
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2007

Quantum dynamics of loop quantum gravity
Muxin Han
Louisiana State University and Agricultural and Mechanical College, mhan1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Physical Sciences and Mathematics Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Han, Muxin, "Quantum dynamics of loop quantum gravity" (2007). LSU Master's Theses. 3521.
https://digitalcommons.lsu.edu/gradschool_theses/3521

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3521?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3521&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


QUANTUM DYNAMICS OF LOOP QUANTUM
GRAVITY

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science

in

The Department of Physics and Astronomy

by
Muxin Han

B.S., Beijing Normal University, Beijing, 2005

May 2007



Acknowledgements
First of all, I am grateful to Dr. Jorge Pullin for his advise and many corrections of this thesis,
and to Dr. Jonathan Dowling for all his kind help in these two years. I also would like to thank
Dr. Hwang Lee for his kind support and being a member of my committee.

I would like to thank all the people who have discussed issues with me concerning the
subject in the thesis. They are: Dr. Abhay Ashtekar, Dr. Lai-Him Chan, Dr. Weiming Huang,
Dr. Jerzy Lewandowski, Dr. Yongge Ma, Dr. Andrzej Okolow, Dr. Jorge Pullin, Dr. Carlo
Rovelli, Dr. Thomas Thiemann, Dr. Dmitry Uskov, Dr. Robert M. Wald, and Dr. Hongbao
Zhang.

This work is supported by the assistantship of LSU, the Horace Hearne Institute for Theo-
retical Physics at LSU, and funding from Advanced Research and Development Activity.

ii



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation of Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose of Loop Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Classical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Lagrangian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Foundations of Loop Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 General Programme for Algebraic Quantization . . . . . . . . . . . . . . . . . 11
3.2 Quantum Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Cylindrical Functions on Quantum Configuration Space . . . . . . . . . . . . . 20
3.4 Loop Quantum Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Spin-network Decomposition of Kinematical Hilbert Space . . . . . . . . . . . 25
3.6 Quantum Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Implementation of Quantum Constraints . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Solutions of Quantum Gaussian Constraint . . . . . . . . . . . . . . . . . . . . 34
4.2 Solutions of Quantum Diffeomorphism Constraint . . . . . . . . . . . . . . . . 35
4.3 Hamiltonian Constraint Operator . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Master Constraint Programme . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Quantum Matter Field on a Quantum Background . . . . . . . . . . . . . . . . . 51
5.1 Polymer-like Representation of a Scalar Field . . . . . . . . . . . . . . . . . . 51
5.2 Diffeomorphism Invariant Hamiltonian of a Scalar Field . . . . . . . . . . . . 54
5.3 Hamiltonian Constraint Equation for the Coupled System . . . . . . . . . . . . 61
5.4 Master Constraint for the Coupled System . . . . . . . . . . . . . . . . . . . . 63

6 The Semiclassical Limit of Quantum Dynamics . . . . . . . . . . . . . . . . . . . 68
6.1 The Construction of Coherent States . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Algebraic Quantum Gravity Approach . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iii



Abstract
In the last 20 years, loop quantum gravity, a background independent approach to unify general
relativity and quantum mechanics, has been widely investigated. The aim of loop quantum
gravity is to construct a mathematically rigorous, background independent, nonperturbative
quantum theory for the Lorentzian gravitational field on a four-dimensional manifold. In this
approach, the principles of quantum mechanics are combined with those of general relativity
naturally. Such a combination provides us a picture of ”quantum Riemannian geometry”, which
is discrete at a fundamental scale. In the investigation of quantum dynamics, the classical
expressions of constraints are quantized as operators. The quantum evolution is contained in
the solutions of the quantum constraint equations. On the other hand, the semi-classical analysis
has to be carried out in order to test the semiclassical limit of the quantum dynamics.

In this thesis, the structure of the dynamical theory in loop quantum gravity is presented ped-
agogically. The outline is as follows: first we review the classical formalism of general relativity
as a dynamical theory of connections. Then the kinematical Ashtekar-Isham-Lewandowski rep-
resentation is introduced as a foundation of loop quantum gravity. We discuss the construction
of a Hamiltonian constraint operator and the master constraint programme, for both the cases of
pure gravity and matter field coupling. Finally, some strategies are discussed concerning testing
the semiclassical limit of the quantum dynamics.
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1 Introduction

1.1 Motivation of Quantum Gravity
The current view of physics is that there exist four fundamental interactions: strong interaction,
weak interaction, electromagnetic interaction and gravitational interaction. The description for
the former three kinds of forces is quantized in the well-known standard model. The interactions
are transmitted via the exchange of particles. However, the last kind of interaction, gravitational
interaction, is described by Einstein’s theory of general relativity, which is a classical theory
which describes the gravitational field as a smooth metric tensor field on a manifold, i.e., a 4-
dimensional spacetime geometry. There is no ~ and hence no quantum structure of spacetime.
Thus there is a fundamental inconsistency in our current description of the whole physical
world. Physicists widely accept the assumption that our world is quantized at fundamental level.
So all interactions should be brought into the framework of quantum mechanics fundamentally.
As a result, the gravitational field should also have ”quantum structure”.

Throughout the last century, our understanding of nature has considerably improved from
macroscale to microscale, including the phenomena at molecule, atom, sub-atom, and elemen-
tary particle scale. The standard model of particle physics agrees with all present experimental
tests in laboratory (see e.g. [158]). However, because unimaginably large amount of energy
would be needed, no experimental tests exist for processes that happen near the Planck scale
`p ≡ (G~/c3)1/2 ∼ 10−33cm and tp ≡ (G~/c5)1/2 ∼ 10−43s, which are viewed as the most
fundamental scales. The Planck scale arises naturally in attempts to formulate a quantum the-
ory of gravity, since `p and tp are unique combinations of speed of light c, Planck constant ~,
and gravitational constant G, which have the dimensions of length and time respectively. The
dimensional arguments suggest that at Planck scale the smooth structure of spacetime should
break down, and therefore the well-known quantum field theory is invalid since it depends on
a fixed smooth background spacetime. Hence we believe that physicists should go beyond the
successful standard model to explore the new physics near Planck scale, which is, perhaps, a
quantum field theory without a background spacetime, and this quantum field theory should
include the quantum theory of gravity. Moreover, current theoretical physics is thirsting for a
quantum theory of gravity to solve at least the following fundamental difficulties.

• Classical Gravity - Quantum Matter Inconsistency

The equation relating matter and the gravitational field is the famous Einstein field equa-
tion:

Rαβ[g] − 1
2

R[g]gαβ = κTαβ[g], (1)

where the left hand side of the equation concerns spacetime geometry which has classical
smooth structure, while the right hand side concerns also matter field which is funda-
mentally quantum mechanical in standard model. In quantum field theory the energy-
momentum tensor of matter field should be an operator-valued tensor T̂αβ. One possible
way to keep classical geometry consistent with quantum matter is to replace Tαβ[g] by
the expectation value < T̂αβ[g] > with respect to some quantum state of the matter on a
fixed spacetime. However, in the solution of this equation the background gαβ has to be
changed due to the non-vanishing of < T̂αβ[g] >. So one has to feed back the new metric
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into the definition of the vacuum expectation value etc. The result of the iterations does
not converge in general [70]. On the other hand, some other arguments show that such a
semiclassical treatment may violate the principle of superposition in quantum mechanics
[55]. This inconsistency motivates us to quantize the background geometry to arrive at an
operator formula also on the left hand side of Eq.(1).

• Singularities in General Relativity

Einstein’s theory of General Relativity is considered as one of the most elegant theories
in the 20th century. Many experimental tests confirm the theory in the classical domain
[159]. However, Penrose and Hawking proved that singularities are inevitable in general
spacetimes with matter satisfying certain conditions in, by now well known, singularity
theorems (for a summary, see [91][156]). Thus general relativity as a classical theory
breaks down in certain regions of spacetime in a generic way. One naturally expects that,
in extra strong gravitational field domains near the singularities, the gravitational theory
would probably be replaced by an unknown quantum theory of gravity.

• Infinities in Quantum Field Theory

It is well known that there are infinity problems in quantum field theory in Minkowski
spacetime. In curved spacetime, the problem of divergences is even more complicated,
since the renormalization process in curved spacetime is ambiguous, the expectation value
of stress tensor can be fixed up to some local curvature terms, and it also depends on a
fundamental scale of spacetime. Although much progress on the renormalization have
been made [92][157], a fundamentally satisfactory theory is still far from reaching. So it
is expected that some quantum gravity theory, playing a fundamental role at Planck scale,
could provide a natural cut-off to cure the infinities in quantum field theory. The situation
of quantum field theory on a fixed spacetime looks just like that of quantum mechanics
for particles in electromagnetic field before the establishing of quantum electrodynamics,
where the particle mechanics (actress) is quantized but the background electromagnetic
field (stage) is classical. The history suggests that such a semi-classical situation is only
an approximation which should be replaced by a much more fundamental and satisfactory
theory.

1.2 Purpose of Loop Quantum Gravity
The research on quantum gravity is quite active. Many quantization programmes for gravity
are being carried out (for a summary see e.g. [146]). In these different kinds of approaches,
Among these different kinds of approaches, the idea of loop quantum gravity finds its roots in
researchers from the general relativity community. It follows closely the motivations of general
relativity, and hence it is a quantum theory born with background independence. Roughly
speaking, loop quantum gravity is an attempt to construct a mathematically rigorous, non-
perturbative, background independent quantum theory of four-dimensional, Lorentzian general
relativity plus all known matter in the continuum. The project of loop quantum gravity inherits
the basic idea of Einstein that gravity is fundamentally spacetime geometry. Here one believes
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in that the theory of quantum gravity is a quantum theory of spacetime geometry with diffeo-
morphism invariance (this legacy is discussed comprehensively in Rovelli’s book [122]). To
carry out the quantization procedure, one first casts general relativity into the Hamiltonian for-
malism as a diffeomorphism invariant Yang-Mills gauge field theory with a compact internal
gauge group. Thus the construction of loop quantum gravity can also be applied to all back-
ground independent gauge field theories. One can therefore claim that the theory can also be
called as a background independent quantum gauge field theory.

All classical fields theories, other than the gravitational field, are defined on a fixed space-
time, which provides a foundation to the perturbative Fock space quantization. However general
relativity is only defined on a manifold and hence is a background independent classical field
theory, since gravity itself is the background. So the situation for gravity is much different
from other fields by construction [122], namely gravity is not only the background stage, but
also the dynamical actress. Such a double character for gravity leads to many difficulties in the
understanding of general relativity and its quantization, since we cannot follow the strategy in
ordinary quantum theory of matter fields. However, an amazing result in loop quantum gravity
is that the background independent programme can even help us to avoid the difficulties in or-
dinary quantum field theory. In perturbative quantum field theory in curved spacetime, the defi-
nition of some basic physical quantities, such as the expectation value of energy-momentum, is
ambiguous and it is difficult to calculate the back-reaction of quantum fields to the background
spacetime [157]. One could speculate that the difficulty is related to the fact that the present
formulation of quantum field theories is background dependent. For instance, the vacuum state
of a quantum field is closely related to spacetime structure, which plays an essential role in the
description of quantum field theory in curved spacetime and their renormalization procedures.
However, if the quantization programme is by construction background independent and non-
perturbative, it may be possible to solve the problems fundamentally. In loop quantum gravity
there is no assumption of a priori background metric at all and the gravitational field and matter
fields are coupled and fluctuating naturally with respect to each other on a common manifold.

In the following sections, we will review pedagogically the basic construction of a com-
pletely new, background independent quantum field theory, which is completely different from
the known quantum field theory. For completeness and accuracy, we will use detailed math-
ematical terminology. However, for simplicity, we will skip the complicated proofs of many
important statements. One may find the missing details in the references cited. Thus our review
will not be comprehensive. We refer to Ref.[146] and [90] for a more detailed exploration,
Refs. [20] and [148] for more advanced topics. It turns out that in the framework of loop
quantum gravity all theoretical inconsistencies introduced in the previous section are likely to
be cured. More precisely, one will see that there is no UV divergence in quantum fields of
matter if they are coupled with gravity in the background independent approach. Also recent
works show that the singularities in general relativity can be smeared out in symmetry-reduced
models [43][101][48]. The crucial point is that gravity and matter are coupled and consistently
quantized non-perturbatively so that the problems of classical gravity and quantum matter in-
consistency disappear.
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2 Classical Framework

2.1 Lagrangian Formalism
In order to canonically quantize classical gravity, a Hamiltonian analysis has to be performed
to obtain a canonical formalism of the classical theory suitable to be represented on a Hilbert
space. A well known canonical formalism of general relativity is the ADM formalism (ge-
ometrodynamics) derived from the Einstein–Hilbert action[156][97], which has been problem-
atic to cast into a quantum theory rigorously. Another well-known action of general relativity
is the Palatini formalism, where the tetrad and the connection are regarded as independent dy-
namical variables. However, the dynamics of the Palatini action has similar difficulties at the
time of quantization as the dynamics derived from the Einstein–Hilbert action [4][87]. In 1986,
Ashtekar presented a formalism of true connection dynamics for general relativity with a rela-
tively simple Hamiltonian constraint, and thus opened the door to apply quantization techniques
from gauge field theory [2][3][123]. However, a drawback of that formalism is that the canon-
ical variables are complex, which need the implementation of complicated reality conditions
if one is to represent real general relativity. Moreover, the quantization based on the complex
connection could not be carried out rigorously, since the internal gauge group is noncompact.
In 1995, Barbero modified the Ashtekar new variables to give a system of real canonical vari-
ables for dynamical theory of connections [34]. Then Holst constructed a generalized Palatini
action to support Barbero’s real connection dynamics [93]. Although there is a free parameter
(Barbero-Immirzi parameter β) in the generalized Palatini action and the Hamiltonian constraint
is more complicated than the Ashtekar one, the generalized Palatini Hamiltonian with the real
connections is widely used by loop theorists for the quantization programme. All the following
analysis is based on the generalized Palatini formalism.

Consider a 4-manifold, M, on which the basic dynamical variables in the generalized Pala-
tini framework are a tetrad eαI and an so(1, 3)-valued connection ω IJ

α (not necessarily torsion-
free), where the capital Latin indices I, J, ... refer to the internal S O(1, 3) group and the Greek
indices α, β, ... denote spacetime indices. A tensor with both spacetime indices and internal
indices is named as a generalized tensor. The internal space is equipped with a Minkowskian
metric ηIJ (of signature −,+,+,+) fixed once for all, such that the spacetime metric reads:

gαβ = ηIJeI
αeJ

β.

The generalized Palatini action in which we are interested is given by [20]:

S p[eβK , ω
IJ
α ] =

1
2κ

∫

M
d4x(e)eαI eβJ(Ω IJ

αβ +
1

2β
ε IJ

KLΩ KL
αβ ), (2)

where e is the square root of the determinant of the metric gαβ, ε IJ
KL is the internal Levi-Civita

symbol, β is the real Barbero-Immirzi parameter, and the so(1, 3)-valued curvature 2-form Ω IJ
αβ

of the connection ω IJ
α reads:

Ω IJ
αβ := 2D[αω

IJ
β] = ∂αω

IJ
β − ∂βω IJ

α + ω IK
α ∧ ω J

βK ,

hereDα denote the so(1, 3) generalized covariant derivative with respect to ω IJ
α acting on both

spacetime and internal indices. Note that the generalized Palatini action returns to the Palatini
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action when 1
β

= 0 and gives the (anti)self-dual Ashtekar formalism when one sets 1
β

= ±i.
Moreover, besides spacetime diffeomorphism transformations, the action is also invariant under
internal S O(1, 3) rotations:

(e, ω) 7→ (e′, ω′) = (b−1e, b−1ωb + b−1db),

for any S O(1, 3) valued function b on M. The gravitational field equations are obtained by
varying this action with respect to eαI and ω IJ

α . We first study the variation with respect to the
connection ω IJ

α . One has

δΩ IJ
αβ = (d δω IJ)αβ + δω IK

α ∧ ω J
βK + ω IK

α ∧ δω J
βK = 2D[αδω

IJ
β]

by the definition of covariant generalized derivative Dα. Note that δω IJ
α is a Lorentz covariant

generalized tensor field since it is the difference between two Lorentz connections [107][104].
One thus obtains

δS p =
1
2κ

∫

M
d4x(e)eαI eβJ(δΩ IJ

αβ +
1

2β
ε IJ

KLδΩ
KL

αβ )

= −1
κ

∫

M
(δω IJ

β +
1

2β
ε IJ

KLδω
KL

β )Dα[(e)eαI eβJ],

where we have used the fact that Dαλ̃
α = ∂αλ̃

α for all vector density λ̃α of weight +1 and
neglected the surface term. Then it gives the equation of motion:

Dα[(e)eαI eβJ] = −1
4
Dα[̃ηαβγδεIJKLeK

γ eL
δ ] = 0,

where η̃αβγδ is the spacetime Levi-Civita symbol. This equation leads to the torsion-free Cartan’s
first equation:

D[αeI
β] = 0,

which means that the connection ω IJ
α is the unique torsion-free Levi-Civita spin connection

compatible with the tetrad eαI . As a result, the second term in the action (2) can be calculated
as:

(e)eαI eβJε
IJKLΩαβKL = ηαβγδRαβγδ,

which is exactly vanishing, because of the symmetric properties of Riemann tensor. So the
generalized Palatini action returns to the Palatini action, which will certainly give the Einstein
field equation.

2.2 Hamiltonian Formalism
To carry out the Hamiltonian analysis of action (2), suppose the spacetime M is topologically
Σ × R for some 3-dimensional compact manifold Σ without boundary. We introduce a foliation
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parameterized by a smooth function t and a time-evolution vector field tα such that tα(dt)α = 1
in M, where tα can be decomposed with respect to the unit normal vector nα of Σ as:

tα = Nnα + Nα, (3)

here N is called the lapse function and Nα the shift vector [156][97]. The internal normal vector
is defined as nI ≡ nαeαI . It is convenient to carry out a partial gauge fixing, i.e., fix a internal
constant vector field nI with ηIJnInJ = −1. Note that the gauge fixing puts no restriction on
the real dynamics1. Then the internal vector space V is 3+1 decomposed with a 3-dimensional
subspace W orthogonal to nI , which will be the internal space on Σ. With respect to the internal
normal nI and spacetime normal nα, the internal and spacetime projection maps are denoted by
qI

i and qαa respectively, where we use i, j, k, ... to denote the 3-dimensional internal space indices
and a, b, c, ... to denote the indices of space Σ. Then an internal reduced metric δi j and a reduced
spatial metric on Σ, qab, are obtained by these two projection maps. The two metrics are related
by:

qab = δi jei
ae j

b, (4)

where the orthonormal co-triad on Σ is defined by ei
a := eI

αqi
Iq
α
a . Now the internal gauge group

S O(1, 3) is reduced to its subgroup S O(3) which leaves nI invariant. Finally, two Levi-Civita
symbols are obtained respectively as

εi jk := qI
i q

J
j q

K
k nLεLIJK ,

η
abc

:= qαaqβbqγc tµη
µαβγ

,

where the internal Levi-Civita symbol εi jk is an isomorphism of Lie algebra so(3). Using the
connection 1-form ω IJ

α , one can defined two so(3)-valued 1-form on Σ:

Γi
a :=

1
2

qαaqi
Iε

IJ
KLnJω

KL
α ,

Ki
a := qi

Iq
α
aω

IJ
α nJ,

where Γ is a spin connection on Σ and K will be related to the extrinsic curvature of Σ on shell.
After the 3+1 decomposition and the Legendre transformation, action (2) can be expressed as
[93]:

S p =

∫

R
dt

∫

Σ

d3x[P̃a
iLtAi

a −Htot(Ai
a, P̃

b
j ,Λ

i,N,Nc)], (5)

from which the symplectic structure on the classical phase space is obtained as

{Ai
a(x), P̃b

j(y)} := δi
jδ

a
bδ

3(x, y), (6)

where the configuration and conjugate momentum are defined respectively by:

Ai
a := Γi

a + βKi
a,

P̃a
i :=

1
2κβ

η̃abcεi jke
j
bek

c =
1
κβ

√
| det q|ea

i ,

1However, there are some arguments that such a gauge fixing is a non-natural way to break the internal Lorentz
symmetry (see e.g. [131]).
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here det q is the determinant of the 3-metric qab on Σ and hence det q = (κβ)3 det P. In the
definition of the configuration variable Ai

a, we should emphasize that Γi
a is restricted to be the

unique torsion free so(3)-valued spin connection compatible with the triad ea
i . This conclusion

is obtained by solving a second class constraint in the Hamiltonian analysis [93]. In the Hamil-
tonian formalism, one starts with the fields (Ai

a, P̃
a
i ). Then neither the basic dynamical variables

nor their Poisson brackets depend on the Barbero-Immirzi parameter β. Hence, for the case
of pure gravitational field, the dynamical theories with different β are related by a canonical
transformation. However, as we will see, the spectrum of geometric operators are modified by
different value of β, and the non-perturbative calculation of black hole entropy is compatible
with Bekenstein-Hawking’s formula only for a specific value of β [68]. In addition, it is argued
that the Barbero-Immerzi parameter βmay lead to observable effects in principle when the grav-
itational field is coupled with Fermions [112]. In the decomposed action (5), the Hamiltonian
densityHtot is a linear combination of constraints:

Htot = ΛiGi + NaCa + NC,

where Λi ≡ − 1
2ε

i
jkω

jk
t , Na and N are Lagrange multipliers. The three kinds of constraints in the

Hamiltonian are expressed as [20]:

Gi = DaP̃a
i := ∂aP̃a

i + ε k
i j A j

aP̃a
k ,

Ca = P̃b
i F i

ab −
1 + β2

β
Ki

aGi,

C =
κβ2

2
√| det q|

P̃a
i P̃b

j[ε
i j

kFk
ab − 2(1 + β2)Ki

[aK j
b]]

+ κ(1 + β2)∂a(
P̃a

i√| det q|
)Gi, (7)

where the configuration variable Ai
a performs as a so(3)-valued connection on Σ and F i

ab is the
so(3)-valued curvature 2-form of Ai

a with the well-known expression:

F i
ab := 2D[aAi

b] = ∂aAi
b − ∂bAi

a + ε i
jkA j

aAk
b.

In any dynamical system with constraints, the constraint analysis is essentially important be-
cause they reflect the gauge invariance of the system. From the above three kinds of constraints
of general relativity, one can know the gauge invariance of the theory. The Gauss constraint
Gi = 0 has crucial importance in formulating the general relativity into a dynamical theory of
connections. The corresponding smeared constraint function, G(Λ) :=

∫
Σ

d3xΛi(x)Gi(x), gener-
ates a transformation on the phase space as:

{Ai
a(x), G(Λ)} = −DaΛ

i(x)
{P̃a

i (x), G(Λ)} = ε k
i j Λ j(x)P̃a

k(x),

which are just the infinitesimal versions of the following gauge transformation for the so(3)-
valued connection 1-form A and internal rotation for the so(3)-valued densitized vector field P̃
respectively:

(Aa, P̃
b
) 7→ (g−1Aag + g−1(dg)a, g−1P̃

b
g).
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To display the meaning of the vector constraint Ca = 0, one may consider the smeared constraint
function:

V(~N) :=
∫

Σ

d3x(NaP̃b
i F i

ab − (NaAi
a)Gi).

It generates the infinitesimal spatial diffeomorphism by the vector field Na on Σ as:

{Ai
a(x), V(~N)} = L~N Ai

a(x),

{P̃a
i (x), V(~N)} = L~N P̃a

i (x).

The smeared scalar constraint is weakly equivalent to the following function, which is re-
expressed for quantization purpose as

S(N) :=
∫

Σ

d3xN(x)C̃(x)

=
κβ2

2

∫

Σ

d3xN
P̃a

i P̃b
j√| det q|

[ε i j
kFk

ab − 2(1 + β2)Ki
[aK j

b]]. (8)

It generates the infinitesimal time evolution off Σ. The constraints algebra, i.e., the Poisson
brackets between these constraints, play a crucial role in the quantization programme. It can be
shown that the constraints algebra of (7) has the following form:

{G(Λ), G(Λ′)} = G([Λ, Λ′]),
{G(Λ), V(~N)} = −G(L~NΛ),
{G(Λ), S(N)} = 0,
{V(~N), V(~N′)} = V([~N, ~N′]),
{V(~N), S(M)} = −S(L~N M),
{S(N), S(M)} = −V((N∂bM − M∂bN)qab)

−G((N∂bM − M∂bN)qabAa))

−(1 + β2)G(
[P̃a∂aN, P̃b∂bM]

| det q| ), (9)

where | det q|qab = κ2β2P̃a
i P̃b

jδ
i j. Hence the constraints algebra is closed under the Poisson

brackets, i.e., the constraints are all first class. Note that the evolution of constraints is consistent
since the Hamiltonian H =

∫
Σ

d3xHtot is a linear combination of the constraints functions. The
evolution equations of the basic canonical pair read

LtAi
a = {Ai

a, H}, LtP̃a
i = {P̃a

i , H}.

Together with the three constraint equations, they are completely equivalent to the Einstein
field equations. Thus general relativity is cast as a dynamical theory of connections with a
compact structure group. Before finishing the discussion of this section, several issues should
be emphasized.
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• Canonical Transformation Viewpoint

The above construction can be reformulated in the language of canonical transformations,
since the phase space of connection dynamics is the same as that of triad geometrodynam-
ics. In the triad formalism the basic conjugate pair consists of densitized triad Ẽa

i = βP̃a
i

and ”extrinsic curvature” Ki
a. The Hamiltonian and constraints read

Htot = ΛiG′i + NaCa + NC
G′i = ε k

i j K j
aẼa

k , (10)

Ca = Ẽb
j∇[aK j

b], (11)

C =
1√| det q|

[
1
2
| det q|R + Ẽ[a

i Ẽb]
j Ki

aK j
b], (12)

where ∇a is the S O(3) generalized derivative operator compatible with triad ea
i and R is

the scalar curvature with respect to it. Since Ẽa
i is a vector density of weight one, we have

∇aẼa
i = ∂aẼa

i + ε k
i j Γ j

aẼa
k = 0.

One can construct the desired Gauss law by

Gi :=
1
β
∇aẼa

i + G′i ,

= ∂aP̃a
i + ε k

i j (Γ j
a + βK j

a)P̃a
k ,

which is weakly zero by construction. This motivates us to define the connection Aa
i =

Γi
a +βKi

a. Moreover, the transformation from the pair (Ẽa
i ,K

j
b) to (P̃a

i , A
j
b) can be proved to

be a canonical transformation [34][146], i.e., the Poisson algebra of the basic dynamical
variables is preserved under the transformation:

Ẽa
i 7→ P̃a

i = Ẽa
i /β

K j
b 7→ A j

b = Γ
j
b + βK j

b,

as

{P̃a
i (x), A j

b(y)} = {Ẽa
i (x),K j

b(y)} = δa
bδ

j
i δ(x, y),

{Ai
a(x), A j

b(y)} = {Ki
a(x),K j

b(y)} = 0,

{P̃a
i (x), P̃b

j(y)} = {Ẽa
i (x), Ẽb

j (y)} = 0.

• The Preparation for Quantization

The advantage of a dynamical theory of connections is that it is convenient to be quan-
tized in a background independent fashion. In the following procedure of quantization,
the quantum algebra of the elementary observables will be generated by holonomy, i.e.,
connection smeared on a curve, and electric flux, i.e., a densitized triad smeared on a 2-
surface. So no information about a background geometry is needed to define the quantum

9



algebra. In the remainder of the thesis, in order to incorporate also spinors, we will en-
large the internal gauge group to be S U(2). This does not damage the prior constructions
because the Lie algebra of S U(2) is the same as that of S O(3). Due to the well-known
nice properties of compact Lie group S U(2), such as the Haar measure and Peter-Weyl
theorem, one can obtain the background independent representation of the quantum alge-
bra and the spin-network decomposition of the kinematic Hilbert space.

• Analysis on Constraint Algebra

The classical constraint algebra (9) is an infinite dimensional Poisson algebra. Unfortu-
nately, it is not a Lie algebra since the Poisson bracket between two scalar constraints has
structure function depending on dynamical variables. This causes problems when solving
the constraints quantum mechanically. On the other hand, one can see from Eq.(9) that
the algebra generated by Gauss constraints forms not only a subalgebra but also a 2-side
ideal in the full constraint algebra. Thus one can first solve the Gauss constraints indepen-
dently. It is convenient to find the quotient algebra with respect to the Gauss constraint
subalgebra as

{V(~N), V(~N′)} = V([~N, ~N′]),
{V(~N), S(M)} = −S(L~N M),
{S(N), S(M)} = −V((N∂bM − M∂bN)qab),

which plays a crucial role in solving the constraints quantum mechanically. But the subal-
gebra generated by the diffeomorphism constraints can not form an ideal. Hence the pro-
cedures of solving the diffeomorphism constraints and solving Hamiltonian constraints
are entangled with each other. This leads to certain ambiguity in the construction of a
Hamiltonian constraint operator [134][149]. Fortunately, the Master Constraint Project
addresses the above two problems as a whole by introducing a new classical constraint al-
gebra [149]. The new algebra is a Lie algebra where the diffeomorphism constraints form
a 2-side ideal. We will come back to this point in the discussion on quantum dynamics of
loop quantum gravity.
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3 Foundations of Loop Quantum Gravity
In this chapter, we will begin to quantize the above classical dynamics of connections as a
background independent quantum field theory. The main purpose of the chapter is to construct
a suitable kinematical Hilbert space Hkin for the representation of quantum observables. In the
following discussion, we formulate the construction in the language of algebraic quantum field
theory [85]. It should be emphasized that the following constructions can be generalized to all
background independent non-perturbative gauge field theories with compact gauge groups.

3.1 General Programme for Algebraic Quantization
In the strategy of loop quantum gravity, a canonical programme is performed to quantize gen-
eral relativity, which has been cast into a diffeomorphism invariant gauge field theory, or more
generally, a dynamical system with constraints. The following is a summary for a general pro-
cedure to quantize a dynamical system with first class constraints [133][4].

• Algebra of Classical Elementary Observables

One starts with the classical phase space (M, {, }) and R (R can be countable infinity2 )
first-class constraints Cr(r = 1...R) such that {Cr,Cs} = ΣR

t=1 f t
rs Ct, where f t

rs is generally
a function on phase space, namely, the structure function of Poisson algebra. The algebra
of classical elementary observables P is defined as:

Definition 3.1.1: The algebra of classical elementary observables P is a collection of
functions f (m),m ∈ M on the phase space such that
(1) f (m) ∈ P should separate the points ofM, i.e., for any m , m′, there exists f (m) ∈ P,
such that f (m) , f (m′); (analogy to the p and q inM = T∗R.)
(2) f (m), f ′(m) ∈ P ⇒ { f (m), f ′(m)} ∈ P (closed under Poisson bracket);
(3) f (m) ∈ P ⇒ f̄ (m) ∈ P (closed under complex conjugation).

So P forms a sub ∗-Poisson algebra of C∞(M). In the case of M = T∗R, P is gener-
ated by the conjugate pair (q, p) with {q, p} = 1.

• Quantum Algebra of Elementary Observables

Given the algebra of classical elementary observablesP, a quantum algebra of elementary
observables can be constructed as follows. Consider the formal finite sequences of classi-
cal observable ( f1... fn) with fk ∈ P. Then the operations of multiplication and involution
are defined as

( f1, ..., fn) · ( f ′1 , ..., f ′m) := ( f1, ..., fn, f ′1 , ..., f ′m),
( f1, .., fn)∗ := ( f̄n, ..., f̄1).

One can define the formal sum of different sequences with different number of elements.
Then the general element of the newly constructed free ∗-algebra F(P) of P, is formally

2This includes the case of field theory with infinite many degree of freedom, since one can introduce the
expression Cn,µ =

∫
Σ

d3xφn(x)Cµ(x), where {φn(x)}∞n=1 forms a system of basis in L2(Σ, d3x).
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expressed as
∑N

k=1( f (k)
1 , ... f (k)

nk ), where f (i)
ni ∈ P. Consider the elements of the form (se-

quences consisting of only one element)

( f + f ′) − ( f ) − ( f ′), (z f ) − z( f ), [( f ), ( f ′)] − i~({ f , f ′}),

where z ∈ C is a complex number, and the canonical commutation bracket is defined as

[( f ), ( f ′)] := ( f ) · ( f ′) − ( f ′) · ( f ).

A 2-side ideal I of F(P) can be constructed from these element, and is preserved by the
action of involution ∗. One thus obtains

Definition 3.1.2: The quantum algebra A of elementary observables is defined to be the
quotient ∗-algebra F(P)/I.

Note that the motivation to construct a quantum algebra of elementary observables is
to avoid the problem of operators ordering in quantum theory so that the quantum algebra
A can be represented on a Hilbert space without ordering ambiguities.

• Representation of Quantum Algebra

In order to obtain a quantum theory, we need to quantize the classical observables in the
dynamical system. The, so called, quantization is nothing but a ∗-representation map3 π
from the quantum algebra of elementary observable A to the collection of linear opera-
tors L(H) on a Hilbert Space H . At the level of quantum mechanics, the well-known
Stone-Von Neumann Theorem concludes that in quantum mechanics, there is only one
strongly continuous, irreducible, unitary representation of the Weyl algebra, up to uni-
tary equivalence (see, for example, Ref.[113]). However, the conclusion of Stone-Von
Neumann cannot be generalized to the quantum field theory because the latter has infinite
many degrees of freedom (for detail, see, for example [157]). In quantum field theory,
a representation can be constructed by GNS(Gel’fand-Naimark-Segal)-construction for a
quantum algebra of elementary observable A, which is a unital ∗-algebra actually. The
GNS-construction for the representation of quantum algebra A is briefly summarized as
follows.

Definition 3.1.3: Given a positive linear functional (a state) ω on A, the null space
Nω ∈ A with respect to ω is defined as Nω := {a ∈ A|ω(a∗ · a) = 0}, which is a left ideal
in A. Then a quotient map can be defined as [.]: A → A/Nω; a 7→ [a] := {a + b|b ∈ Nω}.

3A map π: A → L(H) is a *-representation if and only if (1) there exists a dense subspace D of H contained
in ∩a∈A[D(π(a)) ∩ D(π(a∗))] where D(π(a)) is the domain of the operator π(a) and (2) for every a, b ∈ A and λ ∈ C
the following conditions are satisfied inD,

π(a + b) = π(a) + π(b), π(λa) = λπ(a),
π(a · b) = π(a)π(b), π(a∗) = π(a)†.

Note that L(H) fails to be an algebra because the domains of unbounded operators cannot be the whole Hilbert
space. However, the collection of bounded operators on any Hilbert space is really a ∗-algebra.
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The GNS-representation for A with respect to ω is a ∗-representation map: πω: A →
L(Hω), whereHω := 〈A/Nω〉 and 〈.〉 denotes the completion with respect to the naturally
equipped well-defined inner product

< [a]|[b] >Hω
:= ω(a∗ · b)

onHω. This representation map is defined by

πω(a)[b] := [a · b], ∀ a ∈ A and [b] ∈ Hω,

where πω(a) is an unbounded operator in general. Moreover, GNS-representation is a
cyclic representation, i.e., ∃ Ωω ∈ Hω, such that 〈{π(a)Ωω|a ∈ A}〉 = Hω and Ωω is called
a cyclic vector in the representation space. In fact Ωω := [1] is a cyclic vector inHω and
〈{πω(a)Ωω|a ∈ A}〉 = Hω. As a result, the positive linear functional with which we begin
can be expressed as

ω(a) =< Ωω|πω(a)Ωω >Hω
.

Thus a positive linear functional on A is equivalent to a cyclic representation of A, which
is a triple (Hω, πω,Ωω). Moreover, every non-degenerate representation is an orthogonal
direct sum of cyclic representations ( for proof, see [58] ) .

So the kinematical Hilbert space Hkin = Hω for the system with constrains can be ob-
tained by GNS-construction. In the case that there are gauge symmetries in our dy-
namical system, supposing that there is a gauge group G acting on A by automorphisms
αg : A → A, ∀ g ∈ G, it is preferred to construct a gauge invariant representation of A.
So we require the positive linear functional ω on A to be gauge invariant, i.e., ω ◦αg = ω.
Then the group G is represented on the Hilbert spaceHω as:

U(g)πω(a)Ωω = πω(αg(a))Ωω,

and such a representation is a unitary representation of G. In loop quantum gravity, it is
crucial to construct an internal gauge invariant and diffeomorphism invariant representa-
tion for the quantum algebra of elementary observables.

• Implementation of the Constraints

In the Dirac quantization programme for a system with constraints, the constraints should
be quantized as some operators in a kinematical Hilbert space Hkin. One then solves
them at quantum level to get a physical Hilbert space Hphys, that is, to find a quantum
analogy Ĉr of the classical constraint formula Cr and to solve the general solution of
the equation ĈrΨ = 0. However, there are several problems in the construction of the
constraint operator Ĉr.

(i) Cr is in general not in P, so there is a factor ordering ambiguity in quantizing Cr to
be an operator Ĉr.

(ii) In quantum field theory, there are ultraviolet(UV) divergence problems in construct-
ing operators. However, the UV divergence can be avoided in the background inde-
pendent approach.
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(iii) Sometimes, quantum anomalies may appear when there are structure functions in
the Poisson algebra. Although classically we have {Cr,Cs} = ΣR

t=1 f t
rs Ct, r, s, t =

1, ...,R, where f t
rs is a function on phase space, quantum mechanically it is possible

that [Ĉr, Ĉs] , i~ΣR
t=1 f̂ t

rs Ĉt due to the ordering ambiguity between f̂ t
rs and Ĉt. If one

sets [Ĉr, Ĉs] = i~
2 ΣR

t=1( f̂ t
rs Ĉt + Ĉt f̂ t

rs ), for Ψ satisfying ĈrΨ = 0, we have

[Ĉr, Ĉs]Ψ =
i~
2

R∑

t=1

Ĉt f̂ t
rs Ψ =

i~
2

R∑

t=1

[Ĉt, f̂ t
rs ]Ψ. (13)

However, [Ĉt, f̂ t
rs ]Ψ are not necessary to equal to zero for all r, s, t = 1...R. If

not, the problem of quantum anomaly appears and the new quantum constraints
[Ĉt, f̂ t

rs ]Ψ = 0 have to be imposed on physical quantum states, since the classical
Poisson brackets {Cr,Cs} are weakly equal to zero on the constraint surfaceM ⊂M.
Thus too many constraints are imposed and the physical Hilbert space Hphys would
be too small. Therefore this is not a satisfactory solution and one needs to find a
way to avoid the quantum anomalies.

• Solving the Constraints and Physical Hilbert Space

In general the original Dirac quantization approach can not be carried out directly, since
there is usually no nontrivial Ψ ∈ Hkin such that ĈrΨ = 0. This happens when the con-
straint operator Ĉr has ”generalized eigenfunctions” rather than eigenfunctions. One then
develops the so-called Refined Algebraic Quantization Programme, where the solutions
of the quantum constraint can be found in the algebraic dual space of a dense subset in
Hkin (see e.g. [84]). The quantum diffeomorphism constraint in loop quantum gravity is
solved in this way. Another interesting way to solve the quantum constraints is the Mas-
ter Constraint Approach proposed by Thiemann recently [149], which seems especially
suited to deal with the particular feature of the constraint algebra of general relativity. A
master constraint is defined as M := 1

2ΣR
r,s=1KrsCsC̄r for some real positive matrix Krs.

Classically one has M = 0 if and only if Cr = 0 for all r = 1...R. So quantum mechan-
ically one may consider solving the Master Equation: M̂Ψ = 0 to obtain the physical
Hilbert space Hphys instead of solving ĈrΨ = 0, ∀ r = 1...R. Because the master con-
straint M is classically positive, one has opportunities to implement it as a self-adjoint
operator on Hkin. If it is indeed the case and Hkin is separable, one can use the direct in-
tegral representation ofHkin associated with the self-adjoint operator M̂ to obtainHphys:

Hkin ∼
∫ ⊕

R
dµ(λ)H⊕λ ,

< Φ|Ψ >kin =

∫

R
dµ(λ) < Φ|Ψ >H⊕λ , (14)

where µ is a so-called spectral measure andH⊕λ is the (generalized) eigenspace of M̂ with
the eigenvalue λ. The physical Hilbert space is then formally obtained as Hphys = H⊕λ=0
with the induced physical inner product < | >H⊕

λ=0

4. Now the issue of quantum anomaly

4One need to be careful for such a formal prescription, see the later discussion of master constraint or [63].
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is represented in terms of the size of Hphys and the existence of sufficient numbers of
semi-classical states.

• Physical Observables

We denoteM as the original unconstrained phase space,M as the constraint surface, i.e.,
M := {m ∈ M|Cr(m) = 0, ∀ r = 1...R}, and M̂ as the reduced phase space, i.e. the space
of orbits for gauge transformations generated by all Cr. The concept of Dirac observable
is defined as the follows.

Definition 3.1.4:
(1) A function O onM is called a weak Dirac observable if and only if the function de-
pends only on points of M̂, i.e., {O,Cr}|M = 0 for all r = 1...R. For the quantum version,
a self-adjoint operator Ô is a weak Dirac observable if and only if the operator can be
well defined on the physical Hilbert space.
(2) A function O on M is called a strong Dirac observable if and only if {O,Cr}|M = 0
for all r = 1...R. For the quantum version, a self-adjoint operator Ô is a strong Dirac
observable if and only if the operator can be defined on the kinematic Hilbert spaceHkin

and [Ô, Ĉr] = 0 inHkin for all r = 1...R.

A physical observable is at least a weak Dirac observable. While Dirac observables have
been found explicitly in symmetry reduced models, some even with an infinite number
of degrees of freedom, it seems extremely difficult to find explicit expressions for them
in full general relativity. Moreover the Hamiltonian is a linear combination of first-class
constraints. So there is no dynamics in the reduced phase space, and the meaning of
time evolution of the Dirac observables becomes subtle. However, using the concepts of
partial and complete observables [121][115][122], a systematic method to get Dirac ob-
servables can be developed, and the problem of time in such system with a Hamiltonian
H = ΣR

r=1βrCr may also be solved.

Classically, let f (m) and {Tr(m)}Rr=1 be gauge non-invariant functions (partial observables)
on phase spaceM, such that Asr ≡ {Cs,Tr} is a non-degenerate matrix onM. A system
of classical weak Dirac observables (complete observables) Fτ

f ,T labelled by a collection
of real parameters τ ≡ {τr}Rr=1 can be constructed as

Fτ
f ,T :=

∞∑

{n1···nR}

(τ1 − T1)n1 · · · (τR − TR)nR

n1! · · · nR!
X̃n1

1 ◦ · · · ◦ X̃nR
R ( f ),

where X̃r( f ) := {ΣR
s=1A−1

rs Cs, f } ≡ {C̃r, f } . It can be verified that [X̃r, X̃s]|M = 0 and
{Fτ

f ,T ,Cr}|M = 0, for all r = 1...R (for details see [61] and [62]).

The partial observables {Tr(m)}Rr=1 may be regarded as clock variables, and τr is the time
parameter for Tr. The gauge is fixed by giving a system of functions {Tr(m)}Rr=1 and
corresponding parameters {τr}Rr=1, namely, a section in M is selected by Tr(m) = τr for
each r, and Fτ

f ,T is the value of f on the section. To solve the problem of dynamics, one
assumes another set of canonical coordinates (P1, · · ·, PN−R,Π1, · · ·,ΠR; Q1, · · ·,QN−R,T1, · ·
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·,TR) by canonical transformations in the phase space (M, { , }), where Ps and Πr are
conjugate to Qs and Tr respectively. After solving the complete system of constraints
{Cr(Pi,Q j,Πs,Tt) = 0}Rr=1, the Hamiltonian Hr with respect to the time Tr is obtained as
Hr := Πr(Pi,Q j,Tt). Given a system of constants {(τ0)r}Rr=1, for an observable f (Pi,Q j)
depending only on Pi and Q j, the physical dynamics is given by [61][150]:

(
∂

∂τr
)τ=τ0 Fτ

f ,T |M = Fτ0
{Hr , f },T |M = {Fτ0

Hr ,T
, Fτ0

f ,T }|M,

where Fτ0
Hr ,T

is the physical Hamiltonian function generating the evolution with respect to
τr. Thus one has addressed the problem of time and dynamics as a result.

• Semi-classical Analysis

An important issue in the quantization is to check whether the quantum constraint oper-
ators have correct classical limits. This has to be done by using the kinematical semi-
classical states in Hkin. Moreover, the physical Hilbert space Hphys must contain enough
semi-classical states to guarantee that the quantum theory one obtains can return to the
classical theory when ~ → 0. The semi-classical states in a Hilbert spaceH should have
the following properties.

Definition 3.1.5: Given a class of observables S which comprises a subalgebra in the
space L(H) of linear operators on the Hilbert space, a family of (pure) states {ωm}m∈M
are said to be semi-classical with respect to S if and only if:
(1) The observables in S should have correct semi-classical limit on semi-classical states
and the fluctuations should be small, i.e.,

lim
~→0
|ωm(â) − a(m)

a(m)
| = 0,

lim
~→0
|ωm(â2) − ωm(â)2

ωm(â)2 | = 0,

for all â ∈ S.
(2) The set of cyclic vectors Ωm related to ωm via the GNS -representation (πω,Hω,Ωω)
is dense inH .

Seeking for semiclassical states are one of open issues of current research in loop quantum
gravity. Recent original works focus on the construction of coherent states of loop quan-
tum gravity in analogy with the coherent states for harmonic oscillator system [142][143]
[144][145][19][15].

The above is the general programme to quantize a system with constraints. In the following sub-
section, we will apply the programme to the theory of general relativity and restrict our view to
the representation with the properties of background independence and spatial diffeomorphism
invariance.
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3.2 Quantum Configuration Space
In quantum mechanics, the kinematical Hilbert space is L2(R3, d3x), where the simple R3 is the
classical configuration space of free particle which has finite degrees of freedom, and d3x is the
Lebesgue measure on R3. In quantum field theory, it is expected that the kinematical Hilbert
space is also the L2 space on the configuration space of the field, which is infinite dimensional,
with respect to some Borel measure naturally defined. However, it is often hard to define a
concrete Borel measure on the classical configuration space, since the integral theory on infinite
dimensional space is involved [57]. Thus the intuitive expectation should be modified, and the
concept of quantum configuration space should be introduced as a suitable enlargement of the
classical configuration space so that an infinite dimensional measure, often called cylindrical
measure, can be well defined on it. The example of a scalar field can be found in the refer-
ences [20][24]. For quantum gravity, it should be emphasized that the construction for quantum
configuration space must be background independent. Fortunately, general relativity has been
reformulated as a dynamical theory of S U(2) connections, which would be great helpful for our
further development.

The classical configuration space for gravitational field, which is denoted by A, is a col-
lection of the su(2)-valued connection 1-form field smoothly distributed on Σ. The idea of the
construction for quantum configuration is due to the concept of holonomy.

Definition 3.2.1: Given a smooth S U(2) connection field Ai
a and an analytic curve c with the

parameter t ∈ [0, 1] supported on a compact subset (compact support ) of Σ, the corresponding
holonomy is defined by the solution of the parallel transport equation [104]

d
dt

A(c, t) = −[Ai
aċaτi]A(c, t), (15)

with the initial value A(c, 0) = 1, where ċa is the tangent vector of the curve and τi ∈ su(2)
constitute an orthonormal basis with respect to the Killing-Cartan metric η(ξ, ζ) := −2Tr(ξζ),
which satisfy [τi, τ j] = εk

i jτk and are fixed once for all. Thus the holonomy is an element in
S U(2), which can be expressed as

A(c) = P exp ( −
∫ 1

0
[Ai

aċaτi] dt), (16)

where A(c) ∈ S U(2) and P is a path-ordering operator along the curve c (see the footnote at
p382 in [104]).

The definition can be well extended to the case of piecewise analytic curves via the relation:

A(c1 ◦ c2) = A(c1)A(c2), (17)

where ◦ stands for the composition of two curves. It is easy to see that a holonomy is invariant
under the re-parametrization and is covariant under changing the orientation, i.e.,

A(c−1) = A(c)−1. (18)
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So one can formulate the properties of holonomy in terms of the concept of the equivalent
classes of curves.

Definition 3.2.2: Two analytic curves c and c′ are said to be equivalent if and only if they
have the same source s(c) (beginning point ) and the same target t(c) (end point ), and the
holonomies of the two curves are equal to each other, i.e., A(c) = A(c′) ∀A ∈ A. A equivalent
class of analytic curves is defined to be an edge, and a piecewise analytic path is an composition
of edges.

To summarize, the holonomy is actually defined on the set P of piecewise analytic paths with
compact supports. The two properties (17) and (18) mean that each connection in A is a ho-
momorphism from P, which is so-called a groupoid by definition [155], to our compact gauge
group S U(2). Note that the internal gauge transformation and spatial diffeomorphism act co-
variantly on a holonomy as

A(e) 7→ g(t(e))−1A(e)g(s(e)) and A(e) 7→ A(ϕ ◦ e), (19)

for any S U(2)-valued function g(x) on Σ and spatial diffeomorphism ϕ. All above discussion
is for classical smooth connections in A. The quantum configuration space for loop quantum
gravity can be constructed by extending the concept of holonomy, since its definition does not
depend on an extra background. One thus obtains the quantum configuration space A of loop
quantum gravity as the following.

Definition 3.2.3: The quantum configuration spaceA is a collection of all quantum connections
A, which are algebraic homomorphism maps without any continuity assumption from the col-
lection of piecewise analytic paths with compact supports, P, on Σ to the gauge group S U(2),
i.e.,A := Hom(P, S U(2))5. Thus for any A ∈ A and edge e in P,

A(e1 ◦ e2) = A(e1)A(e2) and A(e−1) = A(e)−1.

The transformations of quantum connections under internal gauge transformations and diffeo-
morphisms are defined by Eq.(19).

The above discussion on the smooth connections shows that the classical configuration space
A can be understood as a subset in the quantum configuration space A. Moreover, the Giles
theorem [82] shows precisely that a smooth connection can be recovered from its holonomies
by varying the length and location of the paths.

On the other hand, it was shown in [155][146] that the quantum configuration space A can
be constructed via a projective limit technique and admits a natural defined topology. To make
the discussion precise, we begin with a few definitions:

Definition 3.2.4:
5It is easy to see that the definition ofA does not depend on the choice of local section in S U(2)-bundle, since

the internal gauge transformations leaveA invariant.
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1. A finite set {e1, ..., eN} of edges is said to be independent if the edges ei can only intersect
each other at their sources s(ei) or targets t(ei).

2. A finite graph is a collection of a finite set {e1, ..., eN} of independent edges and their
vertices, i.e. their sources s(ei) and targets t(ei). We denote by E(γ) and V(γ) respectively
as the sets of independent edges and vertices of a given finite graph γ. And Nγ is the
number of elements in E(γ).

3. A subgroupoid α(γ) ⊂ P can be generated from γ by identifying V(γ) as the set of ob-
jects and all e ∈ E(γ) together with their inverses and finite compositions as the set of
homomorphisms. This kind of subgoupoid in P is called tame subgroupoid. α(γ) is inde-
pendent of the orientation of γ, so the graph γ can be recovered from tame subgroupoid
α up to the orientations on the edges. We will also denote by Nα the number of elements
in E(γ) where γ is recovered by the tame subgroupoid α.

4. L denotes the set of all tame subgroupoids in P.

One can equip a partial order relation ≺ on L 6, defined by α ≺ α′ if and only if α is a sub-
groupoid in α′. Obviously, for any two tame subgroupoids α ≡ α(γ) and α′ ≡ α(γ′) in L, there
exists α′′ ≡ α(γ′′) ∈ L such that α, α′ ≺ α′′, where γ′′ ≡ γ ∪ γ′. Define Xα ≡ Hom(α, S U(2))
as the set of all homomorphisms from the subgroupoid α(γ) to the group S U(2). Note that an
element Aα ∈ Xα (α = α(γ)) is completely determined by the S U(2) group elements A(e) where
e ∈ E(γ), so that one has a bijection λ : Xα(γ) → S U(2)Nγ , which induces a topology on Xα(γ)

such that λ is a topological homomorphism. For any pair α ≺ α′, one can define a surjective
projection map Pα′α from Xα′ to Xα by restricting the domain of the map Aα′ from α′ to the sub-
groupoid α, and these projections satisfy the consistency condition Pα′α ◦ Pα′′α′ = Pα′′α. Thus
a projective family {Xα, Pα′α}α≺α′ is obtained by above constructions. Then the projective limit
limα(Xα) is naturally obtained.

Definition 3.2.5: The projective limit limα(Xα) of the projective family {Xα, Pα′α}α≺α′ is a subset
of the direct product space X∞ :=

∏
α∈L Xα defined by

lim
α

(Xα) := {{Aα}α∈L|Pα′αAα′ = Aα, ∀ α ≺ α′}.

Note that the projection Pα′α is surjective and continuous with respect to the topology of Xα.
One can equip the direct product space X∞ with the so-called Tychonov topology. Since any Xα

is a compact Hausdorff space, by Tychonov theorem X∞ is also a compact Hausdorff space. One
then can prove that the projective limit, limα(Xα), is a closed subset in X∞ and hence a compact
Hausdorff space with respect to the topology induced from X∞. At last, one can find the relation
between the projective limit and the prior constructed quantum configuration space A. As one
might expect, there is a bijection Φ betweenA and limα(Xα) [146]:

Φ : A → lim
α

(Xα);

A 7→ {A|α}α∈L,
6A partial order on L is a relation, which is reflective (α ≺ α), symmetric (α ≺ α′, α′ ≺ α ⇒ α′ = α) and

transitive (α ≺ α′, α′ ≺ α′′ ⇒ α′ ≺ α′′). Note that not all pairs in L need to have a relation.
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where A|α means the restriction of the domain of the map A ∈ A = Hom(P, S U(2)). As a result,
the quantum configuration space is identified with the projective limit space and hence can be
equipped with the topology. In conclusion, the quantum configuration space A is constructed
to be a compact Hausdorff topological space.

3.3 Cylindrical Functions on Quantum Configuration Space
Given the projective family {Xα, Pα′α}α≺α′ , the cylindrical function on its projective limit A is
well defined as follows.

Definition 3.3.1: Let C(Xα) be the set of all continuous complex functions on Xα, two func-
tions fα ∈ C(Xα) and fα′ ∈ C(Xα′) are said to be equivalent or cylindrically consistent, denoted
by fα ∼ fα′ , if and only if P∗α′′α fα = P∗α′′α′ fα′ , ∀α′′ � α, α′, where P∗α′′α denotes the pullback map
induced from Pα′′α. Then the space Cyl(A) of cylindrical functions on the projective limit A is
defined to be the space of equivalent classes [ f ], i.e.,

Cyl(A) := [ ∪α C(Xα)]/ ∼ .

One then can easily prove the following proposition by definition.

Proposition 3.3.1:
All continuous functions fα on Xα are automatically cylindrical since each of them can generate
a equivalent class [ fα] via the pullback map P∗α′α for all α′ � α, and the dependence of P∗α′α fα
on the groups associated to the edges in α′ but not in α is trivial, i.e., by the definition of the
pull back map,

(P∗α′α fα)(A(e1), ..., A(eNα
), ..., A(eNα′ )) = fα(A(e1), ..., A(eNα

)), (20)

where Nα denotes the number of independent edges in the graph recovered from the groupoid α.
On the other hand, by definition, given a cylindrical function f ∈ Cyl(A) there exists a suitable
groupoid α such that f = [ fα], so one can identify f with fα. Moreover, given two cylindrical
functions f , f ′ ∈ Cyl(A), by definition of cylindrical functions and the property of projection
map, there exists a common groupoid α and fα, f ′α ∈ C(Xα) such that f = [ fα] and f ′ = [ f ′α].

Let f , f ′ ∈ Cyl(A), there exists graph α such that f = [ fα], and f ′ = [ f ′α], then the following
operations are well defined

f + f ′ := [ fα + f ′α], f f ′ := [ fα f ′α], z f := [z fα], f̄ := [ f̄α],

where z ∈ C and f̄ denotes complex conjugate. So we construct Cyl(A) as an Abelian ∗-algebra.
In addition, there is a unital element in the algebra because Cyl(A) contains constant functions.
Moreover, we can well define the sup-norm for f = [ fα] by

‖ f ‖ := sup
Aα∈Xα

| fα(Aα)|, (21)
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which satisfies the C∗ property ‖ f f̄ ‖ = ‖ f ‖2. Then Cyl(A) is a unital Abelian C∗-algebra, after
the completion with respect to the norm.

From the theory of C∗-algebra, it is known that a unital Abelian C∗-algebra is identical to the
space of continuous functions on its spectrum space via an isometric isomorphism, the so-called
Gel’fand transformation (see e.g. [146]). So we have the following theorem [17][18], which
finishes this section.

Theorem 3.3.1:
(1) The space Cyl(A) has a structure of a unital Abelian C∗-algebra after completion with re-
spect to the sup-norm.

(2) Quantum configuration space A is the spectrum space of completed Cyl(A) such that

Cyl(A) is identical to the space C(A) of continuous functions onA.

3.4 Loop Quantum Kinematics
In analogy with the quantization procedure of section 3.1, in this subsection we would like to
perform the background-independent construction of algebraic quantum field theory for gen-
eral relativity. First we construct the algebra of classical observables. Taking account of the
future quantum analogs, we define the algebra of classical observables P as the Poission ∗-
subalgebra generated by the functions of holonomies (cylindrical functions) and the fluxes of
triad fields smeared on some 2-surface. Namely, one can define the classical algebra in analogy
with geometric quantization in finite dimensional phase space case by the so-called classical
Ashtekar-Corichi-Zapata holonomy-flux ∗-algebra as the following [96].

Definition 3.4.1
The classical Ashtekar-Corichi-Zapata holonomy-flux ∗-algebra is defined to be a vector space
PACZ := Cyl(A)×VC(A), whereVC(A) is the vector space of algebraic vector fields spanned
by the vector fields ψY f (S ) ψ ∈ Cyl(A), and their commutators, here the smeared flux vector
field Y f (S ) is defined by acting on any cylindrical function:

Y f (S )ψ := {
∫

S
η

abc
P̃c

i f i, ψ},

for any su(2)-valued function f i with compact supports on S and ψ are cylindrical functions on
A. We equip PACZ with the structure of an ∗-Lie algebra by:
(1) Lie bracket { , } : PACZ ×PACZ → PACZ is defined by

{(ψ,Y), (ψ′,Y ′)} := (Y ◦ ψ′ − Y ′ ◦ ψ, [Y,Y ′]),

for all (ψ,Y), (ψ′,Y ′) ∈ PACZ with ψ, ψ′ ∈ Cyl(A) and Y,Y ′ ∈ VC(A).

(2) Involution: p 7→ p̄ ∀ p ∈ PACZ is defined by complex conjugate of cylindrical functions
and vector fields, i.e., p̄ := (ψ,Y) ∀ p = (ψ,Y) ∈ PACZ , where Yψ := Yψ.
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(3) PACZ admits a natural action of Cyl(A) by

ψ′ ◦ (ψ,Y) := (ψ′ψ, ψ′Y),

which gives PACZ a module structure.

Note that the action of flux vector field Y f (S ) on can be expressed explicitly on any cylindrical
function ψγ ∈ C1(Xα(γ)) via a suitable regularization[146]:

Y f (S )ψγ = {
∫

S
η

abc
P̃c

i f i, ψγ},

=
∑

e∈E(γ)

{
∫

S
η

abc
P̃c

i f i, A(e)mn} ∂

∂A(e)mn
ψγ

=
∑

e∈E(γ)

κ(S , e)
2

f i(S ∩ e)[δS∩e,s(e)(A(e)τi)mn − δS∩e,t(e)(τiA(e))mn]
∂

∂A(e)mn
ψγ

=
∑

v∈V(γ)∩S

∑

e at v

κ(S , e)
2

f i(v)X(e,v)
i ψγ,

where A(e)mn is the S U(2) matrix element of the holonomy along the edge e, X(e,v)
i is the

left(right) invariant vector field L(τi)(R(τi)) of the group associated with the edge e if v is the
source(target) of edge e by definition:

L(τi)ψ(A(e)) :=
d
dt
|t=0ψ(A(e) exp(tτi)),

R(τi)ψ(A(e)) :=
d
dt
|t=0ψ( exp(−tτi)A(e)),

and

κ(S , e) =


0, if e ∩ S = ∅, or e lies in S ;
1, if e lies above S and e ∩ S = p;
−1, if e lies below S and e ∩ S = p.

Since the surface S is oriented with normal na, ”above” means naėa|p > 0, and ”below” means
naėa|p < 0, where ėa|p is the tangent vector of e at p. And one should consider e ∩ S contained
in the set V(γ) and some edges are written as the union of elementary edges which either lie in
S , or intersect S at their source or target. On the other hand, from the commutation relations
for the left(right) invariant vector fields, one can see that the commutators between flux vector
fields do not necessarily vanish when S ∩ S ′ , ∅. This unusual property is the classical origin
of the non-commutativity of quantum Riemannian structures [23].

The classical Ashtekar-Corichi-Zapata holonomy-flux ∗-algebra serves as a classical alge-
bra of elementary observables in our dynamical system of gauge fields. Then one can construct
the quantum algebra of elementary observables from PACZ in analogy with Definition 3.1.2.

Definition 3.4.2[96]
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The abstract free algebra F(PACZ) of the classical ∗-algebra is defined by the formal direct sum
of finite sequences of classical observables (p1, ..., pn) with pk ∈ PACZ , where the operations of
multiplication and involution are defined as

(p1, ..., pn) · (p′1, ..., p′m) := (p1, ..., pn, p′1, ..., p′m),
(p1, .., pn)∗ := ( p̄n, ..., p̄1).

A 2-sided ideal I can be generated by the following elements,

(p + p′) − (p) − (p′), (zp) − z(p),
[(p), (p′)] − i~({p, p′}),

((ψ, 0), p) − (ψ ◦ p),

where the canonical commutation bracket is defined by

[(p), (p′)] := (p) · (p′) − (p′) · (p).

Note that the ideal I is preserved by the involution ∗, and the last set of generators in the ideal
I cancels the overcompleteness generated from the module structure of PACZ [4].
The quantum holonomy-flux ∗-algebra is defined by the quotient ∗-algebra A = F(PACZ)/I,
which contains the unital element 1 := ((1, 0)). Note that a sup-norm has been defined by
Eq.(21) for the Abelian sub-∗-algebra Cyl(A) in A.

For simplicity, we denote the one element sequences (equivalence classes) ̂((ψ, 0)) and ̂((0,Y))
∀ ψ ∈ Cyl(A), Y ∈ VC(A) in A by ψ̂ and Ŷ respectively, where the ”hat” denotes the equiv-
alence class with respect to the quotient. In particular, for all cylindrical functions ψ̂ and flux
vector fields Ŷ f (S ),

ψ̂∗ = ˆ̄ψ and Ŷ f (S )∗ = Ŷ f (S ).

It can be seen that the free algebra F(PACZ) is simplified a great deal after the quotient, and every
element of the quantum algebra A can be written as a finite linear combination of elements of
the form

ψ̂,

ψ̂1 · Ŷ f11(S 11),
ψ̂2 · Ŷ f21(S 21) · Ŷ f22(S 22),
...

ψ̂k · Ŷ fk1(S k1) · Ŷ fk2(S k2) · ... · Ŷ fkk(S kk),
...

Moreover, given a cylindrical function ψ and a flux vector field Y f (S ), one has the relation from
the commutation relation:

Ŷ f (S ) · ψ̂ = i~ ̂Y f (S )ψ + ψ̂ · Ŷ f (S ). (22)
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Then the kinematical Hilbert spaceHkin can be obtained properly via the GNS-construction for
unital ∗-algebra A in the same way as in Definition 3.1.3. By the GNS-construction, a positive
linear functional, i.e. a state ωkin, on A defines a cyclic representation (Hkin, πkin,Ωkin) for A. In
our case of quantum holonomy-flux ∗-algebra, the state with both Yang-Mills gauge invariance
and diffeomorphism invariance is defined for any ψγ ∈ Cyl(A) and non-vanishing flux vector
field Y f (S ) ∈ VC(A) as [96]:

ωkin(ψ̂γ) :=
∫

S U(2)Nγ

∏

e∈E(γ)

dµH(A(e))ψγ({A(e)}e∈E(γ)),

ωkin(â · Ŷ f (S )) := 0, ∀â ∈ A,
where dµH is the Haar measure on the compact group S U(2) and Nγ is the number of elements
in E(γ). This ωkin is called Ashtekar-Isham-Lewandowski state. The null space Nkin ∈ A with
respect to ωkin is defined as Nkin := {â ∈ A|ωkin(â∗ · â) = 0}, which is a left ideal. Then a quotient
map can be defined as:

[.] : A → A/Nkin;
â 7→ [â] := {â + b̂|b̂ ∈ Nkin}.

The GNS-representation for A with respect to ωkin is a representation map: πkin: A → L(Hkin)
such that πkin(â · b̂) = πkin(â)πkin(b̂), where Hkin := 〈A/Nkin〉 = 〈Cyl(A)〉 by straightforward
verification and the 〈·〉 denotes the completion with respect to the natural equipped inner product
onHkin,

< [â]|[b̂] >kin:= ωkin(â∗ · b̂).

To show how this inner product works, given any two cylindrical functions ψ = [ψα], ψ′ =

[ψ′α′] ∈ Cyl(A), the inner product between them is expressed as

< [ψ̂]|[ψ̂′] >kin:=
∫

Xα′′
(P∗α′′αψα)(P∗α′′α′ψ

′
α′)dµα′′ , (23)

for any groupoid α′′ containing both α and α′. The measure dµα on Xα is defined by the pull
back of the product Haar measure dµNα

H on the product group S U(2)Nα via the identification
bijection between Xα and S U(2)Nα , where Nα is number of maximal analytic edges generating
α. In addition, a nice result shows that given such a family of measures {µα}α∈L, a probability
measure µ is uniquely well-defined on the quantum configuration space A [17], such that the
kinematical Hilbert space Hkin coincides with the collection of the square-integrable functions
with respect to the measure µ on the quantum configuration space, i.e. Hkin = L2(A, dµ), just
as we expected at the beginning of our construction.

The representation map πkin is defined by

πkin(â)[b̂] := [â · b̂], ∀ â ∈ A, and [b̂] ∈ Hkin.

Note that πkin(â) is an unbounded operator in general. It is easy to verify that

πkin(Ŷ f (S ))[ψ̂] = i~[ ̂Y f (S )ψ]
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via Eq.(22), which gives the canonical momentum operator. In the following context, we denote
the operator πkin(Ŷ f (S )) by P̂ f (S ) on Hkin, and just denote the elements [ψ̂] in Hkin by ψ for
simplicity.

Moreover, since Ωkin := 1 is a cyclic vector inHkin, the positive linear functional which we
begin with can be expressed as

ωkin(â) =< Ωkin|πkin(â)Ωkin >kin .

Thus the Ashtekar-Isham-Lewandowski state ωkin on A is equivalent to a cyclic representation
(Hkin, πkin,Ωkin) for A, which is the Ashtekar-Isham-Lewandowski representation for quantum
holonomy-flux ∗-algebra of background independent gauge field theory. One thus obtains the
kinematical representation of loop quantum gravity via the construction of algebraic quantum
field theory. It is important to note that the Ashtekar-Isham-Lewandowski state is the unique
state on the quantum holonomy-flux ∗-algebra A invariant under internal gauge transformations
and spatial diffeomorphisms7, which are both automorphisms αg and αϕ on A and can be veri-
fied that ωkin ◦ αg = ωkin and ωkin ◦ αϕ = ωkin. So these gauge transformations are represented
as unitary transformations onHkin, while the cyclic vector Ωkin, representing ”no geometry vac-
uum” state, is the unique state inHkin invariant under internal gauge transformations and spatial
diffeomorphisms. This is a very crucial uniqueness theorem for canonical quantization of gauge
field theory [96]:

Theorem 3.4.1: There exists exactly one Yang-Mills gauge invariant and spatial diffeomor-
phism invariant state (positive linear functional) on the quantum holonomy-flux ∗-algebra. In
other words, there exists a unique Yang-Mills gauge invariant and spatial diffeomorphism in-
variant cyclic representation for the quantum holonomy-flux ∗-algebra, which is called Ashtekar-
Isham-Lewandowski representation. Moreover, this representation is irreducible with respect to
an exponential version of the quantum holonomy-flux algebra (defined in [130]), which is anal-
ogous to the Weyl algebra.

Hence we have finished the construction of kinematical Hilbert space for background inde-
pendent gauge field theory and represented the quantum holonomy-flux algebra on it. Then
following the general programme presented in the last subsection, we should impose the con-
straints as operators on the kinematical Hilbert space since we are dealing with a gauge system.

3.5 Spin-network Decomposition of Kinematical Hilbert Space
The kinematical Hilbert space Hkin for loop quantum gravity has been well defined. In this
subsection, it will be shown that Hkin can be decomposed into the orthogonal direct sum of 1-
dimensional subspaces and find a basis, called spin-network basis, in the Hilbert space, which
consists of uncountably infinite elements. So the kinematic Hilbert space is non-separable. In
the following, we will show the decomposition in three steps.

• Spin-network Decomposition on a Single Edge
7The proof of this conclusion depends on the compact support property of the smear functions f i (see [96] for

detail).
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Given a graph consisting of only one edge e, which naturally associates with a group
S U(2) = Xα(e), the elements of Xα(e) are the quantum connections only taking non-
trivial values on e. Then we consider the decomposition of the Hilbert space Hα(e) =

L2(Xα(e), dµα(e)) ' L2(S U(2), dµH), which is nothing but the space of square integrable
functions on the compact group S U(2) with the natural L2 inner product. It is natural
to define several operators on Hα(e). First, the so-called configuration operator f̂ (A(e))
whose operation on any ψ in a dense domain of L2(S U(2), dµH) is nothing but multipli-
cation by the function f (A(e)), i.e.,

f̂ (A(e))ψ(A(e)) := f (A(e))ψ(A(e)),

where A(e) ∈ S U(2). Second, given any vector ξ ∈ su(2), it generates left invariant vector
field L(ξ) and right invariant vector field R(ξ) on S U(2) by

L(ξ)ψ(A(e)) :=
d
dt
|t=0ψ(A(e) exp(tξ)),

R(ξ)ψ(A(e)) :=
d
dt
|t=0ψ( exp(−tξ)A(e)),

for any function ψ ∈ C1(S U(2)). Then one can define the so-called momentum operators
on the single edge by

Ĵ(L)
i = iL(τi) and Ĵ(R)

i = iR(τi),

where the generators τi ∈ su(2) constitute an orthonormal basis with respect to the
Killing-Cartan metric. The momentum operators have the well-known commutation re-
lation of the angular momentum operators in quantum mechanics:

[Ĵ(L)
i , Ĵ(L)

j ] = iεk
i j Ĵ

(L)
k , [Ĵ(R)

i , Ĵ(R)
j ] = iεk

i j Ĵ
(R)
k , [Ĵ(L)

i , Ĵ(R)
j ] = 0.

Third, the Casimir operator onHe can be expressed as

Ĵ2 := δi j Ĵ(L)
i Ĵ(L)

j = δi j Ĵ(R)
i Ĵ(R)

j . (24)

The decomposition of He = L2(S U(2), dµH) is provided by the following Peter-Weyl
Theorem.

Theorem 3.5.1 [53]:
Given a compact group G, the function space L2(G, dµH) can be decomposed as an or-
thogonal direct sum of finite dimensional Hilbert spaces, and the matrix elements of the
equivalence classes of finite dimensional irreducible representations of G form an orthog-
onal basis in L2(G, dµH).

Note that a finite dimensional irreducible representation of G can be regarded as a matrix-
valued function on G, so the matrix elements are functions on G. Using this theorem, one
can find the decomposition of the Hilbert space:

L2(S U(2), dµH) = ⊕ j[H j ⊗H∗j ],
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where j, labelling irreducible representations of S U(2), are the half integers,H j denotes
the carrier space of the j-representation of dimension 2 j+1, andH∗j is its dual space. The
basis {e j

m ⊗ e j∗
n } inH j ⊗H∗j maps a group element g ∈ S U(2) to a matrix {π j

mn(g)}, where
m, n = − j, ..., j. Thus the spaceH j ⊗ H∗j is spanned by the matrix element functions π j

mn

of equivalent j-representations. Moreover, the spin-network basis can be defined.

Proposition 3.5.1 [56]
The system of spin-network functions onHα(e), consisting of matrix elements {π j

mn} in finite
dimensional irreducible representations labelled by half-integers { j}, satisfies

Ĵ2π j
mn = j( j + 1)π j

mn, Ĵ(L)
3 π j

mn = mπ j
mn, Ĵ(R)

3 π j
mn = nπ j

mn,

where j is called angular momentum quantum number and m, n = − j, ..., j magnetic
quantum number. The normalized functions {√2 j + 1π j

mn} form an orthonormal basis in
Hα(e) by the above theorem and

∫

Ae

π
j′
m′n′π

j
mndµe =

1
2 j + 1

δ j′ jδm′mδn′n,

which is called the spin-network basis onHα(e). So the Hilbert space on a single edge has
been decomposed into one dimensional subspaces.

Note that the system of operators {Ĵ2, Ĵ(R)
3 , Ĵ(L)

3 } forms a complete set of commutable op-
erators in Hα(e). There is a cyclic ”vacuum state” in the Hilbert space, which is the
( j = 0)-representation Ωα(e) = π j=0 = 1, representing that there is no geometry on the
edge.

• Spin-network Decomposition on Finite Graph

Given a groupoid α generated by a graph γ with N oriented edges ei and M vertices,
one can define the configuration operators on the corresponding Hilbert space Hα =

L2(Xα, dµα) ' L2(S U(2)N , dµN
H) by

f̂ (A(ei))ψ(A(e1), ..., A(eN)) := f (A(ei))ψ(A(e1), ..., A(eN)).

The momentum operators Ĵi
(e,v)

associated with a edge e connecting a vertex v are defined
as

Ĵi
(e,v)

:= (1 ⊗ ... ⊗ Ĵi ⊗ ... ⊗ 1),

where we set Ĵi = Ĵ(L)
i if v = s(e) and Ĵi = Ĵ(R)

i if v = t(e), so Ĵi
(e,v)

= iX(e,v)
i . Note that

Ĵi
(e,v)

only acts nontrivially on the Hilbert space associated with the edge e. Then one
can define a vertex operator associated with vertex v in analogy with the total angular
momentum operator via

[Ĵv]2 := δi j Ĵv
i Ĵv

j ,
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where

Ĵv
i :=

∑

e at v

Ĵ(e,v)
i .

Obviously,Hα can be firstly decomposed by the representations on each edge e of α as:

Hα = ⊗eHα(e) = ⊗e[⊕ j(H e
j ⊗H e∗

j )] = ⊕j[⊗e(H e
j ⊗H e∗

j )]

= ⊕j[⊗v(H v=s(e)
j(s) ⊗H v=t(e)

j(t) )],

where j := ( j1, ..., jN) assigns to each edge an irreducible representation of S U(2), in
the fourth step the Hilbert spaces associated with the edges are allocated to the vertexes
where these edges meet so that for each vertex v,

H v=s(e)
j(s) ≡ ⊗s(e)=vH e

j and H v=t(e)
j(t) ≡ ⊗t(e)=vH e∗

j .

The group of gauge transformations g(v) ∈ S U(2) at each vertex is reducibly represented
on the Hilbert space H v=s(e)

j(s) ⊗ H v=t(e)
j(t) in a natural way. So this Hilbert space can be

decomposed as a direct sum of irreducible representation spaces via Clebsch-Gordon
decomposition:

H v=s(e)
j(s) ⊗H v=t(e)

j(t) = ⊕lH v
j(v),l .

As a result,Hα can be further decomposed as:

Hα = ⊕j[⊗v(⊕lH v
j(v),l)] = ⊕j[⊕l(⊗vH v

j(v),l)] ≡ ⊕j[⊕lHα,j,l]. (25)

It can also be viewed as the eigenvector space decomposition of the commuting operators
[Ĵv]2 (with eigenvalues l(l + 1)) and [Ĵe]2 ≡ δi j Ĵe

i Ĵe
j . Note that l := (l1, ..., lM) assigns

to each vertex(objective) of α an irreducible representation of S U(2). One may also
enlarge the set of commuting operators to further refine the decomposition of the Hilbert
space. Note that the subspace of Hα with l = 0 is Yang-Mills gauge invariant, since the
representation of gauge transformations is trivial.

• Spin-network Decomposition ofHkin

Since Hkin has the structure Hkin = 〈 ∪α∈LHα 〉, one may consider to construct it as a
direct sum of Hα by canceling some overlapping components. The construction is pre-
cisely described as a theorem below.

Theorem 3.5.2:
Consider assignments j = ( j1, ..., jN) to the edges of any groupoid α ∈ L and assign-
ments l = (l1, ..., lM) to the vertices. The edge representation j is non-trivial on each
edge, and the vertex representation l is non-trivial at each spurious8 vertex, unless it is
the base point of a close analytic loop. Let H ′α be the Hilbert space composed by the

8A vertex v is spurious if it is bivalent and e ◦ e′ is itself analytic edge with e, e′ meeting at v.

28



subspaces Hα,j,l (assigned the above conditions) according to Eq.(25). Then Hkin can be
decomposed as the direct sum of the Hilbert spacesH ′α, i.e.,

Hkin = ⊕α∈LH ′α ⊕ C.

Proof:
Since the representation on each edge is non-trivial, by definition of the inner product, it
is easy to see thatH ′α andH ′α′ are mutual orthogonal if one of the groupoids α and α′ has
at leat an edge e more than the other due to

∫

Ae

π j
mndµe =

∫

Ae

1 · π j
mndµe = 0

for any j , 0. Now consider the case of the spurious vertex. An edge e with j-
representation in a graph is assigned the Hilbert space H e

j ⊗ H e∗
j . Inserting a vertex v

into the edge, one obtains two edges e1 and e2 split by v both with j-representations,
which belong to a different graph. By the decomposition of the corresponding Hilbert
space,

H e1
j ⊗H e1∗

j ⊗H e2
j ⊗H e2∗

j = H e1
j ⊗ (⊕l=0...2 jH v

l ) ⊗H e2∗
j ,

the subspace for all l , 0 are orthogonal to the space H e
j ⊗ H e∗

j , while the subspace for
l = 0 coincides with H e

j ⊗ H e∗
j since H v

l=0 = C and A(e) = A(e1)A(e2). This completes
the proof.

Since there are uncountably many graphs on Σ, the kinematical Hilbert Hkin is non-
separable. We denote the spin-network basis in Hkin by Πs, s = (γ(s), js,ms,ns) and
vacuum Ωkin ≡ Π0 = 1, where

Πs :=
∏

e∈E(γ(s))

√
2 je + 1π je

mene
( je , 0),

which form a orthonormal basis with the relation < Πs|Πs′ >kin= δss′ . And Cylγ(A) ⊂
Cyl(A) denotes the linear span of the spin network functions Πs for γ(s) = γ.

The spin-network basis can be used to construct the so-called spin network representation
of loop quantum gravity.

Definition 3.5.1: The spin-network representation is a vector space H̃ of complex valued func-
tions

Ψ̃ : S → C; s 7→ Ψ̃(s),

where S is the set of the labels s for the spin network states. H̃ is equipped with the scalar
product

< Ψ̃, Ψ̃′ >:=
∑

s∈S
Ψ̃(s)Ψ̃(s)′
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between square summable functions.

The relation between the Hilbert spaces H̃ and Hkin is clarified by the following proposition
[146].

Proposition 3.5.2:
The spin-network transformation

T : Hkin → H̃ ; Ψ 7→ Ψ̃(s) :=< Πs, Ψ >kin

is a unitary transformation with inverse

T−1Ψ =
∑

s∈S
Ψ̃(s)Πs.

Thus the connection representation and the spin-network representation are ”Fourier trans-
forms” of each other, where the role of the kernel of the integral is played by the spin-network
basis. Note that, in the gauge invariant Hilbert space of loop quantum gravity which we will
define later, the Fourier transform with respect to the gauge invariant spin-network basis is the
so-called loop transform, which leads to the unitary equivalent loop representation of the theory
[118][73][122].

To conclude this subsection, we show the explicit representation of elementary observables
on the kinematical Hilbert space Hkin. The action of canonical momentum operator P̂ f (S ) on
differentiable cylindrical functions ψγ ∈ Cylγ(A) can be expressed as

P̂ f (S )ψγ({A(e)}e∈E(γ)) =
~

2

∑

v∈V(γ)∩S

f i(v)[
∑

e at v

κ(S , e)Ĵ(e,v)
i ]ψγ({A(e)}e∈E(γ))

=
~

2

∑

v∈V(γ)∩S

f i(v)[Ĵ(S ,v)
i(u) − Ĵ(S ,v)

i(d) ]ψγ({A(e)}e∈E(γ)), (26)

where

Ĵ(S ,v)
i(u) ≡ Ĵ(e1,v)

i + ... + Ĵ(eu,v)
i ,

Ĵ(S ,v)
i(d) ≡ Ĵ(eu+1,v)

i + ... + Ĵ(eu+d ,v)
i , (27)

for the edges e1, ..., eu lying above S and eu+1, ..., eu+d lying below S . And it was proved that
the operator P̂ f (S ) is essentially self-adjoint on Hkin [146]. On the other hand, it is obvious to
construct configuration operators by spin-network functions:

Π̂sψγ({A(e)}e∈E(γ)) := Πs({A(e)}e∈E(γ(s)))ψγ({A(e)}e∈E(γ)).

Note that Π̂s may change the graph, i.e., Π̂s: Cylγ(A) → Cylγ∪γ(s)(A). So far, the elementary
operators of quantum kinematics have been well defined onHkin.
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3.6 Quantum Riemannian Geometry
The well-established quantum kinematics of loop quantum gravity is now in the same status
as Riemannian geometry before the appearance of general relativity and Einstein’s equation,
giving general relativity mathematical foundation and offering living place to the Einstein equa-
tion. Instead of classical geometric quantities, such as length, area, volume etc., the quantities
in quantum geometry are operators on the kinematical Hilbert space Hkin, and their spectrum
serve as the possible values of the quantities in measurements. So far, the kinematical quan-
tum geometric operators constructed properly in loop quantum gravity include length operator
[141], area operator [125][21], two different volume operators [18][125][22], Q̂ operator [100],
etc.. Recently, a consistency check was proposed for the different regularizations of the volume
operator [77][78]. We thus will only introduce the volume operator defined by Ashtekar and
Lewandowski [22], which is shown to be correct in the consistency check.

First, we define the area operator with respect to a 2-surface S by the elementary operators.
Given a closed 2-surface or a surface S with boundary, we can divide it into a large number N
of small area cells S I . Taking account of the classical expression of an area, we set the area of
the 2-surface to be the limit of the Riemannian sum

AS := lim
N→∞

[AS ]N = lim
N→∞

κβ

N∑

I=1

√
Pi(S I)P j(S I)δi j.

Then one can unambiguously obtain a quantum area operator from the canonical momentum
operators P̂i(S ) smeared by constant functions. Given a cylindrical function ψγ ∈ Cylγ(A)
which has second order derivatives, the action of the area operator on ψγ is defined in the limit
by requiring that each area cell contains at most only one intersecting point v of the graph γ and
S as

ÂSψγ := lim
N→∞

[ÂS ]Nψγ = lim
N→∞

κβ

N∑

I=1

√
P̂i(S I)P̂ j(S I)δi j ψγ.

The regulator N is easy to remove, since the result of the operation of the operator P̂i(S I) does
not change when S I shrinks to a point. Since the refinement of the partition does not affect the
result of action of [ÂS ]N on ψγ, the limit area operator ÂS , which is shown to be self-adjoint
[21], is well defined onHkin and takes the explicit expression as:

ÂSψγ = 4πβ`2
p

∑

v∈V(γ∩S )

√
(Ĵ(S ,v)

i(u) − Ĵ(S ,v)
i(d) )(Ĵ(S ,v)

j(u) − Ĵ(S ,v)
j(d) )δi j ψγ,

where Ĵ(S ,v)
i(u) and Ĵ(S ,v)

i(d) have been defined in Eq.(27). It turns out that the finite linear combinations
of spin-network basis inHkin diagonalizes ÂS with eigenvalues given by finite sums,

aS = 4πβ`2
p

∑

v

√
2 j(u)

v ( j(u)
v + 1) + 2 j(d)

v ( j(d)
v + 1) − j(u+d)

v ( j(u+d)
v + 1), (28)

where j(u), j(d) and j(u+d) are arbitrary half-integers subject to the standard condition

j(u+d) ∈ {| j(u) − j(d)|, | j(u) − j(d)| + 1, ..., j(u) + j(d)}. (29)
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Hence the spectrum of the area operator is fundamentally pure discrete, while its continuum
approximation becomes excellent exponentially rapidly for large eigenvalues. However, in fun-
damental level, the area is discrete and so is the quantum geometry. One can see that the
eigenvalue of ÂS does not vanish even in the case where only one edge intersects the surface at
a single point, whence the quantum geometry is distributional.

The form of Ashtekar and Lewandowski’s volume operator was introduced for the first time
in [18], and its detailed properties are discussed in [22]. Given a region R with a fixed coordinate
system {xa}a=1,2,3 in it, one can introduce a partition of R in the following way. Divide R into
small volume cells C such that, each cell C is a cube with coordinate volume less than ε and
two different cells only share the points on their boundaries. In each cell C, we introduce three
2-surfaces s = (S 1, S 2, S 3) such that xa is constant on the surface S a. We denote this partition
(C, s) as Pε . Then the volume of the region R can be expressed classically as

V s
R = lim

ε→0

∑

C

√
|qC,s|,

where

qC,s =
(κβ)3

3!
ε i jkη

abc
Pi(S a)P j(S b)Pk(S c).

This motivates us to define the volume operator by naively changing Pi(S a) to P̂i(S a):

V̂ s
R = lim

ε→0

∑

C

√
|q̂C,s|,

q̂C,s =
(κβ)3

3!
ε i jkη

abc
P̂i(S a)P̂ j(S b)P̂k(S c).

Note that, given any cylindrical function ψγ ∈ Cylγ(A), we require the vertexes of the graph
γ to be at the intersecting points of the triples of 2-surfaces s = (S 1, S 2, S 3) in corresponding
cells. Thus the limit operator will trivially exist due to the same reason in the case of the area
operator. However, the volume operator defined here depends on the choice of orientations for
the triples of surfaces s = (S 1, S 2, S 3), or essentially, the choice of coordinate systems. So it
is not uniquely defined. Since, for all choice of s = (S 1, S 2, S 3), the resulting operators have
correct semi-classical limit, one settles up the problem by averaging different operators labelled
by different s [22]. The process of averaging removes the freedom in defining the volume
operator up to an overall constant κ0. The resulting self-adjoint operator acts on any cylindrical
function ψγ ∈ Cylγ(A) as

V̂R ψγ = κ0

∑

v∈V(α)

√
|q̂v,γ| ψγ,

where

q̂v,γ = (8πβ`2
p)3 1

48

∑

e,e′,e′′ at v

ε i jkε(e, e′, e′′)Ĵ(e,v)
i Ĵ(e′,v)

j Ĵ(e′′,v)
k ,
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here ε(e, e′, e′′) ≡ sgn(εabcėaė′bė′′c)|v with ėa as the tangent vector of edge e and εabc as the
orientation of Σ. The only unsatisfactory point in the present volume operator is the choice
ambiguity of κ0. However, fortunately, the most recent discussion shows that the overall un-
determined constant κ0 can be fixed to be

√
6 by the consistency check between the volume

operator and the triad operator [77][78].
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4 Implementation of Quantum Constraints
After constructing the kinematical Hilbert space Hkin of loop quantum gravity, one should im-
plement the constraints on it to obtain the physical Hilbert space which encodes the complete
information of quantum dynamics of general relativity, since the Hamiltonian of general rela-
tivity is a linear combination of the constraints. Recalling the constraints (7) in the Hamiltonian
formalism and the Poission algebra (9) among them, the subalgebra generated by the Gauss
constraints G(Λ) forms a Lie algebra and a 2-sided ideal in the constraints algebra. So in this
section, we first solve the Gaussian constraints independently of the other two kinds of con-
straints and find the solution space HG, which is constituted by internal gauge invariant quan-
tum states. Then, although the subalgebra generated by the diffeomorphism constraints is not
an ideal in the constraint algebra, we still would like to solve them independently of the scalar
constraints for technical convenience. After that, the quantum operator corresponding to the
Hamiltonian constraint(scalar constraint) is defined on the kinematical Hilbert space, and we
will also discuss an alterative for the implementation of the scalar constraint, which is called
the master constraint programme by modifying the classical constraint algebra.

4.1 Solutions of Quantum Gaussian Constraint
Recall that the classical expression of Gauss constraints reads

G(Λ) =

∫

Σ

d3xΛiDaP̃a
i = −

∫

Σ

d3xP̃a
i DaΛ

i ≡ −P(DΛ),

where DaΛ
i = ∂aΛ

i + ε i
jkA j

aΛ
k. As the situation of triad flux, the Gauss constraints can be

defined as cylindrically consistent vector fields YDΛ onA, which act on any cylindrical function
fγ ∈ Cylγ(A) by

YDΛ ◦ fγ({A(e)}e∈E(γ)) := {−P(DΛ), fγ({A(e)}e∈E(γ))}.
Then the Gauss constraint operator can be defined in analogy with the momentum operator,
which acts on fγ as:

Ĝ(Λ) fγ({A(e)}e∈E(γ)) := i~YDΛ fγ({A(e)}e∈E(γ))

= ~
∑

v∈V(γ)

[Λi(v)Ĵv
i ] f ({A(e)}e∈E(γ)),

which is the generator of internal gauge transformations on Cylγ(A). The kernel of the opera-
tor is easily obtained in terms of the spin-network decomposition, which is the internal gauge
invariant Hilbert space:

HG = ⊕α,jH ′α,j,l=0 ⊕ C.

One then naturally gets the gauge invariant spin-network basis Ts, s = (γ(s), js, is) inHG via a
group averaging technique at each vertex[126][25][32](we will call Ts spin-network state in the
following context):

Ts=(γ,j,i) =
⊗

v∈V(γ)

iv

⊗

e∈E(γ)

π je(A(e)), ( je , 0)
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assigning a non-trivial spin representation j on each edge and a invariant tensor i (intertwiner) on
each vertex. We denote the vector space of finite linear combinations of vacuum state and gauge
invariant spin-network states Cyl(A/G), which is dense in HG. And Cylγ(A/G) ⊂ Cyl(A/G)
denotes the linear span of the gauge invariant spin network functions Ts for γ(s) = γ. All
Yang-Mills gauge invariant operators are well defined onHG. However, the condition of acting
on gauge invariant states often changes the structure of the spectrum of quantum geometric
operators. For the area operator, the spectrum depends on certain global properties of the surface
S (see [20][21] for details). For the volume operators, a non-zero spectrum arises from at least
4-valent vertices.

4.2 Solutions of Quantum Diffeomorphism Constraint
Unlike the strategy in solving Gaussian constraint, one cannot define an operator for the quan-
tum diffeomorphism constraint as the infinitesimal generator of finite diffeomorphism trans-
formations (unitary operators since the measure is diffeomorphism invariant) represented on
Hkin. The representation of finite diffeomorphisms is a family of unitary operators Ûϕ acting on
cylindrical functions ψγ by

Ûϕψγ := ψϕ◦γ, (30)

for any spatial diffeomorphism ϕ on Σ. An 1-parameter subgroup ϕt in the group of spatial
diffeomorphisms is then represented as an 1-parameter unitary group Ûϕt on Hkin. However,
Ûϕt is not weakly continuous, since the subspaces H ′α(γ) and H ′α(ϕt◦γ) are orthogonal to each
other no matter how small the parameter t is. So one always has

| < ψγ|Ûϕt |ψγ >kin − < ψγ|ψγ >kin | =< ψγ|ψγ >kin, 0, (31)

even in the limit when t goes to zero. Therefore, the infinitesimal generator of Ûϕt does not
exist. In the strategy to solve the diffeomorphism constraint, due to the Lie algebra structure of
diffeomorphism constraints subalgebra, the so-called group averaging technique is employed.
We now outline the procedure. First, given a colored graph (a graph γ and a cylindrical function
living on it), one can define the group of graph symmetries GS γ by

GS γ := Di f fγ/T Di f fγ,

where Di f fγ is the group of all diffeomorphisms preserving the colored γ, and T Di f fγ is the
group of diffeomorphisms which trivially acts on γ. We define a projection map by averaging
with respect to GS γ to obtain the subspace in Cylγ which is invariant under the transformation
of GS γ:

P̂Di f f ,γψγ :=
1
nγ

∑

ϕ∈GS γ

Ûϕψγ,

for all cylindrical functions ψγ ∈ H ′α(γ), where nγ is the number of the finite elements of GS γ.
Second, we average with respect to all remaining diffeomorphisms which move the graph γ.
For each cylindrical function ψγ ∈ Cylγ(A/G), there is an element η(ψγ) associated to it in the
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algebraic dual space Cyl? of Cyl(A/G), which acts on any cylindrical function φγ′ ∈ Cylγ(A/G)
as:

η(ψγ)[φγ′] :=
∑

ϕ∈Di f f (Σ)/Di f fγ

< ÛϕP̂Di f f ,γψγ|φγ′ >kin .

It is well defined since, for any given graph γ′, only finite terms are non-zero in the summation.
It is easy to verify that η(ψγ) is invariant under the group action of Di f f (Σ), since

η(ψγ)[Ûϕφγ′] = η(ψγ)[φγ′].

Thus we have defined a rigging map η : Cyl(A/G) → Cyl?Di f f , which maps every cylindrical
function to a diffeomorphism invariant one, where Cyl?Di f f is spanned by vacuum state T0 = 1
and rigged spin-network functions T[s] ≡ {η(Ts)}, [s] = ([γ], j, i) associated with diffeomor-
phism classes [γ] of graphs γ. Moreover a Hermitian inner product can be defined on Cyl?Di f f
by the natural action of the algebraic functional:

< η(ψγ)|η(φγ′) >Di f f := η(ψγ)[φγ′].

The diffeomorphism invariant Hilbert spaceHDi f f is defined by the completion of Cyl?Di f f with
respect to the above inner product < | >Di f f . The diffeomorphism invariant spin-network func-
tions T[s] form an orthonormal basis in HDi f f . Finally, we have obtained the general solutions
invariant under both Yang-Mills gauge transformations and spatial diffeomorphisms.

In general relativity, the problem of observables is a subtle issue due to the diffeomorphism
invariance [116][119][120]. Now we discuss the operators as diffeomorphism invariant ob-
servables on HDi f f . We call an operator Ô ∈ L(Hkin) a strong observable if and only if
Û−1
ϕ ÔÛϕ = Ô, ∀ ϕ ∈ Di f f (Σ). We call it a weak observable if and only if Ô leaves HDi f f

invariant. Then it is easy to see that a strong observable Ômust be a weak one. One notices that
a strong observable Ô can first be defined onHDi f f by its dual operator Ô? as

(Ô?ΦDi f f )[ψ] := ΦDi f f [Ôψ],

then one gets

(Ô?ΦDi f f )[Ûϕψ] = ΦDi f f [ÔÛϕψ] = ΦDi f f [Û−1
ϕ ÔÛϕψ] = (Ô?ΦDi f f )[ψ],

for any ΦDi f f ∈ HDi f f and ψ ∈ Hkin. Hence Ô?ΦDi f f is also diffeomorphism invariant. In
addition, a strong observable also has the property of Ô?η(ψγ) = η(Ô†ψγ) since, ∀ φγ′ , ψγ ∈ Hkin,

< Ô?η(ψγ)|η(φγ′) >Di f f = (Ô?η(ψγ))[φγ′] = η(ψγ)[Ôφγ′]
=

∑

ϕ∈Di f f (Σ)/Di f fγ

< ÛϕP̂Di f f ,γψγ|Ôφγ′ >kin

=
1
nγ

∑

ϕ∈Di f f (Σ)/Di f fγ

∑

ϕ′∈GS γ

< ÛϕÛϕ′ψγ|Ôφγ′ >kin

=
1
nγ

∑

ϕ∈Di f f (Σ)/Di f fγ

∑

ϕ′∈GS γ

< ÛϕÛϕ′Ô†ψγ|φγ′ >kin

= < η(Ô†ψγ)|η(φγ′) >Di f f .
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Note that the Hilbert spaceHDi f f is still non-separable if one considers the Cn diffeomorphisms
with n > 0. However, if one extends the diffeomorphisms to be semi-analytic diffeomotphisms,
i.e. homomorphisms that are analytic diffeomorphisms up to finite isolated points (which can
be viewed as an extension of the classical concept to the quantum case), the Hilbert spaceHDi f f

would be separable [69][20].

4.3 Hamiltonian Constraint Operator
In the following, we consider the issue of scalar constraint in loop quantum gravity. One may
first construct a Hamiltonian constraint (scalar constraint) operator in Hkin or HDi f f , then at-
tempt to find the physical Hilbert space Hphys by solving the quantum Hamiltonian constraint.
However, difficulties arise here due to the special role played by the scalar constraints in the
constraint algebra (9). First, the scalar constraints do not form a Lie subalgebra. Hence the
strategy of group averaging cannot be used directly on Hkin for them. Second, modulo the
Gaussian constraint, there is still a structure function in the Poisson bracket between two scalar
constraints:

{S(N),S(M)} = −V((N∂bM − M∂bN)qab), (32)

which raises the danger of quantum anomalyies in quantization. Moreover, the diffeomorphism
constraints do not form an ideal in the quotient constraint algebra modulo the Gaussian con-
straints. This fact results in that the scalar constraint operator cannot be well defined onHDi f f ,
as it does not commute with the diffeomorphism transformations Ûϕ. Thus the previous con-
struction of HDi f f does not appear very useful for the final construction of Hphys, which is our
final goal. However, one may still first try to construct a Hamiltonian constraint operator inHkin

for technical convenience.
We recall the classical expression of Hamiltonian constraint:

S(N) :=
κβ2

2

∫

Σ

d3xN
P̃a

i P̃b
j√| det q|

[ε i j
kFk

ab − 2(1 + β2)Ki
[aK j

b]]

= SE(N) − 2(1 + β2)T (N). (33)

The main idea of the construction is to first express S(N) in terms of the combination of Poisson
brackets between the variables which have been represented as operators on Hkin, then replace
the Poisson brackets by canonical commutators between the operators. We will use the volume
functional for a region R ⊂ Σ and the extrinsic curvature functional defined by:

K := κβ

∫

Σ

d3xP̃a
i Ki

a.

A key trick here is to consider the following classical identity of the co-triad ei
a(x) [134]:

ei
a(x) =

(κβ)2

2
η

abc
ε i jk

P̃b
j P̃

c
k√

det q
(x) =

2
κβ
{Ai

a(x),VR},
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where VR is the volume functional for a neighborhood R containing x. And the expression of
the extrinsic curvature 1-form Ki

a(x):

Ki
a(x) =

1
κβ
{Ai

a(x),K}.

Note that K can be expressed by a Poisson bracket between the constant-smeared Euclidean
Hamiltonian constraint and the total volume of the space Σ:

K = β−2{SE(1),VΣ}. (34)

Thus one can obtain the equivalent classical expressions of SE(N) and T (N) as:

SE(N) =
κβ2

2

∫

Σ

d3xN
P̃a

i P̃b
j√| det q|
ε

i j
kFk

ab

= − 2
κ2β

∫

Σ

d3xN(x)̃ηabcTr(Fab(x){Ac(x),VRx}),

T (N) =
κβ2

2

∫

Σ

d3xN
P̃a

i P̃b
j√| det q|

Ki
[aK j

b]

= − 2
κ4β3

∫

Σ

d3xN(x)̃ηabcTr({Aa(x),K}{Ab(x),K}{Ac(x),VRx}),

where Aa = Ai
aτi, Fab = F i

abτi, Tr represents the trace of the Lie algebra matrix, and Rx ⊂ Σ

denotes an arbitrary neighborhood of x ∈ Σ. In order to quantize the Hamiltonian constraint
as a well-defined operator on Hkin, one has to express the classical formula of S(N) in terms
of holonomies A(e) and other variables with clear quantum analogs. As a first attempt [134],
this can be realized by introducing a triangulation T (ε), where the parameter ε describes how
fine the triangulation is, and the triangulation will fill out the spatial manifold Σ when ε →
0. Given a tetrahedron ∆ ∈ T (ε), we use {si(∆)}i=1,2,3 to denote the three outgoing oriented
segments in ∆ with a common beginning point v(∆) = s(si(∆)), and use ai j(∆) to denote the
arc connecting the end points of si(∆) and s j(∆). Then several loops αi j(∆) are formed by
αi j(∆) := si(∆) ◦ ai j(∆) ◦ s j(∆)−1. Thus we have the identities:

{
∫

si(∆)
Aa ṡa

i (∆),VRv(∆)} = −A(si(∆))−1{A(si(∆)),VRv(∆)} + o(ε),

{
∫

si(∆)
Aa ṡa

i (∆),K} = −A(si(∆))−1{A(si(∆)),K} + o(ε),
∫

Pi j

Fab(x) =
1
2

A(αi j(∆))−1 − 1
2

A(αi j(∆)) + o(ε2),

where Pi j is the plane with boundary αi j. Note that the above identities are constructed by taking
account of internal gauge invariance of the final formula of Hamiltonian constraint operator. So
we have the regularized expression of S(N) by the Riemannian sum [134]:

SεE(N) =
2

3κ2β

∑

∆∈T (ε)

N(v(∆))ε i jk ×
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Tr(A(αi j(∆))−1A(sk(∆))−1{A(sk(∆)),VRv(∆)}),

T ε(N) =

√
2

6κ4β3

∑

∆∈T (ε)

N(v(∆))ε i jk ×

Tr(A(si(∆))−1{A(si(∆)),K}A(s j(∆))−1{A(s j(∆)),K} ×
A(sk(∆))−1{A(sk(∆)),VRv(∆)}),

Sε(N) = SεE(N) − 2(1 + β2)T ε(N), (35)

such that limε→0 Sε(N) = S(N). It is clear that the above regulated formula of S(N) is invari-
ant under internal gauge transformations. Since all constituents in the expression have clear
quantum analogs, one can quantize the regulated Hamiltonian constraint as an operator onHkin

(or HG) by replacing them by the corresponding operators and Poisson brackets by canonical
commutators, i.e.,

A(e) 7→ Â(e), VR 7→ V̂R, { , } 7→ [ , ]
i~

,

and K 7→ K̂ε =
γ−2

i~
[ŜεE(1), V̂Σ].

Removing the regulator by ε → 0, it turns out that one can obtain a well-defined limit operator
onHkin (orHG) with respect to a natural operator topology.

Now we begin to construct the Hamiltonian constraint operator in analogy with the classical
expression (57). All we should do is define the corresponding regulated operators on different
H ′α separately, then remove the regulator ε so that the limit operator is defined onHkin (orHG)
cylindrically consistently. In the following, given a vertex and three edges intersecting at the
vertex in a graph γ of ψγ ∈ Cylγ(A/G), we construct one triangulation of the neighborhood
of the vertex adapted to the three edges. Then we average with respect to the triples of edges
meeting at the given vertex. Precisely speaking, one can make the triangulations T (ε) with the
following properties [134][146].

• The chosen triple of edges in the graph γ is embedded in a T (ε) for all ε, so that the vertex
v of γ where the three edges meet coincides with a vertex v(∆) in T (ε).

• For every triple of segments (e1, e2, e3) of γ such that v = s(e1) = s(e2) = s(e3), there is a
tetrahedra ∆ ∈ T (ε) such that v = v(∆) = s(si(∆)), and si(∆) ⊂ ei, ∀ i = 1, 2, 3. We denote
such a tetrahedra as ∆0

e1,e2,e3
.

• For each tetrahedra ∆0
e1,e2,e3

one can construct seven additional tetrahedron ∆
℘
e1,e2,e3 , ℘ =

1, ..., 7, by backward analytic extensions of si(∆) so that Ue1,e2,e3 := ∪7
℘=0∆

℘
e1,e2,e3 is a neigh-

borhood of v.

• The triangulation must be fine enough so that the neighborhoods U(v) := ∪e1,e2,e3Ue1,e2,e3(v)
are disjoint for different vertices v and v′ of γ. Thus for any open neighborhood Uγ of the
graph γ, there exists a triangulation T (ε) such that ∪v∈V(γ)U(v) ⊆ Uγ.

• The distance between a vertex v(∆) and the corresponding arcs ai j(∆) is described by the
parameter ε. For any two different ε and ε′, the arcs ai j(∆ε) and ai j(∆ε′) with respect to
one vertex v(∆) are semi-analytically diffeomorphic with each other.
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• With the triangulations T (ε), the integral over Σ is replaced by the Riemanian sum:
∫

Σ

=

∫

Uα

+

∫

Σ−Uα

,

∫

Uα

=
∑

v∈V(α)

∫

U(v)
+

∫

Uα−∪vU(v)
,

∫

U(v)
=

1
E(v)

∑

e1,e2,e3

[
∫

Ue1 ,e2 ,e3 (v)
+

∫

U(v)−Ue1 ,e2 ,e3 ,(v)
],

where n(v) is the valence of the vertex v = s(e1) = s(e2) = s(e3), and E(v) ≡
(

n(v)
3

)
de-

notes the binomial coefficient which comes from the averaging with respect to the triples
of edges meeting at given vertex v. One then observes that

∫

Ue1 ,e2 ,e3 (v)
= 8

∫

∆0
e1 ,e2 ,e3 (v)

in the limit ε → 0.

• The triangulations for the regions

U(v) − Ue1,e2,e3(v),
Uα − ∪v∈V(α)U(v),
Σ − Uα, (36)

are arbitrary. These regions do not contribute to the construction of the operator, since the
commutator term [A(si(∆)),VRv(∆)]ψα vanishes for all tetrahedron ∆ in the regions (36).

Thus we find the regulated expression of Hamiltonian constraint operator with respect to the
triangulations T (ε) as [134]

ŜεE,γ(N) =
16

3i~κ2β

∑

v∈V(γ)

N(v)
E(v)

∑

v(∆)=v

ε i jk ×

Tr(Â(αi j(∆))−1Â(sk(∆))−1[Â(sk(∆)), V̂Uε
v ]),

T̂ ε
γ (N) = − 4

√
2

3i~3κ4β3

∑

v∈V(γ)

N(v)
E(v)

∑

v(∆)=v

ε i jk ×

Tr(Â(si(∆))−1[Â(si(∆)), K̂ε]Â(s j(∆))−1[Â(s j(∆)), K̂ε] ×
Â(sk(∆))−1[Â(sk(∆)), V̂Uε

v ]),

Ŝε(N)ψγ = [ŜεE,γ(N) − 2(1 + β2)T̂ ε
γ (N)]ψγ =

∑

v∈V(γ)

N(v)Ŝεvψγ,

for any cylindrical function ψγ ∈ Cylγ(A/G) is a finite linear combination of spin-network states
Ts with γ(s) = γ.
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By construction, the operation of Ŝε(N) on any ψγ ∈ Cylγ(A/G) is reduced to a finite
combination of that of Ŝεv with respect to different vertices of γ. Hence, for each ε > 0, Ŝε(N)
is a well-defined internal gauge invariant and diffeomorphism covariant operator on Cyl(A/G).

The last step is to remove the regulator by taking the limit ε → 0. However, the action of
the Hamiltonian constraint operator on ψγ adds arcs ai j(∆) with a 1

2 -representation with respect
to each v(∆) of γ9, i.e. the action of Ŝε(N) on cylindrical functions is graph-changing. Hence
the operator does not converge with respect to the weak operator topology inHkin when ε → 0,
since different H ′α(γ) with different graphs γ are mutually orthogonal. Thus one has to define a
weaker operator topology to make the operator limit meaningful. By physical motivation and
the naturally available Hilbert space HDi f f , the convergence of Ŝε(N) holds with respect to the
so-called Uniform Rovelli-Smolin Topology [124], where one defines Ŝε(N) to converge if and
only if ΨDi f f [Ŝε(N)φ] converge for all ΨDi f f ∈ Cyl?Di f f and φ ∈ Cyl(A/G). Since the value
of ΨDi f f [Ŝε(N)φ] is actually independent of ε by the fifth property of the triangulations, the
sequence converges to a nontrivial result ΨDi f f [Ŝε0(N)φ] with arbitrary fixed ε0 > 0. Thus we
have defined a diffeomorphism covariant, densely defined, closed but non-symmetric operator,
Ŝ(N) = limε→0 Ŝε(N) = Ŝε0(N), on Hkin (or HG) representing the Hamiltonian constraint.
Moreover, a dual Hamiltonian constraint operator Ŝ′ε(N) is also defined on Cyl? depending on
a specific value of ε

(Ŝ′ε(N)Ψ)[φ] := Ψ[Ŝε(N)φ],

for all Ψ ∈ Cyl? and φ ∈ Cyl(A/G). For ΨDi f f ∈ Cyl?Di f f ⊂ Cyl?, one gets

(Ŝ′(N)ΨDi f f )[φ] = ΨDi f f [Ŝε(N)φ].

which is independent of the value of ε.
Several remarks on the Hamiltonian constraint operator are listed in the following.

• Finiteness of Ŝ(N) onHkin

In ordinary quantum field theory, the continuous quantum field is only recovered when
one lets lattice spacing to approach zero, i.e., takes the continuous cut-off parameter to its
continuous limit. However, this will produce the well-known infinities in quantum field
theory and make the Hamiltonian operator ill-defined on the Fock space. So it seems
surprising that our operator Ŝ(N) is still well defined, when one takes the limit ε → 0
with respect to the Uniform Rovelli-Smolin Topology so that the triangulation goes to the
continuum. The reason behind it is that the cut-off parameter is essentially noneffective
due to the diffeomorphism invariance of our quantum field theory. This is why there
is no UV divergence in the background independent quantum gauge field theory with
diffeomorphism invariance. On the other hand, from a convenient viewpoint, one may
think the Hamiltonian constraint operator as an operator dually defined on a dense domain
inHDi f f . However, we will see that the dual Hamiltonian constraint operator cannot leave
HDi f f invariant.

9The Hamiltonian constraint operator depends indeed on the choice of the representation j on the arcs ai j(∆),
which is known as one of the regularization ambiguities in the construction of quantum dynamics. For the simplic-
ity of the theory, one often choose the lowest label of representation j = 1

2 .
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• Implementation of Dual Quantum Constraint Algebra

One important task is to check whether the commutator algebra (quantum constraint al-
gebra) among the corresponding quantum operators of constraints both physically and
mathematically coincides with the classical constraint algebra by substituting quantum
constraint operators to classical constraint functionals and commutators to Poisson brack-
ets. Here the quantum anomaly has to be avoided in the construction of constraint opera-
tors (see the discussion for Eq.(13)). First, the subalgebra of the quantum diffeomorphism
constraint algebra is free of anomaly by construction:

ÛϕÛϕ′Û−1
ϕ Û−1

ϕ′ = Ûϕ◦ϕ′◦ϕ−1◦ϕ′−1 ,

which coincides with the exponentiated version of the Poisson bracket between two dif-
feomorphism constraints generating the transformations ϕ, ϕ′ ∈ Di f f (Σ).

Second, the quantum constraint algebra between the dual Hamiltonian constraint opera-
tor S′(N) and the finite diffeomorphism transformation Ûϕ on diffeomorphism-invariant
states coincides with the classical Poisson algebra between V(~N) and S(M). Given a
cylindrical function φγ associated with a graph γ and the triangulations T (ε) adapted to
the graph α, the triangulations T (ϕ ◦ ε) ≡ ϕ ◦ T (ε) are compatible with the graph ϕ ◦ γ.
Then we have by definition:

( − ([Ŝ(N), Ûϕ])′ΨDi f f )[φγ]

= ([Ŝ′(N), Û′ϕ]ΨDi f f )[φγ]

= ΨDi f f [Ŝε(N)φγ − Ŝε(N)φϕ◦γ]

=
∑

v∈V(γ)

{N(v)ΨDi f f [Ŝεvφγ] − N(ϕ ◦ v)ΨDi f f [Ŝϕ◦εϕ◦vφϕ◦γ]}

=
∑

v∈V(γ)

[N(v) − N(ϕ ◦ v)]ΨDi f f [Ŝεvφγ]

= (Ŝ′(N − ϕ∗N)ΨDi f f )[φγ]. (37)

Thus there is no anomaly. However, Eq.(37) also explains why the Hamiltonian constraint
operator Ŝ(N) cannot leaveHDi f f invariant.

Third, we compute the commutator between two Hamiltonian constraint operators. No-
tice that

[Ŝ(N), Ŝ(M)]φγ
=

∑

v∈V(γ)

[M(v)Ŝ(N) − N(v)Ŝ(M)]Ŝεvφγ

=
∑

v∈V(γ)

∑

v′∈V(γ′)

[M(v)N(v′) − N(v)M(v′)]Ŝε′v′Ŝεvφγ,

where γ′ is the graph changed from γ by the action of Ŝ(N) or Ŝ(M), which adds the arcs
ai j(∆) on γ, T (ε) is the triangulation adapted to γ and T (ε′) adapted to γ′. Since the newly
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added vertices by Ŝεv is planar, they will never contributes the final result. So one has

[Ŝ(N), Ŝ(M)]φγ
=

∑

v,v′∈V(γ),v,v′
[M(v)N(v′) − N(v)M(v′)]Ŝε′v′Ŝεvφγ

=
1
2

∑

v,v′∈V(γ),v,v′
[M(v)N(v′) − N(v)M(v′)][Ŝε′v′Ŝεv − Ŝε

′
v Ŝεv′]φγ

=
1
2

∑

v,v′∈V(γ),v,v′
[M(v)N(v′) − N(v)M(v′)][(Ûϕv′ ,v − Ûϕv,v′ )Ŝεv′Ŝεv]φγ,

(38)

where we have used the facts that [Ŝεv, Ŝε
′

v′] = 0 for v , v′and there exists a diffeomorphism
ϕv,v′ such that Ŝε′v′Ŝεv = Ûϕv′ ,vŜεv′Ŝεv. Obviously, we have in the Uniform Rovelli-Smolin
Topology

([Ŝ(N), Ŝ(M)])′ΨDi f f = 0

for all ΨDi f f ∈ Cyl?Di f f . As we have seen in classical expression Eq.(32), the Poisson
bracket of any two Hamiltonian constraints is given by a generator of the diffeomrophism
transformations. Therefore it is mathematically consistent with the classical expression
that two Hamiltonian constraint operators commute on diffeomorphism invariant states,
as it is presented above. However, as it has been discussed in [72][95], the domain of
dual Hamiltonian constraint operator can be extended to a slightly larger space (habitat)
in Cyl?, whose elements are not necessary diffeomorphism invariant. And it turns out that
the commutator between two Hamiltonian constraint operators continues to vanish on the
habitat, which seems to be problematic. Fortunately, the quantum operator corresponding
to the right hand side of classical Poisson bracket (32) also annihilates every state in the
habitat [72], so the quantum constraint algebra is consistent at this level. But it is not
clear that whether the quantum constraint algebra, especially the commutator between
two Hamiltonian constraint is consistent with the classical one (32) on some larger space
in Cyl? containing more diffeomorphism variant states10. On the other hand, more works
on the semi-classical analysis are also needed to test the classical limit of Eq.(38) and
commutation relation (32). The way to do it is looking for some proper semi-classical
states for calculating the classical limit of the operators. But due to the graph-changing
property of the Hamiltonian constraint operator, the semi-classical analysis for the Hamil-
tonian constraint operator and the quantum constraint algebra is still an open issue so far.

• General Regularization Scheme of the Hamiltonian Constraint

In [20], a general scheme of regulation is introduced for the quantization of the Hamilto-
nian constraint, and includes Thiemann’s regularization we introduced above as a specific
choice. Such a general regularization can be summarized as follows: first, we assign a

10However, some scholars disagree with such an argument involving the habitat and consider the habitat to be
unphysical and completely irrelevant (see, e.g. Ref.[151]).
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partition of Σ into cells � of arbitrary shape. In every cell of the partition we define edges
sJ, J = 1, ..., ns and loops βi, i = 1, ..., nβ, where ns, nβ may be different for different cells.
We use ε to represent the scale of the cell � Then fix an arbitrary chosen representation
ρ of S U(2). This structure is called a permissible classical regulator if the regulated
Hamiltonian constraint expression with respect to this partition has correct limit when
ε → 0.

Second, we assign the diffeomorphism covariant property and let the partition adapted to
the choice of the graph. That is, given a cylindrical function ψγ ∈ Cyl3

γ(A/G), we make
the partition sufficiently refined that every vertex v ∈ V(γ) is contained in exact one cell
of the partition. And if (γ, v) is diffeomorphic to (γ′, v′) then, for every ε and ε′, the quin-
tuple (γ, v, �, (sJ), (βi)) is diffeomorphic to the quintuple (γ′, v′, �′, (s′J), (β′i)), where
� and �′ are the cells in the partitions with respect to γ and γ′ respectively, containing v
and v′ respectively.

As a result, the Hamiltonian constraint operator in this general regularization scheme is
expressed as:

ŜεE,γ(N) =
∑

v∈V(γ)

N(v)
i~κ2β

∑

i,J

CiJTr((ρ[A(βi)] − ρ[A(β−1
i )])ρ[A(s−1

J )][ρ[A(sJ)], V̂Uε
v ]),

T̂ ε
γ (N) =

∑

v∈V(γ)

iN(v)
~3κ4β3

∑

I,J,K

T IJKTr(ρ[A(s−1
I )][ρ[A(sI)], K̂]ρ[A(s−1

J )][ρ[A(sJ)], K̂]

× ρ[A(s−1
K )][ρ[A(sK)], V̂Uε

v ]),

Ŝε(N)ψγ = [ŜεE,γ(N) − 2(1 + β2)T̂ ε
γ (N)]ψγ,

where CiJ and T IJK are fixed constants independent of the value of ε, the values of them
are determined such that the above expressions have correct classical limits. After remov-
ing the regulator ε via diffeomorphism invariance the same as we did above, we obtain a
well-defined diffeomorphism covariant operator onHkin (orHG) in the sense of the Uni-
form Rovelli-Smolin Topology, or dual-define the operator on some suitable domain in
Cyl?. Note that such a general scheme of construction exhibits that there is a great deal
of freedom in choosing the regulators, so that there are considerable ambiguities in our
quantization for seeking a proper quantum dynamics for gravity, which is also an open
issue today.

4.4 Master Constraint Programme
Although the Hamiltonian constraint operator introduced above is densely defined on Hkin and
diffeomorphism covariant, there are still several unsettled problems which are listed below.

• It is unclear whether the commutator between two Hamiltonian constraint operators re-
produces the classical Poisson bracket between two Hamiltonian constraints. Hence it is
unclear if the quantum Hamiltonian constraint produces the correct quantum dynamics
with correct classical limit [72][95].
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• The dual Hamiltonian constraint operator does not leave the Hilbert spaceHDi f f invariant.
Thus the inner product structure of HDi f f cannot be employed in the construction of
physical inner product.

• Classically the collection of Hamiltonian constraints does not form a Lie algebra. So one
cannot employ group averaging strategy in solving the Hamiltonian constraint quantum
mechanically, since the strategy depends crucially on group structure.

One may see that all above issues come from the properties of the constraint algebra at classical
level. However, if one could construct an alternative classical constraint algebra, giving the
same constraint phase space, which is a Lie algebra (no structure functions), where the subalge-
bra of diffeomorphism constraints forms an ideal, then the programme of solving the constraints
would be in a much better position. Such a constraint Lie algebra was first introduced by Thie-
mann in [149]. The central idea is to introduce the master constraint:

M :=
1
2

∫

Σ

d3x
|C̃(x)|2√| det q(x)|

, (39)

where C̃(x) is the scalar constraint in Eq.(8). One then gets the master constraint algebra:

{V(~N), V(~N′)} = V([~N, ~N′]),
{V(~N), M} = 0,
{M, M} = 0.

The master constraint programme has been well tested in various examples [63][64][65]
[66][67]. In the following, we extend the diffeomorphism transformations such that the Hilbert
space HDi f f is separable. This separability of HDi f f and the positivity and the diffeomorphism
invariance of M will be working together properly and provide us with powerful functional
analytic tools in the programme to solve the constraint algebra quantum mechanically. The
regularized version of the master constraint can be expressed as

Mε :=
1
2

∫

Σ

d3y
∫

Σ

d3xχε(x − y)
C̃(y)√

VUε
y

C̃(x)√
VUε

x

.

Introducing a partition P of the 3-manifold Σ into cells C, we have an operator Ĥε
C acting on

any cylindrical function fγ ∈ Cylγ(A/G) inHG as

Ĥε
C fγ =

∑

v∈V(γ)

χC(v)
E(v)

∑

v(∆)=v

ĥε,∆v fγ, (40)

via a family of state-dependent triangulations T (ε) on Σ as we did in the last section, where
χC(v) is the characteristic function of the cell C(v) containing a vertex v of the graph γ, and the
expression of ĥε,∆v reads

ĥε,∆v =
16

3i~κ2β
ε i jkTr(Â(αi j(∆))−1Â(sk(∆))−1[Â(sk(∆)),

√
V̂Uε

v ])

+2(1 + β2)
4
√

2
3i~3κ4β3 ε

i jkTr(Â(si(∆))−1[Â(si(∆)), K̂ε]

Â(s j(∆))−1[Â(s j(∆)),
√

V̂Uε
v ]Â(sk(∆))−1[Â(sk(∆)), K̂ε]). (41)
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Note that ĥε,∆v is similar to that involved in the regulated Hamiltonian constraint operator in
the last section, while the only difference is that now the volume operator is replaced by its
quare-root in Eq.(41). Hence the action of Ĥε

C on fγ adds arcs ai j(∆) with 1/2-representation
with respect to each v(∆) of γ. Thus, for each ε > 0, Ĥε

C is a Yang-Mills gauge invariant and
diffeomorphism covariant operator defined on Cyl(A/G). The family of such operators can give
a limit operator ĤC densely defined on HG by the uniform Rovelli-Smollin topology. Then a
master constraint operator, M̂, acting on any ΨDi f f ∈ Cyl?Di f f can be defined as [88]

(M̂ΨDi f f )[ fγ] := lim
P→Σ;ε,ε′→0

ΨDi f f [
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )† fγ], (42)

for any fγ is a finite linear combination of spin-network function. Note that Ĥε
C(Ĥε′

C )† fγ is
also a finite linear combination of spin-network functions on an extended graph with the same
skeleton of γ, hence the value of (M̂ΨDi f f )[ fγ] is finite for any given ΨDi f f . Thus M̂ΨDi f f lies in
the algebraic dual of the space of cylindrical functions. Furthermore, we can show that M̂ leaves
the diffeomorphism invariant distributions invariant. For any diffeomorphism transformation ϕ
on Σ,

(Û′ϕM̂ΨDi f f )[ fγ] = lim
P→Σ;ε,ε′→0

ΨDi f f [
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )†Ûϕ fγ]

= lim
P→Σ;ε,ε′→0

ΨDi f f [Ûϕ

∑

C∈P

1
2

Ĥϕ−1(ε)
ϕ−1(C)(Ĥ

ϕ−1(ε′)
ϕ−1(C) )† fγ]

= lim
P→Σ;ε,ε′→0

ΨDi f f [
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )† fγ], (43)

where in the last step, we used the fact that the diffeomorphism transformation ϕ leaves the
partition invariant in the limit P → σ and relabel ϕ(C) to be C. So we have the result

(Û′ϕM̂ΨDi f f )[ fγ] = (M̂ΨDi f f )[ fγ]. (44)

So given a diffeomorphism invariant spin-network state T[s], the result state M̂T[s] must be a
diffeomorphism invariant element in the algebraic dual of Cyl(A/G), which means that

M̂T[s] =
∑

[s1]

c[s1]T[s1],

then

lim
P→Σ;ε,ε′→0

T[s][
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )†Ts2] =
∑

[s1]

c[s1]T[s1][Ts2],

where the cylindrical function
∑

C∈P
1
2 Ĥε′

C (Ĥε
C)†Ts2 is a finite linear combination of spin-network

functions on some graphs γ ′ with the same skeleton of γ(s2) up to finite number of arcs. Hence
fixing the diffeomorphism equivalence class [s], only for spin-networks s2 lies in finite number
of diffeomorphism equivalence class the left hand side of the last equation is non-zero. So there
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are also only finite number of classes [s1] in the right hand side such that c[s1] is non-zero. As a
result, M̂T[s] is a finite linear combination of diffeomorphism invariant spin-network states and
lies in the Hilbert space of diffeomorphism invariant statesHDi f f for any [s]. And M̂ is densely
defined onHDi f f .

Given two diffeomorphism invariant spin-network functions T[s1] and T[s2], one can give the
matrix elements of M̂ as [88][89]

< T[s1]|M̂|T[s2] >Di f f

= (M̂T[s2])[Ts1∈[s1]]

= lim
P→Σ;ε,ε′→0

∑

C∈P

1
2

T[s2][Ĥε
C(Ĥε′

C )†Ts1∈[s1]]

= lim
P→Σ;ε,ε′→0

∑

C∈P

1
2

1
nγ(s2)

∑

ϕ∈Di f f (Σ)/Di f fγ(s2)

∑

ϕ′∈GS γ(s2)

× < ÛϕÛϕ′Ts2∈[s2]|Ĥε
C(Ĥε′

C )†Ts1∈[s1] >Kin

=
∑

s

lim
P→Σ;ε,ε′→0

∑

C∈P

1
2

1
nγ(s2)

∑

ϕ∈Di f f (Σ)/Di f fγ(s2)

∑

ϕ′∈GS γ(s2)

× < ÛϕÛϕ′Ts2∈[s2]|Ĥε
CTs >Kin< Ts|(Ĥε′

C )†Ts1∈[s1] >Kin

=
∑

[s]

∑

v∈V(γ(s∈[s]))

1
2

lim
ε,ε′→0

× T[s2][Ĥε
vTs,c∈[s,c]]

∑

s,c∈[s,c]

< Ts|(Ĥε′
v )†Ts1∈[s1] >Kin, (45)

where Di f fγ is the set of diffeomorphisms leaving the colored graph γ invariant, GS γ denotes
the graph symmetry quotient group Di f fγ/T Di f fγ where T Di f fγ is the diffeomorphism which
is trivial on the graph γ, and nγ is the number of elements in GS γ. Note that we have used
the resolution of identity trick in the fourth step. Since only a finite number of terms in the
sum over spin-networks s, cells C ∈ P, and diffeomorphism transformations ϕ are non-zero
respectively, we can interchange the sums and the limit. In the fifth step, we take the limit
C → v and split the sum

∑
s into

∑
[s]

∑
s∈[s], where [s, c] denotes the diffeomorphism equivalent

class associated with s. Here we also use the fact that, given γ(s) and γ(s′) which are different up
to a diffeomorphism transformation, there is always a diffeomorphism ϕ transforming the graph
associated with Ĥε

vTs (v ∈ γ(s)) to that of Ĥε
v′Ts′ (v′ ∈ γ(s′)) with ϕ(v) = v′, hence T[s2][Ĥε

vTs∈[s]]
is constant for different s ∈ [s].

Since the term
∑

s∈[s] < Ts|(Ĥε′
v )†Ts1∈[s1] >Kin is independent of the parameter ε′, one can see

that by fixing a arbitrary family of state-dependent triangulations T (ε′),∑

s∈[s]

< Ts|(Ĥε′
v )†Ts1∈[s1] >Kin

=
∑

ϕ

< UϕTs|(Ĥε′
v )†Ts1∈[s1] >Kin

=
∑

ϕ

< Ĥε′
v UϕTs|Ts1∈[s1] >Kin
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=
∑

ϕ

< UϕĤϕ−1(ε′)
ϕ−1(v) Ts|Ts1∈[s1] >Kin

= T[s1][Ĥ
ϕ−1(ε′)
v∈V(γ(s))Ts], (46)

where ϕ are the diffeomorphism transformations spanning the diffeomorphism equivalent class
[s]. Note that the kinematical inner product in above sum is non-vanishing if and only if ϕ(γ(s)))
coincides with the graph obtained from certain skeleton γ(s1) by the action of (Ĥε′

v )† and v ∈
V(ϕ(γ(s))), i.e., the scale ϕ−1(ε′) of the diffeomorphism images of the tetrahedrons added by
the action coincides with the scale of certain tetrahedrons in γ(s) and ϕ−1(v) is a vertex in γ(s).
Then we can express the matrix elements (83) as:

< T[s1]|M̂|T[s2] >Di f f

=
∑

[s]

∑

v∈V(γ(s∈[s]))

1
2

lim
ε,ε′→0

T[s2][Ĥε
vTs∈[s]]T[s1][Ĥε′

v Ts∈[s]]

=
∑

[s]

∑

v∈V(γ(s∈[s]))

1
2

(Ĥ′vT[s2])[Ts∈[s]](Ĥ′vT[s1])[Ts∈[s]]. (47)

From Eq.(85) and the fact that the master constraint operator M̂ is densely defined on HDi f f ,
it is obvious that M̂ is a positive and symmetric operator in HDi f f . Therefore, the quadratic
form QM associated with M̂ is closable [114]. The closure of QM is the quadratic form of
a unique self-adjoint operator M̂, called the Friedrichs extension of M̂. We relabel M̂ to be
M̂ for simplicity. From the construction of M̂, the qualitative description of the kernel of the
Hamiltonian constraint operator in Ref.[136] can be transcribed to describe the solutions to the
equation: M̂ΨDi f f = 0. In particular, the diffeomorphism invariant cylindrical functions based
on at most 2-valent graphs are obviously normalizable solutions. In conclusion, there exists a
positive and self-adjoint operator M̂ on HDi f f corresponding to the master constraint (75), and
zero is in the point spectrum of M̂.

Note that the quantum constraint algebra can be easily checked to be anomaly free. i.e.,

[M̂, Û′ϕ] = 0, [M̂, M̂] = 0.

which is consistent with the classical master constraint algebra in this sense. As a result, the dif-
ficulty of the original Hamiltonian constraint algebra can be avoided by introducing the master
constraint algebra, due to the Lie algebra structure of the latter. Since zero is in the spectrum of
M̂ [140], the further task is to obtain the physical Hilbert spaceHphys which is the kernel of the
master constraint operator with some suitable physical inner product, and the issue of quantum
anomaly is represented in terms of the size of Hphys and the existence of semi-classical states.
Note that we will see in the next section that the master constraint programme can be straight-
forwardly generalized to include matter fields [89]. We list some open problems in the master
constraint programme for further research.

• Kernel of Master Constraint Operator

Since the master constraint operator M̂ is self-adjoint, it is a practical problem to define
DID ofHDi f f :

HDi f f ∼
∫ ⊕

dµ(λ)H⊕λ ,
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< Φ|Ψ >Di f f =

∫

R
dµ(λ) < Φ|Ψ >H⊕λ ,

where µ(λ) is the spectral measure with respect to the master constraint operator M̂. It
is expected that we can identify H⊕λ=0 with the physical Hilbert space. However, such a
prescription is ambiguous in the case that zero is only in the continuous spectrum, loses
physical information in the case that zero is an embedded eigenvalue and unambiguous
only if zero is an isolated eigenvalue in which case however the whole machinery of the
DID is not needed at all because H⊕λ=0 ⊂ HDi f f and the physical inner product coincide
with the kinematical (differomorphism invariant) one [63]. There are some improved pre-
scriptions also presented in [63] by decomposing the measure with respect to the spectrum
types before direct integral decomposition, some ambiguities can be canceled by some
physical criterion, e.g., a complete subalgebra of bounded Dirac observables should be
represented irreducibly as self-adjoint operators on the physical Hilbert space, and the
resulting physical Hilbert space should admits a sufficient number of semiclassical states.
Nonetheless, due to the complicated structure of the master constraint operator, it is diffi-
cult anyhow to manage the spectrum analysis and direct integral decomposition. On the
other hand, for the self-adjointness of the master constraint operator and the Lie-algebra
structure of the constraint algebra, a formal group averaging strategy was introduced in
[149] as a more concrete way to get the physical Hilbert space. It is realized by a formal
rigged map ηphys:

ηphys : Cyl?Di f f → Φphys

f 7→ ηphys( f ) :=
∫

R

dt
2π

< eiM̂t f | . >Di f f ,

where eiM̂t is a one parameter continuous unitary group on HDi f f by the self-adjointness
of M̂, and Φphys is a subset of the algebraic dual of Cyl?Di f f . It is trivial to see that ηphys( f )
is invariant under the (dual) transformation of eiM̂t. Thus a inner product can be formally
defined between two algebraic functionals ηphys( f ) and ηphys( f ′) in Φphys via:

< ηphys( f )|ηphys( f ′) >phys := ηphys( f )[ f ′],

=

∫

R

dt
2π

< eiM̂t f | f ′ >Di f f

=

∫

R

dt
2π

∫

R
dµ(λ)eiλt < f (λ)| f ′(λ) >H⊕λ

=

∫

R
dµ(λ)δ(λ) < f (λ)| f ′(λ) >H⊕λ

= [
∫

R
dµ(λ)δ(λ)] < f (0)| f ′(0) >H⊕

λ=0
,

where we have used the spectrum decomposition with respect to the self-adjoint operator
M̂, the operator eiM̂t is represented by multiplication by a number eiλt on each H⊕λ , and
the vector valued function f (λ) is the spectrum decomposition representation of state
f ∈ HDi f f . Although we can see from the above argument that the physical inner product

49



is proportional to the inner product in the fiber Hilbert space H⊕λ=0, unfortunately, the
factor

∫
R dµ(λ)δ(λ) is divergent when µ has pure point part, e.g. zero is in the discrete

spectrum of M̂. That is one reason why we claim that the above argument is formal.

On the other hand, the group averaging strategy and the formal physical inner product
we just defined has potential relationships with path-integral formulation and spin foam
models due to the positivity of the master constraint operator M̂ [149], and hopefully,
we may obtain the physical transition amplitude from this physical inner product in the
future. However, the whole technique of group averaging for solving the master constraint
is still formal so far, and the rigorous calculations for it has not done yet as far as we know.

• Dirac Observables

Classically, one can prove that a function O ∈ C∞(M) is a weak observable with respect
to the scalar constraint if and only if

{O, {O,M}}|M = 0.

We define O to be a strong observable with respect to the scalar constraint if and only if

{O,M}|M = 0,

and to be a ultra-strong observable if and only if

{O,S(N)}|M = 0.

In quantum version, an observable Ô is a weak Dirac observable if and only if Ô leaves
Hphys invariant, while Ô is now called a strong Dirac observable if and only if Ô commutes
with the master constraint operator M̂. Given a bounded self-adjoint operator Ô defined
onHDi f f , for instance, a spectral projection of some observables leavingHDi f f invariant,
if the uniform limit exists, the bounded self-adjoint operator defined by group averaging

[̂O] := lim
T→∞

1
2T

∫ T

−T
dt Û(t)−1ÔÛ(t)

commutes with M̂ and hence becomes a strong Dirac observable on the physical Hilbert
space.

• Testing the Classical Limit of the Master Constraint Operator

One needs to construct spatial diffeomorphism invariant semiclassical states to calculate
the expectation value and fluctuation of the master constraint operator. If the results
coincide with the classical values up to ~ corrections, one can go ahead to finish our
quantization programme with confidence.
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5 Quantum Matter Field on a Quantum Background
In ordinary quantum field theory, the quantum field is defined on a smooth background space-
time. However, it is expected that the smooth structure of a spacetime may break down at
Planck scale, so the present treatment of quantum field theory is valid only in a semiclassical
sense. Thus we would like to modify the formulation of present quantum field theory to make
it compatible with the quantum theory of gravity(spacetime) which we already established in
previous sections so as to explore the behavior of the quantum matter field under Planck scale
and at extremely strong gravitational fields, e.g. inside the black hole or at the early age of the
universe.

In the following, an alternative quantization of scalar field will be introduced, the advantage
of such a quantization scheme is that the quantum scalar field doesn’t depend on the background.
We will also see that the quantization technique for the previous Hamiltonian constraint can be
generalized to quantize the Hamiltonian of matter fields coupled to gravity. Then it is shown
that an operator corresponding to the Hamiltonian of the scalar field can be well defined on
the coupled diffeomorphism invariant Hilbert space. It is even positive and self-adjoint without
any divergence. Thus quantum gravity acts exactly as a natural regulator for the quantum scalar
field in the polymer representation. Moreover, to study the whole dynamical system of the scalar
field coupled to gravity, a Hamiltonian constraint operator is defined in the coupled kinematical
Hilbert space. The contribution of the scalar field to the Hamiltonian constraint can be promoted
to a positive self-adjoint operator. To avoid possible quantum anomalies and find the physical
Hilbert space, we will also introduce the master constraint programme for the coupled system.
A self-adjoint master constraint operator is obtained in the diffeomorphism invariant Hilbert
space, which assures the feasibility of the programme.

5.1 Polymer-like Representation of a Scalar Field
We begin with the total Hamiltonian of the gravity coupled with a massless real scalar field
which is a linear combination of constraints:

Htot = ΛiGi + NaCa + NC,

where Λi, Na and N are Lagrange multipliers, and the three constraints in the Hamiltonian are
expressed as [30][87]:

Gi = DaP̃a
i := ∂aP̃a

i + ε k
i j Ai

aP̃a
k , (48)

Ca = P̃b
i F i

ab − Ai
aGi + π̃∂aφ, (49)

C =
κβ2

2
√| det q|

P̃a
i P̃b

j[ε
i j

kFk
ab − 2(1 + β2)Ki

[aK j
b]]

+
1√| det q|

[
κ2β2αM

2
δi jP̃a

i P̃b
j(∂aφ)∂bφ +

1
2αM

π̃2], (50)

here the real number αM is the coupling constant, and π̃ denotes the momentum conjugate to φ:

π̃ :=
∂L
∂φ̇

=
αM

N

√
| det q|(φ̇ − Na∂aφ).
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Thus one has the elementary Poisson brackets

{Ai
a(x), P̃b

j(y)} = δa
bδ

i
jδ(x, y),

{φ(x), π̃(y)} = δ(x, y).

Note that the second term of the Hamiltonian constraint (50) is just the Hamiltonian of the real
scalar field.

Then we look for the background independent representation for the real scalar field coupled
to gravity, following the polymer representation of the scalar field [27]. The classical config-
uration space, U, consists of all real-valued smooth functions φ on Σ. Given a set of a finite
number of points X = {x1, ..., xN} in Σ, a equivalence relation can be defined by: given two scalar
field φ1, φ2 ∈ U, φ1 ∼ φ2 if and only if exp[iλiφ1(xi)] = exp[iλ jφ2(x j)] for all xi ∈ X and all real
number λ j. Hence we obtain a bijection betweenU/ ∼ and RX, which is N copies of the Bohr
compactification of R [132]. Since one can define a projective family with respect to the set of
point (graph for scalar field), thus a projective limit U, which is a compact topological space,
is obtained as the quantum configuration space of scalar field. Next, we denote by CylX(U) the
vector space generated by finite linear combinations of the following functions of φ:

TX,λ(φ) :=
∏

x j∈X

exp[iλ jφ(x j)],

where λ ≡ (λ1, λ2, · · ·, λN) are arbitrary non-zero real numbers assigned at each point. It is
obvious that CylX(U) has the structure of a ∗-algebra. The vector space Cyl(U) of all cylindrical
functions onU is defined by the linear span of the linear span of T0 = 1 and TX,λ. Completing

Cyl(U) with respect to the sup norm, one obtains a unital Abelian C*-algebra Cyl(U). Thus
one can use the GNS structure to construct its cyclic representations. A preferred positive linear

functional ω0 on Cyl(U) is defined by

ω0(TX,λ) =

{
1 if λ j = 0 ∀ j
0 otherwise,

which defines a diffeomorphism-invariant faithful Borel measure µ onU as
∫

U
dµ(TX,λ) =

{
1 if λ j = 0 ∀ j
0 otherwise. (51)

Thus one obtains the Hilbert space, HKG
kin which is defined by L2(U, dµ), of square integrable

functions on a compact topological measure space U with respect to µ. The inner product can
be expressed explicitly as:

< Tc|Tc′ >
KG
kin = δcc′ , (52)

where the label c := (X, λ) are called scalar-network.
As one might expect, the quantum configuration space U is just the Gel’fand spectrum of

Cyl(U). More concretely, for a single point set X0 ≡ {x0}, CylX0(U) is the space of all almost
periodic functions on a real line R. The Gel’fand spectrum of the corresponding C*-algebra
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CylX0(U) is the Bohr completion Rx0 of R [27], which is a compact topological space such that

CylX0(U) is the C*-algebra of all continuous functions on Rx0 . Since R is densely embedded in
Rx0 , Rx0 can be regarded as a completion of R.

It is clear from Eq.(51) that an orthonomal basis in HKG
kin is given by the scalar vacuum

T0 = 1 and so-called scalar-network functions Tc(φ), where c = (X, λ) and λ ≡ (λ1, λ2, · · ·, λN)
are non-zero real numbers. So the total kinematical Hilbert space Hkin is the direct product of
the kinematical Hilbert space HGR

kin for gravity and the kinematical Hilbert space for real scalar
field, i.e., Hkin := HGR

kin ⊗ HKG
kin . Then the spin-scalar-network state Ts,c ≡ Ts(A) ⊗ Tc(φ) ∈

Cylγ(s)(A/G) ⊗ CylX(c)(U) ≡ Cylγ(s,c) is a gravity-scalar cylindrical function on graph γ(s, c) ≡
γ(s) ∪ X(c). Note that generally X(c) may not coincide with the vertices of the graph γ(s). It is
straightforward to see that all of these functions constitutes an orthonormal basis inHkin as

< Ts′(A) ⊗ Tc′(φ)|Ts(A) ⊗ Tc(φ) >kin= δs′sδc′c .

Note that none ofHkin,HGR
kin andHKG

kin is a separable Hilbert space.
Given a pair (x0, λ0), there is an elementary configuration for the scalar field, the so-called

point holonomy,

U(x0, λ0) := exp[iλ0φ(x0)].

It corresponds to a configuration operator Û(x0, λ0), which acts on any cylindrical function
ψ(φ) ∈ CylX(c)(U) by

Û(x0, λ0)ψ(φ) = U(x0, λ0)ψ(φ). (53)

All these operators are unitary. But since the family of operators Û(x0, λ) fails to be weakly
continuous in λ, there is no field operator φ̂(x) onHKG

kin . The momentum functional smeared on
a 3-dimensional region R ⊂ Σ is expressed by

π(R) :=
∫

R
d3 x̃π(x).

The Poisson bracket between the momentum functional and a point holonomy can be easily
calculated to be

{π(R),U(x, λ)} = −iλχR(x)U(x, λ),

where χR(x) is the characteristic function for the region R. So the momentum operator is defined
by the action on scalar network functions Tc=(X,λ) as

π̂(R)Tc(φ) := i~{π(R),Tc(φ)} = ~[
∑

x j∈X

λ jχ(x j)]Tc(φ).

Now we can impose the quantum constraints on Hkin and consider the quantum dynamics.
First, the Gauss constraint can be solved independently of HKG

kin , since it only involves the
gravitational field. It is also expected that the diffeomorphism constraint can be implemented
by the group averaging strategy in the similar way as in the case of pure gravity. Given a spatial
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diffeomorphism transformation ϕ, a unitary transformation Ûϕ was induced by ϕ in the Hilbert
spaceHkin, which is expressed as

ÛϕTs=(γ(s),j,i),c=(X(c),λ) = Tϕ◦s=(ϕ(γ(s)),j,i),ϕ◦c=(ϕ(X(c)),λ).

Then the differomorphism invariant spin-scalar-network functions are defined by group averag-
ing as

T[s,c] :=
1

nγ(s,c)

∑

ϕ∈Di f f (Σ)/Di f fγ(s,c)

∑

ϕ′∈GS γ(s,c)

ÛϕÛϕ′Ts,c, (54)

where Di f fγ is the set of diffeomorphisms leaving the colored graph γ invariant, GS γ denotes
the graph symmetry quotient group Di f fγ/T Di f fγ where T Di f fγ is the set of the diffeomor-
phisms which is trivial on the graph γ, and nγ is the number of elements in GS γ. Following the
standard strategy in quantization of pure gravity, an inner product can be defined on the vector
space spanned by the diffeomorphism invariant spin-scalar-network functions (and the vacuum
states for gravity, scalar and both respectively) such that they form an orthonormal basis as:

< T[s,c]|T[s′,c′] >Di f f := T[s,c][Ts′,c′∈[s′,c′]] = δ[s,c],[s′,c′]. (55)

After the completion procedure, we obtain the expected Hilbert space of diffeomorphism in-
variant states for the scalar field coupled to gravity, which is denoted byHDi f f .

5.2 Diffeomorphism Invariant Hamiltonian of a Scalar Field
In the following discussion, we consider the quantum scalar field on a fluctuating background.
A similar idea was considered in Ref.[139], where a Hamiltonian operator with respect to a U(1)
group representation of the scalar field is defined on a kinematical Hilbert spaceHkin′ of matter
coupled to gravity. Then an effective Hamiltonian operator of the scalar field can be constructed
as a quadratic form via

< ψmatter, Ĥe f f
matter(m) ψ′matter >

KG
kin′

:= < ψgrav(m) ⊗ ψmatter, Ĥmatter ψgrav(m) ⊗ ψ′matter >kin′ , (56)

where ψgrav(m) ∈ HGR
kin presents a semiclassical state of gravity approximating some classical

spacetime background m where the quantum scalar field lives. Thus the effective Hamiltonian
operator Ĥe f f

matter(m) of scalar field contains also the information of the fluctuating background
metric. In the light of this idea, we will construct a Hamiltonian operator ŜKG for scalar field
in the polymer-like representation. It turns out that this Hamiltonian operator can be defined
in the Hilbert spaceHDi f f of diffeomorphism invariant states for scalar field coupled to gravity
without UV-divergence. So the quantum dynamics of the scalar field is obtained in a diffeo-
morphism invariant way, which is expected in the programme of loop quantum gravity. Thus,
here an effective Hamiltonian operator of the scalar field could be extracted in HDi f f by defin-
ing < Ψ[m](A, φ), ŜKG Ψ[m](A, φ) >Di f f to be its expectation value on diffeomorphism invariant
states Ψ(φ) of the scalar field, where the diffeomorphism invariant semiclassical state Ψ[m](A)
represents certain fluctuating geometry with spatial diffeomorphism invariance, and the label
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[m] denotes the classical geometry approximated by Ψ[m](A). Moreover, the quadratic proper-
ties of the scalar field Hamiltonian will provide powerful functional analytic tools in the quan-
tization procedure, such that the self-adjointness of the Hamiltonian operator can be proved by
a theorem in functional analysis.

Then the crucial point is to define an operator corresponding to the Hamiltonian functional
SKG of the scalar field, which can be decomposed into two parts

SKG = SKG,φ + SKG,Kin,

where

SKG,φ =
κ2β2αM

2

∫

Σ

d3x
1√| det q|

δi jP̃a
i P̃b

j(∂aφ)∂bφ,

SKG,Kin =
1

2αM

∫

Σ

d3x
1√| det q|

π̃2.

We will employ the following identities:

P̃a
i =

1
2κβ

η̃abcεi jke
j
bek

c and ei
a(x) =

2
κβ
{Ai

a(x),VUx},

where η̃abc denotes the Levi-Civita tensor tensity and VUx is the volume of an arbitrary neigh-
borhood Ux containing the point x. By using the point-splitting strategy, the regulated version
of the Hamiltonian is obtained as:

SKG,φ =
κ2β2αM

2

∫

Σ

d3y
∫

Σ

d3xχε(x − y)δi j ×
1√
VUε

x

P̃a
i (x)(∂aφ(x))

1√
VUε

y

P̃b
j(y)∂bφ(y)

=
32αM

κ4β4

∫

Σ

d3y
∫

Σ

d3xχε(x − y)δi j ×

η̃aec(∂aφ(x))Tr(τi{Ae(x),V3/4
Uε

x
}{Ac(x),V3/4

Uε
x
}) ×

η̃b f d(∂bφ(y))Tr(τ j{A f (y),V3/4
Uε

y
}{Ad(y),V3/4

Uε
y
}),

SKG,Kin =
1

2αM

∫

Σ

d3 x̃π(x)
∫

Σ

d3ỹπ(y) ×
∫

Σ

d3u
det(ei

a(u))
(VUε

u)3/2

∫

Σ

d3w
det(ei

a(w))
(VUε

w)3/2 χε(x − y)χε(u − x)χε(w − y)

=
1

2αM

28

9(κβ)6

∫

Σ

d3 x̃π(x)
∫

Σ

d3ỹπ(y) ×
∫

Σ

d3u η̃abcTr({Aa(u),
√

VUε
u}{Ab(u),

√
VUε

u}{Ac(u),
√

VUε
u}) ×

∫

Σ

d3w η̃de f Tr({Ad(w),
√

VUε
w}{Ae(w),

√
VUε

w}{A f (w),
√

VUε
w}) ×

χε(x − y)χε(u − x)χε(w − y),
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where we denote by Aa ≡ Ai
aτi, χε(x − y) the characteristic function of a box containing x with

scale ε such that limε→0 χε(x − y)/ε3 = δ(x − y), and VUε
x is the volume of the box. In order

to quantize the Hamiltonian SKG as a well-defined operator in the polymer-like representation,
we have to express the classical formula of the Hamiltonian in terms of elementary variables
with clear quantum analogs by introducing a triangulation T (ε) of Σ, where the parameter ε
describes how fine the triangulation is. The quantity regulated on the triangulation is required
to have correct limit when ε → 0. Given a tetrahedron ∆ ∈ T (ε), we use {si(∆)}i=1,2,3 to denote
the three outgoing oriented segments in ∆ with a common beginning point v(∆) = s(si(∆)) and
use ai j(∆) to denote the arcs connecting the end points of si(∆) and s j(∆). Then several loops
αi j(∆) are formed by αi j(∆) := si(∆) ◦ ai j(∆) ◦ s j(∆)−1. Thus we have the identities:

{
∫

s(∆)
dt Aa ṡa(t),V3/4

Uε
s(s(∆))
} = −A(s(∆))−1{A(s(∆)),V3/4

Uε
s(s(∆))
} + o(ε),

and ∫

s(∆)
dt ∂aφṡa(t) =

1
iλ

U(s(s(∆)), λ)−1[U(t(s(∆)), λ) − U(s(s(∆)), λ)] + o(ε)

for nonzero λ, where s(s(∆)) and t(s(∆)) denote respectively the beginning and end points of
segment s(∆) with scale ε associated with a tetrahedron ∆. Regulated on the triangulation, the
scalar field Hamiltonian reads

SεKG,φ = − 4αM

9κ4β4

∑

∆′∈T (ε)

∑

∆∈T (ε)

χε(v(∆) − v(∆′))δi j ×

ε lmn 1
λ

U(v(∆), λ)−1[U(t(sl(∆)), λ) − U(v(∆), λ)] ×
Tr(τiA(sm(∆))−1{A(sm(∆)),V3/4

Uε
v(∆)
}A(sn(∆))−1{A(sn(∆)),V3/4

Uε
v(∆)
}) ×

εkpq 1
λ

U(v(∆′), λ)−1[U(t(sk(∆′)), λ) − U(v(∆′), λ)] ×
Tr(τ jA(sp(∆′))−1{A(sp(∆′)),V3/4

Uε
v(∆′)
}A(sq(∆′))−1{A(sq(∆′)),V3/4

Uε
v(∆′)
}),

SεKG,Kin =
16

81αM(κβ)6

∑

∆∈T (ε)

∑

∆′∈T (ε)

π(∆)π(∆′) ×
∑

∆′′∈T (ε)

ε imnTr(A(si(∆′′))−1{A(si(∆′′)),
√

VUε
v(∆′′)
} ×

A(sm(∆′′))−1{A(sm(∆′′)),
√

VUε
v(∆′′)
} ×

A(sn(∆′′))−1{A(sn(∆′′)),
√

VUε
v(∆′′)
}) ×

∑

∆′′′∈T (ε)

ε jklTr(A(s j(∆′′′))−1{A(s j(∆′′′)),
√

VUε
v(∆′′′)
} ×

A(sk(∆′′′))−1{A(sk(∆′′′)),
√

VUε
v(∆′′′)
} ×

A(sl(∆′′′))−1{A(sl(∆′′′)),
√

VUε
v(∆′′′)
}) ×

χε(v(∆) − v(∆′))χε(v(∆′′) − v(∆))χε(v(∆′′′) − v(∆′)). (57)
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Note that the above regularization is explicitly dependent on the parameter λ, which will lead to
a kind of quantization ambiguity of the real scalar field dynamics in polymer-like representation.
Introducing a partition P of the 3-manifold Σ into cells C, we can smear the essential ”square
roots” of SεKG,φ and SεKG,Kin in one cell C respectively and promote them as regulated operators
inHkin with respect to triangulations T (ε) depending on spin-scalar-network state Ts,c as

Ŵε,C
φ,i Ts,c =

∑

v∈V(γ(s,c))

χC(v)
E(v)

∑

v(∆)=v

ĥε,∆φ,v,iTs,c,

Ŵε,C
KinTs,c =

∑

v∈V(γ(s,c))

χC(v)
E(v)

∑

v(∆)=v

ĥε,∆Kin,vTs,c, (58)

where χC(v) is the characteristic function of the cell C, and

ĥε,∆φ,v,i :=
i
~2 ε

lmn 1
λ(v)

Û(v, λ(v))−1[Û(t(sl(∆)), λ(v)) − Û(v, λ(v))] ×
Tr(τiÂ(sm(∆))−1[Â(sm(∆)), V̂3/4

Uε
v

]Â(sn(∆))−1[Â(sn(∆)), V̂3/4
Uε

v
]),

ĥε,∆Kin,v :=
1

(i~)3 π̂(v)ε lmnTr(Â(sl(∆))−1[Â(sl(∆)),
√

V̂Uε
v ] ×

Â(sm(∆))−1[Â(sm(∆)),
√

V̂Uε
v ] ×

Â(sn(∆))−1[Â(sn(∆)),
√

V̂Uε
v ]). (59)

Both operators in (58) and their adjoint operators are densely defined on Hkin. We now give
several remarks on their properties.

• Removal of regulator ε

It is not difficult to see that the action of the operator Ŵε,C
φ,i on a spin-scalar-network

function Ts,c is graph-changing. It adds finite number of vertices with representation λ(v)
at t(si(∆)) with distance ε from the vertex v. Recall that the action of the gravitational
Hamiltonian constraint operator on a spin network function is also graph-changing. As
a result, the family of operators Ŵε,C

φ,i also fails to be weakly converged when ε → 0.
However, due to the diffeomorphism covariant properties of the triangulation, the limit
operator can be well-defined via the uniform Rovelli-Smolin topology, or equivalently, the
operator can be dually defined on diffeomorphism invariant states. But the dual operator
cannot leaveHDi f f invariant.

• Quantization ambiguity

As a main difference of the dynamics in polymer-like representation from that in U(1)
group representation [138], a continuous label λ appears explicitly in the expression of
(58). Hence there is an one-parameter quantization ambiguity due to the real scalar field.
Recall that the construction of gravitational Hamiltonian constraint operator also has a
similar ambiguity due to the choice of the representations j of the edges added by its
action. A related quantization ambiguity also appears in the dynamics of loop quantum
cosmology [50].

57



Since our quantum field theory is expected to be diffeomorphism invariant, we would like to
define the Hamiltonian operator of polymer scalar field in the diffeomorphism invariant Hilbert
space HDi f f . For this purpose we fix the parameter λ to be a non-zero constant at every point.
Then what we will do is to employ the new quantization strategy developed in Refs. [149]
and [140]. We first construct a quadratic form in the light of a new inner product defined in
Ref.[140] on the algebraic dual D? of the space of cylindrical functions which is spanned by
spin-scalar-networks Ts,c (where the family of labels s, c includes the vacuum states for gravity,
scalar and both). Then we prove that the quadratic form is closed. Note that, although the
calculation employing this inner product is formal, it can lead to a well-defined expression
of the desired quadratic form Eq.(65). Since an arbitrary element of D? is of the form Ψ =∑

s,c cs,c < Ts,c| · >kin, one can formally define an inner product < · |· >? onD? via

< Ψ,Ψ′ >? := <
∑

s,c

cs,c < Ts,c| · >kin |
∑

s′,c′
c′s′,c′ < Ts′,c′ | · >kin>?

:=
∑

s,c;s′,c′
cs,cc′s′,c′ < Ts,c|Ts′,c′ >kin

1√
ℵ([s, c])ℵ([s′, c′])

=
∑

s,c

cs,cc′s,c
1

ℵ([s, c])
, (60)

where the Cantor aleph ℵ denotes the cardinal of the set [s, c]. Note that we exchange the
coefficients on which the complex conjugate was taken in Ref.[140], so that the inner product
< ΨDi f f |Ψ′Di f f >? reduces to < ΨDi f f |Ψ′Di f f >Di f f for any ΨDi f f ,Ψ

′
Di f f ∈ HDi f f . Completing the

quotient with respect to the null vectors by this inner product, one gets a Hilbert spaceH?. Our
purpose is to construct a quadratic form associated to some positive and symmetric operator in
analogy with the classical expression of (57). So the quadratic form should first be given in
a positive and symmetric version. It is then natural to define two quadratic forms on a dense
subset ofHDi f f ⊂ H? as:

QKG,φ(ΨDi f f ,Ψ
′
Di f f ) := lim

P→Σ

∑

C∈P
64 × 4αM

9κ4β4 δ
i j < Ŵ ′C

φ,iΨDi f f |Ŵ ′C
φ, jΨ

′
Di f f >?,

QKG,Kin(ΨDi f f ,Ψ
′
Di f f ) := lim

P→Σ

∑

C∈P
84 × 16

81αM(κβ)6 < Ŵ ′C
KinΨDi f f |Ŵ ′C

KinΨ
′
Di f f >?,

(61)

for any two states ΨDi f f and Ψ′Di f f which are finite linear combinations of T[s,c], where the dual
limit operator Ŵ ′C of either family of Ŵε,C

φ,i or Ŵε,C
Kin in (58) is naturally defined on diffeomor-

phism invariant states as

Ŵ ′CΨDi f f [Ts,c] = lim
ε→0

ΨDi f f [Ŵε,CTs,c]. (62)

To show that the quadratic forms are well defined, we write

Ŵ ′C
φ,iΨDi f f =

∑

s,c

wΨ
φ,i,s,c(C) < Ts,c| · >? ⇒ wΨ

φ,i,s,c(C) = (Ŵ ′C
φ,iΨDi f f )[Ts,c],

Ŵ ′C
KinΨDi f f =

∑

s,c

wΨ
Kin,s,c(C) < Ts,c| · >? ⇒ wΨ

Kin,s,c(C) = (Ŵ ′C
KinΨDi f f )[Ts,c].
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Then, by using the inner product (60) the quadratic forms in (61) become

QKG,φ(ΨDi f f ,Ψ
′
Di f f )

:= lim
P→Σ

∑

C∈P
64 × 4αM

9κ4β4 δ
i j
∑

s,c

wΨ
φ,i,s,c(C)wΨ′

φ, j,s,c(C)
1

ℵ([s, c])

= lim
P→Σ

∑

C∈P
64 × 4αM

9κ4β4 δ
i j
∑

[s,c]

1
ℵ([s, c])

∑

s,c∈[s,c]

wΨ
φ,i,s,c(C)wΨ′

φ, j,s,c(C),

QKG,Kin(ΨDi f f ,Ψ
′
Di f f )

:= lim
P→Σ

∑

C∈P
84 × 16

81αM(κβ)6

∑

s,c

wΨ
Kin,s,c(C)wΨ′

Kin,s,c(C)
1

ℵ([s, c])

= lim
P→Σ

∑

C∈P
84 × 16

81αM(κβ)6

∑

[s,c]

1
ℵ([s, c])

∑

s,c∈[s,c]

wΨ
Kin,s,c(C)wΨ′

Kin,s,c(C).

(63)

Note that, since ΨDi f f is a finite linear combination of the diffeomorphism invariant spin-scalar-
network basis, taking account of the operational property of Ŵ ′C there are only a finite number
of terms in the summation

∑
[s,c] contributing to (63). Hence we can interchange

∑
[s,c] and

limP→Σ

∑
C∈P in above calculation. Moreover, for a sufficiently fine partition such that each cell

contains at most one vertex, the sum over cells therefore reduces to finite terms with respect to
the vertices of γ(s, c). So we can interchange

∑
s,c∈[s,c] and limP→Σ

∑
C∈P to obtain:

QKG,φ(ΨDi f f ,Ψ
′
Di f f )

= 64 × 4αM

9κ4β4 δ
i j
∑

[s,c]

1
ℵ([s, c])

∑

s,c∈[s,c]

lim
P→Σ

∑

C∈P
wΨ
φ,i,s,c(C)wΨ′

φ, j,s,c(C)

= 64 × 4αM

9κ4β4 δ
i j
∑

[s,c]

1
ℵ([s, c])

∑

s,c∈[s,c]

∑

v∈V(γ(s,c))

(Ŵ ′v
φ,iΨDi f f )[Ts,c](Ŵ ′v

φ, jΨ
′
Di f f )[Ts,c],

QKG,Kin(ΨDi f f ,Ψ
′
Di f f )

= 84 × 16
81αM(κβ)6

∑

[s,c]

1
ℵ([s, c])

∑

s,c∈[s,c]

lim
P→Σ

∑

C∈P
wΨ

Kin,s,c(C)wΨ′
Kin,s,c(C)

= 84 × 16
81αM(κβ)6

∑

[s,c]

1
ℵ([s, c])

∑

s,c∈[s,c]

∑

v∈V(γ(s,c))

(Ŵ ′v
KinΨDi f f )[Ts,c](Ŵ ′v

KinΨ
′
Di f f )[Ts,c],

(64)

where the limit P → Σ has been taken so that C → v. Since given γ(s, c) and γ(s′, c′) which
are different up to a diffeomorphism transformation, there is always a diffeomorphism ϕ trans-
forming the graph associated with Ŵε,vTs,c (v ∈ γ(s, c)) to that of Ŵε,v′Ts′,c′ (v′ ∈ γ(s′, c′)) with
ϕ(v) = v′, (Ŵ ′vΨDi f f )[Ts,c∈[s,c]] is constant for different (s, c) ∈ [s, c], i.e., all the ℵ([s, c]) terms
in the sum over (s, c) ∈ [s, c] are identical. Hence the final expressions of the two quadratic
forms can be written as:

QKG,φ(ΨDi f f ,Ψ
′
Di f f )
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= 64 × 4αM

9κ4β4 δ
i j
∑

[s,c]

∑

v∈V(γ(s,c))

(Ŵ ′v
φ,iΨDi f f )[Ts,c∈[s,c]](Ŵ ′v

φ, jΨ
′
Di f f )[Ts,c∈[s,c]],

QKG,Kin(ΨDi f f ,Ψ
′
Di f f )

= 84 × 16
81αM(κβ)6

∑

[s,c]

∑

v∈V(γ(s,c))

(Ŵ ′v
KinΨDi f f )[Ts,c∈[s,c]](Ŵ ′v

KinΨ
′
Di f f )[Ts,c∈[s,c]].

(65)

Note that both quadratic forms in (65) have finite results and hence their form domains are
dense inHDi f f . Moreover, both of them are obviously positive, and the following theorem will
demonstrate their closedness.

Theorem 5.2.1: Both QKG,φ and QKG,Kin are densely defined, positive and closed quadratic
forms onHDi f f , which are associated uniquely with two positive self-adjoint operators respec-
tively onHDi f f such that

QKG,φ(ΨDi f f ,Ψ
′
Di f f ) = < ΨDi f f |ŜKG,φ|Ψ′Di f f >Di f f

QKG,Kin(ΨDi f f ,Ψ
′
Di f f ) = < ΨDi f f |ŜKG,Kin|Ψ′Di f f >Di f f .

Therefore the Hamiltonian operator

ŜKG := ŜKG,φ + ŜKG,Kin (66)

is positive and also have a unique self-adjoint extension.

Proof: We follow the strategy developed in Refs.[140] and [88] to prove that both QKG,φ and
QKG,Kin are closeable and uniquely induce two positive self-adjoint operators ŜKG,φ and ŜKG,Kin.
One can formally define ŜKG,φ and ŜKG,Kin acting on diffeomorphism invariant spin-scalar net-
work functions via:

ŜKG,φ T[s1,c1] :=
∑

[s2,c2]

QKG,φ(T[s2,c2],T[s1,c1])T[s2,c2], (67)

ŜKG,Kin T[s1,c1] :=
∑

[s2,c2]

QKG,Kin(T[s2,c2],T[s1,c1])T[s2,c2]. (68)

Then we need to show that both of the above operators are densely defined on the Hilbert
space HDi f f . Given a diffeomorphism invariant spin-scalar network function T[s1,c1], there are
only a finite number of terms T[s1,c1][Ŵε,vTs,c∈[s,c]] which are nonzero in the sum over equivalent
classes [s, c] in (65). On the other hand, given one spin-scalar-network function Ts,c∈[s,c], there
are also only a finite number of possible T[s2,c2] such that the terms T[s2,c2][Ŵε,vTs,c∈[s,c]] are
nonzero. As a result, only a finite number of terms survive in both sums over [s2, c2] in Eqs.
(67) and (68). Hence both ŜKG,φ and ŜKG,Kin are well defined on spin-scalar-network basis.
Then it follows from Eqs. (65), (67) and (68) that they are positive and symmetric operators
densely defined inHDi f f , whose quadratic forms coincide with QKG,φ and QKG,Kin on their form
domains. Hence both QKG,φ and QKG,Kin have positive closures and uniquely induce self-adjoint
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(Friedrichs) extensions of ŜKG,φ and ŜKG,Kin respectively [114], which we denote by ŜKG,φ and
ŜKG,Kin as well. As a result, the Hamiltonian operator ŜKG defined by Eq.(66) is also positive
and symmetric. Hence it has a unique self-adjoint (Friedrichs) extension.
�

We notice that, from a different perspective, one can construct the same Hamiltonian oper-
ator ĤKG without introducing an inner product onD?. The construction is sketched as follows.
Using the two well-defined operators Ŵε,C

φ,i and Ŵε,C
Kin as in (58), as well as their adjoint operators

(Ŵε,C
φ,i )† and (Ŵε,C

Kin)†, one may define two operators on HDi f f corresponding to the two terms in
(57) by

(ŜKG,φΨDi f f )[Ts,c] = lim
ε,ε′→0,P→Σ

ΨDi f f [
∑

C∈P
64 × 4αM

9κ4β4 δ
i jŴε,C

φ,i (Ŵε′,C
φ, j )†Ts,c]

(ŜKG,KinΨDi f f )[Ts,c] = lim
ε,ε′→0,P→Σ

ΨDi f f [
∑

C∈P
84 × 16

81αM(κβ)6 Ŵε,C
Kin(Ŵε′,C

Kin )†Ts,c],

(69)

for any spin-scalar-network Ts,c. In analogy with the discussion about the master constraint
operator and Ref.[88], it can be shown that both above operators leave HDi f f invariant and are
densely defined on HDi f f . Moreover, the quadratic forms associated with them coincide with
the quadratic forms in (65). Thus the Hamiltonian operator ŜKG := ŜKG,φ + ŜKG,Kin coincides
with the one constructed in the quadratic form approach.

In summary, we have constructed a positive self-adjoint Hamiltonian operator onHDi f f for
the polymer-like scalar field, depending on a chosen parameter λ. Thus there is an 1-parameter
ambiguity in the construction. However, there is no UV divergence in this quantum Hamiltonian
without renormalization, since quantum gravity plays the role of a natural regulator for the
polymer-like scalar field.

5.3 Hamiltonian Constraint Equation for the Coupled System
In this section we consider the whole dynamical system of scalar field coupled to gravity. Re-
call that in perturbative quantum field theory in curved spacetime, the definition of some basic
physical quantities, such as the expectation value of the energy-momentum, is ambiguous and
it is challenging difficult to calculate the back-reaction of quantum fields on the background
spacetime [157]. This is reflected by the fact that the semi-classical Einstein equation,

Rαβ[g] − 1
2

R[g]gαβ = κ < T̂αβ[g] >, (70)

are known to be inconsistent and ambiguous [70][146]. One could speculate that the diffi-
culty is related to the fact that the usual formulation of quantum field theories are background
dependent. Following this line of thought, if the quantization programme is by construction
non-perturbative and background independent, it may be possible to solve the problems fun-
damentally. In loop quantum gravity, there is no assumption of a priori background metric at
all. The quantum geometry and quantum matter fields are coupled and fluctuating naturally
with respect to each other on a common manifold. On the other hand, there exists the ”time

61



problem” in quantum theory of pure gravity, since all the physical states have to satisfy certain
version of quantum Wheeler-DeWitt constraint equation. However, the situation could improve
when matter field is coupled to gravity [54][122]. In the following construction, we impose the
quantum Hamiltonian constraint onHkin, and thus define a quantum Wheeler-DeWitt constraint
equation for the scalar field coupled to gravity. Then one can gain an insight into the problem
of time from the coupled equation, and the back-reaction of the quantum scalar field is included
in the framework of loop quantum gravity.

We now define an operator inHkin corresponding to the scalar field part SKG(N) of the total
Hamiltonian constraint functional, which can be read out from Eqs. (35) and (50) as

SKG(N) = SKG,φ(N) + SKG,Kin(N),

where

SKG,φ(N) =
κ2β2αM

2

∫

Σ

d3xN
1√| det q|

δi jP̃a
i P̃b

j(∂aφ)∂bφ,

SKG,Kin(N) =
1

2αM

∫

Σ

d3xN
1√| det q|

π̃2.

In analogy with the regularization and quantization in the previous section, the regulated version
of quantum Hamiltonian constraint ŜεKG(N) of scalar field is expressed by taking the limit C →
v:

ŜεKG(N)Ts,c :=
∑

v∈V(γ(s,c))

N(v)[64 × 4αM

9κ4β4 δ
i j(Ŵε,v

φ,i )
†Ŵε,v

φ, j

+ 84 × 16
81αM(κβ)6 (Ŵε,v

Kin)†Ŵε,v
Kin]Ts,c, (71)

where for any v ∈ V(γ(s, c)), the operators

Ŵε,v
φ,i Ts,c =

1
E(v)

∑

v(∆)=v

ĥε,∆φ,v,iTs,c,

Ŵε,v
KinTs,c =

1
E(v)

∑

v(∆)=v

ĥε,∆Kin,vTs,c,

and their adjoints are all densely defined in Hkin. Hence the family of Hamiltonian constraint
operators (71) is also densely defined, and the regulator ε can be removed via the Uniform
Rovelli-Smollin topology, or equivalently the limit operator dually acts on diffeomorphism in-
variant states as

(Ŝ′KG(N)ΨDi f f )[ f ] = lim
ε→0

ΨDi f f [ŜεKG(N) f ], (72)

for any f ∈ Cyl(A/G) ⊗ Cyl(U). Similar to the dual of ŜGR(N), the operator Ŝ′KG(N) fails to
commute with the dual of finite diffeomorphism transformation operators, unless the smearing
function N(x) is a constant function over Σ. In fact, the dual Hamiltonian constraint opera-
tor smeared by N = 1 is just the diffeomorphism invariant Hamiltonian we just defined in the
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last subsection. From Eq.(71), it is not difficult to prove that for positive N(x) the Hamilto-
nian constraint operator ŜKG(N) of a scalar field is positive and symmetric in Hkin and hence
has a unique self-adjoint extension [89]. Our construction of ŜKG(N) is similar to that of the
Higgs field Hamiltonian constraint in Ref.[138]. However, like the case of ŜKG, there is a
one-parameter ambiguity in our construction of ŜKG(N) due to the real scalar field, which is
manifested as the continuous parameter λ in the expression of ĥε,∆φ,v,i in (59). Note that now λ is
not required to be a constant, i.e., its value can be changed from one point to another. Thus the
total Hamiltonian constraint operator of scalar field coupled to gravity has been obtained as

Ŝ(N) = ŜGR(N) + ŜKG(N). (73)

Again, there is no UV divergence in this quantum Hamiltonian constraint. Recall that, in stan-
dard quantum field theory the UV divergence can only be cured by a renormalization procedure,
in which one has to multiply the Hamiltonian by a suitable power of the regulating parameter
ε. However, now ε has naturally disappeared from the expression of (73). So renormalization is
not needed for the polymer-like scalar field coupled to gravity, since quantum gravity has played
the role of a natural regulator. This result heightens our confidence that the issue of divergences
in quantum field theory can be cured in the framework of loop quantum gravity.

Now we have obtained the desired matter-coupled quantum Hamiltonian constraint equation

−(Ŝ′KG(N)ΨDi f f )[ f ] = (Ŝ′GR(N)ΨDi f f )[ f ]. (74)

Comparing it with the well-known Schördinger equation for a particle,

i~
∂

∂t
ψ(x, t) = H(x̂,

̂
−i~

∂

∂x
)ψ(x, t),

where ψ(x, t) ∈ L2(R, dx) and t is a parameter labeling time evolution, one may take the view-
point that the matter field constraint operator Ŝ′KG(N) plays the role of i~ ∂

∂t . Then φ appears as
the parameter labeling the evolution of the gravitational field state. In the reverse viewpoint, the
gravitational field would become the parameter labeling the evolution of the quantum matter
field. Note that such an idea has been successfully applied in a loop quantum cosmology model
to help us to understand the quantum nature of big bang in the deep Planck regime [28][29].

5.4 Master Constraint for the Coupled System
Recall that in order to avoid possible quantum anomalies and find the physical Hilbert space
of quantum gravity, the master constraint programme was first introduced in the last section.
The central idea is to construct an alternative classical constraint algebra, giving the same con-
straint phase space, which is a Lie algebra (no structure functions) and where the subalgebra of
diffeomorphism constraints forms an ideal. A self-adjoint master constraint operator for loop
quantum gravity is then proposed on HDi f f . The master constraint programme can be gener-
alized to matter fields coupled to gravity in a straightforward way. We now take the massless
real scalar field to demonstrate the construction of a master constraint operator according to
the same strategy as we did in the last section. By this approach one not only avoids possible
quantum anomalies which might appear in the conventional canonical quantization method, but
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also might give a qualitative description of the physical Hilbert space for the coupled system.
We introduce the master constraint for the scalar field coupled to gravity as

M :=
1
2

∫

Σ

d3x
|C(x)|2√| det q(x)|

, (75)

where C(x) is the Hamiltonian constraint in (50). After solving the Gaussian constraint, one
gets the master constraint algebra as a Lie algebra:

{V(~N), V(~N′)} = V([~N, ~N′]),
{V(~N), M} = 0,
{M, M} = 0, (76)

where the subalgebra of diffeomorphism constraints forms an ideal. So it is possible to define a
corresponding master constraint operator onHDi f f . In the following, the positivity and the dif-
feomorphism invariance of M will be working together properly and provide us with powerful
functional analytic tools in the quantization procedure.

The regulated version of the master constraint can be expressed via a point-splitting strategy
as:

Mε :=
1
2

∫

Σ

d3y
∫

Σ

d3xχε(x − y)
C(y)√

VUε
y

C(x)√
VUε

x

. (77)

Introducing a partition P of the 3-manifold Σ into cells C, we have an operator Ĥε
C acting on

any spin-scalar-network state Ts,c via a family of state-dependent triangulation T (ε),

Ĥε
CTs,c =

∑

v∈V(γ(s,c))

χC(v)
E(v)

∑

v(∆)=v

ĥε,∆GR,vTs,c

+
∑

v∈V(γ(s,c))

χC(v)
E(v)

[64 × 4αM

9κ4β4 δ
i j(ŵε,v

φ,i)
†ŵε,v

φ, j

+ 84 × 16
81αM(κβ)6 (ŵε,v

Kin)†ŵε,v
Kin]Ts,c, (78)

where

ĥε,∆GR,v =
16

3i~κ2β
ε i jkTr(Â(αi j(∆))−1Â(sk(∆))−1[Â(sk(∆)),

√
V̂Uε

v ])

+ (1 + β2)
8
√

2
3i~3κ4β3 ε

i jkTr(Â(si(∆))−1[Â(si(∆)), K̂ε]

× Â(s j(∆))−1[Â(s j(∆)), K̂ε]Â(sk(∆))−1[Â(sk(∆)),
√

V̂Uε
v ]),

ŵε,v
φ,i =

i
~2

∑

v(∆)=v

ε lmn 1
λ

Û(v, λ)−1[Û(t(sl(∆)), λ) − Û(v, λ)]

× Tr(τiÂ(sm(∆))−1[Â(sm(∆)), V̂5/8
Uε

v
]Â(sn(∆))−1[Â(sn(∆)), V̂5/8

Uε
v

]),
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ŵε,v
Kin =

1
(i~)3

∑

v(∆)=v

π̂(v)ε lmn

× Tr(Â(sl(∆))−1[Â(sl(∆)), V̂5/12
Uε

v
]Â(sm(∆))−1[Â(sm(∆)), V̂5/12

Uε
v

]

× Â(sn(∆))−1[Â(sn(∆)), V̂5/12
Uε

v
]). (79)

Hence the action of Ĥε
C on a cylindrical function fγ adds analytical arcs ai j(∆) with 1

2 -representation
and points at t(si(∆)) with representation constant λ with respect to each vertex v(∆) of γ. Thus,
for each ε > 0, Ĥε

C is a S U(2) gauge invariant and diffeomorphism covariant operator defined
on Cyl(A/G) ⊗ Cyl(U). The limit operator ĤC is densely defined on HKin by the uniform
Rovelli-Smolin topology. And the same result holds for the adjoint operator (Ĥε

C)†

Then a master constraint operator, M̂, onHDi f f can be defined by:

(M̂ΨDi f f )[Ts,c] := lim
P→Σ;ε,ε′→0

ΨDi f f [
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )†Ts,c]. (80)

Since Ĥε
C(Ĥε′

C )†Ts,c is a finite linear combination of spin-scalar-network functions on an graph
with skeleton γ, the value of (M̂ΨDi f f )[Ts,c] is finite for a given ΨDi f f that is a finite linear
combination of T[s,c]. So M̂ΨDi f f is in the algebraic dual of the space of cylindrical functions.
Moreover, we can show that it is diffeomorphism invariant. For any diffeomorphism transfor-
mation ϕ,

(Û′ϕM̂ΨDi f f )[ fγ] = lim
P→Σ;ε,ε′→0

ΨDi f f [
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )†Ûϕ fγ]

= lim
P→Σ;ε,ε′→0

ΨDi f f [Ûϕ

∑

C∈P

1
2

Ĥϕ−1(ε)
ϕ−1(C)(Ĥ

ϕ−1(ε′)
ϕ−1(C) )† fγ]

= lim
P→Σ;ε,ε′→0

ΨDi f f [
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )† fγ], (81)

for any cylindrical function fγ, where in the last step, we used the fact that the diffeomorphism
transformation ϕ leaves the partition invariant in the limit P → Σ and relabel ϕ(C) to be C. So
we have the result

(Û′ϕM̂ΨDi f f )[ fγ] = (M̂ΨDi f f )[ fγ]. (82)

So given a diffeomorphism invariant spin-scalar-network state T[s,c], the result state M̂T[s,c] must
be a diffeomorphism invariant element in the algebraic dual of Cyl(A/G)⊗Cyl(U), which means
that

M̂T[s,c] =
∑

[s1,c1]

c[s1,c1]T[s1,c1],

then

lim
P→Σ;ε,ε′→0

T[s,c][
∑

C∈P

1
2

Ĥε
C(Ĥε′

C )†Ts2,c2] =
∑

[s1,c1]

c[s1,c1]T[s1,c1][Ts2,c2],
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where the cylindrical function
∑

C∈P
1
2 Ĥε′

C (Ĥε
C)†Ts2,c2 is a finite linear combination of spin-scalar-

network functions on some graphs γ ′ with the same skeleton of γ(s2, c2) up to finite number of
arcs and vertices. Hence fixing the diffeomorphism equivalence class [s, c], only for spin-scalar-
networks s2, c2 lying in a finite number of diffeomorphism equivalence class on the left hand
side of the last equation is non-zero. So there are also only finite number of classes [s1, c1] in
the right hand side such that c[s1,c1] is non-zero. As a result, M̂T[s,c] is a finite linear combination
of diffeomorphism invariant spin-network states so lies in the Hilbert space of diffeomorphism
invariant statesHDi f f for any [s, c]. And M̂ is densely defined onHDi f f .

We now compute the matrix elements of M̂. Given two diffeomorphism invariant spin-
scalar-network functions T[s1,c1] and T[s2,c2], the matrix element of M̂ is calculated as

< T[s1,c1]|M̂|T[s2,c2] >Di f f

= (M̂T[s2,c2])[Ts1,c1∈[s1,c1]]

= lim
P→Σ;ε,ε′→0

∑

C∈P

1
2

T[s2,c2][Ĥε
C(Ĥε′

C )†Ts1,c1∈[s1,c1]]

= lim
P→Σ;ε,ε′→0

∑

C∈P

1
2

1
nγ(s2,c2)

∑

ϕ∈Di f f /Di f fγ(s2 ,c2)

∑

ϕ′∈GS γ(s2 ,c2)

× < ÛϕÛϕ′Ts2,c2∈[s2,c2]|Ĥε
C(Ĥε′

C )†Ts1,c2∈[s1,c1] >Kin

=
∑

s,c

lim
P→Σ;ε,ε′→0

∑

C∈P

1
2

1
nγ(s2,c2)

∑

ϕ∈Di f f /Di f fγ(s2 ,c2)

∑

ϕ′∈GS γ(s2 ,c2)

× < ÛϕÛϕ′Ts2,c2∈[s2,c2]|Ĥε
CTs,c >Kin< Πs,c|(Ĥε′

C )†Ts1,c1∈[s1,c1] >Kin

=
∑

[s,c]

∑

v∈V(γ(s,c∈[s,c]))

1
2

lim
ε,ε′→0

× T[s2,c2][Ĥε
vTs,c∈[s,c]]

∑

s,c∈[s,c]

< Ts,c|(Ĥε′
v )†Ts1,c1∈[s1,c1] >Kin, (83)

where Di f fγ is the set of diffeomorphisms leaving the colored graph γ invariant, GS γ denotes
the graph symmetry quotient group Di f fγ/T Di f fγ where T Di f fγ is the diffeomorphisms which
is trivial on the graph γ, and nγ is the number of elements in GS γ. Note that we have used the
resolution of identity trick in the fourth step. Since only a finite number of terms in the sum
over spin-scalar-networks (s, c), cells C ∈ P, and diffeomorphism transformations ϕ are non-
zero respectively, we can interchange the sums and the limit. In the fifth step, we take the
limit C → v and split the sum

∑
s,c into

∑
[s,c]

∑
s,c∈[s,c], where [s, c] denotes the diffeomorphism

equivalence class associated with (s, c). Here we also use the fact that, given γ(s, c) and γ(s′, c′)
which are different up to a diffeomorphism transformation, there is always a diffeomorphism
ϕ transforming the graph associated with Ĥε

v,γ(s,c)Ts,c (v ∈ γ(s, c)) to that of Ĥε
v′γ(s′,c′)Ts′,c′ (v′ ∈

γ(s′, c′)) with ϕ(v) = v′, hence T[s2,c2][Ĥε
v,γ(s,c)Ts,c∈[s,c]] is constant for different (s, c) ∈ [s, c].

Since the term
∑

s,c∈[s,c] < Ts,c|(Ĥε′
v )†Ts1,c1∈[s1,c1] >Kin is independent of the parameter ε′, one

can see that by fixing a family of arbitrary state-dependent triangulations T (ε′),
∑

s,c∈[s,c]

< Ts,c|(Ĥε′
v )†Ts1,c1∈[s1,c1] >Kin
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=
∑

ϕ

< UϕTs,c|(Ĥε′
v )†Ts1,c1∈[s1,c1] >Kin

=
∑

ϕ

< Ĥε′
v UϕTs,c|Ts1,c1∈[s1,c1] >Kin

=
∑

ϕ

< UϕĤϕ−1(ε′)
ϕ−1(v) Ts,c|Ts1,c1∈[s1,c1] >Kin

= T[s1,c1][Ĥ
ϕ−1(ε′)
v∈V(γ(s,c))Ts,c], (84)

where ϕ are the diffeomorphism transformations spanning the diffeomorphism equivalence class
[s, c]. Note that the kinematical inner product in the above sum is non-vanishing if and only
if ϕ(γ(s, c))) coincides with the extended graph obtained from certain skeleton γ(s1, c1) by the
action of (Ĥε′

v )† and v ∈ V(ϕ(γ(s, c))), i.e., the scale ϕ−1(ε′) of the diffeomorphism images of the
tetrahedrons added by the action coincides with the scale of certain tetrahedrons in γ(s, c) and
ϕ−1(v) is a vertex in γ(s, c). Then we can express the matrix elements (83) as:

< T[s1,c1]|M̂|T[s2,c2] >Di f f

=
∑

[s,c]

∑

v∈V(γ(s,c∈[s,c]))

1
2

lim
ε,ε′→0

T[s2,c2][Ĥε
vTs,c∈[s,c]]T[s1,c1][Ĥε′

v Ts,c∈[s,c]]

=
∑

[s,c]

∑

v∈V(γ(s,c∈[s,c]))

1
2

(Ĥ′vT[s2,c2])[Ts,c∈[s,c]](Ĥ′vT[s1,c1])[Ts,c∈[s,c]]. (85)

From Eq.(85) and the result that the master constraint operator M̂ is densely defined on HDi f f ,
it is obvious that M̂ is a positive and symmetric operator onHDi f f . Hence, it is associated with

a unique self-adjoint operator M̂, called the Friedrichs extension of M̂. We relabel M̂ to be
M̂ for simplicity. In conclusion, there exists a positive and self-adjoint operator M̂ on HDi f f

corresponding to the master constraint (75). It is then possible to obtain the physical Hilbert
space of the coupled system by the direct integral decomposition ofHDi f f with respect to M̂.

Note that the quantum constraint algebra can be easily checked to be anomaly free. Eq.(82)
assures that the master constraint operator commutes with finite diffeomorphism transforma-
tions, i.e.,

[M̂, Û′ϕ] = 0. (86)

Also it is obvious that the master constraint operator commutes with itself,

[M̂, M̂] = 0. (87)

So the quantum constraint algebra is precisely consistent with the classical constraint algebra
(76) in this sense. As a result, the difficulty of the original Hamiltonian constraint algebra can
be avoided by introducing the master constraint algebra, due to the Lie algebra structure of the
latter.
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6 The Semiclassical Limit of Quantum Dynamics
As shown in previous chapters, both the Hamiltonian constraint operator Ŝ(N) and the master
constraint operator M̂ can be well defined in the framework of loop quantum gravity. However,
since the Hilbert spaces Hkin and HDi f f , the operators Ŝ(N) and M̂ are constructed in such
ways that are drastically different from usual quantum field theory, one has to check whether
the constraint operators and the corresponding algebras have correct semiclassical limits with
respect to suitable semiclassical states.

6.1 The Construction of Coherent States
In order to find the proper semiclassical states and check the classical limit of the theory, the
idea of a non-normalizable coherent state defined by a generalized Laplace operator and its
heat kernel was introduced for the first time in [26]. Recently, kinematical coherent states were
constructed in two different approaches. One leads to the so-called complexifier coherent states
proposed by Thiemann et al [142][143][144][145]. The other was proposed by Varadarajan
[152][153][154] and further developed by Ashtekar et al [19][15].

The complexifier approach is motivated by the coherent state construction for compact Lie
groups [86]. One begins with a positive function C (complexifier) on the classical phase space
and arrives at a ”coherent state” ψm, which more possibly belongs to the dual space Cyl? rather
than Hkin. However, one may consider the so-called ”cut-off state” of ψm with respect to a
finite graph as a graph-dependent coherent state in Hkin [146]. By construction, the coherent
state ψm is an eigenstate of an annihilation operator coming also from the complexifier C and
hence has the desired semiclassical properties [143][144]. We now sketch the basic idea of
its construction. Given the Hilbert space H for a dynamical system with constraints and a
subalgerba of observables S in the space L(H) of linear operators on H , the semiclassical
states with respect to S are defined in Definition 3.1.5. Kinematical coherent states {Ψm}m∈M
are semiclassical states which in addition satisfy the annihilation operator property [142][146],
namely there exists a certain non-self-adjoint operator ẑ = â + iλb̂ with â, b̂ ∈ S and a certain
squeezing parameter λ, such that

ẑ Ψm = z(m)Ψm. (88)

Note that Eq.(88) implies that the minimal uncertainty relation is saturated for the pair of ele-
ments (â, b̂), i.e.,

Ψm([â − Ψm(â)]2) = Ψm([b̂ − Ψm(b̂)]2) =
1
2
|Ψm([â, b̂])|. (89)

Note also that coherent states are usually required to satisfy the additional peakedness property,
namely for any m ∈ M the overlap function | < Ψm,Ψm′ > | is concentrated in a phase volume
1
2 |Ψm([q̂, p̂])|, where q̂ is a configuration operator and p̂ a momentum operator. So the central
element in the construction is to define a suitable ”annihilation operator” ẑ in analogy with the
simplest case of harmonic oscillator. A powerful tool named as ”complexifier” is introduced in
Ref.[142] to define a meaningful ẑ operator which can give rise to kinematical coherent states
for a general quantum system.
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Definition 6.1.1: Given a phase spaceM = T∗C for some dynamical system with configuration
coordinates q and momentum coordinates p, a complexifier, C, is a positive smooth function on
M, such that
(1) C/~ is dimensionless;
(2) lim||p||→∞

|C(m)|
||p|| = ∞ for some suitable norm on the space of the momentum;

(3) Certain complex coordinates (z(m), z̄(m)) ofM can be constructed from C.

Given a well-defined complexifier C on phase space M, the programme for constructing co-
herent states associated with C can be carried out as the following.

• Complex polarization

The condition (3) in Definition 7.3.1 implies that the complex coordinate z(m) ofM can
be constructed via

z(m) :=
∞∑

n=0

in

n!
{q,C}(n)(m), (90)

where the multiple Poisson bracket is inductively defined by {q,C}(0) = q, {q,C}(n) =

{{q,C}(n−1),C}. One will see that z(m) can be regarded as the classical version of an
annihilation operator.

• Defining the annihilation operator

After the quantization procedure, a Hilbert spaceH = L2(C, dµ) with a suitable measure
dµ on a suitable configuration space C can be constructed. It is reasonable to assume that
C can be defined as a positive self-adjoint operator Ĉ onH . Then a corresponding oper-
ator ẑ can be defined by transforming the Poisson brackets in Eq.(90) into commutators,
i.e.,

ẑ :=
∞∑

n=0

in

n!
1

(i~)n [q̂, Ĉ](n) = e−Ĉ/~q̂eĈ/~, (91)

which is called as an annihilation operator.

• Constructing coherent states

Let δq′(q) be the δ-distribution on C with respect to the measure dµ. Since Ĉ is assumed
to be positive and self-adjoint, the conditions (1) and (2) in Definition 7.3.1 imply that
e−Ĉ/~ is a well-defined ”smoothening operator”. So it is quite possible that the heat kernel
evolution of the δ-distribution, e−Ĉ/~δq′(q), is a square integrable function in H , which is
even analytic. Then one may analytically extend the variable q′ in e−Ĉ/~δq′(q) to complex
values z(m) and obtain a class of states ψ′m as

ψ′m(q) := [e−Ĉ/~δq′(q)]q′→z(m), (92)

such that one has

ẑψ′m(q) := [e−Ĉ/~q̂δq′(q)]q′→z(m) = [q′e−Ĉ/~δq′(q)]q′→z(m) = z(m)ψ′m(q). (93)
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Hence ψ′m is automatically an eigenstate of the annihilation operator ẑ. So it is natural to
define coherent states ψm(q) by normalizing ψ′m(q).

One may check that all the coherent state properties usually required are likely to be satisfied
by the above complexifier coherent states ψm(q) [146]. As a simple example, in the case of one-
dimensional harmonic oscillator with Hamiltonian H = 1

2 ( p2

2m + 1
2mω2q2), one may choose the

complexifier C = p2/(2mω). It is straightforward to check that the coherent state constructed
by the above procedure coincides with the usual harmonic oscillator coherent state up to a phase
[146]. So the complexifier coherent state can be considered as a suitable generalization of the
concept of usual harmonic oscillator coherent state.

The complexifer approach can be used to construct kinematical coherent states in loop quan-
tum gravity. Given a suitable complexifier C, for each analytic path e ⊂ Σ one can define

AC(e) :=
∞∑

n=0

in

n!
{A(e),C}(n), (94)

where A(e) ∈ S U(2) is assigned to e. As the complexifier C is assumed to give rise to a
positive self-adjoint operator Ĉ on the kinematical Hilbert spaceHkin, one further supposes that
Ĉ/~Ts = τλsTs, where τ is a so-called classicality parameter, {Ts(A)}s form a basis in Hkin

and are analytic in A ∈ A. Moreover the δ-distribution on the quantum configuration space A
can be formally expressed as δA′(A) =

∑
s Ts(A′)Ts(A). Thus by applying Eq.(92) one obtains

coherent states

ψ′AC(A) = (e−Ĉ/~)δA′(A)|A′→AC =
∑

s

e−τλsTs(AC)Ts(A). (95)

However, since there are an uncountably infinite number of terms in the expression (95), the
norm of ψ′AC(A) would in general be divergent. So ψ′AC(A) is generally not an element of Hkin

but rather a distribution on a dense subset of Hkin. In order to test the semiclassical limit of
quantum geometric operators on Hkin, one may further consider the ”cut-off state” of ψ′AC(A)
with respect to a finite graph γ as a graph-dependent coherent state in Hkin [146]. So the
key input in the construction is to choose a suitable complexifer. There are vast possibilities
of choice. For example, a candidate complexifier C is considered in Ref.[148] such that the
corresponding operator acts on cylindrical functions fγ by

(Ĉ/~) fγ =
1
2

(
∑

e∈E(γ)

l(e)Ĵ2
e ) fγ, (96)

where Ĵ2
e is the Casimir operator defined by Eq.(24) associated to the edge e, the positive num-

bers l(e) satisfying l(e ◦ e′) = l(e) + l(e′) and l(e−1) = l(e) serves as a classicalization parameter.
Then it can be shown from Eq.(94) that AC(e) is an element of S L(2,C). So the classical inter-
pretation of the annihilation operators is simply the generalized complex S U(2) connections. It
has been shown in Refs. [143] and [144] that the ”cut-off state” of the corresponding coherent
state,

ψAC,γ(A) = ψ′AC,γ
(A)/||ψ′AC,γ

(A)||, (97)
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with

ψ′AC,γ
(A) :=

∑

s,γ(s)=γ

e−
1
2
∑

e∈E(γ(s)) l(e) je( je+1)Ts(AC)Ts(A). (98)

has desired semiclassical properties in testing the kinematical operators (e.g. holonomy and
flux). But unfortunately, these cut-off coherent states cannot be directly used to test the semi-
classical limit of the Hamiltonian constraint operator Ŝ(N), since Ŝ(N) is graph-changing so that
its expectation values with respect to these cut-off states are always zero! So further work in this
approach is expected in order to overcome the difficulty. Anyway, the complexifier approach
provides a clean construction mechanism and manageable calculation method for semiclassical
analysis in loop quantum gravity.

We now turn to the second approach. As we have seen, loop quantum gravity is based on
quantum geometry, where the fundamental excitations are one-dimensional polymer-like. On
the other hand, low energy physics is based on quantum field theories which are constructed
in a flat spacetime continuum. The fundamental excitations of these fields are 3-dimensional,
typically representing wavy undulations on the background Minkowskian geometry. The core
strategy in this approach is then to relate the polymer excitations of quantum geometry to Fock
states used in low energy physics and to locate Minkowski Fock states in the background inde-
pendent framework. Since the quantum Maxwell field can be constructed in both Fock repre-
sentation and polymer-like representation, one first gains insights from the comparison between
the two representations, then generalizes the method to quantum geometry. A ”Laplacian oper-
ator” can be defined onHkin [26][19], from which one may define a candidate coherent state Φ0,
also in Cyl?, corresponding to the Minkowski spacetime. To calculate the expectation values of
kinematical operators, one considers the so-called ”shadow state” of Φ0, which is the restriction
of Φ0 to a given finite graph. However, the construction of shadow states is subtly different from
that of cut-off states.

We will only describe the simple case of the Maxwell field to illustrate the ideas of the
construction [152][153][20]. Following the quantum geometry strategy discussed in Sec.4, the
quantum configuration space A for the polymer representation of the U(1) gauge theory can be
similarly constructed. A generalized connection A ∈ A assigns each oriented analytic edge in
Σ an element of U(1). The space A carries a diffeomorphism and gauge invariant measure µ0

induced by the Haar measure on U(1), which gives rise to the Hilbert space,H0 := L2(A, dµ0),
of polymer states. The basic operators are holonomy operators Â(e) labeled by one-dimensional
edges e, which act on cylindrical functions by multiplication, and smeared electric field opera-
tors Ê(g) for suitable test one-forms g on Σ, which are self-adjoint. Note that, since the gauge
group U(1) is Abelian, it is more convenient to smear the electric fields in 3 dimensions [20].
The eigenstates of Ê(g), so-called flux network statesNα,~n, provide an orthonormal basis inH0,
which are defined for any finite graph α with N edges as:

Nα,~n(A) := [A(e1)]n1[A(e2)]n2 · · · [A(eN)]nN , (99)

where ~n ≡ (n1, · · ·, nN) assigns an integer nI to each edge eI . The action of Ê(g) on the flux
network states reads

Ê(g)Nα,~n = −~(
∑

I

nI

∫

eI

g)Nα,~n. (100)
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In this polymer-like representation, cylindrical functions are the finite linear combinations of
flux network states and span a dense subspace of H0. Denote by Cyl the set of cylindrical
functions and by Cyl? its algebraic dual. One then has a triplet Cyl ⊂ H0 ⊂ Cyl? in analogy
with the case of loop quantum gravity.

The Schrödinger or Fock representation of the Maxwell field, on the other hand, depends on
the Minkowski background metric. Here the Hilbert space is given byHF = L2(S′, dµF), where
S′ is the appropriate space of tempered distributions on Σ and µF is the Gaussian measure. The
basic operators are connections Â( f ) smeared in 3 dimensions with suitable vector densities
f and smeared electric fields Ê(g). But Â(e) fail to be well defined. To resolve this tension
between the two representations, one proceeds as follows. Let ~x be the Cartesian coordinates of
a point in Σ = R3. Introduce a test function by using the Euclidean background metric on R3,

fr(~x) =
1

(2π)3/2r3 exp(−|~x|2/2r2), (101)

which approximates the Dirac delta function for small r. The Gaussian smeared form factor for
an edge e is defined as

Xa
(e,r)(~x) :=

∫

e
ds fr(~e(s) − ~x)ėa. (102)

Then one can define a smeared holonomy for e by

A(r)(e) := exp[−i
∫

R3
Xa

(e,r)(~x)Aa(~x)], (103)

where Aa(~x) is the U(1) connection one-form of the Maxwell field on Σ. Similarly one can
define Gaussian smeared electric fields by

E(r)(g) :=
∫

R3
ga(~x)

∫

R3
fr(~y − ~x)Ea(~y). (104)

In this way one obtains two Poission bracket algebras. One is formed by smeared holonomies
and electric fields with

{A(r)(e),A(r)(e′)} = 0 = {E(g), E(g′)} (105)

{A(r)(e), E(g)} = −i(
∫

R3
Xa

(e,r)ga) A(r)(e).

The other is formed by unsmeared holonomies and Gaussian smeared electric fields with

{A(e),A(e′)} = 0 = {E(r)(g), E(r)(g′)} (106)

{A(e), E(r)(g)} = −i(
∫

R3
Xa

(e,r)ga) A(e).

Obviously, there is an isomorphism between them,

Ir : (A(r)(e), E(g)) 7→ (A(e), E(r)(g)). (107)
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Using the isomorphism Ir, one can pass back and forth between the polymer and the Fock
representations. Specifically, the image of the Fock vacuum can be shown to be the following
element of Cyl? [152][153],

(V | =
∑

α,~n

exp[−~
2

∑

IJ

GIJnInJ] (Nα,~n|, (108)

where (Nα,~n| ∈ Cyl? maps the flux network function |Nα,~n〉 to one and every other flux net-
work functions to zero. While the states (Nα,~n| do not have any knowledge of the underlying
Minkowskian geometry, this information is coded in the matrix GIJ associated with the edges
of the graph α, given by [20]

GIJ =

∫

eI

dtėa
I (t)

∫

eJ

dt′ėJ
b(t′)

∫
d3x δab(~x) [ fr(~x − ~eI(t)) |∆|− 1

2 f (~x, ~eJ(t′))], (109)

where δab is the flat Euclidean metric and ∆ its Laplacian. Therefore, one can single out the Fock
vacuum state directly in the polymer representation by invoking Poincaré invariance without
any reference to the Fock space. Similarly, one can directly locate in Cyl? all coherent states
as the eigenstates of the exponentiated annihilation operators. Since Cyl? does not have an
inner product, one uses the notion of shadow states to do semiclassical analysis in the polymer
representation. From Eq.(108), the action of the Fock vacuum (V | on Nα,~n reads

(V |Nα,~n〉 =

∫

Aα

dµ0
α VαNα,~n, (110)

where the state Vα is in the Hilbert spaceHα for the graph α and given by

Vα(A) =
∑

~n

exp[−~
2

∑

IJ

GIJnInJ]Nα,~n(A). (111)

Thus for any cylindrical functions ϕα associated with α,

(V |ϕα〉 = 〈Vα|ϕα〉, (112)

where the inner product in the right hand side is taken in Hα. Hence Vα(A) are referred to as
”shadows” of (V | on the graphs α. The set of all shadows captures the full information in (V |.
By analyzing shadows on sufficiently refined graphs, one can introduce criteria to test if a given
element of Cyl? represents a semi-classical state [20]. It turns out that the state (V | does satisfy
this criterion and hence can be regarded as semi-classical in the polymer representation.

The mathematical and conceptual tools gained from simple models like the Maxwell fields
are currently being used to construct semiclassical states of quantum geometry. A candidate
kinematical coherent state corresponding to the Minkowski spacetime has been proposed by
Ashtekar and Lewandowki in the light of a ”Laplacian operator” [19][20]. However, the detailed
structure of this coherent state is yet to be analyzed and there is no a priori guarantee that it is
indeed a semiclassical state.

One may find comparisons of the two approaches from both sides [147][20]. It turns out that
Varadarajan’s Laplacian coherent state for the polymer Maxwell field can also be derived from
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Thiemann’s complexifier method. However, one cannot find a complexifier to get the coherent
state proposed by Ashtekar et al. for loop quantum gravity. Both approaches have their own
virtues and need further developments. The complexifier approach provides a clear construc-
tion mechanism and manageable calculation method, while the Laplacian operator approach is
related closely with the well-known Fock vacuum state. One may also expect that a judicious
combination of the two approaches may lead to significant progress in the semiclassical analysis
of loop quantum gravity.

6.2 Algebraic Quantum Gravity Approach
As we have shown in the last subsection, although Thiemann’s complexifier coherent state has
a clear calculable mechanism and correct semi-classical properties in testing kinematical opera-
tors, it fails to be a qualified semi-classical state for the quantum dynamics since the semiclassi-
cal limit of the Hamiltonian constraint operator Ŝ(N) or master constraint operator M̂ is clearly
not correct, both Ŝ(N) and M̂ are graph-changing so that their expectation values with respect
to these cut-off coherent states are always zero. So a possible way to avoid such a problem is to
define a non-graph-changing version of Hamiltonian constraint operator or similarly, a master
constraint operator. However, such a modification is hard to make in the framework of loop
quantum gravity since the action of Hamiltonian constraint operator always adds several arcs
on certain graphs. But if the framework of loop quantum gravity is suitably modified then it
turns out that a version of non-graph-changing Hamiltonian constraint operator can be proposed
and the semi-classical analysis for the quantum dynamics can be carried out with the complex-
ifier coherent states defined previously. Such a modification is recently made by Thiemann in
[79][80][81] and is called algebraic quantum gravity (AQG) approach. We describe it briefly in
what follows.

Algebraic quantum gravity is a new approach to canonical quantum gravity suggested by
loop quantum gravity. But in contrast to loop quantum gravity, the quantum kinematics of al-
gebraic quantum gravity is determined by an abstract ∗-algebra generated by a countable set
of elementary operators labeled by a single algebraic graph with countably infinite number of
edges, while in loop quantum gravity the elementary operators are labeled by a collection of
embedded graphs with finite number of edges. Thus one can expect that in algebraic quantum
gravity, we lose the information of the topological and differential structure of the manifold in
all the quantization procedure before we do semi-classical analysis. Hence the quantum the-
ory will be of course independent of the topology and differential structure of the manifold but
based only on an algebraic graph, which only contains the information of the number of vertices
and their oriented valence.

Definition 6.2.1: An oriented algebraic graph is an abstract graph specified by its adjacency
matrix α, which is an N × N matrix. One of its entries αIJ stand for the number of edges that
start at vertex I and end at vertex J. The valence of the vertex I is given by vI =

∑
J(αIJ + αJI).

We also use V(α) and E(α) to denote the sets of vertices and edges respectively.

In our quantization procedure, we fix a specific cubic algebraic graph with a countably infi-
nite number of edges N = ℵ and the valence of each vertex vI = 2 × dim(Σ). Such a specific
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choice, although it detracts from the generality of the theory, is practically sufficient for our use
in the semiclassical analysis.

Given the algebraic graph α, we define a quantum ∗-algebra by associating with each edge
e an element A(e) of a compact, connected, semisimple Lie group G and an element E j(e) take
value in its Lie algebra g. These elements are subject to the commutation relations

[Â(e), Â(e′)] = 0,
[Ê j(e), Â(e′)] = i~Q2δe,e′τ j/2Â(e),
[Ê j(e), Â(e′)] = −i~Q2δe,e′ f jklÊl(e′),

and ∗-relations

Â(e)∗ = [Â(e)−1]T , Ê j(e)∗ = Ê j(e),

where Q stands for the coupling constant, τ j is the generators in the Lie algebra g and f jkl is the
structure constant of g. We denote the abstract quantum ∗-algebra generated by above elements
and relations by A.

A natural representation of A is the infinite tensor product Hilbert spaceH⊗ = ⊗eHe where
He = L2(G, dµH)[145], whose element is denoted by ⊗ f ≡ ⊗e fe. Two elements ⊗ f and ⊗ f ′ in
H⊗ are said to be strongly equivalent if

∑
e | < fe, f ′e >He −1| converges. We denote by [ f ] the

strongly equivalence class containing ⊗ f . It turns out that two elements in H⊗ are orthogonal
if they lie in different strongly equivalence classes. Hence the infinite tensor Hilbert space H⊗
can be decomposed as a direct sum of the Hilbert subspaces (sectors)H⊗[ f ] which are the closure
of strongly equivalence classes [ f ]. Furthermore, although each sector H⊗[ f ] is separable and
has a natural Fock space structure, the whole Hilbert spaceH⊗ is non-separable since there are
uncountably infinite number of strongly equivalence classes in it. Our basic elements in the
quantum algebra are represented onH⊗ in an obvious way

Â(e)⊗ f := [A(e) fe] ⊗ [⊗e′,e fe′],
Ê j(e)⊗ f := [i~Q2Xe

j fe] ⊗ [⊗e′,e fe′].

As one might have expected, all these operators are densely defined and E j(e) is essentially
self-adjoint. Given a vertex v ∈ V(α), the volume operator can be constructed by using the
operators we just defined

V̂v := `3
p

√
| 1
48

∑

e1∩e2∩e3=v

εv(e1, e2, e3)ε i jkÊi(e1)Ê j(e2)Êk(e3)|,

where the values of εv(e1, e2, e3) should be assigned once for all for each vertex. When we
embed the algebraic graph into some manifold, the embedding should be consistent with the
assigned values of εv(e1, e2, e3).

Then we discuss the quantum dynamics. By the regularization methods frequently used in
the last two sections, the half densitized constraints can be quantized to be composite operators
as we list below.
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• Gauss constraint

Ĝ j(v) := Q̂(1/2)
v

∑

e at v

Ê j(e);

• Spatial diffeomorphism constraint

D̂ j(v) :=
1

E(v)

∑

e1∩e2∩e3=v

εv(e1, e2, e3)
|L(v, e1, e2)|

×
∑

β∈L(v,e1,e2)

Tr(τ j[Â(β) − Â(β)−1]Â(e3)[Â(e3)−1,

√
V̂v]);

• Euclidean Hamiltonian constraint (up to an overall factor)

Ĥ(r)
E (v) :=

1
E(v)

∑

e1∩e2∩e3=v

εv(e1, e2, e3)
|L(v, e1, e2)|

×
∑

β∈L(v,e1,e2)

Tr([Â(β) − Â(β)−1]Â(e3)[Â(e3)−1, V̂ (r)
v ]);

• Lorentzian Hamiltonian constraint (up to an overall factor)

T̂ (v) :=
1

E(v)

∑

e1∩e2∩e3=v

εv(e1, e2, e3)

× Tr(Â(e1)[Â(e1)−1, [Ĥ(1)
E , V̂]]Â(e2)[Â(e2)−1, [Â(e3)−1, [Ĥ(1)

E , V̂]]

× Â(e3)[Â(e3)−1,

√
V̂v]),

Ĥ(v) = Ĥ(1/2)
E (v) + T̂ (v); (113)

where V̂ :=
∑

v V̂v, Ĥ(1)
E :=

∑
v Ĥ(1)

E (v) and

Q̂(r)
v :=

1
E(v)

∑

e1∩e2∩e3=v

εv(e1, e2, e3)

× Tr(Â(e1)[Â(e1)−1, V̂ (r)
v ]Â(e2)[Â(e2)−1, V̂ (r)

v ]Â(e3)[Â(e3)−1, V̂ (r)
v ]).

L(v, e1, e2) denotes the set of minimal loops starting at v along e1 and ending at v along e−1
2 . And

a loop β ∈ L(v, e1, e2) is said to be minimal provided that there is no other loop within α sat-
isfying the same restrictions with fewer edges traversed. Note that since we only have a single
cubic algebraic graph, the diffeomorphism constraint can only be implemented by defining the
operators corresponding to diffeomorphism generators because a finite diffeomorphism trans-
formation is not meaningful in our algebraic treatment unless the algebraic graph is embedded
in a manifold. As a result, the (extended) master constraint can be expressed as a quadratic
combination:

M̂ :=
∑

v∈V(α)

[Ĝ j(v)†Ĝ j(v) + D̂ j(v)†D̂ j(v) + Ĥ(v)†Ĥ(v)].
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It is trivial to see that all the above operators are non-graph-changing and embedding indepen-
dent because we have only worked on a single algebraic graph so far. However, when we test
the semiclassical limit of these operators, especially the master constraint operators, we should
specify an embedding map X which map a algebraic graph to be an embedded one. With this
specific embedding, we can see the correspondence between the classical algebra of elementary
observables and the quantum ∗-algebra. We define the holonomy and suitably modified flux by

A(e) := A(X(e)) := P exp(
∫

X(e)
A),

E j(e) := −2Tr[τ j

∫

S e

εabcdxa ∧ dxbA(ρe(x))Ec(x)A(ρe(x))−1],

where S e is a face which intersects the edge X(e) only at an interior point pe of both S e and X(e).
We choose a system of paths {ρe(x)}x for all x ∈ S e, such that ρe(x) starts at s(X(e)) along X(e)
until pe and then runs within S e until x. As one might expect, the quantum ∗-algebra we defined
previously is just consistent with the classical Poisson algebra generated by these holonomis
and fluxes:

{A(e), A(e′)} = 0,
{E j(e), A(e′)} = Q2δe,e′τ j/2A(e),
{E j(e), A(e′)} = −Q2δe,e′ f jklEl(e′).

Then we consider the coherent states. By employing the Laplacian complexifier on each
edge

Ce := − 1
2Q2a2

e
E j(e)E j(e),

the coherent state is obtained as it was in the last section:

Ψ
te
e;(A,E)(A) ≡ Ψ

te
e;g(A,E)(A(e)) =

∑

π

dim(π)e−tλπχπ(g(A, E)A(e)),

where λπ denotes the eigenvalue of the Laplacian on G and t = `2
p/a

2
e represents the classical-

ization parameter. The coherent state peaks at the complexified classical phase space point

g(A, E) :=
∞∑

n=0

(−i)n

n!
{Ce, A(e)}n = exp(iE(e)/a2

e)A(e),

note that the parameter ae is specified such that E(e)/a2
e is dimensionless. Hence the coherent

state on the whole graph is represented by an infinite tensor product state:

Ψt
A,E(A) :=

⊗

e∈E(α)

Ψ
te
e;(A,E)(A)

||Ψte
e;(A,E)(A)|| .

The peakness, fluctuation and other semiclassical properties of these states have been checked
in [143][144] in which the most important part is that

< ΨA,E |Â(e)|ΨA,E >= A(e) < ΨA,E |Ê(e)|ΨA,E >= E(e)
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up to terms which vanish faster than any power of te as te → 0. And the fluctuations are small.
With the semiclassical state we just constructed, the expectation value of the above (ex-

tended) master constraint operator can be calculated and its semiclassical limit can be tested. In
the following, we summarize the result of the calculation. In [80], a semiclassical calculation
for the master constraint operator is carried out based on a cubic algebraic graph. The calcula-
tion makes use of a simplifying assumption: we substitute the gauge group for gravity S U(2)
by U(1)3. And the result of the calculation shows that in U(1)3 case the (extended) master
constraint operator has correct semiclassical limit

lim
t→0

< Ψt
m|M̂|Ψt

m >= Mcubic[m]→M[m] (ε → 0)

where m represents a phase space point and ε is the lattice parameter such that the lattice be-
come continuum as ε → 0. In addition, it is shown that the next-to-leading order terms which
contribute to the fluctuation of M̂ are finite.

Moreover, the calculation in [81] shows that the result of the exact non-Abelian calculation
matches precisely the results of the Abelian approximation, provided that we replace the clas-
sical U(1)3 terms {h j

e, pe
j} j=1,2,3 by {Tr(τ jA(e)),Tr(τ jE(e))} j=1,2,3, which means that the theory

of algebraic quantum gravity admits a semiclassical limit whose infinitesimal gauge symmetry
agrees with that of general relativity.
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7 Conclusion and Discussion
As it was shown in the previous sections, loop quantum gravity offers a conceptually clear
and mathematically rigorous approach to quantize general relativity. In this approach, we are
seeking new physics deeply below the Planck scale. In the kinematical framework, a quantum
Riemannian geometry is established and some geometrical operators, e.g. area, volume, are
well-defined, and their spectrum are shown to be discrete, which means that the structure of the
space may be discrete below the Planck scale. Such a new phenomena sheds light on quantum
field theory, lattice gauge theory and their renormalization. Moreover, the program in the quan-
tum dynamics of loop quantum gravity represents significant progress in the research area of
quantum gravity. Before loop quantum gravity, the quantum Wheeler-DeWitt equation was only
a formal equation and from concrete calculations. However, in the framework of loop quantum
gravity, we already have a well-defined quantum Hamiltonian constraint operator which has
an explicit action on kinematical states, so that the quantum Wheeler-DeWitt equation is well-
defined in loop quantum gravity. On the other hand, the matter field can also be quantized in
this framework and we show that the matter Hamiltonian is free of UV-divergence and don’t
need a renormalization process. Furthermore, with the coupled matter field, a matter coupled
Hamiltonian constraint operator is obtained so that the problem of time may be solved and, such
an idea is being translated into a new understanding of the early universe in the context of loop
quantum cosmology.

Although great progress has been made, as an unfinished framework, loop quantum gravity
still has many issues to be solved in the future research. To conclude this thesis, we list some of
those in the following:

• First of all, we don’t have the complete solutions for either Hamiltonian constraint equa-
tion or master constraint equation. Thus one cannot explicitly construct the physical
Hilbert space for loop quantum gravity. So the quantum dynamics of gravity is essen-
tially unknown so far.

• To make contact with experimental results, one should know the observables in the quan-
tum theory which have to be invariant under gauge transformation. However, some of the
Dirac observables that have been constructed involve an infinite number of derivatives
and extremely hard to manage [150][61][62].

• The semiclassical limit of loop quantum gravity is unknown so far, although a great deal
of progress has been made in the context of algebraic quantum gravity. And in alge-
braic quantum gravity, further research work is needed to show the fluctuation of master
constraint operator should be small.

• As it was shown at the end of section 4.3, the regularization process for the Hamiltonian
constraint operator is ambiguous and there is a list of free parameters. Thus it is also a
research project to remove as many ambiguities as possible. And some work has been
recently done in this direction [110].

• The Immirzi parameter is another free parameter in the framework of loop quantum grav-
ity, which comes in with the classical formulation. In the classical theory, different values
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of the Immirzi parameter label equivalent classical theories since they are connected by
canonical transformations. However, in quantum theory, it is problematic because the
representation with different Immirzi parameter are not unitarily equivalent.

• The construction of loop quantum gravity crucially depends on the compactness of its
gauge group S U(2), which comes from an internal partial gauge fixing. And it is ar-
gued that the internal Lorentz symmetry is broken in a non-natural way [131]. So it
seems to be better to switch back to the complex Ashtekar variables which are free
of the internal gauge fixing and preserve the internal Lorentz symmetry and, will also
greatly simplify the Hamiltonian constraint. However, the price is that we should work
on non-compact gauge group S L(2,C), and there is no satisfactory quantization pro-
gramme for the S L(2,C)-gravity so far, although some work has been done in this di-
rection [71][105][106].

• As it was shown in section 6.2, algebraic quantum gravity provides a clear way to make
many calculations accessible and the semiclassical analysis can be carried out in this
framework. And it seems that the construction of algebraic quantum gravity admits the
non-compact internal gauge group (or non-compact reduced configuration space) since
there is only one graph in quantization process. However, in this framework, the restric-
tion of the possible representation is so loose that there even exists a possible representa-
tion in which the spectrum of geometrical operators are continuous.

• The transition amplitude calculation for loop quantum gravity is accessible in the so-
called spin foam model and depends on a unclear conjecture of GFT/spinfoam duality.
On the other hand, it is still not clear how to build a path-integral formulation and connect
with spin foam models from the canonical approach, and such a connection may give the
needed support for GFT/spinfoam duality.

• We have constructed the dynamics of matter quantum field theory on a quantum back-
ground in section 5. However, it is not clear how we can make the connection with the
ordinary quantum field theory on curved spacetime. Moreover, it is still an problem how
to find the non-perturbative correspondence of Hadamard states in perturbative quantum
field theory in curved spacetime, although some hints of a connection may come out in
spin foam calculations [127][42].
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[107] P. Peldàn, Actions for gravity, with generalizations: A review, Class. Quantum Grav. 11,
1087 (1994), (preprint: gr-qc/9305011).

[108] A. Perez, Finiteness of a spin foam model for Euclidean quantum general relativity, Nucl.
Phys. B 599, 427, (2001).

[109] A. Perez, Spin foam models for quantum gravity, Class. Quantum Grav. 20, R43 (2003).

[110] A. Perez, On the regularization ambiguities in loop quantum gravity, Phys.Rev. D 73,
044007 (2006).

[111] A. Perez and C. Rovelli, Spin foam model for Lorentzian general relativity, Phys. Rev. D
63, 041501 (2001).

[112] A. Perez and C. Rovelli, Physical effects of the Immirzi parameter, Phys.Rev. D 73,
044013 (2006).

[113] M. Reed, and B. Simon, Methods of Modern Mathematical Phycics I: Functional Analy-
sis, (Academic Press, 1973).

[114] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourer Analysis,
Self-adjointness, (Academic Press, 1975), Page 177.

[115] M. Reisenberger and C. Rovelli, Spacetime states and covariant quantum theory, Phys.
Rev. D 65, 125016 (2002).

[116] C. Rovelli, What is observable in classical and quantum gravity, Class. Quantum Grav.
8, 1895 (1991).

[117] C. Rovelli, Black hole entropy from loop quantum gravity, Phys. Rev. Lett. 14, 3288
(1996).

[118] C. Rovelli, Loop quantum gravity, Living Rev. Relativity 1 (1998), 1.

87



[119] C. Rovelli, A note on the foundation of relativistic mechanics. I: Relativistic observables
and relativistic states, (preprint: gr-qc/0111037).

[120] C. Rovelli, A note on the foundation of relativistic mechanics. II: Covariant Hamiltonian
general relativity, (preprint: gr-qc/0202079).

[121] C. Rovelli, Partial observables, Phys. Rev. D 65, 124013 (2002).

[122] C. Rovelli, Quantum Gravity, (Cambridge University Press, 2004).

[123] C. Rovelli and L. Smolin, Loop representation for quantum general relativity, Nucl. Phys.
B 331, 80 (1990).

[124] C. Rovelli and L. Smolin, The physical Hamiltonian in nonperturbative quantum gravity,
Phys. Rev. Lett 72, 446 (1994).

[125] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl.
Phys. B 442, 593, (1995).

[126] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52, 5743,
(1995).

[127] C. Rovelli, Graviton propagator from background-independent quantum gravity,
Phys.Rev.Lett. 97, 151301, (2006).

[128] H. Sahlmann and T. Thiemann, Towards the QFT on curved spacetime limit of QGR: I.
A general scheme, Class. Quantum Grav. 23, 867 (2006), (preprint: gr-qc/0207030).

[129] H. Sahlmann and T. Thiemann, Towards the QFT on curved spacetime limit of QGR:
II. A concrete implementation, Class. Quantum Grav. 23, 909 (2006), (Preprint: gr-
qc/0207031).

[130] H. Sahlmann and T. Thiemann, Irreducibility of the Ashtekar-Isham-Lewandowski rep-
resentation, (preprint: gr-qc/0303074).

[131] J. Samuel, Is Barbero’s Hamiltonian formulation a gauge throry of Lorentzian gravity?
Class. Quantum Grav. 17, L141 (2000), (Preprint: gr-qc/0005095).

[132] S. Sternberg, Group Theory and Physics, (Cambridge University Press, 1994).

[133] lecture notes given by T. Thiemann at Beijing Normal University.

[134] T. Thiemann, Quantum spin dynamics (QSD), Class. Quantum Grav. 15, 839 (1998).

[135] T. Thiemann, Quantum spin dynamics (QSD): II. The kernel of the Wheeler - DeWitt
constraint operator, Class. Quantum Grav. 15, 875 (1998).

[136] T. Thiemann, Quantum spin dynamics (QSD): III. Quantum constraint algebra and phys-
ical scalar product in quantum general relativity, Class. Quantum Grav. 15, 1207 (1998).

88



[137] T. Thiemann, Quantum spin dynamics (QSD): IV. Euclidean quantum gravity as a model
to test Lorentzian quantum gravity, Class. Quantum Grav. 15, 1249 (1998).

[138] T. Thiemann, Quantum spin dynamics (QSD): V. Quantum gravity as the natural regula-
tor of the Hamiltonian constraint of matter quantum field theories, Class. Quantum Grav.
15, 1281 (1998).

[139] T. Thiemann, Quantum spin dynamics (QSD): VI. Quantum Poincare algebra and a quan-
tum positivity of energy theorem for canonical quantum gravity, Class. Quantum Grav. 15,
1463 (1998).

[140] T. Thiemann, Quantum spin dynamics (QSD): VIII. The master constraint, Class. Quan-
tum Grav. 23, 2249 (2006).

[141] T. Thiemann, A length operator for canonical quantum gravity, J. Math. Phys. 39, 3372
(1998).

[142] T. Thiemann, Gauge field theory coherent states (GCS): I. General properties, Class.
Quantum Grav. 18, 2025 (2001).

[143] T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS): II. Peakedness
properties, Class. Quantum Grav. 18, 2561 (2001).

[144] T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS): III. Ehrenfest
theorems, Class. Quantum Grav. 18, 4629 (2001).

[145] T. Thiemann and O. Winkler, Gauge field theory coherent states (GCS): IV. Infinite tensor
product and thermodynamical limit, Class. Quantum Grav. 18, 4997 (2001).

[146] T. Thiemann, Modern Canonical Quantum General Relativity, (Cambridge University
Press, in press), Draft preprint: gr-qc/0110034.

[147] T. Thiemann, Complexifier coherent states for quantum general relativity, Class. Quan-
tum Grav. 23, 2063 (2006), (preprint: gr-qc/0206037).

[148] T. Thiemann, Lectures on loop quantum gravity, Lect. Notes Phys. 631 (2003) 41,
(preprint: gr-qc/0210094).

[149] T. Thiemann, The phoenix project: Master constraint programme for loop quantum grav-
ity, Class. Quantum Grav. 23, 2211 (2006), (preprint: gr-qc/0305080).

[150] T. Thiemann, Reduced phase space quantization and Dirac observables, Class. Quantum
Grav. 23, 1163 (2006), (preprint: gr-qc/0411031).

[151] T. Thiemann, Loop quantum gravity: an inside view, preprint: hep-th/0608210.

[152] M. Varadarajan, Fock representation from U(1) holonomy agebras, Phys. Rev. D 61,
104001 (2000).

89



[153] M. Varadarajan, Photons from quantized electric flux representations, Phys. Rev. D 64,
104003 (2001).

[154] M. Varadarajan, Gravitons from a loop representation of linearized gravity, Phys. Rev. D
66, 024012 (2002).

[155] J. M. Velhinho, A groupoid approach to spaces of generalized connections, J. Geom.
Phys. 41, 166 (2002).

[156] R. M. Wald, General Relativity, (The University of Chicago Press, 1984).

[157] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermody-
namics, (The University of Chicago Press, 1994).

[158] S. Weinberg, The Quantum Theory of Fields I, II, III, (Cambridge University Press, New
York, 1995.)

[159] C. M. Will, The Confrontation between general relativity and experiments, Living Rev.
Relativity 4 (2001), 4.

90



Vita
Muxin Han was born in Beijing, People’s Republic of China. He studied as an undergraduate
student in the Department of Physics at Beijing Normal University from 2001 to 2005, and
obtained his Bachelor of Science degree at Beijing Normal University in 2005. Muxin came
to the United States and began his graduate studies at Louisiana State University in August of
2005. His major is physics.

91


	Louisiana State University
	LSU Digital Commons
	2007

	Quantum dynamics of loop quantum gravity
	Muxin Han
	Recommended Citation


	tmp.1483774927.pdf.GG0Pe

