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ABSTRACT 
 
 
 
 

 

An electronically-collimated radiation detector (ECRD) is being developed to be 

used for locating radiation sources, e.g. for intraoperative localization of sentinel lymph 

nodes, or for public safety applications.  The design emphasizes a compact, portable 

detector with a wide field of view.  Typical probes provide either high sensitivity but no 

directional information when uncollimated, or directional information but poor detection 

efficiency when collimated.  The ECRD design provides high sensitivity to the presence 

of radiation because it lacks physical collimation, and simultaneously provides 

directional information using electronic collimation. 

Intended to be a hand-held device, the ECRD front end comprises an array of 

cadmium-zinc-telluride (CZT) detectors.  An incident gamma ray scatters in the primary 

detector; interaction of the scattered photon in a secondary detector is detected in 

coincidence.  For each photon, Compton kinematics specifies a cone on which the source 

must be located.  Localization is achieved by finding the intersection of many Compton-

scatter cones.  This paper reports on the development and evaluation of two directional 

algorithms for this device, a modified Compton telescope algorithm and an algorithm 

based on finding the intersections of rectangles circumscribing the Compton cones. 

The methods developed were evaluated using ideal simulated data from a point 

source as well as data from a Monte Carlo simulation of an ECRD device.  The accuracy, 

precision and convergence of each directional algorithm were evaluated.  It was found 

that for the modified Compton telescope technique, a useful field of view extending 60º 



 xi

from the forward direction was observed, an angular resolution better than 20º was 

achieved throughout the field of view, and the method converged to these values around 

300 events; the results for the ideal data did not significantly differ from those using the 

Monte Carlo data.  For the circumscribed rectangle technique, the useful field of view 

covered nearly the entire area in front of the detector for the ideal data but the more 

realistic physics of the Monte Carlo simulated data shrank the useful field of view to the 

region within approximately 30º of the forward direction, while the angular resolution 

was better than 20º and convergence was approached at approximately 50 events. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation for the ECRD Project  

An “Electronically-collimated Radiation Detector” (ECRD) to be used for 

localization of radiation sources is currently under development.  This thesis describes 

the development of a directional algorithm for such a device.  With current methods of 

radiation detection, direction-sensing capability typically comes only at the expense of 

sensitivity, and high sensitivity is usually gained at the cost of localization capability.  

The ECRD aims to provide both good sensitivity and good localization capability.  Using 

solid-state room-temperature detector technology, such as cadmium-zinc-telluride (CZT) 

detectors, and portable computers, the ECRD will be compact, portable, and highly 

versatile.  The source localization capability could be used for intraoperative detection of 

sentinel lymph nodes and metastases.  Its design also easily lends itself to being used in a 

variety of areas where there is concern for public or occupational radiation safety, 

including problems of national security. 

 The directional algorithm developed for the ECRD maps coincidence-detection 

events of Compton-scattered gamma rays to determine the direction to the source of the 

radiation.  The kinematics of Compton scattering allows the device to localize objects 

without physical collimation (which, by its nature, blocks out much of the incoming 

radiation thereby decreasing sensitivity) and thus allows higher sensitivity than present 

methods of source localization.  Without physical collimation the detector count rate will 
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be higher than that for a similar detector with physical collimation, but each event 

gathered by the ECRD will contain less localization information because the radiation 

source can only be confined to the surface of a cone described by the kinematics of 

Compton scattering (Suave et al, 1999).  The primary aspiration of this project was to 

implement and evaluate a robust and efficient algorithm for analyzing the detector data, 

to quickly and accurately locate radioactive material. 

 
1.2 Goal and Aims 

 The goal of this work was to develop two directional algorithms, at least one of 

which will meet the needs of the ECRD concept.   

Hypothesis 1.   Accuracy:  For a stationary source, the algorithm provides source 

localization with angular error of no more than 10º out to near ±90º of the 

field of view.   

Hypothesis 2.   Precision:  The algorithm achieves an angular resolution of 20º full-

width half maximum (FWHM).  

Hypothesis 3.   Convergence:  An estimate of the source position, within the limits 

described above, will be achieved with fewer than 1000 Compton event-

pairs.  Convergence is defined as the reduction of the rate of change to near 

zero of a metric appropriate to the method. 

The first part of the project was the development of the two algorithms, which 

individually may provide the desired performance or could be used together.  The second 

part of the project involved evaluating each algorithm’s performance to determine if 

either method meets the desired goals.  The specific aims needed to assess the hypotheses 

were: 
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1. Development of the directional algorithm method based on identifying 

intersections of cones using an image reconstruction-based approach. 

2. Development of the directional algorithm method that utilizes a simplified 

calculation identifying the intersections of cones based on the intersections of 

circumscribed rectangles. 

3. Evaluation of algorithm performance using data from computer-simulated models 

of the ECRD.  The specific tasks were: 

a. Measure the size of the useful field of view (that is, the area of the field of 

view in which the absolute error of the direction estimate is less than 10º); 

b. Measure angular resolution across the field of view; 

c. Assess rate of convergence to the desired performance levels; and 

d. Determine the influence of detector pixel size and energy resolution on 

algorithm performance. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

 

2.1 Radiation Detectors 
 Conventional portable gamma radiation survey meters (e.g. Geiger-Mueller 

counters and scintillation detectors) detect radiation by counting the number of 

interactions with radiation that occur within the detector volume.  Generally, these 

devices allow radiation to enter the meter from any direction and therefore give 

information only about the level of radiation present and not about the direction from 

which the radiation is coming.  Such detectors have high sensitivity to radiation because 

none is blocked from entering the detector. 

Modifications to add direction-sensing capability commonly involve physically 

collimating the device, restricting the direction through which radiation can enter the 

detector.  This modification reduces the sensitivity of the detector, usually by a 

substantial amount, and thus makes low-activity sources difficult to observe. 

 The utilization of Compton kinematics to aid in image formation is by no means a 

new technique.  Astronomers utilize telescopes with Compton-based reconstruction 

algorithms to map gamma emissions from the cosmos.  These telescopes utilize the 

information obtained from Compton scattered photons whose sources are so far away that 

they can be assumed to be at infinity.  Another application under development is the 

Compton camera for radioisotope imaging.  In this case, the problem under consideration 

is equivalent to filtered backprojection along the surfaces of cones (rather than along 
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lines as in conventional computed tomography images) (Rogers, 2004).  Medical 

Compton cameras are concerned with precisely mapping the distribution of a 

radiopharmaceutical in a patient’s body.  Three-dimensional information, in this case, is 

very important.  The situation faced by the hand-held ECRD has a difficulty level 

somewhere between the astronomy and radioisotope imaging applications.  The sources 

cannot be assumed to be at infinity, but only two-dimensional information is required to 

point the user in the direction of the radiation source.  A source distribution is not desired, 

only a direction to the source (without information about the distance to the source.) 

 
2.2 Electronic Collimation 
 Electronic collimation is a method of extracting information about the direction 

that a photon entered a detector using information inherent in the radiation physics rather 

than by blocking or limiting the direction by physical means.  Using Compton scatter 

data is one means to achieve electronic collimation.  Compton scattering is a process by 

which a photon interacts with an electron, deposits some fraction of its energy (as kinetic 

energy imparted to the recoil electron), and propagates away through an angle 

proportional to the energy lost.  A primary detector, sensitive to both position and energy, 

records the scattering interaction.  Then, the scattered photon interacts with a second 

detector which is also position-sensitive and possibly energy-sensitive.  (The second 

detector does not need to be energy-sensitive if the initial energy of the source photon is 

known.)  These two interactions occur almost simultaneously and can be selected by 

coincidence-gating.  The recorded information will therefore be the (x,y,z) coordinates 

and the energies deposited for each interaction pair.  Summing the energies gives the 

original energy of the incoming photon if the second interaction is photoelectric 
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absorption, and the Compton equation (Equation 1) can be solved for the angle through 

which the photon scattered: 

 
221

1
2

21
2
2

)(
)(cos

EEE
EcmEEE e

+
−+

== θμ  (1) 

where E1 is the energy deposited by the first interaction, E2 is the energy deposited by the 

second interaction, and μ is the cosine of the scattering angle θ.  The calculated direction 

angle is degenerate in the azimuthal direction.  The information provided is thus a conical 

surface (Figure 1) that contains the source of the Compton-scattered photon, with 

thickness due to uncertainties in the energy measurements as well as the position 

measurements. 

 
Figure 1:  A cone described by the Compton geometry.  A vector, along 

which the source (blue star) lies, is somewhere on the surface of the 
cone.  The cone axis is defined by the two interactions in the detector 
(red stars). 

 
One coincident pair of interactions, which we will call an event, therefore does 

not provide the information necessary to localize the gamma-ray source.  A number of 
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events, each yielding a conical shell in space, must all intersect at the location of the 

gamma-ray source (Rogers, 2004).  Solving this problem of the intersection of 

overlapping cones is non-trivial (Miller, 1987).  Various approaches have been proposed 

to solve the problem, which are typically simplifications to the general problem of 

computing intersections of arbitrary cones.  For example, the solutions applied to 

Compton telescopes assume that the sources lie on a sphere of infinite radius.  Compton 

cameras used in medicine assume that the sources all lie within a finite region surrounded 

by or near the detectors (Parra, 2000; Suave, 1999; Wilderman, 1998).  Most of the 

Compton camera applications attempt to reconstruct the source distribution in three 

dimensions which requires an extensive sampling of data space to generate an accurate 

three-dimensional picture. 

 
2.3 Direct Calculation of Cone Intersections 
 There are two approaches to directly calculating the intersection curves of 

overlapping cones.  Cones are part of a geometric family called the natural quadrics.  An 

algebraic approach to finding the intersection consists of solving high-order polynomials 

for each other, i.e., finding the points or curve where the quadrics are equal.  The 

methods based on this algebraic approach are computationally expensive and yield 

unstable solutions because they are numerical and will involve convergence issues 

because of thickness of the cones due to measurement errors (Miller, 1987; Du et al, 

2001).  A geometric approach, on the other hand, looks at the broad attributes of the 

quadrics (in the case of a cone, these attributes are the vertex, axis vector, and opening 

angle) and relies on mathematical models based on these few values to provide the 

intersection curves.  In many cases these intersections yield complex non-planar curves 
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(called space-quartics) and will require long computation times or may suffer from 

convergence issues.  These problems limit the effectiveness of this method for the “on-

the-fly” calculations in which we are interested (Goldman, 1983; Miller, 1999). 

 
2.4 Formulation of the Reconstruction Problem 

2.4.1 The Forward Problem 

 With a source distribution  

 )(),,( Ω′=′ frf φθ , (2) 

(renaming Ω  as ),,( φθr ) one is faced with finding the set of expected detector events 

 )(),,,( 2121 XgEEddg = , (3) 

where nd  are the locations of the interactions and nE  are the energies of the interactions.  

X  is the set of cone parameters which are computed using the Compton kinematics 

described by the locations and energies of the interactions.  The expected value of the 

measurements, ( )g X , is related to the source distribution, ( )f ′ Ω , by 

 ΩΩ′Ω=′= ∫
Ω

dfXhXfHXg )(),())(()( , (4) 

where h is the conditional probability that a photon emitted from a location Ω  will result 

in a measurement of X , and H is the transformation operator.  Technically the operator, 

H, is an infinite-dimensional linear operator, but it can be approximated by a matrix, 

H { }dbh= , which transforms the discrete versions of f ′  and g, which will be called f and 

g.  The likelihood of observing an arbitrary sequence of events is given (in the discrete 

case) by 
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where [ ]Dgg ~,,~~
1=g  are the measured data binned into a total of D detector pixels 

(Rogers et al., 2005). 

 
2.4.2 The Inverse Problem 
 From the detector measurements, g, we want to recover f ′ .  Inverse filtering 

convolves the inverse of the transformation operator with the measured data to retrieve 

the original distribution: 

 fgH ˆ1 =⊗−
, (6) 

where f̂  is an approximation to the original distribution. Inverse filters are generally 

unstable because of singularities wherever H=0, so other filters must be applied to the 

problem.  However, these solutions can never completely specify f ′  (Rogers et al., 

2005). 

 
2.5 Methods of Image Reconstruction 

2.5.1 Analytic Solutions 

 One can find the inverse of the imaging equation by expanding it in terms of a set 

of orthogonal functions and finding their inverse.  The spherical harmonics, e.g., have 

been used by Basko et al. (1998) and Parra (2000), among others, to transform the cone 

projections into plane projections on which the Radon transform can be used (as in 

typical computed tomography). 
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 This formulation in terms of spherical harmonics considers that each primary 

detector pixel is the center of a unit sphere (no matter the actual geometry of the 

detector).  This simplifies the inversion problem by allowing the expansion in spherical 

harmonics. Parra adds to the previous work of Basko et al. by applying weighting 

functions to account for noise properties.  The Radon transform then gives an 

approximation of the original source distribution. 

 While such methods may be more elegant than other solutions, they suffer from 

several limitations (Rogers et al., 2005). 

1. Attenuation in the source causes the transformation operator, H, to become object 

dependent. 

2. Statistical weighting is better approximated by other alternatives, such as the 

maximum likelihood (ML) operators (discussed in the next section). 

3. Analytic inverse functions are not necessarily computationally efficient. 

4. Complete data are often not collected by the detector, i.e. the detector geometry 

must collect data over 4π radians to produce a complete data set.  Incomplete data 

could be filled using iterative methods, but this would no longer be an analytic 

method. 

5. Solutions are often not constrained to the appropriate function space, e.g. they 

may produce negative or imaginary values. 

 
2.5.2 Iterative Reconstruction Methods 
 Iterative reconstruction methods are usually statistically-based, often 

incorporating source attenuation and other physical factors.  They can be implemented 
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for detector geometries that do not collect a complete data set, and can incorporate noise 

models in a straight-forward manner. 

 Maximum likelihood (ML) estimation is similar to a weighted least-squares 

method in that it uses the inverse of the measurement covariance as the weighting 

function, but here the covariance is estimated by 

 ( )fHW ˆ1−= diag . (8) 

Thus, the source distribution estimate is 

 ( ) gHWHHf ~ˆ 1 TT −
= . (9) 

Because the covariance is unknown, the estimated function may not completely 

reproduce the original function (Lehner et al., 2004; Lee and Wehe, 2004).  

 Using an iterative expectation-maximization (EM) algorithm in conjunction with 

the ML estimation gets around this particular hurdle.  The EM formulation is 
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where k is the iteration number.  The main problem with this EM implementation is that 

it has a slow convergence rate (Rogers et al., 2005). 

 The list-mode likelihood EM method takes advantage of the case when many 

detector bins have gathered no data.  Here, the formulation is 

 

( )
( )

( )
{ }
∑ ∑∑ ≠

+ =
0:

1

ˆ
ˆ

ˆ
dgd

b

k
bdb

dbd

d
db

k
bk

b fh
hg

h
f

f , (11) 

where only the non-zero detector bins are used in the summation.  The computation time 

increases when the number of detected events is spread over many bins (Wilderman, 

1998; Du et al., 2001). 
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2.6 Reasons for Developing an Alternative Method 
 The algorithms described above provide more information than is needed for the 

ECRD concept.  Compton camera algorithms are concerned with precisely defining the 

three-dimensional distribution of a source in a confined area.  They are potentially too 

computationally expensive and slow, and three-dimensional images are not required.  We 

are not concerned with the source distribution, only the direction to the source.  The 

ECRD needs fast calculations that work well with limited data.  Two-dimensional 

projection images are satisfactory for this implementation. 
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CHAPTER 3 

RECONSTRUCTION METHODS DEVELOPED FOR THE 
ECRD 

 

 

 

 Two methods of direction reconstruction have been implemented and evaluated 

for application to the ECRD.  These methods have been chosen over those described in 

the previous chapter because they provide greater simplicity (and thus allow for easier 

computation) than other analytical solutions, and they do not suffer from the long 

computational times required for the iterative methods.  The first method is a 

modification of an imaging algorithm used by Compton gamma-ray telescopes (Gunter, 

2005); source localization is determined by filtered backprojection of the Compton-

scatter cones’ surfaces onto a sphere.  The second method locates the source as the 

smallest common region of overlap of the bases of the cones on the sphere.  Other 

methods of direction reconstruction are possible, such as utilizing matched events (e.g., 

using events that have the same cone vertex and scattering energy) and direct geometrical 

or numerical calculation of the arbitrary conic intersections in space; however, these 

other methods make inefficient use of the available event data or they cannot provide 

real-time results because of their computational complexity. 

 The first step in the reconstruction process for both methods is transforming event 

information into Compton cones directed out from the primary detector.  To uniquely 

define a cone, one must specify three attributes:  vertex, opening angle, and axis.  The 

cone vertex is simply the location of the first (Compton scatter) interaction.  The opening 
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angle is the scattering angle obtained from the Compton equation.  The cone axis is the 

normalized vector connecting the first and second interactions.  This gives all the 

information needed as input to the two direction reconstruction methods.  IDL (Research 

Systems, Inc.) was the high-level computing language used to develop the algorithms 

described in this thesis. 

 
3.1 Modified Compton Telescope Technique 

The filtered backprojection method collects a set of circles resulting from the 

backprojection of the Compton cones onto the surface of a sphere (Figure 2) whose 

radius should be large compared to the size of the detector.  See Section 5.1.5 for a 

discussion of the effect of the sphere size on the reconstructed image. 

 
Figure 2. Illustration of backprojection of cones onto a sphere whose 

center coincides with the vertices of the cones.  The backprojections 
yield circles in this case. 

 
Typical filtered backprojection uses Fourier-space filtering, but Fourier methods 

are not directly applicable to the sphere surface.  Therefore, Gunter (2005) proposed 

stereographic projection to transform the sphere surface onto a plane.  The backprojection 

on this plane is then ramp filtered in Fourier-space and transformed back from the 
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stereographic projection.  The resulting image is the filtered backprojection of the source 

distribution on the sphere (Gunter, 2005). 

In the modified Compton telescope method, the source distribution is described 

by a function, ( )Ωf .  Compton cones, defined by their axes, ω , and the cosines of their 

opening angles, μ, are histogrammed into a function ( )μω,g .  The IDL structures that 

contain the interaction information and the cone parameters are: 

 
location = { XYZ_STRUCT, x:0.0, y:0.0, z:0.0, unit:'' } 
interaction = { INTERACTION_STRUCT, energy:0.0D,   $ 

unit:'keV', location:{ XYZ_STRUCT } } 
cone = { CONE_STRUCT, vertex:{ XYZ_STRUCT },   $ 

axis_vector:{ VECTOR_STRUCT },   $  
half_angle:0.0D} 

 
 
Note that the histogram, g, is written in terms of cone parameters instead of 

detection energies and positions.  We assume that the event data have already been 

converted from energies and positions into cone parameters.  The IDL code that achieves 

this conversion is 

 
;cone parameters 

 axis_vect = normalize({VECTOR_STRUCT, x1-x2, y1-y2, z1-z2}) 
;calculate the scatter angle using the Compton equation 

cos_alpha=(energy2^2+energy1*energy2-    $ 
511.*energy1)/((energy1+energy2)*energy2) 

if abs( cos_alpha ) le 1 then begin   ;error checking 
  alpha=acos(cos_alpha)     
  cones[j].vertex=events[i,0].location 
  cones[j].axis_vector=axis_vect 
  cones[j].half_angle=alpha 
 endif 
 
 
The histogram is related to f by  

 ∫∫
=Ω

⋅Ω−ΩΩ=
1

2 )()(),( ωμδμω fdg . (12) 



 16

The integral is over the sphere.  This is the imaging equation developed by Parra (2000) 

who proposed a reconstruction technique utilizing spherical harmonics.  In 

implementation, a sphere is defined around and centered on the primary detector. The 

intersections of the cones with the sphere are simply circles (or nearly so, as long as the 

cone vertex is near the center of the sphere).  Backprojection onto the sphere therefore 

produces a set of circles all intersecting on the source.  Scatter angles between 5º and 90º 

only are chosen for backprojection because angles that fall outside these limits often yield 

erroneous results (Smith, 2006).  The IDL code that achieves this backprojection is 

 
;find the center of the backprojected circle 

r=!RADEG*cones[i].half_angle 
 x_center=z0*cones[i].axis_vector.i+cones[i].vertex.x 
 y_center=z0*cones[i].axis_vector.j+cones[i].vertex.y 
 z_center=z0*cones[i].axis_vector.k+cones[i].vertex.z 
 th_center=!RADEG*asin(x_center/sqrt(x_center^2+z_center^2)) 
 ph_center=!RADEG*asin(y_center/sqrt(y_center^2+z_center^2)) 
  ;calculate how many points are needed to create a solid 

;circle of connected points 
 step=atan(0.25/r) 
 num_step=round(360/step) 
  ;draw the circle 
 for p=0l,num_step do begin 
  itheta=round((r*cos(step*p)+th_center)*pixel_per_deg)+n/2 
  iphi=round((r*sin(step*p)+ph_center)*pixel_per_deg)+n/2 

if itheta+q lt n and itheta+q ge 0 and iphi+q lt n $  
and iphi+q ge 0 then ftemp[itheta+q,iphi+q]=1 

 endfor 
 f=f+ftemp 
 ftemp[*]=0 
 
  

The image produced, however, has extraneous information from all of the parts of 

circles that do not intersect, or intersect somewhere other than the source.  As in filtered 

backprojection, Fourier filtering is used to get rid of this blurring.  To apply the Fourier 

transform to a spherical surface, one first applies a stereographic projection ( )z↔Ω  to 

map the sphere onto a plane (Figure 3).  



 17

cone 
vertices 

P

z

Ω
ξ  

Stereographic plane

Sphere with backprojected
  cones 

P’  
Figure 3. Each point, P, on a sphere is projected from the antipodal point 

(or center of projection) opposite the sphere’s point of tangency onto 
the plane at a point, P’.   

 
The antipodal vector ξ  is a unit vector describing the direction to the center of 

projection.  Stereographic projection allows direct filtering of the image without 

deconstruction into spherical harmonics (Gunter, 2005).  This process, however, distorts 

the image (Figure 4) and resulting artifacts of the reverse transformation may degrade the 

image quality.  One artifact of the process is that a bright spot appears at each of the poles 

after the inverse stereographic projection.  These spots may be brighter than the source 

spot, so the outer 5º are zeroed out in the final image. 

The forward stereographic projection is defined by  

 ( )[ ]
( )Ω⋅−

Ω⋅−Ω
=

ξ
ξξ

1
z , (13)  

 and the inverse stereographic projection is 

 
( )[ ]

1

12
2

2

+

−+
=Ω

z

zz ξ
, (14) 
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where 0=⋅ξz , meaning that these vectors must always be perpendicular to each other, 

and 1=Ω=ξ  because the sphere is defined as a unit sphere.  The stereographic 

projection maps the sphere surface onto a flat plane tangent to the sphere at the point 

specified by the antipodal vector ξ .  These projection formulas can be separated into 

components and written as 

 
( )

( )[ ]011

0

coscossinsincos
sincos

θθφφφφ
θθφ

−−=
−=

ky
kx

, (15) 

where 0θ  is the central longitude and 1φ  is the central latitude (both of these were chosen 

to be 0º for this application), x and y are coordinates in the plane and θ  and φ are 

coordinates on the sphere, and  

 ( )011 coscoscossinsin1
2

θθφφφφ −++
=

Rk , (16) 

where R is the radius of the sphere.   

 

 
Figure 4.  Illustration of the distortion of the globe following the 

stereographic projection.  Note the size of Australia relative to other 
continents, e.g. Africa (from 
http://mathworld.com/StereographicProjection.html). 
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 Two-dimensional Fourier filtering with the ramp filter is applied and the inverse 

stereographic projection then maps the image back onto the sphere.  The values in the 

image are not renormalized after the inverse Fourier filtering (as would be done, for 

example, when generating computed tomography images) because the specific values are 

not of particular interest.  It is only the relative value of the brightest points in the image 

that are of concern as these are what the algorithm uses to determine the source direction.  

The inverse stereographic transforms are 
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where 
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ρ

ρ
.     (18) 

The direction to the source is picked as either the location of the brightest point in 

the image (if there is only one point that is brightest) or the average (centroid) of the 

locations of the brightest points.  Figure 5 summarizes this process.  Note that this 

method is capable of mapping a source distribution as its projection on the sphere, 

although only source location, i.e. the two-dimensional direction to the source, is the 

primary concern for our application. 

 

3.2 Circumscribed Rectangle Technique 
The second method localizes the source by placing circumscribed rectangles 

(squares) around the intersection of the cones’ surfaces with a plane (or sphere); the 
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Figure 5.  Process describing the modified Compton telescope technique. 

 
intersection (i.e., the logical AND) of the rectangular areas encompasses the source 

location.  This intersection converges on the source location as more cones are added.  

The conic sections produced when a cone intersects a plane are well-behaved and very 

easy to compute.  By simply comparing a few parameters, the conic section can be 

determined by geometric method (Miller and Goldman, 1992).  One must define only the 

direction cosine of the cone axis and the sine of the cone opening angle; the relationship 
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of these two angles determines the type of conic section, from which the circumscribed 

rectangle can be computed.  Ideally, the plane would be chosen to pass through the 

source, but the source location is unknown.  This approach has the complication that the 

curves become highly eccentric when the cone’s axis vector approaches ±90o.   

Alternatively, the circumscribed rectangle can be defined from the backprojection 

of the cone on a sphere (cf. modified Compton telescope technique).  If the cone vertices 

are confined to a small region around the sphere’s center, the backprojections are nearly 

circular and the circumscribed rectangle is easily estimated from a cone’s axis vector and 

opening angle (α) – the circumscribed rectangle is a square of side 2α centered at the 

direction angles (θ,φ) of the axis vector; an arbitrary padding can be added to the limits to 

accommodate data issues such as energy resolution.  The IDL code that keeps track of the 

decreasing limits of the area where the source may lie is 

 
for i=1l,num-1 do begin 
 ;replace the maximum theta if it is less than the previous  

if list[i,0] lt overlap[i-1,0] and list[i,0] gt  $ 
overlap[i-1,1] then overlap[i,0]=list[i,0] else $ 
overlap[i,0]=overlap[i-1,0] 

;replace the minimum theta if it is greater than the 
;previous  
if list[i,1] gt overlap[i-1,1] and list[i,1] lt  $ 

overlap[i-1,0] then overlap[i,1]=list[i,1] else $ 
overlap[i,1]=overlap[i-1,1] 

 ;replace the maximum phi if it is less than the previous 
if list[i,2] lt overlap[i-1,2] and list[i,2] gt  $ 

overlap[i-1,3] then overlap[i,2]=list[i,2] else $ 
overlap[i,2]=overlap[i-1,2] 

 ;replace the minimum phi if it is greater than the previous 
if list[i,3] gt overlap[i-1,3] and list[i,3] lt  $ 

overlap[i-1,2] then overlap[i,3]=list[i,3] else $ 
overlap[i,3]=overlap[i-1,3] 

endfor 
where the array list contains the limits of each backprojected circle arranged [maximum 

theta, minimum theta, maximum phi, minimum phi], and the array overlap contains the 
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shrinking limits arranged in the same way that the array list is.  Figure 6 summarizes this 

process.  

The results may be sensitive to the sphere’s size and the source location may fall 

outside the circumscribed rectangle if the backprojection deviates significantly from 

circular.  Both this behavior and the error in the backprojected cones become more 

significant when the sphere radius deviates significantly from the distance to the source. 

 

 
Figure 6. Process describing the circumscribed rectangle technique. 
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CHAPTER 4 

PARAMETERS OF INTEREST IN THE EVALUATION OF 
THE PERFORMANCE OF THE ALGORITHM 

 

 

  

In both methods, errors in the event data limit the accuracy with which the source 

can be localized.  The detector’s energy and spatial resolution, Doppler broadening, and 

other physical factors result in finite angular resolution and limit the detector’s field of 

view (Du et al., 2001; Smith et al, 2006).  Also, accuracy limits may be inherent in the 

algorithms.  Investigating these effects on the performance of the directional algorithm 

was part of this project.  For both techniques the following parameters have been 

evaluated:  

• the effect of the distance to the source on direction reconstruction; 

• angular resolution as a function of source location; 

• useful field of view (that is, the boundary of the region where angular 

resolution is less than 10º); and 

• convergence rates (or the effect of the number of events on the direction 

reconstruction). 

Additionally, the following parameters were evaluated for the modified Compton 

telescope technique: 

• the point-spread functions (PSF) of the resulting filtered images; 

• the PSF of the unfiltered image produced by the simple overlapping of the 

backprojected circles; and 
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• the signal-to-noise ratio (SNR).   

These evaluations were tested for three different cases.   

1. Perfect (geometric) data were generated not taking into account detector 

physics, spatial resolution, energy resolution, or the preferred distribution of 

scatter angles as a function of source energy.   

2. Data from a Monte Carlo simulation of the detector was used to look at the 

effects on an ideal detector.  In this case, the ideal detector had 0.0-mm spatial 

resolution and only Doppler broadening affected the energy resolution used to 

generate the test data.   

3. The Monte Carlo simulation data were modified to represent a more realistic 

detector response, including finite spatial resolution and energy resolution.   

All evaluations were made at (0º, 0º) and 100 cm away from the front detector face; in 

some cases, evaluations were also made in the first quadrant with source angles between 

0º and 90º to assess the effects of source energy and location on the direction calculation. 

Finite spatial resolution was added by binning the interaction location data into 

discrete pixels.  Energy-dependent energy resolution was added by sampling a Gaussian 

distribution of the desired width.  The following code adds energy resolution effects to 

the interaction energy data. 

 
res_factor=E_ref*percent_error/2.35*sqrt(1./E_ref)* $ 

randomn(seed,n,2) 
en=(sqrt(1000*ev[i].e1)*res_factor[j,0])+1000*ev[i].e1 
 
 

Here, E_ref is the reference energy where energy resolution is defined (in this case, E_ref 

= 0.511 MeV); percent_error is the error that is added to the energy measurement (0%, 

3%, or 6% FWHM for the current discussion); randomn(seed,n,2) produces an n by 2 
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array of random numbers evenly distributed between 0 and 1; res_factor is therefore an 

2n×  array of numbers to be added to the energy measurement; ev is an array of events, 

so ev[i].e1 is the energy of the first scatter of the ith event; and en is the modified energy 

measurement. Tailing due to charge trapping that commonly occurs in CZT detectors is 

not modeled. 

 
4.1 Geometric Data 

The perfect (geometric) data was generated in IDL using the following code. 

 
; randomly generate sites of scattering interaction, in  
; centimeters from scatter-detector center 
; all scatterings occur in scatter-detector plane 

events[*,0].location.z = scatdet.p 
events[*,0].location.x = 0.1 * scatdet.h.d / scatdet.h.npix $ 

* FIX( scatdet.h.npix * RANDOMU( seedx, num_ev ) +  $ 
scatdet.h.pmin ) 

events[*,0].location.y = 0.1 * scatdet.v.d / scatdet.v.npix $ 
* FIX( scatdet.v.npix * RANDOMU( seedy, num_ev ) +  $ 
scatdet.v.pmin ) 
; randomly generate direction angles to the absorption 
; interaction 

tan_alpha = tan( absdet.h.d / absdet.h.npix    $ 
* FIX( absdet.h.npix * RANDOMU( seeda, num_ev ) +  $ 
absdet.h.pmin ) ) 

tan_beta = tan( absdet.v.d / absdet.v.npix    $ 
 * FIX( absdet.v.npix * RANDOMU( seedb, num_ev ) +  $ 

  absdet.v.pmin ) ) 
 ; now convert these to x,y,z coordinates on the half-sphere 
events[*,1].location.z = -1 * absdet.p / SQRT( tan_alpha^2 + $ 

tan_beta^2 + 1 ) 
events[*,1].location.x = events[*,1].location.z * tan_alpha 
events[*,1].location.y = events[*,1].location.z * tan_beta  
 ; now calc the scattering energy 
 ; First, simple geometry to get the scattering angle: 
 ; a = distance from source to scatter site 
 ; b = distance from scatter site to 2nd interaction 
 ; c = distance from source to 2nd interaction 
 ; theta is the scattering angle 
 ; Thus, c^2 = a^2 + b^2 - 2 * a * b * cos( PI - theta ) 
 ; or  c^2 = a^2 + b^2 + 2 * a * b * cos( theta ) 
asquared  = ( src.location.x - events[*,0].location.x )^2 
asquared  = asquared+(src.location.y - events[*,0].location.y )^2 
asquared  = asquared+(src.location.z - events[*,0].location.z )^2 
bsquared  = ( events[*,1].location.x - events[*,0].location.x )^2 
bsquared  = bsquared + ( events[*,1].location.y -   $ 

events[*,0].location.y )^2 
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bsquared  = bsquared + ( events[*,1].location.z -   $ 
events[*,0].location.z )^2 

csquared  = ( src.location.x - events[*,1].location.x )^2 
csquared  = csquared+(src.location.y - events[*,1].location.y )^2 
csquared  = csquared+(src.location.z - events[*,1].location.z )^2 
costheta  = csquared - asquared - bsquared 
costheta  = costheta / (2 * SQRT( asquared ) * SQRT( bsquared )) 

; Second, Compton kinematics to get the scattered photon 
; energy 

events[*,1].energy = src.energy/(1+src.energy/m_e*(1-costheta )) 
; The remaining energy was deposited during the scattering 
; interaction 

events[*,0].energy = src.energy - events[*,1].energy 
 
 

This is considered perfect data because the positions are randomly generated and 

then the scattering energy is calculated so that it corresponds exactly according to 

Compton kinematics to match the scattering angle.  (See Appendix A for a full discussion 

of the geometric data’s production.) 

 
4.2 Monte Carlo Simulation Data 

The Monte Carlo simulation data were generated to test the algorithms’ 

performance with more realistic data.  GEANT4 was used for simulating the ECRD 

detector (Smith et al, 2006).  The base model was a 6-sided box with one CZT detector 

module on each end and two modules per side wall.  For the purposes of this paper, the 

simulations, analysis, and discussion assume the module on one end is the primary scatter 

detector and all other modules are the secondary absorption detectors.  In practice, any 

module could be the primary scatter detector for a given incident gamma ray, with any 

one of the remaining modules acting as the secondary absorption detector.  The primary 

module operates in coincidence with the other modules.  The simulations allowed 

variations of detector dimensions, pixel size, energy resolution, and source location and 

energies.  The coincident hits were tallied and analyzed for each simulation run.  Overall 

detection efficiency (total number of interactions normalized to total incident flux) and 
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localizing detection efficiency (number of usable coincidence event pairs normalized to 

incident flux) were tallied.  In no case has exact knowledge of the source energy been 

assumed in the analysis.  The pair of energies deposited in the coincident events was used 

in the analysis.  For some parts of the analysis we have assumed the source energy can be 

determined by energy spectral analysis or some independent means, to evaluate the effect 

of energy windowing (of the total deposited energy in coincident events) on the 

performance analysis (Smith, 2006). 
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CHAPTER 5 

EVALUATION OF THE MODIFIED COMPTON 
TELESCOPE TECHNIQUE 

 
 

 

 

 The modified Compton telescope technique reconstructs a projection image of the 

source distribution; Figure 7 shows a representative image of a point source created by 

this technique.  This image was generated with 1000 events from a simulated point 

source located 100 cm directly in front of the detector using the geometric data.  In all 

reconstructed images, the θ/longitude coordinate (from -90º to +90º) is horizontal and the 

φ/latitude coordinate (from -90º to +90º) is vertical on the sphere. 

 

 
Figure 7. Representative image of a point source at (0º, 0º) recreated by 

the modified Compton telescope technique. 
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5.1 Evaluation Using Geometric Data 
 For a full description of how the geometric data were generated, see Appendix A.  

Evaluation using geometric data, though not realistic, is important because it shows 

whether the basic principles of the reconstruction techniques are valid without 

interference from “real-world” considerations that are taken into account in the Monte 

Carlo simulations, and eventually in the actual detector system.  The source energy need 

not be specified with the geometric data because the scattering angles are chosen 

randomly, uniformly over the hemisphere, with no regard to the Klein-Nishina cross-

section.  Also, in this case, all events comprise a Compton scatter in the first detector and 

photoelectric absorption in a second detector. 

 
5.1.1 Sample Images  
 Although the task for the directional algorithm is not an imaging task, the 

modified Compton telescope technique is inherently an imaging algorithm.  Figure 8 

compares unfiltered backprojected images to filtered images generated with the modified 

Compton telescope technique for simulated point sources located along the diagonal in 

(θ,φ).  Each image represents 1000 events generated with the geometric event simulation 

code. 

5.1.2 Useful Field of View 
The useful field of view was defined as the portion of the field of view where the 

absolute error in the direction localization estimate is less than 10º.  Direction location 

estimates were made for idealized sources located at 15º intervals throughout the first 

quadrant and then compared to the actual source positions.  The other three quadrants of 

the field of view are equivalent because the detector is rotationally symmetric.  Figure 9 
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is a contour plot of the measured direction localization error defined as the absolute 

difference between the direction to the estimated source position and the direction to the 

actual position; the useful field of view is the area within the 10º error contour. 

 (a) images at (0º, 0º); left:  unfiltered, right:  filtered 

    
(b) images at (15º, 15º); left:  unfiltered, right:  filtered 

    
(c) images at (30º, 30º); left:  unfiltered, right:  filtered 

    
Figure 8 (a-g).  Images of idealized point sources located along the radial 

line from (0º, 0º) to (89º, 89º).  At each source location, the unfiltered 
backprojected image is shown on the left and the filtered image is 
shown on the right.  Notice that the farther the point source is located 
from the center of the field of view, the less like a point the 
reconstructed image looks. 



 31

 (d) images- at (45º, 45º); left:  unfiltered, right:  filtered 

    
 (e) images at (60º, 60º); left:  unfiltered, right:  filtered 

    
(f) images at (75º, 75º); left:  unfiltered, right:  filtered 

    

(g) images at (89º, 89º); left:  unfiltered, right:  filtered 

    
(Fig. 8, continued) 
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Figure 9. Contour plot of direction localization error in the first quadrant.  

The useful field of view is the region extending from the origin to the 
(green) 10º contour line. 

 

5.1.3 Angular Resolution 
Angular resolution measures the spread of a point source due to the image 

reconstruction algorithm.  The angular resolution is represented as the full-width at half-

maximum (FWHM) of the point spread function (PSF).  The PSFs of point source images 

generated using the modified Compton telescope technique were evaluated at various 

locations throughout the first quadrant.  The FWHM and signal-to-noise ratio (SNR) 

were measured for each point source image.  The PSFs of the filtered images were also 

compared to the PSFs of the unfiltered images to demonstrate the effect of Fourier 

filtering on the image data.  Figure 10 shows horizontal profiles through the maximum 

value of each point source image.  Horizontal profiles may differ from other profiles 

(vertical or radial, for example).  These horizontal profiles have been chosen because 

they nonetheless demonstrate the effect of the filtering process.  The signal to noise ratio 

(SNR) was defined as the ratio of the peak height to the background level in the image.  
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SNR was measured at several locations in the first quadrant.  Table 1 illustrates the 

results. The FWHMs and SNRs of these distributions have been defined where a clear 

peak is present and are summarized in the following table.  The PSFs for (0º, 60º) and (0º, 

75º) are too spread out and exhibit no clear peak so the FWHMs and SNRs are not 

defined for these points.  Figure 11 represents PSFs positioned radially out from (15º, 15º) 

to (75º, 75º).  Note that in Figure 11(b) there is a peak at 90º in the unfiltered image 

which is zeroed out in the final image.  The unfiltered PSFs in figure 11 were so blurred 

that a definite peak could not be identified in most cases.  The FWHM could not be 

determined for these; SNR was defined using the maximum value of the filtered image.  

FWHMs (where possible) and SNRs are summarized in Table 2.  

 
 
Table 1.  Summary of the FWHMs and SNRs of the PSFs defined along 

the phi-axis. 
FWHM 

unfiltered
FWHM 
filtered

SNR 
filtered

(0º, 0º) 10º 2º 14.0
(0º, 15º) 10º 5º 2.5
(0º, 30º) 30º 8º 6.0
(0º, 45º) 55º 30º 7.5

 
 
 
Table 2.  Summary of the PSFs defined radially outward from the origin.  

Xs mark points where the PSF was too spread out to define a peak and 
therefore the FWHM is undefined. 

FWHM 
unfiltered

FWHM 
filtered

SNR 
filtered

(15º, 15º) 10º 2º 3.0
(30º, 30º) X 10º 3.0
(45º, 45º) X 18º 4.0
(60º, 60º) X 8º 7.0
(75º, 75º) X X 3.0
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(a)   PSF at (0º, 0º); left:  unfiltered, right:  filtered 

  
 
(b) PSF at (0º, 15º); left:  unfiltered, right:  filtered  

  
 
(c) PSF at (0º, 30º); left:  unfiltered, right:  filtered  

  
 

Figures 10 (a-f). PSFs along the axis from (0º, 0º) to (0º, 75º) in 15º 
increments in the phi-variable.  The horizontal axis is the theta-
variable and the vertical axis is relative magnitude. 
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 (d) PSF at (0º, 45º); left:  unfiltered, right:  filtered  

  
 
(e) PSF at (0º, 60º); left:  unfiltered, right:  filtered  

  
 
(f) PSF at (0º, 75º); left:  unfiltered, right:  filtered  

  
(Fig. 10, continued) 
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(a) PSF at (15º, 15º); left:  unfiltered, right:  filtered  

  

 (b) PSF at (30º, 30º); left:  unfiltered, right:  filtered  

  

 (c) PSF at (45º, 45º); left:  unfiltered, right:  filtered  

  
 

Figures 11 (a-e).  PSFs along the radial line from (15º, 15º) to (75º, 75º).  
The horizontal axis is the theta-variable and the vertical axis is relative 
magnitude. 
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 (d) PSF at (60º, 60º); left:  unfiltered, right:  filtered  

  

 (e) PSF at (75º, 75º); left:  unfiltered, right:  filtered  

  
 
(Fig. 11, continued) 
 
5.1.4 Rate of Convergence 
 Convergence rate is important for understanding how many events are needed to 

create an adequate source direction reconstruction.  For the modified Compton telescope 

technique, the convergence rate was calculated from the maximum value of the image 

versus the number of cones (event pairs) used to generate the image.  Convergence rate 

was measured at (0º, 0º) with geometric data (Figure 12). 

5.1.5 Effect of Distance to Source 
 The modified Compton telescope technique assumes that the source lies on the 

reconstruction sphere.  If the sphere radius is not the same as the source-to-detector 
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distance, the reconstructed image may exhibit additional blurring due to parallax.  In the 

previous sections, a 1-m sphere was used that matched the 1-m distance to the source.  

Figure 13 illustrates the effect of different source-to-detector distances, relative to a 1-m 

radius reconstruction sphere. Figure 7 displays an image which was reconstructed with 

the sphere’s radius equal to the source-to-detector distance.  Notice that the 50-cm case 

and the 500-cm case both look similar to the case shown in Figure 7. 
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Figure 12.  Convergence rate was defined by the number of events needed 

for the maximum value of the image normalized by the number of 
events to approach a steady-state value. 

 
5.2 Evaluation Using Monte Carlo Simulated Data 
 A GEANT4 Monte Carlo simulation of the proposed ECRD geometry was 

developed by colleagues (further discussed in Appendix B), separate from the work 

described in this thesis.  To evaluate the modified Compton telescope technique, 

simulation data was generated with perfect spatial resolution and energy resolution that 

only accounted for Doppler broadening of the energy spectrum.  The simulations 

included accurate Compton scattering physics so that the source energy affects the 

distribution of scattering angles. Also, all physical types of interactions can occur, so it is 

possible to have multiple Compton scattering in the detector or to have photons that 
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interact in one of the secondary detectors without first interacting in the primary detector.  

The simulation models discrete pixels to account for detector pixellation.  Charge 

collection effects on energy resolution are not modeled; energy-resolution effects are 

added to the data after the simulation runs.  These considerations thus make the detector 

simulation more realistic than the previous geometric data.  Unless otherwise noted, the 

simulations were run for a source energy of 0.511 MeV. 

 

  
Figure 13.  These images have been reconstructed with the source at 

varying distances from the detector.  The source-to-detector distance is 
displayed in the upper left corner of each image. 
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5.2.1 Useful Field of View 

The useful field of view was assessed using the Monte Carlo simulation data. 

Figure 14 shows contour plots of the measured direction localization error with varying 

spatial resolution; the useful field of view (as before) is bounded by the 10º error contour.  

The contour plot for the perfect energy and spatial resolution (Figure 14 on the left) 

closely matches the contour plot generated by the geometric data (Figure 9).   

The effect of energy resolution was tested for three cases, 0%, 3%, and 6% 

FWHM resolution at 0.511 MeV.  Energy resolution was simulated as a Gaussian 

distribution.  These results are displayed in Figure 15.  Finally, energy and spatial 

resolution are both modeled at the same time.  Figure 16 represents the useful field of 

view with 1-mm spatial resolution and 3% energy resolution at 0.511 MeV.  These values 

for the resolutions were chosen because they represent the most probable values a real 

detector would have. 
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Figure 14.  Contour plot of the direction localization error in the first 

quadrant for Monte Carlo data with perfect energy resolution.  The 
useful field of view is the region extending from the origin to the 
(green) 10º contour line.  The plots represent (left) perfect spatial 
resolution, (center) 1-mm spatial resolution, and (right) 2-mm spatial 
resolution. 
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Figure 15.  Contour plot of the direction localization error in the first 

quadrant for Monte Carlo data with perfect spatial resolution.  The 
useful field of view is the region extending from the origin to the 
(green) 10º contour line.  The plots represent (left) perfect energy 
resolution, (center) 3% energy resolution at 0.511 MeV, and (right) 
6% energy resolution at 0.511 MeV. 

 

 
Figure 16.  Contour plot of the direction localization error in the first 

quadrant for Monte Carlo data with 1-mm spatial resolution and 3% 
energy resolution at 0.511 MeV.  The useful field of view is the region 
extending from the origin to the (green) 10º contour line.  
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CHAPTER 6 

EVALUATION OF THE CIRCUMSCRIBED RECTANGLE 
TECHNIQUE 

 

 

 

 The circumscribed rectangles technique is not, by its nature, an image 

reconstruction technique.  Figure 17 illustrates this method, locating a point source at 100 

cm in front of the detector.  Only 25 events were used to generate this figure 

 
Figure 17. Illustration of the circumscribed rectangles technique 

converging on a source at (-29°,7°).  The blue, purple, green and red 
boxes represent the localization based on 1, 5, 10, and 25 cones; the 
asterisk represents the true source position. 

 
 
6.1 Evaluation Using Geometric Data 

Geometric data were generated (see Chapter 4 or Appendix A) in an analogous 

manner to the data used in Chapter 5.  Again, this evaluation is important because, though 
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it does not take into account “real-world” physics, it shows whether or not the basic 

principles of the reconstruction technique are valid.  

6.1.1 Useful Field of View 
The useful field of view was defined as the portion of the field of view where the 

absolute error in the direction localization estimate is less than 10º.  This measurement 

was made by taking estimates every 15º using the geometric data and comparing them to 

the actual source position.  This is done only over the first quadrant, as the other three 

quadrants follow from symmetry.  The angular error is illustrated in Figure 18. 

 
Figure 18. Contour plot of direction localization error in the first quadrant.  

The useful field of view is the region extending from the origin to the 
(green) 10º contour line. 

 
 
6.1.2 Angular Resolution 

Angular resolution for the circumscribed rectangle technique was defined as the 

area of the final circumscribed rectangle that the method converges to.  Figure 19 

illustrates convergence of the method showing that the method converges to a rectangle 
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that is approximately 100 square-pixels corresponding to 6.25 degrees2 (or 2.5º x 2.5º) 

because each pixel is defined as 0.25º × 0.25º. 

6.1.3 Rate of Convergence 
 The convergence rate is important for understanding how many events are needed 

to create an adequate source direction reconstruction.  For the circumscribed rectangle 

technique, the convergence rate was defined as the area of the circumscribed box versus 

the number of cones (event pairs) required to generate the box.  Convergence was 

measured for a point source at (0º, 0º) with geometric data (Figure 19).  

 
Figure 19.  The convergence rate has been defined by the number of 

events needed for the area of the circumscribed rectangle to become 
close to constant.  The area of the circumscribed rectangle is defined in 
terms of square pixels; each pixel is 0.25º squared in area. 

 
 
6.2 Evaluation Using Monte Carlo Simulated Data 
 The same simulation data were used for this evaluation as those which were used 

in section 5.2 for the modified Compton telescope technique.  Unless otherwise noted, all 

of the following simulations were run using a source energy of 0.511 MeV. 
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6.2.1 Useful Field of View 
Without adding spatial or energy resolution to the Monte Carlo simulation of the 

detector, the effect of the physics added by the simulation on the useful field of view was 

quantified for perfect energy resolution and spatial resolution.  The useful field of view in 

the first quadrant is shown in Figure 20.  The useful field of view for 1-mm spatial 

resolution looks almost exactly the same as that for the ideal case.  For 2-mm spatial 

resolution, the field of view again looks similar to the others except that the error at the 

origin rises above 10º.  For both of these cases, the useful field of view extends out to 

only (15º, 15º) radially and about twice that along the axes.  

The effect of energy resolution has been tested for three cases, 0%, 3%, and 6% 

FWHM resolution at 0.511 MeV.  Energy resolution was simulated as a Gaussian 

distribution (as in Section 5.2.1).  These results are displayed in Figure 21.  For the 3% 

case, the field of view was again similar to the previous cases.  Adding 6% energy 

resolution, though, has a substantial effect on the field of view.  The configuration of 3% 

energy resolution and 1-mm spatial resolution is displayed (in Figure 22.) 
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Figure 20.  Contour plot of the direction localization error in the first 

quadrant for Monte Carlo data with perfect energy resolution.  The 
useful field of view is the region extending from the origin to the 
(green) 10º contour line.  The plots represent (left) perfect spatial 
resolution, (center) 1-mm spatial resolution, and (right) 2-mm spatial 
resolution. 
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Figure 21.  Contour plot of the direction localization error in the first 

quadrant for Monte Carlo data with perfect spatial resolution.  The 
useful field of view is the region extending from the origin to the 
(green) 10º contour line.  The plots represent (left) perfect energy 
resolution, (center) 3% energy resolution at 0.511 MeV, and (right) 
6% energy resolution at 0.511 MeV. 

 

 
Figure 22.  Contour plot of the direction localization error in the first 

quadrant for Monte Carlo data with 1-mm spatial resolution and 3% 
energy resolution at 0.511 MeV.  The useful field of view is the region 
extending from the origin to the (green) 10º contour line.  
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 
 

 

 

The data presented here were evaluated in the first quadrant only, because the 

performance of the algorithm will follow the same patterns over the whole hemisphere 

(in the other three quadrants.)  During the algorithm development, individual components 

of code were tested for source locations with both positive and negative values of theta 

and phi, but the data presented here for one quadrant of the hemisphere is sufficient 

because of the symmetry of the detector system.     

 
7.1 Modified Compton Telescope Technique 

7.1.1 Results Using Geometric Input Data 
 The size of the useful field of view defined in terms of absolute error was 

demonstrated in Figure 9; the error remains below 10º out to approximately (45º, 45º) 

radially and past 60º along the axes.  This did not meet our expectations that the 

algorithm would be able to reconstruct point sources over the entire field of view.  This 

behavior is due to the significant blurring that occurs the farther from (0º, 0º) the source 

gets.  Blurring, in part, is due to the deviations from circularity of the backprojected 

cones, due to the assumption that the cones all intersect the sphere as circles.  We ignore 

the fact that the vertices are not all at the center of the sphere.  This effect becomes more 

pronounced the further away from the forward direction the source lies.  Also, for sources 
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that lie at large angles most of the recorded events will be the result of large-angle scatter 

and are therefore prone to greater error (Smith, 2006). 

 Angular resolution was demonstrated for source positions along the theta-axis.  

The FWHMs of the PSFs get larger the further away from straight in front of the detector 

the point source is.  It is clear from the images in Figure 8 that the point source becomes 

more spread out the further away from (0º, 0º) the point source gets.   Most of the data at 

the more extreme angles come from scattering angles that are also extreme.  Because of 

this, the circles do not overlap in a point but rather congregate around a point.  For some 

of the distributions that are far from (0º, 0º), the reconstructed images are so spread out 

that no discernible peak is found.  Although the image gets blurred out by the algorithm 

in reconstruction, the algorithm can still pick a maximum value which is approximately 

the center of the smeared-out area.  Alternatively, the algorithm calculates a centroid of 

the largest values if a single maximum point is not found.  Within the useful field of 

view, though, the FWHM of the point spread function remains below 10º after filtering. 

 These results show that the method is useful, although the field of view is not as 

large as desired.  Also, the calculation time of the process could be speeded up by 

removing the filtering process.  This method, then, would only consist of backprojecting 

the cones.  If angular resolution is not as much of a concern, we can do this because the 

filtering only makes the images look better visually and decreases the angular resolution 

a bit.  The peak that the algorithm picks out will not change after filtering. 

 Convergence, measured as the number of events required to significantly decrease 

the rate of change of the maximum value of the image normalized by the number of 

events, occurs in 200-300 events.  If we can expect a source strength adequate to generate 
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one good event per second, then this corresponds to a collection time of around 5 

minutes.  This may not be feasible in field applications (for homeland security) but longer 

collection times may be acceptable in an intraoperative setting. 

 
7.1.2 Results Using Monte Carlo Simulated Data 
 Using the simulation without spatial or energy resolution yields a field of view 

that is similar to the one generated with the geometric data both along the radial line and 

along the axes.  This suggests that the GEANT4 simulation (although adding Doppler 

broadening, detector geometry, and the physics of the photon interactions that are likely 

to take place) matches well with the field of view generated without regard to these 

processes and validates that the reconstruction process remains sound as it deals with 

slightly more realistic data. 

 The plots generated with spatial resolution and energy resolution added only show 

a slight decrease in the size of the effective fields of view.  This demonstrates that the 

addition of unsound data has little effect on this method.  This behavior is due to the fact 

that each good event adds to the peak value, while events only slightly add to the 

background noise. 

 Convergence and angular resolution were not tested with Monte Carlo simulated 

data because they are expected to follow the same pattern as that of the geometric data, 

being properties of the method rather than the data. 
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7.2 Circumscribed Rectangle Technique 

7.2.1 Results Using Geometric Input Data 
 The useful field of view was defined in terms of the absolute error of the 

calculated position versus the actual position.  In this case, the area within which the 

absolute error is under 10º covers more of the total field of view extending further 

towards (90º, 90º) than the modified Compton telescope technique does.  Also, the error 

is under 15º for almost the entire field of view (Figure 18.)  This is a very promising 

result.  The circumscribed rectangle method was chosen for its speed and simplicity; for 

the geometric data, its performance appears to be better than the modified Compton 

telescope technique. 

 For the circumscribed rectangles technique, the rate of convergence is much 

quicker than the modified Compton telescope technique, leveling off around 50 events.  

Angular resolution is basically a meaningless quantity for this algorithm.  The size of the 

final circumscribed box is the same over the entire field of view, given enough events for 

convergence, because it is defined by the error factors included in the algorithm (e.g., in 

the data presented in Chapter 6 a padding of 2.5º (10 pixels) was added to the limits 

defined for the circumscribed box to account for rounding errors in the calculations and 

errors in the data resulting in a minimum circumscribed box of 2.5º x 2.5º).  In other 

words, this method would always converge on a point if the data had no errors and no 

padding was used.  The more important metric is the angular error described in the 

previous paragraph. 
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7.2.2 Results Using Monte Carlo Simulated Data 
 With ideal Monte Carlo simulated data (that is, using the simulation without 

adding spatial or energy resolution), the field of view for the circumscribed rectangle 

technique is greatly reduced compared to the geometric data.  In this case, adding the 

realistic physics of the simulation noticeably affects the direction reconstruction method.  

The circumscribed rectangle method is very sensitive to spurious events, especially when 

they occur near the beginning of the list of data that is being analyzed. 

 Energy resolution was added to the simulated data after the data had been 

generated.  Gaussian noise (3% and 6% FWHM at 0.511 MeV) was added to simulate 

this effect.  At 6% energy resolution, the circumscribed rectangle technique has limited 

utility as it is implemented now.  There were only a few areas where the algorithm came 

close to the correct source position.  Overall, detector energy resolution had a greater 

effect on the size of the useful field of view than the detector pixel size.  This is the same 

pattern that was seen for the Compton telescope technique. 

 
7.3 Conclusions for the Modified Compton Telescope 

Technique 
Hypothesis 1.   Accuracy:  For a stationary source, the algorithm provides source 

localization with angular error of no more than 10º out to near ±90º of the 

field of view.   

FALSE:  This hypothesis did not prove true for any of the cases studied.  Still, 

the useful field of view demonstrated for the modified Compton telescope 

technique may be adequately large to prove useful for the applications of the 

ECRD that have been discussed.   
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Hypothesis 2.   Precision:  The algorithm achieves an angular resolution of 20º full-

width half maximum (FWHM).  

TRUE:  The angular resolution of the modified Compton telescope technique 

remains below 20º for those cases where a peak is discernible.   

Hypothesis 3.   Convergence:  An estimate of the source position, within the limits 

described above, will be achieved with fewer than 1000 Compton event-pairs. 

TRUE:  It takes approximately 200-300 good events for the modified Compton 

telescope technique to converge on its estimate of the source location. 

 
7.4 Conclusions for the Circumscribed Rectangle Technique 
Hypothesis 1.   Accuracy:  For a stationary source, the algorithm provides source 

localization with angular error of no more than 10º out to near ±90º of the 

field of view.   

FALSE:  This hypothesis was reasonable correct for the circumscribed rectangle 

technique only for the case using “perfect” data.  The FOV for this method 

when using realistic data is even smaller than the field of view for the 

modified Compton telescope technique. 

Hypothesis 2.   Precision:  The algorithm achieves an angular resolution of 20º full-

width half maximum (FWHM).  

TRUE:  The angular resolution for the circumscribed rectangle technique is 

defined as the size of the final circumscribed box.  This quantity is rather 

meaningless, though, as the final box size is an arbitrary magnitude chosen to 

accommodate energy resolution or other limitations in the data and 

calculations.  
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Hypothesis 3.   Convergence:  An estimate of the source position, within the limits 

described above, will be achieved with fewer than 1000 Compton event-pairs. 

TRUE:  The circumscribed rectangle technique converges in approximately 50 

Compton event-pairs which is much faster than the modified Compton 

telescope technique. 

 
7.5 Future Work 
 Both of the reconstruction methods show promise for application to the ECRD.  

Each method has its issues, though.  (See Appendices A and C for all of the IDL code 

needed to run these two algorithms.)  For the modified Compton telescope technique, a 

different filter may help to decrease the blurring inherent in the method, improving 

angular resolution.  The primary objective of this algorithm, though, is not to provide an 

image of the source.  The directional algorithm’s sole purpose is to provide the direction 

to the source.  Blurring, therefore, is a secondary concern.  In fact, the Fourier filtering of 

the stereographic projection may be a superfluous step because the algorithm chooses the 

direction to the source as the direction to the point with the highest value (or the centroid 

of the points with the highest value if there are more than one.)   

The circumscribed rectangle technique is very sensitive to bad data.  Modification 

of this method to weed out the spurious events should make this method more robust.  

This could be achieved by adding an iterative loop to check each event making sure that 

it overlaps other events and is not simply a data point that is completely off.  This method 

is particularly sensitive to bad events when they occur early in the list of Compton event-

pairs because later spurious events can be discarded as inconsistent.  Originally, iterative 

methods were dismissed as possible directional algorithms because they are 
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computationally expensive.  The circumscribed rectangles method was developed to be 

simple and fast, but implementing this iterative functionality may be necessary to achieve 

adequate utility of the method.  However, the impact on computational speed may not be 

too severe, because only the first few events need to be screened carefully since when the 

algorithm goes awry at the beginning the method cannot recover.  Events that come later 

in the list are determined to be good or bad compared to these first few events. 

Other methods of determining the direction to a source or speeding up the 

calculation may be investigated.  Such methods may include using penetrating events 

(i.e., those events that interact in a secondary detector only and penetrate through the 

primary detector) to rule out areas of space in front of the detector as possible source 

locations.  In this case, the ECRD housing acts as simple physical collimation.  Another 

possibility is using events that Compton-scatter in the same primary-detector pixel.  

These events will generate concentric rings on the rear detectors.  The vector connecting 

the center of these concentric rings with the vertex will point to the source location. 

Finally, the evaluation of the algorithms performed here has focused on 

stationary, single point sources.  Multiple sources, moving sources and extended sources 

need to be studied. 
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APPENDIX A 
 

GEOMETRIC (OR IDEAL) DATA GENERATION 

 

 

A.1 Event Generation Procedure 

For the geometry shown in Figure A.1, a gamma ray from the source scatters at a 

point in the first detector; the scattered photon subsequently deposits its energy in the 

second (planar) detector. The relationship between the primary photon energy E0, the 

scattered photon energy Es, and the scatter angle θ is 

 
( )θcos11 2
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The scattering angle is also related to the relative positions of the source, first scatter 

interaction, and second absorption interaction by (derived from the Law of Cosines) 

 θcos2222 abbac ++= . (A.2) 

 To implement, the source energy and location are specified, as are the dimensions 

and locations of the (first) scatter detector plane and the second (absorption) detector. 

Then for each event, the interaction coordinates in the two detectors are chosen as two 

pairs of random numbers. The scattering angle θ then is calculated from Equation A.2. 

This result is fed into Equation A.1 to determine the energy Es of the scattered photon 

that must occur for a source photon to have scattered from the first detector at this 

scattering angle. The process repeats itself to generate the desired number of events. 
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Figure A.1:  Illustration of geometry used to generate event data. Gamma 

rays emitted from the source (blue line) interact in the first scatter 
detector (yellow shading). The second, absorption interaction (green 
line) occurs in second detector plane (light blue shading). 

 
Common parameters for generating data: 

• Event locations are specified in centimeters (plus or minus relative to the 

detector’s center.  The event data records the site (x,y,z)-coordinate and deposited 

energy for each interaction. 

• Energy is specified in keV. 

The data for each Run are recorded in an IDL “SAVE” file. To recover the data from a 

file, within IDL, use the command “restore, <filename>”. Restoration creates a variable 

called events. events is a 2D array of structures; events[i,0] contains the energy and 

location of a Compton scattering interaction in the (point or distributed) front detector, 

while events[i,1] contains the energy and location of the matching absorption interaction 

in the planar (or hemispherical) second detector. Each interaction is stored as an IDL 

structure, with the format 

 
{ INTERACTION_STRUCT,    $ 

energy : 0.0    ; interaction energy 
units : ‘’     ; string, e.g., ‘keV’ 
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location : { XYZ_STRUCT,  $ 
x : 0.0    ; x coordinate 
y : 0.0    ; y coordinate 
z : 0.0    ; z coordinate 
units : ‘’    ; string, e.g., ‘cm’ 
} 

} 
 
 
The pairs of energies and coordinates for each event are the data that we will have to 

work with data from the actual ECRD device. 

 
A.2 IDL Code for Event Generation 

The first function (run_generate_events) is required to call the event generation 

function.  It serves to set up all the specifics about the detector geometry, and the source 

energy and location.  While the second function (generate_events) creates a list of events to 

be used by the two direction reconstruction algorithms. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function run_generate_events,loc 
 
 ;structure definitions 
interaction = {INTERACTION_STRUCT,energy:0.0,unit:'',location: $ 

{XYZ_STRUCT,x:0.,y:0.,z:0.,unit:''}} 
;For a planar detector, p is the z-coord of the plane and h,v  
;  are the horizontal and vertical dimensions in the plane. 
;For a hemispherical detector, p is the radius of the  
; hemisphere. The center of the hemisphere is at the origin 
; of the coordinate system the flat face of the half-shell 
; lies in the x-y plane. h,v are angular dimensions of the 
; half-shell with "h" specifying the longitude (in the x-z 
; plane) and "v" specifying latitude (in the y-z plane). 
; Angles in radians; range limits: [-PI/2,PI/2].   
;Within DET_DIMS_ST, d is the size in physical units (mm for 
; planar detector, radians for hemisphere); npix is the # of 
; pixels, and pmin is trailing edge of the sensitive volume 
; (in pixels relative to the z-axis). 

detector = {DETECTOR_STRUCT,p:0.0,unit:'',h:{DET_DIMS_ST,  $ 
d:0.0,npix:0UL,pmin:0L},v:{DET_DIMS_ST}} 

num_ev = 1000L 
;window, xsize=1200, ysize=750 
;!p.multi=[0,3,2] 
source = {INTERACTION_STRUCT,662.,'keV',     $ 

{XYZ_STRUCT,loc[0],loc[1],loc[2],'cm'}} 
 ;hemispherical absorption detector, with dimensions expressed 
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 ;    in radians and pixel index ranges 
absorption_detector = { DETECTOR_STRUCT, 10., 'cm',    $ 
 { DET_DIMS_ST, !PI, 1000, -500 },   $;an oblong 2nd det. 
 { DET_DIMS_ST, !PI, 1000, -500 } } 
!p.multi[0] = 0  ; or 6 
 ;point scatter detector 
;scatter_detector = { DETECTOR_STRUCT, 0.0, 'cm',    $ 
; { DET_DIMS_ST, 0.1, 1, 0 },       $ 
; { DET_DIMS_ST, 0.1, 1, 0 } } 
;events = generate_events(num_ev, source,     $ 
;  scatter_detector, absorption_detector, /DISPLAY) 
;!p.multi[0] = 3 
 ;area scatter detector 
scatter_detector = { DETECTOR_STRUCT, 0.0, 'cm',    $ 
 { DET_DIMS_ST, 38.0, 380, -190 },      $ 
 { DET_DIMS_ST, 38.0, 380, -190 } } 
events = generate_events(num_ev,source,scatter_detector,  $ 

absorption_detector,/DISPLAY) 
; ;point source at (8,-19,100) 
;source = { INTERACTION_STRUCT, 662., 'keV',     $ 
;  { XYZ_STRUCT, 50.5, -85, 15., 'cm' } } 
;!p.multi[0] = 5 
; ;point scatter detector 
;scatter_detector = { DETECTOR_STRUCT, 0.0, 'cm',    $ 
; { DET_DIMS_ST, 0.1, 1, 0 },       $ 
; { DET_DIMS_ST, 0.1, 1, 0 } } 
;events = generate_events(num_ev, source,     $ 
;  scatter_detector, absorption_detector, /DISPLAY) 
;!p.multi[0] = 2 
; ;area scatter detector 
;scatter_detector = { DETECTOR_STRUCT, 0.0, 'cm',    $ 
; { DET_DIMS_ST, 38.0, 380, -190 },      $ 
; { DET_DIMS_ST, 38.0, 380, -190 } } 
;events = generate_events(num_ev, source,     $ 
;  scatter_detector, absorption_detector, /DISPLAY) 
; ;point source at (-35,25,100) 
;source = { INTERACTION_STRUCT, 662., 'keV',     $ 
;  { XYZ_STRUCT, 57.735, 57.735, 57.735, 'cm' } } 
;!p.multi[0] = 4 
; ;point scatter detector 
;scatter_detector = { DETECTOR_STRUCT, 0.0, 'cm',    $ 
; { DET_DIMS_ST, 0.1, 1, 0 },       $ 
; { DET_DIMS_ST, 0.1, 1, 0 } } 
;events = generate_events(num_ev, source,     $ 
; scatter_detector, absorption_detector, /DISPLAY) 
;!p.multi[0] = 1 
; ;area scatter detector 
;scatter_detector = { DETECTOR_STRUCT, 0.0, 'cm',    $ 
; { DET_DIMS_ST, 38.0, 380, -190 },      $ 
; { DET_DIMS_ST, 38.0, 380, -190 } } 
;events = generate_events(num_ev, source,     $ 
; scatter_detector, absorption_detector, /DISPLAY) 
;;save, events, file = 'my_distributed_detector_data.save' 
return, events 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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The previous function (run_generate_events) calls generate_events which 

follows.   This function creates a list of events each consisting of two energies and two 

positions in (x,y,z) coordinates.  These correspond to the two readings (primary Compton 

scatter and secondary photoelectric absorption) that make up each event.  This function 

does not generate the Compton cone information.  That calculation is taken care of by 

another function (see Appendix C.1) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;====================================================================== 
;====================================================================== 
;=====================                         ======================== 
;=====================     EVENT GENERATOR     ======================== 
;=====================                         ======================== 
;====================================================================== 
;====================================================================== 
;======The scatter detector is assumed to be a planar detector.======== 
;==The absorption detector is assumed to be a hemispherical detector.== 
;====================================================================== 
;====================================================================== 
function generate_events, num_ev, src, scatdet, absdet, DISPLAY=display 
 
 ;elo, ehi 
 ;definitions 
m_e = 511 ;keV = electron mass 
 ;structure definitions 
junk = { XYZ_STRUCT, x:0., y:0., z:0., unit:'' } 
junk = { INTERACTION_STRUCT, energy:0.0, unit:'',    $ 
  location:{ XYZ_STRUCT } } 

;These detector structures should have already been defined –  
; the detector input parameters use these structures 

 ;For a planar detector, p is the z-coord of the plane and h,v 
; are the horizontal and vertical dimensions (in 
; millimeters!) in the plane. 

 ;For a hemispherical detector, p is the radius of the 
; hemisphere.  The center of the hemisphere is at the origin

 ; of the coordinate system; the flat face of the half-shell 
; lies in the x-y plane. h,v are angular dimensions of the 
; half-shell with "h" specifying the longitude (in the x-z 
; plane) and "v" specifying latitude (in the y-z plane). 
; Angles in radians; range limits: [-PI/2,PI/2] 

junk = { DET_DIMS_ST, d:0.0, npix:0UL, pmin:0L } 
junk = { DETECTOR_STRUCT, p:0.0, unit:'', h:{ DET_DIMS_ST },  $ 

v:{ DET_DIMS_ST } } 
 ;events[?,0] is the scattering interaction, 
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 ;events[?,1] is the second interaction 
events = REPLICATE( { INTERACTION_STRUCT }, num_ev, 2 ) 
 ;initialize events structure elements for units 
events[*,*] = { INTERACTION_STRUCT, 0.0, 'keV',    $ 
  { XYZ_STRUCT, 0,0,0, 'cm' } } 
 ;specific seeds are for debugging (delete for normal operation) 
;seedx = 100 & seedy = 101 
;seeda = 102 & seedb = 103 
 ;randomly generate sites of scattering interaction, in 

;centimeters from scatter-detector center all scatterings occur 
;in scatter-detector plane 

events[*,0].location.z = scatdet.p 
events[*,0].location.x = 0.1 * scatdet.h.d / scatdet.h.npix  $ 
 * FIX(scatdet.h.npix * RANDOMU( seedx, num_ev ) + scatdet.h.pmin) 
events[*,0].location.y = 0.1 * scatdet.v.d / scatdet.v.npix  $ 
 * FIX(scatdet.v.npix * RANDOMU( seedy, num_ev ) + scatdet.v.pmin) 
 ;randomly generate direction angles to the absorption interaction 
tan_alpha = tan( absdet.h.d / absdet.h.npix     $ 
 * FIX(absdet.h.npix * RANDOMU( seeda, num_ev ) + absdet.h.pmin )) 
tan_beta = tan( absdet.v.d / absdet.v.npix     $ 
 * FIX(absdet.v.npix * RANDOMU( seedb, num_ev ) + absdet.v.pmin )) 
 ;now convert these to x,y,z coordinates on the half-shell 
events[*,1].location.z = -1*absdet.p/SQRT(tan_alpha^2 + tan_beta^2 + 1) 
events[*,1].location.x = events[*,1].location.z * tan_alpha 
events[*,1].location.y = events[*,1].location.z * tan_beta 
 ;display generated coordinates, for debugging 
;IF KEYWORD_SET( display ) THEN BEGIN 
; xrange = absdet.p * [-1,1] 
; yrange = absdet.p * [-1,1] 
; PLOT, [0,0], XSTYLE=3, YSTYLE=3, /NODATA, TITLE='Interaction$  
;  sites', XTITLE='absorption detector, x (cm)',   $ 
;  YTITLE='absorption detector, y (cm)',    $ 
;  SUBTITLE='scatter=blue, absorption=green,red/yellow= $ 
;  e_window', XRANGE=xrange, YRANGE=yrange, XTICKLEN=0.01$ 
;  ,YTICKLEN=0.01 
; PLOTS, events[*,1].location.x, events[*,1].location.y,  $ 
;  PSYM=3, COLOR=255*256L 
; PLOTS, events[*,0].location.x, events[*,0].location.y,  $ 
;  PSYM=3, COLOR=255*256L^2 
;ENDIF 
 ;now calc the scattering energy 
 ;First, simple geometry to get the scattering angle: 
 ; a = distance from source to scatter site 
 ; b = distance from scatter site to 2nd interaction 
 ; c = distance from source to 2nd interaction 
 ; theta is the scattering angle 
 ;Thus, c^2 = a^2 + b^2 - 2 * a * b * cos( PI - theta ) 
 ; or  c^2 = a^2 + b^2 + 2 * a * b * cos( theta ) 
asquared  = ( src.location.x - events[*,0].location.x )^2 
asquared  = asquared + ( src.location.y - events[*,0].location.y )^2 
asquared  = asquared + ( src.location.z - events[*,0].location.z )^2 
bsquared  = ( events[*,1].location.x - events[*,0].location.x )^2 
bsquared  = bsquared + ( events[*,1].location.y –   $ 

events[*,0].location.y )^2 
bsquared  = bsquared + ( events[*,1].location.z –   $ 

events[*,0].location.z )^2 
csquared  = ( src.location.x - events[*,1].location.x )^2 
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csquared  = csquared + ( src.location.y - events[*,1].location.y )^2 
csquared  = csquared + ( src.location.z - events[*,1].location.z )^2 
costheta  = csquared - asquared - bsquared 
costheta  = costheta / (2 * SQRT( asquared ) * SQRT( bsquared )) 
 ;Second, Compton kinematics to get the scattered photon energy 
events[*,1].energy = src.energy/(1 + src.energy / m_e * (1 - costheta)) 
 ;The remaining energy was deposited during the scattering 

; interaction 
events[*,0].energy = src.energy - events[*,1].energy 
;IF KEYWORD_SET( display ) THEN BEGIN 
; elo = 450 & ehi = 500 
;; READ, elo, ehi, PROMPT='Enter elo, ehi > ' 
; w = WHERE( ( events[*,1].energy GE elo )     $ 
;  AND ( events[*,1].energy LT ehi ), cnt ) 
; IF cnt GT 0 THEN BEGIN 
;  plotdata = events[w,1].location 
;  PLOTS, plotdata.x, plotdata.y, PSYM=3, COLOR=255 
;  plotdata = events[w,0].location 
;  PLOTS, plotdata.x, plotdata.y, PSYM=3, COLOR=255+255*256L 
; ENDIF 
;ENDIF 
RETURN, events 
END 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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APPENDIX B 
 

MONTE CARLO SIMULATION DETAILS 
 

 

 

A Monte Carlo simulation of an ECRD system has been programmed using 

GEANT4.  This task has been developed by Dr. Blair Smith.  The flowchart on the 

following pages (Figure B.1) illustrates the details and functionality of the simulation 

process.  

 

 

(Fig. B.1, continued on next page) 
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(Fig. B.1, continued on next page) 
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Figure B.1:  Three flowcharts illustrating the functionality of the GEANT4 

Monte Carlo simulation of an ECRD system. 
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APPENDIX C 
 

IDL CODE FOR BOTH DIRECTION RECONSTRUCTION 
METHODS 

 

 

 

C.1 Common Functions 

 This section contains those functions that are used by both the modified Compton 

telescope technique and the circumscribed rectangles technique.  Common functions 

include run_generate_events, and generate_events, which are listed in Appendix 

A.2.  The only other function used by both methods is event_to_cone_info whose input 

is the list of events generated by the preceding two functions and creates a list of the 

Compton coned that these events correspond to.  This function is listed below. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function event_to_cone_info, events  
 
;+ 
;NAME: 
;   event_to_cone_info 
; 
;PURPOSE: 
;   This function returns an array of back-projected cones given an  
; array of Compton interaction pairs. 
; 
;CALLING SEQUENCE: 
;   event_to_cone_info (events,z0) 
; 
;INPUT: 
;   events: An array of INTERACTION_STRUCTs with the dimensions [number 
;  of events, 2]. 
; *{INTERACTION_STRUCT,energy:0.0,unit:'',location:{XYZ_STRUCT}} 
; *{XYZ_STRUCT, x:0.0, y:0.0, z:0.0, unit:''} 
;   where events[i,0] is the primary Compton scattering interaction, 
;   and events[i,1] is the secondary event. 
; 
;OUTPUT: 
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;   cones:  An array of cones structures 
; *{CONE_STRUCT,vertex:{XYZ_STRUCT},axis_vector:{VECTOR_STRUCT}$ 
;  ,half_angle:0.0} 
; *vertex: {XYZ_STRUCT,x:0.0,y:0.0,z:0.0,unit:''}, cone origin 
; *axis_vector: {VECTOR_STRUCT,i:0.0,j:0.0,k:0.0}, orientation 
; *half_angle:  the cone opening angle (in radians) 
; 
;MODIFICATION HISTORY: 
;   Written by: Adam Lackie, Nov, 2005. 
;- 
 ;structure definitions 
vector = { VECTOR_STRUCT, i:0.0D, j:0.0D, k:0.0D } 
point = { XYZ_STRUCT, x:0.0D, y:0.0D, z:0.0D, unit:'cm' } 
interaction={INTERACTION_STRUCT,energy:0.0D,unit:'keV',location: $ 

{XYZ_STRUCT}} 
cone={CONE_STRUCT,vertex:{XYZ_STRUCT},axis_vector:{VECTOR_STRUCT},$ 

half_angle:0.0D} 
num_events = n_elements(events)/2 
cones = REPLICATE( { CONE_STRUCT }, num_events) 
j=0uL 
for i=0l,num_events-1 do begin 
 point1 = events[i,0].location 
 point2 = events[i,1].location 
 energy1= events[i,0].energy 
 energy2= events[i,1].energy 
 x1=(point1.x) 
 y1=(point1.y) 
 z1=(point1.z) 
 x2=(point2.x) 
 y2=(point2.y) 
 z2=(point2.z) 
  ;cone parameters 
 axis_vect = normalize({VECTOR_STRUCT, x1-x2, y1-y2, z1-z2}) 

;calculate intersection point of axis with sphere and back-
;projected circle parameters 

 cos_alpha=(energy2^2+energy1*energy2-511.*energy1)/  $ 
((energy1+energy2)*energy2) 

 if abs( cos_alpha ) le 1 then begin 
  alpha=acos(cos_alpha)  ;calculate the scatter angle 
  cones[j].vertex=events[i,0].location 
  cones[j].axis_vector=axis_vect 
  cones[j].half_angle=alpha 
  j=j+1 
 endif 
endfor 

;only return the j good events 
return, cones[0:j-1]  
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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C.2 Modified Compton Telescope Technique IDL Code 

 In addition to the common functions listed in Appendices A.2 and C.1 there are 

four functions required for the calculation of the filtered backprojected images.  These 

are:  backproject, ster_proj, filter, and inv_ster_proj.  The first of these to be 

considered will be the backproject function.  This function has a list of cones and the 

radius of the reconstruction sphere as input.  It calculates and draws the circles that are 

generated by the intersection of the cones and sphere.  Its output is therefore an array 

which represents the surface of the sphere with the intersection circles drawn on. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function backproject, cones,z0 
 
;+ 
;NAME: 
;   backproject 
; 
;PURPOSE: 
;   This function creates an image of the cone intersections with the  
; surface of a sphere.  The cones are assumed to have their vertex 
; at the center of the sphere, so the intersections are always 
; circles. 
; 
;CALLING SEQUENCE: 
;   rectangles (cones,z0) 
; 
;INPUT: 
;   cones: An array of structures of the form  
; {CONE_STRUCT,vertex:{XYZ_STRUCT},axis_vector:{VECTOR_STRUCT}, 
; half_angle:0.0} 
; * vertex is the point of origin of the cone with the form 
;  { XYZ_STRUCT, x:0.0, y:0.0, z:0.0, unit:'' } 
; * axis_vector is the direction the cone points of the form  
;  { VECTOR_STRUCT, i:0.0, j:0.0, k:0.0}, 
; * and half_angle is the opening angle of the cone. 
;   z0: The radius of the sphere surface. 
; 
;OUTPUT: 
;   f: An array[n,n] which displays the back-projected circles on 
;  the surface of the sphere. 
; 
;MODIFICATION HISTORY: 
;   Written by: Adam Lackie, Nov, 2005. 
; 
;- 
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 ;structure definitions 
vector = { VECTOR_STRUCT, i:0.0, j:0.0, k:0.0 } 
point = { XYZ_STRUCT, x:0.0, y:0.0, z:0.0, unit:'' } 
cone = {CONE_STRUCT,vertex:{XYZ_STRUCT},axis_vector:{VECTOR_STRUCT}$ 
  ,half_angle:0.0} 
num_cones = n_elements(cones) 
deg=180 
pixel_per_deg=4 
n=deg*pixel_per_deg 
pixel_per_dist=n/(4*z0) 
f=fltarr(n,n) 
ftemp=f 
for i=0l,num_cones-1 do begin 
 if !RADEG*cones[i].half_angle ge 5 and     $ 

   !RADEG*cones[i].half_angle le 90 then begin 
  r=!RADEG*cones[i].half_angle 
  x_center=z0*cones[i].axis_vector.i+cones[i].vertex.x 
  y_center=z0*cones[i].axis_vector.j+cones[i].vertex.y 
  z_center=z0*cones[i].axis_vector.k+cones[i].vertex.z 
  th_center=!RADEG*asin(x_center/sqrt(x_center^2+z_center^2)) 
  ph_center=!RADEG*asin(y_center/sqrt(y_center^2+z_center^2)) 
  step=atan(0.25/r) 
  num_step=round(360/step) 
  for p=0l,num_step do begin 
   itheta=round((r*cos(step*p)+th_center)  $ 

*pixel_per_deg)+n/2 
   iphi=round((r*sin(step*p)+ph_center)  $ 

*pixel_per_deg)+n/2 
   for q=-2,2 do begin 
    if itheta+q lt n and itheta+q ge 0   $ 

and iphi+q lt n and iphi+q   $ 
ge 0 then     $ 
ftemp[itheta+q,iphi+q]=1 

   endfor 
  endfor 
  f=f+ftemp 
  ftemp[*]=0 
 endif 
endfor 
return, f 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
  

The next function utilized for the modified Compton telescope technique 

performs the stereographic projection on the sphere surface mapping it onto a flat plane.  

The input to this function, ster_proj, is the backprojected array from the previous 

function and the sphere radius.  The output is another array in which each element has 

been moved according to the rules of the stereographic projection. 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function ster_proj, b, z0 
 
;+ 
;NAME: 
;   ster_proj 
; 
;PURPOSE: 
;   This function creates an image in (x,y)-coordinates by transforming 
; an image in (theta,phi)-coordinates using the stereographic 
; transformation. 
; 
;CALLING SEQUENCE: 
;   ster_proj(b,z0) 
; 
;INPUT: 
;   b: An image in polar coordinates. 
;   z0: The radius of the spherical surface of b 
; 
;OUTPUT: 
;   b_cap: the stereographically transformed image in  
;  (x,y)-coordinates 
; 
;MODIFICATION HISTORY: 
;   Written by: Adam Lackie, Nov, 2005. 
;- 
deg=180 
pixel_per_deg=4 
n=deg*pixel_per_deg 
pixel_per_dist=n/(4*z0) 
th0=0. 
ph1=0. 
th_arr=(!PI/180.)*(findgen(n)/pixel_per_deg-deg/2) 
ph_arr=(!PI/180.)*(findgen(n)/pixel_per_deg-deg/2) 
b_cap=fltarr(n,n) 
for l=0,n-1 do begin 
 for m=0,n-1 do begin 
  th=th_arr[l] 
  ph=ph_arr[m] 
  k=2*z0/(1+((sin(ph1)*sin(ph))+(cos(ph1)*cos(ph)* $ 

cos(th-th0)))) 
  x=k*cos(ph)*sin(th-th0) 
  y=k*((cos(ph1)*sin(ph))-(sin(ph1)*cos(ph)*cos(th-th0))) 
  ix = round(x*pixel_per_dist)+n/2 
  jy = round(y*pixel_per_dist)+n/2 
  if (ix ge 0) and (ix lt n) and (jy ge 0) and  $ 

(jy lt n) then b_cap(ix,jy)=b_cap(ix,jy)+b(l,m) 
 endfor 
endfor 
return, b_cap 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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 After the stereographic projection, the array can be filtered according to the 

Fourier methods normally applied to computed tomography images.  That is, the image is 

first transformed into phase space using the Fourier transform, a ramp filter is applied to 

the image and then the array is inverse-Fourier transformed.  These three steps are 

accomplished by the filter function, which follows. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function filter, b_cap,z0,num 
 
;+ 
;NAME: 
;   filter 
; 
;PURPOSE: 
;   This function creates an image that has been ramp-filtered in 
; Fourier-space and then transformed back into coordinate-space. 
; 
;CALLING SEQUENCE: 
;   filter (b_cap, z0, num) 
; 
;INPUT: 
; b_cap: An image in (x,y)-coordinates. 
; z0:  radius of reconstruction sphere. 
; num:  The number of events processed. 
; 
;OUTPUT: 
; b: An image in (x,y)-coordinates 
; 
;MODIFICATION HISTORY: 
;   Written by: Adam Lackie, Nov, 2005. 
;- 
deg=180 
pixel_per_deg=4 
n=deg*pixel_per_deg 
np=1080 
pixel_per_dist=np/(4*z0) 
ramp=dist(np)/np 
tot=total(b_cap) 
origin=b_cap[np/2,np/2] 
b_trans=fft(shift(b_cap,np/2,np/2)) 
if num ge 100 then begin 
 tot_trans=total(b_trans) ;should equal b_cap at the origin 
 if origin ne 0 then begin 
  factor=tot_trans/origin 
 endif else factor=1 
 b_trans=b_trans/factor 
endif 
b_trans=ramp*b_trans 
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b=shift((fft(b_trans,/inverse)),np/2,np/2) 
return, b 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 
 
 Finally, the inverse stereographic transformation remaps the plane (output from 

the filter algorithm) back onto the sphere.  The function, inv_ster_proj, which 

achieves this is listed below.  

 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function inv_ster_proj, b_cap, z0 
 
;+ 
;NAME: 
;   inv_ster_proj 
; 
;PURPOSE: 
;   This function creates an image in (theta,phi)-coordinates by 
; transforming an image in (x,y)-coordinates using the inverse 
; stereographic transformation. 
; 
;CALLING SEQUENCE: 
;   inv_ster_proj(b_cap,z0) 
; 
;INPUT: 
; b_cap: An image in (x,y)-coordinates. 
; z0:  The radius of the spherical surface of b 
; 
;OUTPUT: 
; b:  the the inverse stereographically transformed image in 
;   polar coordinates 
; 
;MODIFICATION HISTORY: 
;   Written by: Adam Lackie, Nov, 2005. 
;- 
 
deg=180 
pixel_per_deg=4 
n=deg*pixel_per_deg 
pixel_per_dist=n/(4*z0) 
th0=0. 
ph1=0. 
 
x_arr=(findgen(n)-n/2)/pixel_per_dist 
y_arr=(findgen(n)-n/2)/pixel_per_dist 
b=fltarr(n,n) 
 
for l=0,n-1 do begin 
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 for m=0,n-1 do begin 
  x1=x_arr[l] 
  y1=y_arr[m] 
  if x1 eq 0 and y1 eq 0 then begin 
   theta=0. 
   phi=0. 
   itheta = n/2 
   jphi = n/2 
  endif else begin 
   rho=sqrt(x1*x1 + y1*y1) 
   c=2.*atan(rho,(z0*2.)) 
   theta=th0+atan(x1*sin(c),(rho*cos(ph1)*cos(c) $ 

-y1*sin(ph1)*sin(c))) 
   phi=asin((cos(c)*sin(ph1))+((y1*sin(c)*  $ 

cos(ph1))/rho)) 
   itheta = fix(!RADEG*theta*pixel_per_deg)+n/2 
   jphi = fix(!RADEG*phi*pixel_per_deg)+n/2 
  endelse 
  if (itheta ge 0) and (itheta lt n) and    $ 

(jphi ge 0) and (jphi lt n) then    $ 
   b(itheta,jphi)=b(itheta,jphi)+b_cap(l,m) 
 endfor 
endfor 
return, b 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

C.3 Circumscribed Rectangles Technique IDL Code 

 The functions needed for the circumscribed rectangles algorithm are more 

straightforward and simpler than those required for the modified Compton telescope 

technique.  There are three functions needed in addition to the common functions.  They 

are titled rectangles, generate_lim_array, and overlap_rectangles.  The function 

titled rectangles is the first function that accepts the array of cones from 

event_to_cone_info and sends it to the other functions for processing.  This function 

returns the final estimate of the source location. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function rectangles, cones 
 
limits_list = fltarr(n_elements( cones ),4) 



 76

limits = fltarr(n_elements( cones ),4) 
limits_list = generate_lim_array( cones ) ;returns a list of the limits 

; of each circle (in degrees) 
limits = overlap_rectangles(limits_list) ;returns list of the 

;decreasing limits defined by 
;the ovelaps (in degrees) 

return, limits 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

 

The previous function, rectangles, first sends the array of cones to the function 

generate_lim_array.  This function creates a list of the limits (maximum and minimum 

coordinated on the sphere) for each cone intersection. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function generate_lim_array, cones 
 
r = 1.1*!RADEG*cones.half_angle   ;add error to r for rounding, eg, 10% 
x_center = cones.axis_vector.i 
y_center = cones.axis_vector.j 
z_center = cones.axis_vector.k 
th_center = !RADEG*asin(x_center/sqrt(x_center^2+z_center^2)) 
ph_center = !RADEG*asin(y_center) 
return, [[th_center+r],[th_center-r],[ph_center+r],[ph_center-r]] 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

 

Finally, the function rectangles sends the array of limits generated by 

generate_lim_array to overlap_rectangles.  This function marches through the list 

of limits and as the new limits further restrict the area defined by the previous limits, a 

new, more restrictive value replaces the old limit. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
function overlap_rectangles, list 
 
num = (n_elements( list ))/4. 
deg=180 
overlap = fltarr( num,4 ) 
overlap[0,*] = [90,-90,90,-90] 
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for i=1l,num-1 do begin 
 if list[i,0] lt overlap[i-1,0] and list[i,0] gt   $ 

overlap[i-1,1] then overlap[i,0]=list[i,0] else  $ 
overlap[i,0]=overlap[i-1,0] 

 if list[i,1] gt overlap[i-1,1] and list[i,1] lt   $ 
overlap[i-1,0] then overlap[i,1]=list[i,1] else  $ 
overlap[i,1]=overlap[i-1,1] 

 if list[i,2] lt overlap[i-1,2] and list[i,2] gt   $ 
overlap[i-1,3] then overlap[i,2]=list[i,2] else  $ 
overlap[i,2]=overlap[i-1,2] 

 if list[i,3] gt overlap[i-1,3] and list[i,3] lt   $ 
overlap[i-1,2] then overlap[i,3]=list[i,3] else  $ 
overlap[i,3]=overlap[i-1,3] 

endfor 
 
return, overlap 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

C.4 IDL Programs to Run the Two Methods 

 The following programs were designed to call all of the necessary functions 

(listed previously) to operate the algorithms.  First listed is the program that drives the 

modified Compton telescope technique, test_cone_recon.  It calls all of the functions 

from Appendices A.2, C.1, and C.2. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
pro test_cone_recon 
 
;filename='C:\input_file.dat' 
window, xsize=360, ysize=360 
z0=100. 
deg=180 
pixel_per_deg=4 
n=deg*pixel_per_deg 
pixel_per_dist=n/(4*z0) 
map=fltarr(n,n) 
error=fltarr(7,7) 
error_th=fltarr(90,90) 
error_ph=fltarr(90,90) 
background=fltarr(20,20) 
n_psf=1000 
psfs=fltarr(n_psf,2) 
deg_var=[0.,15.,30.,45.,60.,75.,89.] 
deg_var2=['0','0.26','0.52','0.78','1.04','1.30','1.57'] 
deg_name=['0','15','30','45','60','75','89'] 
for i=0,6 do begin 
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 for j=0,6 do begin 
  z=sqrt(z0^2/(1+tan(!DTOR*deg_var[i])^2+    $ 

tan(!DTOR*deg_var[j])^2)) 
  x=z*tan(!DTOR*deg_var[i]) 
  y=z*tan(!DTOR*deg_var[j]) 
  loc=[x,y,z] 
  paired_ev=run_generate_events(loc) 
  cones=event_to_cone_info(paired_ev);,z0) 

;file='C:\input_file.txt' 
;file='C:\input_file.txt' 
;cones=read_cc_table(file) 
;cones=read_real_data(filename) 

  map1=backproject(cones,z0) 
  map2=ster_proj(map1,z0) 
  fmap=shift(filter(map2,z0,n_elements(cones)),360,360) 
  image=inv_ster_proj(fmap,z0) 
   ;the following is to zero out the N and S poles 

;(which is an artifact of stereographic projection) 
  image[0:20,0:719]=0 
  image[699:719,0:719]=0 
  image[0:719,0:20]=0 
  image[0:719,699:719]=0 
  image=(abs(image)>0) 
;  tvscl,rebin(image,360,360)>0;alog10(n_elements(cones))/4 
;  tvscl,rebin(map1,360,360)>0;alog10(n_elements(cones))/4 
;  write_jpeg,'C:\output_image.jpg',tvrd(true=1),true=1 
;  write_jpeg,'C:\output_image.jpg',tvrd(true=1),true=1 
  ind=where(max(image)) 
  result=where(image eq max(image)) 
  ph_loc=1.*(fix(result/n)-n/2)/pixel_per_deg 
  th_loc=1.*((result mod n)-n/2)/pixel_per_deg 
  indth=fix(result/n) 
  indph=result mod n 
  if n_elements(ph_loc) gt 1 then begin    ;find the centroid 
   avg=moment(ph_loc) 
   ph_loc=avg[0] 
   avg=moment(th_loc) 
   th_loc=avg[0] 
  endif 
;;================================================== 
;;;;;;;;;;;;;;;Max and SNR calcs;;;;;;;;;;;;;; 
;;  b_th = indth-50 
;;  b_ph = indph-50 
;;  for l = 0,19 do begin 
;;   for m = 0,19 do begin 
;;    background[l,m] = image[b_th-l/2,b_ph-m/2] 
;;   endfor 
;;  endfor 
;;  b_rate = total(background)/100 
;;  SNR = max(image)/b_rate 
;;  print, 'max value= ',max(image),' SNR= ',SNR 
;;================================================== 
;;;;;;;;;;;;;;;percent error;;;;;;;;;;;;;;;;;; 
;;  error[i,j]=abs(sqrt(deg_var[i]^2+deg_var[j]^2+z^2)- $ 
;;   sqrt(th_loc^2+ph_loc^2+z^2))/    $ 
;;   (0.5*(sqrt(deg_var[i]^2+deg_var[j]^2+z^2)+ $ 
;;   sqrt(th_loc^2+ph_loc^2+z^2))) 
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;;  error_th[i,j]=(abs(deg_var[i]-th_loc)/   $ 
;;   (0.5*(deg_var[i]+th_loc))) 
;;  error_ph[i,j]=(abs(deg_var[j]-ph_loc)/   $ 
;;   (0.5*(deg_var[j]+ph_loc))) 
;;================================================== 
;;;;;;;;;;;;;;;;abs error;;;;;;;;;;;;;;;;;;;;; 
;;  error[i,j]=sqrt((deg_var[i]-th_loc)^2+   $ 
;;   (deg_var[j]-ph_loc)^2) 
;;  error_th[i,j]=abs(i-th_loc) 
;;  error_ph[i,j]=abs(j-ph_loc) 
;;================================================== 
;;;;;;;;;;;;;;;;;;for PSF;;;;;;;;;;;;;;;;;;;;; 

window, xsize=720, ysize=360 
  x=findgen(720)/4-90 
  set_plot, 'ps' 
  device, file = 'C:\output_PSF.ps' 
  psf = map1[*,th_loc+n/2] 
  plot,x,smooth(psf,8),title='theta='    $ 

+deg_name[i]+'  phi='+deg_name[j]+   $ 
''device,/close 

  set_plot,'win' 
  window, xsize=360, ysize=360 
  tvscl,rebin(map1,360,360)>0 
  write_jpeg,'C:\output_unfiltered.jpg',tvrd(true=1),true=1 
  tvscl,rebin(image,360,360)>alog10(n_elements(cones))/4 
  write_jpeg,'C:\output_filtered.jpg',tvrd(true=1),true=1 
;;================================================== 
 endfor 
endfor 
;;================================================== 
;;;;;;;;;;;;;;;for FOV display;;;;;;;;;;;;;;;;;;; 
;contour, rebin(error,91,91), levels=[2,5,10,15],   & 
; c_color=colors, xrange=[90,90], /xsty,    $ 
; yrange=[0,90],/ysty, xtitle='theta(deg)',ytitle='phi(deg)', $ 
; xticks=3,xminor=3, yticks=3,yminor=3,     $ 
; c_labels=[1,1,1,1],c_annot=      $ 
; ['2!Eo!N','5!Eo!N','10!Eo!N','15!Eo!N'], font=-1;0 
;write_jpeg,'C:\output_FOV.jpg',tvrd(true=1),true=1 
;; ================================================== 
;;;;;;;;;;;;;;;to display image;;;;;;;;;;;;;;;; 
;;tvscl,rebin(map1,360,360)>alog10(n_elements(cones))/4 
;;write_jpeg,'C:\output_unfilt_image.jpg',tvrd(true=1),true=1 
;;tvscl,rebin(image,360,360)>alog10(n_elements(cones))/4 
;;write_jpeg,'C:\output_filt_image.jpg',tvrd(true=1),true=1 
;;================================================== 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 

 The previous program has sections commented out so that only those evaluations 

that are desired will be processed when the program is run.  By commenting and 

uncommenting each of the sections, different values of interest can be analyzed.  The 
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following program, titled test_rect, drives the circumscribed rectangles technique.  It 

operates much the same as the previous program. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
pro test_rect 
 
z0=100. 
pixel_per_deg = 4. 
deg_var=[0.,15.,30.,45.,60.,75.,89.] 
deg_var2=['0','0.26','0.52','0.78','1.04','1.30','1.57'] 
deg_name=['0','15','30','45','60','75','89'] 
error=fltarr(7,7) 
error_th=error 
error_ph=error 
for i=0,6 do begin 
 for j=0,6 do begin 
  th_real= deg_var[i] 
  ph_real= deg_var[j] 
  z=sqrt(z0^2/(1+tan(!DTOR*th_real)^2+tan(!DTOR*ph_real)^2)) 
  x=z*tan(!DTOR*th_real) 
  y=z*tan(!DTOR*ph_real) 
  loc=[x,y,z] 
;  ev=run_generate_events(loc) 
;  cones=event_to_cone_info(ev);,z0) 
  file='C:\input_file.txt' 
  cones=read_cc_table(file) 
  n=n_elements(cones) 
  limits=rectangles(cones) 
  avg_th=(limits[n-1,0]+limits[n-1,1])/2 
  avg_ph=(limits[n-1,2]+limits[n-1,3])/2 
  error[i,j]=sqrt((avg_th-deg_var[i])^2+   $ 

(avg_ph-deg_var[j])^2) 
  error_th[i,j]=abs(avg_th-th_real) 
  error_ph[i,j]=abs(avg_ph-deg_var[j]) 
 endfor 
endfor 
;;================================================== 
;;;;;;;;;;;;;;;for convergence;;;;;;;;;;;;; 
;ind=[1,5,15,25,50,75,100,200,300,499,9999] 
;for i=0,10 do begin 
; area=(limits[i,0]-limits[i,1])*(limits[i,2]-limits[i,3]) 
; print, 'ind= ', i, ' area= ', area 
;endfor 
;;================================================== 
;;;;;;;;;;;;;;for FOV display;;;;;;;;;;;;;;;;;;; 
;contour, rebin(error,91,91),levels=[5,10,15],    $ 
; c_colors=[255,255+255*256L+255*256L^2,255L*256L^2],  $ 
; xstyle=1,ystyle=1,xticks=9,yticks=9 
contour, rebin(error,91,91), levels=[2,5,10,15],   $ 
c_color=colors, xrange=[0,90], /xsty,     $ 
 yrange=[0,90],/ysty, xtitle='!Mq!3 (deg)',   $ 

ytitle='!Mf!3 (deg)', xticks=3,xminor=3, yticks=3,yminor=3, $ 
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 c_labels=[1,1,1,1],c_annot=['2!Eo!N','5!Eo!N','10!Eo!N', $ 
'15!Eo!N'],font=0 

;write_jpeg,'C:\output_FOV.jpg',tvrd(true=1),true=1 
;;================================================== 
end 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 

 

 Data from either run_generate_events or from an outside source were used as 

input for these two programs.  The data from run_generate_events is output in an 

array that can be used directly.  Other sources will not necessarily output the data in such 

a straightforward manner.  The need arises in this case to write another function (called 

read_cc_table in these two programs) to read and sort the data.  The input is only the 

filename to be analyzed.  This function will not be included as part of this Appendix 

because it is completely dependent on the format of the data that is output (either by a 

Monte Carlo simulation or by a prototype detector.)  This is the only omission.  

Otherwise, the code presented in Appendices A and C provide a complete version of the 

two direction-reconstruction methods. 
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