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Abstract

This dissertation focuses on the study of ferromagnetism in Dilute Magnetic Semiconductors. To study

these strongly correlated electronic systems, two non- perturbative techniques are used: the Dynamical

Mean Field Approximation (DMFA) and the Dynamical Cluster Approximation (DCA). The model used

for Dilute Magnetic Semiconductors (DMS) incorporates the strong spin-orbit couplings of the carrier holes

as found in most III-V semiconductors doped with manganese such as Ga1−xMnxAs. Calculated within

the DMFA, the spin-orbit coupling effects give rise to various interesting physics, primarily the anisotropic

behavior of the impurity band that affect the charge transport properties in the ferromagnetic phase. We

show that non-local correlations, within the DCA, are responsible for magnetic frustration and magnetic

reorientation of the DMS. The DMFA is employed to study ferromagnetism and transport in Ga1−xMnxAs,

using the sp3 tight-binding Hamiltonian. Finally, employing the sp3 tight-binding Hamiltonian and the

DMFA, ferromagnetism in a wide band gap Ga1−xMnxN is studied.

v



Chapter 1

Introduction

1.1 New Magnetic Material For Spintronics

The motivation for this study has been to better understand the material which could be the building block

for the next generation of computers. According to Moore’s law the number of transistors in a chip doubles

every eighteen to twenty two months. At this rate, very soon, the size of a transistor will not exceed several

atoms. Thus, our ability to make faster processors is limited by the transistor size. In order to overcome

the shortcoming of conventional electronics the idea of spintronics was proposed. Spintronics utilizes both

charge and spin of the electrons to process and store data. Spintronics based transistors have several major

advantages over todays transistors, among them are their ability to integrate data process and storage in a

single step and controlling of spin currents with an external magnetic field. In fact, the idea of using electron

spin has already revolutionized data storage device technology as we use giant magneto-resistant devices

everyday such as hard-disks and RAM memories. One should keep in mind that these memory devices are

based on static spin as opposed to data processing units which are based on spin currents.

Recently, ferromagnetic semiconductors have become a major focus in both academia and industry as

these materials might form the base of spintronics. As conventional electronics, semiconductors are more

appropriate than normal metals, since metal devices do not amplify current. Moreover, mixed devices

(based on metal and semiconductors) have problems with spin injection due to the large scattering cause by

the conductivity mismatch at the interface between the ferromagnetic metal and semiconductor. Magnetic

semiconductors that act as spin-injectors might be the solution for the above problems.

In magnetic semiconductors a conventional semiconductor e.g. GaAs or GaN is doped heavily (doping

∼5%-10%) with magnetic ions such as manganese (Mn). Upon doping each magnetic ion preferably sub-

stitutes a cation and introduces a local magnetic moment, as well as an extra hole due to the mismatch of

the electronic structure of the two ions. These holes are loosely bound to the acceptor ions, thus propa-

gate throughout the system. They interact with the magnetic ions, d orbitals, via the p − d hybridization.
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Since the magnetic impurity concentration is small in the diluted magnetic semiconductors (DMS), mag-

netic interactions in the material are mostly mediated by itinerant holes, which aline magnetic moments

ferromagnetically.

In the DMS, magnetic impurities are randomly scattered, thus make the material highly disordered.

Furthermore, the magnetic exchange interaction is strong and comparable to the Fermi energy. As the

result, the DMS fall under category of strongly correlated systems where static mean-field approach is too

simplistic to capture the complexity of the material.

1.2 Background

1.2.1 Strongly Correlated Electronic Systems

In general strongly correlated electronic systems are many-particle systems in which the short interaction

(U) between constituent electrons is a major factor in defining the behavior of the material. If we define

W as the bandwidth of the dispersion band which appears from the hybridization of the atomic orbitals

at different sites, in strongly correlated systems the ratio U/W becomes large. In such systems the single

particle approach fails, and one has to take into account the collective behavior of particles since the motion

a one particle is greatly affected by the interaction with other particles in the system. This fact increases the

level of complexity of the system to the extent that there are no analytical solutions for strongly correlated

systems except for very limited and specific cases. Examples of strongly correlated systems include, but are

not limited to, cuprates, rare-earth systems, diluted magnetic semiconductors and transition-metal oxides.

An interesting example to showing the importance of correlations between the electrons is the Mott

insulator. Mott insulators are conductors according to band structure calculations (where the correlations

between the electrons are limited to the Pauli exclusion principle). But experiments show that such systems

are in fact insulators, particularly at low temperatures. This phenomenon has been observed in transition

metal oxides that have partially filled d orbitals. Mott proposed [8] that the strong local repulsion between

the d electrons prevents the hopping of electrons from one site to the other, thus, the material does not

conduct electricity.

Various models have been proposed for strongly correlated systems such as the Hubbard model where

the electron-electron interaction is treated as a simple onsite interaction (U) and the overlap of the adjacent

atomic orbitals is taken into account by hopping integrals which in general depend on the orbital type.

Despite its simplicity even the single band Hubbard model (with just one orbital per site) does not have an
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analytical solution except in one and infinite dimensions. Other interesting strongly correlated systems are

metals with magnetic impurities, i.e transition metal or rare earth ions with partially filled d (or f) orbitals.

The localized d (or f) orbitals hybridize with the conducting s or p orbitals of the adjacent sites. This is

in addition to the strong onsite repulsion among local d (f) electrons. The Kondo [9] and Anderson [10]

models are proposed to describe anomalies in the transport and magnetic properties of such systems. For

example, for many years physicists were puzzled by the anomaly in the low temperature resistance of systems

with magnetic impurities in non-magnetic metals, where resistivity rises under specific low temperature TK

(Kondo temperature). This effects could not be explained by models based on single particle scenarios.

It was Kondo who suggested that the anomaly is due to correlations amongst electrons in the system. He

explained it by considering the spin-flip scattering off the electrons from magnetic impurities. By introducing

the spin degree of freedom for the electrons, the Kondo model essentially brings back the Pauli exclusion

principle (a many-body effect) to the electron scattering from a magnetic impurity. According to the model,

at low temperature, the screening of the magnetic impurities by electrons is less effective thus the resistivity

increases.

The focus of this dissertation is on the diluted magnetic semiconductors. The double-exchange interaction,

which shares general ideas with the Kondo model, is adopted to model the magnetic interactions in the

DMS. The DMS are strongly correlated systems in because the p − d exchange coupling is larger than the

Fermi energy. The complexity of the system is increased by the random distribution of magnetic impurities

throughout the system.

1.2.2 Diluted Magnetic Semiconductors

Ferromagnetic semiconductors have been in the center of much attention for more than a decade[11, 12, 13]

due to their interesting physical properties and potential device application in spintronics [14, 15]. The main

idea is to combine semiconductor physics and magnetism, which have been among the well established areas

of condensed matter physics. The newly developed field of spintronics utilizes both the charge and the spin

degree of freedom of the charge carriers (electrons or holes) to integrate processing and storage of data.

However, in order to control the magnetic and transport behavior of the magnetic semiconductor one has to

address many parameters such as the p−d exchange interaction (Jp−d) between the d−level electrons (holes)

of the impurity and the p−type valence electrons (holes). The problem is that semiconductors are extremely

sensitive to impurities and any other external (e.g. fields) or internal (e.g. defects) parameter. Thus growth

of magnetic semiconductors should be under considerable control. Another issue is these materials are
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highly disordered since a high ferromagnetic transition temperature is reached once they are heavily doped

(∼ 5%− 10%). This makes the study of the DMS more challenging. Moreover, the issue of solubility of the

magnetic ions into the regular semiconductor was a major challenge to fabricate high quality diluted magnetic

semiconductors. Fortunately, in recent years, advances in non-equilibrium techniques such as Molecular Beam

Epitaxy (MBE), have led to the successful growth of various DMS including (Ga,Mn)As and (Ga,Mn)N with

Curie temperatures as high as 250K in nanostructures and 370K in heterostructure DMS [16, 17, 18, 19].

This thesis focuses on the group III-Mn-V ferromagnetic semiconductors, more specifically Ga1−xMnxAs

and Ga1−xMnxN. It has been established that several (III,V) compounds can reach ferromagnetic transition

temperatures above 100K once they are heavily doped with magnetic atoms.

Since DMS are grown using out of equilibrium techniques a noticeable fraction of magnetic atoms lies

not on the preferred site (cation) but on the anion (anti-site) or somewhere in the middle of the crystal

(interstitial). While the effect of anti-site ions is to reduce the effective doping and carrier density, the question

about the real effect of interstitial ions is yet to be answered. A high percentage of interstitial manganese

(MnI) in the DMS (∼ 20% in the highly-doped as grown samples) might lead to significant effects on the

properties of the material. It is not clear whether the d orbitals of an interstitial MnI hybridize with valence

band orbitals of neighboring atoms. There are studies for and against either scenario[20, 21, 22]. Furthermore,

it is possible that an interstitial magnetic ion engages in short range antiferromagnetic interaction with

neighboring substitutional ion (MnGa) to form magnetic dipoles[20, 21]. The direct effect of the magnetic

dipoles is the reduction of the effective magnetic moment in the DMS. This is because in dipoles, the short-

range antiferromagnetic interaction between ions suppresses the total magnetic moment. MnI is also a

double donor i.e. each interstitial manganese compensates two holes introduced by substitutional Mn, thus

it reduces the effective charge carrier density. In addition to that, interstitial defects can lead to structural

changes in the crystal which in turn may affect its ferromagnetic behavior[22, 23]. The percentage of doping

defects (anti-site and interstitial) can be brought down by using postgrowth annealing at temperatures close

to growth temperature[24, 25, 26, 2].

Early experiments showed that there is an intimate relationship between the ferromagnetic transition

temperature and the hole carrier density and hole localization[27, 11, 13]. This led to proposed models that

explain the magnetic interaction amongst impurity magnetic moments through mediation by itinerant charge

carriers. It is generally accepted that the ferromagnetism in the DMS arises from the Zener double-exchange

process[20, 28, 29]. Zener proposed a double-exchange mechanism[30] in order to explain ferromagnetism in a

certain class of materials. According to this model the interaction between two isolated magnetic atoms is via

4



hybridization of their magnetic shell with the orbitals of an intermediate non-magnetic atom. In the case of

group (III,Mn)V DMS, Mn represents by its mixed spd orbital which hybridize with sp orbitals of the parent

semiconductor (III-V). In the regimes of small values for kinetic-exchange interaction, ferromagnetism follows

the Ruderman-Kittle-Kasuya-Yosida (RKKY) picture [31, 32]. However, there is no significant difference

between the RKKY and the double-exchange models. In fact the former is the weak coupling regime of the

latter.

Zaránd and Jankó [33] proposed a simplified double-exchange model to study the magnetic behavior of

the DMS, represented by the following Hamiltonian:

H = H0 + Jc
∑

i

S(Ri) · J(Ri) (1.1)

For the non-interacting Hamiltonian (H0) they adopted the k · p Hamiltonian proposed by Luttinger and

Kohn [34] where spin-orbit interaction is taken into account by simplifying the Luttinger-Kohn model. The

magnetic interaction between the itinerant holes and the local moments in this model is simplified to just a

local interaction at the impurity location where the spin of the magnetic ion is treated as classical due to its

rather large magnitude (S=5/2). They showed that the bulk DMS is a frustrated ferromagnet.

Although the nature of the magnetic interaction within DMS is still a matter of controversy as noted

above, some consensus has emerged regarding the effects of magnetic dopants on the band structure of the

parent material specially for the case of Ga1−xMnxAs[20]. In this material the substitution of cation (Ga3+)

with a magnetic ion (Mn2+) introduces an itinerant hole to the system as well as a local magnetic moment

(S = 5/2) due to its half filled d orbital. Moreover, since the Mn2+ ion is negatively charged with respect

to the Ga3+ ionic background there is an effective attraction interaction between the Mn ion and the charge

carriers. In the case of Ga1−xMnxAs the filled d orbitals lie deep in the valence band, thus the number of

particles in this orbital is fixed. Due to the rather large moment (S = 5/2) of the deep valence d orbitals,

one can safely assume that the magnetic interaction in the material is between holes and classical-like local

moments at each Mn site. The free propagation of the itinerant holes in the DMS is disrupted by the disorder

due to random distribution of the magnetic impurities. This leads to the formation of the localized states at

the impurity sites. The overlap of these localized states results in the impurity band. The aforementioned

magnetic interaction in the DMS, p− d exchange coupling, is mostly mediated by the p-type holes and it is

evident that the localized states are made of such carriers. Since in GaN and GaAs the valence band has

p-type character, while the conduction band is s−like, we expect that the impurity band is formed close to

the valence band.
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On the other hand in wide band gap semiconductors, such as Ga1−xMnxN, the role of the magnetic ion

is not agreed upon. In this DMS the MnGa ions can have two ionizations namely Mn3+ (4d) and Mn2+ (5d)

with S = 2 and 5/2 respectively. In the former (Mn3+) the d orbital of the Mn lies deep in the band gap

and form quasi-local states[35, 36, 37, 38]. The nature of this orbital and whether it hybridizes with p−like

valence holes is not clear yet. Some studies suggest that these orbitals do not hybridize, and thus do not have

a noticeable effect in mediation of magnetic interaction, while others claim the role of the deep valence band

d orbitals can not be overlooked[37, 38, 20]. There are also other features that contribute to the complexity of

the DMS including formation of magnetic clusters which have a noticeable effect on the magnetic properties

of the material, e.g. the reported Tc of Ga1−xMnxN is in the range of 2k-900K[39, 19, 38].

This dissertation uses the Zaránd and Jankó Hamiltonian for the magnetic interaction in the DMS. Dif-

ferent Hamiltonians are employed for the parent material in order to establish a more realistic picture of

the DMS. We systematically study Ga1−xMnxAs and Ga1−xMnxN within the framework of the self consis-

tent Dynamical Mean Field Approximation (DMFA). In order to capture effects such as frustration, which

originate in the non-local interactions and are ignored in DMFA, we employ the Dynamical Cluster Approx-

imation (DCA). Since the DMFA and the DCA are non-perturbative, they can be used for different regimes

of interaction strength. Moreover, both approximations fully take into account the temporal fluctuations at

the impurity sites which are crucial, especially in the vicinity of the ferromagnetic transition temperature.

These important fluctuations are averaged over in static mean field approximations.

1.2.3 The Dynamical Mean Field Approximation (DMFA)

The DMFA[40, 41] is a self-consistent mean field theory which fully incorporates dynamical correlations

among the electrons but ignores all non-local correlations. By ignoring spatial correlation amongst the

electrons, the DMFA relaxes the momentum conservation at the internal vertices of the Feynman diagrams.

For example in a two-body interaction diagram, the Laue function ∆ function is set to 1:

∆(k1, k2, k3, k4) =
∑

r

eir.(k1+k2+k3+k4) = Nδk1+k2,k3+k4 → 1 (1.2)

It follows that the self energy does not have momentum dependency within the DMFA[42]:

ΣDMFA(k, ω) = Σ(ω) (1.3)

where ω is the frequency (energy). It has been shown[43] that the DMFA is exact in the limit of infinite

6



Figure 1.1: The DMFA algorithm

dimensions (D →∞). One may assume it is a reliable approximation when the number of neighboring sites

are large e.g. in the zinc-blende structure where the underlying crystal structure is face centered cubic (FCC)

with D=12. However, one has to keep in mind that in systems such as diluted magnetic semiconductors,

non-local correlations lead to effects such as frustration, which can have a noticeable effect on the magnetic

behavior of the material. So the method carries significant limitations despite the relatively large number of

neighboring sites.

Figure 1.1 illustrates the self consistency algorithm for the DMFA as followins:

1. Start by making a guess for the self-energy Σ(ω).

2. Calculate the local Green’s functionG−1
loc(ω) = 1/N

∑
k[G−1

0 (ω)−Σ(ω)], whereG0 is the non-interacting

lattice Green’s function.

3. Find the cluster excluded Green’s function, G(ω), via G−1(ω) = G−1
loc(ω) + Σ(ω); this is to avoid the

interactions of a particle with itself.

4. The cluster solver calculates the impurity Green’s function (Gimp(ω)) by using an appropriate tech-

nique, here the Coherent Potential Approximation (CPA).

5. Having obtained the impurity Green’s function and cluster excluded Green’s function, calculate the new

self-energy via Σ(ω) = G−1(ω) − G−1
imp(ω). Start step 1 with new calculated self-energy and continue

the loop until reaching the desired convergency.
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Figure 1.2: Division of real lattice and the first Brillouin zone in DCA (Nc = 4)

1.2.4 The Dynamical Cluster Approximation (DCA)

The above-mentioned DMFA ignores all spatial correlations in the system. While those correlations are of less

importance in some cases, in many interesting physical systems they have noticeable effects on the material

properties. The DCA is introduced [44] to incorporate some of the non-local interactions, relinquished within

the DMFA. It systematically restores the momentum conservation at internal vertices, which makes it the

natural extension to the DMFA. Within the DCA the Brillouin zone is divided into Nc equal cells where

each momenta in the cell is labeled by k= K+k̃. Here K is the momenta at the center of the cell and k̃ is

the momenta within the cell measured from the cell center.

Figure 1.2 illustrates the tiling for Nc = 4. It is clear that the DCA restores the DMFA results in the

limit of Nc → 1. Since the DCA does not neglect momentum conservations all together, the self-energy is

not completely local:

ΣDCA(k, ω) = Σ(M(k), ω) = Σ(K, ω) (1.4)

where M(k) maps each momentum (k) to its corresponding cell momentum (K). In the language of Laue

function, the partial momentum conservation reads:

∆(k1, k2, k3, k4) = NcδK1+K2,K3+K4 (1.5)

Figure 1.3 outlines the scheme for the DCA self consistency algorithm. One can see that for the most

part the two algorithms (DCA and DMFA) are similar except that the DMFA maps the original lattice to

a single site while the DCA maps it into a Nc site cluster. Like the DMFA algorithm we start with some
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Cluster Solver

Gc

Σc = GGG−1 −Gc
−1

Ḡ = Nc

N

∑
k̃[G

−1
0 (k̃)−Σc]

−1

GGG−1 = Ḡ−1 +Σc

GGG

Figure 1.3: The DCA algorithm

guess for the self-energy function (usually zero) and calculate the coarse grained Green’s function

Ḡ(K, ω) =
Nc
N

∑

k̃

1

ω − εK+k̃ + µ− Σc(K, ω)
(1.6)

where εK+k̃ is the dispersion of the non-interacting Hamiltonian and µ is the chemical potential. The

cluster excluded Green’s function is calculated similar to the DMFA

G−1(K, ω) = Ḡ−1(K, ω) + Σc(K, ω) (1.7)

The cluster excluded Green’s function is the input to the cluster solver, e.g. the CPA, with output of the

cluster Green’s function (Gc(K, ω)). The last step is to find the new cluster self-energy.

Σc(K, ω) = G−1(K, ω)−Gc−1

(ω) (1.8)

The self-energy is used to recalculate the coarse grained Green’s function and iterations will continue

until convergency is reached.

One should be careful in choosing a cluster that satisfies the point group symmetry of the original lattice.

Finally, notice that the DCA ignores the dependency of the self-energy on small momenta (Σc(K + k̃, ω) =

Σc(K, ω)), so it is a good approximation in the absence of strong short range interactions.
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1.3 Outline of Dissertation

This dissertation is organized as follows:

In Chapter 2, the DMFA is employed to study a simplified model for Ga1−xMnxAs. We use the two-band

(heavy and light bands) tight binding Hamiltonian with a cosine dispersion to model the band structure of the

parent material. The effect of the attractive Coulomb interaction between the acceptor magnetic impurities

and itinerant holes is also studied. It is shown that in general both the Coulomb potential and the magnetic

coupling between the magnetic ions and charge carriers enhance ferromagnetism in the DMS. Moreover, a

toy model is used to study the effect of strong spin-orbit interaction of the parent compound on the magnetic

properties of the material. We conclude that the effect of the spin-orbit interaction on the ferromagnetism

is different in weak and strong regimes of the interaction parameters (Coulomb and magnetic coupling). For

a small Coulomb potential and magnetic coupling, the spin-orbit interaction enhances ferromagnetism, but

it suppresses the ferromagnetic transition temperature at large values of these parameters.

In Chapter 3 we introduce non-local interactions in Ga1−xMnxAs by using the DCA technique for several

clusters. While mean-field studies capture the main features of the DMS, non-local effects may be equally

important for the itinerant carriers, which mediate the effective magnetic interaction in the DMS. It is shown

that non-local correlations amongst neighboring magnetic ions lead to magnetic frustration in the DMS. We

find considerably lower Tc for the frustrated ferromagnet which is in better agreement with experiment than

the DMFA results. Within this model the maximum Tc is reached when the hole concentration is half of

the magnetic doping. The DCA also enables us to study the effect of anisotropy on ferromagnetism of the

DMS. We investigate the magnetic anisotropy of Ga1−xMnxAs. We show that while the magnetic anisotropy

depends on strain, hole concentration, and temperature in a complicated manner, generally it has in-plane

anisotropy with compressive strain and perpendicular-to-plane anisotropy with tensile strain.

In Chapter 4 a more realistic sp3 tight-binding Hamiltonian for the parent compound is used to study

Ga1−xMnxAs within the DMFA. Inclusion of the conduction band in the narrow gap GaAs leads to band

repulsion, which was absent in our previous DMFA studies. We find that this effect considerably narrows

down the impurity bandwidth. As a consequence of narrower bandwidth, holes are more localized thus less

able to mediate the magnetic interaction between the magnetic ions. We find more realistic ferromagnetic

behavior by employing a more realistic tight-binding Hamiltonian. We also investigate the dependence of the

hole polarization on the magnetic coupling strength of the DMS. Moreover, we study the optical conductivity

of the DMS for a wide range of magnetic couplings.

In Chapter 5 we employ the DMFA to study Ga1−xMnxN, one of the most important members of the
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wide band gap DMS. GaN has wurtzite crystal structure with two gallium and two nitride atoms in the

unit cell. We use the sp3 tight-binding Hamiltonian for the parent compound. We expect that the effect

of band repulsion on the impurity bandwidth is less profound in the wide band gap DMS. We study the

ferromagnetism Ga1−xMnxN in different coupling regimes. The spin-orbit interaction in much smaller in

Ga1−xMnxN than in Ga1−xMnxAs. We investigate the effect of the small spin-orbit interaction on the

magnetic frustration through the hole polarization. Furthermore, we study the effect of crystal anisotropy

on the ferromagnetic transition temperature of the DMS in the wurtzite structure. We compare our findings

for the ferromagnetic transition temperature with the results of the previous static mean-field study.

Finally, Chapter 6, summarizes the achievements in each chapter and outlines possible developments in

the future.
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Chapter 2

The Effect of Spin-Orbit Interaction and
Attractive Coulomb Potential on the
Magnetic Properties of Ga1−xMnxAs

2.1 Introduction

Although the notion of using magnetic semiconductors in spintronic devices dates back to the 1960’s [45],

the discovery of high temperature ferromagnetism in dilute magnetic semiconductors (DMS)[27, 46] ini-

tiated an active search for the optimal compound with a magnetic transition above room temperature.

Since these materials are good sources of polarized charge carriers, they may form the basis of future spin-

tronic devices,[14, 15] which utilize the spin of the carriers as well as their charge to simultaneously store

and process data. Perhaps one of the most promising DMS is GaAs doped with Manganese due to its

rather high ferromagnetic transition temperature (Tc > 150 K for bulk samples and ∼ 250 K for δ-doped

heterostructures[18, 17]) and its wide use in today’s electronic devices.

In Ga1−xMnxAs, the Mn+2 ion primarily replace Ga+3 playing the role of acceptor by introducing an

itinerant hole to the p-like valence band. The strong spin-orbit interaction in the valence band couples the

angular momentum to the spin of the itinerant hole resulting in total spin J=l + s=3/2 for the two upper

valence bands and J=l − s=1/2 for the split-off band. Each manganese also introduces a localized spin

(S=5/2) due to its half-filled d orbital. In addition, since the Mn+2 ion is negatively charge with respect to

the Ga+3 ionic background there is an effective attractive interaction between the Mn ion and the charge

carriers.

In previous studies[47, 48] some of us have explored the effect of the strong spin-orbit coupling on

the ferromagnetic transition temperature Tc, the carrier polarization as well as the density of states and

spectral functions using the Dynamical Mean-Field Approximation (DMFA). In these studies we used the

k ·p Hamiltonian to model the dispersion of the parent material (GaAs). While k ·p is a good approximation

around the center of the Brillouin zone (Γ point), it is a poor one away from it. In this work we improve our

model by incorporating a more realistic tight binding dispersion for the valence bands as well as an attractive

on-site potential between the Mn ions and the itinerant holes. Moreover, we study the effect of the spin-orbit
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interaction of the holes on the magnetic behavior of the DMS. We find that for intermediate values of the

exchange coupling both the on-site potential and the spin-orbit enhances the critical temperature, while in

the strong coupling regime the spin-orbit interaction significantly suppresses Tc[49].

The effect of the attractive Coulomb potential has been discussed for models with only one valence

band, which ignore the spin-orbit interaction,[50, 51, 52, 53] and multi-band tight-binding models, which

include spin-orbit coupling, but with a limited sampling of disorder configurations.[54] Here we include on

an equal footing the effect of the attractive Coulomb potential using a simple Hartree term, the exchange

between magnetic ions and itinerant holes, the spin-orbit coupling, and the disorder within the coherent

potential approximation (CPA).[55, 56, 57] We investigate the ferromagnetic transition temperature, the

average magnetization of the Mn ions, the polarization of the holes, and the quasiparticle density of states

as function of the Coulomb and exchange couplings. First, we use a single band model where spin-orbit

interaction is ignored and carriers have angular momenta J = 1/2. Next, we introduce the spin-orbit

coupling in a two-band model with J = 3/2. By changing the ratio of the masses of the light and heavy

bands (ml/mh) we explore the effect of spin-orbit coupling. This is the minimal model that qualitatively

captures the physics of DMS, however, a more realistic approach should incorporate the conduction and

split-off bands and this will be discuss in future studies.

2.2 Model

We employ the simplified Hamiltonian proposed by Zaránd and Jankó[33] with an additional Coulomb

potential term:

H = H0 + Jc
∑

i

S(Ri) · J(Ri) + V
∑

i

n(Ri), (2.1)

where H0 includes both electronic dispersion and spin-orbit coupling of the holes in the parent compound,

Jc is the exchange coupling, V the Coulomb strength, S(Ri), J(Ri) and n(Ri) are, respectively, the spin of

the localized moment, the total angular momentum density and the density of the carriers at random site i.

Short range direct or superexchange between Mn ions is ignored since we are in the dilute limit and we are

not including clustering effects.

As discussed previously,[47, 48] within the DMFA the coarse-grained Green function matrix is:

Ĝ(iωn) =
1

N

∑

k

[iωnÎ − Ĥ0(k) + µÎ − Σ̂(iωn)]−1, (2.2)
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where N is the number of k points in the first Brillouin zone, µ the chemical potential, and Ĥ0(k) and Σ̂(iωn),

are matrices representing the band structure of the parent material and the selfenergy, respectively. The

mean field function Ĝ0(iωn) = [Ĝ−1(iωn) + Σ̂(iωn)]−1 is required to solve the DMFA impurity problem. At

a non-magnetic site, the Green function is simply the mean field function Ĝnon(iωn) = Ĝ0(iωn). The Green

function at a magnetic site is ĜS(iωn) = [∧G−1
0 (iωn) + JcS · Ĵ + V ]−1 for a given local spin configuration.
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Figure 2.1: (Spin-dependent density of states for temperature T=0.01t, exchange coupling Jc=2 t and
Coulomb potential V = 1 t, 2 t and 4 t. T=0.01t is below the ferromagnetic transition for all values of
V .

Next we average Ĝmag over different spin orientation of the local moment. The relatively large magnitude

of the Mn moment justifies a classical treatment of its spin. To get the average over the angular distribution

we use the effective action [58, 59]

Seff (S) = −
∑

n

log det[Ĝ−1
0 (iωn) + JcS · Ĵ + V ]eiωn0+

. (2.3)

The average over spin configuration is

〈Ĝmg(iωn)〉 =
1

Z

∫
dΩSĜS(iωn)exp[−Seff(S)], (2.4)
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where Z is the partition function, Z =
∫
dΩsexp(−Seff(S)). Finally the disorder is treated in a fashion similar

to the coherent phase approximation (CPA)[55, 56, 57] and the averaged Green function reads Ĝavg(iωn) =

〈Ĝmg〉x+ ∧G0(iωn)(1− x) where x is the doping.
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Figure 2.2: Spin-dependent density of states for temperature T=0.04t, exchange coupling Jc=5 t and various
values of the Coulomb potential coupling V .

We obtain the hole density of states from the coarse-grained Green function in real frequency domain:

Ĝ(Ω) =
1

N

∑

k

[ΩÎ − Ĥ0(k)− Σ̂(Ω)]−1 (2.5)

where Ω = ω + i0+. The total density of states (DOS) is

DOS(Ω) = − 1

π
ImTrĜ(Ω), (2.6)

where Tr is the trace. Each diagonal element of the Green function (− 1

π
ImĜ(Ω)) corresponds to the density

of states for a specific Jz component.
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2.3 Results
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Figure 2.3: Ferromagnetic transition temperature versus magnetic exchange coupling for various values of
the Coulomb potential. Inset: polarization of the holes as function of T/Tc for a wide range of values of Jc
and V . Notice that all the polarization data collapse on a single curve.

Since Ga1−xMnxAs is grown using out of equilibrium techniques a noticeable fraction of manganese lies

not on the Ga site (substitutional) but on the As site (anti-site) or somewhere in the middle of the crystal

structure (interstitial)[20]. The real nature of interstitial defects is still controversial and yet to be resolved,

[22, 21] but the one consensus is that in most samples there is strong compensation of the holes introduced

by substitutional Mn. The density of carriers can also be controlled with electric fields.[60] We take these

considerations into account by simply setting the filling of the holes to half of the nominal doping[49]. We

focus on the doping x=5% and hole filling of nh = x/2.

We start by discussing a simplified one-band model where we ignore the spin-orbit interaction. Our carrier

dispersion is εk = −2t(cos(kx)+cos(ky)+cos(kz)), where t is the spin independent hopping integral. Fig. 2.1

and 2.2 display the spin-dependent density of states (DOS) close to the edge of the valence band for coupling

constant Jc=2 t and 5 t, respectively. Note that inclusion of the spin-independent attractive potential results
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Figure 2.4: Density of states for V=0, and Jc =0.5 tl, T=0.005 tl; and 0.75 tl at a temperature T=1/130 tl.
The impurity band is well formed with Jc=0.5tl and increasing of the coupling shifts the impurity band to
higher energies.

in shifting the energy of the holes (electrons) to lower (higher) energies for both spin species. This is in

agreement with previous studies [50, 51]. Fig. 2.1 illustrates the strong influence of the Hartee term on

the states close to the valence band edge for moderate exchange coupling. It is clear that increasing the

Coulomb potential accelerates the formation of the impurity band and its splitting from the valence band.

Fig. 2.2 shows that for couplings as large as Jc=5 t the impurity band is well formed even for relatively small

Coulomb potentials (V=1 t) and the mere effect of the Coulomb term is to shift the impurity band. Notice

also that the predicted shift of the impurity band is too large. We believe that this is a consequence of

excluding the conduction band from our model, since band repulsion with the conduction band pushes the

impurity band to lower energies.

The main panel in Fig. 2.3 shows the dependency of Tc on the exchange coupling for different Coulomb

potentials within this simplified one-band model. Comparing this figure with Fig. 2.1 and 2.2 it is clear that

Tc increases as impurity band forms and separates from the edge of the valence band. For each value of V we

can identify two values of Jc for which the slope of the Tc vs. Jc curve changes. For Jc < Jmin, Tc increases

17



0 1 2
ω/t

l

0

0.05

0.1

0.15

0.2

D
O

S
 j=+3/2
 j=+1/2
 j=-1/2
 j=-3/2
 j=+3/2
 j=+1/2
 j=-1/2
 j=-3/2

{
{

J
c
=0.5t

l

J
c
=0.75t

l
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very slowly, for Jmin < Jc < Jsat the impurity band begins to develop and Tc increases with the largest

slope, for Jc > Jsat the impurity band is completely split from the valence band and the rate of increase

in Tc reduces dramatically. In brief, the appearance of the impurity band corresponds to the large change

in the curvature of Tc vs. Jc. After the impurity band is well formed increasing Jc or V does not change

Tc significantly. In fact, for Jc > 4 t we can anticipate the saturation of the critical temperature. This is

an artifact of the DMFA and is due to the absence of non-local correlations. Inclusion of those correlations

leads to magnetic frustration of the system, which in turn suppresses Tc.[61, 33] We will come back to this

point in more detail later when we discuss the two-band model.

Therefore by increasing the attractive Coulomb potential Tc is significantly enhanced for values of the

exchange in a given interval, Jmin(V ) < Jc < Jsat(V ), where Jmin(V ) and Jsat(V ) are function of V . This

is due mostly to the fact that a positive V promote the appearance of localized states at the magnetic sites

which mediate the magnetic order. However, the physics of the ferromagnetic state is not modified by V ,

since the only relevant energy scale is given by Tc, as one expects from a mean field theory. This is illustrated
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in the inset of Fig. 2.3 that displays the polarization of the holes as function of T/Tc for a wide range of

values of Jc and V , showing that all the polarization data collapse on a single curve. Thus, the effect of V

is just to change the nominal value of Jc to a larger Jeffc .

Now, we introduce a more realistic approach using a two-band model. The spin-orbit interaction and the

crystal fields lift the degeneracy of the p-like valence bands into heavy, light and split-off bands. In our model

we ignore the effect of the split-off band and focus on the heavy and light bands which are degenerate at the

center of the Brillouin zone.[34] H0 is approximated by H0(k) = R̂†(k̂)ε̂(k)R̂(k̂) , where ε̂(k) is a diagonal

matrix with entries ε(k)n,σ = −2tn(cos(kx) + cos(ky) + cos(kz)), with n = l, h the heavy/light band index

and R̂(k̂), the k · p spin 3/2 rotation matrices.[47] In GaAs the mass ratio of light and heavy holes at the Γ

point is α=ml/mh= 0.14 [62]. We compare the results of our simulation for α=0.14 and α=1, keeping the

bandwidth of the light hole band fixed. Furthermore we scale every parameter according to the light holes

hopping energy (tl), which set the bandwith of the hole band.

Fig. 2.4 displays the hole density of states close to the edge of the valence band for Jc= 0.5 tl and 0.75 tl in

absence of the Coulomb potential, and for temperatures well below the ferromagnetic transition temperature.
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One can anticipate that the formation and splitting of the impurity band happens for smaller values of Jc/tl

than in the one-band model. We can explain this by noting that the total angular momentum of the holes

can be as large as J=3/2 for heavy holes, leading to a larger contribution to the total energy from the the

second term in Eq. (5.1). Moreover, for a small filling there are more available states close to the center

of the Brillouin zone in the two-band model than in the one-band model. Larger number of spin states

available to align along the direction of the local moment increases the average exchange energy and favor

ferromagnetism.

Fig. 2.5 displays the density of states for the same exchange couplings and temperatures, Jc= 0.5 tl,

T=0.005 tl, and 0.75 tl, T=1/130 tl, but with a finite Coulomb potential V= tl. For these values of the

parameters a second impurity band appears in the semiconducting gap. The appearance of two impurity

bands is consistent with the fact that the model includes two bands with Jz = ±3/2,±1/2. Notice that

the second impurity band is more populated with light holes (Jz = 1/2) while the first impurity band,

with higher energy, is mostly made of heavy holes (Jz = 3/2). Since we keep the filling of the holes fixed

(nh=x/2) the chemical potential sits in the middle of the first impurity band, as shown in Fig. 2.5. Thus,

as we discussed previoulsy, the shift of the impurity band will not have noticeable effects on the magnetic

properties of the DMS.

To investigate the effect of the spin-orbit interaction we introduce a simple toy model which has all

the features of our two-band model except that the heavy and light bands are degenerate over the whole

Brillouin zone. Therefore, heavy and light bands have the same dispersion but different total angular

momenta jz=±3/2 and ±1/2, respectively. The different band masses introduce magnetic frustration[33, 49]

and by setting α=1.0 (mh=ml) in our model, this magnetic frustration is removed. Since tl is fixed, changes

in α alters the dispersion of the heavy hole band while keeping the light band fixed.

Fig. 2.6 displays the total DOS for two values of the exchange coupling and Coulomb potential: Jc =

0.75 tl, V = 0 and Jc = 1.5 tl, V = tl, and for α=0.14 and 1.0. Note that for α=0.14 the impurity band is

formed at lower couplings. Thus, the spin-orbit interaction enhances the formation of the impurity band.

We can explain this by noting that changing α from 1.0 to 0.14 decreases the kinetic energy of the heavy

holes (with jz=3/2) becoming more susceptible to align their spin parallel to the local moment promoting

the formation of the impurity band. Fig. 2.4 and 2.5 show explictly that the heavy holes are the majority

of the carriers in the impurity band. On the other hand the bandwidth of the impurity band is larger when

α=1.0, pointing to less localized holes, which better mediate the exchange interaction between magnetic

ions.
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Figure 2.7: Ferromagnetic transition temperature, Tc, vs. exchange coupling Jc, both in units of tl, for
different values of the Coulomb potential and for α=0.14 and 1.0.

Finally we look at the dependence of the critical temperature on the parameters of the model: Jc, V

and α. The results for different values of Jc-V for α=1.0 and 0.14 are shown in Fig. 2.7. Similarly to

Fig. 2.3 we can identify for both values of α a range of parameters Jc, V where Tc increases strongly. This

corresponds to the formation and splitting of the impurity band from the valence band. For small values of

Jc and V , Tc is higher for α = 0.14 but as we increase Jc-V the ferromagnetic transition temperature for

α = 1.0 becomes larger. Eventually Tc saturates due to the lack of non-local correlations within the DMFA.

We can understand the higher Tc for α = 0.14 and small Jc,V by looking at Fig. 2.6. For α = 0.14 the

impurity band appears at smaller values of Jc and V than for α = 1.0. This is due to the fact that the heavy

holes have a smaller kinetic energy and can be polarized more easily and become bonded to the localized

moments forming the impurity band. For larger values of Jc and V , Jc > 0.81tl for V = 0, Jc > 0.60tl for

V = 1 tl or Jc > 0.29tl for V = 3 tl, the critical temperature for the model with α=1.0 surpasses the one for

α=0.14 in agreement with previous findings in the strong coupling regime[47, 49]. This also can be related

with the DOS in Fig. 2.6, where the bandwith of the impurity band for α=1.0 is larger than for α=0.14. A

larger bandwidth corresponds to weaker localization of the holes and higher mobility. Therefore, they will
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better mediate the ferromagnetic interaction between the magnetic ions and we expect to see higher Tc when

α = 1.0. For the largest value of Jc and V we study Tc(α = 0.14)/Tc(α = 1.) = 0.35 to compare with 0.48

obtained in the strong coupling limit[49].

2.4 Conclusions

In conclusion, we have calculated densities of states, polarizations and ferromagnetic transition temperatures

for a one-band and two-band models appropriate for Ga1−xMnxAs. We have investigated the effect of adding

a local Coulomb attractive potential V between the magnetic ions and the charge carriers. The inclusion of a

Coulomb term leads to the formation of the impurity band for smaller magnetic couplings (Jc), in agreement

with previous studies[50, 51] and it significantly enhances Tc for a wide range of Jc, without affecting the

intrinsic physics of the ferromagnetic transition. We also explore the effect of the spin-orbit interaction by

using a two-band model and two different values of the ratio of the effective masses of the heavy and light

holes. We show that in the regime of small Jc-V the spin-orbit interaction enhances Tc, while for large enough

values of Jc-V the magnetic frustration induced by the spin-orbit coupling reduces Tc to values comparable

to the previously calculated strong coupling limit.

22



Chapter 3

Nonlocal Effects on Magnetism in the
Diluted Magnetic Semiconductor
Ga1−xMnxAs

3.1 Introduction

The discovery of high temperature ferromagnetism in diluted magnetic semiconductors (DMS) has stimulated

a great deal of attention [11]. The interest in these materials is due to possible applications in spintronics

[63] as the source of a spin polarized current or as the base material for a chip that can simultaneously store

and process data.

In spite of extensive studies, our understanding of ferromagnetism in these systems is far from complete

[20]. There are a few serious difficulties in the theoretical study of DMS: (i) The magnetic interaction

between local magnetic moments and itinerant carrier spin, which is responsible for the high transition

temperature (Tc), is strong and outside the Ruderman-Kittel-Kasuya-Yosida (RKKY) regime. (ii) There

exists strong disorder from the random distribution of magnetic ions. (iii) Nonlocal effects are expected to

be crucial judging from the spatially oscillating and anisotropic magnetic interaction predicted in theory

[33, 49, 64, 65] and observed in experiments [66].

The mean-field study by Dietl et al. [67] captures the main features of DMS systems qualitatively and

some even quantitatively. However, it ignores strong correlations, disorder effects, and spatial fluctuations,

and fails to describe some DMS materials, such that subsequent studies have brought their approach into

question [68, 69]. Studies [70, 71, 47, 72] based on the dynamical mean-field theory (DMFT) [43, 73] have

made considerable improvements by including strong correlation and disorder effects. However, the local

nature of the DMFT presents severe limitations when studying this system. The effects of short-range

fluctuations and spatial correlations were shown to be important in the classical Heisenberg model [14].

In this chapter, we show that nonlocal effects may be equally important for the itinerant carriers, which

mediate the effective interaction between local moments in DMS. The dynamical cluster approximation

(DCA) [74] systematically incorporates nonlocal effects as the cluster size (Nc) increases while retaining

This work has been published in Phys. Rev. Lett., 104 , 037201 (2010)
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strong correlations. When Nc = 1, the DCA is equivalent to the DMFT, and exact results are approached as

Nc →∞. Since all the possible disorder configurations are considered in a cluster, the DCA is also a better

approximation for disorder average than the coherent potential approximation or DMFT by including multi-

impurity scattering terms [75, 76]. Thus, the DCA is an ideal method for studying DMS systems. In this

chapter, we study the magnetic properties of the prototypical DMS system Ga1−xMnxAs using the DCA and

the k · p method, which describes the non-interacting band structure of pure GaAs. We show that nonlocal

effects are very important for properly capturing the magnitude of Tc, the saturation magnetization, and the

magnetic anisotropy of this material. In particular, we show that the strong cluster anisotropy is responsible

for the magnetic anisotropy along the cube-edge direction and the spin reorientation at low temperature.

3.2 Method

The model Hamiltonian we adopt is

H = Hk·p + Jc
∑

I

S(RI) · J(RI), (3.1)

where the first term describes the electronic structure of the host material (GaAs) in the k ·p approximation

and the second term introduces a magnetic interaction between the carrier spin (J) and the local magnetic

moment (S) of Mn at position RI . The large magnitude of the Mn magnetic moment (S = 5/2) allows us

to treat it classically. This model is generally accepted to describe DMS [33, 49, 67, 70, 71, 47, 72, 77, 78],

since a mean-field treatment of the Hamiltonian [67, 77, 78] is able to explain many physical properties of

the system. For the k · p Hamiltonian (Hk·p), we adopt a 4×4 Luttinger-Kohn model describing heavy

and light hole bands with spin-orbit coupling, but ignoring the conduction and split-off bands. We use the

Luttinger parameters γ1 = 6.98, γ2 = 2.06, and γ3 = 2.93 [79]. Biaxial strain is included in Hk·p through

the strain tensor εxx = εyy = ε0 = ∆a/a and εzz = (−2c12/c11)ε0 with the ratio of elastic stiffness constants

c12/c11 = 0.46. Parameter a is the lattice constant of Ga1−xMnxAs, and ∆a is the difference between the

lattice constants of Ga1−xMnxAs and the substrate. We use the hydrostatic deformation potential av = 1.16

eV and the shear deformation potential b = −2.0 eV [79].

In addition to the parameters of the k · p Hamiltonian, we must determine the value of the exchange

coupling Jc. It can be obtained from photoemission [80], infrared [81, 82], and resonant tunneling [83]

spectroscopy and magneto-transport experiments [84], which give Jc = 0.6-1.5 eV. We adopt Jc = 1 eV

throughout this chapter.
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Figure 3.1: (a) Magnetization of Ga1−xMnxAs calculated by DMFT (Nc = 1) and DCA (Nc = 16, Nc = 22,
and Nc = 24) with Mn doping x = 0.05 and hole concentration p = 0.025. No strain effect is considered.
(b) Ferromagnetic transition temperature (Tc) as a function of hole concentration (p) with DMFT (Nc = 1)
and DCA (Nc = 16) for x = 0.05. Experimental results [1, 2, 3] are also shown. The Mn concentration in
experiments is x=0.085 (Ku et al.), x=0.017-0.09 (Wang et al.), and x=0.05 (Sørensen et al.).

Figure 3.1(a) shows the magnetization per Mn ion of the Ga1−xMnxAs system as a function of temper-

ature with DMFT (Nc = 1) and DCA (Nc = 16, Nc = 22, and Nc = 24). We chose three fcc clusters that

are perfect according to Betts et al. [85]. The difference between DCA and DMFT stems from nonlocal

effects, not captured in DMFT. The Tc with DCA is far lower than that obtained with DMFT, approaching

the regime of experimental values [1, 2, 3] [see Fig. 3.1(b)]. Another important point is the reduction of

the saturation magnetization at low temperature, consistent with experiments [3, 86, 87]. This behavior is

a product of the rotational frustration [33], to be discussed in detail later. This effect also reduces Tc. The

dependence of Tc on hole concentration (p) is shown in Fig. 3.1(b). Tc attains a maximum value when hole

concentration is half of Mn concentration, consistent with previous DMFT studies [70, 71, 47, 72].

Next, we studied the magnetic anisotropy of Ga1−xMnxAs. The magnetic anisotropy of this system

depends on strain, hole concentration, and temperature in a complicated manner, but generally it has in-

plane anisotropy with compressive strain and perpendicular-to-plane anisotropy with tensile strain [11]. With
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Figure 3.2: (a) Polar angle (θ) of the magnetization as a function of the normalized temperature (T/Tc)
for two strain values. Compressive (ε0 = −0.2%) and tensile (ε0 = +0.2%) strain induce in-plane and
perpendicular magnetic anisotropy, respectively. (b) Azimuthal angle (φ) of the magnetization with respect
to the [110] direction with compressive strain. Experimental results [4, 5, 6, 7] are provided in (c) to compare
with (b).

compressive strain, the magnetization changes direction within plane from [110] or [11̄0] at high temperature

to [100] or [010] at low temperature [4, 5, 6, 7] [see Fig. 3.2(c)]. As is shown in Fig. 3.2(a) and 3.2(b), the

DCA reproduces experimental results on the dependence of magnetic anisotropy on strain and temperature

remarkably well.

While the strain dependence of the magnetic anisotropy was explained within the mean-field theory

[77, 78], the spin reorientation within the plane has not been explained yet. In the absence of strain,

Ga1−xMnxAs has diagonal magnetic anisotropy within the mean-field theory because the heavy holes, which

dominate at low carrier density, have larger density along the diagonal direction in k-space [77]. With

compressive strain, it has the anisotropy in [110] or [11̄0]. This explains the magnetic anisotropy at high

temperature.

The [100] or [010] anisotropy at low temperature is due to the cluster anisotropy originating from the

anisotropic interaction between neighboring Mn ions. Because Mn ions are distributed randomly throughout
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Figure 3.3: (a) DCA results at low temperature show that the dimer magnetization (Mdimer) is prefered
to be perpendicular to the vector connecting the two Mn ions (R) for nearest-neighbor (NN) Mn-dimers.
(b) For larger dimers, Mdimer aligns with the total magnetization (Mtot) irrespective of R. The dotted
and solid arrows represent Mtot and Mdimer, respectively. (c) and (d) Angle between Mdimer and R and
between Mdimer and Mtot, respectively, at T=23.2 K, x=0.05, p=0.025, and ε0=−0.2%. The left panel is
for the 12 NN dimers [e.g., when the two Mn ions are at (0, 0, 0) and (a/2, a/2, 0)], the middle panel is for
the 6 next-nearest-neighbor (NNN) dimers [e.g., when the two Mn ions are at (0, 0, 0) and (a, 0, 0)], and the
right panel is for the third-nearest-neighbor (3rdNN) dimers [e.g., when the two Mn ions are at (0, 0, 0) and
(a, a/2, a/2)].

the system, the number of Mn ions within a cluster varies between zero and Nc. We call a cluster a monomer

(dimer) when it includes one Mn ion (two Mn ions). All possible distributions of Mn ions are considered

effectively in this calculation, but at low doping, the magnetic properties are dominated by Mn-monomers

and Mn-dimers. Since there is no cluster anisotropy in monomers, we investigate magnetization of Mn-dimers

in detail. Because of translational symmetry, we need to consider only Nc − 1 dimers. The two Mn ions are

nearest-neighbors in 12 dimers, next-nearest-neighbors in 6 dimers, and third-nearest-neighbors in Nc − 19

dimers. Figure 3.3 shows the magnetization direction of each dimer obtained by the Monte-Carlo method

at low temperature. The magnetization of the nearest-neighbor Mn-dimer is always perpendicular to the

vector connecting the two Mn ions. This cluster anisotropy prevents the magnetic moment of some dimers

from aligning parallel to the total magnetization and leads to the rotational frustration [33, 49]. When the
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Figure 3.4: (a) Magnetic configurations of the 12 nearest-neighbor (NN) Mn-dimers (MNN
dimer) that maximize

the total magnetization (Mtot) when φ = 0◦ (i.e. Mtot is along [110] or [11̄0]). The dotted and solid arrows
represent Mtot and MNN

dimer, respectively. The numbers below each diagram indicate the degeneracy of the
Mn-dimer configurations. The dimer configuration with MNN

dimer perpendicular to the vector connecting the
two Mn ions (R) is energetically favored. (b) Same as (a) but when φ = 45◦ (i.e. Mtot is along [100] or
[010]). (c) Maximum value of the average MNN

dimer vs. φ .

two Mn ions are farther apart, this anisotropy is very weak and magnetization of the dimer aligns parallel

to the total magnetization.

The cluster anisotropy can also explain the enhancement of Tc up to 260 K in the quasi-two-dimensional

δ-doped systems [17]. When the Mn ions are within one plane, all the nearest-neighbor Mn-dimers can point

in the same direction (perpendicular-to-plane direction) without rotational frustration. This may induce a

larger saturation magnetization and higher Tc in these systems.

Notably, due to this cluster anisotropy, the maximum total magnetization depends on the magnetization

direction, and this dependence introduces another type of magnetic anisotropy. When we assume the mag-

netic moment is perpendicular to the vector connecting the two Mn ions and in-plane magnetization, the

maximum value of the average magnetization of the 12 nearest-neighbor dimers is calculated to be

〈MNN
dimer〉 =

1

6

[
cosφ+ sinφ+

√
3 + sin(2φ)

28



+
√

3− sin(2φ)
]

(3.2)

for the fcc lattice. This becomes maximal when the magnetization is along [100] or [010], as shown in

Fig. 3.4(c). Since larger magnetization leads to lower magnetic energy, it introduces magnetic anisotropy

along [100] or [010]. We note that this effect becomes unimportant at high temperature, where the total

magnetization is small. Thus, the spin reorientation from [110] or [11̄0] at high temperature to [100] or

[010] at low temperature is captured within our calculation. This behavior arises from the multi-impurity

scattering and cannot be obtained within the mean-field theory or the DMFT.

In summary, we investigated the magnetic properties of the prototypical DMS system Ga1−xMnxAs by

DCA together with the k ·p method. We showed that nonlocal effects, not included in the mean-field theory

or the DMFT but included in the DCA for Nc > 1, are very important to quantitatively explain the Tc,

the saturation magnetization, and the magnetic anisotropy of this material. We find that the edge-direction

anisotropy at low temperature is due to the cluster anisotropy, and this allows us to reproduce the spin

reorientation in this system remarkably well.
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Chapter 4

Dynamical Mean Field Approximation of
a Tight-binding Model of Ga1−xMnxAs

4.1 Introduction

The discovery of a new generation of dilute magnetic semiconductors (DMS) with large Curie temperature

[11, 13] has led to numerous experimental and theoretical studies.[67, 20] The ultimate goal is to find a

DMS with ferromagnetic transition about room temperature to use in spintronic devices. One of the most

promising candidates is Ga1−xMnxAs due to its rather high Tc, [67, 11] and compatibility with current

electronic applications. Despite this huge interest, some of the most basic questions about Ga1−xMnxAs are

still unanswered after more than a decade of its discovery. Among them are questions about the nature of

its underlying magnetic interactions and the role of the impurity band.

In this work we combine the sp3 tight-binding Hamiltonian for the zincblende GaAs with the self con-

sistent dynamical mean field approximation (DMFA) to study the magnetic and transport properties of

Ga1−xMnxAs. We suppose that the manganese (Mn) doping does not modify the tight-binding parameters

of GaAs and any change in the band structure is due to the many-body effects induced by the magnetic

coupling between the Mn local moments and the itinerant holes.

Several previous studies have used the tight-binding approximation for DMS. Tang and Flatté calculated

the local density of states for a single Mn and two nearby Mn impurities[88] and the magnetic circular

dichroism[89] of bulk Ga1−xMnxAs using large supercells; Masek et al. took the Weiss mean field approach

to calculate the electronic structure for several DMS[90]; and Turek et al. compared both tight-binding

approaches results[91, 92]. Large-scale Monte Carlo studies of real-space tigh-binding Hamiltonians including

only the three valence bands has also been performed [93]

Our DMFA calculation includes quantum self-energy corrections which are not included in other mean-

field theories. We also incorporate valence and conduction bands on an equal footing. Because this method

is non-perturbative, it allows us to study both the metallic and impurity-band regimes as well as small

and large couplings. Since the coupling between the magnetic ions and charge carriers is comparable to
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the Fermi energy, temporal fluctuations must be included in a realistic calculations specially in the vicinity

of the critical temperature. We choose tight-binding parameters according to Chadi and Cohen [94, 95],

which give the correct features of GaAs within the relevant energy scale around the Fermi energy, such as

effective masses for valence and conduction bands and the gap at the center of the Brillouin zone. Our model

also includes the spin-orbit interaction of the parent material which was proved very important in previous

studies[33, 49, 96] of Ga1−xMnxAs. The inclusion of the realistic band structure of the parent material leads

to more realistic results. For example, the band repulsion between the conduction band and the impurity

band, which was absent in previous calculations based on the k ·p approach [47, 96, 48] results in a significant

reduction of the bandwidth of the impurity band . Narrowing of the impurity bandwidth corresponds to

the localization of the mediating holes which ultimately suppresses the previously overestimated critical

temperature. We find that the calculated Tc is significantly smaller (and closer to the experimental results)

by improving the band structure of the parent compound.

4.2 Model

We model the magnetic interactions in Ga1−xMnxAs using the simplified Hamiltonian proposed by Zaránd

and Jankó[33]:

H = H0 + Jc
∑

i

S(Ri) · J(Ri), (4.1)

where H0 is a 16x16 matrix including both electronic dispersion and spin-orbit coupling of the sp3 holes of

the parent material. Our tight-binding parameters reproduce the correct band structure for the heavy and

light bands around the center of the Brillouin zone, the split-off energy gap and the gap between the valence

and the conduction bands[94, 95]. The spin-orbit coupling is modeled with a term λαL · S where λGa and

λAs are interaction constants for Ga and As atoms respectively. The second term in Eq. (5.1) describes the

interaction between Mn spins and mediating holes, where Jc is the exchange coupling between the localized

moments with spin S(Ri) and the total angular momentum density of holes J(Ri), both at site i. Since the

spins of Mn2+’s are relatively large (S = 5/2) we treat them as classical vectors.

We employ the DMFA algorithm [73] to calculate the magnetic and transport properties of the material

within a Green’s function formalism [47, 48]. Using the effective action (Seff ) we calculate the average

magnetization of the manganese ions:

M =
1

Z

∫
dΩsS

z exp{−Seff (S)} (4.2)
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with the partition function Z =
∫
dΩsexp[−Seff(S)].

The average polarization of the charge carriers at the chemical potential is defined as:

P =

∑
i j
z
i ni(µ)∑
i ni(µ)

(4.3)

with jzi the z component of the total angular momentum and ni the density of the holes in the ith band.

To compute the optical conductivity we calculate the spectral function in real frequency and use the

Kubo formula[97]:

σij(ω) =
−1

ω

∫
dν(f(ν)− f(ω + ν))×

∑

k

Tr(vi(k)A(k, ν)vj(k)A(k, ω + ν)) (4.4)

Tr is the trace of the matrix and vi(k) is the velocity in i direction. A(k, ω) is the spectral function at

momentum k and frequency (ω) and f(ω) is the Fermi function. Notice that both spectral functions have

the same momentum index. This is because within the DMFA the momentum dependency of the self energy

is ignored which leads to cancellation of the vertex contributions in the current-current correlation function

(〈jijj〉).

4.3 Results and Discussion

We first focus on the density of states (DOS) of the charge carriers at the doping x=0.05 where Tc is among

the highest reported.[11, 26, 46] In Fig. 5.1 and 4.2 we assume 50% compensation for the mediating holes due

to anti-site and interstitial doping, such that nh = x/2 = 0.025. This corresponds to optimum filling in the

impurity band regime of the DMS. Fig. 5.1 shows the total density of states at the edge of the valence band

for several values of coupling. Most experimental probes, such as photoemission [80], infrared [81, 98, 82],

resonant tunneling [83] spectroscopy and magneto-transport experiments [84] infer a value of Jc between

0.6-1.5 eV. Within this range of couplings the effect of the magnetic interactions is just the distortion of the

edge of the valence band. We have to use coupling strengths as large as 2.5 eV to be able to observe the

formation of the impurity band. Fig. 5.1 shows the impurity band is not completely separated until very

large couplings (∼ 4eV ). However, we find that our result for large couplings (Jc ∼ 3.0eV ) is in agreement

with recent experiments mapping the impurity band with the scanning tunneling microscopy.[99] The profile

of the DOS changes minimally with filling. As we expected the repulsion between the conduction and the

impurity band confines the latter within the band gap and narrows down the impurity bandwidth. This
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Figure 4.1: Total density of states versus energy at the edge of the valence band for x = 0.05, nh = x/2 =
0.025 and several coupling strengths. The edge of the conduction band lies at the right bottom corner.
The impurity band is not well separated from the valence band up to large couplings (Jc ∼4eV). The
vertical dashed line shows the location of the chemical potential for Jc=4.0 eV. Band repulsion between the
conduction and impurity bands leads to reduction of the impurity bandwidth. Inset: sp3 total density of
states for pure GaAs and Ga0.95Mn0.05As with Jc=4.0 eV.

leads to localization of the charge carriers which in return reduces the ferromagnetic transition temperature,

Tc, of the DMS. We use a Fourier transform filter to reduce the noise in the calculated density of states. The

noise is in regions away from the Fermi energy and is due to the effect of the k mesh in the coarse graining

step of the DMFA self-consistency loop. We have used up to 62000 k points in this calculation.

Fig. 4.2 displays the temperature dependence of the hole polarization for different couplings. It is evident

from the figure that the average hole polarization is frustrated by decreasing of the coupling strength at T=0.

We choose a narrow energy window (∼0.1 eV) at the chemical potential and calculated the average of P

within this window. Comparison with Fig.5.1 shows that noticeable changes in Tc correspond to changes

coupling regime where the impurity band is forming (separating) from the valence band and have minimum

effect on Tc in the impurity band regime. It shows that the maximum Tc is ∼220K which is closer to

experimental results (∼150K)[3] than previous simpler models.[47, 48] One can also see the same behavior

from the inset which shows the changes in average magnetization of magnetic ions Mn2+ versus temperature.
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Figure 4.2: Average polarization of the holes vs. temperature for different values of Jc at nh = x/2 = 0.025.
The polarization is frustrated since it does not reach its maximum allowed value at T = 0. Comparison with
Fig. 5.1 shows that noticeable changes in Tc happens when the impurity band is forming. Inset: Average
magnetization of the ions versus temperature for the same couplings.

Figure 4.3 is the plot of Tc versus filling of the holes for different couplings. It shows ceiling for the IB

regime, large Jc, at the optimum hole concentration (nf = x/2). This is consistent with previous theories

based on the impurity band picture.[47, 49] For the moderate regime of couplings (Jc ∼1.5 eV) the figure

shows that Tc increases by decreasing of the hole concentration larger than nf > 2%. While our model is for

bulk, recent studies, based on deformation of the valence band, show in the thin films, the Tc is proportional

to hole concentration for wide range of nf [100, 101, 102]. Inset is the plot of Tc versus Jc for the fixed hole

concentration (nf = x/2 = 2.5%). The plateau in at the large coupling values is due to absence of non-local

correlations within the DMFA.

Finally we calculated the optical conductivity using (4.4). Figure 4.4 is the plot of σxx versus energy for

different couplings. It shows photon energies up to the magnitude of the band gap. For smaller couplings,

Jc ≤ 2.0eV , the valence band is distorted, and conductivity shows the Drude like peak at low energy. The

peak is suppressed upon increasing of coupling value. This is due to the fact that the bounding between

magnetic ions and itinerant holes is stronger for larger couplings, and holes are more localized. Our result

34



0.01 0.02 0.03 0.04 0.05
n

f
 (hole density)

0

50

100

150

200

250

T c (K
)

J
c
=1.5 eV

J
c
=2.0 eV

J
c
=2.5 eV

J
c
=3.0 eV

1 1.5 2 2.5 3
J

c
 (eV)

100

150

200

T c (K
)

Figure 4.3: Tc versus filling for different couplings in constant doping (x=5%). For small couplings the
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properties of the DMS is less profound. Inset shows the saturation of the Tc with coupling strength at
nf = x/2. This is due to the lack of non-local correlations in the DMFA

is in agreement with other theoretical calculations[91], however, we could not capture the low energy (∼0.2

eV) peak in conductivity observed in experiment[103]. This is because, for smaller couplings the impurity

band is not formed, and for large couplings, the wide impurity band suppresses all low energy features. The

source of the peak is still the matter of controversy, while Burch et al. explain it as the evidence of the

existence of the impurity band[103] others explain the result within the distorted valence band picture.[101]

4.4 Conclusions

We find more realistic band structure leads to more realistic results. In this paper we employ semi-empirical

sp3 tight binding approximation to model the band structure of the parent material (GaAs). We study the

magnetic and transport properties of the diluted magnetic semiconductor Ga1−xMnxAs within the frame-

work of the multi-orbital DMFA. We choose the tight binding parameters for the model according to Chadi
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Figure 4.4: Optical conductivity in direction perpendicular to the magnetization in low temperatures for
different couplings at nf=2.5%. Conductivity is suppressed by increasing of Jc due to increase of the bonding
of the holes to the magnetic ions.

[77], which give the correct band structure within the relevant energy range (∼ εf± 2.0 eV). This includes

the valence, split-off and conduction bands (band gap). The calculated density of state shows the distorted

valence instead of the impurity band for moderate regime of coupling strengths (Jc ∼1.5 eV) and we have

to apply large couplings (Jc ∼3.0 eV) in order to observe the impurity band. The band repulsion between

the impurity and conduction bands reduces the bandwidth of the impurity band for large couplings. This in

turn leads to localization of the itinerant holes and reduction of the calculated Tc.

The average hole polarization (P) of the holes is calculated from (5.3). The results show that the hole

polarization is frustrated by decreasing of the coupling.

Moreover, calculated optical conductivity σxx shows the Drude like peak at low frequencies which is frus-

trated by increasing of the coupling. While our result is consistent with previous TB calculations, we could

not capture the low energy peak (∼0.2 eV) in the conductivity which was observed in experiment. Our ex-

planation is that even with the inclusion of the conduction band, resulting in narrowing down the impurity

bandwidth due to repulsion, the calculated impurity bandwidth is still too large (∼1 eV). The wide impurity
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band smears out the low energy features. We believe that the inclusion of corrections including cavity field

and non-local correlations into the the mean field approximation result in further suppression of the impurity

band width and possibly appearance of the peak in the conductivity.
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Chapter 5

Magnetism in Ga1−xMnxN

5.1 Introduction

The prediction of a ferromagnetic transition temperature well above room temperature for large band gap

semiconductors in the pioneering work of Dietl et al. [67] has triggered a worldwide search for such material.

Amongst wide band gap semiconductors, group III-nitrides (GaN, InN, AlN) are which have been in the

center of much attention due to their intensive use in electronic devices[104, 105]. Perhaps one of the most

studied DMS in this group is Ga1−xMnxN, with a 3.39 eV gap at 300K for the parent compound[106]. GaN

has stable wurtzite and metastable zinc-blende crystal structures. In this dissertation we focus on the stable

wurtzite structure. According to theoretical predictions, based on static mean-field, Ga1−xMnxN might

have one of the highest ferromagnetic transition temperatures well above room temperature[67]. However,

reported Tc in Ga1−xMnxN varies from less that 2K [107] up to 940K [108]. This ambiguity in the transition

temperature in (Ga,Mn)N, which is much more significant than in (Ga1−xMnxAs, is due to the higher level

of complexity in this material. Substitutional manganese ions can have two form in (Ga,Mn)N; Mn2+ with

the d level deep into the valence band, just as (Ga,Mn)As, and Mn3+ whit d orbitals deep in the band

gap[37, 38, 39, 107]. In the case of Mn2+ it is believed that the d orbitals are localized[20] but the real role

of the mid gap d orbitals is still unknown[20, 36, 37]. Another issue is the small solubility of Mn in GaN,

even smaller that GaAs,[39]. Out of equilibrium growth techniques, such as molecular beam epitaxy (MBE),

increase the Mn density up to 10%[107, 109, 39], but at the same time it can lead to larger percentage of

defects in the DMS. As already mentioned, defects in general reduce the concentration of the mediating

holes, as well as, the effective doping. Moreover, excess in nitrogen vacancies, as a result of high temperature

growth, increases the electronic density to the limit that make the DMS n-type[39, 109]. One can increase

the hole concentration and restore the p-type DMS by doping the system with holes[32, 37]. A further issue

that needs additional exploration is the formation of magnetic clusters in Ga1−xMnxN during the growth

process. Experimental studies suggest that MnN regions in the DMS are responsible for observing high a
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Tc, while in samples grown by well controlled growth process, with no such clusters, the Tc is less than

2K[39, 107, 110].

This is a continuation of our previous study of the DMS, where we employ a tight-binding (TB) Hamil-

tonian and the Dynamical Mean-Field Approximation (DMFA)[111]. Here we focus on the large band gap

Ga1−xMnxN. Pure GaN has two crystal structure, the stable wurtzite and metastable zinc-blende, which is

stabilized upon doping[112]. In this dissertation we investigate the magnetism of the DMS in the wurtzite

phase. The sp3 TB parameters for the wurtzite structure are chosen following Kobayashiet al.[113] and Shulz

et al.[114]. In the wurtzite crystal the unit cell is made of two gallium and two nitride atoms and care should

be taken in applying mean-field approach for such structure.

We also study the effect of anisotropy on the magnetic properties of Ga1−xMnxN. In general anisotropy

in the DMS depends on crystal effects, hole concentration, and temperature in a complicated manner[11]. In

the case of Ga1−xMnxN the anisotropy is more significant due to the small spin-orbit interaction[77]. Our

calculations show the existence of an easy-axis along the hexagonal-c axis in the wurtzite crystal structure.

5.2 Model

We employ the simplified double-exchange Hamiltonian proposed by Zaránd and Jankó for the magnetic

interactions between the magnetic ions and the itinerant holes[33]:

H = H0 + Jc
∑

i

~S(Ri) · ~J(Ri), (5.1)

H0 is the non-interacting Hamiltonian for the parent compound which includes both electronic dispersion

and spin-orbit coupling. As mentioned before, the unit cell in wurtzite contains four atoms (two Ga and two

N) thus, within sp3 tight-binding, H0 is a 32x32 matrix. We intorduce the spin-orbit interaction into our

model with a simple form; λGa~L · ~S where ~L and ~S are angular momentum and spin of the charge carriers

respectively. λGa is the interaction constant at the gallium site. The spin-orbit effect is negligible at nitride

site and we assume it is zero throughout our calculation. The second term is the magnetic interaction between

the local magnetic moments (~S) and itinerant holes with total angular momentum (~J) at the impurity site

(Ri). Jc is the the effective ferromagnetic exchange coupling. Here we assume ~S is a classical moment due

to its relative large magnitude (S=5/2). In our calculations we also assume Mn ions are in the Mn2+ state

with the d band deep into the valence band.

We follow Furukawas’s effective action method[58, 59, 115] to calculate the magnetic properties of
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Ga1−xMnxN within the framework of the dynamical mean-field approximation[73]. Using the effective action

(Seff ) we calculate the average magnetization of the manganese ions:

M =
1

Z

∫
dΩsS

z exp{−Seff (S)} (5.2)

with the partition function Z =
∫
dΩsexp[−Seff(S)].

We explore the effect of spin-orbit interaction on the magnetic frustration in the DMS by studying the

hole polarization. The average polarization of the charge carriers at the chemical potential is defined as:

P =

∑
i j
z
i ni(µ)∑
i ni(µ)

(5.3)

where jzi is the z component of the total angular momentum and ni is the density of the holes in the ith

band.

5.3 Results and Discussion

We start with the density of states of the charge carriers in the DMS, where we assume the effective doping

is 5%. We keep the effective doping fixed at 5% throughout our calculations. We also assume that the holes

are highly compensated due to defects and we take nf=2.5%. It is shown bellow this value corresponds to

the optimum band filling in the impurity band regime. Figure 5.1 displays the total density of states (DOS)

of the holes at the edge of the valence band for several couplings. The strength of the exchange coupling

in Ga1−xMnxN is even more ambiguous than for Ga1−xMnxAs and to the best of our knowledge there is

not a conclusive experimental result that shows its value. However, it is believed that the interaction in

Ga1−xMnxN is stronger, but it has a shorter range, than in Ga1−xMnxAs[37, 67, 116]. From this Figure it is

clear that the impurity band is formed and completely separated from the valence band for coupling as small

as Jc=0.8 eV. Comparing this results with the results of the last chapter one finds that the impurity band

is well formed for smaller couplings than for Ga1−xMnxAs. This is due to the fact that in GaN the valence

band is flatter, thus its energy is closer to the Fermi energy, around the center of the Brillouin zone. In other

words, heavier holes in Ga1−xMnxN form the impurity band for smaller couplings. This is in agreement

with our result of Chapter Two where introduction of the spin-orbit interaction in the DMS enhances the

formation of the impurity band. It is also evident from this Fig. 5.1 that a small change in the coupling,

from Jc=0.6 to 0.8 eV, has a significant change on the density of states of the charge carriers. We confirm

that changes in the hole concentration have a small effect on the density of states. The large band gap in this
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Figure 5.1: Total density of states versus energy at the edge of the valence band for x = 0.05, nh = x/2 =
0.025, at T=46K. The impurity band is completely formed at Jc=0.8 eV. One can see drastic changes in the
density of states by increasing the coupling from Jc=0.6 to 0.8 eV. Inset: sp3 total density of states for pure
GaN.

material reduces the effect of band repulsion between the impurity band and the conduction band. However,

impurity bandwidth is comparable with the bandwidth in (Ga,Mn)As.

Figure 5.2 illustrates the dependency of the average hole polarization on the temperature for several

coupling values at nf=2.5%. It is evident that a change in the magnetic coupling has minimum effect on the

ferromagnetic transition temperature at large couplings. This is in agreement with the results of previous

chapters. The average hole polarization at T=0 is significantly larger than what we find for Ga1−xMnxAs in

the last chapter. This is due to much smaller spin-orbit interaction in GaN, ∼17 meV, than in GaAs, ∼340

meV. The inset is the average magnetization of the magnetic impurity versus temperature for the same set

of parameters.

Finally, Figure 5.3 illustrates the dependence of the Tc on hole concentration for different couplings.

Compared with Figure 5.1, it is clear that there is a maximum in Tc when the coupling is large enough to

form the impurity band. The maximum Tc corresponds to half filling in the impurity band regime. One can

see that the maximum Tc in this material is ∼220K which is in clear contradiction to the studies based on
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Figure 5.2: Average hole polarization vs. temperature for different magnetic couplings (Jc) at nf=x/2=0.025.
It is clear that changes in Jc have smaller effect on the ferromagnetic transition temperature in the large
coupling regime. The magnetic frustration due to spin-orbit interaction is evident from the polarization at
T=0. Inset is the average moment of the magnetic impurity vs. temperature

the static mean-field theory. Static mean-field calculations predict Tc well over room temperature for the

wide gap DMS[67]. Our calculations show that the maximum Tc for Ga1−xMnxN is comparable with the

results in the previous chapter, for Ga1−xMnxAs,. We expect non-local correlations in this DMS suppress

ferromagnetism.

5.4 Conclusions

We find that the wurtzite structure has an easy-axis along the hexagonal-c axis with a higher ferromagnetic

transition temperature than for other directions. We explore ferromagnetism in Ga1−xMnxN in a wide

range of magnetic couplings, from the distorted valence band, to well into the impurity band regimes. Our

calculation show that the impurity band is formed for much smaller couplings in Ga1−xMnxN compared

to Ga1−xMnxAs. Despite of using large couplings our calculations show maximum Tc well below room

temperature as opposed to the static mean-filed predictions. Take into consideration that the calculated
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Figure 5.3: Tc vs. hole concentration for different couplings. The optimum filling of nf=x/2=0.025, maxi-
mizes the Tc in the impurity band regime (compare with Fig. 5.1). Inset shows the saturation of the Tc with
coupling strength at nf = x/2. This is due to the lack of non-local correlations in the DMFA.

Tc within the DMFA is overestimated, due to the lack of non-local correlations, we expect such corrections

suppress Tc even more. However, one has to go well beyond mean-field in order to reach Tc as low as 2K[107].

Based of our calculation, we predict the quenched Ga1−xMnxN with magnetic impurities in the Mn2+ state,

has a Tc comparable with Ga1−xMnxAs. We also notice that the magnetic frustration in Ga1−xMnxN is less

profound compared with Ga1−xMnxAs, due to the smaller spin-orbit interaction in the former.
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Chapter 6

Summary

6.1 Summary

The magnetic and transport properties of the diluted magnetic semiconductors (DMS) has been studied.

This dissertation focuses on Ga1−xMnxAs and wide band-gap Ga1−xMnxN as two important candidates for

spintronic devices. We model the magnetic interaction in the DMS with the double-exchange interaction,

where the magnetic interaction is mediated by itinerant charge carriers. We adopt a simplified form for

the double-exchange which was proposed by Zaránd and Jankó. Doping the semiconductor with magnetic

impurities is assumed to have a minimum effect on the band structure of the material, thus we employ

the same dispersion for both parent compound and the DMS. We start with the two-band k · p model and

improved our model by using the more sophisticated sp3 tight-binding Hamiltonian for the dispersion of the

parent material. We also incorporate non-local correlations into the DMS.

In Chapter 2, we investigate the effect of the attractive Coulomb attraction between the magnetic impuri-

ties and the itinerant holes on the ferromagnetism of Ga1−xMnxAs. Our calculations show that the Coulomb

potential enhances the ferromagnetism in the DMS. We also study the effect of the spin-orbit interaction

(SO) on the DMS. We find that for the large Jc − V , the SO interaction suppresses Tc, while in the small

parameters regime, ferromagnetism is enhanced by the SO interaction. We find that both the Coulomb and

the spin-orbit interactions enhance the formation of the impurity band.

In Chapter 3, we introduce non-local correlations into the above-mentioned two-band model of the DMS

by using the Dynamical Cluster Approximation (DCA) . We use several clusters and find that correlations

between nearest neighbor impurities have biggest effect on the ferromagnetism in the DMS. Our calculations

show that such correlations lead to configurational magnetic frustration and suppress the ferromagnetic

transition temperature to the extent that our results are in good agreement with experimental results. We

also study the effect of the strain on the ferromagnetism of the DMS. We show that the tensile strain leads

to perpendicular-to-plane magnetization, while compressive strain alines the moment in the plane of growth.
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Moreover, we are the first to show that non-local correlations between nearest neighbor impurities cause the

temperature dependent rotation of the in-plane magnetic moment, a phenomenon that has been observed in

experiments.

In Chapter 4, we improve our DMFA model by using a more realistic band structure for the parent

compound in Ga1−xMnxAs. We employ the sp3 tight-binding (TB) Hamiltonian with more realistic features

within the relevant energy scale. Especially important is the effect of inclusion of the conduction band on

the properties of the DMS. We find that the more realistic band structure leads to more realistic results.

We find that the overestimated Tc in the second Chapter is suppressed upon using the sp3 TB Hamiltonian.

Incorporation of the conduction band into the model results in decrease of the impurity bandwidth and thus

localization of the mediating holes. We also study the effect of the spin-orbit interaction on the averaged

hole polarization. We find that the the SO interaction significantly suppresses the hole polarization. Finally,

we study the optical conductivity of the DMS. Although our results are in agreement with other theoretical

studies we could not capture the low energy peak in the conductivity. We conclude that non-local correlations

are needed to narrow down the impurity bandwidth and capture the low energy peak in the conductivity.

In Chapter 5, we study the wide band gap Ga1−xMnxN. We employ the sp3 tight-binding Hamiltonian

for the more complicated wurtzite structure with four atoms in the unit cell. Based on a simple argument

relating the coupling constant with the inverse of the lattice constant, static mean-field calculations predict

a large ferromagnetic transition temperature for this material. However, our DMFA calculations show that

the Tc is comparable with the one of Ga1−xMnxAs and significantly smaller than room temperature. We also

find that the impurity bandwidth in the Ga1−xMnxN is comparable to the one in Ga1−xMnxAs, despite the

smaller effect of the conduction band in this large band gap material. Moreover, the average hole polarization

is larger in Ga1−xMnxN due to the weaker spin-orbit interaction in this material.

6.2 Future Directions

In this dissertation, the DMFA and the DCA techniques have been used for the simplified two-band k · p

model of the DMS. Within the DMFA, we were able to capture the qualitative behavior of the DMS.

Incorporation of the spatial correlations to the model, through the DCA, has led to more realistic results

for the ferromagnetic transition temperature. Moreover, we were able to explain the temperature dependent

reorientation of the magnetic moment in the DMS, which is a highly non-local effect. However, there is

some inaccuracy in some of the results of the two-band model. For example, our prediction of the impurity

bandwidth in not accurate. We use a more realistic sp3 tight-binding (TB) Hamiltonian to fix some of the
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shortcomings of the two-band model. The sp3 tight-binding Hamiltonian incorporates the conduction band

into the band structure of the DMS, and the resulting impurity bandwidth is smaller than the two-band

prediction. Nevertheless, our DMFA study overestimates the impurity bandwidth. A natural improvement

to the model is incorporating non-local interactions, via the DCA or other corrections such as the cavity

field. We expect that the combined effects of the conduction band and spatial correlations further decrease

the width of the impurity band.

It would also be interesting to study the effect of strain on the magnetism of the DMS. This is because

the best DMS, with high Tc, are grown by epitaxial techniques, where strain is due to the lattice constant

mismatch between the sample and the substrate. In multi-orbital models however, strain has a rather

complicated form, and might lead to non-trivial results.

In our study, we ignore the attractive potential amongst magnetic impurities. However, in out of equilib-

rium growth, the attractive potential is essential for the formation of magnetic clusters. A very interesting

study, would be to explore the effect of magnetic clusters on the properties of the DMS. Especially impor-

tant, is this effect in the heterostructure DMS, since it leads to the formation of micro-columns of magnetic

impurities. It is believed that these micro-columns are responsible for a high Tc in the heterostructure DMS.
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