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Abstract

One important problem in quantum optics is to resolve an extremely small change of phase shift.

The complementarity between photon number and phase sets an ultimate limit, the so-called

Heisenberg limit, on the phase measurement sensitivity. The precise phase estimation has many

technological applications, such as optical gyroscopes, gravitational wave detection, quantum

imaging and sensing.

In this thesis I show that the utilization of the parity measurement in the optical interferometry

is actually applicable to a wide range of quantum entangled input states. Comparison of the

performance of the various quantum states then can be made within such a unified output

measurement scheme. Based on such a universal detection scheme, we present a comparison of

the phase sensitivity reduction for various quantum states of light in the presence of photon loss.

I also provide a simple condition that could be used to check whether an arbitrary state can

achieve the Heisenberg limit independently of the detection scheme. It implies that the fidelity

between the two output states with zero phase and minimal detectable phase applied respectively

should significantly different from unity as the minimal phase shift scaling as 1/〈N〉, whereas the

average number of input photons 〈N〉 goes to infinity.

Next I give several measures to characterize the which-way information in the interference

experiment. We define a new distinguishability associated with the fidelity between two density

matrices to measure the which-way information. We demonstrate that the changes of mutual

entropy as well as the entanglement of formation of the whole system, i.e. the physical system

plus the which-way detector can also be used to describe the which-way information. With such

quantities, we show that as the fringe visibility of the interference pattern gets larger, the less

which-way information is obtained.

Finally, I show that coherent light coupled with photon number resolving detectors can provide

a super-resolution much below the Rayleigh diffraction limit, with sensitivity no worse than

shot-noise in terms of the detected photon power. This scheme would have applications to laser

vii



radar, given the difficulty in making entangled states of light, as well as their susceptibility to

atmospheric absorption.
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Chapter 1: Introduction

The birth of quantum mechanics was marked with Planck’s assumption of the discrete energy

levels of simple harmonic oscillators in the walls of black-body that was necessary to explain

the black-body radiation spectrum. The generalization of these ideas led Einstein to explain the

photoelectric effect, and to introduce the photon concept by analogy with particle. Then Dirac

associated each mode of the radiation field with a quantized simple harmonic oscillator, which

is the essence of the quantum theory of radiation or quantum optics, to combine the wave- and

particle-like aspects of light [1, 2]. Through this way the radiation field or photon field is capable

of explaining all interference phenomena as well as showing the excitation of a specific atom along

a wave front absorbing one photon of energy. In this new formalism, photon is interpreted as the

excitation of an appropriate normal mode of electromagnetic field. The old fashioned content of

photon as a real particle like electron is thus given up.

A consequence of quantum optics is the zero-point fluctuations of photon fields. These fluc-

tuations have no classical analog and are responsible for many phenomena in quantum optics.

Practically a semiclassical theory of atom-field interaction in which only the atom is quantized

and the radiation field is treated classically, with zero-point fluctuations, can account for many

phenomena in modern optics, such as spontaneous emission, the Lamb shift, and the Casimir

effect. However, quantum beat phenomena, quantum eraser, and the production of two-photon

entangled states from a three-level atom in cascade configuration provide simple examples in

which the results of quantum optics differ qualitatively from those obtained via a semiclassical

theory. Further support of quantum optics comes from the experimental observations of nonclas-

sical states of photon field, such as squeezed states, photon anti-bunching, and number states in

cavity quantum electrodynamics [3].

The implementation of quantum optics in real situation is best summarized by Lamb [4]: Begin

by deciding how much of the universe needs to be brought into the discussion. Decide what normal

1



modes are needed for an adequate treatment of the problem under consideration. Find a suitable

approximation for the normal mode; the simpler, the better. Decide how to model the light sources

and work out how they drive the wave function for the system. No more and no less!

All physical predictions thus obtained must be backed by measurements on certain real param-

eters of the investigated system. In quantum mechanics the description of a state of a physical

system is radically different from its classical counterpart. A quantum state has an inherent prob-

ability, due to which an ultimate limit, i.e. the so-called Heisenberg limit (HL), on the sensitivity

of all measurements are imposed. So it is more appropriate to estimate the parameters of the

system via the results of measurements. In most cases, the adopted measurement methods fail

to reach these limits. Conventional bounds to the sensitivity of measurements such as shot-noise

limit (SNL) are not as fundamental as HL, and can be beaten through quantum strategies such

as squeezing and entanglement [5].

Quantum optical metrology attempts to reach HL using photons. It is the quantum entan-

glement between the photons in various modes that react to the zero-point fluctuations in a

correlated way and beat the SNL. The physical parameter that is of primary concern in the

context of quantum optical metrology is the optical phase. Quantum mechanically an observable

must be described by a Hermitian operator. However there is no Hermitian phase operator in

quantum mechanics. This calls for an estimation scheme of phase through some intermediate

methods. An important method that can detect the difference of phase shifts is to use interfero-

metric phenomenon. This is can be achieved with Mach-Zehnder interferometer (MZI), as shown

in Fig. 1.1, because the output signal is sensitive to the relative phase shift between two fields

traveling down separated paths. Its ability to resolve extremely small relative phase shifts in the

two paths finds applications in optical gyroscopes [6], gravitational wave detectors [7], quantum

imaging and sensing [8, 9]. It is not only of great importance in such technological advances,

but also a fundamental problem in quantum mechanics because phase measurement sensitivity is

fundamentally limited by the phase uncertainty introduced by the fluctuations of photon fields in

the two input ports. For separated single photons or coherent states, the phase sensitivity subject

to the shot-noise limit ∆ϕ ∼ 1/〈N〉1/2, where 〈N〉 is the average photon number used in the

2
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FIGURE 1.1. Schematic of MZI, which consists of two 50-50 beam splitters. The symbols a, b represent
the photon annihilation operators. The angle ϕ denotes the relative phase difference between the two
arms. Note that the NOON state is inserted to the right of the first beam splitter, and other states to
the left.

given experiment. To measure a small phase shift with high precision, the measurement time or

the strength of the incident laser resource has to be increased to a huge level. As we said before,

a reasonable way to beat the shot-noise limit is to entangle the photons together, due to the

fact that entangled states react to the fluctuations in a correlated way. Caves first showed how

to beat SNL by squeezed states [10]. The complementarity between photon number and phase

sets a fundamental limit of ∆ϕ ∼ 1/〈N〉, i.e. HL, which represents an improvement of 〈N〉1/2

over the shot-noise limit. For example the states such as |N,N〉, α|N,N〉+β|N +1, N − 1〉 with

α2 + β2 = 1, and (|N, 0〉 + |0, N〉)/√2 with |Na, Nb〉 = |Na〉|Nb〉 and |Na(b)〉 being the number

state of the annihilation operator a (b), which are also known as twin- [11, 12], Yurke- [13], and

NOON- [14, 15] states respectively, can be inserted into the input ports of MZI to reach HL. The

aim of this dissertation is to discuss several strategies and applications for phase estimation in

quantum optics to achieve the HL. In Chapter 2, I will briefly review some basics of quantum

optics that are pertinent to the subsequent chapters.

The utilization of above quantum correlated input states are accompanied by various output

measurement schemes. In some cases the conventional measurement scheme of photon-number

difference is used. A certain probability distribution, a specific adaptive measurement [16, 17],

and the parity measurement (P ), which gives “+” or “−” for even or odd photons at one output

port, are used in other cases. In optical interferometry, Gerry first showed the use of the par-

ity measurement for the NOON state to reach the exact HL [18]. Later the parity measurement

scheme was suggested to be used for the twin state inputs by comparing the quantum state inside

the interferometer with the NOON state [19]. The extension to all the known entangled states

of photon then promotes the parity measurement to a universal detection scheme for quantum

3



interferometry. Furthermore, it leads to a great reduction of the efforts in precise quantum state

preparation as well as in various optimization strategies involving quantum state engineering

for the HL interferometry. In chapter 3, I will show that the utilization of the parity measure-

ment in HL interferometry is actually applicable to a wide range of quantum entangled input

states. Comparison of the performance of the various quantum states then can be made within

such a unified output measurement scheme. Then, based on such a universal detection scheme

comparisons of performance of various quantum states can be made in a common ground. As an

example, we presented a comparison of the phase sensitivity reduction for various quantum states

of light in the presence of photon loss. The calculations reveal that in the parity measurement

scheme the NOON states show the best performance for phase detection and can still beat SNL

if the transmittance of interferometer is not too small and the photon number is not too large.

However, it needs to be pointed out that the correlated states used in [20] only have real

coefficients, such as the particular Yurke state (|N,N〉 + |N + 1, N − 1〉)/√2. If the imaginary

coefficients are allowed, the phase sensitivity with parity measurement will blow up at some

points such as the Yurke state with β/α = i. It is thus convenient to provide a condition that

could be used to check whether a given state can achieve HL in principle. In [21, 22, 23] a lower

bound for the minimum detectable phase shift based on the Cramer-Rao bound is given. In

Chapter 4, I will show that the condition for one input state to reach HL can be expressed as the

overlap between two possible output states with zero phase and the minimal detectable phase

∆ϕ applied respectively should be less than 1 as ∆ϕ ∼ 1/〈N〉 and 〈N〉 → ∞, i.e.

lim
〈N〉→∞

|〈Ψout(0)|Ψout(∆ϕ)〉|∆ϕ→1/〈N〉 < 1. (1.1)

This condition gives more information than the Cramer-Rao bound, and applies to the single

run of detection of phase shift as well as multiple runs. Here the two states should be understood

as the output states for the overall measurements. It thus provides us a simple condition to

determine whether a given state can reach HL or not.

MZI can also be used to illustrate the complementarity principle [24], which states that quan-

tum systems inherit equally real but mutually exclusive properties. For example, an electron can

behave either like a particle or like a wave depending on the experimental situation. The situa-

4



tions “perfect fringe visibility and no which-way information” and “full which-way information

and no fringes” are well known for MZI. The intermediate stages were studied in [25], where a

quantity called distinguishability (D) to quantify the which-way information as well as the fringe

visibility (V) for interference pattern is defined. An inequality D2 + V2 ≤ 1 is proved and thus

the complementarity principle is verified for the intermediate cases. To study the intermediate

cases from other points of view. In chapter 5, I will use three different measures, i.e. fidelity

between two parts of the final density matrix of which-way detector, the change of the mutual

entropy, and the entanglement between the particle and the which-way detector, to express the

which-way information. With such quantities, I will give new proofs of the above inequality, and

reinstate the notion that the complementarity principle is actually one side of the entanglement

in the quantum system [26].

There has been much recent interest in quantum optical interferometry for applications to

sub-wavelength imaging and remote sensing in laser radar (LADAR) [27]. Ever since the work

of [28], it has been realized that by exploiting quantum states of light, such as NOON states, it

is possible to beat the Rayleigh diffraction limit in imaging and lithography (super-resolution)

while also beating SNL in phase estimation (super-sensitivity). However such quantum states of

light are very susceptible to photon loss [29]. Recent work has shown that in the presence of high

loss, the optimal phase sensitivity achieved is always ∆ϕ = 1/〈N〉1/2, where 〈N〉 is the average

number of photons to arrive at the detector [30]. These results suggest that, given the difficulty

in making quantum states of light, as well as their susceptibility to loss, the most reasonable

strategy for quantum LADAR is to transmit coherent states of light to maximize sensitivity [27].

It is well known that such an approach can only achieve at best shot-noise limited sensitivity [10].

However, such a conclusion leaves open the question as to what is the best detection strategy

to optimize resolution. Recent experimental results and numerical simulations have indicated

that such a coherent-state strategy can still be super-resolving, provided a quantum detection

scheme is employed [31]. In chapter 6, I will derive a quantum detection scheme inspired by

parity measurement, that is super-resolving, and which can be implemented with photon-number-

resolving detectors. The proposed scheme exploits coherent states of light, is shot-noise limited

5



in sensitivity, and can resolve features by an arbitrary amount below the Rayleigh diffraction

limit. This scheme would have applications to quantum optical remote sensing, metrology, and

imaging.

In chapter 7, I will discuss some further problems related with the phase estimation in quantum

optics.
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Chapter 2: Some Basics of Quantum Optics

2.1 A Short Review of Quantum Mechanics

Quantum Mechanics divides the world into two parts, commonly called the system and the

observer. Except at specified times the system and the observer do not interact. An interaction

at those specified times is called a measurement. Quantum Mechanics predicts all the information

that the observer can possibly obtain about the system. This information can be represented in

different ways. It is often represented in terms of a wave function. A measurement changes the

information an observer has about the system and therefore changes the wave function of the

system. The basic assumptions of non-relativistic quantum mechanics are [32]:

X The full knowledge of a system that an observer can possibly obtain is characterized

by a pure quantum state |Ψ〉 in the Hilbert space H with 〈Ψ|Ψ〉 = 1.

X If |Ψ1〉 and |Ψ2〉 are two possible quantum states, then |Ψ〉 = c1|Ψ1〉 + c2|Ψ2〉 is

also a possible one.

X The measurement of an arbitrary physical quantity is described by a Hermitian

operator A. The result of a measurement belongs to a set of eigenvalues {αn}. Each

eigenvalue is associated with an eigenstate |n〉, namely A|n〉 = αn|n〉.

X If the measurement corresponding to A is applied on the quantum state |Ψ〉 =

∑
n cn|n〉 associated with

∑
n |cn|2 = 1, the probability of obtaining result αn is |cn|2.

Therefore, the average value of A is given by 〈A〉 = 〈Ψ|A|Ψ〉. After the measurement

the quantum state becomes to be |n〉 immediately.

X The conjugate canonical observables {p, q} satisfy the commutation relation [p, q] =

−i~.

X The evolution of quantum state is governed by the Schrödinger equation:

i~
∂

∂t
|Ψ〉 = H|Ψ〉.
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Here H is the Hamiltonian of the system.

X For a system with identical Bosons or Fermions, its quantum state is symmetric

or anti-symmetric under the exchange of any two particles.

In real cases a system under investigation is usually surrounded by another external system,

such as the thermal environment. The two systems as a whole are described by a pure state,

but the system to which we can access is not pure any more. Formally the density matrix is

introduced to characterized our incomplete information of the investigated system. The density

matrix should satisfy the following properties constrained by physical requirements:

(1) ρ is positive, ρ > 0.

(2) ρ is Hermitian, ρ† = ρ.

(3) ρ is normalized, trρ = 1.

These three properties guarantee that a density matrix can be immediately decomposed as ρ =

∑
r pr|r〉〈r|, where |r〉 is the eigenvector of ρ with eigenvalue pr. Hence we may interpret ρ as

describing an ensemble of pure quantum states, in which the state |r〉 occurs with probability

pr. Obviously we have 0 ≤ pr ≤ 1 and
∑

r pr = 1. Moreover one can see ρ2 − ρ ≤ 0, where the

equal sign is valid iff there is only one term in the above summation, i.e. ρ = |Ψ〉〈Ψ|, which

corresponds to a pure state. Otherwise the density matrix is a description of a mixed state. The

expectation value of any observable A =
∑

n αn|n〉〈n| on the system can be expressed as

〈A〉 =
∑

r

pr〈r|A|r〉 = trAρ. (2.1)

The final state after the measurement is given by

ρ′ =
∑

r

pr

∑
n

|〈n|r〉|2|n〉〈n|

=
∑

n

|n〉〈n|
(∑

r

pr|r〉〈r|
)
|n〉〈n|

=
∑

n

EnρE†
n, (2.2)

where the projector En is defined as En = |n〉〈n| and E2
n = En. This formalism of projective

measurement is called Von Neumann scheme, which is just a specific case of the generalized
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measurement theory. In the generalized measurement theory, each outcome has a probability

that can be expressed as

pr = trFrρ, (2.3)

where the non-negative operator set {Fr = Ω†
rΩr}, namely positive operator-value measure

(POVM), forms a partition of unity,
∑

r Fr = 1. A general POVM changes a quantum state

ρ in the following way,

ρ → ρ′ =
∑

r

ΩrρΩ†
r. (2.4)

On the other hand, according to Neumark’s theorem [33], a POVM can be realized by extending

the Hilbert space to a larger space, and performing projective measurement in the larger space.

As for the time evolution law of density matrix of an open system interacting with environment,

the conventional Schrödinger equation is not applicable to the open system alone. Its equation

of motion can be obtained by eliminating the variables of environment from the Schrödinger

equation of the system and the environment. The resulting equation of motion is described by

the so-called master equation of density matrix. The general form of master equation can be

deduced from the following physical assumptions [33]:

(1) There exists a linear mapping $ : ρ → ρ′ that takes an initial state ρ to a final

state ρ′.

(2) $ preserves hermiticity: ρ′ = ρ′†.

(3) $ is trace preserving: trρ′ = 1.

(4) $ is positive: ρ′ > 0. More precisely, $ should be completely positive, which means

that for any extension of HA to the tensor product HA ⊗HB, the mapping $A ⊗ IB

is positive for all such extensions.

Under such conditions, Kraus proved that the action of $ on ρ has an operator-sum representation,

$(ρ) =
∑

r

ΩrρΩ†
i ,

∑
r

Ω†
rΩr = 1. (2.5)
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It has the same form as the action of a POVM on state ρ. This observation allows us to interpret

the master equation of an open system interacting with environment as how the system changes

in time under continuous POVM. In general one can write

ρ(t + dt) =
∑

r

Ωrρ(t)Ω†
r,

Ω0 = 1−
(

i

~
H +

1

2

∑

r 6=0

L†rLr

)
dt,

Ωr = Lr

√
dt, r 6= 0, (2.6)

where we have used the Markovian approximation (the surrounding environment is nearly mem-

oryless), and the operators Lr 6=0 are called jump operators. Under the same condition,

ρ(t + dt) ≈ ρ(t) + ρ̇(t)dt, (2.7)

we obtain the master equation in the Lindblad form,

ρ̇ = − i

~
[H, ρ] +

∑

r 6=0

(
LrρL†r −

1

2
L†rLrρ− 1

2
ρL†rLr

)
. (2.8)

In general it is very difficult to solve the master equation for real problems, even numerically.

One possible way out is to transform the master equation into a stochastic schrödinger equation

(SSE), which is much easier to solve or to simulate [35]. The formulation of SSE is to first define

a conditioned state, not necessarily normalized, by

|Ψ̄r(t + dt)〉 =
Ωr(dt)√
Λr(dt)

|Ψ̄(t)〉, (2.9)

where Λr(dt) is the fictitious probability for result r such that
∑

r Λr(dt) = 1. The actual prob-

ability for result r is given by

pr(dt) = Λr(dt)〈Ψ̄r(t + dt)|Ψ̄r(t + dt)〉 = 〈Ψ̄(t)|Ω†
rΩr|Ψ̄(t)〉, (2.10)

which is independent of the fictitious probability Λr(dt). In fact, the actual probability of a

particular process or a quantum trajectory is given by the product of the fictitious probability of

generating this trajectory and the norm of the conditioned state.

Physically the change of conditioned state produced by the jump operator Lr 6=0 is not con-

tinuous, so it has to be expressed as a stochastic process dNr(t) with the average E[dNr(t)] =
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Λr(dt) ∼ O(dt) and dNr(t)
2 ∼ O(dt). Explicitly the time evolution of the conditioned state can

be written as

d|Ψ̄(t)〉 =

[∑

r 6=0

dNr

(
Ωr(dt)√
Λr(dt)

− 1

)
+

(
Ω0(dt)√
Λ0(dt)

− 1

)]
|Ψ̄(t)〉. (2.11)

Consider an example with

Ω1(dt) =
√

dt(a + γ),

Λ1(dt) = E[dN(t)] = |γ|2dt, (2.12)

Ω0(dt) = 1− dt

[
iH +

1

2
(aγ∗ − a†γ) +

1

2
(a† + γ∗)(a + γ)

]
,

Λ0(dt) = 1− |γ|2dt, (2.13)

where dN(t) is chosen to be a Poisson process. This amounts to adding a coherent field |γ(t)〉
with γ(t) = |γ(t)|eiϕ(t) to the output radiation field a before it is measured by the photodetector.

This can be realized by a low-reflectance beam-splitter. In the limit |γ|2 À 〈a†a〉, this procedure

is known as non-balanced homodyne detection. In the limit of γ →∞, Eq. (2.11) becomes

d|Ψ̄(t)〉 =
[
dW (t)e−iϕ(t)a− dt(iH + a†a/2)

] |Ψ̄(t)〉,

E[dW (t)] = 0, dW (t)2 = dt, (2.14)

where dW (t) describes a Wiener process. This SSE is much easier to solve or simulate and

provides a powerful tool for adaptive measurement, i.e. updating the phase ϕ(t) according to the

previous results to accelerate or decelerate the evolution of system to some target states.

2.2 Entanglement

Entanglement is not only an essential concept of quantum mechanics, but is an extremely useful

resource for quantum information and computation. It describes correlations between two or

more degrees of freedom that can not be accounted for classically. A quantum state is separable

if it can be written as a convex sum of product states belong to different degrees of freedom,

otherwise it is entangled. For the two-photon polarization states, |Ψ〉 = | ↑〉1| ↓〉2 is separable

whereas |Ψ〉 = (| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2)/
√

2 is entangled.

The importance of entanglement can be illustrated by the Young’s double slit experiment

in Fig. 2.1. It clearly demonstrates that the principle of complementarity is just one aspect of
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FIGURE 2.1. Schematic of Young’s double slit experiment. The notions WP1 and WP2 represent two
wave plates that can change the polarization of passing photons.

entanglement. The complementarity principle states that the interference pattern is washed away

if the path or which-way information of photon is obtainable. Suppose the screen with double slit

is in the plane z = 0 with the narrow slits at positions x± = ±d/2. Under the assumption of an

impinging plane wave with wave number k and polarization | ↑〉, the photon state after passing

the two infinitesimally wide slits on the screen located in the plane z = L is a superposition of

eigenstates |ψ±〉| ↑〉,

|Ψ〉 =
1√
2
(|ψ+〉+ |ψ−〉)| ↑〉, (2.15)

where

ψ±(x) ∝ exp

[
ik(x− x±)2

2L

]
. (2.16)

The probability density for detecting a photon at the position x on the screen is

|Ψ(x)|2 =
1

2

{|ψ+(x)|2 + |ψ−(x)|2 + 2Re[ψ∗+(x)ψ−(x)]
}

∝ 1 + cos
kdx

L
, (2.17)

which is double slit interference pattern with unit visibility.

Now let us insert two wave plates WP1 and WP2 in the front of two slits, which change the

polarizations of passing photon from | ↑〉 to |P±〉, respectively. The new state on the screen then
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is given by

|Ψ〉 =
1√
2
(|ψ+〉|P+〉+ |ψ−〉|P−〉), (2.18)

which is in an entangled form and yields the probability density

|Ψ(x)|2 =
1

2

{|ψ+(x)|2 + |ψ−(x)|2 + 2Re[ψ∗+(x)ψ−(x)〈P+|P−〉]
}

∝ 1 + |〈P+|P−〉| cos

(
kdx

L
+ δ

)
, (2.19)

where the angle δ is the phase of 〈P+|P−〉. The wave plates reduce the visibility by the factor

|〈P+|P−〉|. If the polarization states |P+〉 and |P−〉 are orthogonal, it becomes possible to dis-

tinguish them with certainty and interference pattern is washed away. According to Feynman

[36], one should add amplitudes associated with indistinguishable processes, and add probabilities

associated with distinguishable processes.

The degree of entanglement is well defined for all pure states. According to Schmidt theorem,

we can always orthogonally decompose the two-particle state |Ψ〉 as

|Ψ〉 =
∑

n

λn|ψ(1)
n 〉|ψ(2)

n 〉. (2.20)

The degree of entanglement for |Ψ〉 is defined to be the Von Neumann entropy [32],

E(Ψ) = −
∑

n

λn ln λn. (2.21)

As for mixed states, there are no such simple expressions, or even no simple criteria to check

whether a given mixed state entangled or not. The only exceptions are for two-qubit system and

its continuous version — two-Gaussian system, where it is possible to write down the explicit

formulas for the degree of entanglement [37, 38].

In literatures there are many necessary conditions for entangled state. The only sufficient and

necessary condition we can find is derived in Ref. [39]. Suppose the spectrum decomposition of

two-particle state ρ is

ρ =
∑

n

λn|Ψn〉〈Ψn|. (2.22)
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The state ρ is separable iff the equation

σ2 − σ = 0, (2.23)

σ = tr2|Ψ〉〈Ψ|, (2.24)

|Ψ〉 =
∑

n

cn|Ψn〉 (2.25)

(tr2 denotes the partial trace over the second particle) has different solutions (labeled by index

m) for c
(m)
n such that the equation

E†E = 1, (2.26)

Emn =

√
pm

λn

c(m)
n (2.27)

have a positive solution for pm.

2.3 A Short Review of Quantum Theory of Radiation

The classical electrodynamics in free space without any sources such as currents and charges is

fully described by Maxwell’s equations [40]

∇×B = µ0ε0
∂E

∂t
, (2.28)

∇× E = −∂B

∂t
, (2.29)

∇ ·B = 0, (2.30)

∇ · E = 0. (2.31)

Since Maxwell’s equations are gauge invariant when no sources are present, it is convenient to

choose the vector potential A(r, t) in the Coulomb gauge ∇ ·A = 0 such that

B = ∇×A, (2.32)

E = −∂A

∂t
. (2.33)

In terms of A(r, t), we have the wave equation

∇2A(r, t)− 1

c2

∂2A

∂2t
= 0. (2.34)
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Separating the vector potential into two complex terms and restricting the field to a finite volume

of space, we can Fourier expand the vector potential in terms of discrete set of orthogonal mode

functions uk(r),

A(r, t) =
∑

k

[ck(t)uk(r) + c∗k(t)u
∗
k(r)], (2.35)

where the Fourier coefficients ck(t) and c∗k(t) satisfy the equation

dck

dt
+ iωkck = 0, (2.36)

dc∗k
dt

− iωkc
∗
k = 0. (2.37)

From the wave equation (2.34) in the Coulomb gauge, we immediately get

(
∇2 +

ω2
k

c2

)
uk(r) = 0, (2.38)

∇ · uk(r) = 0. (2.39)

The mode functions depend on the boundary conditions of the physical volume under consid-

eration. For a cube of volume V = L3 with periodic boundary conditions corresponding to

traveling-wave modes, we can write uk(r) as

uk(r) =
1

V 1/2
e(λ)eik·r, (2.40)

where e(λ) is the unit polarization vector with the polarization index λ = 1, 2 and is required to

be perpendicular to k. The components of k take the values

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, nx, ny, nz = 0,±1,±2, . . . (2.41)

Thus the vector potential may now be written as,

A(r, t) =
∑

k

(
~

2ωkε0

)1/2

[ak(t)uk(r) + a∗k(t)u
∗
k(r)] (2.42)

where the normalization factors have been chosen such that the amplitudes ak and a†k are dimen-

sionless and the corresponding electric field is

E(r, t) = i
∑

k

(
~ωk

2ε0

)1/2

[ak(t)uk(r)− a∗k(t)u
∗
k(r)] (2.43)
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In the classical electrodynamics these Fourier amplitudes are complex numbers. Quantization of

the electromagnetic field is accomplished by replacing ak and a∗k with mutually adjoint operators

ak and a†k obeying the commutation relations

[ak, ak′ ] = [a†k, a
†
k′ ] = 0, [ak, a

†
k′ ] = δkk′ . (2.44)

The electric field thus becomes an operator

E(r, t) = i
∑

k

(
~ωk

2ε0

)1/2

[ak(t)uk(r)− a†k(t)u
∗
k(r)]. (2.45)

The dynamical behavior of the electric-field amplitude then is described by an ensemble of

independent harmonic oscillators obeying the above relations describes. The Hamiltonian of the

field then is given as,

H =
1

2

∫ (
ε0E

2 +
1

µo

B2

)
d3r =

∑

k

~ωk

(
a†kak +

1

2

)
. (2.46)

This represents sum of the number of photons in each mode multiplied by the energy of a photon

in that mode, plus ~ωk/2 representing the energy of the zero-point fluctuations in each mode.

We shall now consider three possible states of the electromagnetic fields. The eigenstates of

the Hamiltonian H are the photon number states or Fock-states. The photon number operator

is given by N = a†a with eigenvalue n = 0, 1, 2, . . . and eigenstates |n〉, i.e.

N |n〉 = n|n〉, |n〉 =
1√
n!

(a†)n|0〉. (2.47)

The set {|n〉} forms a complete orthogonal basis for a Hilbert space,

〈m|n〉 = δmn, (2.48)
∞∑

n=0

|n〉〈n| = 1. (2.49)

Note that

a|n〉 =
√

n|n− 1〉, a†|n〉 =
√

n + 1|n + 1〉, (2.50)

a and a† are therefore also named as annihilation and creation operators, and state |0〉 is called

vacuum state. The number states form a useful representation, but they are not the most suitable
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representation for optical fields where total number of photons is large, such as the field of laser.

The laser field is more appropriately described by the so-called coherent states [41]. They are the

closest quantum states to a classical description of the field. The coherent states are eigenstates

of the annihilation operator a,

a|α〉 = α|α〉. (2.51)

They can be expanded in terms of the number states |n〉 as follows,

|α〉 = e−
|α|2
2

∑
n

αn

√
n!
|n〉. (2.52)

So 〈α|α〉 = 1 and the coherent states are normalized. The average photon number of coherent

state |α〉 is 〈N〉 = 〈α|N |α〉 = |α|2. An alternative representation of coherent states is to used the

unitary displacement operator,

D(α) = eαa†−α∗a. (2.53)

Equivalently the coherent state |α〉 can be generated by operating with D(α) on the vacuum

state

|α〉 = D(α)|0〉. (2.54)

The expectation value of the electric field operator

E(r, t) = ie(λ)

(
~ω

2ε0V

)1/2 [
aei(k·r−ωt) − a†e−i(k·r−ωt)

]
(2.55)

in the coherent state |α〉 with α = |α| eiϕ is given by

〈α|E(r, t)|α〉 = 2e(λ)|α|
(
~ω

2ε0V

)1/2

sin(ωt− k · r− ϕ), (2.56)

which takes the form of a classical field. The last quantum states that we consider is the so-called

squeezed states [42] defined by

|α, ξ〉 = D(α)S(ξ)|0〉, S(ξ) = exp

[
1

2
(ξ∗a2 − ξa†2)

]
, (2.57)

where ξ = reiθ, and r is known as the squeezing parameter. The squeezed states can also be

obtained as the eigenstates of the operator µa + νa† with µ = cosh r and ν = eiθ sinh r,

(µa + νa†)|α, ξ〉 = γ|α, ξ〉, γ = α cosh r + α∗eiθ sinh r. (2.58)
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FIGURE 2.2. Schematics of coherent state |α〉, number state |n〉, and squeezed state |α, ξ〉 with ϕ = −θ/2
in phase space.

For r = 0 this is just the eigenvalue problem for the coherent state.

One intuitive way to view the above three types of state is to look at their phase space diagrams

in the dimensionless position X1 = (a + a†)/2 and momentum X2 = (a − a†)/(2i) coordinates.

Because the quadrature operators X1, X2 satisfy the commutation relation

[X1, X2] =
i

2
, (2.59)

the uncertainty relation ∆A∆B ≥ |〈[A,B]〉| /2 requires that ∆X1∆X2 ≥ 1/4. Thus the quantum

state is not well localized as a point in phase space as it is in classical mechanics, but is distributed

over some area. A minimum uncertainty state is a state which minimizes the uncertainty product.

The vacuum state |0〉 is such a minimum uncertainty state. Since 〈X1〉 = 〈X2〉 = 0 and ∆X1 =
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∆X2 = 1/2, the vacuum is thus depicted as a filled circle at the center with radius 1/2. The

coherent state is also a minimum uncertainty state. Note 〈X1〉 = Re[α], 〈X2〉 = Im[α] and

∆X1 = ∆X2 = 1/2 for a coherent state |α〉, it can be pictured as a displaced vacuum to the

center (Re[α], Im[α]). For the number states |n〉, we have 〈X1〉 = 〈X2〉 = 0 but 〈X2
1 〉 = 〈X2

2 〉 =

(2n+1)/4. It thus can be represented in phase space as a circle of radius
√

n + 1/2. To visualize

the squeezed state |α, ξ〉, we introduce the rotated quadrature operators Y1, Y2 as




Y1

Y2


 =




cos θ
2

sin θ
2

− sin θ
2

cos θ
2







X1

X2


 , (2.60)

or equivalently Y1 + iY2 = (X1 + iX2)e
−iθ/2. Note that

〈a〉 = α,

〈Y1 + iY2〉 = αe−iθ/2,

〈N〉 = |α|2 + sinh2 r

∆Y1 =
1

2
e−r,

∆Y2 =
1

2
er, (2.61)

so the squeezed state can be represented as a filled rotated ellipse at the center (Re[α], Im[α]) in

phase space, as shown in Fig. 2.2.

2.3.1 Definition of Phase Parameter

Suppose a portion of dielectric crystal with dielectric constant ε and length l in the traveling

path of electromagnetic field. Neglecting the reflection effect of the crystal, the electric field after

the crystal is

Eλ(l, t) = ie(λ)

(
~ω

2ε0V

)1/2 [
aei(χkl−ωt) − a†e−i(χkl−ωt)

]

= ie(λ)

(
~ω

2ε0V

)1/2 [
aeiϕei(kl−ωt) − a†e−iϕe−i(kl−ωt)

]
, (2.62)

where the index χ =
√

ε/ε0 = 1 + δ and the phase ϕ = δkl. In the limit of l → 0 and keeping

ϕ fixed, this change of field amounts to a unitary transform, a → e−iNϕa eiNϕ = a eiϕ. In other

words, the unitary matrix U(ϕ) = e−iNϕ just realizes a phase shift ϕ. However, there does not
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exist a Hermitian operator corresponding to phase shift ϕ [43]. Otherwise the conjugate variables

N,ϕ should satisfy the commutation relation

[ϕ,N ] = −i. (2.63)

If we take the matrix element of the commutator for arbitrary number states |n〉 and |n′〉, we

should have

〈n|[ϕ,N ]|n′〉 = (n′ − n)〈n|ϕ|n′〉 = −iδnn′ , (2.64)

which contains an obvious contradiction in the case when n = n′ giving 0 = −i! To compare this

situation with the usual momentum and position operators [p, q] = −i~, this reasoning is not

valid, because it gives a singular identity

(q′ − q)
∂

∂q
δ(q′ − q) = δ(q′ − q). (2.65)

The root of the problem is that the operator N has a spectrum bounded from below, unlike the

unbounded position operator. This means if we superficially define the number operator by

N = i
∂

∂ϕ
, [ϕ,N ] = −i, (2.66)

the eigenstates of N have the form e−inϕ/
√

2π using periodicity. However, we get the wrong

spectrum −∞ < n < ∞, whereas the true spectrum runs from 0 to ∞ with the number states

|n〉. Similar difficulty is also encountered in the energy-time problem, where the spectrum of the

Hamiltonian is bounded from below. Another specific problem of the phase shift is that ϕ and

ϕ + 2π makes no difference physically.

The nonexistence of the Hermitian phase shift operator denies the possibility to read it in the

sense of projective measurement. But this does not prevent us to detect the phase shift through

the generalized measurement with the POVM, or through the measurement of a particular in-

termediate observable.

2.3.2 Phase Value of Quantum State

It is worth to point out that though there is a rigorous scheme to estimate the phase shift

ϕ in the transform U = eiNϕ, the problem how to assign a phase value to a given quantum
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state still remains open. We will consider only one possible solution to this problem. We already

know that the quantum state that mimics a classical electric field is given by the coherent

state. In the coherent state |α〉 with α = |α|eiϕ, the expectation value of the electric field is

E(r, t) ∝ sin(ωt−k ·r−ϕ) with a phase value ϕ. It is thus reasonable to define the phase value of

|α〉 as ϕ = arg α or in terms of the average values of quadrature operators ϕ = tan−1(〈X2〉/〈X1〉)
due to 〈X1〉 = |α| cos ϕ, 〈X2〉 = |α| sin ϕ. This definition of phase value is only an average

quantity over all quantum fluctuations, and can be generalized to any quantum state. Pictorially

the phase value of a quantum state is defined as the polar angle of its diagram in the phase

space. The distributional nature of a quantum state in the phase space clearly shows that its

phase value also subjects to fluctuations.

Let us now consider the examples as shown in Fig. 2.2 with the above definition. For coherent

state |α〉 with α = |α| eiϕ, the polar angle of its portrait in the phase space is scattered around

ϕ±r/|α|, where r = 1/2 is the radius of the filled circle. The phase uncertainty therefore is given

as

∆ϕ =
1

2〈N〉1/2
. (2.67)

Obviously, the number state |n〉 has an arbitrary phase since its phase diagram is an empty circle

around the origin. For a specific squeezed state |α, ξ〉 with α = |α|eiϕ and ξ = re−2iϕ, the phase

uncertainty is equal to

∆ϕ =
∆Y1

|α| ≈
e−r

2〈N〉1/2
, (2.68)

where we have assumed |α| À 1 in order to neglect the sinh2 r term in the expression of 〈N〉 in

Eq. (2.61).

Experimentally the above defined phase value can be measured via the so-called heterodyne

or homodyne detection [3] as shown in Fig. 2.3. A single-mode quantum state is input at one

port of a balanced beam splitter. At the other input port of the beam splitter a strong local

oscillator such as a laser in the coherent state, |αl〉 where αl = |αl|eiϕl and |αl| À 1 is incident.

When the signal and the local oscillator have the same frequencies, it is called as homodyne
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FIGURE 2.3. Schematic of balanced homodyne detection. Here E represents the input field, I1 and I2

are measured signals, LO: local oscillator, BS: beam splitter, PD: photodetector.

detection. Otherwise it is called as heterodyne detection. For simplicity we suppose that all the

states considered in this thesis have the same frequencies.

The input and the oscillator modes are described by the annihilation operators a and b, re-

spectively. Then the two output modes reaching photon number detectors 1 and 2 by c and d

are given by

c = (a + ib)/
√

2,

d = (ic + b)/
√

2. (2.69)

The signals measured by two detectors are determined by the operators,

c†c =
1

2
[a†a + b†b + i(a†b− b†a)],

d†d =
1

2
[a†a + b†b− i(a†b− b†a)]. (2.70)

The difference of the two signal operators gives

ncd = c†c− d†d = i(a†b− b†a). (2.71)

The measured signal of ncd then is

〈ncd〉 = 2 |αl| 〈X(ϕl + π/2)〉, (2.72)
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and the associated variance can be found to be

∆ncd = 2 |αl|∆X(ϕl + π/2), (2.73)

where the quadrature operator X(ϕ) is

X(ϕ) = (ae−iϕ + a†eiϕ)/2. (2.74)

Clearly, by adjusting the laser phase ϕl one can obtain 〈X(0)〉 = 〈X2〉 and 〈X(−π/2)〉 = 〈X1〉,
and thus the averaged phase value of mode a through the homodyne detection can be expressed

as

ϕ = tan−1 〈X(0)〉
〈X(−π/2)〉 . (2.75)

The variance of ϕ can also be calculated from the variance of ncd. By some adaptive techniques

of adjusting of the phase of the local oscillator one can improve the variance of ϕ and reduce the

cycles of measurement [44].

The phase value discussed above should not be confused with the geometric phase in quantum

mechanics [45]. For example, the phase difference ϕ12 between any two non-orthogonal states

|Ψ1〉 and |Ψ2〉, which is defined via

〈Ψ1|Ψ2〉 = |〈Ψ1|Ψ2〉| eiϕ12 . (2.76)

This definition has no classical analog because it is not transitive: If |Ψ1〉 is in phase with |Ψ2〉,
and |Ψ2〉 with |Ψ3〉, then |Ψ1〉 need not to be in phase with |Ψ3〉.

2.3.3 Atom-Field Interaction in Quantum Optics

For completeness, we will briefly review atom-field interactions in quantum optics [40]. Suppose

an electron bound to an atom in the absence of external field. The relevant Hamiltonian is given

by

Ha =
p2

2m
+ V (r), (2.77)

where V (r) is the usual Coulomb potential. Assume the energy levels are |a〉, satisfying the

eigenvalue equation

Ha|a〉 = Ea|a〉. (2.78)
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We can therefore rewrite Ha and the dipole operator d = er, respectively, as

Ha =
∑

a

Ea|a〉〈a| =
∑

a

Eaσaa, (2.79)

er =
∑

a,b

e|a〉〈a|r|b〉〈b| =
∑

ab

dabσab, (2.80)

where dab = e〈a|r|b〉 and σab = |a〉〈b|. In the presence of external electromagnetic fields the total

Hamiltonian of the atom and fields in the dipole approximation, where the field is assumed to

be uniform over the whole atom, is

H = Ha + Hf − er · E(r, t),

Hf =
∑

k

~ωka
†
kak, (2.81)

where we have omitted the zero-point energy of field as it does not contribute to the dynamics, r

is the position of the electron, and the electric field E(r, t) is expressed by Eq. (2.45). For an atom

with two energy levels Ea and Eb in a single mode field and in the rotating wave approximation,

the Hamiltonian can be further simplified to be

H = ~ω0σz + ~ωa†a + ~g(aσ+ + a†σ−), (2.82)

where ~ω0 = Eb − Ea, σ± = σx ± iσy, σx, σy, σz are Pauli spin matrices, and we have taken the

coupling constant g to be real. This is the simplest form of the atom-field interaction and is

known as the Jaynes-Cummings model [46].

Now let us consider an ideal detector consisting of a single ground-state atom of dimension small

compared to the wavelength of the light. This single-atom detector couples to the quantized field

via Eq. (2.81). Using the first order perturbation theory in quantum mechanics, the probability

of the atom making a transition to an ionized atomic state by absorbing a photon from field is

proportional to

∑

f

∣∣〈f |E+(r, t)|i〉
∣∣2 = 〈i|E(−)(r, t) · E(+)(r, t)|i〉, (2.83)

where E(+) is the positive frequency part of E and E(−) = E(+) †. Because we are really only

interested in the final state of the detector, not the field, we have summed over all possible field

24



transitions from the initial state |i〉 to the final states |f〉. For a mixed photon state described

by density matrix ρ, the absorbing probability then is proportional to

tr
[
ρE(−)(x)E(+)(x)

]
, (2.84)

where E(+) = e · E(+), E(−) = e∗ · E(−), and x = (r, t). It can be viewed as a specific case of the

first order correlation function defined by

G(1)(x, x′) = tr
[
ρE(−)(x)E(+)(x′)

]
, (2.85)

which describes the correlation between field at the point x and the field at x′. To describe

delayed coincidence experiments such as Hanbury-Brown and Twiss experiment, it is necessary

to define higher-order correlation functions [41] as

G(n)(x1, ..., xn, xn+1, ..., x2n) = tr
[
ρE(−)(x1)...E

(−)(xn)E(+)(xn+1)...E
(+)(x2n)

]
. (2.86)

Such an expression follows from a consideration of an n-atom photon detector by n-order per-

turbation. The n-fold delayed coincidence rate is

ηnG(n)(x1, ..., xn, xn, ..., x1), (2.87)

where η is the efficiency of the detector. For the case of n = 1 and a single mode field, the

rate of detecting one photon is proportional to tr[ρa†a], namely the average photon number of

the field. In other words, the single atom detector can work as a photon number resolver of a

monochromatic field, as we have already used for homodyne detection in last section.

2.4 Phase Shift Estimation

The estimation of the phase shift ϕ in the unitary transform U(ϕ) = eiNϕ is a particular problem

in quantum estimation theory, which aims to tangle such problems in a rigorous way [47]. Let

us first discuss the general estimation theory in the classical way, and then generalize its results

quantum mechanically.

2.4.1 Classical Estimation Theory

If a classical system is observed to obtain the signal v, a decision is to be made about its state.

The system may be in any one of M possible states, and the hypothesis Hj, j = 1, 2, ..., M ,
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asserts that “The system is in state j”. The signal v is a random variable whose joint probability

density function (p.d.f.) is pj(v) if the system is in state j. Suppose the system is in state j with

a prior probability ξj from past experience. The normalization requires
∑M

j=1 ξj = 1. Let Cij be

the cost incurred by choosing hypothesis Hi when Hj is true. They assign relative weights to the

various possible error and correct decisions. A physical constrain for the cost is Cjj ≥ Cij, i.e.

the chance to get a right answer should win over the chance to get a wrong one. For example,

the Bayes strategy corresponds to an assignment of costs Cij = −δij, which penalizes all errors

equally. Under these general conditions, one desires a strategy whose average cost is a minimum.

A decision strategy is represented by the probabilities πi(v), that hypothesis Hi is chosen when

v is obtained. These probabilities are subject to the conditions

0 ≤ πi(v) ≤ 1,
M∑
i=1

πi(v) = 1. (2.88)

Pure guessing among the M hypotheses corresponding to πi(v) = M−1 for all i. The probability

that the hypothesis Hi is chosen when Hj is true is p(i|j) =
∫

πi(v)pj(v)dv. With the incurred

cost Cij, the average cost of the strategy is

C [{πi}] =
M∑

i,j=1

ξjCijp(i|j) =
M∑
i=1

∫
Wi(v)πi(v)dv,

Wi(v) ≡
M∑

j=1

ξjCijpj(v). (2.89)

The function Wi(v) is called “risk function” for Hi.

The average cost C will be least if at each point v we choose the hypothesis for which the risk

Wl(v) is smallest. That is πi(v) = δil for Wl(v) ≤ Wi(v). Define Υ(v) = Wl(v). These conditions

can be expressed as

[Wi(v)−Υ(v)] πi(v) = 0,

Wi(v)−Υ(v) ≥ 0, (2.90)

for each v and all hypotheses Hi.

If the possible states of the system under observation are represented by a continuous parameter

θ, which is to be estimated from the observable v, θ̂ = θ̂(v). The function θ̂(v) is often called
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estimator of θ. We can introduce the joint p.d.f. p(v|θ) of v given the parameter θ, the prior p.d.f.

z(θ), the cost function C(θ̂, θ), and the joint p.d.f. π(θ̂|v) for estimation strategy. A common

quadratic cost function is C(θ̂, θ) = (θ̂ − θ)2. For the maximum-likelihood estimator, the cost

function is C(θ̂, θ) = −δ(θ̂ − θ).

When the true values of the parameters are θ, the probability that the estimates lie in a volume

elements dθ̂ about the point θ̂ is

q(θ̂|θ)dθ̂ =

∫
π(θ̂|v)p(v|θ)dvdθ̂. (2.91)

The average cost function thus is

C [π] =

∫ ∫
z(θ)C(θ̂ − θ)q(θ̂|θ)dθdθ̂

=

∫ ∫
W (θ̂; v)π(θ̂|v)dθ̂dv (2.92)

by introducing the risk function W (θ̂; v) =
∫

z(θ)C(θ̂ − θ)p(v|θ)dθ. The optimum strategy is

specified by the nonnegative function π(θ̂|v) satisfying
∫

π(θ̂|v)dθ̂ = 1 and

[W (θ̂; v)−Υ(v)]π(θ̂|v) = 0,

W (θ̂; v)−Υ(v) ≥ 0, (2.93)

where Υ(v) is given by Υ(v) = minθ̂ [W (θ̂; v)]. The least average cost is thus Cmin =
∫

Υ(v)dv

and the corresponding strategy is π(θ̂|v) = δ(θ̂ − θ̂(v)).

For the quadratic cost function, the optimum strategy leads to

θ̂(v) =

∫
θp(θ|v)dθ, (2.94)

where the posterior p.d.f. is obtained by Bayes rule

p(θ|v) =
z(θ)p(v|θ)∫
z(θ)p(v|θ)dθ

. (2.95)

For the delta-function cost, we have the maximum-likelihood estimator

θ̂(v) = arg maxθ [p(θ|v)]. (2.96)
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The optimum estimator of θ of an arbitrary p.d.f. p(v|θ) is usually complicated, and analytically

evaluating the minimum cost is impossible. However, a lower bound for the accuracy of any

estimator is provided by the following Cramer-Rao bound. Note the identity

∫
p(v|θ)∆θ̂ dv = 0, (2.97)

where ∆θ̂ = θ̂(v)− θ and θ =
∫

p(v|θ)θ̂(v)dv. Taking the derivative of this identity with respect

θ, we obtain

∫
p(v|θ)∂ ln p(v|θ)

∂θ
∆θ̂ dv =

dθ

dθ
. (2.98)

Applying the Schwarz inequality

∫
|f |2 dx

∫
|g|2 dx ≥

∣∣∣∣
∫

fgdx

∣∣∣∣
2

(2.99)

to the functions f = p1/2∂ ln p/∂θ and g = p1/2∆θ̂ yields

F (θ) (∆θ̂)2 ≥
(

dθ

dθ

)2

,

where the Fisher information is defined by

F (θ) =

∫
p(v|θ)

(
∂ ln p(v|θ)

∂θ

)2

dv. (2.100)

The Cramer-Rao inequality is given by

(δθ)2 ≥ 1

F (θ)
+ (δθ)

2 ≥ 1

F (θ)
(2.101)

with

δθ =
θ̂(v)

|dθ/dθ| − θ. (2.102)

A zero value of δθ means the estimator is unbiased, i.e. θ = θ locally. The well known formula of

the sensitivity of θ obtained from an arbitrary estimator A can thus be defined as

∆θ =
∆A

|∂A/∂θ| . (2.103)

For ν such measurements, the Cramer-Rao bound Eq. (2.101) becomes

(δθ)2 ≥ 1

νF (θ)
. (2.104)

28



The Cramer-Rao bound only places a lower bound on the uncertainty of an estimator. Fisher’s

theorem says that asymptotically for large ν, maximum-likelihood estimator is unbiased and

achieves the Crame-Rao bound. For a single measurement, this lower bound usually can not be

achieved.

2.4.2 Quantum Estimation Theory

Quantum estimation theory seeks the best strategy to estimate the parameter θ of the density

matrix ρ(θ) of a system. This procedure can be realized by a POVM, dE(θ̂) with
∫

dE(θ̂) = 1.

The joint conditional p.d.f. q(θ̂|θ) of the estimates is then given by

q(θ̂|θ)dθ̂ = tr[ρ(θ)dE(θ̂)]. (2.105)

With the prior p.d.f. z(θ) and the cost function C(θ̂, θ), the average cost incurred is

C [E] = tr

∫ ∫
z(θ)C(θ̂, θ)ρ(θ)dE(θ̂)dθ

= tr

∫
W (θ̂)dE(θ̂),

W (θ̂) =

∫
z(θ)C(θ̂, θ)ρ(θ)dθ. (2.106)

The least average cost is attained by the optimal strategy, which must satisfy

[W (θ̂)−Υ]dE(θ̂) = 0,

W (θ̂)−Υ ≥ 0, (2.107)

where the Hermitian operator Υ is given by

Υ =

∫
W (θ̂)dE(θ̂) =

∫
dE(θ̂)W (θ̂).

The minimum cost of error is

minE C [E] = trΥ. (2.108)

To illustrate the quantum optimal strategy, we consider an example of the binary decisions.

The system has two density matrix ρ0 and ρ1 with the prior probabilities ξ0 and ξ1, ξ0 + ξ1 = 1.
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The optimal POVM that can distinguish the two states is described by two operators E0 and

E1, E0 + E1 = 1. The costs are given by the Bayes strategy, and the risks are now

W0 = ξ1ρ1, W1 = ξ0ρ0,

Υ = W0E0 + W1E1 = W0 + (W1 −W0)E1. (2.109)

The optimal conditions require

0 = (W0 −Υ)E0 = (W0 −W1)E1E0,

0 ≤ W0 −Υ = (W0 −W1)E1 = (ξ1ρ1 − ξ0ρ0)E1, (2.110)

which are satisfied by choosing

E0 =
∑

λ

Θ(−λ)|λ〉〈λ|, E1 =
∑

λ

Θ(λ)|λ〉〈λ|, (2.111)

where |λ〉 is the eigenvector of ∆ = ξ1ρ1 − ξ0ρ0 with the eigenvalue λ, and Θ(x) the unit step

function. The average probability of error in such a optimal decision is equal to

Perror = ξ0tr[ρ0E1] + ξ1tr[ρ1E0] = ξ0 + tr[(ξ1ρ1 − ξ0ρ0)E0]

= ξ0 +
∑

λ≤0

λ = (1−
∑

λ

|λ|)/2

=
(
1− tr

√
∆†∆

)
/2 =

1

2
−D(ξ0ρ0, ξ1ρ1), (2.112)

where the distance D(ρ, σ) is defined by D(ρ, σ) = tr |ρ− σ| /2 and |A| ≡
√

A†A. For the two

pure states, ρ0 = |Ψ0〉〈Ψ0| and ρ1 = |Ψ1〉〈Ψ1|,

Perror =

(
1−

√
1− 4ξ0ξ1 |〈Ψ1|Ψ0〉|2

)
/2. (2.113)

The second example is to estimate the phase parameter appeared in the states

Ψ(θ) = e−iJθΨ, (2.114)

where |Ψ〉 =
∑

j cj|j〉 and J |j〉 = j|j〉. If nothing is known in advance about the true value of θ,

i.e.

z(θ) = 1/2π, −π < θ ≤ π, (2.115)
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and the delta cost function is used, the optimal POVM is given by (for details see section 2.5)

dE(θ) =
N
2π
|θ〉〈θ|dθ, |θ〉 =

1√N
∑

j

cj

|cj|e
−ijθ|j〉, (2.116)

whereN is a normalization factor. For convenience, it is assumed from now on that all coefficients

cj of the initial state are real. In the case of phase shift J = N and θ = −ϕ, the optimal

measurement is [47]

E(ϕ)dϕ =
1

2π
|ϕ〉〈ϕ|dϕ, |ϕ〉 =

∞∑
n=0

einϕ|n〉. (2.117)

With this optimal POVM, let us now look at the estimated phase distribution of a coherent

state |reiϕ0〉 = eiNϕ0|r〉 with real r [48], which is

p(ϕ) =
1

2π
|〈ϕ|reiϕ0〉|2 =

1

2π
e−r2

∣∣∣∣∣
∞∑

n=0

e−in(ϕ−ϕ0) rn

√
n!

∣∣∣∣∣

2

. (2.118)

For large r, the Poisson distribution may be approximated as a Gaussian,

e−r2 r2n

n!
≈ 1√

2πr2
exp

[
−(n− r2)2

2r2

]
. (2.119)

Then the sum can be further approximated by a Fourier integral, which is evaluated to be

p(ϕ) =

√
2r2

π
exp[−2r2(ϕ− ϕ0)

2]. (2.120)

This is a Gaussian peaked at ϕ = ϕ0 with the variance

∆ϕ =
1

2r
=

1

2〈N〉1/2
. (2.121)

This is SNL and is in coincidence with the intuitive result of Eq. (2.67).

Next let us seek an input state that gives minimal phase variance. Suppose we have N photons

available for this input state |Ψ〉,

|Ψ〉 =
N∑

n=0

cn|n〉. (2.122)

The phase distribution is expressed as

p(ϕ) =
1

2π
〈Ψ|E(ϕ)|Ψ〉, (2.123)
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where E(ϕ) is given by Eq. (2.117). The use of the Holevo variance defined below, taking account

of the cyclic property of phase shift, enables an analytic solution. The Holevo variance is [17]

Vϕ = S−2
ϕ − 1,

Sϕ = 〈eiϕ〉 =

∫ π

−π

eiϕp(ϕ)dϕ, (2.124)

where we have chosen the true phase shift to be zero to make Sϕ positive without loss of generality.

If the variance is small, i.e. Sϕ ≈ 1, its equivalence to the usual definition of variance for well-

localized distributions is obvious by observing the fact

∆ϕ =

∫
ϕ2p(ϕ)dϕ ≈ 2(1− Sϕ) ≈ (S−2

ϕ − 1). (2.125)

From Eqs. (2.123) and (2.124) we get

Sϕ = 〈Ψ|E|Ψ〉, (2.126)

where the integral over ϕ is performed and the operator E is a matrix with elements Em,n = δm,n±1

and m,n = 0, ..., N . Since the minimal variance corresponds to a maximal Sϕ, and the maximum

of 〈Ψ|E|Ψ〉 is achieved when |Ψ〉 is an eigenvector of matrix S with the largest eigenvalue. This

eigenvector is solved to be [43]

|Ψ〉 =

√
2

N + 2

N∑
n=0

sin
(n + 1)π

N + 2
|n〉 (2.127)

with eigenvalue cos π/(N + 2). Hence the minimal variance is

Vϕ = tan2 π

N + 2
≈ π

N + 2
. (2.128)

2.4.3 Quantum Cramer-Rao Bound and the Heisenberg Limit

As in the classical estimation theory, there is also a quantum Cramer-Rao bound, which is a

variant of uncertainty principle [21, 22]. Suppose an operator U = exp(−iJθ) is applied to a

probe state |Ψ〉 where J is a Hermitian operator and θ is a parameter to be estimated. Then

the observable A is measured on the state |Ψ(θ)〉 = U |Ψ〉 to estimate the parameter θ. The

uncertainty relation yields

∆A∆J ≥ 1

2
|〈Ψ(θ)|[J,A]|Ψ(θ)〉| = 1

2

∣∣∣∣
∂〈Ψ(θ)|A|Ψ(θ)〉

∂θ

∣∣∣∣, (2.129)
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where ∆A, ∆J denote the variance in A, J . The resulting precision in estimating θ is thus given

by

∆θ =
∆A

|∂〈Ψ(θ)|A|Ψ(θ)〉/∂θ| ≥
1

2∆J
. (2.130)

Once again if we take J = N and θ = −ϕ, this bound tells us

∆ϕ ≥ 1

2∆N
. (2.131)

For a coherent state |α〉, the variance of N is ∆N = |α| = 〈N〉1/2 and therefore

∆ϕ ≥ 1

2〈N〉1/2
, (2.132)

which is just the so-called SNL.

For a general state with N available photons,

|Ψ〉 =
N∑

n=0

cn|n〉, (2.133)

intuitively the variance of photon number N should satisfy the energy constrain,

∆N ∼ N. (2.134)

Hence, the best phase uncertainty we can expect is

∆ϕ =
1

N
(2.135)

after canceling out some constants. This is what is called HL for phase estimation. Mathemat-

ically, consider a discrete random variable N taking value from the set {n} with probability

{|cn|2}, subject to the constrain

N∑
n=0

n|cn|2 = 〈N〉, (2.136)

then the variance of N is bounded by the inequalities

0 ≤ ∆N2 ≤ 〈N〉(N − 〈N〉) ≤ N2

4
. (2.137)
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The last two equality signs hold iff |cn|2 = 0 for n = 1, ..., N − 1 and 〈N〉 = N/2 with |c0|2 =

|cN |2 = 1/2, respectively. Its proof is based on the following theorem [49]: If X = E[x], where x

represents an arbitrary random variable and E[x] the average value of x, then for all a and b,

E[(x−X)2] = E[(x− a)(x− b)]− (a−X)(b−X). (2.138)

So the state with the maximal variance of N is given by

|Ψ〉 =
1√
2
(|0〉+ |N〉) (2.139)

up to some phase factors, and

〈N〉 =
N

2
, ∆N =

N

2
= 〈N〉. (2.140)

Then a more rigorous form of HL from Eq. (2.131) is obtained

∆ϕ ≥ 1

N
=

1

2〈N〉 . (2.141)

Now let us extend the finite terms in the sum of Eq. (2.133) to be infinite, i.e.

|Ψ〉 =
∞∑

n=0

cn|n〉, (2.142)

and only keep the average photon number constrain

∞∑
n=0

n|cn|2 = 〈N〉. (2.143)

We will show in chapter 4 that to detect a phase shift of order ∆ϕ with the input state |Ψ〉 the

quantity defined via F =
∣∣〈Ψ|eiN∆ϕ|Ψ〉

∣∣ should be less than 1 by a finite quantity. This gives

F =
∣∣〈Ψ|eiN∆ϕ|Ψ〉

∣∣

=

∣∣∣∣∣1−
∑

n

|cn|2 (1− ein∆ϕ)

∣∣∣∣∣

≥ 1− 2

∣∣∣∣∣
∑

n

|cn|2 ein∆ϕ/2 sin (n∆ϕ/2)

∣∣∣∣∣
≥ 1− 2

∑
n

|cn|2 sin (n∆ϕ/2) ≥ 1− 〈N〉∆ϕ, (2.144)

where the relations |a− b| ≥ ||a| − |b|| and sin x ≤ x are used. Hence we get the result

∆ϕ ≥ 1− F

〈N〉 ∼ 1

〈N〉 (2.145)

in parallel with Eq. (2.141).

34



2.5 Optimal Phase Estimator

The optimal POVM for phase parameter in the state Ψ(θ) = e−iJθΨ is shown in details [47].

Suppose the desired POVM dE(θ̂) = E(θ)dθ/(2π) = e−iJθEeiJθdθ/(2π). The p.d.f. of this mea-

surement p(θ̂|θ) depends only on θ̂ − θ,

p(θ̂|θ) = Tr[ρ(θ)E(θ̂)] = Tr[e−iJ(θ−θ̂)ρ eiJ(θ−θ̂)E ]. (2.146)

If z(θ) = 1/(2π) and C(θ̂, θ) = −δ(θ̂ − θ), the conditions for the optimal POVM are

[Υ− ρ(θ)]E(θ) = 0,

Υ− ρ(θ) ≥ 0,

Υ =

∫
e−iJθρ E eiJθ dθ

2π
. (2.147)

Suppose E = |Φ〉〈Φ|, J |j〉 = j|j〉, and the set {|j〉} forms a complete orthogonal base. Then

the identity
∫ E(θ)dθ/(2π) = 1 leads to |〈j|Φ〉| = 1. It will be shown below that the choice

〈j|Φ〉 = γj ≡ cj/|cj| satisfy the optimal condition. Hence

|Φ〉 =
∑

j

|j〉〈j|Φ〉 =
∑

j

|j〉γj. (2.148)

Note that e−iJθ̃ΥeiJθ̃ = Υ for any θ̃ gives [Υ, J ] = 0. Therefore, the optimal conditions become

(Υ− ρ)E = 0,

Υ− ρ ≥ 0. (2.149)

It remains to check the chosen POVM satisfies these two conditions.
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For the proof of the nonnegative Υ− ρ, the useful matrix elements in the base {|j〉} are given

by

〈m|ρ|n〉 = cmc∗n,

〈m|E|n〉 = γmγ∗n,

〈Ψ|Φ〉 =
∑

j

|cj|,

〈m|Υ|n〉 =

∫
e−i(m−n)θ〈m|ρ E|n〉dθ

2π

= 〈m|ρ E|m〉δmn,

〈m|ρ E|n〉 = cmγ∗n
∑

j

|cj|. (2.150)

For any state |Ψ̃〉 =
∑

j c̃j|j〉, one has

〈Ψ̃|Υ− ρ|Ψ̃〉 =
∑
m

|c̃m|2 |cm|
∑

n

|cn| − |
∑
m

c̃ ∗mcm|2 ≥ 0, (2.151)

where the last step follows from the Schwarz inequality. The first condition is also fulfilled,

〈m|(Υ− ρ)E|n〉 = 〈m|ρ E|m〉〈m|E|n〉 − 〈m|ρ E|n〉

= |cm|γmγ∗n
∑

j

|cj| − cmγ∗n
∑

j

|cj|

= 0. (2.152)
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Chapter 3: Parity as a Unified Measurement
Scheme

Phase measurement using a lossless MZI with certain entangled N -photon states can lead to a

phase sensitivity of the order of 1/N , i.e. HL. However, previously considered output measurement

schemes are different for different input states to achieve this limit. We show that it is possible

to achieve this limit just by the parity measurement for all the commonly proposed entangled

states. Based on the parity measurement scheme, the reductions of the phase sensitivity in the

presence of photon loss are examined for the various input states.

3.1 Introduction

The notion of quantum entanglement holds great promise for certain computational and com-

munication tasks. It is also at the heart of metrology and precision measurements in extending

their capabilities beyond the so-called standard quantum limit [5]. For example, the phase sensi-

tivity of a usual two-port interferometer is SNL as 1/
√

N , where N is the number of the photons

entering the input port. However, a properly correlated Fock-state input for MZI can lead to

an improved phase sensitivity that scales as 1/N , i.e., HL [13, 42, 51, 52]. In the subsequent

development, the dual Fock-state [11] and the so-called intelligent state [53, 54] were proposed

to reach a sub-shot-noise sensitivity as well. Recently, much attention has been paid to NOON

state to reach the exact HL in interferometry as well as super-resolution imaging [15, 55, 31, 56].

The utilization of those quantum correlated input states are accompanied by various output

measurement schemes. In some cases the conventional measurement scheme of photon-number

difference is used, whereas a certain probability distribution [57, 12, 58, 59], a specific adaptive

measurement [16, 17, 60], and the parity measurement are used for other cases.

Gerry and Campos first showed the use of the parity measurement for the “maximally entangled

state”–the NOON state–of light to reach the exact HL [18], following the earlier suggestion of the

HL spectroscopy with N two-level atoms [14]. Campos, Gerry, and Benmoussa later suggested

that the parity measurement scheme can also be used for the dual Fock state inputs by comparing
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the quantum state inside the interferometer with the NOON state [19]. In this paper we show

that the parity measurement can be used as a detection scheme for sub-shot-noise interferometry

with the correlated Fock states first proposed by Yurke, McCall, and Klauder [13], as well as with

the intelligent states first suggested by Hillery and Mlodinow [53]. Extension of its use for all

these input states then promote the parity measurement to a kind of universal detection scheme

for quantum interferometry. Then, based on such a universal detection scheme comparisons of

performance of various quantum states can be made in a common ground. As an example, we

present a comparison of the phase sensitivity reduction for various quantum states of light in the

presence of photon loss.

3.2 The Group-Theoretic Analysis of MZI

In order to describe the notations, we briefly review the group theoretical formalism of MZI.

The key point of such a formalism is that any passive lossless four-port optical system can be

described by the SU(2) group [13]. First, we use the mode annihilation operators ain(out) and

bin(out), which satisfy boson commutation relations, to represent the two light beams entering

(leaving) the beam splitter (BS), respectively. Then the action of BS takes the form




aout

bout


 =




ei(α+γ)/2 cos β
2

e−i(α−γ)/2 sin β
2

−ei(α−γ)/2 sin β
2

e−i(α+γ)/2 cos β
2







ain

bin


 . (3.1)

Here α, β, and γ denote the Euler angles parameterizing SU(2), and they are related to the

complex transmission and reflection coefficients. Through the angular momentum representation

we can construct the operators for the angular momentum and for the occupation number from

the mode operators a and b,

J =




Jx

Jy

Jz




=
1

2




ab† + ba†

i(ab† − ba†)

aa† − bb†




, (3.2)

and N = a†a + b†b. The commutation relations [a, b] = [a, b†] = 0 and [a, a†] = [b, b†] = 1 lead to

the relation J× J = iJ. The group invariant has the form J2 = J2
x + J2

y + J2
z = (N/2)(N/2 + 1)

that commutes with Ji and N . Next, it was shown that the operation of the BS is equivalent to
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[13]

Jout = eiαJzeiβJyeiγJzJine
−iγJze−iβJye−iαJz , (3.3)

in the Heisenberg picture, and to

|out〉 = e−iαJze−iβJye−iγJz |in〉, (3.4)

in the Schrödinger picture. If we use the symbols j and m to indicate the eigenvalues of N/2 and

Jz, then the theory of angular momentum tells that the representation Hilbert space is spanned

by the complete orthonormal basis |j, m〉 with m ∈ [−j, j], which can also be labeled by the

Fock states of the two modes, |j, m〉 = |j +m〉a|j−m〉b. In terms of this language, we may make

the geometrical interpretation of the elements of a MZI. For example, the effect of a 50/50 BS,

which leads a ±π/2 rotation around the x axis (given by the unitary transformation e±i(π/2)Jx),

is equivalent to the transformation




aout

bout


 =

1√
2




1 ∓i

∓i 1







ain

bin


 . (3.5)

Similarly, the relative phase shift ϕ acquired between the two arms of MZI can be expressed by

aout = ain, bout = eiϕbin, or by the unitary transformation e−iϕJz equivalently.

MZI can be illustrated schematically in Fig. 1.1, where the two light beams a and b first enter

the BS+, and then acquires a relative phase shift ϕ, and finally pass through the BS−. The

photons leaving the BS− are counted by detectors Da and Db. Therefore, in the language of the

group theory, the input states of BS+ and the output states of BS− is connected by a simple

unitary transformation U = ei(π/2)Jxe−iϕJze−i(π/2)Jx = e−iϕJy . Its effect is the equivalent to a BS,

which gives a ϕ rotation around the y axis,




aout

bout


 =




cos ϕ
2
− sin ϕ

2

sin ϕ
2

cos ϕ
2







ain

bin


 . (3.6)

The information on the phase shift ϕ is inferred from the photon statistics of the output beams.

There are many statistical methods to extract such information. The most common one is to use
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the difference between the number of photons in the two output modes, Nd = a†outaout − b†outbout,

or equivalently, Jz,out = Nd/2. The minimum detectable phase shift then can be estimated by [3]

∆ϕ =
∆Jz,out

|∂〈Jz,out〉/∂ϕ| , (3.7)

where ∆Jz,out =
√
〈J2

z,out〉 − 〈Jz,out〉2. The expectation value of Jz,out and J2
z,out are calculated

by 〈Jz,out〉 = 〈in|Jz,out|in〉 = 〈in|U †Jz,inU |in〉, 〈J2
z,out〉 = 〈in|J2

z,out|in〉 = 〈in|U †J2
z,inU |in〉, and

U †Jn
z,inU = (− sin ϕJx,in + cos ϕJz,in)n.

Now the application of the group formalism to analyze the phase sensitivity of the ideal MZI

is straightforward. Let us first consider the correlated photon-number states [13, 42, 52]. In

particular, the so-called Yurke state has the form |in〉 = [|j, 0〉+ |j, 1〉] /√2, which is one of the

earliest proposals of utilizing the correlated photon-number states [13]). A simple calculation for

the Yurke-state input gives

∆ϕ =

{
[j(j + 1)− 1] sin2 ϕ + cos2 ϕ

}1/2

|
√

j(j + 1) cos ϕ + sin ϕ| , (3.8)

which has its minimum value ∆ϕmin ≈ 1/
√

j(j + 1) when sin ϕ ≈ 0. Hence, when the Yurke

state is fed into the input ports of an interferometer, the minimum of ∆ϕ has the order of 2/N

limit since j = N/2. We should bear in mind that the minimum phase sensitivity is achieved only

at particular values of ϕ ≈ 0. For other values of ϕ the phase sensitivity is decreased. However,

one can always control the phase shift by a feed-back loop which keeps ϕ at any particular value.

3.3 Parity as a Unified Measurement Scheme

The parity measurement, represented by the observable P = (−1)b†b = eiπ(j−Jz) has an advantage

when the simple photon number counting method ceases to be appropriate to infer the phase shift

and provides a wider applicability than Jz. The parity measurement scheme was first introduced

by Bollinger, Itano, Wineland, and Heinzen for spectroscopy with trapped ions of maximally

entangled form [14]. Gerry and Campos adopted such a measurement scheme to the optical

interferometry with the NOON state [18]. The NOON state can be formally written as |NOON〉 =

[|j, j〉+ |j,−j〉]/√2. Note that the NOON state is not the input state of MZI, but the state after

the first beam splitter BS+. Hence the output state is described as |out〉 = ei(π/2)Jxe−iϕJz |NOON〉.
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The expectation value for the parity operator is then given by

〈P 〉 = iN〈NOON|eiϕJzeiπJye−iϕJz |NOON〉

= iN
[
eiNϕ + (−1)Ne−iNϕ

]
/2, (3.9)

so that we have

〈P 〉 =

{
iN+1 sin Nϕ, N odd,

iN cos Nϕ, N even,
(3.10)

where the identity e−i(π/2)Jxe−iπJzei(π/2)Jx = eiπJy is applied and Eq. (3.6) with ϕ = −π is used.

Since P 2 = 1, the equation (3.10) then immediately leads to the result ∆ϕ = 1/N , exactly.

Now, let us consider the dual Fock-state as the input state, |j, 0〉 = |j〉a|j〉b. Here, if we still

use Jz,out as our observable, we have

〈Jz,out〉 = 〈j, 0| − sin ϕJx + cos ϕJz|j, 0〉 = 0. (3.11)

The expectation value of the difference of the output photon number is now independent of the

phase shift. Therefore, in this case the measurement of Jz,out contains no information about the

phase shift. A method of reconstruction of the probability distribution has been proposed to

avoid this phase independence and to reach HL [11, 58, 59]. More recently, Campos, Gerry, and

Benmoussa suggested the use of the parity measurement for the dual Fock-state inputs [19].

The expectation value of P can be derived from 〈Pout〉 = 〈in|eiϕJyPine
−iϕJy |in〉 and 〈P 2

out〉 =

〈in|in〉 = 1. For the dual Fock-state, we have

〈Pout〉d-Fock = 〈j, 0|eiϕJy(−1)j−Jze−iϕJy |j, 0〉

= (−1)j d
(j)

0,0 (2ϕ), (3.12)

where d
(j)

m,n denotes the rotation matrix element: e−iϕJy |j, n〉 =
∑j

m=−j d
(j)

m,n(ϕ)|j, m〉, and

d (j)
m,n(ϕ) = (−1)m−n2−m

√
(j −m)!(j + m)!

(j − n)!(j + n)!

× P
(m−n,m+n)
j−m (cos ϕ) (1− cos ϕ)

m−n
2 (1 + cos ϕ)

m+n
2

,

where P
(α,β)
n (x) represents the Jacobi polynomial. Thus the phase sensitivity is obtained as

∆ϕd-Fock =

√
1− [d

(j)
0,0 (2ϕ)]2

|∂d
(j)

0,0 (2ϕ)/∂ϕ|
(3.13)
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for the dual Fock-state, and in the limit of ϕ → 0, we have

∆ϕd-Fock → 1√
2j(j + 1)

∼
√

2

N
. (3.14)

If we use the parity measurement scheme for the Yurke-state input, we obtain

〈Pout〉Yurke = 〈in|eiϕJy(−1)j−Jze−iϕJy |in〉

=

j∑
m=−j

(−1)j−m

2

(
d

(j)∗
m,0 + d

(j)∗
m,1

)(
d

(j)
m,0 + d

(j)
m,1

)

=
(−1)j

2

[
d

(j)
0,0 + d

(j)
0,1 − d

(j)
1,0 − d

(j)
1,1

]
(2ϕ), (3.15)

where have used the following properties of the matrix element [61] in the last line of (4.3):

d (j)∗
m,n = d (j)

m,n = (−1)m−nd (j)
n,m = d

(j)
−n,−m

j∑
m=−j

d
(j)

k,m(ϕ1) d (j)
m,n(ϕ2) = d

(j)
k,n (ϕ1 + ϕ2). (3.16)

Again, using

∆ϕ =

√
1− [〈Pout〉Yurke]2

|∂〈Pout〉Yurke/∂ϕ| , (3.17)

we have

∆ϕYurke → 1√
j(j + 1)

∼ 2

N
, (3.18)

in the limit of ϕ → 0. This shows that, for the Yurke state, the parity measurement scheme

leads to the same phase sensitivity as the Jz,out measurement scheme. The dual-Fock state then

performs better than the Yurke-state by a factor of
√

2 within the parity measurement scheme.

We can also use parity observable for the intelligent state entering the first beam splitter BS+

in Fig. 1.1. The intelligent state is defined as the solution of the equation

(Jy + iηJz) |j, m0, η〉 = β|j, m0, η〉, (3.19)

where η2 = (∆Jy)
2/(∆Jz)

2 and m0 is an integer belonging to [−j, j] [53]. The eigenvalue corre-

sponding to |j, m0, η〉 is β = im0

√
η2 − 1 and the eigenvector |j, m0, η〉 =

∑j
k=−j Ck|j, k〉, where
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an explicit form of the expansion coefficient Ck is given in Ref. [54]. The expectation value of the

parity operator is then obtained as

〈Pout〉Int = (−1)j

j∑

k,n=−j

C∗
kCn(−1)kd

(j)
k,n (2ϕ). (3.20)

It follows that from the explicit form of Ck’s the phase sensitivity scales better with a larger η

and a smaller |m0|. As η →∞, the phase sensitivity becomes

∆ϕInt → 1√
2(j2 −m2

0 + j)
∼
√

2

N
. (3.21)

On the other hand, as η → 1, we have ∆ϕInt → 1/
√

2j ∼ 1/
√

N , which is the standard shot-noise

limit. So the minimum value of ∆ϕ is only accessible for m0 = 0. This limiting behavior is the

same as the phase sensitivity with Jz measurement at ϕ = 0 [54]. We note that, within the parity

measurement scheme, of all states considered here only the NOON state reaches exactly HL.

3.4 The Effect of Photon Loss on Phase Sensitivity

We have seen that we can adopt the parity measurement as a universal detection scheme for all

the commonly used entangled states, we will use it as a common ground to compare the effect

of photon loss on phase sensitivity, thus we can put each input state on the same footing.

The effect of photon loss has been recently studied for the NOON states. Gilbert and coworkers

applied a model for loss as a series of beam splitters in the propagation paths [70]. Rubin and

Kaushik applied a single beam-splitter model for loss on the detection operator [29]. Whereas

the two approaches are equivalent, we adopt the one given in Ref. [70] by putting the the effect

of photon loss in the following form [63]:

aout = e(−iηaω/c−Ka/2)Laain + i
√

Ka

∫ La

0

dz e(−iηaω/c−Ka/2)(La−z)d(z), (3.22)

bout = e(−iηbω/c−Kb/2)Lbbin + i
√

Kb

∫ Lb

0

dz e(−iηbω/c−Kb/2)(Lb−z)d(z), (3.23)

where ηi is the index of refraction for arm i of the interferometer, Ki is the absorption coefficient,

and Li is the path length. The annihilation operator d(z) is the modes into which photons are

scattered. Typically, the photon loss can be modeled by making the substitution ϕ → ϕ + iγ,

where γ = KL/2 is the rate of absorption. The effects that it produces on coherent state |α〉 and
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number state |N〉 are

|α〉 → |e−γ+iϕα〉, (3.24)

|N〉 → e−N(γ+iϕ)|N〉, (3.25)

respectively. The exponential dependence of the loss in the coherent or classical state is called

Beer’s law for optical absorption. For number state, we have a super-exponential behavior, which

is called super-Beer’s law.

The observable used for the output detection schemes in both Refs. [70, 29], namely, A =

|N, 0〉〈0, N |+ |0, N〉〈N, 0|, is equivalent to the parity measurement for the NOON state [15]. In

addition, if we now only consider the measurement performed in the N-photon subspace of the

output state, we can ignore the scattering term of the above transformation.

Following Ref. [70], we assume that the losses are present only in the one of the two arms of

the interferometer and set e−KaLa = 1 and e−KbLb ≡ λ2. The associated operation of the lossy

MZI then can be expression as



aout

bout


 =

1

2




1 + λeiϕ −i(1− λeiϕ)

i(1− λeiϕ) 1 + λeiϕ







ain

bin


 , (3.26)

which is non-unitary unless λ = 1. In the angular momentum representation, this transformation

can be rephrased as

L(ϕ) = eiJx
π
2 Λe−iJx

π
2 eiJx

π
2 e−iJzϕe−iJx

π
2

= eiJx
π
2 Λe−iJx

π
2 e−iJyϕ, (3.27)

where Λ is a matrix representing the effect of path absorption. Then we get

L†(ϕ)PNL(ϕ) = eiJyϕeiJx
π
2 Λe−iJx

π
2 PNeiJx

π
2 Λe−iJx

π
2 e−iJyϕ

= eiJyϕL(0)PNL(0)e−iJyϕ

= λNeiJyϕPNe−iJyϕ ≡ Y1. (3.28)

with

PN = P ⊗
j∑

m=−j

|j, m〉〈j, m| (3.29)
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denoting the N -photon projected parity operator. That is to say, one needs to detect all the N

photons, even though that probability decreases exponentially with N . To prove above relation,

we note that in the spinor representation, the truncated parity operator PN can be expressed as

PN =




1 0

0 −1


 = σz (3.30)

up to common phase factor. Hence L(0)PNL(0) in Eq. (3.28) corresponds to

1

2




1 + λ −i(1− λ)

i(1− λ) 1 + λ







1 0

0 −1


 1

2




1 + λ −i(1− λ)

i(1− λ) 1 + λ


 = λ




1 0

0 −1


 (3.31)

in the spinor representation, which corresponds to λNPN in the angular momentum representa-

tion.

Similarly, we find

L†P 2
NL = L†L = eiJyϕeiJx

π
2 Λ2e−iJx

π
2 e−iJyϕ

= eiJx
π
2 Λ2e−iJx

π
2 ≡ Y2, (3.32)

where the commutability of Y2 and e−iJyϕ is applied. It is easy to check in the spinor represen-

tation,

1

2




1 + λ2 −i(1− λ2)

i(1− λ2) 1 + λ2







cos ϕ
2
− sin ϕ

2

sin ϕ
2

cos ϕ
2




=




cos ϕ
2
− sin ϕ

2

sin ϕ
2

cos ϕ
2


 1

2




1 + λ2 −i(1− λ2)

i(1− λ2) 1 + λ2


 (3.33)

by the matrix identity




a b

−b a







c d

−d c


 =




c d

−d c







a b

−b a


 . (3.34)

Now, for a general input state, |in〉 =
∑j

m=−j cm|j, m〉, we obtain

〈PN〉out = 〈Y1〉in = (−1)jλ2j
∑
m,n

c∗mcn(−1)md (j)
mn (2ϕ) (3.35)
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FIGURE 3.1. The minimum phase sensitivity, ∆ϕmin, for the various entangled states as a function of
λ, the transmission coefficient. The upper and lower figures are for N = 4 and N = 6, respectively.
The dotted line (a) represents that of the uncorrelated input state [70]. The solid lines represent (b)
the NOON state, (c) the dual Fock state, (d) the intelligent (η = 10) state, (e) the Yurke, and (f) the
intelligent (η = 1) state, respectively.

and

〈P 2
N〉out = 〈Y2〉in = (1/2)

∑
m,n

c∗mcn[Qmn + Qnm](λ). (3.36)

Here, the polynomial Qmn(λ) is defined as the matrix element 〈j, m|Y2|j, n〉 such that

Qmn(λ) =
i−m−n

(j − n + 1)j+n

(2j)!
√

(j + n)!√
(j −m)!(j + m)!(j − n)!

×
(

x2 − 1

4

)j (
1 + x

1− x

)j+n−m

P
(−2j−1,m−n)
j+n

(
1− 8x

(x + 1)2

)
, (3.37)

where x ≡ λ2 and pq ≡ Γ(p + q)/Γ(p).

We now compare the phase sensitivity for different entangled states in the presence of photon

loss. The plots depicted in Fig. 3.1 show the reduced phase sensitivity due to the photon loss, in

this case as a function of λ (the transmission coefficient). All the commonly proposed entangled
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states are compared to the lossy-environment shot-noise limit. Among the entangled states, the

best possible phase sensitivity can be achieved by the NOON state, and it gets worse in the

following order: the dual Fock state, the η = 10 intelligent state, the Yurke state, and then

the η = 1 intelligent state. Within the restricted parity measurement scheme the NOON states

show the best performance for phase detection and can still beat SNL if the transmittance of

interferometer is not too small and the photon number is not too large. We see that beating

SNL (dotted line, represented by the uncorrelated input state) requires less attenuation as the

number of photons increases. For example, the lowest solid line (representing the NOON states)

requires 75% transmission for N = 4 and 80% for N = 6.

3.5 Conclusion

We showed that the utilization of the parity measurement in sub-shot-noise interferometry is

applicable to a wide range of quantum entangled input states, so far known entangled states of

light. Comparison of the performance of the various quantum states then can be made within

such a unified output measurement scheme. Furthermore, it may lead to a great reduction of the

efforts in precise quantum state preparation as well as in various optimization strategies involving

quantum state engineering for the sub-shot-noise interferometry.
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Chapter 4: A Simple Condition for
Heisenberg-Limited Optical Interferometry

In this chapter I will present a simple condition to determine whether a given input state can be

used to achieve the optical phase measurement at HL. In terms of the fidelity F between the two

output states with zero phase and minimal detectable phase shift applied respectively, it can be

expressed as F < 1, with the minimal phase shift scaling as HL, in the limit where the average

number of input photons goes to infinity.

4.1 Introduction

The entangled states used in chapter 3 all have real coefficients. If the imaginary coefficients

are allowed, the phase sensitivity with parity measurement will blow up as indicated below. It

is thus useful to have a condition to check if a state can achieve HL that is independent of

the detection scheme. One such criterion is the quantum Fisher information [47] that provides

one lower bound for the phase sensitivity. However, the lower bound given by quantum Fisher

information is only asymptotically achievable for a large number of runs of detections. Another

lower bound for minimal phase shift based on the uncertainty relation is given in Ref. [22, 23],

but whether it can be actually attained for a given state remains open. In this paper we find

that the condition for one input state to reach HL can be expressed as the fidelity between two

output states with zero phase and the minimal detectable phase ∆ϕ applied respectively should

be less than 1 as ∆ϕ ∼ 1/〈N〉 and 〈N〉 → ∞. We need to point out that this condition applies

to the single run of detection of phase shift as well as the multiple runs. For multiple runs, the

output state should be understood as the output state for the overall measurements.

4.2 An Example

In this section we calculate the phase sensitivity with an input state to a lossless Mach-Zehder

interferometer, |Ψ〉 = α|N〉a|N〉b + β|N + 1〉a|N − 1〉b, which is the superposition of dual Fock

state and Yurke state. In the angular momentum representation it can be expressed by |Ψ〉 =

α|j, 0〉 + β|j, 1〉 with j = N . We have known that the effect of MZI can be represented by a
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unitary rotation operator, U = e−iϕJy . Then the output state is given by

|Ψ(ϕ)〉 = U |Ψ〉 = e−iϕJy [α|j, 0〉+ β|j, 1〉] . (4.1)

Using the standard rotation matrix U |j, n〉 =
∑j

m=−j d
(j)

mn (ϕ)|j, m〉, we have

|Ψ(ϕ)〉 =

j∑
n=−j

[
αd

(j)
n,0 + β d

(j)
n,1

]
(ϕ)|j, n〉. (4.2)

To determine the phase sensitivity, we need to choose a detection scheme. Specifically, we use

parity operator as our measurement. The parity measurement is given by the operator P =

(−1)(j−jz). We have previously shown that this scheme works well with all the known entangled

states achieving HL in chapter 3. For the above states |Ψ〉, we get

〈P 〉 = 〈Ψ(ϕ)|P |Ψ(ϕ)〉 = 〈Ψ|eiϕJyP e−iϕJy |Ψ〉

= (−1)j
[
|α|2 d

(j)
0,0 + βα∗ d

(j)
0,1 − αβ∗d (j)

1,0 − |β|2 d
(j)

1,1

]
(2ϕ),

〈P 2〉 = 〈Ψ(ϕ)|P 2 |Ψ(ϕ)〉 = 1, (4.3)

and the phase sensitivity is given by

∆ϕ =
∆P

|∂〈P 〉/∂ϕ| =

√
1− 〈P 〉2

|∂〈P 〉/∂ϕ| (4.4)

In the limit of ϕ → 0,

∆ϕ2 → 1− (|α|2 − |β|2)2

(αβ∗ + βα∗)2 j(j + 1)
=

1

j(j + 1) cos2 θ
, (4.5)

where θ is the phase difference of α and β. If we confine the parameters, α and β to be real,

the phase sensitivity goes exactly like 1/
√

j(j + 1), which is the same as the pure Yurke state

[13]. To achieve HL, the input state does not need to be exactly prepared as pure dual Fock

state or Yurke state. We can use their superposition as input freely if the mixing amplitudes

are real. When α and β are not in phase, i.e. αβ∗ + βα∗ = 0 and |Ψ〉 = [|j, 0〉 + i |j, 1〉]/√2,

∆ϕ would go to infinity. Another known example is that the conventional Jz = (a†a − b†b)/2

measurement does not work with the dual Fock states [58]. However, this superficial infinity can

be avoid by other estimation schemes, such as the maximal-likelihood method [64]. To avoid this

scheme dependence, it is convenient to present a condition to determine whether a given input

state can achieve HL independently of the detection scheme.
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4.3 A Condition Based on Fidelity

For a generic normalized input state |Ψ〉, we apply a unitary operation U , after which it becomes

|Ψ′〉 = U |Ψ〉. In order to effectively distinguish these two states, we require the fidelity defined

by F = |〈Ψ|Ψ′〉| < 1. The best distinguishability corresponds to F = 0, which means the two

states are orthogonal. To prove it, we apply a positive operator-value measurement (POVM)

[65] Em on Ψ and Ψ′ to distinguish them. The POVM satisfies the conditions: (i)
∑

m Em = 1,

and (ii) the spectrum of Em is positive for all m. The resulting probability distributions thus

are pm = 〈Ψ|Em|Ψ〉 and p′m = 〈Ψ′|Em|Ψ′〉. A faithful quantity that quantifies the difference of

the states Ψ and Ψ′ is that of the probabilities pm and p′m. We therefore can take the overlap

minE

{∑
m

√
pm

√
p′m

}
to quantify this difference. From Schwarz inequality,

∑
m

√
〈Ψ|Em|Ψ〉〈Ψ′|Em|Ψ′〉 ≥

∑
m

|〈Ψ|Em|Ψ′〉| ≥ |〈Ψ|Ψ′〉|. (4.6)

So minE

{∑
m

√
pm

√
p′m

}
= |〈Ψ|Ψ′〉| if we choose E1 = |Ψ〉〈Ψ| and E2 = 1 − |Ψ〉〈Ψ|. Hence if

the fidelity F < 1, there is finite probability to distinguish them by performing the POVM, E1

and E2.

We now investigate its implication for our phase sensitivity in MZI. The unitary transformation

for MZI is U = e−i∆ϕJy . In order to detect a small phase shift ∆ϕ, we need

F =
∣∣〈Ψ|e−i∆ϕJy |Ψ〉

∣∣ < 1. (4.7)

In particular, the condition for HL state can be stated as

lim
〈N〉→∞

∣∣〈Ψ|e−i∆ϕJy |Ψ〉
∣∣
∆ϕ→1/〈N〉 < 1. (4.8)

Here the limiting process is formally used to test HL in the mathematical sense. It does not

actually require infinite number of photons.

With this condition, we can also provide a lower bound for the phase sensitivity. The Margolus-

Levitin theorem [66] indicates that a quantum system of energy E needs at least a time of π~/2E

to go from one state to an orthogonal state. By analogy, the minimum value of ∆ϕ that make

〈Ψ|e−i∆ϕJy |Ψ〉 → 0 satisfies

∆ϕ ≥ π

2(jmax + 〈Jy〉) . (4.9)
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Here jmax denotes the maximum angular momentum in the components of |Ψ〉, which is added

to 〈Jy〉 to make the denominator positive, in analogy with the positivity of E.

On the other hand, the uncertainty relation provides another bound for phase sensitivity [22].

Suppose an observable X is measured on the state |Ψ(ϕ)〉 = e−iϕJy |Ψ〉 to estimate the phase.

The uncertainty relation yields

∆X∆Jy ≥ 1

2
|〈Ψ(ϕ)|[Jy, X]|Ψ(ϕ)〉| = 1

2

∣∣∣∣
∂〈X〉
∂ϕ

∣∣∣∣. (4.10)

The resulting precision in estimating θ is thus given by

∆ϕ =
∆X

|∂〈X〉/∂ϕ| ≥
1

2∆Jy

. (4.11)

Combining the above two lower bounds (4.9) and (4.11), we have

∆ϕ ≥ max

{
π

2(jmax + 〈Jy〉) ,
1

2∆Jy

}
. (4.12)

This inequality only gives a lower bound for phase sensitivity, whether the lower bound can

be achieved should be checked separately with our initial condition (4.7). As an example, the

inequality (4.12) implies ∆ϕ ≥ π/N for the NOON state, |Ψ〉 = [|j, j〉y + |j,−j〉y] /
√

2 with

j = N/2, 〈Jy〉 = 0, and ∆Jy = j. Note that at ∆ϕ = π/N the output state becomes |Ψ(π/N)〉 =

[
e−iπ/2|j, j〉y + eiπ/2|j,−j〉y

]
/
√

2, which is orthogonal to |Ψ〉. In other words, NOON state can

reach HL.

4.4 Relation with Previous Works

For the single-mode unitary phase shift transformation U = e−iϕN with N the number operator,

we have inequality similar to (4.12),

∆ϕ ≥ max

{
π

〈N〉 ,
1

2∆N

}
. (4.13)

The necessary condition to achieve HL is O(〈N〉) ≤ ∆N , which is also obtained in [51]. We

should point out that (4.12) and (4.13) are not mathematically rigorous since ∆ϕ is a bounded

quantity. If the right hands of (4.12) and (4.13) become larger than 2π, we have to go back to

the initial condition (4.7) to find the minimal detectable phase shift.
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In Ref. [21] Braunstein and Caves, by minimizing the Fisher information on all possible

POVMs, found an inequality for estimating a parameter ϕ, which states

∆ϕ2 ds2

dϕ2
≥ 1

4
, ds2 = 2(1− |〈Ψϕ|Ψϕ+dϕ〉|). (4.14)

Here |Ψϕ〉 is a class of states generated by parameter ϕ. As long as |〈Ψϕ|Ψϕ+∆ϕ〉| is less than

one, which is equivalent to (4.7), it is possible to tell the difference between the states Ψϕ and

Ψϕ+∆ϕ. A similar quantity has also been proposed by Ou in Ref. [51] from the complementarity

principle.

From the perspective of quantum estimation theory [47], the average probability of error of

distinguishing two known states ρ0, ρ1 is equal to

Perror =
1

2
[1−D(ρ0, ρ1)] ≤ 1

2
,

where D(ρ0, ρ1) = |ρ0 − ρ1| /2 and |A| ≡ Tr
√

A†A and the equality holds only for ρ0 = ρ1. In Ref.

[65] D is defined as the distance between states ρ0 and ρ1, which characterizes how distinguishable

they are, because D > 0 implies Perror < 1/2. Note the inequality
√

1− F ≤ D ≤ √
1− F 2 proved

in Ref. [65]. Here the fidelity is F = Tr
√√

ρ0ρ1
√

ρ0, and for pure states F = |〈Ψ1|Ψ0〉|. We can

equally use DF =
√

1− F 2 to characterize the distinguishability between ρ0 and ρ1. Thus the

condition to effectively distinguish ρ0 and ρ1 can be expressed as F < 1. To determine whether

HL is attainable for an input state ρ, we should require

lim
〈N〉→∞

F [ρ(0), ρ(∆ϕ)]|∆ϕ→1/〈N〉 < 1, (4.15)

where ρ(0), ρ(∆ϕ) are output states with null and ∆ϕ phase shift applied respectively, which is

a generalization to the condition (4.7) for mixed states.

In addition there is another way to distinguish two states with zero errors, but the price to

pay is to introduce the inconclusive results. For the two pure states Ψ1, Ψ2 with equal prior

probabilities, the minimal probability of inconclusive results is given by |〈Ψ1|Ψ2〉|. To prove it,

we use a theorem in Ref. [67]: The states Ψ1, Ψ2 can be identified with the respective probabilities

p1, p2 iff the matrix 


1− p1 〈Ψ1|Ψ2〉
〈Ψ2|Ψ1〉 1− p2


 (4.16)
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is semi-positive. It implies the inequalities

1− p1 ≥ 0, (4.17)

(1− p1)(1− p2)− |〈Ψ1|Ψ2〉|2 ≥ 0, (4.18)

and hence

(p1 + p2)/2 ≤ 1− |〈Ψ1|Ψ2〉| . (4.19)

The inconclusive probability is 1− (p1 + p2)/2 = |〈Ψ1|Ψ2〉|. It therefore also qualifies the fidelity

F as a meaningful measure for the distinguishability of two states.

4.5 Applications

In this section we illustrate the applications of (4.7) or (4.8) with some examples. First, we take

|Ψ〉 = |j, j〉 in the angular momentum representation as the input state with total photon number

N = 2j,

〈Ψ|e−i∆ϕJy |Ψ〉 = d
(j)

j,j (∆ϕ) =

(
1 + cos ∆ϕ

2

)2j

≈ e−j∆ϕ2/2, (4.20)

where the approximations cos x ≈ 1− x2/2 and (1− x)1/x ≈ e−1 for small x are used. Therefore,

lim
N→∞

∣∣〈Ψ|e−i∆ϕJy |Ψ〉
∣∣
∆ϕ→1/N

= lim
N→∞

e−j∆ϕ2/2|∆ϕ→1/N = lim
N→∞

e−1/(4N) = 1, (4.21)

i.e. HL can not be achieved. In fact we note that

lim
N→∞

e−j∆ϕ2/2|∆ϕ→1/
√

N = e−1/2 < 1, (4.22)

and thus the minimal measurable phase shift is ∆ϕ ∼ N−1/2, which is the standard shot-noise

limit.

If the input state is the dual Fock state |j, 0〉,

〈j, 0|e−i∆ϕJy |j, 0〉 = d
(j)

0,0 (∆ϕ) → J0(j∆ϕ) +O(j−3/2). (4.23)

where Jν(x) is Bessel function, and the asymptotic formula for d
(j)

m,n(β) is used, i.e. d
(j)

m,n(β) =

Jn−m(jβ)+O(j−3/2) when m,n ¿ j. In order to make (4.23) distinctly different from 1, we need
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FIGURE 4.1. The plots for |J0(x)| (thin) and
√
J0(x)2 + J1(x)2 (thick).

FIGURE 4.2. The plots for the magnitude of (4.30) with {N = 100, r = 1} (thick), {N = 200, r = 1}
(thin), and {N = 100, r = 2} (dashed).
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FIGURE 4.3. The scaling behavior of ∆ϕ versus the total photon number for (4.30) with r = 1 (thin
solid), NOON state (thin dashed), |j, j〉 (thick solid), dual Fock-state (thick dashed), and the superpo-
sition of dual Fock- and Yurke-states with |Im[αβ∗]| = 1/2 (thick dotdashed).

to require j∆ϕ ∼ x0 = 2.405 with x0 the first root of J0(x), see Fig. 4.1. This means that the

dual Fock state can achieve HL with a proper detection scheme [58].

The superpostion of dual Fock state and Yurke state can be written as

|Ψ〉FY = α|j, 0〉+ β|j, 1〉 (|α|2 + |β|2 = 1
)
, (4.24)

〈Jy〉 = Im[αβ∗]
√

j(j + 1), 〈J2
y 〉 =

1

2

[
j(j + 1)− |β|2] . (4.25)

Note that |Im[αβ∗]| ≤ 1/2. Hence j + 〈Jy〉 ∼ ∆Jy ∼ O(N), and (4.12) gives ∆ϕ ≥ O(N−1). Now

let us check if ∆ϕ can actually reach this lower bound. For large photon number, we note

〈ΨFY |e−i∆ϕJy |ΨFY 〉 =
[
|α|2 d

(j)
0,0 + βα∗ d

(j)
0,1 + αβ∗d (j)

1,0 + |β|2 d
(j)

1,1

]
(∆ϕ)

→ J0(j∆ϕ) + (βα∗ − αβ∗)J1(j∆ϕ) +O(j−3/2). (4.26)

At the worst case |Im[αβ∗]| = 1/2, the magnitude of it can attain 0.402 at j∆ϕ ≈ 3.382 as shown

in Fig. 4.1. This means we can detect phase shift as small as O(N−1) even through the parity

measurement fails in this case.
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Next we consider the eigenstates of operator cos(ϕ̂a− ϕ̂b) or sin(ϕ̂a− ϕ̂b) [43] inserted between

the two beam splitters of MZI,

| cos θNr〉 =

√
2

N + 2

N∑
n=0

sin [(n + 1)θNr] |n〉a|N − n〉b, (4.27)

| sin θNr〉 =

√
2

N + 2

N∑
n=0

(−i)n sin [(n + 1)θNr] |n〉a|N − n〉b, (4.28)

〈cos θNr| cos θMs〉 = 〈sin θNr| sin θMs〉 = ∆NM∆rs. (4.29)

Here θNr = πr/(N + 2) and r = 1, 2, ..., N + 1. Under the action of the unitary transformation

U = e−i∆ϕN̂a , we find that if N À 1,

〈cos θNr|U | cos θNr〉 = 〈sin θNr|U | sin θNr〉

=
2

N + 2

N∑
n=0

e−in∆ϕ sin2[(n + 1)θNr]

→ 2

π

∫ π

0

dx e−i(N∆ϕ)x sin2(rx). (4.30)

From above expression, we can see that only if the exponential factor N∆ϕ ∼ 1, it is possible to

have the fidelity less than 1. Some typical plots of the magnitude of (4.30) are shown in Fig. 4.2.

The relation between the minimal detectable phase shift ∆ϕ and the total photon number N can

be derived by demanding the magnitude of (4.30) distinctly away from 1, as plotted in Fig. 4.3.

It clearly shows that we can achieve HL using such states.

At last we consider the single-mode unitary phase shift transformation U = e−iϕN̂ with the

input state proposed in Ref. [68], which is given by

|Ψ〉SSW =

√
6

π2

M∑
n=0

1

n + 1
|n〉 (M À 1), (4.31)

〈N〉 =
6 ln M

π2
, ∆N =

√
6M

π2
. (4.32)

The relation (4.13) shows that ∆ϕ ≥ O(〈N〉−1), but this bound is not attainable. Note that

∣∣∣〈ΨSSW |e−i∆ϕN̂ |ΨSSW 〉
∣∣∣ =

6

π2

∣∣∣∣∣
M∑

n=0

e−in∆ϕ

(
1

n + 1

)2
∣∣∣∣∣

→ 6

π2

∣∣Li2(e
−i∆ϕ)

∣∣ +O(M−2)

= 1− 3

π
∆ϕ +O(∆ϕ2) +O(M−2), (4.33)
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which approaches to 1 as ∆ϕ ∼ O(〈N〉−1) → 0 for M À 1. Here Li2(x) is the polylogarithm

function. Therefore, the SSW state can not achieve HL [51].

4.6 Conclusion

We gave a detection-scheme-independent condition to determine whether an arbitrary input state

can achieve the HL. The condition for one input state ρ to reach HL is that the fidelity between

two output states with zero phase and the minimal detectable phase ∆ϕ applied respectively

should satisfies the condition lim
〈N〉→∞

F |∆ϕ→1/〈N〉 < 1, which is applicable to a single run of de-

tection as well as multiple runs. This condition serves as sufficient check for the lower bound

provided by the uncertainty relation or the Fisher information for the minimal detectable phase,

because in principle the possibility of such lower bound achievable for single run of measurement

is not guaranteed.
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Chapter 5: The Measures for Which-Way
Information

We use several physical quantities to characterize the which-way information in the interference

experiment. One quantity that can express the which-way information is associated with fidelity

between two density matrices. Others are the mutual entropy and the change of the entanglement

of the whole system, i.e. physical system plus which-way detector. With such quantities, we find

that as the visibility of the interference pattern gets larger, we get less which-way information.

5.1 Introduction

The complementary principle states that quantum systems inherit equally real but mutually

exclusive properties. For example, an electron can behave either like a particle or like a wave

depending on the experiment situation. The situations ”perfect fringe visibility and no which-

way information” and ”full which-way information and no fringes” are well known for Young’s

double slit experiment [24]. The intermediate stages are studied by Englert in Ref. [25], where he

defined a quantity called distinguishability D to quantify the which-way information as well as

the fringe visibility V for interference pattern. With D and V an inequality D2 +V2 ≤ 1 is proved

so that the complementary principle is verified for the intermediate cases. We will continue to

study the intermediate cases from other points of view and give a new and strong form of above

inequality.

5.2 Distinguishability Revisited

We will follow the treatment of MZI as that of [25], see Fig. 5.2. The quantum number +1 and

−1 are used to label the two ways between beam splitter and beam merger. The polarization

degree of freedom of photon can be summarized by the density matrix,

ρ
(i)
P =

1 + s(i) · σ
2

(5.1)

with σ Pauli’s matrix, and the initial Bloch vector s(i) = trP [ρ
(i)
P σ] describes the initial state of

photon at the input port. The action of the beam splitter and the beam merger can be represented
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FIGURE 5.1. Schematic two-way interferometer [25]. The beam splitter BS splits the input photon into
the two ways, then its which-way information is acquired by the which-way detector WWD, and after
passing the phase shifter PS, the beam merger BM produces the output photon.

by

ρP → e−iπσy/4ρP eiπσy/4, (5.2)

whereas the phase shifter at the central stage effects

ρP → e−iϕσz/2ρP eiϕσz/2. (5.3)

The consequent result of MZI is turning ρ
(i)
P to the final state

ρ
(f)
P =

1 + s(f) · σ
2

, (5.4)

with

s(f) = (−s(i)
x , s(i)

y cos ϕ + s(i)
z sin ϕ, s(i)

y sin ϕ− s(i)
z cos ϕ). (5.5)

The probabilities for taking either one of the two ways are given as

ξ± = tr

[
1

2
(1± σz)e

−iπσy/4ρ
(i)
P eiπσy/4

]

=
1

2
(1∓ s(i)

x ). (5.6)

Their difference |ξ+−ξ−| = s
(i)
x gives the predictability of the ways through MZI. To simplify the

following analysis, let us first consider symmetric interferometer with s
(i)
x = 0 and s

(i)
z + is

(i)
y =
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e−iθ, which is coupled to another physical system that serves as a which-way detector. Suppose

the detector is in state ρ
(i)
P initially so that the density matrix of the whole system has the

form ρ(i) = ρ
(i)
P ⊗ ρ

(i)
D . The interaction between photon and detector at the central stage of the

interferometer now can be described by the unitary operator

U =
1 + σz

2
eiϕ/2 ⊗ U+ +

1− σz

2
e−iϕ/2 ⊗ U−, (5.7)

instead of eiϕσz/2 of (5.3). Here U+ and U− are unitary operators that only affect the detector.

The resulted final state of the whole system then becomes

ρ(f) =
1 + σx

4
⊗ U †

+ρ
(i)
D U+ +

1− σx

4
⊗ U †

−ρ
(i)
D U−

−e−i(φ−θ)σz − iσy

4
⊗ U †

+ρ
(i)
D U− − ei(φ−θ)σz + iσy

4
⊗ U †

−ρ
(i)
D U+. (5.8)

Before we move onto the next step, one thing can further simplify our calculation. If the interac-

tion between photon and detector is totally symmetrical, i.e. U+ = U− = U , the detector obtains

no which-way information. Because in this case U → eiϕσz/2⊗U , it leads to ρ(f) = ρ
(f)
P ⊗U †ρ(i)

D U ,

which means the detector has no effects on photon. Without loss of generality, let us set U+ = U

and U− = 1 for the rest.

The final states of the photon and the detector are given by tracing over detector’s degree of

freedom. The photon state takes the same form as Eq. (5.4) with s
(f)
x = 0 and s

(f)
z + is

(f)
y =

−e−i(ϕ−θ)C, where C = trD[U †ρ(i)
D ] is a complex number. By measuring the observable σz after

the photon passing the beam merger, the interference pattern is revealed through the relative

frequency for finding the value −1,

pϕ = trP

[
1

2
(1− σz)ρ

(f)
P

]

=
1

2
[1 + C cos(ϕ− θ)] , (5.9)

so that the magnitude of C gives the fringe visibility V = |C|. Similarly, The final detector state

equals

ρ
(f)
D = trP [ρ(f)] =

1

2
(U †ρ(i)

D U + ρ
(i)
D ). (5.10)
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Based on optimal likelihood guess [24], the distinguishability of the ways is defined by D =

trD|U †ρ(i)
D U − ρ

(i)
D |/2. Englert then proved the inequality [25]

D2 + V2 ≤ 1, (5.11)

which incorporates the extreme situations mentioned above.

For asymmetric interferometer s
(i)
x 6= 0 with a priori fringe visibility V0 =

√
(s

(i)
y )2 + (s

(i)
z )2

and the priori which-way probabilities ξ± = (1∓ s
(i)
x )/2, the distinguishability is given by

D = trD|ξ+U †ρ(i)
D U − ξ−ρ

(i)
D |. (5.12)

Then the relation (5.11) can be generalized to

D2 + 4 ξ+ξ−

( V
V0

)2

≤ 1, (5.13)

where V = V0|C|. In next section, we will define distinguishability from other points of view,

which allows us to give a simple proof of this inequality.

5.3 Fidelity and Distinguishability

The distinguishability defined by (5.12) can be applied to any two density matrix ρ1, ρ2 given

the priori probabilities ξ1, ξ2 for choosing one of them with ξ1 + ξ2 = 1. More explicitly, we define

D(ρ1, ρ2) ≡ tr|ξ1ρ1 − ξ2ρ2|. (5.14)

In the case of ρ1 and ρ2 being pure states, i.e. ρ1 = |Ψ1〉〈Ψ1| and ρ2 = |Ψ2〉〈Ψ2|, D(|Ψ1〉, |Ψ2〉) =
√

1− 4 ξ1ξ2|〈Ψ1|Ψ2〉|2. From this definition, we can prove the following property for D(ρ1, ρ2).

Suppose E is a positive tracing preserving operator, then

D(E(ρ1), E(ρ2)) ≤ D(ρ1, ρ2). (5.15)

The proof is based on the fact that w1ρ1−w2ρ2 can be expressed as ξ1ρ1− ξ2ρ2 = Q− S, where

Q and S are positive operators with orthogonal supports. It implies |ξ1ρ1 − ξ2ρ2| = Q + S, so

D(ρ1, ρ2) = trQ + trS

= tr[E(Q)] + tr[E(S)]

≥ tr|E(Q)− E(S)|

= D(E(ρ1), E(ρ2)). (5.16)
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Here the triangle inequality for the trace-class norm for all trace-class operators A,B, |tr|A| −
tr|B|| ≤ tr|A±B| ≤ tr|A|+tr|B|, is applied. Similarly, it is easy to check 1 ≥ D(ρ1, ρ2) ≥ |ξ1−ξ2|.
Moreover, we can prove that

D(ρ1, ρ2) ≥
∑
m

|ξ1pm − ξ2qm| (5.17)

for any positive operator-valued measures (POVM) {Em}, where pm = tr[ρ1Em] and qm =

tr[ρ2Em] are the probabilities for obtaining outcome m for the states ρ1 and ρ2, respectively.

We now define a new distinguishability in terms of fidelity between two density matrix given

the priori probabilities ξ1, ξ2 for choosing one of them,

DF (ρ1, ρ2) =
√

1− 4 ξ1ξ2F (ρ1, ρ2)2, (5.18)

with the fidelity

F (ρ1, ρ2) = tr
[
(
√

ρ1ρ2
√

ρ1)
1/2

]
. (5.19)

If E is a positive tracing preserving operator, we have the relation

F (ρ1, ρ2) ≤ F (E(ρ1), E(ρ2)). (5.20)

Let us establish the relation between these two distinguishabilities following [65]. Let |Ψ1〉 and

|Ψ2〉 be purifications of ρ1 and ρ2 chosen such that F (ρ1, ρ2) = |〈Ψ1|Ψ2〉| = F (|Ψ1〉, |Ψ2〉). Using

(5.16) by taking E as a partial trace, we see that

D(ρ1, ρ2) ≤ D(|Ψ1〉, |Ψ2〉) =
√

1− 4 ξ1ξ2|〈Ψ1|Ψ2〉|2 = DF (ρ1, ρ2). (5.21)

Conversely, let Em be a POVM, such that F (ρ1, ρ2) =
∑

m

√
pmqm. Next we observe that

∑
m

(√
ξ1pm −

√
ξ2qm

)2

= 1− 2
√

ξ1ξ2F (ρ1, ρ2), (5.22)

and note that

∑
m

(√
ξ1pm −

√
ξ2qm

)2

≤
∑
m

|
√

ξ1pm −
√

ξ2qm||
√

ξ1pm +
√

ξ2qm|

=
∑
m

|ξ1pm − ξ2qm| ≤ D(ρ1, ρ2). (5.23)
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Here we have used (5.17) in the last line of (5.23). Finally, we get the relation

1− 2
√

ξ1ξ2F (ρ1, ρ2) ≤ D(ρ1, ρ2) ≤
√

1− 4 ξ1ξ2F (ρ1, ρ2)2

= DF (ρ1, ρ2). (5.24)

This means that the two distinguishabilities are qualitatively equivalent measures. So we can use

DF (ρ1, ρ2) as well as D(ρ1, ρ2) to measure the distinguishability of the two ways.

We are ready to give a new proof for (5.12). Let |Ψ〉 be a purification ρ
(i)
D , then

V
V0

= |C| =
∣∣∣trD[U †ρ(i)

D ]
∣∣∣ =

∣∣tr[U †|Ψ〉〈Ψ|]
∣∣

= |〈Ψ|U †|Ψ〉| = F (U †|Ψ〉, |Ψ〉) ≤ F (U †ρ(i)
D U, ρ

(i)
D ), (5.25)

where (5.20) is used by taking E as a partial trace. If we choose ρ1 = U †ρ(i)
D U and ρ2 = ρ

(i)
D in

(5.24), and consider (5.25), the following inequality is obtained,

|ξ+ − ξ−| ≤ D ≤ DF ≤
√

1− 4 ξ+ξ−

( V
V0

)2

. (5.26)

Thus the relation (5.12) is confirmed again. If the distinguishability is measured according to

DF = DF (ρ1, ρ2) rather than D = D(ρ1, ρ2), it is obvious that DF may take a larger magnitude.

To illustrate above analysis, let us examine an example where the which-way detector is a

two-level quantum system. The fidelity can then be given by

F (ρ1, ρ2)
2 = tr[ρ1ρ2] + 2

√
det[ρ1]det[ρ2]. (5.27)

In some particular base, the density matrix ρ
(i)
D can be written as

ρ
(i)
D =




p 0

0 1− p


 , 1 ≥ p ≥ 0. (5.28)

The unitary matrix U generally is

U =




a + ic b + id

−b + id a− ic


 , a2 + b2 + c2 + d2 = 1, (5.29)

where a, b, c, and d are real numbers. The calculation gives that for symmetric interferometer,

D = DF = x
√

1− a2 − c2, V =
√

a2 + c2x2, (5.30)

where the parameter x = |2p − 1| ≤ 1. From these expressions, the inequality D2 + V2 ≤ 1 or

D2
F + V2 ≤ 1 is straightforward to obtain.
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5.4 Mutual Entropy

Using mutual entropy, we will see that it can also measure the which-way information. To be

specific, let us still assume that the detector is a two-level system. The von Neumann entropy of

a given density state ρ is S(ρ) = −tr[ρ ln ρ], which is invariant under any unitary transformation,

ρ → U †ρU . The mutual entropy for a coupled system AB is defined as [65]

S(A :B) = S(A) + S(B)− S(AB) (5.31)

with ρA = trB[ρAB] and ρB = trA[ρAB]. The physical interpretation of the mutual entropy is

that it describes the information shared by A and B. If we apply it to our coupled P,D system,

intuitively we would expect the mutual entropy of the final state ρ(f) decreases (increases) as

the fringe visibility V (the distinguishability D or DF ) gets larger. In other words, a large V or

a small distinguishability means there is little information shared by P and D. To justify this

statement, we need to find out the explicit expression for mutual entropy of the final state. First

note that

S(f)(PD) = −tr[ρ(f) ln ρ(f)] = S(i)(PD) = S(i)(P ) + S(i)(D), (5.32)

for the total final state is related to the total initial state by a unitary transformation, and

ρ(i) = ρ
(i)
P ⊗ ρ

(i)
D . Since ρ

(i)
P is a pure state and ρ

(i)
D takes the form of (5.28), we find that

S(f)(PD) = − (λ+ ln λ+ + λ− ln λ−) ,

λ± = (1± x)/2. (5.33)

Next, from the expressions for ρ
(f)
P and ρ

(f)
D , the associated entropies are

S(f)(P ) = − (δ+ ln δ+ + δ− ln δ−) ,

δ± = (1± x
√

a2 + c2)/2, (5.34)

S(f)(D) = − (η+ ln η+ + η− ln η−) ,

η± = (1±
√

a2 + c2x2)/2. (5.35)

In terms of variables D,V and x, the final mutual entropy becomes

∆S(P :D) = S(f)(P :D)− S(i)(P :D)

= H
(√

x2 −D2
)

+ H(V)−H(x), (5.36)
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FIGURE 5.2. The plot of the function H(x) versus x.

where D ≤ min
{
x,
√

1− V2
}
, and the function

H(x) ≡ −
(

1 + x

2
ln

1 + x

2
+

1− x

2
ln

1− x

2

)
. (5.37)

Because H(x) is a monotonously decreasing function as shown in Fig. 5.4, for fixed x and D (V),

∆S(P :D) is a decreasing (increasing) function of V (D).

5.5 Entanglement of Formation

Our last measure for the which-way information is related with the entanglement between the

whole final state, while the whole initial state has no entanglement. We can also imagine that the

entanglement has similar property as that of the mutual entropy from its physical interpretation.

If the final state is separable, i.e. ρ(f) = ρ
(f)
P ⊗ ρ

(f)
D , the fringe visibility is unaffect but which-way

information is null. On the other hand, if the final state is in the maximal entanglement state,

i.e. ρ(f) = |Ψ〉〈Ψ| with Ψ = (|+〉P |+〉D + |−〉P |−〉D) /
√

2, where |±〉P (D) is the photon (detector)

state corresponding to the path of σz = ±, the which-way information is gained but the fringe

visibility is lost. In order to quantify this statement, we calculate the explicit expression for

entanglement defined in Ref. [37]. The entanglement of formation of a mixed state of two qubits

is given by

E(ρ) = H
(√

1− C2(ρ)
)

,

C(ρ) = max { 0, λ1 − λ2 − λ3 − λ4} , (5.38)
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where C(ρ) is called concurrence, and the {λi} are the eigenvalues, in decreasing order, of the

Hermitian matrix (
√

ρρ̃
√

ρ)1/2 with the spin-flipped state ρ̃ = (σy⊗σy)ρ(σy⊗σy). Note that each

λi is a non-negative real number and 0 ≤ C(ρ) ≤ 1. The explicit expression of entanglement of

formation for any mixed state has not been found yet. Apply the definition of entanglement to

our simple model, it gives that

∆E(PD) = E(ρ(f))− E(ρ(i))

= H

(√
1− C2(ρ(f))

)
,

C2(ρ(f)) = D2(1− V2). (5.39)

Since ∆E(PD) is a monotonously increasing function of C(ρ(f)), our statement about the entan-

glement of formation as the measure of the which-way information is justified. This also clearly

demonstrates that the complementary principle is independent of uncertainty principle, since it

is only related to the entanglement of the state through (5.11).

5.6 Conclusion

We used several physical quantities to characterize the which-way information in the interference

experiment. The complementary principle states that the interference pattern and the acquisition

of which-way information are mutually exclusive. We defined a new distinguishability associated

with fidelity between two density matrix, and then gave a new proof for Englert inequality. It

was demonstrated that the changes of the mutual entropy and the entanglement of the whole

system, i.e. physical system and which-way detector can be also used to describe the which-way

information. With such quantities, it was shown that as the fringe visibility of the interference

pattern gets larger, the less which-way information is obtained. Thus the complementary principle

in the such experiment is quantified and confirmed.
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Chapter 6: Super-Resolution at the
Shot-Noise Limit with Coherent States

There has been much recent interest in quantum optical interferometry for applications to metrol-

ogy, sub-wavelength imaging, and remote sensing, such as in quantum laser radar (LADAR). For

quantum LADAR, atmospheric absorption rapidly degrades any quantum state of light, so that

for high-photon loss the optimal strategy is to transmit coherent states of light, which suffer no

worse loss than the Beer law for classical optical attenuation, and which provides sensitivity at

SNL. In this chapter we show that coherent light coupled with photon number resolving detec-

tors can provide a super-resolution much below the Rayleigh diffraction limit, with sensitivity

no worse than SNL in terms of the detected photon power.

6.1 Introduction

Ever since the work of Boto et al. in 2000, it has been realized that by exploiting quantum

states of light, such as NOON states, it is possible to beat the Rayleigh diffraction limit — the

minimal scale accessible by a classical light field is limited by its wavelength — in imaging and

lithography (super-resolution) while also beating SNL in phase estimation (super-sensitivity)

[28, 5, 69, 56, 27]. This is a non-trivial result, because the super-sensitivity and the super-

resolution usually are not related each other. However such quantum states of light are very

susceptible to photon loss [29, 70, 71]. Recent work has shown that in the presence of high

loss, the optimal phase sensitivity achieved is always SNL [30]. These results suggest that, given

the difficulty in making quantum states of light, as well as their susceptibility to loss, that

the most reasonable strategy for quantum LADAR is to transmit coherent states of light to

mitigate a super-Beer’s law in loss and maximize sensitivity [27]. It is well known that such

an approach can only ever achieve at best shot-noise limited sensitivity [10]. However, such

a conclusion leaves open the question as to what is the best detection strategy to optimize

resolution. Recent experimental results and numerical simulations have indicated that such a

coherent-state strategy can still be super-resolving, provided a quantum detection scheme is
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FIGURE 6.1. Here we indicate MZI used in the calculations. The coherent state is incident in mode
A and vacuum in mode B at the left at Line I. After the first beam splitter transformation we have
the two-mode coherent state of Eq. (6.1), as indicated at Line II. After the phase shifter ϕ this state
becomes the two-mode coherent state of Eq. (6.2). At Line III we also implement the detection schemes
corresponding to the operators N̂AB, ν̂AB, and µ̂AB. Finally after the final beam splitter, we implement
the parity operator Π̂A detection of Eq. (6.9) in the upper mode.

employed [31, 72]. In this paper we derive a quantum detection scheme, that is super-resolving,

and which can be implemented with photon-number-resolving detectors. Our proposed scheme

exploits coherent states of light, is shot-noise limited in sensitivity, and can resolve features by

an arbitrary amount below the Rayleigh diffraction limit. Our scheme would have applications

to quantum optical remote sensing, metrology, and imaging.

6.2 Three Proposed Photon-Number-Resolving

Detectors

In Fig. 6.1 we illustrate schematically a two-mode interferometric quantum LADAR scheme. The

source at the left is assumed to contain a laser producing a coherent state |α〉A in upper mode A

with vacuum in lower mode B, which is illustrated at line I in Fig. 6.1. The state is incident on

a 50-50 beam splitter (BS), which mixes this coherent state with the vacuum state |0〉B in lower

mode B. The output of such a mixing is computed by the beam-splitter transformation [48], and

is the state,

|α/
√

2, α/
√

2〉 = e−n̄/2

∞∑
n,m=0

(
α/
√

2
)n+m

√
n!m!

|n,m〉, (6.1)
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where n̄ = |α|2 and without loss of generality, a BS phase factor of i = eiπ/2 has been dropped

for clarity. (This physically corresponds to a symmetric 50-50 BS with a quarter-wave plate in

one of the output ports.) This is the state at line II in Fig. 6.1. As shown in Fig. 6.1 the upper

mode A imparts a phase shift ϕ on this state, yielding,

|Ψ〉AB = |αeiϕ/
√

2, α/
√

2〉

= e−n̄/2

∞∑
n,m=0

(eiϕ
√

n̄/2)n(
√

n̄/2)m

√
n!m!

|n,m〉, (6.2)

where, without loss of generality, we take α =
√

n̄, which amounts to setting an irrelevant

overall phase to zero. This is the state at the line III in Fig. 6.1. In the coherent state basis,

this state is obviously separable. However, while it is less obviously separable in the number

basis, it is clear to see that the double sum contains the NOON states with the contributions

from {n = N,m = 0} and {n = 0,m = N}, which are |N :: 0〉ϕ = eiNϕ|N, 0〉+ |0, N〉, apart from

a common factor e−n̄/2
√

n̄/2
N

/
√

N !, for any N . This NOON-state component can lead to the

N -fold super-resolution [28, 31]. Similarly, for the dummy indices being {n = M,m = M ′} and

{n = M ′,m = M}, it yields the so-called MM ′ states: |M::M ′〉ϕ = eiMϕ|M,M ′〉+ eiM ′ϕ|M ′,M〉,
which can be M − M ′ fold super-resolving [71]. Indeed this observation suggests a strategy,

similar to that employed by Resch et al., of projecting the state |Ψ〉AB of Eq. (6.2) onto the

NOON basis through the implementation of the operator N̂AB = |N, 0〉〈0, N |+ |0, N〉〈N, 0| [31].

This results in an expectation value of AB〈Ψ|N̂AB|Ψ〉AB = (n̄/2)Ne−n̄2 cos(Nϕ)/N ! that is clearly

N -fold super-resolving. However the factor of (n̄/2)Ne−n̄/N ! indicates that the visibility of this

expectation value, as a function of ϕ, is much less than unity. The trade-offs between the periods

of oscillating features and their magnitudes have been noted previously by Berry and Popescu

in the context of super-resolution in optical imaging [74].

Let us attempt to optimize this visibility by tuning the return power n̄. The maximal visibility

occurs when n̄ = N . For example, with n̄ = N = 10 we achieve 10-fold super-resolution in

AB〈Ψ|N̂AB|Ψ〉AB with a visibility of about 0.024%. In a similar fashion we may now estimate the

minimal phase sensitivity variance via the usual Gaussian error propagation formula [27],

∆ϕ2
N =

∆N̂2
AB

|∂〈N̂AB〉/∂ϕ|2
=

2Nen̄N !− 2n̄N cos2 Nϕ

2n̄N sin2 Nϕ

1

N2
, (6.3)
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where the factor of 1/N2 would provide HLed sensitivity, as it would be in the case of a pure

NOON state [27], if it were not for the Poisson weight factors inherited from the coherent state.

This expression, Eq. (6.3), can be minimized by inspection, again by taking N = n̄ and si-

multaneously choosing ϕ (which can be done by putting a phase shifter in arm B) such that

Nϕ = π/2, yielding, ∆ϕ2
N = 2n̄en̄n̄!/(2n̄n̄n̄2) ∼=

√
π/2(2n̄/n̄3/2), where we have used Stirling’s

approximation, and where again HL behavior of 1/n̄2 appears in a tantalizing fashion. However,

the exact expression has a minimum at n̄ = 2 of ∆ϕ2
N |n̄=2

∼= 1.85, and hence for all values of n̄

always does worse than the shot-noise, in agreement with the conclusion of Ref. [31].

It is easy to see that the reason this above strategy does worse than SNL, is that the measure-

ment on the operator N̂AB, defined above, throws away very many photon-number amplitudes

in the coherent state, keeping only the two terms in Eq. (6.2) with n = N and m = 0, or

n = 0 and m = N . Such an observation suggests that we introduce a new operator, which

projects onto all of the maximally super-resolving terms, that is, ν̂AB =
∑∞

N=0 N̂AB, which cor-

responds to the phase-bearing anti-diagonal terms in the two-mode density matrix [71]. We may

now carry out the expectation with respect to the dual-mode coherent state of Eq. (6.2) to

get, 〈ν̂AB〉 = 2e−n̄+(n̄ cos ϕ)/2 cos [(n̄ sin ϕ)/2] ∼= 2e−n̄/2 cos(n̄ϕ/2). Here we have approximated the

expression near ϕ = 0, where the function is sharply peaked. We can see from this expression

that by carefully choosing the return power n̄ = N , we recover super-resolution. However the

exponential pre-factor produces a loss in visibility. Choosing n̄ = N = 20, to obtain again 10-fold

super-resolution, we obtain a visibility of only 0.009%. This low visibility does not bode well for

the sensitivity, which we may compute as per Eq. (6.3) to get,

∆ϕ2
ν =

{
en̄ + e3n̄/2 − en̄ cos ϕ[1 + cos(n̄ sin ϕ)]

}

×e−n̄ cos ϕ csc2
(
ϕ +

n̄

2
sin ϕ

) 2

n̄2
, (6.4)

which again displays the Heisenberg-limiting pre-factor of 1/n̄2. This expression is singular at

the phase origin, but has a minimum nearby ϕ = π/2n̄, which for large photon number is

approximately at n̄ = N , which by again choosing this to be a large integer, simplifies Eq. (6.4)

to, ∆ϕ2
ν |ϕ=π/2n̄

∼= 16πen̄/2/(2n̄ + π)2, which only approaches the SNL and HL near n̄ = 1 and

then rapidly diverges to be much worse than the SNL for large n̄. Hence, from these examples, we
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FIGURE 6.2. This plot shows the expectation value 〈µ̂AB〉 of Eq. (6.6) plotted as a function of the phase
shift ϕ (solid curve) for a return power of n̄ = 100. For reference we plot the normalized “classical”
two-port difference signal (dashed curve). We see that the plot of the 〈µ̂AB〉 is super-resolving and is
narrower than the classical curve by a factor of ∆ϕ = 1/

√
n̄ = 1/10, as given in Eq. (6.8).

see there is a high price to pay for NOON-like super-resolution with coherent states — so many

photon amplitudes are discarded that we always do far worse than shot-noise. This analysis then

suggests our final protocol — what if we choose a measurement scheme that includes all of the

phase-carrying off-diagonal terms in the two-mode density matrix? Such a scheme is to consider

the operator constructed from all the terms bearing M − M ′ fold super-resolving capabilities

[71], that is,

µ̂AB =
∞∑

M,M ′=0

|M ′,M〉〈M,M ′|, (6.5)

where we note this is evidently not a resolution of the identity operator. It is easy to show that

this operator of Eq. (6.5) is both Hermitian and idempotent, that is µ̂†AB = µ̂AB and µ̂2
AB = ÎAB,

respectively, where ÎAB is the two-mode identity operator. Using these properties, with a bit of

algebra, we establish, with respect to the two-mode coherent state of Eq. (6.2), the following

results,

〈µ̂AB〉 = AB〈Ψ|µ̂AB|Ψ〉AB = e−2n̄ sin2(ϕ/2), (6.6)

∆ϕ2
µ =

e4n̄ sin2(ϕ/2) − 1

n̄2 sin2 ϕ
, (6.7)

where once again HL term of 1/n̄2 appears accompanied by an exponential factor in the sensitivity

estimate. We plot as a solid curve the expectation value of Eq. (6.6), for a return power of n̄ = 100,
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FIGURE 6.3. In this plot we depict the sensitivity expression ∆ϕ2
µ of Eq. (6.7), again for the re-

turn power of n̄ = 100 (solid curve). The horizontal dashed line indicates the shot-noise limit of
∆ϕ2

SNL = 1/n̄ = 1/100. We see that the sensitivity of the super-resolving µ̂AB detection scheme hits
the SNL at ϕ = 0, as indicated by expanding Eq. (6.7) in a power series.

in Fig. 6.2, along with the standard photon difference detection interferogram (dashed curve) [27].

Clearly 〈µ̂AB〉 has a visibility of 100% now, and is periodic in ϕ with period 2π, and highly peaked

at the phase origin where ϕ = 0. This curve is not super-resolving in the usual sense of the word,

as there are no multiple narrow peaks as would be the case in a NOON-state scheme, but it

is super-resolving in the sense that there is a well defined narrow feature that is clearly sub-

Rayleigh limited in resolution. Such a feature would be useful, for example, in LADAR ranging

or laser Doppler velocimetry in the small n̄ return-power regime, where one would lock onto

the side of such a feature and then monitor how it changes in time with a feedback loop in the

interferometer.

To estimate the width of this central peak we note that in the small phase angle limit, Eq. (6.6)

may be approximated as,

〈µ̂AB〉|ϕ∼=0
∼= e−n̄ϕ2/2, (6.8)

which is clearly a Gaussian of width ∆ϕ = 1/
√

n̄. Hence by choosing a return power of n̄ = 100,

we are 10-fold super resolving.

Now we check the sensitivity of this scheme. In Fig. 6.3 we plot as a solid curve the variance

of Eq. (6.7), again for n̄ = 100, near the phase origin. We include as a dashed curve the shot-
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noise limit. We see that the sensitivity is shot-noise limited about the phase origin. This may

be established analytically by first noting that the expression of Eq. (6.7) for the sensitivity has

a removable singularity at the origin, and then by expanding it in a power series around ϕ = 0

to get, ∆ϕµ|ϕ∼=0
∼= 1/

√
n̄, which is precisely SNL. Hence by counting all the photons in an off-

diagonal fashion, the detection scheme embodied in the operator µ̂AB of Eq. (6.5) produces a new

kind of super-resolution, and performs at the optimal shot-noise limit in sensitivity. Since all of

this information is extracted at the detector, and only coherent states are used at the source and

in the interferometer, this scheme will be no worse in sensitivity in the presence of absorption

or loss than an equivalent classical LADAR scheme, but it will in addition have super-resolving

capabilities.

6.3 The Experimental Implementation

It remains to be understood how the observable of Eq. (6.5) might be detected in the laboratory.

We note that at this stage of the analysis the operator µ̂AB is to be carried out with respect to

the two-mode coherent state at the line III in the Fig. 6.1. That is we have not yet applied the

second beam splitter. To the right of the second beam splitter, at the line IV in Fig. 6.1, we wish

to now carry out the so-called parity operator [?, 75] on output mode A in the upper arm,

Π̂A = (−1)n̂A = eiπâ†â, (6.9)

which simply indicates whether an even or odd number of photons exits that port. Here n̂A = â†â

is the number operator for that mode. Such a detection scheme can be implemented by placing

a highly efficient photon-number-resolving detector at this port, and such detectors with 95%

efficiency and number resolving capabilities in the tens of photons have been demonstrated [76].

The connection between these two operators may be established via the identity,

AB〈Ψ|µ̂AB|Ψ〉AB ≡ 〈α, 0|Û †(Π̂A ⊗ ÎB)Û |α, 0〉, (6.10)

where ÎB is the B-mode identity operator, and Û = e−iĴyϕ with Ĵy = i(âb̂† − â†b̂)/2 denotes the

transformation of the whole MZI, from the line I to IV in Fig. 6.1. That is, the effect of measuring

the two-mode coherent state with respect to the operator µ̂AB to the left of the second BS at
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line III is equivalent to measuring it with respect to the parity operator Π̂A to the right of the

second BS at line IV, all indicated in Fig. 6.1. Hence Eq. (6.10) establishes that the two schemes

have the same super-resolving and shot-noise limiting properties, with the important point that

the parity operator is perhaps far easier to implement in the laboratory, and it has been shown

to be a universal detection scheme in quantum interferometry [19, 20]. However, it is yet to be

determined whether the parity operator is optimal or not. In the super-sensitivity consideration,

for a given input state, whether a particular measurement is optimal or not can be determined

by comparing the phase uncertainty given the Cramer-Rao bound and the one obtained directly

by that particular measurement [62]. For coherent states, the parity observable is indeed optimal

in the phase sensitivity as it saturates the Cramer-Rao bound. We, however, know of no such

bound for super-resolution.

6.4 Conclusion

We have provided a super-resolving interferometric metrology strategy, which achieves SNL.

The protocol has the appealing feature that it requires only the production and transmission of

ordinary laser beams in the form of coherent states of light. Hence, unlike the issues concerning

the propagation of non-classical states of light, such as squeezed light or entangled Fock states,

this scheme suffers no worse degradation in the presence of absorption and loss than a classical

coherent LADAR system. All of the quantum trickery, which provides the super resolution, is

carried out in the detection, which can be carried out with current photon number-resolving

technology. However, a scheme by which we count the number of photons and then decide if that

number is even or odd is overkill. The parity operation only requires that we know the sign —

even or odd — independently of the actual number. Hence counting photon number is sufficient

but perhaps not necessary, if a general scheme to determine the parity of a photon state could be

found that did not require photon number counting. We conjecture such a scheme exists, perhaps

through the exploitation of optical nonlinearities [77], or projective measurements, and this is

an area of ongoing research. Our protocol for super-resolving phase measurements at SNL has

applications to biomedical imaging, metrology, and remote sensing. In particular, for applications

such as Doppler velocimetry of rapidly moving objects with few return photons, one does not
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have the luxury to integrate the data for long periods of time in order to push down the signal

to noise. In such scenarios the signal resolution in the form of the Rayleigh criteria is the usual

limit to the system performance.
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Chapter 7: Outlook

It needs to point out all the above considerations are confined to the local phase sensitivity

according to [62], i.e. the phase shift is known around some specific value in prior. As for the

global phase sensitivity, one has no prior phase information and employs a POVM for phase

estimation such as Eq. (2.116). It is shown in [78] that the distinctions between the local and the

global distinguishabilities merge each other if one uses the multiple-shot measurement to estimate

phase shift. For example, in the single-shot measurement the NOON state is locally optimal, but

globally suboptimal. If one is allowed to do the adaptive multiple-shot measurement with NOON

state, HL can be restored. Moreover, even the separated single photon state can achieve HL

within an adaptive multiple-shot measurement scheme, though the whole process takes a much

longer period [50]. So the development of a new adaptive protocol, which makes use of easily

produced correlated states, in order to find a method that achieves the same HL sensitivity in a

much shorter integration time is highly demanded. A more challenging problem will be to develop

a formulation of the optimal estimation condition for adaptive multiple-shot measurement.

On the other hand, it is not known how to implement the continuous optimal POVM for MZI,

simply because it is impossible to implement it by counting photons in the two output ports.

As it was shown in Ref. [17] that it is possible to approximate this optimal POVM by counting

output photons if one makes the measurement adaptive. The other possibility is that in finite

dimensions the continuous set of POVM can be replaced by a finite set of POVM without error

[80, 79]. Such finite POVM can be produced by time reversed measurement probabilistically

[81] due to the fact that quantum mechanics permits us to calculate the probabilities of the

past preparation events on the basis of the known outcome of a measurement. To improve the

efficiency of the measurement, new methods to optimize the probability of success is needed.

Another possible extension of research is to study the spatial correlations of photon field in

the interferometer, which has a number of applications in quantum imaging [9].
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