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Abstract
In this work, we present some applications of the theory of General Relativity. First, we

show a numerical scheme to account for relativistic effects in the Global Positioning System.

Then, a couple of applications of astrophysical interest are worked out. These are the study

of the gravitational collapse of stars and the dynamical evolution of a three-dimensional

Einstein-Klein-Gordon field.
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Chapter 1
Introduction
In this work, we will explore some of the applications of General Relativity. The first one is

a very earhtly application. It is the Global Positioning System (GPS), which has a strong

presence in everyday life. Its enormous range of applications includes synchronization of

power-line nodes, mapping, navigation, search and rescue, Very Long Baseline Interferome-

try, etc. The other two are the general relativistic description of the gravitational collapse

of stars and the dynamics of a scalar field. In the case of the stars, after the nuclear fuel

that powers those astronomical objects is exhausted, the stars begin a process of collapse.

In general, the matter density in the late stages of such processes is so high that the New-

tonian approximation is no longer valid. And for such reason, it is necessary to consider

the Einstein equations to describe the evolution. In relation to the scalar field, it allows us

to study situations where there is not symmetries. Thus, the study of the evolution of the

scalar field gives us some insight about more complex situations.

Let talk about the GPS in first place. The technological core of GPS is formed by highly

accurate, stable atomic clocks. In the GPS, the satellites send their position and exact time

of transmission to the receivers on the ground. With this information, the receiver can solve a

system of four simultaneous one-way signal propagation equations to determine its position.

It is clear that any small error in the travel time will produce a huge error in the position

because of the large value of the speed of propagation for the radio signals.

The errors in the measurement of the travel time come from different sources. For

example, the electromagnetic signal sent by the satellites to the ground travels through

the atmosphere. And, in the atmosphere, the speed of light is different from the speed of

light on the vacuum. Additional errors come from the concept of time itself. In Newtonian

Mechanics time is an absolute quantity, but that is not the case in Special Relativity. Instead,

the time depends on the motion of the frames of reference. Two events or situations that
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are simultaneous in a frame of reference could not be simultaneous in another. In particular,

time intervals would be different. Even, the spatial separation between the events could

depend on the frame of reference. Moreover, the one way signal propagation equations used

in GPS are only valid in a flat space-time. They do not take in account the curvature of

space-time predicted by general relativity.

Basically, the determination of the position by exchanging electromagnetic signals will be

influenced by any phenomenon that affects the propagation time of electromagnetic waves

or the clocks’ rates. We are interested in the effects predicted by the theories of Special

Relativity and General Relativity. Let us mention some of these phenomena. First, due to

the relative motion between observers on the ground and the GPS satellites, the clocks on

the satellites tick more slowly as seen by a ground observer. This effect is called time dilation

and it depends only on the relative velocity of the satellites with respect to the ground. It

makes the satellites’ clocks run at a slow rate of by 7.1 ms per day. Another clock effect is the

Gravitational Red Shift. General Relativity predicts that clocks closer to a massive object

will tick more slowly than those located far away. Then, the clocks on the satellites appear to

run faster than identical clocks on the ground. This effect causes the clocks on the satellites

to run faster by 45.7 ms per day. Another effect which has a maximum value of 133ms per

day for a stationary observer on the ground is the Sagnac effect. This effect is caused by

the Earth rotation during the time of transit of the satellite signal from the satellite to the

ground. There is also a signal propagation delay. Sometimes, this is called the Shapiro signal

propagation delay. Also, the presence of spatial curvature causes a geodetic distance effect.

It is related to the difference between proper distance and coordinate distance. Aditional to

the effects of the gravitational field of the Earth, there is a tidal potential from other bodies

in the solar system that causes a gravitational frequency shift of satellite clocks of a few

parts in 10−16.

With the launching of the first satellite of the GPS constellation, the relevance of the

predictions of the theories of Special and General Relativity became very clear. At the
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level of accuracy used today in the position determination, we normally have to deal with

relativistic effects such as the Doppler shift and the gravitational shift. As we mentioned

before, the motion of the clocks and the gravitational field affect the clocks’ rate. If we need

to improve the accuracy in the position determination, then we have to include a better

description of the gravitational fields and relativistic effects of higher order. To some extent,

it can be a tricky task. Basically, in the GPS, the description of the orbit of the satellites

and the path of the electromagnetic signals are described using Newtonian mechanics. And,

all the corrections needed to account for the relativistic effects are added at the top of

this Newtonian framework. We will present a different approach which may simplify that

framework. We begin with an intrinsically relativistic description of the GPS. The orbits of

the satellites and the path of the electromagnetic signals are calculated using the theory of

General Relativity. For the relativistic description, we do not have to look on a one-by-one

basis in the corrections. For example, suppose that we make an upgrade on the atomic clocks

inside the GPS satellites. Then, we replace the old version of the atomic clock by a new one

with an improved precision. And, If we have the right information about the gravitational

field, the only thing we need to do is to increase the precision in the calculations. The

calculations themselves remain the same. Even in the case that we improve the information

about the gravitational field, the calculations will not change. The general idea for the

scheme is that it will have only two inputs: the information about the gravitational field and

the precision required for the calculations.

After our walk through the GPS, let focus our attention in the astrophysical application

of general relativity. Here, we are mostly interested in the study of a spherical bulk of fluid.

We will assume that the fluid is anisotropic; i.e., we allow for the radial and tangential

pressures to be different. And, we will try to answer the question, Does the anisotropy have

any effect in the gravitational collapse? In general, the Einstein equations are very difficult

to solve. We will introduce some simplifications that make it a treatable problem without

blurring the essential aspects of the problem. Basically, the method to be implemented

3



reduces the Einstein equations to a set of ordinary differential equations at the surface of

the star. This set of equations govern the evolution of the star and the equations can be

solved using standard numerical methods. The second astrophysical aplication is the study

of the Klein-Gordon field. Here we will give the basics for evolution of a three-dimensional

massless Einstein-Klein-Gordon Field.
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Chapter 2
The Atmospheric Corrections in GPS
It is not our intention in this work to cover the vast and difficult task of simulating and

studying the corrections that arise from the presence of the atmosphere. Here, we only give

a brief description of how that problem can be solved [1].

2.1 Two Colours Laser Ranging

The main problem with electromagnetic signals propagating in the atmosphere is the uncer-

tainty in the optical path of the signal when it moves through such dispersive medium.

Geometrical distance,  L

optical distance, OD=S+L

Figure 2.1: The optical and geometrical distances

As shown in the figure 2.1, The light from a laser will travel a distance OD that is larger

than the true distance L. The distance S is the additional contribution due to the dispersive

medium. There are two ways to estimate the value of the correction S: The first way consists

in the use of accurate models of the atmosphere that allow a calculation of the path OD.

The second one is the use of the “two- colours” laser.

If we denote the group velocity by V then the group index of refraction is defined by

n =
c

V
, where c is the speed of light in the vacuum. And, the corrections for the green and

5



SOD =

OD = S

L

G G

R R L+

+ L

Figure 2.2: The optical paths for the two-colors laser

red laser can be written as SG,R =
∫ L

0
(nG,R − 1)dx. Making the difference between the two

corrections, we arrive to the expression

∆S = SG − SR = Ā× SR (2.1)

where Ā =
(nG − nR)

(nR − 1)
.1

It follows from equation (2.1) that the correction for the red laser is SR = ∆S/Ā. At this

point, the problem reduces to measure the difference between the red and green laser paths,

∆S. And, this difference will provide a good estimation for the corrections.

1The indexes of refraction mentioned are actually the average indexes of refraction for the red and green
laser.
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Chapter 3
The Global Positioning System
In this chapter we give a general description of the Global Positioning System. We omit most

of the thecnological details and concentrate in the relativistic part of the inner workings.

3.1 Description of the System

The Global Positioning System contains three segments [2]: a user segment, a ground seg-

ment, and a space segment. The user segment consists of all the receivers that determine

the position using the GPS signals. The control segment consist of ground based tracking

stations, these stations gather information about the satellites. And the space segment of the

Global positioning system consists of 24 satellites distributed in six different orbital planes.

Each plane forms an angle of 60 degrees with the adjacent planes and contains 4 satellites.

For any of the satellites, the orbit is nearly circular with a mean altitude of 20,000 km. The

speed for the satellites is approximately 4 km/s.

3.2 The Propagation Delay Equations

The positioning in the GPS is done in the folowing way. Satellites in orbit around the

earth send their positions and time of transmission to receivers on the ground. With this

information, the receiver can determine its position by solving a system of four, simultaneous,

one-way signal propagation-delay equations:

|~xo − ~xs|2 − c2(to − ts)2 = 0, s = 1, 2, 3, 4. (3.1)
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Where, ts is the time of transmission of the s-satellite’s signal from the position xs. The

time and place of the reception of the signal are t0 and x0, respectively. And, c is the speed

of light. These equations alone will provide the position of the receiver in the case of a flat

space-time. In a more general case, as in the presence of a gravitational field, we need to

include the corrections for the time of flight of the satellite’s signals and the corrections for

the clocks’ frequency offset respect to a stationary clock at rest on the ground. Here, we will

deal only with corrections arising from the curvature of space-time or special relativity. And

in a later chapter, we intend to replace the use of equation (3.1) by a more suitable method

to find the position of GPS receivers.

3.3 Relativistic Effects on Clocks

Table 3.1: Relativistic Effects in GPS
Effect Size of Description

the effect, ns
Gravitational Red Shift 46 orbital radius 26,650km

Time Dilation 7 Average orbital speed

Sagnag Effect 133 maximum value for a
stationary receiver on the geoid

Intersatellite links 10 difference in orbital eccentricity

Earth Oblateness 0.024 additional contribution
to gravitational red shift

Curvature Delay 0.002 difference between coordinate
distance and proper distance

Shapiro Delay 0.003 effect on time of signal
propagation

Tidal Potential 0.001 moon+sun

Lense-Thirring 0.00000003 relativistic frame dragging.
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Figure 3.1: Moving reference frames

In the previous page, Table 3.1 gives a brief description of the relativistic effects that are

present in GPS. The motion of the satellites and the gravitational potential affect the rate of

the clocks inside the satellites. The relative motion of the satellites respect to ground stations

give origen to the relativistic Doppler shift. Differences in the gravitational potential along

the satellites orbit produce the so called gravitational red shift. Also, the earth rotation

produces the Sagnac Effect. All these effects must be taken in account in the corrections to

the timing errors. Just an error of 1ns gives origen to a positioning error of 30cm.

3.3.1 Special Relativistic Effects

The main point of the special relativistic effects is that the time is not a universal quantity.

Time intervals depend on the reference frame that is being used. The Lorentz transformations

for the reference frames showed in figure 3.1 have the form

x′ = γ(x− vt),
y′ = y,
z′ = z,

t′ = γ
(
t− vx

c2

)
.

(3.2)

Where γ =
1√

1− v2

c2

.
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Those transformations show that a time interval ∆t′ in a moving reference frame is related

to the time interval ∆t in a fixed frame by

∆t =
∆t′

γ
. (3.3)

Thus, a clock onboard a satellite (moving frame) will experience a time dilation factor of

γ−1 respect to a clock at rest on the ground (fixed frame.)

3.3.2 Gravitational Effects

3.3.2.1 The Redshift

The difference in gravitational potential between the satellite orbits and the ground level

causes the satellite clocks to run faster [3],

∆t′ =
2(Φ− Φ0)

c2
∆t. (3.4)

Where, Φ0 is the gravitational potential at the ground. This effect is called gravitational red

shift.

3.3.2.2 The Curvature Delay

We can find the origin of this effect in the diference between the coordinate distance and

the proper distance; i.e., the spatial curvature. For the GPS satellites the difference is

approximately 6.3 mm.
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3.3.2.3 Shapiro Delay

The effect comes from the difference between the speed of light in a flat space-time and the

coordinate speed of light [4].

3.3.2.4 The Eccentricity Effect

This effect actually is a combination of the redshift and doppler effects. It originates in

the fact that the orbits for the GPS satellites are not completely circular. That produces a

change in velocity and altitude for the satellites along their orbits.

3.3.2.5 The Crosslink Ranging

The transfer of time information from one satellite to another by exchange of signals gives

rise to this effect. The rate of the clock at the sender must be adjusted before it sends a

signal to the second satellite. This signal requires a time of propagation calculation that

includes relativistic time delay corrections. Then, there is another correction in the satellite

that receives the signal.
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Chapter 4
Fully Relativistic Description of the GPS
In this chapter, we present the basic elements needed for a relativistic description of the
GPS.

4.1 The Line Element

The distance between two space-time events (x0, x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 +

dx3, x4 + dx4) is given by

ds2 = gαβdx
αdxβ (4.1)

The parameter s is related to the time τ measured by ideal clocks. τ is called the proper

time and it is defined by

ds2 = c2dτ 2. (4.2)

The line element contains all the information about the space-time. It is an invariant

quantity that is related to the time measured by local observers by the relationship (4.2).

Also, it gives the connection between the clocks’ rates for clocks attached to different ob-

servers. Suppose that observers (a) and (b) are moving along two different paths, as show

in figure 4.1. Then, for each observer

(
cdτ

dx0

)2

(a),(b)

= (g00)(a),(b) +

(
2g0i

dxi

dx0

)
(a),(b)

+

(
gij
dxi

dx0

dxj

dx0

)
(a),(b)

. (4.3)

Looking at ratio of those two quantities , we found that the proper times for the two observer

are connected by

(
dτ(a)
dτ(b)

)2

=
(g00)(a) +

(
2g0i

dxi

dx0

)
(a)

+
(
gij

dxi

dx0
dxj

dx0

)
(a)

(g00)(b) +
(
2g0i

dxi

dx0

)
(b)

+
(
gij

dxi

dx0
dxj

dx0

)
(b)

. (4.4)
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Figure 4.1: Two observer moving along different paths

4.2 Examples of the Line Element

In this section, we present some examples of the line element for different sources of the

gravitational field. Each example could be considered an approximation to the true line

element of the earth under the right circumstances.

4.2.1 The Schwarszchild Line Element

The line element for the space-time generated by a spherical body of mass M is given by [5]

ds2 =

(
1− Rs

R

)
c2dt2 − dR2

1− Rs

R

−R2dθ2 −R2 sin2(θ)dφ2. (4.5)

Where, the quantity Rs =
2GM

c2
is the Schwarszchild radius.
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4.2.2 The Kerr Line Element

For a rotating spherical body [6],

ds2 =

(
1− 2GMr

ρ2

)
c2dt2 − 4GMa sin2(θ)

ρ2
dtdφ

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2(θ)

ρ2

[
(r2 + a2)2 − a2∆ sin2(θ)

]
dφ2, (4.6)

where

∆(r) = r2 − 2GMr + a2 (4.7)

and

ρ(r, θ) = r2 + a cos2(θ). (4.8)

The parametersM and a are the Komar energy and the Komar angular momentum per unit

mass, respectively.

4.2.3 Line Element for an Oblate Earth

The line element for an oblate Earth [7] is obtained by a perturbation of the Schwarzschild

space-time is

ds2 = e2λdt2 − 1

c2
(
e2σ−2λdr2 + e2σ−2λr2dθ2 + e−2λr2 sin2 θdφ2

)
, (4.9)

where σ and λ are functions of the coordinates. This line element can be considered a

better approximation for the line element of the earth than the Schwarszchild line element.
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4.3 Coordinates in Curved Space-Time

In the previous section, we presented several line elements that correspond to different

solutions of the Einstein equations. Each solution represents a space-time for a particular

matter source. These line elements are written in some particular coordinates. It is possible

to write the same line element using different coordinates. In different coordinates, the line

element will look different but it represents the same physical space-time as in the original

coordinates.

4.3.1 Examples of Coordinates in Curved Space-Time

Let explore the coordinates in (4.5). For R → ∞ the line element (4.5) reduces to

ds2 = c2dt2 − dR2 −R2dθ2 −R2 sin2(θ)dφ2. Thus, the Schwarzschild coordinates correspond

to the standard spherical coordinates for large values of R. Moreover, for a static observer

at large R ( dR = dφ = dθ = 0 ) dτ = dt; i.e., the Schwarzschild time coordinate t is that

of a static observer in a flat space-time. Figure 4.2 and Figure 4.3 illustrate the diferences

between the Scharzschild coordinates and the spherical coordinates for R <∞.

Figure 4.2: Surfaces θ =constant for a flat geometry (left) and for the Schwarzschild geometry
(right)
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Figure 4.3: Difference, in meters, between the radial spherical coordinate and the radial
Schwarzschild coordinate for a typical GPS satellite

4.4 The Proper Time and the Coordinate Time

We can use (4.4) to relate the Schwarzschild coordinate time to the proper time of any

observer,

(
dτobserver

dt

)2

= (g00)observer +

(
2g0i

dxi

dx0

)
observer

+

(
gij
dxi

dx0

dxj

dx0

)
observer

. (4.10)

4.5 The Equation of the Geodesics

In a given space-time the trajectory for a particle is described by the equation of the

geodesics,
d2xα

dτ 2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= 0. (4.11)

In the case of photons, we need to exert some precaution because for photons dτ = 0.
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And, we need to replace the proper time that appears in equation (4.11) by a more convenient

afine parameter λ,

d2xα

dλ2
+ Γασρ

dxσ

dλ

dxρ

dλ
= 0. (4.12)

4.6 The Satellite Orbits

The satellites travels along timelike geodesics. The explicit equations for the geodesics

in a Schwarzschild geometry are:

d2t

dτ 2
+

Rs

R(R−Rs)

dt

dτ

dR

dτ
= 0 (4.13)

d2R

dτ 2
+
c2Rs(R−Rs)

2R

(
dt

dτ

)2

− Rs

2R(R−Rs)

(
dR

dτ

)2

−(R−Rs)

(
dθ

dτ

)2

− sin2(θ)(R−Rs)

(
dφ

dτ

)2

= 0

(4.14)

d2θ

dτ 2
+

2

R

dR

dτ

dθ

dτ
− sin(θ) sin cos(θ)

(
dφ

dτ

)2

= 0 (4.15)

d2φ

dτ 2
+

2

R

dR

dτ

dφ

dτ
+ 2

cos(θ)

sin(θ)

dθ

dτ

dφ

dτ
= 0 (4.16)

4.7 The Photons’ Trajectory

Due to the fact that the photons travel along null geodesics. Then, we have the additional

condition for null geodesics

ds2 = 0. (4.17)
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Chapter 5
A Numerical Way Around the Flat
Space-Time Delay Equations in GPS
We present a numerical self-consistent way to account for relativistic effects in GPS. Our

approach has two main advantages with respect to the use of the traditional method of flat

space-time propagation-delay equations plus relativistic corrections. At first, any improve-

ment of our knowledge about the space-time geometry will not produce further changes in

the algorithm. And second, all the relativistic effects are fully and clearly accounted for. To

illustrate the ideas behind our method, we use the Schwarzschild geometry as a testbed.

5.1 The Motivation

The corrections in the time of flight of the signal come from the fact that the signals are

moving on geodesics that are not longer straight lines. On the other hand, the satellite

clocks’ rates depend on the state of motion of the satellite plus the gravitational field.

Each of the corrections for the effects mentioned in chapter 3 are calculated one by one

and taken together with equation (3.1) to find the position of the receivers. The corrections

come from a series expansion of the line element written in some particular coordinates. And,

each effect corresponds to some order in this series expansion. It is worth noting that the line

element, that contains all the information about the geometry of space-time, is an invariant.

Unfortunately, the terms in the series may not be invariants themselves. That means that if

for some circumstance we switch coordinates then we need to be careful enough to write the

corrections in the new coordinates. In this work, we will show how we can replace equation

(3.1) plus corrections by an iterative numerical method that contains no explicit corrections.

The idea is to use the equation of the geodesics to describe the motion of the satellites and

the propagation of the signals. Here, we are going to replace the use of the proper time for
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each satellite by the coordinate time. Everything will be described by this special observer

at infinity. That means we go from synchronizing clocks to providing the initial conditions

for the coordinates. This way, we don’t need to keep track of the different time rates for

different clocks.

5.2 Sending the Initial Conditions

The observer at infinity can send a signal to some especific point in the trajectory of the

satellites. If we use the condition (4.17) and equation (4.1), we obtain

∫
cdt =

∫
dt
√(

2g0i
dxi

dt

)
+
(
gij

dxi

dt
dxj

dt

)
,

dx0 = dt.
(5.1)

These equations give the (coordinate) time it takes to the signal to travel from the

observer at infinity to the satellite. This way the satellite knows the initial conditions for its

four coordinates. And, the equations of the geodesic can be integrated.

5.3 Positioning in Curved Space-time

As we mentioned before, each GPS satellite broadcasts its position and time of transmition

of the signal. We will assume that the satellites send their time-like coordinate x0 instead

of their proper time. Then, using the four space-time coordinates of the satellite as initial

conditions, it is possible to integrate equation (4.12) to find points that lie on the wavefront

(see Figure 5.1) at the time given by the coordinate time x0. And, we can use some inter-

polation scheme to reconstruct the rest of the wavefront. After we have reconstructed the

four wavefronts corresponding to the four satellites, we proceed to find the point where they

intersect.
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Figure 5.1: The wavefront for the signals

We used a Runge-Kutta integrator to solve the equations of the geodesics and Chebychev

interpolating polynomials to reconstruct the wavefronts.

We can list the step of our schema as:

• Get the initial conditions from the observer at infinity.

• Integrate the equation of the geodesics to find the orbits of the satellites. This will

provide the coordinates xα for each satellite as functions of the proper time τ .

• Using the equations of the geodesics for the photons emitted from the satellites and

the coordinates of the satellites, find a set of points that lie on the wavefronts.

• Using the points that lie on the wavefronts, make a piecewise reconstruction of the

wavefronts.

• After we have the reconstruction of the wavefronts, find the point that is the closest

point to all four wavefronts. This point will give the position of the receiver.
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Figure 5.2: Numerical reconstruction of the wavefronts, all the distances are expressed in
meters

5.4 An Example

As an example, we will consider the localization of a receiver in a Schwarzschild space-time.

Figure 5.2 shows a typical orbit for a GPS satellite (large black curve), the spherical Earth

(small black curve) and the reconstructed wavefronts (blue curves.)

Figure 5.3 illustrates the search for the closest points. After those points are found, it is

posible to make an interpolation to increase the precision. The size of the distances between

the closest points will give an indication of the error in the position.

This scheme to find the position is not the most elegant of all methods. But, it shows

that is possible to go around the propagation delay equations and its relativistic corrections.
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Figure 5.3: Search for the closest point to the wavefronts, all the distances are expressed in
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Chapter 6
Evolution of Anisotropic Stars
The Einstein field equations, Gµν = 8πTµν (geometrized units,) relate the geometry of the

space-time to its energy and matter content. This set of equations specify all the possi-

ble space-times. In this chapter, we solve the Einstein equations for an anisotropic and

spherically shaped bulk of fluid.

6.1 The Energy-momentum Tensor

We describe the star using the following variables: the radial pressure Pr, the tangential

pressure P⊥, the energy density ρ, the free streaming ε, the heat flux q and the four velocity

Uµ = (U t, U r0, 0).

T µν = ρUµUν + P⊥ (UµUν − gµν − SµSν) + PrS
µSν

+ε (UµUν + SµSν + SµUν + UµSν) + q (SµUν + UµSν) .
(6.1)

Where the vectors Sµ and Uµ satisfy

SµUµ = 0,

SµSµ = −1,

UµUµ = +1.

(6.2)

For a local observer comoving with the fluid, the energy-momentum tensor takes the form



ρ+ ε −ε− q 0 0

−ε− q pr + ε 0 0

0 0 p⊥ 0

0 0 0 p⊥


. (6.3)
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6.2 The Effective Variables

It is convenient to define the quantities effective density ρ̃ and effective pressure P̃ by means

of

ρ̃ ≡ T 0
0 =

ρ+ ω2Pr + 2ωq + (1 + ω)2ε

1− ω2
, (6.4)

P̃ ≡ T 1
1 =

ω2ρ+ Pr + 2ωq + (1 + ω)2ε

1− ω2
. (6.5)

These quantities satisfy the conditions

ρ̃− P̃ = ρ− Pr (6.6)

and

ρ̃static = ρ P̃static = Pr. (6.7)

6.3 The Interior Line Element in Schwarzschild Coordi-
nates

In Schwarzschild coordinates, the line element inside the fluid takes the form [8],

ds2
− = eνdt2 − eλdr2 − r2

(
dθ2 + sin2 θdφ2

)
. (6.8)

For a spherically symmetric space-time, the variables ν and λ are functions of the coordinates

r and t.
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6.4 The Exterior Line Element

For the exterior of the fluid, due to the presence of radiation, the spacetime is that of

Vaidya [9]

ds2
+ =

(
1− 2M(t)

r

)
dt2 −

(
1− 2M(t)

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
. (6.9)

6.5 The Explicit Form for Uµ and Sµ

In order to find the explicit form for Uµ and Sµ, it is necesary to introduce the local Minkowski

coordinates (T, x, θ, φ),

dT = eν/2dt,

dx = eλ/2dr,

dy = rdθ,

dz = r sin θdφ.

(6.10)

And, the Lorentz transformations to a reference frame moving with velocity ω respect to

(6.10)

dT ′ = γ(dT − ωdx),

dx ′ = γ(dx− ωdT ),

dy ′ = dy,

dz ′ = dz.

(6.11)

Where, γ =
1√

1− ω2
.

In the comoving frame, the velocity of the fluid is zero and the four-velocity is defined as

Uµ = (1, 0, 0, 0) = Uµ (6.12)
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and the vector

Sµ = (St, Sr, 0, 0). (6.13)

Taking in account the conditions (6.2), we find that

Sµ = (0, 1, 0, 0). (6.14)

Now, the transformations (6.11) and (6.10) imply

Uµ =

(
e−ν/2√
1− ω2

,
ωe−λ/2√
1− ω2

, 0, 0

)
(6.15)

and

Sµ =

(
ωe−ν/2√
1− ω2

,
e−λ/2√
1− ω2

, 0, 0

)
. (6.16)

We also get an equation for the coordinate velocity

dr

dt
= e(ν−λ)/2ω (6.17)

6.6 The Einstein Field Equations

Using the interior line element ds2
− and the explicit form for the vectors Uµ and Sµ, we can

write the Einstein equations as,

−e
λ − 1 + λ,rr

r2eλ
= 8π

1

1− ω2

(
ρ+ ω2Pr + 2ωq + (1 + ω)2ε

)
, (6.18)

− λ,t
eνr

= −8π
e(λ−ν)/2

1− ω2

(
ωρ+ ωPr + (1 + ω2)q + (1 + ω)2ε

)
, (6.19)
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−e
λ − 1− ν,rr

eλr2
= −8π

1

1− ω2

(
ω2ρ+ Pr + 2ωq + (1 + ω)2ε

)
, (6.20)

−8πP⊥ = − 1

4reνeλ
(
2λre

ν − 2νre
ν + 2rλ,tte

λ + rλ2
,te

λ

−rν2
,re

ν − 2rν,rre
ν + rν,re

νλ,r − rν,tλ,teλ
)
.

(6.21)

6.7 The Junction Conditions

Given two regions, R and R, of the space-time with a common boundary S. Assume that each

region has its own line element, g, and coordinates, x, and that the boundary is described

by

f(xµ) = 0 in R (6.22)

and

f(x̄µ) = 0 in R. (6.23)

Then, the normal vectors to the boundary are defined by

nµ =
f,µ√

gµνf,µf,ν
in R (6.24)

and

n̄µ =
f̄,µ√

ḡµν f̄,µf̄,ν
in R. (6.25)

We can get a smooth coupling of the regions across the boundary S if [10]

1. The first fundamental form is continuous across S: [gµν ]− = [gµν ]+.

2. The second fundamental form is continuous across S: [n̂µ;ν ]− =[n̂µ;ν ]+.
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Using the line elements (6.8) and (6.9), those conditions (at the surface of the star) translate

into

1. eνa = 1− 2
M(t)

a(t)
= e−λa (first fundamental form at r = a.)

2. P̃a = −ωaρ̃a (second fundamental form at r = a.)

6.8 The Method of the Effective Variables

We can introduce the new variable m trhough

e−λ = 1− 2
m

r
. (6.26)

Then, after integrating (6.18) and (6.20), we obtain

mstatic =

∫
4πr2ρdr mdynamic =

∫
4πr2ρ̃dr, (6.27)

and

νstatic =

∫
2mstatic + 8πr3Prstatic

r2 − 2mstaticr
dr, (6.28)

νdynamic =

∫
2mdynamic + 8πr3P̃

r2 − 2mdynamicr
dr. (6.29)

Where, static means ω = 0 (q = 0, ε = 0) and dynamic is the case ω 6= 0.

It is worth to mention that m and ν have the same functional form for both the static

and the dynamic case. And, by virtue of (6.7), the dynamic case reduces to the static one

for ω = 0, ε = 0. This fact allow us to use the following scheme to solve the Einstein

equations [11]:
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1. Find a static solution to the Einstein equations.

2. Assume that the radial dependence for ρ̃ and P̃ is the same as the radial dependence

for ρ and P .

3. Take in account the junction conditions.

4. Get ν and m ( or λ) from (6.29) and (6.27) , respectively.

5. Assume that the parameters that appear in the previous integration are functions of

the time.

6. Solve the following set of differential equations for those functions:

(a) Equation (6.17) evaluated at the surface(r = a.)

(b) Equation (6.19) evaluated at r = a.

(c) Equation of the energy-momentum conservation, T µ1;ν = 0,evaluated at r = a.

7. Obtain algebraically the pressure, density, velocity from the field equations.

6.9 The Equations at the Surface (r=a(t))

• Equation (6.17) evaluated at the surface

ȧ = ωa

(
1− 2ma

a

)
(6.30)

• Equation (6.19) evaluated at the surface, gives an equation for ω̇.
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ṁa = −4πa2

(
1− 2ma

a

)
(1 + ωa)(q + ε) (6.31)

• The energy-momentum conservation equation

P̃,r +

(
ρ̃+ P̃

)(
4πr3P̃ +m

)
r2 − 2mr

=
e−ν

4πr(r − 2m)

(
m,tt +

3m2
,t

r − 2m

−m,tν,t
2

)
+

2

r

(
P⊥ − P̃

) (6.32)

6.10 A Model

For the static model, we choose

ρ =
3

56πr2
. (6.33)

Then, using (6.27) and (6.32) for the static case, we obtain for the static pressure

Pr =
1

56πhr2

(
8− 3h+ 4 tan

(
−1

2
ln(r)

√
−4 + 3h+

1

2

√
−4 + 3h ln(a)

+ arctan

(
1

4

−8 + 3h√
−4 + 3h

))√
−4 + 3h

)
.

(6.34)

Obtaining (6.34), we used the equation of state [12]

P⊥ − Pr =
1− h

4
r
dν

dr
(ρ+ Pr). (6.35)

This equation of state allows us to write equation (6.32)for the static case in a very simple

way,
dPr
dr

= −h
2

(ρ+ Pr)
dν

dr
, (6.36)

where h ≥ 4

3
.
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Figure 6.1: Evolution of ω for h=1.34

6.11 The Evolution

The following figures show the evolution of the fluid for different values of the parameter h

and the same initial conditions(a(0) = 10, m(0) = 2.5, ω(0) = 0.3) From the behavior of

the velocity ω, we can infer that the explosion of the star is faster for increasing values of

the parameter h and the increase in the initial mass favor the collapse.
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Figure 6.2: Evolution of the radius for h=1.34

Figure 6.3: Evolution of ω for h=1.54
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Figure 6.4: Evolution of the radius for h=1.54

Figure 6.5: Evolution of ω for h=1.74
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Figure 6.6: Evolution of the radius h=1.74

Figure 6.7: Evolution of ω for h=1.74, m(0)=9.9
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Figure 6.8: Evolution of the radius for h=1.74, m(0)=9.9
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Chapter 7
The Klein-Gordon Field
In this chapter, we present the basic elements for the study of the evolution of a Klein-Gordon
field. Most of the work is based in the publication [13].

7.1 The Stress Tensor for the Klein-Gordon Field
The stress tensor for the Klein-Gordon field is [14]

Tab = ∇aφ∇bφ−
1

2
gab
(
∇cφ∇cφ+m2φ2

)
(7.1)

and it satisfies the conservation equation

∇aTab = 0. (7.2)

7.2 The Klein-Gordon Equation
The wave equation for the field in a flat space-time can be generalized to curved space-time
using the rule [14]

ηab → gab,
∂a → ∇a.

(7.3)

Thus, we obtain

∇a∇aφ−m2φ = 0. (7.4)

7.3 The Metric

We will use a coordinate system based on outgoing null hypersurfaces. The label for the

hypersurfaces is u, xA (A=1,2) will label the null rays, and r is a surface area coordinate.

Then, in the coordinates (u, r, xA), the metric takes the Bondi-Sachs form

ds2 = −
(

exp(2β)

(
1 +

W

r

)
− r2hABU

AUB

)
du2

−2 exp(2β)dudr − 2r2hABU
BdudxA + r2hABdx

AdxB.

(7.5)

WhereW is related to the more usual Bondi-Sach variable V by V = r+W, and hABhBC =

δAC and det(hAB) = det(qAB), with qAB a unit sphere metric. We also use the intermediate
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variableQA = r2 exp(−2β)hABU
B
,r .We will work in the stereographic coordinates xA = (p, q).

In these coordinates the sphere metric takes the form qABdx
AdxB =

4

P 2
(dq2 + dp2) , where

P = 1 + p2 + q2. And, it is useful to introduce the complex dyad qA =
P

2
(1, i). Then,

hAB can be represented by its dyad component J =
1

2
hABq

AqB and K =
1

2
hABq

Aq̄B. The

two quantities J and K satisfy the relationship 1 = K2 − JJ̄. We can also introduce the

spin-weighted fields U = UAqA and Q = QAq
A.

7.4 The Field Equations
The field equations for a real, massless scalar field coupled minimally to gravity are

Rab = 8πφ,aφ,b. (7.6)

The corresponding Bondi-Sachs hypersurface equations are

β,r = 2πrφ2
,r +Nβ, (7.7)(

r2Q
)
,r

= 16πr2φ,rðφ− r2
(
ð̄J + ðK

)
,r

+ 2r2ð
(
β

r2

)
,r

+NQ, (7.8)

U,r =
exp(2β)

r2

(
QK − JQ̄

)
, (7.9)

W,r = 2π exp(2β)
(
2Kð̄φðφ− J (ðφ)2 − J̄ (ðφ)2)+

1

2
exp(2β)R

−1− exp(β)ðð̄ exp(β) +
1

4r2

(
r4
(
ðŪ + ð̄U

))
,r

+NW ,
(7.10)

where

R = 2K − ðð̄K +
1

2

(
ð̄2J + ð2J̄

)
+

1

4K

(
ð̄J̄ðJ − ð̄JðJ̄

)
. (7.11)

And the evolution equations for J is

2 (rJ),ur −
(
V

r
(rJ),r

)
,r

=
8π

r
exp (2β) (ðφ)2 − 1

r
(r2ðU),r

+
2

r
exp(β)ð2 exp(β)−

(
W

r

)
,r

J +NJ .
(7.12)

All the quantities Nβ, NQ, NW , and NJ can be found in [15].
The wave equation for the scalar field is

2 (rφ),ur −
(
V

r
(rφ),r

)
,r

= −
(
W

r

)
,r

φ+Nφ (7.13)
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where

Nφ =
exp(2β)

r
(Nφ1 −Nφ2 +Nφ3)−

r

2
Nφ4 −Nφ5, (7.14)

Nφ1 = K
(
ðð̄φ+ ðβð̄φ+ ð̄βðφ

)
, (7.15)

Nφ2 =
1

2

(
ðJðφ+ ð̄J ð̄φ+ 2

(
J ð̄βð̄φ+ J̄ðβðφ

)
+ J ð̄2φ+ J̄ð2φ

)
, (7.16)

Nφ3 =
1

4K

(
J̄ ð̄Jðφ+ JðJ̄ ð̄φ+ J̄ðJ ð̄φ+ J ð̄J̄ðφ

)
, (7.17)

Nφ4 = φ,r
(
ð̄U + ðŪ

)
+ 2

(
U ð̄φ,r + Ūðφ,r

)
+ Ū,rðφ+ U,rð̄φ, (7.18)

and

Nφ5 = U ð̄φ+ Ūðφ. (7.19)

7.5 Numerical Implementation
To solve the field equations we use a method based on a second-order accurate finite difference
approximation.

7.5.1 Numerical Grid

We can define a grid with coordinates (un, xi, qj, pk) = (n∆u,
1

2
+ (i − 1)∆x, −1 + (j +

3)∆q, −1 + (k + 3)∆p). Here the spatial indexes range from i = 1, Nx, (j, k) = 1, Nζ ,

2∆x =
1

Nx − 1
, and ∆q = ∆p =

2

Nζ − 5
. For stability reasons, we center the derivatives at

midpoint of the cell and the evolution is carried out subject to the Courant-Friedrichs-Levy
condition.

7.5.2 Evolution Equations

To solve the evolution equations , we use a Crank-Nicholson scheme and the finite difference
version of the equations . Also, we employ the null parallelogram marching algorithm. The
wave equation can be rewrote in terms of the two dimensional wave operator

�(2)(rφ) = exp(−2β)
(

2(rφ),ru −
(
r−1V (rφ),r

)
,r

)
(7.20)

that correspond to the line element

dσ2 = exp(2β)
(
r−1V du+ 2dr

)
. (7.21)

The evolution equations then reduce to
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exp(2β)�(2)(rφ) = H (7.22)

where

H = −
(
W

r

)
,r

φ+Nφ. (7.23)

The two-dimensional wave operator is conformally flat of weight -2. This fact allows us
to use an identity relating the values of rφ at the corners P, Q, R, S of a null parallelogram

(rφ)Q = (rφ)P + (rφ)S − (rφ)R +
1

2

∫
A
Hdudr. (7.24)

By approximating the integrand in (7.24) by its value at the center of the parallelogram
, we obtain

(rφ)Q = (rφ)P + (rφ)S − (rφ)R +
1

2
∆u(rQ − rP − rS − rR)HC (7.25)

Where HC is the value of H at the center.

7.5.3 Scattering of Massless Scalar Field

We evolve the initial data

rφ(u = 0, r, q, p) =

{
λ(r − ra)4(r − rb)4G(q, p) if r ∈ [Ra, Rb],

0 otherwise
(7.26)

where G(q, p) =

[
q2 + p2 − 0.4

q2 + p2 + 1

]4

. This is an axisymmetric scalar field.

Figures 7.5.3 and 7.5.3 shows the evolution of rφ and the invariant JJ̄. Figure 7.5.3 show

the angular slice view for p=0.
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Figure 7.1: Axisymmetric surface plots of rφ for time u=1, 2, 3, 4. The parameters of the
initial data are ra = 3, rb = 5, λ = 10−1.

Figure 7.2: Surface plots of the spin-weighted invariant JJ̄ for time u=1, 2, 3, 4. The
parameters of the initial data are ra = 3, rb = 5, λ = 10−1.
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Figure 7.3: Global radial angular view of rφ for time u=0, 2, 4, 6, 8, 10. We set p=0,
-1.2<q<1.2. The parameters of the initial data are ra = 3, rb = 5, λ = 10−1.
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rived work", as described above, even if the original article was published
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