φ

(
ρφ̇′
)

+ ρRφ̇′ ∂φφ̇′ = − 2ρṘ
(
ω + φ̇′

)
,(5.15d)

while the chain rule implies that,

dt′ρ = ∂t′ρ+ Ṙ ∂Rρ+ φ̇′ ∂φρ = 0 (incompressible) (5.16a)

dt′
(
ρṘ
)

= ∂t′
(
ρṘ
)

+ Ṙ ∂R

(
ρṘ
)

+ φ̇′ ∂φ

(
ρṘ
)

(5.16b)

R dt′
(
ρφ̇′
)

= R ∂t′
(
ρφ̇′
)

+RṘ ∂R

(
ρφ̇′
)

+Rφ̇′ ∂φ

(
ρφ̇′
)
, (5.16c)

where dt′ denotes a total derivative with respect to t′. Substituting these values into the

momentum field equations produces

t : ρ
(
Ṙ +R ∂RṘ +R ∂φφ̇′

)
= 0 (5.17a)

R : R dt′
(
ρṘ
)

+ ρ
(
Ṙ2 +RṘ ∂RṘ +RṘ ∂φφ̇′

)
= R2

(
ω + φ̇′

)2

(5.17b)

φ′ : R dt′
(
ρφ̇′
)

+ ρ
(
Ṙφ̇′ +Rφ̇′ ∂RṘ +Rφ̇′ ∂φφ̇′

)
= − 2Ṙ

(
ω + φ̇′

)
. (5.17c)

Furthermore, substituting the energy equation (5.17a) into the L.H.S. of each of the momen-

tum equations eliminates all but the first term on the L.H.S. Cancelling a factor of R from

the R-equation, we have now arrived at a more useful form of the Euler equations,

R : dt′
(
ρṘ
)

= R
(
ω + φ̇′

)2

(5.18a)

φ′ : R dt′
(
ρφ̇′
)

= − 2Ṙ
(
ω + φ̇′

)
. (5.18b)

In this simplified form, it will now be very straightforward to interpret each of the terms

appearing in the momentum equations.
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5.3 Interpretation of the Field Equations

Now, since a dust has no pressure and a flat metric implies no gravity, the acceleration of

the dust as measured in the corotating frame should be given by the centrifugal acceleration

plus the Coriolis acceleration. Let us verify that this is indeed the case. The centrifugal

acceleration is

acent = −ω × (ω ×R) = −ω ẑ ×
(
ω ẑ ×R R̂

)
= ω2R R̂, (5.19)

while the Coriolis acceleration is

acor = −2ω × v = −2ω ẑ ×
(
Ṙ R̂ +Rφ̇′ φ̂

)
= −2ω

(
Ṙ φ̂−Rφ̇′ R̂

)
. (5.20)

Meanwhile, expanding out the source terms appearing in the momentum equations for the

sake of comparison, we find that

R : dt′
(
ρṘ
)

= ρRω2 + 2ρRωφ̇′ + ρRφ̇′
2

(5.21a)

φ′ : R dt′
(
ρφ̇′
)

= − 2ρṘω − 2ρṘφ̇′. (5.21b)

The first source term in the R-equation is the centrifugal force density. The second term

is the R-component of the Coriolis force density. Meanwhile, the first source term in the

φ′-equation is the φ′-component of the Coriolis force density. Thus, moving the remaining

source terms over to the L.H.S., we can write,

R : dt′
(
ρṘ
)
− ρRφ̇′2 = Fcent + Fcor,R (5.22)

φ′ : R dt′
(
ρφ̇′
)

+ 2ρṘφ̇′ = Fcor,φ′ . (5.23)

The only task remaining is to show that each L.H.S. represents a physicalforce density (or

more precisely, a time-rate-of-change of momentum density) as measured in the corotating

coordinate system. We will do this by writing out the time-rate-of-change of momentum

vector in Cartesian coordinates. Then we will transform it into corotating coordinates.

In Cartesian coordinates we know that the time-rate-of-change of momentum along the

x-direction is dt (ρẋ) = 0 and along the y-direction it is dt (ρẏ) = 0. Now the total inertial-
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frame time derivative can be written

∂t + Ṙ ∂R + φ̇ ∂φ = ∂t + ẋ ∂x + ẏ ∂y

= ∂t + ẋ

(
cosφ ∂R −

ẋ sinφ

R
∂φ

)
+ ẏ

(
sinφ ∂R +

cosφ

R
∂φ

)
= ∂t + (ẋ cosφ+ ẏ sinφ) ∂R +

1

R
(−ẋ sinφ+ ẏ cosφ) ∂φ. (5.24)

This allows us to identify

Ṙ = ẋ cosφ+ ẏ sinφ (5.25a)

Rφ̇ = −ẋ sinφ+ ẏ cosφ, (5.25b)

Consequently,

dt
(
ρṘ
)

= ρ̇Ṙ+ ρR̈ = ρ̇ (ẋ cosφ+ ẏ sinφ) + ρ
(
ẍ cosφ− ẋφ̇ sinφ+ ÿ sinφ+ ẏφ̇ cosφ

)
= (ρ̇ẋ+ ρẍ) cosφ+ (ρ̇ẏ + ρÿ) sinφ− ρẋφ̇ sinφ+ ρẏφ̇ cosφ
= ρφ̇ (−ẋ sinφ+ ẏ cosφ)
= ρRφ̇2 (5.26a)

dt
(
ρRφ̇

)
= ρ̇Rφ̇+ ρRφ̈+ ρṘφ̇ = ρ̇ (−ẋ sinφ+ ẏ cosφ) + ρ

(
−ẍ sinφ− ẋφ̇ cosφ+ ÿ cosφ− ẏφ̇ sinφ

)
= − (ρ̇ẋ+ ρẍ) sinφ+ (ρ̇ẏ + ρÿ) cosφ+ ρ

(
−ẋφ̇ cosφ− ẏφ̇ sinφ

)
= −ρφ̇ (ẋ cosφ+ ẏ sinφ)
= −ρṘφ̇

=⇒ ρ̇Rφ̇+ ρRφ̈ = −2ρṘφ̇. (5.26b)

Then R̈ − Rφ̇2 = 0 and Rφ̈ + 2Ṙφ̇ = 0. After some thought, it becomes clear that this

implies aR = R̈ − Rφ̇2 and aφ = Rφ̈ + 2Ṙφ̇ in cylindrical coordinates. Then, in corotating

coordinates the appropriate accelerations are

aR = R̈−Rφ̇′2 (5.27a)

aφ′ = Rφ̈′ + 2Ṙφ̇′, (5.27b)

just what we expected them to be. Thus the field equations do, indeed, read

R : FR = Fcent + Fcor,R (5.28a)

φ′ : Fφ′ = Fcor,φ′ (5.28b)

in corotating (or helical) coordinates.



90

5.4 Use the Characteristic Vector to Make a Weighted

Linear Combination of the Field Equations Such

That the Source Vanishes

As given by Eq. (3.2), the field equations can be written,

1√
−g

∂µ
(√
−g T µνCν(η)

)
= T µν∇µCν(η)

so that if C(η) is a Killing vector field, the R.H.S. vanishes. In our scenario, one Killing

vector (the helical Killing vector) is C = et + ω eφ = et′ . This is expressed in terms

of contravariant components and covariant basis vectors. We need to write it in terms of

covariant components and contravariant basis vectors since the indices on C in equation

(3.2) are down. It is,

C = −c2 et +R2ω eφ =
(
−c2 +R2ω2

)
et
′
+R2ω eφ

′
.

This is telling us that instead of using the t, R, φ′, and z equations as they are (5.12a-5.12d),

we might want to consider taking (−c2 +R2ω2) times the t-equation, plus R2ω times the

φ′-equation. Doing so produces the following:

(
−c2 +R2ω2

) [
∂t′ (cRρ) + ∂R

(
cRρṘ

)
+ ∂φ

(
cRρφ̇′

)]
+ R2ω

[
∂t′
(
cRρφ̇′

)
+ ∂R

(
cRρṘφ̇′

)
+ ∂φ

(
cRρφ̇′

2
)]

= R2ω

[
−2ω

R

(
cRρṘ

)
− 2

R

(
cRρṘφ̇′

)]
. (5.29)

Now, in order for the source to vanish, we need to move the weighting factors inside the

partials by applying the product rule in reverse. When we do this, we find that
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∂t′
(
cR
(
−c2 +R2ω2

)
ρ
)
− cRρ ∂

∂t′
(
−c2 +R2ω2

)
+ ∂R

(
cR
(
−c2 +R2ω2

)
ρṘ
)
− cRρṘ ∂

∂R

(
−c2 +R2ω2

)
+ ∂φ

(
cR
(
−c2 +R2ω2

)
ρφ̇′
)
− cRρφ̇′ ∂

∂φ

(
−c2 +R2ω2

)
+ ∂t′

(
cR
(
R2ω

)
ρφ̇′
)
− cRρφ̇′ ∂

∂t′
(
R2ω

)
+ ∂R

(
cR
(
R2ω

)
ρṘφ̇′

)
− cRρṘφ̇′ ∂

∂R

(
R2ω

)
+ ∂φ

(
cR
(
R2ω

)
ρφ̇′

2
)
− cRρφ̇′2 ∂

∂φ

(
R2ω

)
= R2ω

[
−2ω

R

(
cRρṘ

)
− 2

R

(
cRρṘφ̇′

)]
. (5.30)

The partial derivatives inside the new terms that have appeared (the ones with the minus

signs out front) can be evaluated at this time. Many of them are zero. At the same time,

the remaining terms can be organized and simplified by combining like partials:

∂t′
[
cR
((
−c2 +R2ω2

)
ρ+R2ω ρφ̇′

)]
+ ∂R

[
cR
((
−c2 +R2ω2

)
ρṘ +R2ω ρṘφ̇′

)]
− cRρṘ

(
2Rω2

)
− cRρṘφ̇′ (2Rω)

+ ∂φ

[
cR
((
−c2 +R2ω2

)
ρφ̇′ +R2ω ρφ̇′

2
)]

= −2Rω2
(
cRρṘ

)
− 2Rω

(
cRρṘφ̇′

)
. (5.31)

This is where the small miracle occurs. We see that the extra terms that have appeared

on the L.H.S. turn out to be exactly what is needed to cancel with the R.H.S.! The field

equations now read

∂t′
[
cR
((
−c2 +R2ω2

)
ρ+R2ω ρφ̇′

)]
+∂R

[
cR
((
−c2 +R2ω2

)
ρṘ +R2ω ρṘφ̇′

)]
+ ∂φ

[
cR
((
−c2 +R2ω2

)
ρφ̇′ +R2ω ρφ̇′

2
)]

= 0. (5.32)

This is how the helical equation would have read if we had started with equation (3.2) and

chosen C to be our helical Killing vector. One can easily verify this by comparing the two.
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5.5 Find Other Vector Fields That Identify Additional

Weighted Linear Combinations That Eliminate the

Source

I must warn the reader in advance that this section gets a bit messy. We are looking for

solutions to { R.H.S. of (3.2) } = 0; that is,

T µν∇µCν = 0. (5.33)

Let us write out ∇µCν = ∂µCν − ΓαµνCα component by component in corotating coordinates

using the Christoffel symbols we introduced in equations (5.11a-5.11e).

∇µCν =


∂t′Ct′ +Rω2CR ∂t′CR − ω

R
Cφ ∂t′Cφ +RωCR ∂t′Cz

∂RCt′ − ω
R
Cφ ∂RCR ∂RCφ − 1

R
Cφ ∂RCz

∂φCt′ +RωCR ∂φCR − 1
R
Cφ ∂φCφ +RCR ∂φCz

∂zCt′ ∂zCR ∂zCφ ∂zCz

 , (5.34)

where primes were kept only on the t-component of C for the same reason that they are

kept only on partial derivatives with respect to t. Then in order for the R.H.S. of (3.2) to

vanish, it must be true that

ρ
(
∂t′Ct′ +Rω2CR

)
+ ρṘ

(
∂t′CR −

ω

R
Cφ

)
+ ρφ̇′ (∂t′Cφ +RωCR)

+ ρṘ
(
∂RCt′ −

ω

R
Cφ

)
+ ρṘ2 (∂RCR) + ρṘφ̇′

(
∂RCφ −

1

R
Cφ

)
+ ρφ̇′ (∂φCt′ +RωCR) + ρṘφ̇′

(
∂φCR −

1

R
Cφ

)
+ ρφ̇′

2
(∂φCφ +RCR) = 0 (5.35)

Since this is the only constraint on C, and C has four degrees of freedom (i.e., its four

components), we are free to choose three of those components at will. But if we want to

find a vector field that will pick a linear combination of the field equations that includes

the R-equation, then the vector field must at least possess a nonzero R-component. The

simplest choice that includes a nonzero R-component is CR = 1, Cφ = 0, Cz = 0. Eq. (5.35)

is profoundly deflated. All we have left is

∂t′Ct′ + Ṙ ∂RCt′ + φ̇′ ∂φCt′ +R
(
ω + φ̇′

)2

= 0. (5.36)

The first three terms are just a total time derivative, so

dt′Ct′ = −R
(
ω + φ̇′

)2

(5.37)
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is the appropriate condition on Ct′ . Apparently Ct′ just needs to be the t′-integral of

−R
(
ω + φ̇′

)2

. That is the good news. The bad news is that, while ω does not change

with t′, both R and φ̇′ do change with t′. And they do so in a somewhat complicated way

— one that we must determine before we can integrate.

In order to determine how the R.H.S. of (5.37) depends on t′, we are going to have to

transform it back into Cartesian coordinates. (Remember, we know that both ẋ and ẏ are

uniform and unchanging.) Before we do that, though, let us rewrite (5.37) in cylindrical

coordinates. It becomes

dtCt = −Rφ̇2. (5.38)

And in Cartesian coordinates,

dtCt = − (xẏ − yẋ)2

(x2 + y2)3/2
. (5.39)

While ẋ and ẏ can be thought of as constants, x and y themselves depend on t as follows:

x(t) = ẋt+ x0 (5.40)

y(t) = ẏt+ y0, (5.41)

where x0 and y0 are the values of x and y at the moment in question. Then, x0 and y0 are

constants. Finally, we can rewrite (5.37) with all the time dependence explicitly manifest.

It is

dtCt = − (x0ẏ − y0ẋ)2[
(ẋt+ x0)2 + (ẏt+ y0)2]3/2 ; (5.42)

the time dependence only appears in the denominator. Integrating over time, we find that

Ct = − (ẋ2 + ẏ2) t+ x0ẋ+ y0ẏ√
(ẋt+ x0)2 + (ẏt+ y0)2

. (5.43)

And once this integration has been performed, we can simplify our result by substituting

(5.40) and (5.41) back in (since we no longer need to know the explicit time dependence).

Ct = −(ẋ2 + ẏ2) t+ x0ẋ+ y0ẏ√
x2 + y2

. (5.44)

Finally, we must convert back to helical coordinates. When we do, we obtain, first,

Ct = − 1

R

[(
Ṙ2 +R0

2φ̇2
)
t+R0Ṙ

]
(5.45)
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in cylindrical coordinates, then

Ct′ = − 1

R

[(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

]
(5.46)

in corotating coordinates. This is a bit of a mess, but now we know that if we take Ct′

times the t-equation (5.12a), plus 1 times the R-equation (5.12b), and use the product rule

in reverse to move the coefficients inside the partials on the L.H.S, then the additional terms

that appear on the left will cancel with the terms on the right. In other words, we have

found a second equation — an “R-equation” — with zero source term that will supplement

(and be independent from) the helical equation (5.32).

Our next objective will be to check that

C = − 1

R

[(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

]
et + eR (5.47)

really does eliminate the source term on (5.12b) as promised. Alas, a step-by-step presenta-

tion of the procedure will be dreadfully long and messy, so we will begin with a somewhat

hand-wavey outline. The reader who does not wish to see the calculation carried out in

painful detail can then skip to the next section.

After taking the appropriate linear combination of equations and moving the coefficient

Ct′ inside the partials, we will be left with two kinds of partials on the L.H.S. The first

set of partials will be of the form ∂µ (
√
−g T µνCν), whereas the second set will be of the

form −
√
−g T µν∂µCν . The latter, once evaluated, are the partials that will cancel with the

sources on the R.H.S. An examination of these partials shows that they (when taken with

their appropriate coefficients) add up to a total time derivative of Ct′ . But we intentionally

chose Ct′ so that dt′Ct′ would specifically equal −R
(
ω + φ̇′

)2

, which is the source term on

the R.H.S. Thus we can be assured that they will cancel and our sketchy outline is complete.

We now proceed to give the more detailed presentation of the procedure. The appropriate

linear combination of equations (5.12a-5.12d) is

− 1

R

[(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

] [
∂t′ (cRρ) + ∂R

(
cRρṘ

)
+ ∂φ

(
cRρφ̇′

)]
+
[
∂t′
(
cRρṘ

)
+ ∂R

(
cRρṘ2

)
+ ∂φ

(
cRρṘφ̇′

)]
= Rω2 (cRρ) + 2Rω

(
cRρφ̇′

)
+R

(
cRρφ̇′

2
)
. (5.48)
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We next move the coefficient inside the partials on the L.H.S. (via the product rule in reverse)

to obtain

∂t′

cR
−

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρ+ ρṘ




− cRρ ∂t′

−
(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R



+ ∂R

cR
−

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρṘ + ρṘ2




− cRρṘ ∂R

−
(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R



+ ∂φ

cR
−

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρφ̇′ + ρṘφ̇′




− cRρφ̇′ ∂φ

−
(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R


= Rω2 (cRρ) + 2Rω

(
cRρφ̇′

)
+R

(
cRρφ̇′

2
)
. (5.49)

From the chain rule, we can see that the second, fourth, and sixth terms on the L.H.S. add

together to give a total time derivative. Recognizing this allows us to rewrite the equation

as
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∂t′

cR
−

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρ+ ρṘ




+ ∂R

cR
−

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρṘ + ρṘ2




+ ∂φ

cR
−

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρφ̇′ + ρṘφ̇′




− cRρ dt′

−
(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R


= cRρ

(
R
(
ω + φ̇′

)2
)
. (5.50)

Since the term with the total time derivative on the left equals the source on the right (see

equations 5.37 to 5.46), the two will cancel, leaving us with

∂t′

cR

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρ+ ρṘ




+ ∂R

cR

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρṘ + ρṘ2




+ ∂φ

cR

(
Ṙ2 +R0

2
(
ω + φ̇′

)2
)
t+R0Ṙ

R
ρφ̇′ + ρṘφ̇′


 = 0. (5.51)

for the R-equation.

5.6 Generalize the Procedure for Any ADM-Decom-

posed Metric at a Particular Timestep

Our goal in this section will be to reproduce the results of §5.1 using the most generalized

ADM-decomposed metric, given in equation (5.9). The resulting coordinate transformation

will tell us how to choose the lapse function and the shift vector at time slice n + 1, using
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the lapse function, the shift vector, the induced metric, and the chosen characteristic vector

field C at time slice n.

We begin with the characteristic vector field C = ∂t + Ci ∂i, where, as a reminder,

summation is implied. The vector is chosen so that the t-component is intentionally one.

(This can always be accomplished by means of a scaling factor since it is only the direction

of C, and not its magnitude, that concerns us.) Analogous to equation (5.4), C is expressed

in some primed coordinate system (which now varies only infinitesimally from the unprimed

coordinate system) such that

C = ∂t + Ci ∂i = ∂t′ =
∂t

∂t′
∂t +

∂xi

∂t′
∂i. (5.52)

Picking off coefficients as before,

∂t

∂t′
= 1 (5.53)

∂xi

∂t′
= Ci. (5.54)

These relations imply the coordinate transformation,

t = t′ (5.55)

xi = x′
i
+ Cit′. (5.56)

The ADM line element associated with (5.9) is

ds2 =
(
−c2α2 + β2

)
dt2 + 2βi dt dxi + γij dxidxj.

Plugging the differential coordinate transformations,

dt = dt′ and dxi = dx′
i
+ Ci dt′,

into the line element produces (after some work)

ds2 =
[(
−c2α2 + β2

)
+ 2βiC

i + γijC
iCj
]

dt′2 + 2
(
βi + γijC

j
)

dt′dx′
i
+ γij dx′

i
dx′

j

=
(
−c2α′2 + β′

2
)

dt′2 + 2β′i dt′dx′
i
+ γij dx′

i
dx′

j
. (5.57)

Notice that this still has the form of an ADM-metric, as it should. The new shift vector can

then be picked off. It is

β′i = βi + γijC
j = βi + Ci. (5.58)
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Of course, these are the covariant components of the new shift vector. What we really want

are the contravariant components,

β′
i

= γikβ′k = γik
(
βk + γkjC

j
)

= βi + δijC
j = βi + Ci. (5.59)

It turns out that the change in shift vectors at a particular time step is just the spatial part

of the characteristic vector, β′ − β = Csp !

We are now in a position to calculate the squared magnitude of the new shift vector,

β′
2

=
(
βi + Ci

)
(βi + Ci) = β2 + 2βiC

i + γijC
iCj. (5.60)

Comparing this to equation (5.57), evidently the lapse function is unaffected by our charac-

teristic vector field,

α′2 = α2. (5.61)

Only the shift vector is influenced by C. This is because we chose a characteristic vector

with a timelike component that is always equal to +1.



6. Application

Because it involves so many subtle details, in practice it can be more confusing than one

might guess to set up and interpret the equations of motion when the type of momentum one

chooses to advect does not agree with the coordinates used to discretize the grid. It is worth

taking some time to explore the richness of this formalism by considering its application to

just such a problem.

Up to this point we have focused on a three-dimensional subset of the full four-dimensional

generalized Valencia formulation. Now we briefly identify a few additional features that

emerge from the broader four-dimensional generalization which, as mentioned earlier in §3.2,

provides for a mixing of the momentum and energy equations. As an example application,

we will again consider modeling an axisymmetric neutron star that is rotating uniformly

with angular velocity Ω. But we could just as well consider a synchronously rotating binary

star system in circular orbit whose orbital angular velocity is Ω.

Tables 6.1 and 6.2 are designed to support and catalog the ideas discussed here. The

mathematical expressions that appear in each major row of both tables define, in the New-

tonian limit, key elements of the particular Euler equation that corresponds to a particular

choice of the state variable. More specifically, the 3rd column of both tables identifies the vec-

tor C(η) required to construct a particular state variable, while the last column of Table 6.1

shows the corresponding functional form of ψ(η) and the last column of Table 6.2 shows the

corresponding functional form of the principal element of S(η). Fully generalized relativis-

tic expressions for these functions can be obtained from Eq. (3.19b) when dealing strictly

with momentum state variables; expressions from Appendix B will need to be used when

generalizing expressions that incorporate a nonzero contribution from the energy equation.

99
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6.1 Choosing a Collection of Generalized Advection

Variables

6.1.1 Rest Mass State Variable Never Changes

For any physical problem we may wish to consider, the conservative advection variable

associated with the continuity equation is rest-mass density,

ψ(1) = ρ.

6.1.2 Momentum State Variables Defined by Cylindrical Geome-
try

Because the axisymmetric, uniformly rotating neutron star in our example problem is in

quasi-equilibrium, the principal part of the motion will be in the azimuthal direction (about

the center of mass), and it will be extremely important to conserve angular momentum for

this problem. It is, therefore, natural to choose angular momentum as one of our generalized

advection variables. (Use method two in §2.6.2.)

C(2) = eφ = −yex + xey → ψ(2) = ρhuφ = ρh (−yux + xuy) .

We also know that there will be very little motion in the radial direction, so radial momentum

is a good choice for an additional generalized advection variable. (Use method three in

§2.6.2.)

C(3) = eR =
xex + yey

R
→ ψ(3) = ρhuR = ρh

xuy + yux
R

. (6.1)

For the same reason, vertical momentum is also a good candidate for our third generalized

advection variable. (Again use method three in §2.6.2.)

C(4) = ez → ψ(4) = ρhuz. (6.2)

Consequently, based on our §4 discussion, we will focus here on strategies that utilize

cylindrical components of the momentum to define the three state variables identified by

Euler equation indices η = 2, 3 and 4. It is clear from the §4 discussion that the vectors C(η)

chosen to accomplish this can be expressed in terms of the basis vectors associated with any
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number of different grid geometries, including the two considered in Figure 4.2. For example,

if the grid is defined by cylindrical coordinates, then the C vectors should be expressed in

the form C(2) = eR, C(3) = eφ, and C(4) = ez, as indicated by the mathematical expressions

labeled “Case B” in each of the first three major rows of Tables 6.1 and 6.2. If, however,

the grid is defined by Cartesian coordinates, the C vectors should be expressed in the form

C(2) = (xex + yey)/R, C(3) = −yex + xey, and C(4) = ez, as indicated by the mathematical

expressions labeled “Case A” in each of the first three major rows of Tables 6.1 and 6.2.

Similarly, although the form of the expression for each of the generalized advection vari-

ables ψ(η) will differ according to the choice of coordinates, they will be functionally identical

to one another. For example, as shown in the last column of Table 6.1, when expressed in

terms of cylindrical coordinates (Case B), ψ(3) = ρhR2uφ; and when expressed in terms of

Cartesian coordinates (Case A), ψ(3) = ρh(−yux + xuy). But these are functionally the

same; that is, ρhR2uφ = ρh(−yux+xuy). The same goes for the source functions. As shown

in the last column of Table 6.2, for example, the expression used to specify S(3) takes a

different form depending on whether it is written out in Cartesian coordinates (Case A) or

in cylindrical coordinates (Case B), but the function itself is the same. That is,

S(3) = (y∂x − x∂y)P + ρh(y∂x − x∂y)Φ = −∂φP − ρh ∂φΦ,

and this source function should approach zero in steady state.

6.1.3 Energy State Variable Defined by Helical Killing Vector

Due to the stationary nature of this situation, a timelike Killing vector exists, which can be

used to construct our final generalized advection variable. (Use method two in §2.6.2.)

C(5) = et + ωeφ → ψ(5) = ρh (ut + ωuφ) . (6.3)

Because C(5) is a quasi-Killing vector, ψ(5) — which is total energy density minus rotational

kinetic energy density — is a globally conserved quantity. The actual state variable to be

evolved, τ — total energy density minus rest-mass energy density minus rotational kinetic

energy density — is also globally conserved.
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For a uniformly rotating, axisymmetric neutron star in static equilibrium, the steady-

state configuration can be associated with a helical, timelike Killing vector, namely et′ ,

the timelike basis vector in the corotating coordinate frame. By identifying C(5) as the

negative of that Killing vector, it is possible to construct a generalized energy state variable,

which in steady-state also produces no source. As shown in the row of expressions marked

η = 5 in Tables 6.1 and 6.2, in terms of inertial-frame cylindrical coordinates (Case B),

C(5) = − (et + ω̄eφ), where again ω̄ is the angular velocity of the frame in which the state

variables are measured. The corresponding advection variable is ψ(5) = ρh
(
c2ut −R2ω̄uφ

)
,

total energy density minus rotational kinetic energy density (or just total energy density as

measured in the corotating frame). Within the context of classical mechanics, this is known

as the Jacobi energy density (or the Jacobi integral; see [38], [13]) in rotating cylindrical

coordinates. The Jacobi energy associated with a generalized coordinate system is given by

Jacobi energy ≡ q̇j
∂L

∂q̇j
− L, (6.4)

where L ≡ T − V is the Lagrangian, T is the kinetic energy, V is the potential energy, and

the q̇j are the generalized velocities associated with the generalized coordinates qj.

The actual state variable to be evolved, τ̂ — total energy density minus rest-mass energy

density minus rotational kinetic energy density — is also globally conserved.

6.2 Choosing a Grid Geometry

6.2.1 Generalized Procedure

Now that we have five advection variables in hand, we must choose a grid geometry. It

may be possible to prescribe a set of coordinates that correspond to the chosen collection of

advection variables. This is done by requiring that one generalized coordinate, call it x′η,

increase in the direction of C(η), and simultaneously that C(η) always lie tangent to surfaces

of constant x′ν , where ν 6= η. This requirement can be written

∂ηx
′α = Cα

(η). (6.5)

As a simple example, consider the case where the four C(η)’s are chosen to be the four basis

vectors e(η) in a particular coordinate system. Then the R.H.S. of (6.5) is δαη. The L.H.S.
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will also be δαη if and only if each of the generalized coordinates x′α is the corresponding

coordinate from the particular coordinate system. In other words, by using basis vectors as

your C’s, you have actually chosen C’s that correspond to the particular coordinate system

that those basis vectors represent.

As a slightly less trivial example, suppose we want to find the coordinates that correspond

to the following collection of C’s (expressed in flat-space Cartesian coordinates),

C(2) ≡
x ex + y ey

R
,

C(3) ≡ −y ex + x ey,

C(4) ≡ ez,

C(5) ≡ et.

Eq. (6.5) produces the following requirements on the generalized coordinates,

∂2x =
x

R
∂2y =

y

R
∂2z = 0 ∂2t = 0

∂3x = −y ∂3y = x ∂3z = 0 ∂3t = 0

∂4x = 0 ∂4y = 0 ∂4z = 1 ∂4t = 0

∂5x = 0 ∂5y = 0 ∂5z = 0 ∂5t = 1

It should be immediately obvious that x4 = z and x5 = t. This leaves us with just the four

conditions in the upper left-hand quadrant. Taking the partial with respect to x′3 of both

sides of the third condition, and then plugging the fourth condition into the R.H.S. produces

∂3
2x = −x.

Similarly,

∂3
2y = −y.

The general solution is

x = A(x′
2
) cos

(
x′

3
+B(x′

2
)
)
,

y = A(x′
2
) sin

(
x′

3
+B(x′

2
)
)
,
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where A(x′2) and B(x′2) are free parameters. Of course, A and B still have to be chosen so

that the first two conditions are satisfied. The simplest thing is to try B = 0. Then the first

two conditions give

A′(x′
2
) cos

(
x′

3
)

= x/R,

A′(x′
2
) sin

(
x′

3
)

= y/R.

These conditions are satisfied if and only if A(x′2) = x′2. Then,

x = x′
2

cosx′
3

= R cosφ

y = x′
2

sinx′
3

= R sinφ

So x′2 = R and x′3 = φ, as expected.

In general, if the C’s are not chosen to be basis vectors, then finding a corresponding

coordinate system amounts to solving a set of n2 coupled partial differential equations, and

is certainly nontrivial.

While it is possible to choose a grid geometry that reflects the symmetries of the advection

variables (cylindrical in this case), it is not necessary. One could advect the cylindrical

quantities listed above on a Cartesian grid with no trouble if there were a good reason

to do so. (For instance, it is more straightforward to use a Cartesian grid to implement

adaptive mesh refinement.) Just the same, we will adopt a cylindrical grid geometry for our

present example. But in order to reduce numerical diffusion, the grid will be corotating. The

coordinates become

xµ ≡


t′ = t
R

φ′ = φ− ωt
z

 , (6.6)

where primes denote rotating coordinates.

6.2.2 Adopting a Rotating Coordinate System and/or Rotating-
Frame State Variables

In order to reduce the effects of numerical diffusion that inevitably arise when fluid is trans-

ported across a grid, it can be useful to adopt a non-stationary grid that generally moves
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with the fluid [14, 52, 74, 51, 75]. In particular, when modeling a rotating neutron star or a

binary system, it can be useful to adopt a cylindrical grid that is rotating with an angular

velocity ω that is similar, if not equal, to the angular velocity Ω of the fluid. In this case the

appropriate coordinates are 
t′ = t
R

φ′ = φ− ωt
z

 ,

where we have used primes to distinguish rotating coordinates from their nonrotating coun-

terparts. For each major row of Tables 6.1 and 6.2, “Case C” details the expressions for

C(η), ψ(η), and S(η) as viewed from this rotating cylindrical frame of reference.

We note that, when expressed in terms of the basis vectors that define this rotating-frame

cylindrical coordinate system (Case C), the expression for ψ(3) reflects the shift in frames,

that is,

ρhR2uφ → ρhR2(uφ
′
+ ωut

′
),

while the expressions for ψ(2) and ψ(4) remain unchanged from their inertial-frame counter-

parts (Case B). Among the source terms that have already been discussed — namely those

associated in Tables 6.1 and 6.2 with η = 2, 3, and 4 — only S(2) explicitly reflects the shift

in frames,

ρhRuφuφ → ρhR(uφ
′
+ ωut

′
)2 ,

through the appearance of two additional terms, one describing a perceived Coriolis accel-

eration (2ρhRωuφ
′
ut
′
) and another describing a centrifugal acceleration (ρhRω2ut

′
ut
′
). But

in no way do any of these new terms alter the actual numerical value of either ψ(3) or S(2)

since they are buried within the uφ inside the original expressions.

It is important to emphasize that the “Case C” expressions just discussed all represent

hybrid schemes in the following sense. The vector fields C(2), C(3), and C(4) and their

associated generalized advection variables ψ(2), ψ(3), and ψ(4) are all identified with the basis

vectors that correspond to an inertial-frame cylindrical coordinate system whereas the basis

vectors of the adopted grid are all identified with a rotating-frame cylindrical coordinate

system. This is not the conventional approach. Historically in the astrophysics community
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when a rotating grid has been adopted [52, 51, 75], the advection/state variables also have

been constructed from the rotating-frame cylindrical basis vectors. To accomplish this using

our generalized formalism, the vector field used to construct a state variable associated with

the angular momentum density of the fluid must be changed from C(3) to C(3′), as defined in

Tables 6.1 and 6.2, where ω̄ is defined as the angular velocity of the rotating frame in which

the angular momentum is measured (not to be confused with ω, the angular velocity of the

rotating grid, nor with Ω, the actual angular velocity of the fluid — although, ideally, the

three will all be similar to one another, if not equal). For example, when written in terms

of the adopted rotating-frame coordinates (Case C),

C(3′) = eφ′ + (R2ω̄/c2)(et′ − ωeφ′).

The generalized advection variable ψ(3′) and source function S(3′) that arise as a result are

detailed for “Case A”, “Case B” and “Case C” grid coordinates in the major row of Ta-

bles 6.1 and 6.2 that is labeled η = 3′.

As can be seen from earlier work [52, 51, 75], we notice that an additional Coriolis

term (−2ρhRω̄uRut
′
) appears in the source function of the angular momentum conservation

equation when the C(3′) vector field is specified. Unlike the Coriolis term that previously

appeared in the radial equation (as a consequence of expressing it in a rotating coordinate

frame), this Coriolis term actually does alter the numerical value of the source, (i.e., S(3′) 6=

S(3)). This is a significant (if subtle) distinction because only one of the two Coriolis terms

can actually spoil the delicate balance between the source term and the flux term. In this

sense, the Coriolis term that appears in the azimuthal equation as a result of evolving

rotating-frame angular momentum is more substantive than the one that appears in the

radial equation upon the selection of a rotating grid.

It is somewhat surprising that the two terms describing a Coriolis acceleration (typically

written in vector form as −2ρh ω × v′, where v′ is the rotating-frame 3-velocity) appear

for such distinctly different reasons. Strictly speaking, then, these terms really should be

written

Coriolis force density = −2ρh
(
ω × vφ′eφ′ + ω̄ × vReR

)
(6.7)
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to reflect the fact that they are actually produced for different reasons and by two indepen-

dent angular velocities, ω and ω̄.



7. Numerical Evidence

7.1 Implementation

7.1.1 Finite Volume Approach

Finite volume codes focus on quantities that need to be updated in one particular grid cell

from one time step to the next. The basic approach follows a logic very similar to the thought

process that was outlined in Chapter 2. First, the set of meaningful (observable) quantities

— called the primitives — at the center of a given cell need to be converted to a set of

conservative variables; that is, a set of variables F0
(η) that are described by field equations

that each take the form of Eq. (2.28). Since there are only two ways that the amount of a

conservative quantity within a grid cell can change —

1. By a nonzero net flux out of (or into) the cell during the appropriate interval of time,

or

2. By the spontaneous creation (or destruction) of that quantity within the cell during

the appropriate interval of time due to a nonzero source,

— the amount of the conservative quantity in a cell after the time step will be equal to the

amount that was there before the time step minus the net amount that was advected out

of the cell during the time step plus the amount that was spontaneously created within the

cell during the time step.

New Value = Old Value− Flux + Source. (7.1)

Consequently, finite volume codes can generally be broken up into four distinct modules.

1. A setup module, which defines the grid and reads in the initial data,

2. A flux module, which reconstructs at cell faces variables which are known at cell

centers in order to compute how much net of each quantity is advected out of the cell

during the given time step,

110
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3. A source module, which computes updates due to any nonzero source terms that

may be present, and

4. A driver module, which uses all the previous information to update the conservative

variables at each time step and recover the corresponding primitives that are needed

for the subsequent time step.

7.1.2 The Setup Module

A specific coordinate system must be chosen in order for the grid to be defined by the

setup module. The first step in choosing a set of coordinates involves slicing up the four-

dimensional spacetime into a foliation of spacelike hypersurfaces, which are threaded together

by a congruence (a bundle) of timelike curves. This is accomplished using the ADM for-

malism (see [10], [24], [63], [73]), first published in 1962 by Arnowitt, Deser, and Misner. It

involves decomposing the 4-metric into

1. An induced 3-metric on a given hypersurface γij,

2. A shift 3-vector β, which is everywhere tangent to the hypersurfaces and describes the

movement of the coordinate system from one hypersurface to the next, and

3. A lapse function α, which parameterizes the timelike curves.

The mathematical relationships among the components of the 4-metric and each of the

decomposed quantities can be summarized as follows.

g00 = −
(
α2 − γijβiβj

)
= −

(
α2 − β2

)
(7.2)

g0i = γijβ
j = βi (7.3)

gij = γij. (7.4)

The inverse metric, then, becomes

g00 = − 1

α2
(7.5)

g0i =
βi

α2
(7.6)

gij = γij − βiβj

α2
. (7.7)
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Inverting the equations yields the following definitions for the ADM variables:

α =
1√
−g00

=
√
β2 − g00 (7.8)

βi = g0i, βi = α2g0i (7.9)

γij = gij, γij = gij +
βiβj

α2
. (7.10)

Another useful relation is

g = −α2γ, (7.11)

where g and γ are determinants of the 4-metric and 3-metric, respectively. It should also be

noted that the line element can be written in the form

ds2 = −α2dx0dx0 + γij
(
dxi + βidx0

) (
dxj + βjdx0

)
. (7.12)

Incidentally, the physical components of the 3-velocity of the coordinates (as measured

by an Eulerian observer) are

v(i)coords =

√
γ√
γ{i}

cβi

α
, (7.13)

and the 4-velocity of the coordinates is

ucoords =
c e0√
g00

= c

(√
−g00 e0 +

g0i√
−g00

ei
)
. (7.14)

Once a satisfactory coordinate map has been chosen for the hypersurfaces (i.e., once the

three desired spacelike coordinates have been chosen), the grid structure can be constructed

numerically. At each grid cell, the initial data is then read into the primitive variables from

some preconstructed initial data model. Primitive variables must be used for the initial data

(as opposed to the conservative variables) because the primitives are the quantities that live

on the initial hypersurface — they are the quantities that can be measured by a coordinate

observer.

7.1.3 The Flux Module

The flux module is where updates to the conservative variables arising from the flux terms

are computed. First, a one-dimensional line of data is loaded by the module. Then, an

appropriate flux reconstruction scheme (like Kurganov-Tadmor) is employed to reconstruct
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fluxes at each of the cell faces. Next, the fluxes through two adjacent faces are subtracted to

obtain the net change in the corresponding conservative variable due to advection through

the cell faces. This net change is calculated for each cell on the grid, one line of data at a time.

The process is then repeated in each of the other two directions, and these contributions are

added to those from the difference fluxes in the first direction. The total net difference flux

from all three directions becomes the flux part of the update that will be used to update the

corresponding conservative variable.

7.1.4 The Source Module

The source module is more straightforward than the flux piece. It finds the appropriate

update to the conservative variables due to the source terms. This is accomplished by first

defining the components of the stress-energy tensor from the current primitive fluid variables.

Then spacelike partial derivatives of the metric components are found using a multi-point

stencil to compute finite differences. The source term is then constructed in terms of the

stress-energy tensor components (with both indices up), and partial derivatives of the metric

(with all indices down).

7.1.5 The Driver Module

The initial data for each cell is called from the setup module (or, for subsequent time steps,

the data from the last time step is used) and conservative variables are constructed on the

initial hypersurface from the primitive variables. A Runge-Kutta (RK) scheme is then used

to update the conservative variables according to the structure of equation (7.1). The RK

scheme breaks the time step up into substeps and, with the help of the flux and source

modules, produces updates to the appropriate conservative quantity for a given substep.

Then it converts the conservative variables back into the corresponding primitives in order

that the appropriate fluxes can be constructed at the next time substep. This variable

conversion is done at each RK substep, using a conservative-to-primitive variable solver

and is, in fact, one of the costliest pieces of the code, but it is necessary. Subsequently,

conservative variables are constructed for the next substep. After the final substep has been
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performed, the primitive variables are found and take the place of the initial data for the

next timestep.

7.2 Proposed Additions and Alterations

We suggest modifying a finite volume code so that, rather than following an approach which

can be outlined by Eq. (2.61a),

time−rate−of−change of
state variable︷ ︸︸ ︷

1√
−g

∂0

(√
−g ρhui u0

)
+

traditional flux of
state variable︷ ︸︸ ︷

1√
−g

∂j
(√
−g ρhui uj

)
= ρhuµuαΓαµi︸ ︷︷ ︸

gravity “force”
impacting

state variable

−∂iP︸ ︷︷ ︸
pressure “force”

impacting
state variable

,

it will follow an approach which can be outlined by Eq. (3.6),

time−rate−of−change of
generalized state variable︷ ︸︸ ︷

1√
−g

∂0

(√
−g ρhuνCν

(η) u
0
)

+

traditional flux of
generalized state variable︷ ︸︸ ︷

1√
−g

∂j
(√
−g ρhuνCν

(η) u
j
)

= ρhuµuν ∇µC
ν

(η)︸ ︷︷ ︸
gravity “force”

impacting generalized
state variable

−Cµ
(η) ∂µP︸ ︷︷ ︸

pressure “force”
impacting generalized

state variable

.

7.2.1 The Setup Module

For an evolution in a static background, this is a good place to define the characteristic

vector fields C(η) that one wants to use. For more dynamic models, a separate module would

likely be needed for computing the most ideal characteristic vectors on the fly.

7.2.2 The Flux Module

The conservative variables that appear in the flux module must be replaced with new con-

servative variables—linear combinations of the old ones, weighted by each of the chosen

characteristic vectors C(η)—before flux updates can be constructed. The four characteris-

tic vectors compose the rows of a transformation matrix, which takes the collection of old
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conservative four-momentum variables to the new conservative four-momentum variables.
F0′

(0)

F0′
(1)

F0′
(2)

F0′
(3)

 =


Ct

(0) Cx
(0) Cy

(0) Cz
(0)

Ct
(1) Cx

(1) Cy
(1) Cz

(1)

Ct
(2) Cx

(2) Cy
(2) Cz

(2)

Ct
(3) Cx

(3) Cy
(3) Cz

(3)



F0

(t)

F0
(x)

F0
(y)

F0
(z)

 (7.15)

7.2.3 The Source Module

As can be seen by comparing Eq. (3.6) with Eq. (2.61a), the source module cannot be

treated like the flux module since the new sources are not just linear combinations of the

old sources, weighted by the characteristic vector. The source updates must be entirely

reconstructed from the primitive variables, though the structure of the source module is not

otherwise changed.

This new source can be written most succinctly in terms of the stress energy tensor.

S(η) ≡ T µν∇µCν (η) (7.16)

In what follows, underlined terms are identical and can be combined.

S(η) ≡ gγνT
µγ
[
∂µC

ν
(η) + 1

2
gβν (∂µgαβ + ∂αgβµ − ∂βgµα)Cα

(η)

]
= T µγ

[
1
2
Cα

(η) (∂µgαγ + ∂αgγµ − ∂γgµα) + gγα∂µC
α

(η)

]
= T 00

[
1
2
C0

(η)

(
∂0g00 +��

�∂0g00 −��
�∂0g00

)
+ g00∂0C

0
(η)

+ 1
2
Ci

(η) (��
�∂0gi0 + ∂ig00 −���∂0g0i) + g0i∂0C
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For an explicit term-by-term expansion of this new source, see Appendix F.

7.2.4 The Driver Module

The driver module can be treated in a way that is similar to the way the flux module is

handled. Weighted linear combinations of the conservative variables must be taken in order

to get the generalized conservative variables before the flux and source updates can be added

(since they are updates to the generalized conservative variables). After the generalized

conservative variables have been updated, they must be transformed back into the original

conservative variables before the conservative-to-primitive solver can be called (since the

solver needs the original conservative variables). This is done by inverting the matrix of

vectors C(η). 
F0

(0)

F0
(1)

F0
(2)

F0
(3)

 =


Ct

(0) Cx
(0) Cy

(0) Cz
(0)

Ct
(1) Cx

(1) Cy
(1) Cz

(1)

Ct
(2) Cx

(2) Cy
(2) Cz

(2)

Ct
(3) Cx

(3) Cy
(3) Cz

(3)


−1

F0′

(0)

F0′
(1)

F0′
(2)

F0′
(3)

 (7.17)

So, to recap, at each substep of the RK scheme, the primitives must be converted to con-

servative variables, and the conservative variables must be transformed into the generalized

conservative variables before the updates can come in. Then they must be transformed back

into the original conservative variables and, finally, the primitives must be recovered so that

appropriate updates can be calculated for the next substep.

7.3 Toy Model

In order to test some of the ideas presented in this dissertation research, I have developed a

simple toy model — a two-dimensional Newtonian code for integrating the Euler equations

describing the motion of an ideal gas. This toy model is organized on a Cartesian grid, but

it is capable of evolving the set of traditional Cartesian state variables or a set of generalized

state variables as described here in Chapter 3. It is also capable of explicitly removing (or

keeping) the naked pressure terms that appear on either side of the field equations when

updating state variables.
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Using this toy code, I evolved an axisymmetric star in full body rotation on a Cartesian

grid: first, keeping naked pressure terms and evolving Cartesian state variables; second,

removing naked pressure terms and evolving the same Cartesian state variables; and third,

removing naked pressure terms and evolving cylindrical state variables. The results are

summarized in Figure 7.1 and appear to support the ideas presented in this disseration —

that quantities which should be naturally conserved (like angular momentum, in this case)

are better conserved numerically when the naked pressure terms are removed and generalized

state variables are chosen to accommodate symmetries inherent to the problem.

Figure 7.1: Conservation of angular momentum: comparison of results using a toy model for
three distinct numerical approaches. Left panel: The total angular momentum integrated
over the neutron star is shown as a function of time for three distinct models. The first model
(shown in red) incorporates Cartesian state variables, as does the second model (green).
Unlike the first model, the second model has had all naked pressure terms explicitly removed.
But because both simulations are Newtonian and are carried out on a Cartesian grid, the
naked pressure terms are zero (or, at least, are very small). So the performance of these
two models is nearly identical — that is, angular momentum is artificially lost at a rate of
about 5% per hundred sound-crossing times for each model. The third model (blue), on the
other hand, employs cylindrical state variables. This appears to have a profound effect on
performance, as the resulting rate of angular momentum loss is now negligible. Right panel:
The fractional loss of integrated angular momentum for the three models illustrated in the
left panel is shown on a logarithmic scale, again as a function of time. Here it is apparent
that the use of cylindrical state variables reduces the artificial numerical rate of angular
momentum loss by a factor of about a thousand for this particular Newtonian model, which
is evolved on a Cartesian grid.
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7.4 Flower Code

In order to test some of the ideas presented in this dissertation using a more sophisticated,

preexisting code, I spent over a year familiarizing myself with the Flower code written some

years ago by Patrick Motl here at LSU. I focused on a set of initial conditions for an ax-

isymmetric neutron star in full-body rotation on a Schwarzschild background. Each fluid

element within the spherically symmetric star was also given a small radial kick so that it

would undergo small-amplitude radial oscillations throughout the evolution.

The plan was to compare code performance for this set of initial conditions using a

variety of approaches: keeping naked pressure terms vs. explicitly removing them, evolving

Cartesian state variables vs. evolving cylindrical state variables, and evolving on a Cartesian

mesh vs. evolving on a cylindrical mesh. All together this led to a grand total of 23 versions

of the code I planned to test and compare. These eight versions of the code are summarized

in the table below. (And four of them were represented visually back in Figure 4.2.) I was

able to get the four versions of the Flower code that were carried out on a Cartesian mesh

to a point where I believe they were properly functioning as they were designed to function.

I was never able to work all the bugs out of the four versions of the code that were to be

carried out on a cylindrical mesh.

Table 7.1
Eight Versions of the Flower Code I Tried to Compare

Naked
Pressure Advected

Version Terms Variables Discretization Status

1 included Cartesian Cartesian working
2 removed Cartesian Cartesian working, better conservation achieved
3 included cylindrical Cartesian unstable, naked pressure terms blow up
4 removed cylindrical Cartesian working, conservation improved further
5 included Cartesian cylindrical bugs
6 removed Cartesian cylindrical bugs
7 included cylindrical cylindrical bugs
8 removed cylindrical cylindrical bugs

While the four versions that were designed for evolution on a cylindrical mesh never

worked properly, a comparison of the results from the four versions that do appear to be
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Figure 7.2: Conservation of angular momentum: comparison of results using the Flower
code for three distinct numerical approaches. The curve from each of the first two code
modifications shows an improvement in the conservation of integrated angular momentum
over the previous model. The magnitude of the slope of each curve represents the rate at
which global angular momentum is lost. The slope of the green curve is 71% the slope of the
blue curve, and the slope of the red curve is a mere 48% the slope of the blue curve. The
tiny oscillations give an idea of the time scale since they correspond to tiny radial pulsations.
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working properly is most relevant to the code modifications we are proposing as a result of

this dissertation research. We were particularly interested in the ability of each version of

the code to conserve angular momentum since in a time-independent axisymmetric potential

angular momentum must be exactly conserved in nature. Figure 7.2 shows the integrated

angular momentum of the simulated neutron star as a function of time for versions of the

code labelled 1, 2, and 4 in Table 7.1. Each successive version of the code that is plotted

in Figure 7.2 shows a level of improvement over the preceding curve in the sense that the

rate of numerical angular momentum loss has decreased, and consequently represents an

improvement in code performance due to a code modification we are recommending.

The small oscillations that are visible in each curve come from the tiny radial pulsations

in the neutron star and indicate the period of pulsation. The interesting feature is that

after about 5000 (equally spaced) timesteps, all three curves become almost linear. The

magnitude of the slope represents the rate at which angular momentum is being lost from

the model, so a gentler slope corresponds to better angular momentum conservation.

The blue curve, which comes from a run with no code modifications, approaches a slope

of about 11.2 × 10−7 (in code units). The green curve, which benefits from the removal of

unphysical terms, approaches a slope of about 8.0×10−7 (in code units), or 71% of the slope

of the blue curve. The red curve, which benefits from both the removal of unphysical terms

and the advection of cylindrical momenta, approaches a slope of about 5.3 × 10−7 (also in

code units), or 48% the slope of the blue curve.

So, at least for this model, the application of our recommended code modifications ap-

pears to reduce the rate of global angular momentum loss to half. One might speculate that

the rate of angular momentum loss would be decreased further still if the simulation were to

be carried out on a cylindrical grid.



8. Conclusions

When developing a numerical algorithm to perform a time-integration of the set of hyper-

bolic equations that govern compressible fluid flows — in nonrelativistic as well as relativistic

environments — it has become customary to write each equation in a form that, broadly

speaking, displays the following three terms:

time update + flux = source. (8.1)

The Valencia formulation of the relativistic fluid equations has become popular in the numeri-

cal relativity community because, even in its analytic continuum representation, the so-called

conservative equations display this structure. Starting from the Valencia formulation, it is

relatively straightforward to map the partial differential equations into finite-difference or

finite-volume expressions that are suitable for numerical integration. Based on ideas orig-

inally introduced by Papadopoulos and Font [58], we have developed a generalization of

the Valencia formulation that preserves this form and, in addition, offers some flexibility in

choosing which elements of the physics are incorporated into the flux term and which are

incorporated into the source term. This is accomplished through the definition of a set of

four characteristic vector fields C(η), each of which generates an independent linear combi-

nation of the standard equations. As we have argued, a judicious choice of these vector fields

should lead to a more accurate numerical treatment of fluid flows in a variety of situations.

The advantages of our generalized Valencia formulation can be illustrated most read-

ily in the context of steady-state or nearly steady-state flows. In steady-state flows, the

time update should be zero, so the flux term should equal the source term; and in models

that are intended to represent nearly steady-state flows, the flux term should nearly equal

the source term. However, in most computational fluid algorithms, the segment of the nu-

merical code that is designed to evaluate the flux term is very different from the segment that

is designed to evaluate the source. Hence, differences between the flux term and the source

term can arise that are principally of numerical origin and, as a result, it may be difficult

for the numerical algorithm to properly preserve a steady-state or nearly steady-state flow.

121
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In this regard the standard Valencia formulation promotes one particular practice that

we consider ill-advised: In the three components of the momentum conservation equation,

the pressure gradient appears on the L.H.S. inside the flux term. As a result, an unphysical

“naked” pressure term appears on both sides of the equation. This term is weighted by

connection coefficients – which are large in regions where the basis vectors change rapidly

from one point to the next – so its appearance is inconsequential on a flat metric in Cartesian

coodinates. But on non-Cartesian grids (particularly near the coordinate poles) or on any

grid in general relativistic flows – this naked pressure term can be large and cancelation of

its effects between the two sides of the equation is required in order to properly represent

a steady-state flow. Because the flux and source terms usually are evaluated by distinctly

different segments of the numerical algorithm, of course, cancelation can be difficult to

achieve.

In fact, as we have presented in §2.7, we constructed a highly accurate one-dimensional

model of a spherically symmetric TOV star using Mathematica (and thousands of radial

zones), and showed that in a moderately relativisitic environment the naked pressure term

can easily be comparable in size to the physical pressure gradient itself. When this occurs,

the (nontraditional) pressure flux that codes are currently computing consists of nearly equal

contributions of pressure gradient and unphysical mathematical artifact (from the failure of

naked pressure terms to cancel numerically).

Furthermore, by implementing a PPM flux reconstruction scheme (after the manner it

would be performed on a Cartesian grid), we were able to produce the artificial numerical

remainder from the naked pressure terms. In many models (particularly those approaching

the Newtonian regime), this remainder was orders of magnitude smaller than the inevitable

numerical error that arises from imperfect cancellation between numerical evaluations of

gravity and pressure. But for other models (those in the relativistic regime), the numerical

remainder from the naked pressure terms rivaled the other error term (particularly near the

center of the star). The greatest concern over this unnecessary error arises when one is trying

to resolve any minute non-equilibrium behavior in a near equilibrium flow.

Our first recommendation, therefore, is to move the pressure gradient from the L.H.S.
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(flux) to the R.H.S. (source) so that the naked pressure term never arises. In doing this, care

should certainly be taken to ensure that pressure is still numerically reconstructed at cell

faces in a way that satisfies the Rankin-Jouinot conditions1 and preserves the total-variation-

diminishing2 (TVD) nature of the reconstruction scheme.

It appears as though additional improvements in numerical algorithm design can be

achieved by forming a weighted linear combination of all the equations of motion, and then

moving additional pieces of the standard flux term to the R.H.S. and treating them as part

of the source. This can be accomplished through the definition of a characteristic vector field

that will specify the weighting factors for each of the Euler equations. As we have discussed

in Chapters 4-5, precisely which pieces should be moved is a matter of choice and will likely

depend on the problem. Whenever possible, choosing a characteristic vector that satisfies

Killing’s equations will generally eliminate the source. But when no such vector exists,

one possible alternative involves finding the characteristic vector that most nearly satisfies

Killings equations. This can be accomplished by minimizing the modulus of ∇µCν +∇νCµ

– the L.H.S. of Killing’s equations – by using the calculus of variations. As we have shown

in §4.3, this results in a first-order system of equations (4.49) constraining the characteristic

vector,

∇µ (∇µCν +∇νCµ) = 0ν .

If one knows a priori about the underlying symmetries of a problem, it probably will not

be necessary to solve this set of equations because the ideal characteristic vectors can still

be chosen to reflect the underlying symmetry. For highly dynamic flows, on the other hand,

these “quasi-Killing” equations may prove more useful in attempting to minimize the source.

In many situations, though, it can be advantageous to adopt a strategy wherein the

physical source is designed to be zero in steady state. Then the flux term also will naturally be

zero in steady state. For example, because orbital motion or rotation can play an important

1The Rankin-Jouinot conditions are designed to ensure the long-term stability of fluid simulations by
watching for shocks in the fluid quantities, and reducing the flux reconstruction scheme to first-order
throughout the vicinity of the shocks in order to prevent the appearance of Gibbs-type phenomenae in
their reconstruction.

2“Total variation diminishing” is a term that describes any flux reconstruction scheme that cannot allow
the appearance of new extrema in the fluid quantities near shock discontinuities.
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role in defining an equilibrium or near equilibrium configuration in many astrophysical fluid

problems, it can be advantageous to advect radial momentum rather than the x and y

components of linear momentum. The standard Valencia formulation does not immediately

accommodate such a switch in the principal state variable without also adopting cylindrical

coordinates (and, consequently, a cylindrical grid). But by setting one of the characteristic

vectors to eR in our generalized Valencia formulation, radial momentum becomes one of the

state variables and, in the associated (radial) component of the momentum equation, the

source term assumes the desired form namely, it vanishes for steady-state. (Incidentally, this

is only possible after moving the gradient of the pressure out of the flux term and into the

source – thereby constructing what we refer to as a physical source.) Similarly, by setting a

separate characteristic vector to eφ, angular momentum (as viewed from an inertial frame

of reference) becomes one of the state variables and the source term can be minimized in a

second momentum equation. This is because eφ is a Killing vector and trivially causes both

the flux and source terms to be zero. Furthermore, as discussed in Chapter 5, in certain

problems it may also be useful to identify another of the characteristic vectors as the helical

Killing vector.

It becomes clear through our generalized Valencia formalism that the components of the

momentum vector that are chosen to serve as state variables do not have to correspond

with the components of the momentum vector that are used to define the transport velocity.

For example, radial and angular momentum might be selected as principal state variables

and these state variables can be transported across a Cartesian-like grid using Cartesian-like

components of the momentum vector to define the transport velocity. We suspect that this

type of hybrid scheme will offer multiple advantages: Cartesian-like coordinates can be used

to define the grid on which the metric and its derivatives are specified (via a solution of the

Einstein equations) and the identical Cartesian-like grid structure can be used during an

evaluation of the flux term to define, without interpolation, area elements on the boundary

of each grid cell as well as the transport velocity. At the same time, the components of the

momentum vector that define the state variables can be specified using a different coordinate

base in such a way that the source terms are minimized.
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An additional advantage may arise in the context of fluid flow simulations that benefit

from the incorporation of adaptive mesh refinement (AMR). Effective AMR techniques are

challenging to implement in any context so it is not surprising that in the relativity com-

munity the most successful implementations of AMR, to date, have been on numerical grids

with the simplest structure — i.e., Cartesian-like grids. Generally speaking, the advantages

that might be gained by moving to a curvilinear or multi-block grid are far outweighed by

the challenges that must be overcome in order to implement an effective AMR technique in

a non-Cartesian grid environment. Our proposed hybrid scheme may allow the numerical

relativity community to realize many of the benefits that would normally be attributed to the

adoption of, say, a cylindrical grid – namely, the conservative transport of angular momen-

tum rather than linear momentum, and minimizing the source term in nearly steady-state

configurations that are dominated by rotation – while sticking with a Cartesian-like grid on

which AMR can be straightforwardly incorporated.

We draw attention to one interesting and rather surprising construction that can be

drawn from our generalized formalism. It is customary to expect that if a simulation is

carried out on a cylindrical grid that is rotating uniformly with an angular frequency ω,

the source term associated with the transport of angular momentum will include a Coriolis

term whose magnitude is proportional to ω. However, our work makes it clear that, strictly

speaking, only part of the Coriolis term (−2ρhω × vφ′eφ′) originates from the adoption of a

rotating grid. The other part (−2ρhω̄ × vReR) arises from the adoption of a state variable

that defines the angular momentum density in a rotating frame of reference. (Consequently,

in terms of our nomenclature, the Coriolis term will depend on both the angular velocity of

the coordinates ω and the angular velocity of the rotating frame in which angular momentum

is measured ω̄.) Through our new formalism, one can envision performing a simulation on

a rotating grid while adopting a state variable that tracks the angular momentum density

as measured in the inertial frame; in this case, the relevant source term will not include

a contribution from the Coriolis acceleration. Hence, when modeling a near steady-state

rotational flow, the source term can be minimized (no Coriolis term) while simultaneously
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minimizing the effects of numerical diffusion because the transport velocity in the azimuthal

direction will be small.

Combining all of these ideas, we suggest that the preferred approach to modeling near

steady-state flows in astrophysical environments where rotation plays an important role

(such as rotating neutron stars or binary systems containing neutron stars) will involve

the adoption of inertial-frame, cylindrical momenta as state variables while performing the

evolution on a rotating, Cartesian coordinate grid. In this context, for completeness, we

have added “Case D” to each of the major rows in Tables 1 and 2. This case details the

functional form of C(η), ψ(η) and S(η) when cylindrical momenta and the Jacobi energy are

transported across a rotating, Cartesian grid, that is, a grid defined by, t′ = t
x′ = x cosωt+ y sinωt
y′ = −x sinωt+ y cosωt

 , (8.2)

resulting in the metric,

g =


R2ω2 − c2 −y′ω x′ω 0
−y′ω 1 0 0
x′ω 0 1 0
0 0 0 1

 . (8.3)

The use of inertial-frame cylindrical momenta as state variables (in particular, η = 3 instead

of η = 3′ in Tables 1 and 2) should result in relatively small flux and source terms, better

ensuring a conservative treatment of the key state variables; the adoption of a Cartesian grid

should facilitate a straightfoward implementation of AMR and may provide an interpolation-

free interface with a companion code that solves the Einstein equations to determine values

of the metric across the grid; and the adoption of a rotating grid should minimize the effects

of numerical diffusion. A hybrid scheme such as this promises to offer the best of several

different worlds.

It may even be possible to choose locally a set of state variables in such a way that the

source term vanishes altogether – even when no Killing vectors exist. As was discussed in

Chapter 4, this could potentially be accomplished by reconstructing a different set of state

variables in each cell at each timestep using an independent set of four characteristic vectors

each satisfying Eq. (4.79),

ρhuµuν∇µC
ν − Cµ ∂µP = 0,
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and using these on-the-fly conservative variables to recover the primitive variables in each

cell. Though one may initially suspect that it is not possible to find four independent

solutions of (4.79) for problems not possessing any special symmetries, an analysis of the

degrees of freedom in the problem indicates that, at least locally, there are many families

of solutions to (4.79). In Chapter 4 we have provided two such examples in cases when a

corresponding Killing vector does not exist. The first was a perfect TOV star. Though the

spherical symmetry gives rise to both an azimuthal Killing vector and a timelike Killing

vector, no such radial Killing vector exists. Nevertheless, by moving the pressure gradient

to the R.H.S. and including it as part of the source, radial momentum is conserved, just as

one would expect in an equilibrium situation. The second example involved imprinting a

rotation onto the TOV star and rearranging its mass distribution so that it once again is in

equilibrium. The radial source can again be made to vanish by adopting as our generalized

state variable the radial momentum as measured in the corotating frame. This introduces

a centrifugal term into the source that now helps the weakened pressure force3 to balance

gravity. From a mathematical standpoint, it is the new characteristic vector that gives rise

to the centrifugal term.

Each of the new ideas laid out in this formal presentation clearly begs some detailed

numerical testing. To that end, members of our collaborative research group have started

projects of their own that implement one or more of the code improvements that we have

recommended. Dominic Marcello is already having success working on a code to model mass

transferring binary stars that evolves angular momentum as measured in the inertial frame,

but on a rotating-frame cylindrical grid. Zach Byerly is developing a code that will also

evolve inertial-frame angular momentum, but on a rotating-frame Cartesian grid. We hope

that in addition to all the benefits Dominic reaps, Zach will also benefit significantly from

the inclusion of AMR in his code. Over time, we hope that rigorous numerical tests will be

made of other ideas that have arisen from our formal analysis of a generalized formulation

of the conservative fluid equations.

3The pressure gradient decreases as a result of the rearrangement of the star’s mass distribution.
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[71] M. Shibata & K. Uryū, 2000, Phys. Rev. D 61, 064001.
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Appendix A

Useful Relations Involving the Construction
of Conservative Variables from the Primitives

We begin with physical definitions of the so-called primitive variables:

ρ ≡ proper baryon number density of the fluid. (A.1)

Γ ≡ adiabatic index of the fluid (A.2)

ε ≡ P/
[
ρc2(Γ− 1)

]
= proper specific internal energy density of the

fluid. (A.3)

h ≡ 1 + ε+ P/ρc2 = 1 + Γε = proper specific enthalpy of the fluid. (A.4)

P ≡ proper isotropic pressure of the fluid. (A.5)

vi ≡ covariant components of the fluid′s 3-velocity as measured in the
coordinate frame. (A.6)

From these, the conservative variables (each measured in the coordinate frame) are con-
structed according to the following relations:

D ≡ ρW = baryon number density, (A.7)

Sj ≡ ρhcW 2vj = momentum density in the j-direction, (A.8)

E ≡ ρhc2W 2 − P = total energy density of the fluid, (A.9)

τ ≡ ρhc2W 2 − P − c2D = total energy density minus baryon
number density, (A.10)

where

W ≡ αu0/c =
(
1− v2/c2

)−1/2
= Lorentz factor. (A.11)

uµ ≡ W
(
c/α , vi − cβi/α

)T
= contravariant components of the

fluid′s 4-velocity. (A.12)

This last relationship can also be written

uµ = W
(
βjvj − cα , vi

)
. (A.13)

vi =
ui

W
+
cβi

α
. (A.14)

vi = ui/W. (A.15)
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Appendix B

Derivation of the Generalized Valencia
Formulation from the Fundamental Equations

of Motion

B.1 The Continuity Equation (No Source)

Begin with Eq. (2.1).
∇µJ

µ = 0.

=⇒ 1√
−g

∂µ
(√
−g Jµ

)
= 0.

=⇒ 1√
−g

∂µ
(√
−g ρuµ

)
= 0.

=⇒ 1

α
√
γ

(
∂0 α
√
γ ρu0 + ∂i α

√
γ ρui

)
= 0.

Use W ≡ αu0/c.
1

α
√
γ

(
∂0
√
γ ρcW + ∂i α

√
γ ρcW

ui

αu0

)
= 0.

Divide through by c.
1

α
√
γ

(
∂0
√
γ D + ∂i α

√
γ D

ui

αu0

)
= 0, (B.1)

where
D ≡ ρW. (B.2)

This is the continuity equation as it appears in the original Valencia formulation, as presented
in §2.5.

B.2 The Momentum Equations (Physical Source)

Begin with the spacelike components of Eq. (2.2).

∇µT
µ
i = 0i.

=⇒ 1√
−g

∂µ
(√
−g T µi

)
= T µαΓαµi.

=⇒ 1√
−g

∂µ

[√
−g (ρhuiu

µ + Pδµi)
]

= T µαΓαµi.

=⇒ 1

α
√
γ

[
∂0 α
√
γ
(
ρhuiu

0
)

+ ∂j α
√
γ
(
ρhuiu

j + Pδj i
) ]

= T µνgναΓαµi.
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Use ui = Wvi.

1
α
√
γ

[
∂0
√
γ
(
ρhαWviu

0
)

+ ∂j α
√
γ
(
ρhWviu

j + Pδj i
) ]

= Tµνgνα · 1
2g
αβ (∂µgiβ + ∂igβµ − ∂βgµi) .

The metric and inverse metric on the right combine to form a Kroenecker delta δβν , which
is then used to convert β’s into ν’s in the last term on the right. Also, use W ≡ αu0/c.

1

α
√
γ

[
∂0
√
γ
(
ρhcW 2vi

)
+ ∂j α

√
γ

(
ρhcW 2vi

uj

αu0
+ Pδj i

)]
= 1

2
T µν (∂µgiν + ∂igνµ − ∂νgµi) .

Divide through by c to obtain

1

α
√
γ

[
∂0
√
γ Si + ∂j α

√
γ

(
Si

uj

αu0
+
P

c
δj i

)]
= S(i), (B.3)

where

Si ≡ ρhW 2vi, (B.4)

S(i) ≡ T µν
(
∂µgνi − Γδµνgδi

)
/c. (B.5)

These are the momentum equations as they appear in the original Valencia formulation, as
presented in §2.5.

Now contract both sides of the momentum equations with the components (in grid coor-
dinates) of some 3-vector Ci

(k′). On the L.H.S., bring Ci
(k′) inside the partials. The penalty

is the appearance of additional terms, which should be moved over to the R.H.S. and included
as part of the source.

1

α
√
γ

[
∂0
√
γ S̃(k′) + ∂j α

√
γ

(
S̃(k′)

uj

αu0
+
P

c
Cj

(k′)

)]
= source,

where

S̃(k′) ≡ SiC
i
(k′) = ρhW 2viC

i
(k′),

source ≡ T µν
(
∂µgνi − Γδµνgδi

)
Ci

(k′)/c+
Si
α
∂0C

i
(k′) + Si

uj

αu0
∂jC

i
(k′) +

P

c
∂iC

i
(k′).

Move the pressure piece from the L.H.S. to the R.H.S., and use the product rule to expand
it into three terms. Meanwhile, substitute in expression (2.4) for the stress-energy tensor.
The momentum equations now take the form

1

α
√
γ

(
∂0
√
γ S̃(k′) + ∂j α

√
γ S̃(k′)

uj

αu0

)
= S̃(k′),

where

S̃(k′) ≡ (ρhuµuν − Pgµν)
(
∂µgνi − Γδµνgδi

)
Ci(k′)/c+

Si
α
∂0C

i
(k′) + Si

uj

αu0
∂jC

i
(k′) +

�
��
�
��P

c
∂iC

i
(k′)

− P

c
Cj(k′)

∂j
√
−g√
−g

−
��

�
��
�P

c
∂jC

j
(k′) − Cj(k′) ∂jP/c.
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Use ∂ν
√
−g = Γµµν

√
−g. Separate the pressure piece from the first term in the source and

use the fact that ∂µgνi − Γδµνgδi = gναΓαµi, as shown by following the source term from the
fourth step of this subsection down to the seventh (see Eq. B.5). The source then becomes

S̃(k′) ≡ ρhuµuν
(
∂µgνi − Γδµνgδi

)
Ci

(k′)/c+
��

��
��P

c
ΓµµiC

i
(k′) +

Si
α
∂0C

i
(k′) + Si

uj

αu0
∂jC

i
(k′)

−
�
��

�
��P

c
Cj

(k′)Γ
µ
µj − Cj

(k′) ∂jP/c

= ρhuµuν
(
∂µgνi − Γδµνgδi

)
Ci

(k′)/c+
Si
α
∂0C

i
(k′) + Si

uj

αu0
∂jC

i
(k′) − Cj

(k′) ∂jP/c.

All together, then, we have

1

α
√
γ

(
∂0
√
γ S̃(k′) + ∂j α

√
γ S̃(k′)

uj

αu0

)
= S̃(k′), (B.6)

where

S̃(k′) ≡ ρhW 2viC
i
(k′), (B.7)

S̃(k′) ≡ ρhuµuν
(
∂µgνi − Γδµνgδi

)
Ci

(k′)/c+
Si
α
∂0C

i
(k′)

+Si
uj

αu0
∂jC

i
(k′) − Cj

(k′) ∂jP/c. (B.8)

These are the momentum equations as they appear in our modified version of the Valencia
formulation, as presented in §3.2.

B.3 The Energy Equation (Standard Source)

The energy equation is typically written in terms of the stress-energy tensor with both indices
up, as opposed to the momentum equations, which were written in terms of the the stress-
energy tensor with mixed indices. Begin by raising the ν index in Eq. (2.2), and select the
ν = 0 component.

∇µT
µ0 = 0.

=⇒ 1√
−g

∂µ
(√
−g T µ0

)
= −T µαΓ0

µα.

=⇒ 1√
−g

∂µ

[√
−g
(
ρhu0uµ + Pgµ0

) ]
= −T µαΓ0

µα.

=⇒ 1

α
√
γ

[
∂0 α
√
γ
(
ρhu0u0 + Pg00

)
+ ∂j α

√
γ
(
ρhu0uj + Pgj0

) ]
= −T µαΓ0

µα.

=⇒ 1

α
√
γ

[
∂0
√
γ
(
ρhαu0u0 + αP

(
−1/c2

) )
+ ∂j α

√
γ
(
ρhu0uj + P

(
βj/α2

) )]
= −T µνΓ0

µν .

Multiply both sides through by α. Use the product rule on the left to move α inside the
partials. The penalty is an additional term involving the partials of α. Also use W ≡ αu0/c.

1
α
√
γ

[
∂0
√
γ
(
ρhc2W 2 − P

)
+ ∂j α

√
γ

(
ρhc2W 2 uj

αu0
− P uj

αu0
+ P

vj

c

)]
− 1

��
�√−g�
��
√
−g Tµ0 ∂µα

= −αTµνΓ0
µν .
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Subtract off c2 times the continuity equation, and move the term involving partials of α over
to the right-hand side to be included as part of the source.

1

α
√
γ

[
∂0
√
γ τ + ∂j α

√
γ

(
τ
uj

αu0
+
P

c
vj
)]

= S(5), (B.9)

where

τ ≡ ρhc2W 2 − P − c2D, (B.10)

S(5) ≡ α
(
T µ0 ∂µ lnα− T µνΓ0

µν

)
. (B.11)

This is the energy equation as it appears in the original Valencia formulation, as presented
in §2.5.

Now scale both sides of the energy equation by (c/α)C0
(5). Bring this quantity inside

the partials on the L.H.S., and pay a penalty by adding additional terms to the source on
the R.H.S.

1

α
√
γ

[
∂0
√
γ τ̃ + ∂j α

√
γ

(
τ̃
uj

αu0
+
P

α
vjC0

(5)

)]
= S̃(5), (B.12)

where

τ̃ ≡ cτ

α
C0

(5) =
(
ρhc2W 2 − P − c2D

)
(c/α)C0

(5), (B.13)

S̃(5) ≡ c
(
T µ0 ∂µ lnα− T µνΓ0

µν

)
C0

(5) +
τ

α

[
(c/α) ∂0C

0
(5) + C0

(5)∂0 (c/α)
]

+

(
τ
uj

αu0
+
P

c
vj
)[

(c/α) ∂jC
0

(5) + C0
(5)∂j (c/α)

]
. (B.14)

B.4 Forming a Linear Combination of the Momentum

and Energy Equations (Hybrid Physical+Standard

Source)

We have derived generalized formulations for

• the momentum equations (with a physical source so that no artificial naked pressure
terms appear and so that source terms and advection terms are each independently
zero for steady-state problems),

• the energy equation (with a standard source so that no time derivatives of the pressure
show up in the source term).

Now we will combine the two approaches by forming a linear combination of the momentum
and energy equations, thus empowering us to mix momentum and energy equations while
still reaping the benefits of each respective approach to the corresponding pressure terms.

For the momentum equations, proceed by allowing C(k′) to have a nonzero timelike
component. Add 1/c times Eq. (B.12) (with C0

(5) replaced by C0
(k′)) to Eq. (B.6).

1

α
√
γ

[
∂0
√
γ Ŝ(k′) + ∂j α

√
γ

(
Ŝ(k′)

uj

αu0
+
P

cα
vjC0

(k′)

)]
= Ŝ(k′), (B.15)
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where

Ŝ(k′) ≡ S̃(k′) + τC0
(k′)/α = ρhW 2viC

i
(k′) +

(
ρhcW 2 − P

c
− cD

)
(c/α)C0

(k′), (B.16)

Ŝ(k′) ≡ ρhuµuν
(
∂µgνi − Γδµνgδi

)
Ci

(k′)/c+
Si
α
∂0C

i
(k′) + Si

uj

αu0
∂jC

i
(k′) − Cj

(k′) ∂jP/c

+
(
T µ0 ∂µ lnα− T µνΓ0

µν

)
C0

(k′) +
τ

cα

[
(c/α) ∂0C

0
(k′) + C0

(k′)∂0 (c/α)
]

+

(
τ

c

uj

αu0
+
P

c2
vj
)[

(c/α) ∂jC
0

(k′) + C0
(k′)∂j (c/α)

]
. (B.17)

These are the momentum equations as they appear in the fully-generalized Valencia formula-
tion. The modified momentum equation (as it appears in §3.2) can be immediately recovered

by selecting C0
(k′) = 0, Ci

(k′) = C̃i
(k′). In order to recover the original momentum equation

(as it appears in §2.5), one must further select C̃i
(k′) = δi(k′), and replace naked pressure

terms.
Similarly, for the energy equation, proceed by allowing C(5) to have nonzero spacelike

components. Add c times Eq. (B.6) (with Ci
(k′) replaced by Ci

(5)) to Eq. (B.12).

1

α
√
γ

[
∂0
√
γ τ̂ + ∂j α

√
γ

(
τ̂
uj

αu0
+
P

α
vjC0

(5)

)]
= Ŝ(5) (B.18)

where

τ̂ ≡ τ̃ + cSiC
i
(5) =

(
ρhc2W 2 − P − c2D

)
(c/α)C0

(5) + ρhcW 2viC
i
(5) (B.19)

Ŝ(5) ≡ c
(
T µ0 ∂µ lnα− T µνΓ0

µν

)
C0

(5) +
τ

α

[
(c/α) ∂0C

0
(5) + C0

(5)∂0 (c/α)
]

+

(
τ
uj

αu0
+
P

c
vj
)[

(c/α) ∂jC
0

(5) + C0
(5)∂j (c/α)

]
,

+ ρhuµuν
(
∂µgνi − Γδµνgδi

)
Ci

(k′) +
cSi
α

∂0C
i
(k′)

+ cSi
uj

αu0
∂jC

i
(k′) − Cj

(k′) ∂jP . (B.20)

This is the energy equation as it appears in the fully-generalized Valencia formulation. The
original energy equation (as it appears in both §§2.5 & 3.2) can be immediately recovered
by selecting C0

(5) = α/c, Ci
(5) = 0.



Appendix C

Term-by-Term Expansion of the Euler
Equations

The divergence term involves a contraction over i, and is really three terms in one. Only
one of the three terms will survive on each of the six faces. The state variable term, on the
other hand, is nonzero only on the two hypersurfaces. Expanding (3.19b) into integrals over
each of the two hypersurfaces and each of the six hyperfaces, we have

1√
−g

∫
∂Ω+

0

Wψ(η)

(√
γ dx1 dx2 dx3

)
− 1√
−g

∫
∂Ω−0

Wψ(η)

(√
γ dx1 dx2 dx3

)
+

1√
−g

∫
∂Ω+

1

Wψ(η)

[ √
γ√

γ{1}
(
v1 − cβ1/α

)](√
γ{1} dx2 dx3

) (
α/c dx0

)
− 1√

−g

∫
∂Ω−1

Wψ(η)

[ √
γ√

γ{1}
(
v1 − cβ1/α

)](√
γ{1} dx2 dx3

) (
α/c dx0

)
+

1√
−g

∫
∂Ω+

2

Wψ(η)

[ √
γ√

γ{2}
(
v2 − cβ2/α

)](√
γ{2} dx1 dx3

) (
α/c dx0

)
− 1√

−g

∫
∂Ω−2

Wψ(η)

[ √
γ√

γ{2}
(
v2 − cβ2/α

)](√
γ{2} dx1 dx3

) (
α/c dx0

)
+

1√
−g

∫
∂Ω+

3

Wψ(η)

[ √
γ√

γ{3}
(
v3 − cβ3/α

)](√
γ{3} dx1 dx2

) (
α/c dx0

)
− 1√

−g

∫
∂Ω−3

Wψ(η)

[ √
γ√

γ{3}
(
v3 − cβ3/α

)](√
γ{3} dx1 dx2

) (
α/c dx0

)
=

1√
−g

∫
Ω

S(η)

(√
γ dx1 dx2 dx3

) (
α/c dx0

)
, (C.1)

where ∂Ω+
i refers to the i+ boundary of the hypercell, and so forth. This equation is exact

and can be discretized for numerical implementation by any scheme one chooses.
Keeping in mind that the six flux terms add to zero globally, one can see from Eq. (C.1)

that whenever the source is zero, the volume integral of the advection variable measured by
an Eulerian observer,

∫
Ω
Wψ(η)

(√
γ d3x

)
, is globally conserved.

Moreover, since the Eulerian observer is inertial, exact global conservation of Wψ(η)

implies the exact global conservation of ψ(η)/W , the advection variable as measured by
another inertial observer — one that is instantaneously comoving with the fluid. In general,
this is not the Lagrangian observer because the Lagrangian observer may not be inertial. This
means that the fundamental quantity being conserved is the volume integral of the proper
advection variable — that is, proper baryon number density, proper generalized momentum,
or proper generalized energy. And the measurement of this quantity by any inertial observer
will also be globally conserved.

Furthermore, with all the pressure terms included inside the source, there is nothing to
spoil even local conservation. If the physical source can truly be eliminated, this implies that
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the proper advection variable ψ is locally conserved everywhere. In general, though, it is very
difficult to construct an everywhere-sourceless generalized momentum ψ(j′) = ρhuνC

ν
(j′),

and it may be impossible to construct an everywhere-sourceless generalized energy ψ(0′) =
ρhuνC

ν
(0′).



Appendix D

The Partial Derivative of
√
−g

We begin with the chain rule, which states that

∂µg =
∂g

∂xµ
=

∂g

∂gαβ

∂gαβ
∂xµ

= ggαβ∂µgαβ.

Using the fact that covariant derivatives of the metric are zero,

∇µgαβ = ∂µgαβ − Γνµαgνβ − Γνµβgαν = 0µαβ,

we have

∂µgαβ = Γνµαgνβ + Γνµβgαν

=⇒ ∂µg = ggαβ
(
Γνµαgνβ + Γνµβgαν

)
= g δαν Γνµα + g δβνΓνµβ
= 2gΓααµ.

Meanwhile,

∂µ
√
−g = 1

2

∂µ (−g)√
−g

=
−gΓννµ√
−g

= Γννµ
√
−g,

as promised. See [25] for additional details.
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Appendix E

Derivation of σ(x) throughout a TOV Star

A Tolman-Oppenheimer-Volkoff star has three distinguishing characteristics: one, it is
spherically symmetric; two, it is in hydrostatic equilibrium; and three, it is generally at least
mildly relativistic. In spherical coordinates, the metric for any TOV star can be written

gµν =


gtt(r) 0 0 0

0 grr(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , (E.1)

where gtt(r) and gtt(r) depend on the choice of central density, central pressure, and poly-
tropic constant in the equation of state. The only nonzero Christoffel symbols resulting from
the metric in spherical coordinates are

Γttr = Γtrt =
g′tt(r)

2 gtt(r)

Γrtt = − g′tt(r)

2 grr(r)

Γrrr =
g′rr(r)

2 grr(r)

Γrθθ = − r

grr(r)

Γrφφ = −r sin2 θ

grr(r)

Γθrθ = Γθθr =
1

r
Γθφφ = − sin θ cos θ

Γφrφ = Γφφr =
1

r

Γφθφ = Γφφθ = cot θ.

Now, if C is chosen to be one of the Cartesian unit vectors — say x̂ — its spherical compo-
nents are

C ≡ sin θ cosφ er +
cos θ cosφ

r
eθ −

sinφ

r
eφ.

Then the relevant naked pressure term PΓµµr – call it f – becomes

f = P

[
1
2

sin θ cosφ
∂r (gttgrr)

gttgrr
+

1− sin θ

sin θ

cosφ

r

]
. (E.2)

We can scale this artificial force to the physical forces in the problem by rewriting the radial
momentum equation as

1√
−g

∂µ
(√
−g ρhuµuνCν

)
= ρhuµuν∇µC

ν︸ ︷︷ ︸
gravity

−Cµ∂µP︸ ︷︷ ︸
pressure

(
1 + εL − εR︸ ︷︷ ︸

relative
error

)
, (E.3)
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where εL − εR ≡
fL − fR
∂xP

=
fL − fR(

sin θ cosφ ∂r + cos θ cosφ
r

∂θ − sinφ
r sin θ

∂φ
)
P
.

In this form, the significance of the role played by the error term is apparent. Whenever
εL−εR ≥ ∼ 10−1, the artificial pressure gradient caused by subtrating the non-physical naked
pressure terms begins to rival the true pressure gradient, and the simulation is significantly
affected.

Since pressure varies only radially, both angular derivatives of P vanish, leaving

εL − εR =
P

∂rP

[
1
2

∂r (gttgrr)

gttgrr
+

1− sin θ

r sin2 θ

]
L−R

. (E.4)

Moreover, analytic expressions for gtt and grr in terms of P , ρ and M(r) ≡
∫ r

0
s2ρ(s) ds are

readily available (See e.g., [81]).

gtt = − exp (2Φ) where ∂rΦ =
1

r

GM(r)
rc2

+ 4πGr2P
c4

1− 2GM(r)
rc2

(E.5)

grr =

(
1− 2GM(r)

rc2

)−1

(E.6)

From these relations, one finds that

∂r (gttgrr)

gttgrr
=

2

r

Gr2ρ
c2

+ 4πGr2P
c4

1− 2GM(r)
rc2

. (E.7)

Apparently, the naked pressure term f from the x-momentum equation is always positive.
Finally, then, the error term can be written as

εL − εR =
P

r∂rP

[
Gr2ρ
c2

+ 4πGr2P
c4

1− 2GM(r)
rc2

+
1− sin θ

sin2 θ

]
L−R

(E.8)

So if PL − PR → 1
72
∂xP , then

εL − εR =
1

72 r

(
Gr2ρ
c2

+ 4πGr2P
c4

1− 2GM(r)
rc2

+
1− sin θ

sin2 θ

)
sin θ cosφ (E.9)

is the relative error that is made. This may look rather nasty at first glance, but everything
here is distinctly non-negative. So I think it implies that in the +++ octant of the star, the
error will always tend to augment the pressure force, thereby supporting a fraction of the
star’s weight artificially. Whereas, in the - - - octant of the star, the error will always tend to
augment the gravitational force. I think this will cause the star to migrate toward the +++
octant of the grid.



Appendix F

Term-by-Term Expansion of the Generalized
Source

In §7.2.3, we showed that the generalized source can be written as

S(η) = T 00
[

1
2
C0

(η)∂0g00 + 1
2
Ci

(η)∂ig00 + g00∂0C
0

(η) + g0i∂0C
i
(η)

]
+ T 0i

[
C0

(η)∂0g0i + Cj
(η)∂jg0i + g00∂iC

0
(η) + g0j∂iC

j
(η) + g0i∂0C

0
(η) + gij∂0C

j
(η)

]
+ T ij

[
1
2
C0

(η)∂0gij + 1
2
Ck

(η)∂kgij + g0j∂iC
0

(η) + gjk∂iC
k

(η)

]
Writing out all the components (time-dependent terms in gray) and omitting the (η) sub-
scripts for conciseness, we find that
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S = T tt
[

1
2

(
Ct∂tgtt + Cx∂xgtt + Cy∂ygtt + Cz∂zgtt

)
+gtt∂tC

t + gtx∂tC
x + gty∂tC

y + gtz∂tC
z
]

+ T tx
[
Ct∂tgtx + Cx∂xgtx + Cy∂ygtx + Cz∂zgtx

+ gtt∂xC
t + gtx∂xC

x + gty∂xC
y + gtz∂xC

z

+gtx∂tC
t + gxx∂tC

x + gxy∂tC
y + gxz∂tC

z
]

+ T ty
[
Ct∂tgty + Cx∂xgty + Cy∂ygty + Cz∂zgty

+ gtt∂yC
t + gtx∂yC

x + gty∂yC
y + gtz∂yC

z

+gty∂tC
t + gxy∂tC

x + gyy∂tC
y + gyz∂tC

z
]

+ T tz
[
Ct∂tgtz + Cx∂xgtz + Cy∂ygtz + Cz∂zgtz

+ gtt∂zC
t + gtx∂zC

x + gty∂zC
y + gtz∂zC

z

+gtz∂tC
t + gxz∂tC

x + gyz∂tC
y + gzz∂tC

z
]

+ T xx
[

1
2

(
Ct∂tgxx + Cx∂xgxx + Cy∂ygxx + Cz∂zgxx

)
+gtx∂xC

t + gxx∂xC
x + gxy∂xC

y + gxz∂xC
z
]

+ T yy
[

1
2

(
Ct∂tgyy + Cx∂xgyy + Cy∂ygyy + Cz∂zgyy

)
+gty∂yC

t + gxy∂yC
x + gyy∂yC

y + gyz∂yC
z
]

+ T zz
[

1
2

(
Ct∂tgzz + Cx∂xgzz + Cy∂ygzz + Cz∂zgzz

)
+gtz∂zC

t + gxz∂zC
x + gyz∂zC

y + gzz∂zC
z
]

+ T xy
[
Ct∂tgxy + Cx∂xgxy + Cy∂ygxy + Cz∂zgxy

+ gty∂xC
t + gxy∂xC

x + gyy∂xC
y + gyz∂xC

z

+gtx∂yC
t + gxx∂yC

x + gxy∂yC
y + gxz∂yC

z
]

+ T xz
[
Ct∂tgxz + Cx∂xgxz + Cy∂ygxz + Cz∂zgxz

+ gtz∂xC
t + gxz∂xC

x + gyz∂xC
y + gzz∂xC

z

+gtx∂zC
t + gxx∂zC

x + gxy∂zC
y + gxz∂zC

z
]

+ T yz
[
Ct∂tgyz + Cx∂xgyz + Cy∂ygyz + Cz∂zgyz

+ gtz∂yC
t + gxz∂yC

x + gyz∂yC
y + gzz∂yC

z

+gty∂zC
t + gxy∂zC

x + gyy∂zC
y + gyz∂zC

z
]
.

Finally, we use the ADM decomposition: gtt = β2−α2, gti = βi, gij = γij,
√
−g = α

√
γ.

Eliminating metric elements in favor of the lapse, shift, and components of the induced
metric, we obtain the following result.
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S = T tt
[

1
2

(
Ct∂t

(
β2 − α2

)
+ Cx∂x

(
β2 − α2

)
+ Cy∂y

(
β2 − α2

)
+ Cz∂z

(
β2 − α2

) )
+
(
β2 − α2

)
∂tC

t + βx∂tC
x + βy∂tC

y + βz∂tC
z
]

+ T tx
[
Ct∂tβx + Cx∂xβx + Cy∂yβx + Cz∂zβx

+
(
β2 − α2

)
∂xC

t + βx∂xC
x + βy∂xC

y + βz∂xC
z

+βx∂tC
t + γxx∂tC

x + γxy∂tC
y + γxz∂tC

z
]

+ T ty
[
Ct∂tβy + Cx∂xβy + Cy∂yβy + Cz∂zβy

+
(
β2 − α2

)
∂yC

t + βx∂yC
x + βy∂yC

y + βz∂yC
z

+βy∂tC
t + γxy∂tC

x + γyy∂tC
y + γyz∂tC

z
]

+ T tz
[
Ct∂tβz + Cx∂xβz + Cy∂yβz + Cz∂zβz

+
(
β2 − α2

)
∂zC

t + βx∂zC
x + βy∂zC

y + βz∂zC
z

+βz∂tC
t + γxz∂tC

x + γyz∂tC
y + γzz∂tC

z
]

+ T xx
[

1
2

(
Ct∂tγxx + Cx∂xγxx + Cy∂yγxx + Cz∂zγxx

)
+βx∂xC

t + γxx∂xC
x + γxy∂xC

y + γxz∂xC
z
]

+ T yy
[

1
2

(
Ct∂tγyy + Cx∂xγyy + Cy∂yγyy + Cz∂zγyy

)
+βy∂yC

t + γxy∂yC
x + γyy∂yC

y + γyz∂yC
z
]

+ T zz
[

1
2

(
Ct∂tγzz + Cx∂xγzz + Cy∂yγzz + Cz∂zγzz

)
+βz∂zC

t + γxz∂zC
x + γyz∂zC

y + γzz∂zC
z
]

+ T xy
[
Ct∂tγxy + Cx∂xγxy + Cy∂yγxy + Cz∂zγxy

+ βy∂xC
t + γxy∂xC

x + γyy∂xC
y + γyz∂xC

z

+βx∂yC
t + γxx∂yC

x + γxy∂yC
y + γxz∂yC

z
]

+ T xz
[
Ct∂tγxz + Cx∂xγxz + Cy∂yγxz + Cz∂zγxz

+ βz∂xC
t + γxz∂xC

x + γyz∂xC
y + γzz∂xC

z

+βx∂zC
t + γxx∂zC

x + γxy∂zC
y + γxz∂zC

z
]

+ T yz
[
Ct∂tγyz + Cx∂xγyz + Cy∂yγyz + Cz∂zγyz

+ βz∂yC
t + γxz∂yC

x + γyz∂yC
y + γzz∂yC

z

+βy∂zC
t + γxy∂zC

x + γyy∂zC
y + γyz∂zC

z
]
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