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Abstract

Quantum optical metrology deals with estimation of an unknown parameter by exploiting

the non-classical properties of the light. The unknown parameter that we are trying to

estimate is the optical phase. Precise optical phase measurement has been a well-known

problem and has many applications, most notably the gravitational wave detection.

In this thesis we investigate the interferometric measurement schemes. We consider the

parity detection for a class of input states that have been shown to exhibit sub-shot noise

limited phase estimate with their respective detection schemes. Our results indicate that

the parity detection applies to all these strategies with various input states and thus acts

as a unified detection scheme towards the goal of interferometric phase estimates beyond

the shot-noise limit.

We also consider the performance of the so-called optimal state with the canonical phase

measurement scheme that was proposed by Sanders and Milburn [Phys. Rev. Lett.75, 2944

(1995)] in presence of photon loss. The model for photon loss is a generic fictitious beam

splitter and the analytical treatment requires density matrix approach rather than the

state-vector formalism. We present full density-matrix calculations. Our results indicate

that, for a given amount of loss, the phase estimate saturates but does not diverge as one

would expect with increasing the loss.

Finally, we study the continuous measurement and feedback schme with optical homo-

dyne detection for a single optical qubit. We found a protocol that speeds up the rate of

increase of the average purity of the system and generates a deterministic evolution for

the purity in the limit of strong feedback

vi



1 Introduction

“Traveler, there are no paths. Paths are made by walking”.

-Antonio Machado.

At the turn of the century, in 1900, Max Planck laid a path by making a bold assumption

of discrete energy during his attempt to explain the spectrum of radiation emitted by a

blackbody. The problem Planck was trying to address was, why the intensity of radiation

emitted at certain wavelength depends solely on the temperature of the body and is

independent of the material with which it is made. The crux of the Planck’s success is

the assumption that the oscillators in the walls of blackbody can only absorb or emit

radiation in discrete units proportional to the frequency of the emitted radiation.

Although Planck himself was not entirely convinced of this discovery, Albert Einstein

in 1905 successfully applied the Planck’s idea of discrete energy to the phenomenon called

photo-electric effect, where light shined on a metal knocks out electrons and the emitted

electrons have energy proportional to the frequency of the incident light and independent

of the intensity of the incident light. The works of Planck and Einstein have led to the

quantum description of nature-quantum mechanics.

Despite these early works were in the direction of quantized form of light –an electro-

magnetic field–a complete quantum treatment of emission and absorption of light came

only when P. A. Dirac in 1927 quantized the electromagnetic field and a quantum descrip-

tion of optics–quantum optics–was available [1] and the concept of photon was beginning

to gain its importance. A breakthrough in quantum optics came in 1963 with the quantum

formulation of optical coherence by R. J. Glauber [2] which led to photon counting and

photon statistics and thereby fully established the field of quantum optics. The invention

1



of Microwave Amplification by Stimulated Radiation(MASER) and Light Amplification

by Stimulated Amplification of Radiation(LASER) based on the quantum description

of emission and absorption allowed experiments on various concepts associated with the

theory of quantum optics.

As with any science, all theoretical models must be backed by experiments where mea-

surements on certain physical parameters are carried out. In quantum mechanics the

description of a state of a physical system is radically different from the classical coun-

terpart. A quantum state (to be described later) or a wave function has an inherent

probability, due to which a measurement on a quantum state often yields inconclusive

results. Therefore, it makes more sense to talk about the estimates rather than a definite

results.

Can quantum mechanical properties of a state be used for improving sensitivity and

resolution in estimating a physical parameter? This is precisely the question Quantum

metrology deals with. Quantum optical metrology is an attempt to answer the above

question using light quanta–photons, and the quantum mechanical properties of the state

in this context are the existence of non-classical correlations between the photons in vari-

ous modes. The physical parameter that is of primary concern in the context of quantum

optical metrology is the optical phase.

Precise measurement of an optical phase is of extreme value in the detecting gravita-

tional waves [3] and has applications towards building quantum sensors [4]. In order to

measure the phase quantum mechanically, one needs an observable that can be described

by an hermitian operator. A properly defined phase operator is still a subject of debate [5].

This calls for an estimation of phase rather than directly measuring the phase.

In the next two sections I shall briefly review quantum mechanics and quantum optics

with the topics that are pertinent to the work in this thesis.
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1.1 Brief Review of Quantum Mechanics

The cornerstone of quantum information and computation is the superposition principle of

quantum mechanics [6]. Superposition principle states that if |ψ〉 and |φ〉 are two allowed

states of a physical system, then any linear combination α |ψ〉 + β |φ〉 is also an allowed

physical state, with the normalization condition |α|2 + |β|2 = 1. As a consequence of

linearity of quantum dynamics, the superposition principle concludes that the system not

necessarily be either in state |ψ〉 or in state |φ〉 at a given time, but can be in both states

at the same time. This is an hallmark of quantum mechanics with no classical analogue.

We begin this review with a discussion of quantum states and shall review only the topics

that are pertinent to the work in this thesis.

1.1.1 Pure States and Mixed States

A d dimensional quantum system can be described by a set of orthonormal basis {|i〉}

where i = 1, 2, . . . .d. Here orthonormal indicates 〈i| j〉 = δi,j. The space described by

these orthonormal basis is called as Hilbert space. A quantum state

|ψ〉 =
d∑
i=1

ψi |i〉 (1.1)

is a pure state when |ψ〉 can be expressed as a coherent superposition of the basis states

and not as a statistical ensemble of the basis states. A mixed state is a statistical ensemble

denoted by ρ and is also called as density operator or density matrix.

Formally the density operator of a pure state |ψ〉 is given as:

ρ ≡ |ψ〉 〈ψ| (1.2)

and satisfies the following properties:

1. ρ is positive and Hermitian, ρ† = ρ

2. Tr[ρ]=1. This is due to the normalization of |ψ〉
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3. ρ2 = |ψ〉 〈ψ|ψ〉 〈ψ| = ρ.

By virtue of (2) and (3) it immediately follows that for a pure state

Tr[ρ2] = 1. (1.3)

One immediately can construct the density operator for a mixed state. To keep the

discussion more generic, let {|i〉} be and orthonormal basis: 〈i|j〉 = δi,j of an N dimensional

Hilbert space. We can define

ρ =
N∑

i,j=1

pij |i〉 〈j| (1.4)

Because of the condition (2) we get
∑

i pii = 1 implying that 0 ≤ pii ≤ 1. When the

density operator is represented as a matrix, the diagonal elements corresponds to the

probabilities associated with the basis states. So we obtain the relation

Tr[ρ2] =
∑
i

p2
i ≤ 1. (1.5)

In Eq. 1.5 the upper bound is true for only pure states and the inequality holds for a

mixed state. This means that given any state as a density matrix, we can decide directly

weather it is pure or mixed by evaluating Tr[ρ2].

1.1.2 Degree of Impurity

In the light of Eq. (1.4) and Eq. (1.5), we find that in an N dimensional Hilbert space, the

state with equal probability of basis state would be maximally mixed. This occurs when

pi = 1
N

and the quantity tr[ρ2] takes the minimum value of 1
N

. This immediately gives the

the expression for the state which is maximally mixed as:

ρ =
1

N
I. (1.6)

The impurity of a state, also called as linear entropy, is quantified as:

L ≡ 1− tr[ρ2] (1.7)
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Since for a pure state Tr[ρ2]=1 and for pure state and Tr[ρ2] = 1
N

for a maximally mixed

state, the impurity L is bounded by:

0 ≤ L ≤ 1− 1

N
. (1.8)

1.1.3 Two–Level Quantum System: Qubit

A two–level quantum system has many applications. Examples of these systems are the

spin-1/2 particles such as electrons, or photons with the horizontal or vertical polariza-

tions. If the two possible states of such a system are viewed as bits 0 and 1 in classical

computers, the elementary carriers of quantum information can be denoted by states |0〉

and |1〉. Those are known as qubits. By virtue of the superposition principle, we can have

a qubit as a linear combination of both |0〉 and |1〉. For a two–level system {|0〉 , |1〉} forms

the orthonormal basis of the two dimensional Hilbert space and a qubit is written as

|ψ〉 = α |0〉+ β |1〉 (1.9)

with the normalization condition |α|2 + |β|2 = 1. The orthonormal basis {|0〉 , |1〉} is also

called as computational basis.

The coefficients α and β can take any value subject to the normalization and a generic

pure state qubit is written as:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 . (1.10)

Geometrically a pure state qubit can be represented as a point (θ, φ) on a unit sphere

called the Bloch sphere.

To express the qubit as a density operator we can use the Pauli spin operators

σx =

0 1

1 0

 ; σy =

0 −i

i 0

 ; σz =

1 0

0 −1
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FIGURE 1.1. Bloch vector in a Bloch sphere and its parametrization by θ and φ.

which satisfy the commutation relation σiσj − σjσi = iεijkσk, and σ2
i = 1. Thus the qubit

as density matrix in terms of the Pauli operator basis is:

ρ =
1

2
(I +~r · ~σ), (1.11)

where r is called as the Bloch vector, whose components are given as ri = tr[ρσi] = 〈σi〉.

This immediately leads to

Tr[ρ2] =
1

2
(1 + |r|2) (1.12)

But for a 2–dimensional quantum system, from Eq. (1.8), we have 0.5 ≤ Tr[ρ2] ≤ 1.

Therefore the magnitude of the Bloch vector has an upper bound: |r|2 ≤ 1, where the

upper limit is for the case of a pure state. The impurity can now be written as

L = 1− tr[ρ2] =
1

2
(1− |r|2) (1.13)

This means that for a mixed state the Bloch vector lies within the Bloch sphere. For a

maximally mixed state L = 0.5 and r = 0.

Qubits are particularly important in the field of quantum information and quantum

computing. In 1982 Richard. P. Feynman discussed the idea of simulating quantum physics

with classical computers and showed that a quantum system can be efficiently simulated

6



only with another quantum system, leading to the idea of building a computer based

on the laws of quantum mechanics [7]. Later in 1986 he discussed the idea of quantum

mechanical computers [8]. The real breakthrough came in 1994 when Peter. W. Shor

discovered the factorization algorithm based on quantum mechanics, in which he proved

that one can achieve an exponential speed-up in factoring large integers, over the most

efficient classical algorithm [9]. This discovery gave an enormous momentum and turned

the field of quantum information and computation [10] from an academic quest to a

technological challenge.

Before we conclude the discussion on qubit it is worth mentioning that any two–level

quantum mechanical system can be used as qubits and the availability of superpositions

makes it even richer. It can be observed that in classical computers the bit 0(1) could be

voltage on(off) and are resistant to any physical forces. In quantum computers the qubits

are physical states and could be manipulated by applying suitable force fields. Therefore

we can construct the logic gates for a qubit with suitably varying electric or magnetic

fields [11].

1.1.4 Quantum Measurements

Since the formulation of quantum mechanics, measurements on a quantum state has been a

debatable topic. This is mainly due to the intuition developed by the classical physics, that

a measurement on a physical system must yield definite and conclusive result. Due to the

existence of superposition often in quantum mechanics, we can only predict probabilities

of outcomes. A quantum state will be changed probabilistically when a measurement is

done.

Another intuition along the line of classical physics is that the act of measurement does

not alter the state of the system. This is not the case in quantum system and an act of

measurement invariably disturbs the system and leaves the system in the eigenstate of

the measurement observable which is the famous wave function collapse. This discrepancy

7



between what is believed along the classical line of thought and the quantum description

gave the problem of quantum measurement a metaphysical picture.

• Projective Measurements and POVM

This formalism was first developed by John Von Neumann and is also called as strong

measurements. In quantum mechanics the observable are represented by a Hermitian

operators Ô = Ô†. The eigenvalue n specifies the state which is the eigenstate |φn〉 of

the observable: Ô |φn〉 = n |φn〉. If the state before the measurement is |ψ〉, then the

probability of obtaining the value n is |〈φn|ψ〉|2.

This kind of measurements are called as projective measurements and are described by

the projectors as,

P̂n = |φn〉 〈φn| , (1.14)

with properties P̂nP̂m = δnmPn and
∑

n P̂n = 1. The probability pn of obtaining value n

is then 〈ψ|P̂n|ψ〉. The final state |φn〉 of the system after the measurement is

|φn〉 =
P̂n |ψ〉√
〈ψ|P̂n|ψ〉

=
P̂n |ψ〉√
pn

. (1.15)

For a initial mixed state ρi the probability of obtaining the outcome n is pn = tr[P̂nρi].

The state after the measurement, ρf is given as P̂nρiP̂n/pn. This formalism also implies

that we are measuring in the basis {|φn〉} for n = 1, 2, · · · . Also any further measurements

yield the outcome n and the state does not change.

Positive Operator Valued Measure–POVM–is a generalization of the projective mea-

surement. A set of positive operators
{
Ên

}
which are not necessarily the projectors,

forms a POVM, when
∑

n Ên = 1, while the probability of obtaining the result n is

pn = tr[Ênρ]. Further, we should be able to the find operators Ânk such that

Ên =
∑
k

Â†nkÂnk. (1.16)

8



An initial state, ρi is transformed to the post measurement state, ρf ,

ρf =

∑
k ÂnkρÂ

†
nk

tr[Ênρ]
. (1.17)

This measurement will in general not preserve the purity of the state. POVM reduces to

the projective measurement if there exists only a single operator Ân such that Ên = Â†nÂn.

The main difference between the projective measurement and POVM is that, if a POVM

is repeated we do not necessarily obtain the same result the second time and so the Von

Neumann–type projective measurement is a special case of POVM [12].

• Weak and Continuous Measurements

The idea of weak measurements is to have rather small disturbance on the system due

to the measurement. This has a trade off of learning very little about the system. A weak

measurement can be formally defined with the POVM operators Ânk as,

Ânk = C
∑
k

fn(k, κ) |k〉 〈k| , (1.18)

where the parameter κ can be related to the uncertainty in the final state and thus can be

interpreted as the strength of the measurement. The normalization constant C is defined

such that ∑
n

Ên =
∑
n

∑
k

Â†nkÂnk = 1. (1.19)

The function fn(k, κ) characterizes the POVM and is chosen such that, when repeatedly

acted upon a state |ψ〉 =
∑

i ψi |i〉, it results in a final state which has a high probability

of being in the state |n〉(the index of the operator Ânk). A particular example [12] is

using fn(k, κ) = e−κ(k−n)2/4 in Eq. (1.18) and acting on a initial mixed state (ρi = I/2).

That would result in a state whose distribution is peaked at value n and has an uncer-

tainty of 1/
√
κ determining the strength of the measurement. Smaller κ imposes a very

small disturbance on the system and thus describes a weak measurement but has a large

uncertainty in the final state.

9



The mathematical framework of the measurement theory does not indicate the measure-

ment time taken, but realistically there is always a certain time scale associated with any

kind of measurement. A continuous measurement can be viewed as applying a sequence of

weak measurements in intervals ∆T . To illustrate this point further, consider a two–level

system {|0〉 , |1〉}. This could correspond to a spin-1/2 system or the two polarizations of

a photon. A POVM Â0,(1) can be defined as,

Â0,(1) =
√
κ |0(1)〉 〈0(1)| ±

√
1− κ |1(0)〉 〈1(0)| . (1.20)

When κ � 1, Eq. (1.20) corresponds to the weak measurement and making such mea-

surements in infinitesimally short time intervals ∆t would correspond to the case of con-

tinuous measurement. Thus a continuous measurement can be regarded as the case when

κ ∝ ∆t [13, 14] because if the measurement is carried out for longer time we extract more

information and for a shorter time we extract lesser information. Specifically, if ∆t = 0

we extract no information and the system remains ineffective to the measuring device

characterized by the POVM.

• Master Equation

A quantum state, in general, changes in two ways. First, it follows the unitary time

evolution due to the Hamiltonian of the system which does preserve the purity of the state

if the system is isolated from the environment, and not necessarily preserve the purity

when there is an uncontrollable coupling to the the environment. Second, a quantum

state changes probabilistically when a measurement is made. A measurement invariably

disturbs the system and stochastically changes the initial state to one of the possible

final states depending on the choice of the measurement. In practice both the stochastic

and unitary evolution will happen. During the process of measurement, the system does

undergo a stochastic change purely due to the measurement and then follows the unitary

evolution till the next measurement occurs.

10



Under these conditions the state of the system ρ(t) has a temporal evolution. A master

equation describes such an evolution and is a differential equation ρ̇(t) by taking into

account the two effects described above. For a system with Hamiltonian Hs a master

equation in Lindblad form is given as [14, 15],

dρ

dt
= − i

~
[Hs, ρ] +

∑
k

[L̂kρL̂
†
k −

1

2
L̂†kL̂kρ−

1

2
ρL̂†kL̂k (1.21)

where
{
L̂k

}
called as Lindblad operators encode the effect of environment on the system.

Eq. (1.21) can be interpreted as repeated applications of the POVM [12, 14, 15]. The

operators L̂k can be viewed as the measurements that are being done by the environment

over which we have little control. Also, if we are dealing with a situation where we make

measurements on a system that is perfectly shielded from environment, the operators L̂k

would correspond to the measurement operators.

When we make a measurement, we extract information regarding the system. A strong

measurement gives more information and a weak measurement gives less. Because of the

intrinsic probabilistic nature, our knowledge about the quantum system, a measurement

record, effects the subsequent evolution of the system and the state would then be a

conditioned state. On the other hand, if we make a measurement and ignore the result,

the subsequent evolution does not have any effect due to the measurement. This is the

characteristic of the conditional probability where the act of observation changes the

future predictions. Classically, for a continuous measurement of a certain quantity X(t),

the output measurement record r(t) is written as,

dr = X(t)dt+ cdW (1.22)

where dW is an increment of a gaussian random variable called as Wiener process [12],

and would refer to the noise associated with the experiment and satisfies dW =
√
dt

has a zero mean, 〈dW 〉 = 0. The measurement record r(t) can also be written using the
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expectation value of X(t) as,

dr = 〈X(t)〉dt+ cdW ′, (1.23)

where dW ′ is another random variable, which is uncorrelated with the dW and c is some

constant. In the process of continuous measurement, one would be interested in the prob-

ability of an outcome and its evolution. That is to say, an equation that describes the

evolution of the observers knowledge about X(t) which would be given by the probability

density P (X, t) and is given as [12],

dP (X, t) =
1

c
(X − 〈X〉)PdW. (1.24)

In the theory of quantum measurement, the quantity X would be an measurement

observable and the state would correspond to the density matrix whose diagonal terms

would give the probability. Thus in this case the measurement record for some detector

efficiency η is written as,

dr = ηTr[(X +X†)ρ]dt+
dW√

8k
(1.25)

where k = 1/(8c2) and the master equation Eq.( 1.21) will be,

dρ = − i
~

[H, ρ]dt+
1

2
(2XρX† −X†Xρ− ρX†X) +

√
2k(Xρ+ ρX − 2〈X〉ρ)dW. (1.26)

This equation is a special case of the Lindblad master equation, Eq.( 1.21). This is to say

that we only have one Lindblad operator, X̂. If one makes the assumption X̂ is hermitian:

X̂† = X̂ and ignoring the measurement outcome, Eq.( 1.26) will be simplified to

dρ = − i
~

[H, ρ]dt− k[X, [X, ρ]]dt. (1.27)

It is to be noted that the density matrix in the above equation represents a state averaged

over all possible measurement results(which have been ignored).
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1.2 Brief Review of Quantum Optics

In this section I review the essential concepts of quantum optics, that would help make

the thesis self contained. The classical field equations of electromagnetism are a good

starting point for the quantization of the electromagnetic field-light. Consider a classical

electromagnetic field in empty space in the absence of any sources such as currents are

charges. This free electromagnetic field obeys the celebrated Maxwell equations

∇ · ~E = 0 (1.28)

∇ · ~B = 0 (1.29)

∇× ~E = −∂
~B

∂t
(1.30)

∇× ~B =
1

c2

∂ ~E

∂t
(1.31)

In the absence of sources, the electromagnetic field in gauge invariant. This invariance

allows us to choose the vector potential ~A(~r, t) in a way that the Coulomb condition

∇ · ~A = 0 (1.32)

is satisfied. In terms of ~A(~r, t), the electric and magnetic fields are

~E =
∂ ~A

∂t
(1.33)

~B = ∇× ~A. (1.34)

Using Eq. (1.34) along with Eq. (1.32) in Eq. (1.31) we get a wave equation for ~A(~r, t),

∇2 ~A(~r, t) =
1

c2

∂2 ~A

∂2t
. (1.35)

Separating the vector potential into two complex terms and restricting the field to a finite

volume of space, we can Fourier expand the vector potential in terms of discrete set of

orthogonal mode functions ~uk(~r) as,

~A(~r, t) =
∑
k

ck~uk(~r)e
−iωkt +

∑
k

c†k~u
∗
k(~r)e

iωkt, (1.36)
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where the Fourier coefficients ck and c†k are constant for a free field. Further since the vector

potential satisfied the homogeneous wave equation 1.35, we immediately get using 1.36,

(∇2 +
ω2
k

c2
)~uk(~r) = 0 (1.37)

The mode functions ~uk are also required to satisfy the gauge condition 1.32 and leading

to

∇ · ~uk(~r) = 0. (1.38)

The mode functions depend on the boundary conditions of the physical volume under

consideration. For a cube of side L, we can write ~uk(~r) as

~uk(~r) =
1

L3/2
ε̂(λ)ei

~k.~r, (1.39)

where ε̂(λ) is the unit polarization vector and is required to be perpendicular to ~k. The

components of ~k take the values

kx =
2πnx
L

, nx = 0,±1,±2,±3, . . . (1.40)

ky =
2πny
L

, ny = 0,±1,±2,±3, . . . (1.41)

kz =
2πnz
L

, nz = 0,±1,±2,±3, . . . (1.42)

Thus the vector potential may now be written as,

~A(~r, t) =
∑
k

(
~

2ωkε0

)1/2

[ak~uk(~r)e
−iωkt + a†k~u

∗
k(~r)e

iωkt] (1.43)

where the normalization factors have been chosen such that the amplitudes ak and a†k are

dimensionless and the corresponding electric field is

~E(~r, t) = i
∑
k

(
~ωk
2ε0

)1/2

[ak~uk(~r)e
−iωkt − a†k~u

∗
k(~r)e

iωkt] (1.44)

In the classical electromagnetism theory these Fourier amplitudes are complex numbers.

Quantization of the electromagnetic field is accomplished by choosing ak and a†k to be
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mutually adjoint operators obeying the commutation relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 and [âk, â

†
k′ ] = δkk′ . (1.45)

These operators are also called as creation and annihilation operators for the reasons we

shall describe in the next section. The ensemble of independent harmonic oscillators obey-

ing the above relations describes the dynamical behavior of the electric-field amplitudes.

The Hamiltonian of the field then is given as,

H =
1

2

∫
L3

[
ε0 ~E

2 +
1

µo
~B2

]
d3r =

∑
k

~ωk
(
â†kâk +

1

2

)
(1.46)

where the summation represents the discrete nature of quantum mechanics and the Hamil-

tonian has the familiar form of the harmonic oscillator. In quantum mechanics, the allowed

physical states for system with the Hamiltonian are the eigen states of Ĥ, where the op-

erator Ĥ represents the Hamiltonian operator.

1.2.1 Fock States

In the case for the electromagnetic field the energy eigen states would be the photon

number states and are also called as Fock-states. The energy of a single photon in a mode

of frequency ω is given as E = ~ω. If we measure the energy of a particular mode, we expect

the combined energy of all the photons. Thus the measurement of energy is equivalent

to counting the number of photons in a particular mode. The observables in quantum

mechanics are represented by the Hermitian operators. Thus the operator n̂ = â†â, is

known as the photon number operator and its eigenstates are |n〉 and are called as Fock

states after the Russian physicist V. A. Fock. Therefore we have,

n̂ |n〉 = n |n〉 (n = 0, 1, 2, 3, . . .) . (1.47)

Fock states {|n〉} are orthonormal

〈m|n〉 = δnm (1.48)
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and form a complete set
∞∑
n=0

|n〉 〈n| = 1, (1.49)

thereby serving as a basis for the representation of arbitrary states and operators.

FIGURE 1.2. Phase space depiction quantum states. The vacuum state |0〉 contains an equal
uncertainty in both X1 and the X2 quadrature. The coherent state |α〉 is a displaced vacuum
state with amplitude |α|2 and phase ϕ. A number state |n〉 is depicted as a circle contaning a
known number of photons, but having a completely uncertain phase distribution.

One of the most intuitive ways to view the Fock states, which are states of electromag-

netic field is to look at its phase space diagram. This is a simple pictorial view of what

we will see are the dimensionless position and momentum of the state of the electromag-

netic field. The phase space diagram pictorially shows the uncertainty a given state has

in the two quadratures depicted. The uncertainty principle requires that the uncertainty

in both quadratures obeys the inequality 〈(∆X̂1)2〉〈(∆X̂2)2〉 ≥ 1/16. A minimum uncer-

tainty state is a state whose uncertainty is such that the equality holds. The vacuum

state |0〉 is a such a state that the equality holds. The vacuum state |0〉 is a minimum

uncertainty state about the center the phase space diagram, with quadrature uncertain-

ties 〈(∆X̂1)2〉 = 〈(∆X̂2)2〉 = 1/4. It contains equal uncertainty in both quadratures, and

is thus depicted as a filled in circle at the center. The most classical state of light, the

coherent state |α〉, is also a minimum uncertainty state with the equality satisfying. This
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is because, a coherent state |α〉 can be generated by displacing vacuum and the corre-

sponding displacement operator is D̂(α) ≡ eαâ
†−α∗â. That is to say that the coherent

state is displaced vacuum with an amplitude |α|2 and phase φ. On the other hand number

states |n〉 is a state that contains a perfectly well-defined number of photons, but con-

tains completely uncertain phase. These phase space diagrams for these states are shown

in Fig. 1.2.There is an another class of states called as phase states which I shall discuss

later in the chapter.

The operators â and â† act on the energy eigenstates as

â |n〉 =
√
n |n− 1〉 , (1.50)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.51)

From the above relations it can be seen that the annihilation operator â takes a photon

out of the field implying that a process involving absorption can be modeled as a function

of â. On the other hand a creation operator, â† adds energy to the field by creating a

photon.

1.2.2 Description of Phase

In this section I shall discuss the optical phase and various attempts to define a phase

operator. For a monochromatic electromagnetic field propagating in the k direction, we

can express the electric field as

E(r, t) = E0 sin(k.r− ωt+ φ) (1.52)

where E0 is the amplitude and φ is the phase. The phase is just a real number but cannot

be measured directly and should be determined from the variation of E(r, t). Dirac [1]

first wrote the phase operator as,

â = eiφ̂
√
N̂ . (1.53)

Note the phase is now written as an operator in the exponent. In his paper, Dirac con-

sidered the number and phase operators as conjugate variable which allows to write the
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commutation relation [
N̂ , φ̂

]
= i. (1.54)

However the above two definitions have problem associated. In Eq. (1.53), the phase

operator is not hermitian and in quantum mechanics, we wish to represent the observables

by Hermitian operators since the eigen values of Hermitian operators are real and would

correspond to the actual outcome of measurement. The commutator relation in Eq. (1.54)

is not properly defined in the number state basis. If we evaluate the expectation of the

commutator in Eq. (1.54) we get,

〈n′[N̂ , φ̂]n〉 = i〈n′|n〉

〈n′|N̂ φ̂|n〉 − 〈n′|φ̂N̂ |n〉 = iδn′n

(n′ − n)〈n′|φ̂|n〉 = iδn′n (1.55)

which indicates that one cannot define the matrix elements for the phase operator defined

in Eq. (1.53) in the Fock basis.

For non-commuting observables such as N̂ and φ̂ there exists the Heisenberg uncertainty

relation first given by Dirac [1],

∆N∆φ ≥ 1. (1.56)

In the light of Eq. (1.55), this uncertainty relation does not necessarily be implied by the

commutator in Eq. (1.54), but can be naively derived from the Energy-Time uncertainty

relation

∆E∆t ≥ ~. (1.57)

For a monochromatic standing wave of frequency ω and with an average n number of

photons, we get the total energy E = n~ω. Due to the absence of propagation, the

phase φ = ωt at any given time. Keeping ω a constant due to the monochomaticity,

the fluctuations in energy is ∆E = ~ω∆n and the fluctuations in phase ∆φ = ω∆t.
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Using these two results in Eq. (1.57) we get the number-phase uncertainty relation as in

Eq. (1.56).

A resolution of the problem associated with the commutator Eq. (1.54) was proposed

by Louisell [16] and was later developed by Susskind-Glogower [17]. They pointed out that

although it is not possible to define a Hermitian phase operator, it is possible to define a

Hermitian sine and cosine operators that give valid uncertainty relations. These sine and

cosine operators satisfy the following commutation relations[
ĉosφ, N̂

]
= iŝinφ (1.58)[

ŝinφ, N̂
]

= −iĉosφ (1.59)

and the corresponding uncertainty relations

∆N∆ cosφ ≥ |〈ŝinφ〉| (1.60)

∆N∆ sinφ ≥ |〈ĉosφ〉|. (1.61)

We can see that for small φ is gives back the Eq. (1.56), while still these are not strictly

phase operators. Further, it was pointed out in Ref. [18, 19] that these phase operators

do not allow existence of a unique Hermitian phase operator.

Another approach to finding a Hermitian phase operator is the Pegg-Barnett formal-

ism [20, 21, 22]. The make use of what is called as phase states. The basis of this formalism

is to put an upper limit s on the photon number, then take the limit as s tends to infin-

ity.Consider the state |φm〉 defined on a finite Fock basis by

|φm〉 = (s+ 1)−1/2

s∑
n=0

einφm |n〉 , (1.62)

where

φm = φ0 +
2πm

s+ 1
;m = 0, 1, . . . , s (1.63)

and φ0 is an arbitrary constant. These states form a complete orthonormal set on the

truncated (s+ 1) dimensional Hilbert space. The Pegg-Barnett Hermitian phase operator
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is defined as

φ̂s =
s∑

m=0

φm |φm〉 〈φm| . (1.64)

For states restricted to the truncated Hilbert space the measurement statistics of φ are

given by the discrete distribution

Pm = |〈φm|ψ〉s|2 (1.65)

where |ψ〉s is any state defined on the truncate Fock-basis. In the Pegg-Barnett formalism,

the limit of s→∞ is taken after expectation values have been determined. This leads to

the probability density P (φ) as,

P (φ) = lims→∞

[(
2π

s+ 1

)−1

Pm

]
=

1

2π

∣∣∣∣∣
∞∑
n=0

einφψn

∣∣∣∣∣
2

(1.66)

where

ψn = 〈n|ψ〉s;φ = lims→∞
2πm

s+ 1
.

This convergence in distribution ensures that the moments of the Pegg-Barnett Hermitain

phase operator converge as s→∞, to the moments of the phase probability density.

In essence Pegg-Barnett formalism is a phase state projector. Although it seems that

the problem started with Dirac would be concluded with the Pegg-Barnett formalism, it

is to be noted that the phase states are not physical states [23] and so simulating a Phase

operator may not be trivial.

1.2.3 Phase Estimation

Unlike most other quantities that we would wish to measure, it is not possible to measure

phase directly. In order to perform a phase measurement, we need to implement the

Hermitian phase operator as in Eq. (1.64). It turns out that this is not a trivial problem

and is still an open question.

On the other hand, as described at the beginning of this subsection, one can always

estimate an unknown phasefrom measurement of intensity or the photon number of the ra-
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diation mode in the question. An intensity measurement would correspond to the classical

case in the sense that we can approximate the analytically treatment of the measurement

based on the wave nature of radiation. In contrast a photon number measurement is

obviously a quantum version of the detection.

FIGURE 1.3. Schematic of balanced homodyne detection. Here E corresponds to the electric
field of the input radiation, LO: local oscillator, BS:beam splitter, PD: photodetector.

The standard technique to measure the phase difference is using what is called as

homodyne detection as shown in Fig. 1.3. A single mode of radiation ~E with an unknown

phase is input on a 50-50 beam splitter. At the other input of the beam splitter a strong

local oscillator such as a laser, αeiφ where |α|2 << 1 is incident. The known phase φ in

the figure establishes a phase difference between the two input modes. By detecting the

difference of intensities at the output modes I1 − I2, one can measure the phase of the

unknown signal. One can improve upon this by adjusting the phase of the local oscillator

by some adaptive techniques as in Ref. [24].

21



Another approach is to perform interferometric phase measurements where instead

of measuring the phase of a single mode and assuming that the local oscillator field

is sufficiently intense so that it can be treated classically, we are measuring the phase

difference between two modes both of which are treated quantum mechanically.

Typically to achieve this task one uses Mach-Zehender interferometer which can be

treated as an extension of the balanced homodyne detection scheme depicted in Fig. 1.3

where we use an extra beam splitter at the input mode. The schematic is shown in Fig.1.4.

Two input modes are combined at a beam splitter, after which one of the mode is subjected

to the phase shift with respect to the other mode and then the two modes are recombined

at a second beam splitter.

FIGURE 1.4. Mach-Zehender interferometer setup. The input modes enter at a and b and
combine at the beam splitter. The phase difference between the modes is encoded in φ. The
modes are then recombined at the second beams plitter and are propagated as modes a’ and b’

By using another beam splitter we can establish the quantum-correlations between the

modes. The drastic non-classicality here is due to the famous Hong-Ou-Mandel effect [25],

where if two single photons are incident on a beam splitter then at the output mode both

either exit port 1 or port 2. This kind of bunching could be understood due to the bosonic

nature of the photons.

Quantum correlations have been proven to increase the precision of the phase estimate,

but in general it is much easier to produce input states without quantum correlations

between the modes, which is usually accomplished by the first beam splitter. In standard
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interferometry, an experimenter would have control over the input state and the detection

strategy at the output towards precise estimation of the phase.

The phase estimate that is being discussed here is the phase uncertainty ∆φ. If we have

a probability density, P (φ) then we can use

∆φ2 = 〈φ2〉 − 〈φ〉2. (1.67)

For most of the interferometric detection schemes, to be discussed later, we do not have

a probability density P (φ) but just the clicks at the photo detectors. Alternatively the

estimate is the signal to noise ratio, and quantum mechanically given as

∆φ =
∆Â

|∂〈Â〉
∂φ
|
, (1.68)

where Â is an observable corresponding to the output detection scheme. It is well known

that if we feed a state with a mean photon number of n into one arm of the interferometer

and vacuum at the other port, we can obtain a phase estimate as 1/
√
n. It has also

been found that no matter what state we use at the one of the input, as long as the

second input of the interferometer is maintained at vacuum the phase estimate has a

lower bound of 1/
√
n. This limit is called as shot-noise limit and is a consequence of the

vacuum fluctuations. The most standard operation in laboratory is to use the laser as one

of the input and vacuum as the other input of the interferometer.

On contrary there are several proposals for reducing the phase estimate to 1/n which

is called as Heisenberg limit in light of the number phase uncertainty relation Eq. (1.56).

The first of these proposals was due to Caves [3], where he suggested using coherent laser

light at port a and squeezed vacuum at port b and detect the photon number difference at

the output ports a’ and b’ of the interferometer shown in Fig. 1.4. For the right squeezing

parameter these measurements give an Heisenberg-limited phase estimate.

As discussed earlier, an experimenter would have choice over the input state and the

detection strategy that could be built. The most widely used one is the photon difference
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measurement at the output [3, 26, 27, 4, 28]. Another detection scheme called as an optimal

detection scheme was proposed by Sanders and Milburn [29], and has been shown, that

it can be approximately implemented using adaptive measurement techniques [30, 31].

Berry and Wiseman also have analytically derived the so called optimal state which is the

best state in the utility of the measurement scheme proposed by Sanders and Milburn.

Considering the interferometer in Fig. 1.4, the role of the first beam splitter is to estab-

lish quantum correlations between the internal modes. These correlations not necessarily

be preserved if there is some kind of interaction with external environment along the path

to the second beam splitter. The process of decoherence where the quantum properties or

more precisely quantum correlations are disturbed. Under such conditions it is extremely

challenging to get a better phase estimate. A number of authors have attempted to study

the interferometric phase measurements in presence of decoherence [32, 33, 34]

In this thesis I will consider ”Parity Detection” for a class of states in the next chapter

and show that this detection would in deed unify all the existing measurement schemes.

Later, I shall consider the optimal measurement scheme proposed in Ref. [29] with photon-

loss, in which I shall present the full density matrix calculations. This is required because

a pure state after loosing a photon over which we do not have any further control, the

state becomes mixed and should be dealt as a density matrix.
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2 Parity Measurements in Quantum Optical
Metrology

2.1 Introduction

In this chapter, I consider the interferometry with the parity detection scheme for several

class of states which have been shown to attain sub-shot noise limited phase estimate

with respective detection schemes. In this chapter we show that parity detection scheme

unifies all the detection strategies. At the time of writing this thesis, the ongoing research

in our group at LSU shows that one can achieve ” Sub-Heisenberg limited” phase estimate

using parity detection with squeezed light at the input of the interferometer.

Quantum optical metrology deals with the estimation of an unknown phase by exploit-

ing the quantum nature of the input state under consideration [35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 26, 4, 27, 48, 49, 50, 51, 30, 52, 53, 54, 34]. Due to the inherent

uncertainty imposed by quantum mechanics, the problem reduces to minimizing the un-

certainty of the expectation value of a suitable observable. In the usual classical setting,

for a given mean number of input photons, N , the phase estimate scales as 1/
√
N , which

is usually referred as shot-noise limit (SL). It has been shown that by exploiting the sig-

nature quantum properties such as entanglement the uncertainty can be reduced to the

Heisenberg limit (HL) of 1/N ; an enhancement of a factor of
√
N . Achieving a sub-shot

noise limit or the HL depends on the nature of the input states and the detection strategy

of the output measurement [48, 49, 50, 51, 30, 52, 53, 54, 34].

Precise optical phase measurement has been an open problem for many years and has

many applications, most notable of them being to gravitational wave detection [3, 55].

Phase measurements can be efficiently implemented by the Mach-Zehender interferometer

(MZI) shown in Fig. 2.1. It has been shown that using NOON states within the interferom-
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eter, one can achieve the exact Heisenberg Limit [4, 29, 56, 57, 58, 59, 60, 61, 62, 63, 32, 64].

NOON states are similar to maximally entangled states first proposed by Bollinger et. al

[37] in the context of frequency metrology using trapped ions. Formally, in the present

context of phase measurement, considering the MZI shown in Fig. 2.1, the NOON states

are written as:

|ψ〉N =
|N〉a′ |0〉b′ + |0〉a′|N〉b′√

2
. (2.1)

The most simple approach in phase estimation one wishes to take, is to fix the detection

strategy, i.e. to fix a particular phase dependent observable at the output and look for the

behavior of the input states. While a detection of the signal is done at the output ports,

one can always transform the observable through the beam splitter and can think of the

detection within the interferometer. Obviously, both descriptions are equivalent but the

latter may help in understanding the direct effect of the measurement on the states after

acquiring the phase shift.

Various measurement schemes have been shown to surpass the SL. Yurke et al. [26] have

shown that by using the output photon difference, for the input state [|N/2〉a|N/2〉b +

|(N + 1)/2〉a|(N − 1)/2〉b]/
√

2, a minimum phase sensitivity of 2/N can be achieved.

Sanders and Milburn have computed the optimal measurement [49], written as Positive

Operator Valued Measure (POVM) [65], to achieve the HL. The method specified by

Sanders and Milburn is independent of the system phase and thus an optimal one. Berry

and Wiseman [30] have considered the optimal POVM and derived the optimal input

state to achieve the minimum uncertainty that scales as the HL. They also showed a way

of approximately implementing the optimal POVM using a feedback technique. With this

feedback technique along with the Kitaev algorithm for phase estimation [10], Higgins et

al. have experimentally achieved the HL scaling of the optical phase measurement [66]. In

this chapter, we will discuss the parity measurement, which detects whether the number

of photons in a given output mode is even or odd so treating the interferometer phase as
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local phase is enough which can be estimated using the linear error propagation formula

(See Eq. (2.4) in Sec.2.2).

As we make extensive use of the Schwinger representation to analyze the MZI, we wish

to present a brief discussion of the representation. Any four-port optical lossless device,

such as the MZI considered here, can be conveniently described using the Schwinger

representation of the angular momentum [49, 51]. The operators, which form an SU(2)

rotation group, and describe the MZI [65] are: Ĵx = (â†b̂+ âb̂†)/2, Ĵy = (â†b̂− âb̂†)/2i, Ĵz =

(â†â − b̂†b̂)/2, where â and b̂ are the mode operators which obey bosonic commutation

relation, [â, â†] = [b̂, b̂†] = 1. The angular momentum operators obey [Ĵi, Ĵj] = iεijkĴk. The

total photon number is N̂ = â†â + b̂†b̂, and Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z = (N̂/2)(N̂/2 + 1) is the

Casimir invariant. The generator for beam-splitter transformation is usually represented

by Ĵx [49]. The combined two mode input state is represented by the simultaneous eigen

state of Ĵ2 and Ĵz, i.e |jµ〉z, where |j+µ〉 and |j−µ〉 represent |N〉a and |N〉b respectively

and j = N/2 for a fixed input photon number N . Correspondingly, if |jν〉z represents

the output state, then ν represents the output photon number difference, (Na − Nb)|out.

In this representation the Mach Zehender Interferometer is given by an operator, Î =

exp(−iϕĴy). For a given input state |jµ〉, the output state can be written as, Î |jµ〉 =

e−iϕĴy |jµ〉 =
∑j

ν=−j d
j
ν,µ(ϕ) |jν〉, where djν,µ(ϕ) is the usual rotation matrix elements [67,

68].

This chapter is organized as follows. In section 2.2 we discuss the parity measurement

and setup a general framework of calculating the expectation value for an arbitrary input

state. In section 2.3 we apply it to specific input states including a combination of a

NOON state and a dual-Fock state, followed by section 4.4 with conclusions.
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FIGURE 2.1. Schematic of a Mach-Zehender Interferometer (MZI). |ψ〉in represents the joint
input state at âin and b̂in.The photon number states entering at âin, (b̂in) are |N〉a(|N〉b). The
symbol ϕ represents the relative phase between the modes, within the interferometer. BS: Beam
Splitter.

2.2 Parity Detection

Parity detection was first proposed by Bollinger et al. in 1996 to study spectroscopy with

a “maximally entangled” state of trapped ions [37]. The detection considered there is

(−1)N̂e , where |N〉e represents N atoms in excited state. It is straightforward to draw the

parallel between the two level atom and the MZI depicted in Fig. 2.1. Thus in the case

of the optical phase measurements, we have the |ψ〉n is the maximally entangled and the

detection operator which was first proposed by Gerry [39]:

P̂ = (−1)b̂
†
outb̂out = (−1)j−Ĵz . (2.2)
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There is no particular reason to perform such a detection on b̂out and choosing âout works

equally well. Gerry and Campos have applied this operation to interferometry with NOON

states, resulting in the exact HL [57]. As stated in the introduction, these states are not

the input states of the MZI, but are states after the first BS. One can quite easily write

down the input state using a beam splitter transformation as we will do it now. In the

Schwinger representation, the NOON states is represented as: |ψ〉N = (|j, j〉+|j,−j〉)/
√

2.

Denoting the BS with Ĵx, we get

|ψ〉i = e−i
π
2
Ĵx |ψ〉N =

j∑
µ=−j

Aµ |j, µ〉 , (2.3)

where the amplitude,

Aµ =
1√
2

[
ei(µ−j)π/2djµ,j(

π

2
) + ei(µ+j)π/2djµ,−j(

π

2
)
]
.

We used e−i
π
2
Ĵx = ei

π
2
Ĵze−i

π
2
Ĵye−i

π
2
Ĵz in obtaining the above result. Thus |ψ〉i is the input

state of the MZI to get the exact HL with parity detection. The coefficients are plotted

in Fig. 2.2.

Recently, Uys and Meystre [44] noted that a state whose coefficients look alike the coef-

ficients plotted in Fig. 2.2 also gives an exact Heisenberg limit. They obtained this result

via numerical simulations and an explicit mathematical expression was not given. From

Fig. 2.2 it appears that the state obtained in Ref. [44] is a beam splitter transformation

of the NOON state which is given by Eq. (2.3).

The phase uncertainty is typically given as [65]:

δϕ =
∆P̂

|∂ϕ〈P̂ 〉|
, (2.4)

where ∆P̂ =

√
〈P̂ 2〉 − 〈P̂ 〉2 =

√
1− 〈P̂ 〉2, since P̂ 2 = 1.
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FIGURE 2.2. The coefficients of the state given in Eq. (2.3) for an input photon number, N=100.
This is the input state to the MZI shown in Fig. 2.1 such that it is NOON state (after the first
beam splitter) and thereby giving the Heisenberg-limited phase estimate.

We can obtain more insight on P̂ by transforming through the BS and further express

it as a projection operator by using the completeness relation:

Q̂ = e−i
π
2
ĴxP̂ ei

π
2
Ĵx = (−1)jeiπĴy

=

j∑
ν,µ=−j

(−1)jdjν,µ(−π)|jν〉〈jµ|. (2.5)

It is straight forward to see that Q̂2 = 1. Using the relations in Ref. [67] and noting

djν,µ(−π) = (−1)2νδν,−µ, we get

Q̂ = iN
N∑
k=0

(−1)k|k,N − k〉〈N − k, k|. (2.6)

If the NOON states are under consideration for the above expression of the observable

Q̂, the only relevant terms would be for k = 0 and k = N . Thus the observable considered

in Refs. [4, 32] is: Q̂N = |0, N〉 〈N, 0| + |N, 0〉 〈0, N |, that leads to the HL for NOON

states. This gives the same expectation value, and thus Q̂N can be implemented with

parity detection for the NOON states. Explicitly, after the phase shifter, |ψ〉N becomes:
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|ψ〉N,ϕ = |N, 0〉+ eiNϕ |0, N〉, which leads to (see also Ref. [69]):

〈ψ| Q̂ |ψ〉N,ϕ =

{
iN+1 sinNϕ, N odd,

iN cosNϕ, N even.
(2.7)

Using Eq. (2.7) in Eq. (2.4) we immediately get δϕ = 1/N .

Now we shall obtain the expectation value of parity observable for an arbitrary input

state. In the Schwinger notation an arbitrary two-mode input and the corresponding

output states are written as,

|ψ〉in =
∞∑

2j=0

j∑
µ=−j

ψµ,j |j, µ〉 , (2.8)

|ψ〉out = Î |ψ〉in =
∞∑

2j=0

j∑
µ=−j

ψµ,je
−iϕĴy |j, µ〉 , (2.9)

where ψµ,j is the amplitude for the arbitrary input state. Using the above equation it is

straightforward to calculate the expectation value of P̂ for an arbitrary input state

〈P̂ 〉out = out〈ψ|P̂ |ψ〉out

=
∞∑

2j=0

j∑
µ,µ′=−j

(−1)j−µ
′
ψ∗µ′,jψµ,jd

j
µ′µ(2ϕ). (2.10)

The summation over 2j describes the situation where the number of photons are not

fixed. In what follows we will use a fixed number of input photons N , and this summation

will then be dropped. In obtaining the above result, we used: 〈j′µ′| eiϕĴye−iπĴze−iϕĴy |jµ〉 =∑j
ν=−j(−1)−νdjν,µ′(ϕ)djν,µ(ϕ)δj,j′ .

2.3 Application of the Parity Detection

2.3.1 Parity Detection with Uncorrelated States

We begin with a coherent state input at mode âin. We have at the input:

|ψ〉α =
∞∑

2j=0

e−
|α|2
2

(α)2j√
(2j)!

|j, j〉 , (2.11)
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FIGURE 2.3. The variance of δφ versus N . (I) The dual fock state, shown as the continuous
curve which is same as given in Ref. [70]. (II) For the combined state |ψ〉c, in the absence of

relative phase, where (a) α =
√

2
3 , β =

√
1
3 , θ = 0, (b) α =

√
1
3 , β =

√
2
3 and θ = 0. (III) For a

fixed α = β = 1√
2
, (a) θ = 0, (b) represented by × for θ = π, (c) θ = π

4 . In (III) the plots for
the case (a) and (b) (represented by ×), almost overlap. In all plots the dot-dashed curve is the
shot-noise limit (SL) and the dotted curve represents the Heisenberg limit (HL).

where |α| = n̄, the average photon number. Using Eq. (2.10), we have:

〈P̂ 〉α =
∞∑

2j=0

e−
|α|2
2

(|α|2)2j

(2j)!
djj,j(2ϕ)

= exp

[
−|α|2 +

|α|2
√

1 + cos(2ϕ)√
2

]
, (2.12)

which, in the limit ϕ→ 0, according to Eq. (2.4), immediately leads to δϕα = 1/
√
n̄. We

thus recover the shot-noise limit. This can also be obtained by Ĵz measurement at the

output, which corresponds to the photon number difference. However, in the case of a Ĵz

measurement, the shot-noise limit is reached when ϕ tends to odd multiples of π/2 [65].

The next simplest uncorrelated state is a number state at âin and vacuum at b̂in. Thus

the input state: |ψ〉s = |N〉a |0〉b =
∑j

µ=−j δµ,j |j, j〉. The subscript s denotes the input at

a single port of MZI. Using Eq. (2.10), we obtain:

〈P̂ 〉s =
[1 + cos(2ϕ)]j

2j
, (2.13)

for which, in the limit ϕ→ 0, we get δϕs = 1/
√

2j = 1/
√
N . This result shows that parity

detection gives the same result as the Ĵz measurement for a single-port input state [28].
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Now we consider the dual-Fock input state. Campos et al. have shown the utility of

the parity measurements for the dual Fock input state [70]. Their analysis also includes a

comparison and contrast of the quantum state distribution with the interferometer with

the NOON states (as these are the states within the interferometer). The dual Fock state

can be written as: |ψ〉d = |N,N〉 =
∑j

µ=−j δµ,0 |jµ〉. Using Eq. (2.10) we immediately

get 〈P̂ 〉d = (−1)jdj0,0(2ϕ). Using 〈P̂ 〉d in Eq. (2.4) for a small phase, ϕ → 0, we get

δϕd = 1/
√

2j(j + 1) ∝ 1/N (see also Ref. [69]). We plot this in Fig. 2.3(I), which is the

same as shown in Ref. [70].

2.3.2 Parity Detection with a Combined State

As discussed above, the dual-Fock state and the NOON state, both have an Heisenberg

limited phase variance with the parity detection.

It is natural to ask how precisely a state has to be prepared to take the advantage of

parity or, in general, any detection scheme. We now attempt to answer this question by

considering a combination of a NOON state [see Eq. (2.3)] and a dual-Fock state such as

|ψ〉c = CN(α |ψ〉i + β |ψ〉d)

= CN

(
α
e−i

π
2
Ĵx (|j, j〉+ |j,−j〉)√

2
+ β |j, 0〉

)
. (2.14)

Writing α = |α|eiθα and β = |β|eiθβ , where the normalization constant is given by

CN = [1 + 2
√

2|α||β|djj,0(π/2) cos(θ − Nπ

4
)]−

1
2 , (2.15)
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where θ = θα − θβ is the relative phase. With such a quantum state as the input of the

MZI in Fig. 2.1, we have the output |ψ〉c|out ≡ I |ψ〉c. It gives rise to:

〈ψ| P̂ |ψ〉c|out = C2
N{|α|2〈P̂ 〉NOON + |β|2〈P̂ 〉dual

+ij2
√

2|α||β|dj0,0 cos(Nϕ) cos(θ)}, (2.16)

where

〈P̂ 〉NOON = (−1)j(eiNϕ + (−1)Ne−iNϕ)/2,

〈P̂ 〉dual = (−1)jdj0,0(2ϕ).

The above result is obtained using the symmetric properties of the rotation matrix ele-

ments listed in Ref. [67] and the Baker-Campbell-Hausdorff (BCH) formula [65]. We can

now use this in Eq. (2.4) to calculate δϕ. To gain more insight, we will first take θ = 0

and look for the δϕ for various combinations of |α| and |β| using |α|2 + |β|2 = 1. The

results are shown in the top portion of Fig. 2.3(II).

Next, we fix |α| = |β| = 1/
√

2 and vary θ. This is plotted in the in the bottom portion

of Fig. 2.3(III). In both the cases we can clearly see that with |ψ〉c at the input, using

parity detection, we do get the sub-shot noise limited variance of the optical phase. This

result implies a wider applicability of the parity detection.

FIGURE 2.4. The variance δϕ for various states. In all the figures, the dotted line corresponds
to the Heisenberg limit(HL) and dot-dashed to the shot-noise limit(SL). The continuous line in
(a) for the modified-Yuen state, (b) for the |ψ〉sp considered in Ref. [52] and (c) for the optimal
state(for comparison δϕ as obtained with[30] optimal POVM is also shown)
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2.3.3 Parity Detection with Correlated States

Now we consider a few more quantum-correlated input states for the MZI. Before we begin

to explicitly calculate the phase estimate with these states, it is worth pointing out that

the primary objective of this paper is to investigate the utility of parity detection scheme

and not the role of the quantum correlations-also referred as entaglement-in achieving the

sub-shot noise limited phase estimate. The precise question on the role of entanglement

in achieving sub-shot noise limited interferometry is beyond the scope of this article.The

curious reader may find [71] useful in that direction.

In this section we consider the quantum-correlated states that have been already shown

to achieve sub-shot noise limited phase estimate under several different detection schemes.

Here we show that all these states does achieve the goal with the parity detection and

thus making the parity detection, a unified detection scheme.

Let us begin with the Yurke state discussed in the introduction. In the Schwinger

notation it is given as |ψ〉Y =
∑j

µ=−j
1√
2
(δµ,0 + δµ,1) |j, µ〉. Using Eq.(2.10) we get the

expectation value of parity as [69]:

〈P̂ 〉Y =
(−1)j

2
[dj0,0(2ϕ)− dj1,1(2ϕ) + 2dj0,1(2ϕ)]. (2.17)

Again in the limit ϕ → 0, we have using Eq. (2.4) we get: δϕ → 1/
√
j(j + 1) ∝

√
2/N ,

which is same as that obtained with the Ĵz measurement [26].

Let us now consider a correlated input state first proposed by Yuen [27]:

|ψ〉yu =

j∑
µ=−j

1√
2

(δµ,1/2 + iδµ,−1/2) |j, µ〉 . (2.18)

Now by using Eq. (2.4), we get: 〈P̂ 〉yu = 0. Thus the parity detection does not give any

phase information for the Yuen state. The main reason for the vanishing 〈P̂ 〉yu is the

relative phase of π/2 among the two possible inputs at the MZI. This motivates us to

consider the state with zero relative phase, which would be a slightly modified form of
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|ψ〉yu. Let us define the modified Yuen state as,

|ψ〉m.yu =

j∑
µ=−j

(δµ,1/2 + δµ,−1/2)√
2

|j, µ〉 , (2.19)

which then following Eq. (2.10) leads to:

〈P̂ 〉m.yu = i(−1)jdj1
2
,− 1

2

(2ϕ). (2.20)

Thus using Eq. (2.4) one can calculate the variance. In the limit of ϕ→ 0 this leads to a

sub-shot noise variance as is shown in Fig. 2.4(a).

Berry and Wiseman have proposed the so-called optimal states [30], for the use of the

optimal POVM proposed by Sanders and Milburn [49]. We now consider this state in the

context of the present work. Formally, the optimal state is [30]:

|ψ〉opt =

j∑
µ=−j

Cµ |j, µ〉 , (2.21)

where the amplitude is given by

Cµ =
1√
j + 1

sin

[
(µ+ j + 1)π

2j + 2

]
.

It is worth noting that the optimal state is a state within the interferometer just like

the case of the NOON state. So we use the operator Q̂ as the detection operator. It would

be a simple beam splitter transformation to obtain the actual MZI input state and this

result is given in Ref. [30]. First, we need to transform this state through the phase shifter:

|ψ〉ϕ|opt =
∑j

µ=−j e
−iµϕCµ |j, µ〉. Then, using Eq. (2.5) we obtain,

〈Q̂〉ϕ|opt =

j∑
ν=−j

(−1)2νC−νCνe
i2νϕ. (2.22)

Plugging the above equation into Eq. (2.4) we can calculate δϕ. However, we have not

found a closed form expression for δϕ. Instead, Fig. 2.4(b) shows a numerical plot. Clearly

the optimal state gives a sub-shot noise level and does better for large photon number.
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TABLE 2.1. Phase estimate for various input states under parity detection. Here, Row 1: Coher-
ent state at one input (âin). Row 2: Number state at one input (âin). Row 3: Dual Fock state.
Row 4: Yurke state. Row 5: Modified Yuen state. Row 6: State suggested by Smerzi and Pezzi.
The states in 7 and 8 are states representing the modes â′ and b̂′ within the interferometer. In
the Schwinger notation, Ĵy eigen states represent the internal modes â′ and b̂′(see Ref. [51]).
Row 7: Optimal state. Row 8: NOON state.

Input State Phase Es-
timate

Fock- state Notation Schwinger Notation δφ

1. |α〉a |0〉b
∞∑

2j=0

e−
|α|2
2

(α)2j√
(2j)!

|j, j〉 1√
N̄

(SL)

2. |N〉a |0〉b
j∑

µ=−j

δµ,j |j, j〉 → 1√
N

3 |N〉a |N〉b
j∑

µ=−j

δµ,0 |jµ〉
√

2√
N(N+2)

≈
√

2
N

4. 1√
2

[∣∣N
2

〉
a

∣∣N
2

〉
b

+
∣∣N

2
+ 1
〉
a

∣∣N
2
− 1
〉
b

] j∑
µ=−j

(δµ,0 + δµ,1)√
2

|j, µ〉 →
1√

N
2

(N
2

+1)
≈

√
2
N

5. 1√
2

[∣∣N+1
2

〉
a

∣∣N−1
2

〉
b

+
∣∣N−1

2

〉
a

∣∣N+1
2

〉
b

] j∑
µ=−j

(δµ,1/2 + δµ,−1/2)√
2

|j, µ〉 sub-shot
noise
[Fig. 2.4(a)]

6. 1√
2

[∣∣N
2

+ 1
〉
a

∣∣N
2
− 1
〉
b

+
∣∣N

2
− 1
〉
a

∣∣N
2

+ 1
〉
b

] j∑
µ=−j

(δµ,1 + δµ,−1)√
2

|j, µ〉 sub-shot
noise
[Fig. 2.4(b)]

7.
√

2
N+1

∑N
k=0 sin

[
(N+2+k)π

2(N+2)

] ∣∣N+k
2

〉
a′

∣∣N+k
2

〉
b′

j∑
µ=−j

sin( (µ+j+1)π
2j+2

)
√
j + 1

|j, µ〉y sub-shot
noise
[Fig. 2.4(c)]

8. 1√
2
|N〉a′ |0〉b′ + |0〉a′ |N〉b′

j∑
µ=−j

(δµ,j + δµ,−j)√
2

|j, µ〉y
1
N

(HL)
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It is worth noting that, although one can generate the optimal state, the implementation

of the optimal POVM [30] for which |ψ〉opt is designed for, requires a real time feedback.

The variance in this case is [30]:

δϕopt = tan

(
π

N + 2

)
≈ π

N
. (2.23)

The parity detection, on the contrary, is relatively straightforward. The variance thus ob-

tained due to optimal POVM and parity detection for the |ψ〉opt is shown in Fig. 2.4(b).

Finally we consider the input state, recently suggested by Smerzi and Pezzi [52] for

achieving the HL, given by

|ψ〉sp =
(|j, 1〉+ |j,−1〉)√

2
. (2.24)

The strategy employed by these authors is direct detection of number of photons at

the output modes of MZI and applying Bayesian analysis for multiple detections with

greater confidence. Also it is important to note that Eq. (2.4) was not used to calculate the

variance but a single interferometric measurement was used. In this sense, it is claimed [52]

that the above state is the most optimal one for the HL. Such a quantum state of Eq.

(2.24) was also considered in Ref [28] with the Ĵz measurement.

Here we apply parity detection to the input state |ψ〉sp. Using Eq. (2.10), we immediately

get the following result:

〈P̂ 〉sp = (−1)j+1(dj1,1(2ϕ) + dj−1,1(2ϕ)), (2.25)

and the phase variance can be calculated using Eq. (2.4). We plot the result numerically

Fig. 2.4(b), in the limit of ϕ→ 0. And we clearly see the sub-shot noise limit. Indeed for

the large number of input photons, the phase estimate approaches the HL.

2.4 Conclusions

In this chapter, we demonstrate the importance of the parity detection scheme in the

optical phase estimation. By considering the combination of a NOON state and a dual-
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Fock state at the input, we have shown that the parity detection still gives sub-shot

noise variance, and it reaches close to the HL for large input number of photons. We

have also considered the Yuen state, the so-called optimal state, and the state suggested

by Smerzi and Pezze, and have shown that we can achieve even smaller phase variance

using the parity detection. Our results indicate that the parity detection acts as a unified

detection scheme for precision phase measurements. We have summarized the results in

the Table 2.1.

FIGURE 2.5. Schematic of containing the detecting output mode b̂out from the MZI in Fig. 2.1
in a cavity towards measuring the parity of the mode as suggested in Ref. [72]. The output mode
is reflected at mirror, M, and then fed into the cavity. By properly picking the curvature of the
cavity morrors, one can trap the mode for sufficiently long time.

From a mathematical point of view, the parity detection appears to be simple in compar-

ison to any other strategy, but to experimentally realize such a detection scheme is not triv-

ial. There are basically two different approaches to accomplish the task in laboratory. The

simplest one is by employing number-resolving photodetectors [70, 73, 74, 75, 76, 77, 78]

at the output detecting mode (mode b̂out in Fig. 4.4). It should be noted that we not

necessarily need a photodetector at single photon resolution, instead we need a detector

that would discriminate even and odd number of photons.
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Alternatively one can measure the wigner function. In Ref. [79] it has been shown that

expectation value of the parity is h/2 times the wigner function. In Ref. [72], it has been

shown that if we can store the single mode field in a cavity then one can perform the

parity detection by measuring the wigner function. This would require containing the

output detecting mode b̂out in a cavity as shown in Fig. 2.5. By properly picking the

curvature of the cavity morrors, one can trap the mode for sufficiently long time. This

approach is discussed further in Ref. [80].
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3 Canonical Phase Measurement in the
Presence of Photon Loss

3.1 Introduction

Canonical phase measurement in quantum mechanics is a significant problem, for the

main reason that phase is a quantity that is conjugate to the number, N , of photons in

a particular electromagnetic mode [48, 81, 82]. Due to this conjugate nature, the phase

estimate ∆ϕ is ultimately limited by the number N of the photons as ∆ϕ = 1/N , which

is conventionally referred as the Heisenberg limit. In the usual classical setting, such as

interferometry with lasers, for a given number of input resources, N , phase estimate scales

as 1/
√
N , which is usually referred as shot-noise limit.

Accurate phase estimation has many practical applications such as metrology, imaging

and sensing [83]. Achieving Heisenberg limit in practice is not a trivial problem and there

have been numerous proposals to achieve this limit [3, 4, 51, 30, 70, 57, 27, 26, 37, 28, 36].

Canonical phase measurement has been first dealt with Helstrom [84] and Shapiro [85], and

later Sanders and Milburn [86, 87] used it to obtain a phase estimate in a Mach-Zehender

interferometer (MZI) as shown in Fig.3.1 (excluding the loss part). The phase estimate

thus obtained is independent of the system phase, unlike in other methods [4, 51, 70]

where the ultimate limit is achieved for a particular system phase. Also, the measurement

specified by Sanders and Milburn is not particular to a specific input state.

Motivated by this work, Berry and Wiseman [30] analytically derived an input state,

called as the optimal state, subject to the canonical measurement. They also suggested an

adaptive method of approximately implementing the canonical phase measurement [30,

31], which has been used in the recent experimental realization of the Heisenberg lim-

ited phase measurement by Higgins et al. [66]. The canonical measurement, written as a
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Positive Operator Valued Measure(POVM) by Sanders and Milburn [86] is,

F̂ (ϕ)dϕ =
2j + 1

2π
|jϕ〉 〈jϕ| dϕ, (3.1)

in terms of the phase states

|jϕ〉 =
1√

2j + 1

j∑
α=−j

eiαϕ |jα〉y .

In defining this, the Schwinger’s representation is used, and for completeness we wish

to outline the notation. The three angular momentum components Ĵx, Ĵy and Ĵz are very

effective in analyzing two-port, lossless, interferometers [4, 86, 51]. For the two modes, â

and b̂ of the MZI (Fig. 3.1), these two mode operators are,

Ĵx = (â†b̂+ âb̂†)/2, Ĵy = (â†b̂− âb̂†)/2i,

Ĵz = (â†â− b̂†b̂)/2, Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z .

In the context of the MZI, Ĵx implements the operation of a 50-50 beam splitter as

ei(π/2)Ĵx and Ĵz defines the photon number difference in two modes. The simultaneous

eigenvector of Ĵ2 and Ĵz, |j,m〉z represents the joint input state |j +m〉ain and |j −m〉bin
in the Fock-state basis, and the total input number of photons is N = 2j. The simul-

taneous eigenvector of Ĵ2 and Ĵy, which is |j, n〉y, represents the joint state within the

interferometer. The beamsplitter transformation in this representation performs a rota-

tion about the Ĵx. The phase states discussed above, are defined in terms of states within

the interferometer in Fig. 3.1 and thus the output modes or detectors are irrelevant for

the present purpose. Thus the probability distribution for the system phase φ is obtained

as

P (ϕ)dϕ = 〈ψ| F̂ (ϕ) |ψ〉 dϕ = Tr[ρF̂ (ϕ)]dϕ. (3.2)

Note that ϕ is the estimate of the system phase φ. The optimal state, to be specified

below, is derived conditioned upon minimizing the Holevo variance calculated from the
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above probability distribution. The Holevo phase variance is defined as [88]

(∆ϕ)2 ≡ −1 + |〈eiϕ〉|−2, (3.3)

where |〈eiϕ〉| =
∫ 2π

0
dϕP (ϕ)eiϕ−ϕ̄, is also called the sharpness. Here ϕ̄ is a mean phase and

we take it to be zero. The Holevo variance for the optimal state is given by Ref. [30, 31],

(∆ϕ)2 = tan2(
π

N + 2
) ≈ π2

N2
, (3.4)

thus giving rise to a phase estimate that scales as the Heisenberg limit. Besides the

FIGURE 3.1. Schematic of Mach-Zehender Interferometer (MZI) with photon loss at the phase
shift. The state |ψ〉in represents the joint input state at âin and b̂in. Photons in the lower arm first
encounter the fictitious beam splitter (BS), for which vacuum enters through the other input,
and depending the transmission coefficient, some of them are scattered into the mode ĉ′, which
are ignored (traced out), and the remaining pass through the phase shifter.

optimal state, other prominent states that achieve the Heisenberg limit are so called the
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NOON states [4, 37] and the dual-fock state [70, 57]. Formally the NOON state is,

|ψ〉N =
|N〉â |0〉b̂ + |0〉â |N〉b̂√

2
. (3.5)

Note that the above state is not an input state at the MZI shown in Fig.1, but a state

within the interferometer and the subscripts â and b̂ denotes the internal modes of the

MZI. The dual-fock input state is given as,

|ψ〉D = |N〉âin |N〉b̂in (3.6)

The detection scheme for both, the NOON and the dual-fock state that results in

the Heisenberg limited phase estimate is the parity detection [57, 69], first proposed by

Bollinger et al. [37] in the context of frequency metrology with trapped ions. The shot-noise

and sub shot-noise limit with matter wave interferometry which deals with Bose-Einstein

condensates at the input of the MZI is studied in Refs. [52].

It is natural to question the performance of such states or the detection schemes in

a more realistic conditions such as photon loss associated with the propagation. The

analysis of the NOON states under propagation loss was carried out independently by

Gilbert et al. [33] and by Rubin and Kaushik [32], where they used pure state formalism.

In Ref. [33, 32] for NOON state, the minimum number of photons required to achieve a

minimum detectable phase in presence of loss is also given.

In this chapter we study the performance of optimal state and the optimal POVM in

the presence of the photon loss associated with propagation. We use the generic beam

splitter model for photon loss [89], as shown in Fig. 3.1. The input mode ĉ for this fictitious

beam splitter is a vacuum mode, and the output mode ĉ′ is then to be traced out. This

typically implies that the photons that are lost in mode ĉ′, due to the nonzero reflection

coefficient r, correspond to the photon loss.

In the following two Sections we describe optimal state in presence of photon loss and

carry out the explicit density matrix calculation. In Section 4.4, we quantitatively describe
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the effect of photon loss on the canonical phase estimation. Section 3.5 concludes with

numerical results and discussions.

3.2 Optimal State in Presence of Photon Loss

We now proceed to develop the mathematical framework to study optimal-state canon-

ical interferometry with photon loss. The beam splitter representing loss, with arbitrary

transmission and reflection, can be characterized by an angle θ, such that transmission

and reflection coefficients are τ = cos2(θ/2) and r = 1−cos2(θ/2), respectively. Therefore,

the loss is simply the reflection coefficient,

L = r = 1− cos2(θ/2). (3.7)

The action of such an arbitrary beam splitter on an arbitrary joint input state |j, a〉 in

Schwinger notation, is simply given as [51],

eiθĴx |j, a〉 =

j∑
b=−j

eiθ(b−a)dja,b(θ) |j, b〉 , (3.8)

where dja,b(θ) is the usual rotational matrix element given as:

dja,b(θ) = (−1)a−b2−a

√
(j − a)!(j + a)!

j − b)!(j + b)!
P

(a−b,a+b)
j−a (cos θ)(1− cos θ)

a−b
2 (1 + cos θ)

a+b
2 , (3.9)

where P
(α,β)
n (x) is the Jacobi polynomial [68]. Also it is worth noting that when converted

to Fock-basis, a two mode joint state in Schwinger notation, |j, a〉 is |j + a〉 |j − a〉.

The optimal state was originally derived by Berry and Wiseman [30] conditioned on min-

imizing the phase variance with the canonical probability distribution given in Eq. (3.2).

Formally the optimal state is,

|ψ〉opt =

j∑
µ=−j

1√
j + 1

sin

[
(µ+ j + 1)π

2j + 2

]
|jµ〉y . (3.10)

Recall that the simultaneous eigenstate of Ĵ2 and Ĵy denote the state within the inter-

ferometer, and thus the above state is after the first beam splitter, while |j + µ〉a and
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|j − µ〉b represents the fock state corresponding to modes â and b̂ respectively. Rewriting

the above state in a more explicit form as the product of the states at the two arms of

the interferometer as,

|ψ〉opt =

j∑
µ=−j

ψµ |j + µ〉a |j − µ〉b , (3.11)

where

ψµ =
1√
j + 1

sin

[
(µ+ j + 1)π

2j + 2

]
.

With the loss in mode â, which is represented by the fictitious beam splitter, and |0〉c is

the state entering the other input port, the combined input state for the fictitious beam

splitter is: |j + µ〉a |0〉c, and thus the state to be considered is,

|ψ〉 = |ψ〉opt ⊗ |0〉c =

j∑
µ=−j

ψµ |j + µ〉a |j − µ〉b |0〉c . (3.12)

The fictitious beam-splitter transforms modes â and ĉ to modes â′ and ĉ′ respectively.

Making use of the Schwinger representation for modes â and ĉ, the input |j + µ〉a |0〉c

for the fictitious beam splitter can be written as a joint state:
∣∣ j+µ

2
, j+µ

2

〉
a,c

. Letting k =

(j + µ)/2 and using Eq. (3.8) we have the output as,

eiθĴx |k, k〉a,c =
k∑

m=−k

ei
π
2

(m−k)dkmk(θ) |k,m〉a′c′

=
k∑

m=−k

ei
π
2

(m−k)dkmk(θ) |k +m〉a′ |k −m〉c′ . (3.13)

Therefore the pure state of the inner modes â′, b̂ of the interferometer, and mode ĉ′ of the

lost photons is given as,

|ψ〉 =

j∑
µ=−j

k∑
m=−k

ψµe
iπ
2

(m−k)dkmk(θ) |k +m〉a′ |k −m〉c′ |j − µ〉b , (3.14)

where k = (j+µ)/2 and dkmk(θ) is the usual rotational matrix element, as defined earlier.
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3.3 Density Matrix Description

The state specified in Eq. (3.14) is a pure state and cannot be used further, so we need to

calculate the reduced density matrix, by tracing out, mode ĉ′, as we have no more access

to the lost photons. Thus first we need to calculate the total density matrix, representing

the pure state of Eq. (3.14),

ρ = |ψ〉 〈ψ| , (3.15)

which upon invoking |ψ〉 from Eq. 3.14 results in

ρ =

j∑
µ,ν=−j

k∑
m=−k

k′∑
n=−k′

ψµψνd
k
m,k(θ)d

k′

n,k′(θ)e
iπ
2

(m−k)e−i
π
2

(n−k′)

× |k +m〉a′ |k −m〉c′ |j − µ〉b a′ 〈k
′ + n|c′ 〈k

′ − n|b 〈j − ν| , (3.16)

where k′ = (j + ν)/2. The total density matrix given in Eq. (3.16) explicitly represents

the state within the interferometer for a given loss, characterized by the angle θ, and is

useful in analyzing lossy interferometers such as the present one.

As the mode ĉ′ is to be ignored, we need the reduced density matrix by tracing out

that mode from the total density matrix given in Eq. (3.16). Thus we have,

ρ′ = Trc′ [|ψ〉 〈ψ|] =

j∑
µ,ν=−j

k∑
m=−k

k′∑
n=−k′

ψµψνd
k
m,k(θ)d

k′

n,k′(θ))e
iπ
2

(m−k)e−i
π
2

(n−k′)

× |k +m〉a′ |j − µ〉b a′ 〈k
′ − n|b 〈j − ν| [c′〈k −m|k

′ − n〉c′ ] . (3.17)

Noting that c′〈k −m|k′ − n〉c′ = δk−m,k′−n, which eliminates the two exponential terms

in Eq. (3.17). This leads to:

ρ′ =

j∑
µ,ν=−j

k∑
m=−k

k′∑
n=−k′

ψµψνd
k
m,k(θ)d

k′

n,k′(θ)δk−m,k′−n |k +m〉a′ |j − µ〉b a′ 〈k
′ − n|b 〈j − ν| . (3.18)

We can now use Eq. (3.18) in Eq. (3.2) to obtain the probability distribution and thus

the minimum detectable phase as a function of θ-which characterizes the photon loss-and

the input photon number 2j.
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3.4 Phase Estimate in Presence of Photon Loss

To get an estimate using Holevo phase variance, we need to calculate the probability

distribution, P (ϕ) using Eq.(3.2). But in presence of the loss, few of the input photons

are not accessible by the POVM. In cases like this the probability distribution is given as

(see Ref. [90, 84]),

P (ϕ) =
Tr[ρ′F̂ (ϕ)]∫ 2π

0
Tr[ρ′F̂ (ϕ)]dϕ

(3.19)

Note that ϕ is an estimate of the system phase φ.

The POVM, F̂ (ϕ)dϕ [Eq. (3.1)] is given in terms of the Ĵy eigen states. Noting that

the Ĵy eigen states are the states of the modes within the interferometer, we can rewrite

the POVM as,

F̂ (ϕ) =
1

2π

j∑
α,β=−j

ei(α−β)ϕ |j, α〉y 〈j, β| . (3.20)

Since the joint state |j, α〉y is written as |j + α〉a′ |j − β〉b, we have,

F̂ (ϕ) =
1

2π

j∑
α,β=−j

ei(α−β)ϕ |j + α〉a′ |j − α〉b ⊗a′ 〈j + β|b 〈j − β| (3.21)

After the fictitious beamsplitter which represents photon loss associated with propaga-

tion, the inner modes of the MZI are â′ and b̂, and so the Ĵy eigen states are the product

states of these modes. Thus using Eq. (3.21) along with Eq. (3.18) for the reduced density

matrix, after carrying out the trace operation for the modes â′ and b̂, we have in presence

of loss,

Tr[ρ′F̂ (ϕ)] =
1

2π

j∑
µ,ν=−j
α,β=−j

k∑
m=−k

k′∑
n=−k′

[ψµψνd
k
m,k(θ)d

k′

n,k′(θ)

×ei(α−β)ϕ〈k′ − n|j + α〉〈j + β|k +m〉

×〈j − β|j − µ〉〈j − ν|j − α〉] (3.22)

Recalling k′ = (j+ν)/2, k = (j+µ)/2, and because β = µ and α = ν as a consequence

of the last two inner products in the above equation, we get from the first two inner

products n = k′ and m = k respectively. Hence
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Tr[ρ′F̂ (ϕ)] =
1

2π

j∑
µ,ν=−j

ψµψνe
i(ν−µ)ϕdkk,k(θ)d

k′

k′,k′(θ) (3.23)

and ∫ 2π

0

Tr[ρ′F̂ (ϕ)]dϕ =

j∑
µ,ν=−j

ψµψνδν,µd
k
k,k(θ)d

k′

k′,k′(θ). (3.24)

From the definitions of k andk′ we see that k = k′ when µ = ν. Therefore using the

rotational matrix element in Eq. (3.9), we have dkk,k(θ)d
k′

k′,k′(θ) =
[
cos2 θ

2

](k+k′)
= (1−L)2k.

Using this in Eq. (3.19) we get the probability distribution as,

P (ϕ) =

∑j
µ,ν=−j ψµψνe

i(ν−µ)ϕdkk,k(θ)d
k′

k′,k′(θ)

2π
∑j

µ=−j |ψµ|2(1− L)(j+µ)
(3.25)

With this probability distribution we can calculate any moments of the phase estimate

as a function of loss, θ. Here we calculate the Holevo phase variance rather than the

standard variance, because the optimal state is derived by minimizing the Holevo phase

variance [30]. Using Eq. (3.25) we now calculate sharpness |〈eiϕ〉| is given as,

|〈eiϕ〉| =
∫ 2π

0

P (ϕ)eiϕdϕ

=

∑j
µ,ν=−j δν,µ−1ψµψνd

k
k,k(θ)d

k′

k′,k′(θ)∑j
µ=−j |ψµ|2(1− L)(j+µ)

, (3.26)

where δν,µ−1 = 1
2π

∫ 2π

0
e(ν−µ+1)ϕdϕ and invoking the definition of k and k′ in Eq. (3.26),

we obtain

|〈eiϕ〉| =
∑j

µ=−j ψµψµ−1 (1− L)j+µ−
1
2∑j

µ=−j |ψµ|2(1− L)(j+µ)
, (3.27)

for the expression of the so-called sharpness as a function of loss. We use Eq. (3.27) in

Eq. (3.3) to obtain the phase estimate as a function of loss.

3.5 Conclusions

Now the minimum detectable phase shift can be found with the uncertainty in phase

estimate by plugging Eq. (3.27) in Eq. (3.3). In Fig. 3.2 we numerically plot the minimum
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detectable phase ∆ϕ as a function of 2j = N , the number of input photons, for three

different values of loss, L = 10% and L = 30% and L = 85%. For comparison we also plot

the Heisenberg limit for the optimal state given in Eq. (3.4). Interestingly, the optimal

POVM results in a phase estimate in presence of loss that does not diverge unlike the

results of NOON states presented in Ref. [33, 32].

As we do not have a closed form expression for the Holevo variance, as a function of

loss L and input photon number N , we have not found an analytical form for what exact

amount of loss does the estimate exceed the shot-noise limit. So we numerically plot in

Fig. 3.2. We see that up to a loss of 30% we will be able to get a sub-shot noise limit.

FIGURE 3.2. Plot of minimum detectable phase versus the input photon number N = 2j for two
different values of loss. (a) L = 0.1, (b) L = 0.3 and (c)L = 0.85. The dotted line in both figures
is the shot noise limit 1/

√
2j and the dashed line in (a) is the Heisenberg limit given be Eq. (3.4),

for comparison.The solid lines are numerically evaluated using Eq. (3.3) and Eq. (3.27).

From a practical considerations this result is significant for two reasons. First, even for

loss of about 25% of the photons in the mode passing through the phase shift, we still can

have sub-shot noise limited phase estimate albeit we need to operate the interferometer

with appropriate input photon number as indicated in Fig. 3.2(b). Second, the estimate

does not blow up for any amount of loss. This means if we begin with large number of

input photons in optimal state, we still get a sensible value for phase estimate.

To summarize, we analyzed the canonical phase measurement in presence of photon

loss. Our formalism is based on the density matrix, which describes the mixed states,
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which naturally arise due to the presence of loss. Our analysis shows that the minimum

detectable phase is not monotonically decreasing function and would tend to saturate

at certain photon numbers, depending the loss present. Nevertheless, we can for small

loss have considerably high number of input photons for the optimal state, that achieve

sub-shot noise level phase estimates.
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4 Rapid-purification Protocols for Optical
Homodyning

4.1 Introduction

In this chapter, we shall deal with extracting information while continually measuring a

two level quantum system. The contents of this chapter are published in Physical Review

A 77, 012102 (2008). Reprinted with the permission of the American Physical Society, as

stated in the FAQ section for authors and is provided in the Appendix.

Using feedback one can actually increase the rate at which we draw information from

the system. Quantum feedback control is the domain of quantum measurements where

the system is driven to a specific target state by modifying the measurement dynamics

as the measurement progresses [91, 92]. The field of quantum feedback was introduced

by by Wiseman and Milburn [93], where they considered instantaneous feedback of some

measured photo current onto the dynamics of the system. The general schematic is shown

in Fig. 4.1.

FIGURE 4.1. Schmatic of Feedback scheme. The dynamical system corresponds to external
perturbations such as dissipations and other perturbations arising due to the interaction of the
system with the environment. The measurement is indicated in a separate box as we wish to
have complete control on measurement.

Rapid-purification protocols increase the rate at which the state of a system is purified

by a continuous measurement [94, 95, 96, 97, 98, 99, 100, 101, 102]. They do this by
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applying feedback control to the system as the measurement proceeds. All such protocols

described to date have been devised for continuous measurements of an observable (that

is, measurements that are not dissipative). Under this kind of measurement the evolution

of the system density matrix, ρ, is given by the stochastic master equation [92, 103, 104],

dρ = −(i/~)[H, ρ]dt− k[X, [X, ρ]]dt+
√

2k(Xρ+ ρX − 2〈X〉ρ)dW, (4.1)

where X is the hermitian operator corresponding to the observable being measured, H

is the Hamiltonian of the system, dW is Gaussian white noise satisfying the Ito calculus

relation dW 2 = dt. The observers continuous measurement record, which we will denote

by r(t), is given by dr = 〈X〉dt + dW/
√

8k. This kind of measurement will project the

system onto an eigenstate of X after a time t � 1/(∆2k), where ∆ is the difference

between the two eigenvalues of X that are nearest each other.

Photon counting and optical homodyning do not fall into the above class of measure-

ments because they subject the system to dissipation. Thus if one has a single optical

qubit, consisting of a single mode containing no more than one photon as shown in Fig. 4.2,

and one measures it with a photon counter, then regardless of whether the measurement

tells us that the state was initially |0〉 or |1〉, as t→∞ the final state is always |0〉. If we

wish we can think of this as a measurement of the photon number (that is, a measurement

in the class above with X = a†a), followed by an irreversible operation that takes both

|0〉 and |1〉 to the vacuum.

The physical system that we consider is a single mode of radiation or simply a single

photon in a cavity as shown in the Fig. 4.2. The cavity has a decay rate γ and the leaked

photon is subjected to homodyne detection. The feedback is acted by adjusting the local

oscillator phase as the measurement progresses.

Our purpose here is to examine whether there exist rapid-purification feedback proto-

cols for homodyne detection performed on a single optical qubit, and if so, to compare
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their properties with those pertaining to a continuous measurement of an observable on a

single qubit. Our motivation is partly theoretical interest regarding the effect of dissipation

on rapid-purificaton protocols, and partly to explore whether such protocols can be im-

plemented in an optical setting. Before we begin it is worth recalling the properties of the

single-qubit rapid-purification protocols that have been derived to date for non-dissipative

measurements. The first is the protocol introduced by one of us [94] (see also [102]) in

which one applies feedback control to speed up the increase in the average purity of the

system. The average here is taken over all possible realizations of the measurement (all

possible measurement records r(t)). The protocol involves applying feedback during the

measurement to keep the Bloch vector of the state of the qubit perpendicular to the basis

of the measured observable, X. In the limit of strong feedback, and high final average

purity, this provides a factor of two decrease in the time required to reach a given average

purity. In the limit of strong feedback the protocol also eliminates the stochasticity in the

purification process, so that the purity increases deterministically.

FIGURE 4.2. A single mode of radiation in a cavity with a decay rate of γ. The leaked photon
will undergo homodyning where the local oscillator phase and amplitude can be controlled. This
would be the case of simple homodyning where beam splitter is assumed to have a transmissivity
τ → 1.Here P.D is the photo detector.

In the next section we examine homodyne detection of a single optical qubit, and derive

a deterministic rapid-purifcation protocol equivalent to the protocol discussed above.
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4.2 Rapid Purification for Optical Homodyning

The dynamics of a single mode of an optical cavity, where the output light is monitored

via homodyne detection, is given by [105]

dρ = −γD[a]ρdt+
√

2ηγ(aeiθρ+ ρa†e−iθ)dW

−
√

2γ〈aeiθ + a†e−iθ〉ρdW, (4.2)

where D[a]ρ ≡ a†aρ+ ρa†a− 2aρa†, ρ is the state of the mode, a is the mode annihilation

operator, γ is the decay rate of the mode from the cavity, and η is the efficiency of the

photo detectors. here we have moved into the interaction picture, and thus eliminated the

mode Hamiltonian H0 = ~ωa†a. In this case the observer’s measurement record is given

by dr = 〈a+a†〉dt+dW/
√

8γ. If the state of the mode has no more than one photon, then

we can replace a with the Pauli lowering operator σ− = σx − iσy, and the SME becomes

dρ = −γD[σ−]ρdt+
√

2ηγ
[
σ−e

iθρ+ ρσ+e
−iθ − 〈σx cos θ + σy sin θ〉ρ

]
dW. (4.3)

We now rewrite this equation using the Bloch-sphere representation of the density matrix,

a = (x, y, z), where ρ = (1/2)(I + a · σ) and σ = (σx, σy, σz) and I is the two-by-two

identity matrix. This gives

dx = −γxdt+
√

2ηγ [(1 + z) cos θ − x(x cos θ + y sin θ)] dW, (4.4)

dy = −γydt+
√

2ηγ [(1 + z) sin θ − y(x cos θ + y sin θ)] dW, (4.5)

dz = −2γ(1 + z)dt−
√

2ηγ(1 + z) [x cos θ + y sin θ] dW. (4.6)

Defining the “linear entropy”, L, by L = 1 − Tr[ρ2], and using the above equations we

find that

dL = −γ
{

2L[1− η (x cos θ + y sin θ)] + (η − 1)(1 + z)2
}
dt+

√
8ηγL (x cos θ + y sin θ) dW.

(4.7)

55



We wish to maximize the rate of decay of L by adjusting the phase of the local oscillator,

θ, as the measurement proceeds. Inspection of the above equation makes it clear how to

do this: we simply need to choose θ at each time so that x cos θ + y sin θ = 0. This not

only maximizes the rate of decay of L, but also eliminates the stochastic terms in dL

and dz so that the evolutions of both are deterministic. This parallels the behavior of the

rapid-purification algorithm in [94]. When we choose θ at each time to maximize the rate

of reduction of L, the evolution of L becomes

dL

dt
= −γ

[
2L+ (η − 1)(1 + z)2

]
. (4.8)

To achieve this we must continually adjust θ so that θ(t) = arg[y(t) − ix(t)]. With this

choice of θ the equation for z is simply dz/dt = −2γ(1 + z). We now take the initial state

to be the maximally mixed single-qubit state ρ(0) = I/2. Solving for the evolution of z

in this case we have

z(t) = e−2γt − 1, (4.9)

and the equation of motion for the linear entropy becomes

dL

dt
= −γ

[
2L+ (η − 1)e−4γt

]
. (4.10)

Thus the evolution of the linear entropy, under the rapid-purification feedback algorithm

is

Lfb(t) = e−2γt

[
1

2
+

1

2
(1− η)

(
1− e−2γt

)]
. (4.11)

We now need to compare this with the evolution of the average value of the linear

entropy in the absence of any feedback. (That is, when θ is fixed during the measurement.)

Since we are treating the case when the initial state is maximally mixed, all choices for the

fixed value of θ are equivalent, and so we will choose θ = 0 for simplicity. When θ is fixed

the evolution of L is stochastic, and thus more complex. Nevertheless, for perfectly efficient

detection (η = 1) the master equation Eq.(4.3) is readily solved by using the linear form of
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the equivalent stochastic Schrödinger equation (SSE), being [106] (see also [107, 108, 92]),

d|ψ〉 =
[
−γσ+σ−dt+

√
2γσ−dW

]
|ψ〉 (4.12)

The solution is

ρ(t) =
V (t)ρ(0)V (t)†

Tr[V (t)†V (t)ρ(0)]
, (4.13)

where

V (t) = e−γσ+σ−teRσ−

= (e−γtσ+σ− + σ−σ+)(1 +Rσ−) (4.14)

and R is a random variable whose probability density at time t is

P (R, t) = Tr[V (t)†V (t)ρ(0)]
e−R

2/(2κ)

√
2πκ

, (4.15)

where we have defined κ ≡ (1−e−2γt). When the initial state is the single-qubit maximally

mixed state, ρ(0) = I/2, the solution is

ρ(t) =
[e−2γtσ+σ− + e−γt (σ+ + σ−) + (1 +R2)σ−σ+]

2 +R2 − κ
(4.16)

and

P (R, t) =
(2 +R2 − κ)√

8πκ
e−R

2/(2κ), (4.17)

The evolution of the average value of the linear entropy is then given by

〈L(t)〉 =

∫ ∞
−∞

(1− Tr[ρ(t)2])P (R, t)dR. (4.18)

This integral cannot be solved analytically, and we will therefore evaluate it numerically.

We plot in Fig 4.3 the evolution of linear entropy as a function of time.

When η is less than unity the SME is no longer equivalent to an SSE because it can

increase the entropy of an initially pure state. Nevertheless, it turns out that it is possible

to obtain an analytic solution to the SME by using the above technique of solving a linear
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FIGURE 4.3. The plot showing the speedup from using the feedback. The mozanta curve is with
feedback and the red curve is without feedback for a unit detector efficiency,η = 1. From this
plot it is clear that feedback increases the rate of purification.

SSE. As far as we know this method has not appeared in the literature to date, and so

we describe it in detail in the appendix.

When the initial state is ρ(0) = I/2 the solution for abitrary η is

ρ(t) = (2N )−1
[
e−2γtσ+σ− + e−γt (σ+ + σ−)

+
(
1 +R2 + [1− η]κ

)
σ−σ+

]
, (4.19)

where N = 1 + R2/2 − ηκ/2 is the normalization constant. The probability density for

the random variable R is now

P (R, t) =
2 +R2 − ηκ√

8πηκ
e−R

2/(2ηκ) (4.20)

We define the speed-up afforded by the rapid purification as the ratio of two times,

s = tm/tfb. The first time, tm, is that taken for 〈L(t)〉 to reach a given target value in the

58



FIGURE 4.4. The speed-up factor in the time required to achieve a given final value of the
average linear entropy, 〈L〉, afforded by the deterministic rapid-purification algorithm when the
initial state of the optical qubit is completely mixed, as a function of 〈L〉. The various curves
correspond to different values of the measurement efficiency η. Solid line: η = 1; Dashed line:
η = 0.8; Dash-dot Line: η = 0.5.

absence of feedback, and the second time, tfb, is that taken for Lfb(t) to reach the same

target value. Using the expressions for the linear entropy in the two cases (Eqs. (4.11)

and (4.18)) we plot this speed-up as a function of the target entropy in Figure 4.4, and

for three values of the detection efficiency η. We see that in the present case the speed-

up factor reaches a peak and then decays back to unity as time increases. This is quite

different behavior to that of the equivalent protocol for a measurement of an observable

(a non-dissipative measurement), which tends to its maximum value as t→∞.
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4.3 Solving the Stochastic Master Equation for

Inefficient Detection

We first note that a master equation that describes inefficient detection is equivalent to a

master equation containing two simultaneous measurements, where the observer has access

to only one, and must average over the results of the other [92]. Our method is then to

solve the Stochastic Schrödinger equation equivalent to the SME with two measurements

(by using the method of linear quantum trajectories [106, 107, 108, 92]), and then take

the average over the second measurement at the end to obtain the solution for inefficient

detection. It turns out that the resulting integrals are straightforward and give a fully

analytic solution. The SME Eq.(4.2) is thus equivalent to the linear SSE [92])

d|ψ〉 =
[
−γa†adt+

√
2ηγadW +

√
2(1− η)γadV

]
|ψ〉 (4.21)

where dW and dV are independent Gaussian noise sources so that dWdV = 0. The

observer has access to the measurement record corresponding the measurement associated

with dW , and thus must ultimately average over dV . We obtain the evolution operator

which solves this equation by using the method given in reference [108], and this is

V (t, R,Q) = e−γa
†ateκa

2

eaReaQ (4.22)

where

R =
√

2ηγ

∫ t

0

e−2γsdW (s) (4.23)

Q =
√

2(1− η)γ

∫ t

0

e−2γsdV (s) (4.24)

and κ ≡ (1 − e−2γt). The probability densities for R and Q resulting from the above

stochastic integrals are Gaussian, with mean zero and variances VR = ηκ and VQ =

(1− η)κ. We will denote these Gaussian densities by G(R) and H(Q), respectively.

For an initial state ρ(0), the solution is thus

ρ(t, R,Q) =
V ρ(0)V †

N
(4.25)
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where N = Tr[V †V ρ(0)] is the normalization. The true joint probability density for R

and Q is given by the product of the Gaussian densities G(R) and H(Q), multiplied by

N . That is

P (R,Q, t) = Tr[V †V ρ(0)]G(R)H(Q). (4.26)

To obtain the solution to the inefficient SME we must average over the Q keeping R fixed.

This solution is therefore

σ(R, t) =

∫ ∞
−∞

ρ(R,Q, t)P (Q|R)dQ

=
1

P (R)

∫ ∞
−∞

ρ(R,Q, t)P (R,Q)dQ

=
G(R)

P (R)

∫ ∞
−∞

V ρ(0)V †H(Q)dQ

=
1

M

∫ ∞
−∞

V ρ(0)V †H(Q)dQ (4.27)

where M is merely the normalization. From this we see that we need only perform an

integration over the Gaussian density for Q, which is straightforward.

4.4 Conclusion

We have considered applying feedback to the homodyne detection of a single optical qubit

so as to change the rate at which the system is purified (so called “rapid-purification feed-

back algorithms”). We have shown that there exists a feedback algorithm that increases

the rate at which the average purity increases, and like its non-dissipative counterpart this

results in a deterministic evolution for the purity of the system. Unlike its non-disspative

analogue, the speed-up provided by this protocol reaches its maximum value at a finite

time, decaying to unity as t → ∞. We also found that the speed-up remains for mea-

surement efficiencies well below unity, although the speed-up decreases as the efficiency

drops. We found that this protocol behaves much more like those for a non-dissipative

measurement, in that the speed-up factor increases monotonically and tends to a value

of two in the long-time limit. This protocol is, however, more sensitive to noise than
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the previous protocols. The above results show that it should be feasible to demonstrate

rapid-purification protocols in an optical setting.
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