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Abstract

In this dissertation we begin with a brief introduction of quantum mechanics, its impact
on technology in the 20th century, and the likely impact quantum optics will have on the
next generation of technology. The following chapters display research performed in many of
these next generation areas. In Chapter 2 we describe work performed in the area of designing
quantum optical logic gates for use in quantum computing. In Chapter 3 we discuss findings
made in regards to using quantum states of light for remote sensing and imaging. We move
on to Fabry-Perot interferometers in Chapter 4 and show discoveries made in the differences
between classical and nonclassical detection schemes with nonclassical states of light. Lastly,
in Chapter 5 we discuss how to create photonic band-gap coatings that have unique thermal
emissivity properties that could have benefits ranging from increased energy efficiency in

light bulbs to better thermal management of satellites.
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1 Introduction

1.1 Birth of Quantum Mechanics

The birth of quantum optics can be traced back to the enigma that surrounded blackbody
radiation, which amounted to finding the relationship between heated matter and its emitted
light. A blackbody is an object which absorbs all incident electromagnetic radiation, allowing
none to pass through and none to be reflected. Having no electromagnetic radiation reflected,
including visible light, means the object appears black when not heated. However when the
object is subject to radiation its properties cause it to act as an ideal thermal radiator,
emitting on average just the same amount as it absorbs, at every wavelength, when in
thermal equilibrium with its environment.

A conflict arose in the late 19" century when physicists were struggling to create a theoret-
ical explanation of what was seen experimentally. Wilhelm Wien first derived an expression
which accurately described the behavior of a blackbody in the low wavelength limit, but
quickly failed when applied to the long wavelength regime [1]. The Wien approximation may

be written as

Iw(\T) = S-esit, (1)

where ¢ is the speed of light, h is Planck’s constant, k is Boltzmann’s constant, T is
temperature, and A is wavelength.

Lord Rayleigh and Sir James derived the Rayleigh-Jeans law which agreed with blackbody
long wavelength results, but gave an answer diverging to infinity when applied to the small
wavelength regime, leading it to be dubbed “The Ultra-Violet Catastrophe” [2]. The Rayleigh-

Jeans law may be written as

Ir(\,T) = . (2)




Together, the Rayleigh-Jeans law and the Wien approximation were capable of accurate
predictions when each was used in its respective region, however a complete solution derived
classically by treating light as a wave would remain elusive to theorists.

The solution to the blackbody problem came in 1899 when Planck discovered a formula
that would fit the experimental data for all wavelengths, and then set about finding a deriva-
tion for it. In the derivation he realized that he could recover his original formula if he modeled
the walls of the cavity as oscillators, and allowed their energy to be discrete integer multi-
pliers of some fundamental unit of energy which was proportional to the frequency. Planck’s

law is given as
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FIGURE 1: Plots of Wien Approximation (dashed line), Rayleigh-Jeans law (straight line),
and Planck’s Law (dotted line), versus wavelength (meters). Wien, Rayleigh-Jeans, and
Planck’s functions are in units of emitted power per unit area, per unit solid angle, per
unit wavelength.

Contrary to many popular accounts, Planck did not quantize light itself, and did not truly
develop the idea of quantization as it is known in the context of quantum mechanics [3]. Six
years later, in 1905, Einstein showed that the photoelectric effect could only be explained

if light itself was quantized and treated as a particle, a photon [4]. He then described the



photons themselves as having discrete energy values in the form of £ = hv. Planck’s theory
of discrete energy levels coupled with Einstein’s photon hypothesis led to the creation of

what we now know as the field of quantum mechanics.

“It cannot be denied that there is a broad group of facts concerning radiation, which show
that light has certain fundamental properties that can be much more readily understood from
the standpoint of Newtonian emission theory than from the standpoint of the wave theory.
It is, therefore, my opinion that the next stage of the development of theoretical physics will
bring us a theory of light which can be regarded as a kind of fusion of the wave theory and
the emission theory a profound change in our views of the nature and constitution of light
is indispensable.”

A. Einstein - 1909

1.2 The Emergence of Quantum Optics

The first 50 years of study of quantum mechanical interactions between light and matter was
considered a study of matter itself, and was typically described as atomic physics. This would
change in 1953 with the development of Microwave Amplification by Stimulated Emission
of Radiation (Maser)[5], and soon after in 1960 with Light Amplification by Stimulated
Emission of Radiation (Laser)[6]. Both the Maser and Laser are based on atomic stimulated
emission; first proposed by Einstein in 1917 to predict the ability of atoms in an excited
state to return to their ground state when stimulated by an external photon at a specific
frequency particular to the atom and the original excited energy level [7]. The research into
design and application of these new discoveries caused greater emphasis to be placed on the

study of the properties of light and the field soon came to be known as quantum optics.

1.2.1 The First Quantum Revolution

The understanding of electronic wavefunctions thanks to the development of quantum me-

chanics allowed for the complete understanding of the periodic table and all chemical reac-



tions. These developments were chiefly responsible for the creation of semiconductor materi-
als which in turn helped usher in what we know as the Information Age, a revolution which
has transformed the workplace, education, and communication abilities of every technologi-
cally developed society on the planet [8].

Much of the 20th century technological innovation has been focused on the attempt to
miniaturize technology; the ability to make a transistor smaller leads to cheaper and typically
faster electronics with less required resources. There are, however, limits at the bottom.
Moore’s law of computing development predicts the doubling of computer power every 18
months, leading to an exponential growth curve over the long-term. A fundamental problem
exists at the smallest scales where the laws of quantum mechanics trumps those of classical
mechanics. If the size of transistors are to be on the order of magnitude the same as hundreds
of atoms, the ability to manipulate those atoms in a precise way is needed.

The first quantum revolution brought us the semiconductor and the laser, both composed
of materials built by classical means but capable of exploiting useful quantum phenomena.
The next revolution in technology will hinge on our ability to manipulate new devices and
the way they are built at the smallest levels; a top-down design process completely in the

quantum realm.

1.2.2 The Impending Second Revolution

The newly emergent fields of quantum sensing and imaging utilize quantum entanglement —
the same subtle effects exploited in quantum information processing—to push the capability
of precision measurements and image construction using interferometers to the ultimate
quantum limit of resolution [9, 10]. Migdall at the US National Institute of Technology, for
example, has proposed and implemented a quantum optical technique for calibrating the
efficiency of photo-detectors using the temporal correlations of entangled photon pairs [11].
It was one of the first practical applications of quantum optics to optical metrology, and has

produced a technique to calibrate detectors without the need for an absolute standard.



These quantum effects can also be applied to increase the signal-to-noise ratio in an array of
sensors from Laser Interferometer Gravitational Wave Observatory (LIGO) to Laser Light
Detection and Ranging (LIDAR) systems, and to synchronized atomic clocks. Quantum
imaging exploits similar quantum ideas to beat the Rayleigh diffraction limit in resolution of
an imaging system, such as used in optical lithography. We present an introduction to these
exciting fields and their recent development.

Entanglement is the most profound property of quantum mechanical systems. First we
need to define entanglement. For simplification let us consider a system of two modes A and
B only. Mode A and B may describe the two spatial paths of a Mach-Zehnder interferometer
or two different polarization modes in an optical cavity. We can put a photon in either of
the modes or let them remain empty. Let us suppose a general state of mode A which is a
superposition of the two possible states, therefore we obtain «|0) , + |1) ,, where a and
may be complex and |a|* +|3|* = 1 is required for proper normalization of the state. We also
write a superposition for a general state for mode B, i.e., v|0) 5 + 6|1) 5 and |v|* + [6]* = 1.
Now consider the combined two-mode state [¥) = (|1),]0); 4+ |0) 4]1)5) /V/2, where either
a photon is in mode A or B. It is easy to see that this state cannot be decomposed into a
product state for mode A and mode B only, i.e., we cannot find any coefficients «, 3, vy, d such
that the equation (a|0), + B[1),) (7]0) 5 + 6[1) 5) = (|1)410) 5 + [0) 4]1) ) /V/2 is satisfied.
The state|V) is an example for a non-separable state. In general any non-separable state of
two or more systems is called entangled. Erwin Schrdinger was the first who coined the term
entanglement [12], although he is by far more prominent for his Schrdinger cat. Now we have
a proper definition for pure entangled states. But what is the definition for entangled mixed
states? Let us suppose two systems A and B that can be inn different mixed states p* and p?
with i = 1,...,n. A separable mixed state may be written asp = ), pipt ® pP where thep;
are probabilities. It is basically a linear combination of product states. Mathematicians call

this particular sum a convex combination. Now we can define entanglement for mixed states



in excluding just these separable states. We say, if the bipartite system cannot be written in
the above way we call it entangled [13].

Entanglement is not necessarily a useful physical quantity. Entanglement is usually dis-
cussed together with non-local correlations. These non-local correlations can be verified by
Bell experiments [14]. For a nice review of the current status of Bell experiments see, e.g.,
Ref.[15]. The violation of a Bell inequality by a specific quantum state is an indication that
the state is able to exhibit non-local correlations. It is known that for any entangled pure
state of any number of quantum systems one may violate a generalized Bell inequality [16].
An extension of this statement for mixed entangled states has not been found. Furthermore
Werner provided in 1989 an example of non-separable mixed states that do not violate a Bell
inequality [13]. This demonstrated that the class of entangled states decomposes into states
that are entangled but do not show non-local correlations and those that are entangled and
are non-local. The state |¥) is clearly entangled but only until very recently it has been
proven in several experiments that this state violates a Bell inequality [14]. Generalizations
of this state where the single photon is replaced by N photons will play an important role
in applications described later in this chapter. That also this generalization for N photons
in either of the modes violates a Bell inequality has been proven in Ref. [17] very recently.
This shows that the connection of entanglement and non-local correlations is still a very
hot research topic. Now we will introduce a much studied and very practical application, an

optical interferometer.

1.3 Quantum Optical Interferometry

We adopt the convention that the light field always picks up a 7/2 phase shift upon reflection
off of a mirror or off of a BS, and also no phase shift upon transmission through a BS. Then,
the two light fields emerging from the second BS out the upper port C are precisely 7 out of
phase with each other, and hence completely cancel out due to destructive interference (the

dark port). Consequently, the two light fields recombine completely in phase as they emerge



Mirror
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FIGURE 2: Schematic of a Mach-Zehnder interferometer. Laser light in port A is split by
the first 50-50 beam splitter, acquires a phase difference, and recombines at the second beam
splitter and emerges in ports C and D. We take a convention such that, for a balanced
interferometer, port C is the dark port. Hence, any light emergent here is indicative of an
arm displacement and can be detected by the two detectors and the analyzer.

from the lower port D and add up due to constructive interference (the bright port). Hence
for a balanced MZI all of the energy that comes in port A emerges out of port D and none out
port C. Clearly, any change in the path difference z away from the z = 0 balanced condition
will cause light to appear in the formerly dark port, and in this way we can measure z by
simply measuring intensities at the detectors.

The question is: How precise a measurement of the path difference  can we make? If the
light intensity incident on port A is I4, then in terms of the phase shift j the output-port

intensities can be written as,

Ic = I4sin? (¢/2) (4)

Ip = Lacos® (p/2). (5)



It is typical for the analyzer in Fig.2 to compute the difference intensity M = Ip — I (where

M stands for minus) such that,
M (p)=1Ip—Ic = 1Iscos(p). (6)

Since ¢/2 = kx/2 = mx/l, we have that I = 0 and Ip = I4 whenever /XA = 0,1,2,3, .
Hence, our ruler is the light wave itself and the tick marks are spaced the wavelength [ apart.
We may start with a balanced interferometer with equal arm lengths, z = 0 (and M = I,),
and then slowly move the upper mirror upwards increasing z. As we do we will break the
balance and begin to see light emerging from the formally dark port C (M decreases in the
plot).

At the point ¢ = 7/2, when I = Ip, then M = 0. Eventually we will see port C
attain maximum brightness and port D will go dark (M = —14). As we continue the mirror
displacement this process will reverse, as sine and cosine are periodic, and finally port C will
go dark again (M is maximum again with M = I4). At this point we can stop moving the
upper mirror and we are assured that now the path difference =z has gone from 0 to \. If
we take A = 1.0um, then it would seem we have a machine capable of measuring distances
to an accuracy of about A\ = 1.0um. This is consistent with the Rayleigh diffraction limit,
typically invoked in classical optics.

Let us now balance the interferometer such that we start at the point ¢ = 7/2, when
Ic = Ip, and hence M = 0 in Fig.3. Note this is where the curve crosses the horizontal
axis and the slope of the M-curve is steepest. If we call the horizontal displacement change

Ay, then we can see this is related to the vertical intensity change AM. For small changes

we may approximate this relation using differentials, that is, AM = I,4Ayp , or,

AM  OM

= —],si 7

AQO a(p A S (@) ) ( )
which may be written as

AM AM
Ap = = ) 8
4 OM/0p  Iasin(yp) (8)
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FIGURE 3: Typical Mach-Zehnder analyzer. The difference intensity M is plotted as a
function of the phase shift ¢ = kx, where z is the arm displacement to be measured. The
minimal detectable displacement, Ax, is limited by the fluctuations in the optical intensity,
AM These fluctuations are quantum mechanical in nature.

The quantity OM/Jp is the slope of the curve, which is largest at the crossing point,
implying our minimum detectible phase Ay is smallest there, via Eq. (8). At the crossing
point ¢ = 7/2 and sin(n/2) = 1, and so this relation would seem to indicate that if we
can measure the intensity displacement AM with infinite precision (AM = 0), we can
measure the phase (and hence distance) with infinite precision (A = 0. In practice, various
technical imperfections tend to set the limit for the finite precision AM [18]. However, as far
as classical electromagnetic waves are concerned, nothing fundamentally prevents AM being
zero. Hence, it would appear that if we try hard, we could detect any amount of phase shift

no matter how small it is.

1.3.1 The Shot-Noise Limit

The problem is that the simple classical arguments we used above do not take into account
the effects of quantum mechanics. Specifically it does not take into account the fact that the
intensity of the light field is not a constant, which can be measured with infinite precision,
but that it fluctuates about some average value, and those fluctuations have their origin

in the vacuum fluctuations of the quantized electromagnetic field [19, 20]. According to



quantum mechanics, optical intensity can never be measured with infinite precision. Hence
the uncertainty, in the red curve of Fig.3, always has some finite value, indicated by the box
of height AM. The intensity displacement M can never be measured with infinite precision
and has a fundamental uncertainty AM, and therefore the consequent phase ¢ will always
have its related uncertainty Ay, which is the width of the box. These fundamental quantum
intensity fluctuations suggest that there is a Heisenberg uncertainty principal at work, which
in our example implies that the intensity I and the phase ¢ cannot both simultaneously be
measured with infinite precision.

For a quantum analysis of this phenomenon, we introduce the mean number of photons
in the laser field as the dimensionless quantity n, and note that the intensity [ is then
proportional to n for a steady-state system. If we denote the fluctuation in the phase as
Ay and that in the intensity as An, we can then write down the Heisenberg number-phase

uncertainty relation as [21, 22, 23]

AnAp > 1. (9)

This is closely related to the better know energy-time uncertainty principle AEAt > h,
where AFE is the uncertainty in the energy, At is the uncertainty in the time, and A is Dirac’s
constant (Planck’s constant divided by 27). For a standing, monochromatic, electromagnetic
wave we have E = hnw, where w is the frequency. This is just the energy per photon multi-
plied by the average number of photons. Since there is no propagation for a standing wave we
have ¢ = wtas the accumulated phase at any point. Approximating both of these expressions
with differentials gives AE = hAnw and Ap = wAt. Inserting these two expressions into
the energy-time uncertainty relation yields the number-phase relation, Eq. (9).

For a laser beam, the quantum light field is well approximated by a coherent state, denoted
as |a), where the complex number a = || €’ is proportional to the electric field amplitude

E such that |a|* = n, the latter of which we recall is the dimensionless field intensity [19].

10



This is the dimensionless quantum version of the classical relation |E|* = I = Iyn. The full
dimensional form is E = FEyy/n where Iy = |Eo|* = %, which in SI units, & is Dirac’s
constant, g is the free-space permittivity, and V' is the mode volume for the electromagnetic
field. Hence I is the intensity of a single photon. The fluctuations are typically represented in
a phasor diagram as shown in Fig.4. Here the phase is the polar angle ¢ is measured counter-
clockwise off the horizontal axis. The radius from the origin to the center of the coherent-state
disk is R = |a|* = n. The diameter of the disk d is on the order of d = An = \/n. From simple

geometry, we can then approximate d = RAyp, where Ay is the uncertainty or fluctuation

in the angular ¢ direction.

Classical State Coherent State

Ap=1/n

Squeezed State

FIGURE 4: Phase-space diagram showing quantum fluctuations. Fluctuations in the radial
direction correspond to intensity and those in the angular direction phase. A coherent state is
a disk and has fluctuations equal in intensity and phase (a true classical state is a point and
has no fluctuations). Also shown is a phase squeezed state, which has fluctuations decreased
in the angular (phase) direction, at the expense of increase fluctuation in the radial (intensity)
direction. Such a phase-squeezed state can be used to beat the shot-noise limit.

11



Combining all this we arrive at the fundamental relationships between number (intensity)

and phase uncertainty for a coherent-state laser beam,
AnAp =1, (10)

An = +/n, (11)

11
Apgy, = — = —=
PN T An T U

(12)

The first relation, Eq.(10), tells us that we have equality in Eq.(9); that is a coherent
state is a minimum uncertainty state (MUS). Such a state saturates the Heisenberg number-
phase uncertainty relation with equality. This is the best you can do according to the laws
of quantum mechanics. The second relation, Eq. (11), describes the fact that the number
fluctuations are Poissonian with a mean of n and a deviation of An = y/n, a well-known

property of the Poisson distribution and the consequent number statistics for coherent-state

laser beams [20]. Putting back the dimensions we arrive at,

I
Apsn, = 4/ 707 (13)

which is called the shot-noise limit (SNL). The term shot noise comes from the notion that
the photon-number fluctuations arise from the scatter in arrival times of the photons at
the beam splitter, much like buckshot from a shotgun ricocheting off a metal plate. We
can also import the SNL into our classical analysis above. Consider Eq. (8), where we now
take Iy = Ign, AM = \/Iyn, and ¢ = 7/2. We again recover Eq. (12) for the phase
uncertainty. Hence quantum mechanics puts a quantitative limit on the uncertainty of the
optical intensity, and that intensity reflects itself in a consequent quantitative uncertainty of
the phase measurement.

In classical electromagnetism, we can also represent a monochromatic plane wave on the
phasor diagram of Fig.4 — but instead of a disk the classical field is depicted as a point.

The radial vector to the point is proportional to the electric field amplitude £ and the phase

12



angle corresponds to the classical phase of the field. The phase-space point represents the
idea that, classically, we can measure number and phase simultaneously and with infinite
precision. As we have seen above, quantum mechanically this is not so. The Heisenberg
Uncertainty Principle (HUP) of Eq. (9) tells us that both phase and intensity cannot be
measured simultaneously with infinite precision. For a minimum uncertainty state (MUS),
such as a coherent state |a), we have equality in the HUP, as given in Eq. (10). Then,
combined with the Poissonian-statistical distribution of photon number for a coherent state,

Eq. (11), we arrive at the shot-noise limit.

1.3.2 The Heisenberg Limit

In 1981 Carlton Caves first proposed the idea of using non-classical states of light — the
so-called squeezed states — to improve the sensitivity of optical interferometers to below
even the shot-noise limit [72]. This notion came as somewhat of a surprise to the interfer-
ometer community, as it was thought at the time that the shot-noise limit was the ultimate
limit on sensitivity as imposed by quantum mechanics. However, there are other minimum
uncertainty states besides the coherent state. The easiest way to see this is to look again at
the representation of the coherent state as a disk in phase space (Fig.4). The fact that it
is a disk indicates that the fluctuations are the same in all directions, and that the area of
the disk is a constant A. The pictogram and the HUP then tells us that any quantum state
must have an area greater or equal to A, and that the MUS has an area equal to A. This
is, for a coherent state, equivalent to stating the three conditions of Egs. (10). However, we
can relax Eq. (11) and (12), while still maintaining the HUP of Eq.(10).

That is, we can decrease Ay, at the expense of increasing An at the same time, so that
the product ApAn = 1 remains constant and the area of the disk remains the same value
A. Pictorially this amounts to squeezing the coherent-state disk in the angular direction,
while allowing it to expand in the radial direction, as shown in Fig.4. The important point

is that the area A of the ellipse remains unchanged so that the HUP is obeyed. However,
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we can decrease phase uncertainty at the expense of increasing the number uncertainty.
Furthermore, it is possible to produce such squeezed states of light in the laboratory, using
nonlinear optical devices and ordinary lasers [25, 26, 27, 28|.

Now the question is: What is the most uncertainty we can produce in photon number,
given that the mean photon number n is a fixed constant, and that we still want to maintain
the MUS condition— that the area of the ellipse remains a constant A. Intuitively one cannot
easily imagine a scenario where the fluctuations in the energy, AF = hwAn, exceeds the
total energy of the laser beam, E' = hwn. Hence the best we can hope to achieve is AE = F
or, canceling out some constants, An = n. Inserting this expression in the HUP of Eq.(10),

we obtain what is called the Heisenberg limit:

1

A = . 14
¥YHL n (14)
Putting back the dimensions we get
1
Apnr = 70- (15)

This is exactly the limit one gets with a rigorous derivation using squeezed light in the limit
of infinite squeezing [29, 30]. It is called the Heisenberg limit as it saturates the number-
phase HUP, and also because it can be proven that this is the best you can do in a passive
interferometer with finite average photon number n. Converting to minimum detectable
displacement we get,

szz
n

I
_xlo. 1
AT (16)

where I is the single photon intensity, defined above.

So far, we have considered the situation that we send light in port A and analyzed what
came out ports C and D for the MZI shown in Fig. 1. What about input port B? Classically
there is no light coming in port B, and hence it is irrelevant. But, it is not so. In his 1981

paper, Caves showed that no matter what state of the photon field you put in port A, so
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long as you put nothing (quantum vacuum) in port B, you will always recover the SNL. In
quantum electrodynamics, even an interferometer mode with no photons in it experiences
electric field fluctuations in that mode.

In the MZI these vacuum fluctuations have another important effect; at the first BS they
enter through port B and mix with whatever is coming in port A to give the SNL in overall
sensitivity. It becomes clear then, from this result, that the next thing to try would be to
plug that unused port B with something besides vacuum. It was Caves’ idea to plug the
unused port B with squeezed light (squeezed vacuum to be exact). That, with coherent laser
light in port A as before — and in the limit of infinite squeezing — then the SNL rolls over
into the HL.

In the laboratory, however, infinite squeezing is awfully hard to come by. With current
technology [31, 32, 33], the expected situation is to sit somewhere between the shot-noise limit
(SNL) and the Heisenberg limit (HL) but a lot closer to the former than the latter. Recent
analyses by a Caltech group, on exploiting squeezed light in LIGO, indicates a potential
for about a one-order-of-magnitude improvement in a future LIGO upgrade [34]. Not the
twelve orders of magnitude that was advertised above, but enough to allow the observatory
to sample about eighty times the original volume of Space for gravitational-wave sources.
That, for LIGO, is a big deal.

In Chapter 3 we will show specific quantum states capable of achieving the Heisenberg

limit, as well as others that approach it but also perform well when undergoing photon loss.

1.4 Quantum Imaging

Quantum imaging is a new sub-field of quantum optics that exploits quantum correlations,
such as quantum entanglement of the electromagnetic field, in order to image objects with
a resolution (or other imaging criteria) that is beyond what is possible in classical optics.
Examples of quantum imaging are quantum ghost imaging, quantum lithography, and sub-

Rayleigh imaging [74, 75]. In 2000 it was pointed out that NOON states had the capability
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to beat the Rayleigh diffraction limit by a factor of N. This super resolution feature is due
to the high-frequency oscillations of the NOON state in the interferometer, as illustrated in
Fig. 4. For the quantum lithography application, the idea is to realize that if one has an
N-photon absorbing material, used as a lithographic resist, then these high-frequency oscil-
lations are written onto the material in real space and are not just a trace on an oscilloscope.
Mathematically, the N-photon absorption and the N-photon detection process have a similar

structure, that is,

(NOON] (a")™ (&)™ INOON) = 1 + cos (N) (17)

where @ and a'are the mode annihilation and creation operators. From Fig. 4, we see in the
green curve this oscillates N times faster than if we were using single photons, or coherent
light, as in the red curve. Recall that, for our MZI, we have ¢ = kx = 27z /), where z is
the displacement between the two arms. For lithography z is also the distance measured on
the photographic plate or lithographic resist. If we compare the classical resolution to the

NOON resolution we may write, ¥noon = N @elassical, Which we can solve for,

/\c assica
fassical| (18)

ANOON = N

Written this way, we can say the effective wavelength of the N photons bundled together
N at a time into the NOON state is N times smaller than the classical wavelength. This is
another way to understand the super-resolution effect. The N entangled photons conspire
to behave as a single classical photon of a wavelength smaller by a factor of N [35]. Since
the Rayleigh diffraction limit for lithography is couched in terms of the minimal resolvable
distance Az = A\ classical, then we have Azyoony = Anoon = Acasssicat/N-

Another interesting application is so-called ghost imaging. This effect exploits the temporal
and spatial correlations of photon pairs, also from spontaneous parametric down conversion,
to image an object in one branch of the interferometer by looking at correlations in the

coincidence counts of the photons [36]. There is no image in the single-photon counts in
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either arm, but only in the double photon counts in both arms. The image is in a sense
stored non-locally.

A particular application of this more general idea of quantum imaging has been seen in
quantum coherence tomography [37]. In this experiment, they image a phase object placed
in one arm of the interferometer, using entangled photons in an N = 2 NOON state. They
see not only the factor of two improvement in resolving power, predicted by Eq. (18), but
also as a bonus they get a dispersion cancelation in the imaging system due to frequency
entanglement between the photons.

Current experiments on NOON states have used rather dim sources of entangled photons,
from UV pumped crystals in a spontaneous parametric down conversion (SPDC) set up [38].
For bright sources of NOON states, one can turn to optical parametric amplifiers (OPA),
which is the same setup as SPDC, but in which we crank up the pump power [39]. In this
regime of high gain, the creation of entangled photon pairs occurs, but we have many, many,

pairs and the output can be written,

[e.9]

[OPA) = > anln) 4|n) . (19)

n=0
where the probability of a large twin-number state |N) ,|N) , is given by |ax|?, which can be
quite large in the limit of high pump powers. Passing the OPA state through a 50-50 beam

splitter, gives the generalized Hong-Ou-Mandel effect, term by term, so that we get,

JOPA) = 33" coml2n — 2m) |2m), (20)

n=0 m=0

where again the coefficients c¢,,,, can be quite large for high pump powers. Taking the term
n = 1 we immediately get the N = 2 NOON state from the regular Hong-Ou-Mandel
effect. For larger n =1, we find that there is always a large NOON component along with
the non-NOON. For an N = 2 absorber, the visibility of the N = 2 NOON oscillations

was predicted to saturate at a visibility of 20% [40, 41]. This 20% visibility is more than
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enough to exploit for lithography and imaging, and has recently been measured in a recent
experiment in the group of DeMartini in Rome [42], in collaboration with our activity at

Louisiana State University.

1.5 Quantum Computing

The main focus within the field of quantum technologies has undoubtedly been quantum
computing. Starting in 1994, with Peter Shor’s discovery that quantum computers could
break public-key cryptography systems in polynomial time rather than the conventional
exponential time [43], researchers have focused their attention on how to build both the
hardware and software for such a machine. While the idea of encoding information with the
rules of quantum mechanics had been around since 1984 [44], Shor’s paper was the first to
show how to decode classically encrypted material relatively quickly by nonclassical means;
a revolutionary idea that has major security and national intelligence implications. If Shor’s
algorithm was implemented by a hostile entity, private and commercial internet traffic would
become very vulnerable to eavesdropping and disruption. Understandably, research dollars
have poured in from intelligence agencies hoping to claim such power as their own.

There are numerous competing methods for building the physical implementation of a
quantum computer; they include: superconductors, trapped ions, optical lattices, quantum
dots, nuclear magnetic resonance (NMR), quantum optics, Bose-Einstein condensates, and
even a diamond-based implementation [45]. In this thesis we will restrict ourselves to matters
associated with quantum optics based computing. In this picture, a quantum computer would
ideally be built with single photon on-demand sources, high efficiency single photon detec-
tors, low-loss scalable optical circuits for photons to traverse, and minimal environmental
interaction.

Any computer, be it classical or nonclassical, needs a mechanism by which to manipulate
data. This mechanism is termed a logic gate; a conditional set of instructions that changes

input data into desired output data in the course of performing a task. For classical com-
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puters logic gates are encoded electronically using transistors, a method not suitable for our
nonclassical computer. A quantum optical logic gate needs to follow the rules of quantum
mechanics, meaning it must evolve in a unitary fashion and in such a manner as to not
introduce decoherence to the system. Any device that behaves in a unitary fashion may
be mathematically expressed as a unitary matrix, which may then in turn be physically
expressed by a series of optical elements including interferometers and beam-splitters. In
Chapter 2 we will explore the process behind the discovery of such matrices, and how they
are optimized for maximum efficiency. The creation and optimization of unitary matrices
which represent physical quantum logic gates lies at the very heart of the ongoing task to

create a scalable, fault-tolerant quantum computer.

19



2 Engineering Quantum Optical Logic (GGates
For Quantum Computing

2.1 Linear Optical Logic Gates

Linear optics has become a leading contender for the method of choice in building a quantum
computer, alongside super-conducting quantum dots and ion trapping, in large part due to
the work of Knill, Laflamme and Milburn (KLM)[46] and their scheme for designing non-
determinate quantum logic gates using projective measurement. Their scheme was the first
to show how one can build elementary quantum gates with only linear optical elements, a
task much easier than using nonlinear optical elements and their demand of large photon
flux to produce a relatively small amount of output. The tradeoff in this scheme is that the
gates can only be made with a certain probability of correctly working, i.e., they are non-
deterministic. Therefore, the main goal in designing a linear optical logic gate is to figure
out how to achieve a design with the highest success probability possible, and do so while
maintaining a high level of fidelity.

A linear optical quantum state generator (LOQSG) can simply be viewed as a unitary
operation which transforms an input state into a desired output state. The main aim of
designing a LOQSG is to obtain a unitary matrix which accomplishes the desired trans-
formation and whose elements can then be realized with linear optical devices within the
mentioned KLM scheme, such as beamsplitters and phase shifters [47, 48]. In this chapter we
will describe work done using genetic algorithms with a simulated annealing process that was
used to find and optimize suitable unitary matrices. We begin by first testing our method
on the non-linear sign gate, chosen because its maximum success probability is known to be
1/4 without any special feed-forward information [49, 50]. We then attempt to obtain a new
global maximum for success probability with the case of the controlled-sign (CZ) gate, as it

is as of yet theoretically unknown what the maximum is.
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2.2 LOQSG Formalism

An LOQSG can be visualized as in Fig. 5. We start with NV input channels which are
composed of computational input states and additional ancilla channels. We want these
inputs to be transformed to our expected output by means of projective measurement on
the remaining ancilla ports. This process can be done by a linear optical device which we call
a LOQSG [51]. This device is an N dimensional unitary transformation. When a projective
measurement determines a particular pattern of photons measured in some M < N of
the modes, it is considered successful, which leads to a preparation of the desired state in
the remaining modes. Therefore, the device is probabilistic and it can fail in two aspects.
Firstly, the projective measurement does produce the expected pattern, which leads to a
failed preparation of the output state. This can be improved by manipulating the unitary
transformation in order to increase the success probability of the device. Secondly, it does not
provide the expected output state in the computational channels even when the measurement
produces the pattern particular to the transformation we’re trying to induce. This type of
failure is due to the fidelity of the result being less than unity. Again, this is a function of
the unitary transformation process and different unitary matrices will each have their own
respective fidelity value. Due to our inability to measure the computation output during the
transformation process, it is very important that we make our fidelity numerically as close
to one as possible.

There are two types of problems that can be formulated around the concept of an LOQSG,
forward and inverse. The forward problem can be stated as the following: given the unitary
matrix U and a known input state, which output states can be generated for different
projective measurements? This question is equivalent to the problem of finding the effective
nonlinearity generated by a given projective measurement and was addressed in [54, 49].
The inverse problem: given an input state, a projective measurement, and a target output

state, is it possible to determine the intermediate unitary matrix U required to perform the
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FIGURE 5: An generalized Linear Optical Quantum State Generator. It exploits linear
operations, which eventually can be represented as a unitary transformation, and projective
measurements to convert an input state into a target output state

necessary unitary transformation of the LOQSG? In the following work we developed ways
to solve the second problem numerically using an annealing genetic algorithm that would
identify an optimum Unitary transformation matrix which would simultaneously have the

highest possible success probability while maintaining a fidelity very close to one.

2.3 Unitary Transformation Process

The linear optical measurement-assisted transformation works as follows. We start from
a computational input state |¢{) of N — M modes, combined with ancilla state |[¢7) in
M modes so that the input state is written as 