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ABSTRACT OF DISSERTATION 
 
 
 
 
 

BIOMECHANICAL EFFECTS OF TREES AND SOIL THICKNESS IN THE 
CUMBERLAND PLATEAU 

 
Previous research in the Ouachita Mountains, Arkansas suggests that, on relatively thin 
soils overlying bedrock, individual trees locally thicken the regolith by root penetration 
into bedrock.  However, that work was conducted mainly in areas of strongly dipping and 
contorted rock, where joints and bedding planes susceptible to root penetration are more 
common and accessible.  This project extended this concept to the Cumberland Plateau, 
Kentucky, with flat, level-bedded sedimentary rocks.  Spatial variability of soil thickness 
was quantified at three nested spatial scales, and statistical relationships with other 
potential influences of thickness were examined.  In addition, soil depth beneath trees 
was compared to that of non-tree sites by measuring depth to bedrock of stumps and 
immediately adjacent sites.  
 
While soil thickness beneath stumps was greater in the Ouachita Mountains compared to 
the Kentucky sites, there were no statistically significant differences in the difference 
between stump and adjacent sites between the two regions.  In both regions, however, 
soils beneath stumps are significantly deeper than adjacent soils.  This suggests the local 
deepening effects of trees occur in flat-bedded as well as steeply dipping lithologies.  
Regression results at the Cumberland Plateau sites showed no statistically significant 
relationship between soil depth and geomorphic or stand-level ecological variables, 
consistent with a major role for individual tree effects.  Nested analysis of variance 
between 10 ha stands, 1.0 ha plots, and 0.1 ha subplots indicates that about 67 percent of 
total depth variance occurs at, or below, the subplot level of organization.  This highly 
localized variability is consistent with, and most plausibly explained by, individual tree 
effects.  
 
The effects of biomechanical weathering by trees are not limited to areas with strongly 
dipping and contorted bedrock.  Variability of soil depth in the Cumberland Plateau is 
likely influenced by positive feedbacks from tree root growth, that these interactions 
occur over multiple generations of growth, and that the effects of trees are the dominant 
control of local soil thickness.  Since lateral lithological variation was minimal, this study 

 
 



 

also provides evidence that the positive feedback from biomechanical weathering by trees 
leads to divergent development of soil thickness.  
 

KEYWORDS: Biogeomorphology, Soil Depth Variability, Nonequilibrium,  
                         Biomechanical Weathering by Trees, Tree Rooting 
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 CHAPTER 1 

INTRODUCTION 

 

This dissertation is positioned at the intersection of geomorphology, biogeography, and 

pedology, where the ultimate goal is a better understanding of the patterns, processes, and 

reciprocal interactions that exist in and between the biosphere, pedosphere, and 

lithosphere.  Central to these themes are the spatiotemporal and scale dimensions of soil 

variability, complex systems, bioturbation, and biophysical pattern-process dynamics.  

The biomechanical impacts of trees as a contributor to soil processes, mainly soil 

deepening, are highlighted in this research.  Trees growing on soils formed from 

weathered bedrock play a significant role in local deepening and mixing of soil by 

facilitating weathering in joints occupied by roots, infilling of depressions created by 

stump rotting, and the mining of bedrock through tree uprooting.  The purpose of this 

research is to evaluate the spatial variability of soil depth to determine the impact of 

biomechanical weathering by trees on development of soil and regolith thickness.  This 

work lies primarily in the subfield of biogeomorphology.  The term biogeomorphology, 

used to describe the feedback system between geomorphic and ecological systems, has 

recently gained heightened research interest (Murray et al. 2008), but has roots that trace 

back to Charles Darwin and Nathaniel Shaler.  This introductory chapter will highlight 

the history of biogeomorphology to provide context for the remainder of the dissertation.  

To further position this work into the field of biogeomorphology, and to focus the 

remainder of the dissertation, pivotal research related to the biomechanical impacts of 

trees on soil properties.  

 

BIOGEOMORPHOLOGY AS A DISCIPLINE 

Biogeomorphology is the study of the interaction between organisms and the 

development of landforms.  Insights from Dietrich and Perron’s (2006) search for a 

topographic signature of life may help to determine the extent to which organisms impact 

geomorphic change.  They approached this question from three directions.  First, they 

considered how bioprocesses influence weathering, erosion, and sediment transport and 

how this could influence landscape- scale geomorphology.  Second, they considered how 
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bioprocesses impact climate and tectonics, which are important components in landscape 

evolution.  Third, they examined landscapes on the surface of Mars and Venus to 

compare them to surfaces found on Earth.  Unfortunately, they were unable to identify 

any landforms on Earth that could not exist without life, with the exception of coral reefs, 

which they disqualify.  In other words, landforms that exist in the absence of life on Mars 

are also found on Earth.  They suggested that a unique topographic signature of life could 

be possible at a narrower spatial scale.  The biomechanical weathering by trees could be 

the key to finding this topographic signature of life.  Granted, if regolith thickness 

variation is not expressed in surface topography, then it could not be a topographic 

signature.  However, if erosional processes have removed the regolith to directly expose 

the bedrock, then the effects of trees could possibly be observed via microtopographic 

variation in areas of uniform lithology.  This dissertation research will help to determine 

if biomechanical weathering by trees is an active process in areas with said uniformity.   

 

Phillips (2009) reviewed estimates of global rates of kinetic energy of uplift and 

denudation and compared those to the global rates of kinetic energy of net primary 

production.  He found that the energy associated with net primary production was so 

much greater than the combination of uplift and denudation that if just 0.1 percent of net 

primary production were used for geomorphic work then it would far exceed the energy 

inputs of uplift and denudation.  A case study that estimated the net primary production, 

rate of denudation, and rate of uplift in the University of Kentucky’s Robinson Forest 

showed that in this area biological energy is several orders of magnitude higher than 

uplift or denudation rates even if only 0.001 percent of net primary production is used for 

geomorphic work.  Phillips (2009) suggested that in some cases organisms could be the 

primary agents of landscape evolution.  However, Phillips (2009) also stated that all 

geomorphological and ecological processes -- and thus their relative importance in 

landscape evolution -- vary both geographically and temporally.  Second, energy 

associated with other abiotic processes driven by solar energy are greater, on average, 

than net primary production, though the contribution of these processes to geomorphic 

work is poorly known (Phillips 2009).   
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An argument can be made that suggests that geomorphic change is primarily driven by 

biologic processes in some environments.  However, research on the amount of net 

primary production that is geomorphologically relevant is needed.  Further, biological 

agents of geomorphic change are not so important that the same topography would not 

exist in their absence, at least at the landscape scale (see Dietrich and Perron 2006).  

Based on information from these two studies it is clear that organisms provide a 

significant amount of energy to geomorphic processes and that a mechanistic 

understanding of their role in landscape evolution is needed.  This dissertation research 

will aid in this mechanical understanding by analyzing the effects of trees on soil 

thickness.   

 

The awareness that life influences, and is influenced by, geomorphic principles is not a 

new phenomenon.  Charles Darwin was one of the first researchers to consider organisms 

as agents of geomorphic change.  In 1881 Darwin published a book titled “The Formation 

of Vegetable Mould, Through the Action of Worms, With Observations on Their Habits”.  

In this book, Darwin outlined the process by which worms ingest soil at depth and 

deposit it on the surface as fecal castings (Darwin 1881, Johnson 2002).  Darwin’s 

research specifically examines the role of worms in the rock weathering, denudation of 

the land, preservation of buried artifacts, and improvement of soil growing conditions.  

Another early example of biogeomorphology research is Nathaniel Shaler’s book “The 

Origin and Nature of Soils,” one chapter of which specifically discussed the effects of 

animals and plants on soils.  Shaler divided these effects into three classes; (1) the 

influence of organisms on rocks underlying mineral soils, (2) the modification of soil 

through animal and plant interactions, and (3) the contribution of organic remains to soils 

(Shaler 1892).  Shaler made specific mention of Darwin’s worm research and he 

identified ants as agents of geomorphic change.  Shaler also contributed to early research 

on tree uprooting by diagramming the hypothetical uprooting process and discussing its 

role in bioturbation.  In 1899, Henry Chandler Cowles published a book titled “The 

Ecological Relations of the Vegetation on the Sand Dunes of Lake Michigan”.  Cowles 

(1899) identified the stabilizing properties of vegetation and its role in the accumulation 

of sediment.  He also noted that the physical properties of dunes help to determine what 
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types of flora could establish.  His recognition of the reciprocal interactions between 

landforms and biota, and the coevolution of ecosystems and landscapes made him one of 

the earliest and most influential researchers of biogeomorphology (Stallins 2006).  

 

In the late 20th century there was resurgence in research on the interaction of organisms 

with geomorphology due to the work of D.L. Johnson and his students in the 1980’s 

(Johnson and Watson-Stegner 1987, Schaetzl et al. 1989, Johnson 1990).  Johnson and 

Watson-Stegner (1987) included floral and faunalturbation as major components of 

pedogenesis, provided evidence of arboreal bedrock mining, and discussed the creation of 

surficial biomantles.  Johnson (1990) focused exclusively on the topic of biomantle 

evolution.  The investigation of bioturbation continued by Schaetzl et al. (1989) in their 

review of tree uprooting terminology, process, and environmental implications.  Tree 

uprooting can occur during many disturbance events, including thunderstorms, ice 

storms, hurricanes, and tornados.  An important aspect of tree uprooting is the creation of 

pit/mound microtopography.  After an uprooting event, a pit is formed where the root ball 

was located.  Soil and rock will slump off of the root plate and create an adjacent 

treethrow mound.  Schaetzl et al. (1989) reviewed many types of observational research 

that has been conducted on pit/mound microtopography, including size of pits, size of 

mounds, distribution of pits and mounds, longevity of pit/mound topography, and slope 

of mounds.  Perhaps more to the interest of pedologists, they showed that pit/mound 

microtopography play an important role in soil processes.  They specifically discussed 

the effects of uprooting on soil morphology, effects of microtopography on soil 

characteristics, and the effects of uprooting on pedogenesis and soil classification.   

 

Following in the tradition of Darwin and Shaler, Butler (1995) discussed the geomorphic 

contributions of multiple vertebrate and invertebrate animal species in the book 

“Zoogeomorphology: Animals as Geomorphic Agents”.  While much of this work 

centered on the well-studied concept of tunneling, other processes by which animals 

impact geomorphology were also covered.  This included concepts related to soil 

engineering, slope stability, sedimentation, trampling, and digging.  More importantly, 

this book marks an important historic moment in the field of biogeomorphology, which 
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encompasses zoogeomorphology.  It is within this book that Butler criticized the field of 

geomorphology for overlooking the role of animals as geomorphic agents of erosion, 

transportation, and deposition.  He cited 10 geomorphology textbooks written since the 

1970’s that did not include any mention of animals as agents of geomorphic change.   

 

Another pivotal work in the current understanding of biogeomorphology is the concept of 

ecosystem engineering presented in Jones et al. (1994).  Ecosystem engineers are 

organisms that modulate the availability of resources to other species by changing the 

physical environment.  This concept provided a direct link between bioprocesses and 

geomorphic change (Corenblit et al. 2011).  Jones et al. (1994) classified ecosystem 

engineers as either autogenic engineers or allogenic engineers.  Autogenic engineers alter 

the environment through their physical structures (corals, mussels, etc.) while allogenic 

engineers change the environment through mechanical or chemical means (beavers, ants, 

trees, etc.).  One of the key components of this manuscript is the list of examples of 

organisms that act as ecosystem engineers.  This list demonstrated that ecosystem 

engineers could occur in any system with biologic activity.  Other important topics 

discussed included bioturbation, keystone species, and human impacts.  Jones (2012) 

directly linked the concepts of ecosystems engineers and geomorphology, nearly 20 years 

after this initial work.      

  

In addition to the identification and analysis of biogeomorphic agents, researchers in the 

21st century have placed an importance on defining key concepts in biogeomorphology.  

Naylor et al. (2002) divided the biological impacts on geomorphological systems into 

three dominant groups of processes; bioconstruction, bioprotection, and bioerosion.  

Bioerosion includes biologic impacts related to weathering or removal of material.  

Bioconstruction includes biologic impacts related to physical upbuilding.  Bioprotection 

includes biologic impacts that hinder other earth surface processes.  Stallins (2006) 

publication on unifying themes for complex systems in biogeomorphology revisited the 

concept of reciprocal interactions.  In the tradition of Cowles (1899), this research 

focused on the bidirectional feedback that exists in biogeomorphic systems.  Stallins 

(2006) introduced four overlapping themes that link geomorphology and ecology: 
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multiple causality, ecosystem engineering, ecological topology, and ecological memory.  

Multiple causality includes the feedback loops between biota and landforms. Ecosystem 

engineering includes the construction of landforms by biota.  Ecological topology 

includes issues dealing with scale between biota and geomorphology.  Ecological 

memory encompasses how a subset of abiotic and biotic components are selected and 

reproduced by recursive constraints on each other.  These themes, according to Stallins 

(2006), enable the field of biogeomorphology to grow beyond a discipline focused on 

identifying and listing biotic impacts to geomorphology.   

 

Corenblit et al. (2011) provided a comprehensive review of the feedbacks between biota 

and geomorphology.  They outlined a conceptual evolution of the discipline of 

geomorphology using foundations of ecological concepts as historical markers.  The 

concepts included were keystone species (Paine 1966), ecosystem engineers (Jones et al. 

1994), facilitation (Odum 1969), extended phenotype (Dawkins 1982), eco-evolutionary 

dynamics (Post and Palkovacs 2009), macroevolution (Erwin 2008), niche construction 

(Odling-Smee et al. 2003), and ecological heritance (Odling-Smee et al. 2003).  Of 

significance to biogeomorphology, Corenblit et al. (2011) linked the ecosystem engineer 

concept of Jones et al. (1994) with the bioprocesses defined in Naylor et al. (2002), 

adding bioturbation as a distinct bioprocess, and Phillips (2009b) argued that soils are 

extended composite phenotypes.  

     

BIOMECHANICAL EFFECTS OF TREES 

Much of the recent work in biogeomorphology has focused on the geomorphological 

impacts of biota on salt marshes (e.g., Zhang et al. 2004; Kim et al. 2012) and sand dunes 

(e.g., Baas 2002; Stallins and Parker 2003; Maun 2008; Smith et al 2008; Nordstrom et 

al. 2009).  Forest ecosystems, which are temporally less dynamic than salt marshes and 

sand dunes, have received less attention.  Individual trees have been shown to have 

profound impacts on the properties and nature of surface features in forest ecosystems 

(e.g., Wilson et al. 1997; Boettcher and Kalisz 1990; Schaetzl et al. 1989, 1990; Phillips 

and Marion 2004).  Yet, the biomechanical impacts of trees as a contributor to soil 

processes remains poorly understood.  This research will address this knowledge gap by 
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examining the impacts of biomechanical weathering by trees on a specific soil 

characteristic, soil thickness.   

 

Regolith is generally defined as the unconsolidated material overlying undisturbed, 

unweathered sedimentary deposits or solid bedrock.  Soil is generally defined as the 

uppermost, most highly altered portions of the regolith, excluding saprolite or the 

lowermost portions of the weathering profile.  For this research, soil is defined as the 

portion of the regolith above the Cr soil horizon.  The Cr horizon consists of soft, 

weathered bedrock and saprolite that could be dug with a spade.  The point in the 

weathering profile where soil meets the Cr horizon is deemed the paralithic contact in this 

research and is thought to represent a root-limiting layer.  For many locations in this 

research soil has direct lithic contact with the R horizon and no Cr horizon is present.  In 

this situation soil thickness and regolith thickness are equal.  So for this research, soil 

thickness is defined as the depth to lithic or paralithic contact.  To simplify terminology, 

soil will be used exclusively to represent both soil and regolith.  This is consistent with 

other geomorphologists, especially in context of hillslope or landscape evolution (Phillips 

et al. 2005b). For details on the methods used to measure soil thickness see Chapters 3 

and 5.    

 

Soil thickness in this research is primarily based on Johnson’s soil thickness model:  

 

T = D + U + R                                                                                                (Equation 1.1) 

 

where the thickness (T) of a mineral soil is viewed as a dynamic interplay of deepening 

(D), upbuilding (U), and removals (R) (Johnson 1985, Schaetzl and Anderson 2005).  

Soils get thicker when D + U > R, D > U – R and soils get thinner when D + U < R 

(Schaetzl and Anderson, 2005).  Deepening refers to the downward migration of the 

lower soil boundary primarily through weathering and leaching processes (Johnson 1985; 

Schaetzl and Anderson 2005).  Upbuilding refers to the surficial additions of mineral and 

organic material ((Johnson 1985; Schaetzl and Anderson 2005).  Removals refer to losses 

of materials primarily through erosion and mass wasting (Johnson 1985; Schaetzl and 
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Anderson 2005).  The focus of this dissertation research is on deepening processes 

specifically related to biomechanical weathering by trees.   Phillips et al. (2005b) 

expanded Johnson’s soil thickness model to be more observationally oriented and as a 

result, specifically included bioturbation and bioconstruction processes.  Their model for 

soil thickness is 

 

T = (W +B) + (A + O + V) – (E + L + Csurf + Csub)                                         (Equation 1.2) 

 

where W is weathering at the weathering front, B is deepening due to bioturbation, A is 

surface accretion, O is organic matter additions, V is volume expansion (e.g., due to tree 

root growth), E is surface removal due to erosion and mass wasting, L is subsurface 

removals due to leaching, and C is subsurface or surface consumption by fire, uptake, and 

such, as it applies to organic matter (Phillips et al. 2005).  Mechanically, trees contribute 

to the local pedologic processes via uprooting, infilling of stump holes, displacement of 

rocks and rock fragments, and root growth.  In this case, and hereafter, mechanical 

contributions refer to contributions via the physical growth of trees with the 

acknowledgment that these contributions are not void of chemical processes and/or 

influences.  As this study focuses on tree root penetration of rock, and soil/regolith 

thickness, and does not directly address the bio- and hydrochemical weathering processes 

at the root-rock interface, for purposes of this proposal these impacts are lumped into the 

biomechanical category.  These processes don’t all directly contribute to mechanical soil 

deepening, but they are active participants in soil formation, which is explained by the 

model of self-reinforcing pedologic influences of trees (SRPIT). 

 

Former tree locations have been identified as prime locations for new tree establishment.  

Van Lear et al. (2000) suggested that decomposing loblolly pine roots are nutrient-rich 

microsites and that they are ideal locations for new tree establishment.  Phillips and 

Marion (2004) proposed a model of self-reinforcing pedologic influences of trees to 

explain the locally variable forest soil found in the Ouachita Mountains as a function of 

repeated occupancy of trees over time.  The SRPIT conceptual model proposes that there 

are self-reinforcing mechanisms that provide a favorable advantage to trees occupying 
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the location of former trees.  The primary mechanisms presented in this model include 

the displacement of rocks and rock fragments away from the site through tree growth and 

uprooting and the input of nutrients through stump rot and infilling processes.  Phillips 

(2008) expanded this model to include the effects of repeated occupancy on local soil 

thickness.  One interpretation of this model, and the one used in this research, is that 

where soil is thin, pockets of deeper, relatively rock free, nutrient-rich soil provide an 

advantage for trees, so while trees have a random likeliness of reaching a seedling stage, 

trees growing in deeper, rock free, nutrient-rich soils are more likely to reach canopy 

height.  Likewise, trees that reach canopy height likely have more extensive root systems 

and are more likely to penetrate bedrock joints and further weather the bedrock surface.  

This creates a positive feedback where D > U – R for a specific tree location.  This 

repeated occupancy represents a self-reinforcing feedback between biota and surface 

processes and implies that the locations of trees capable of biomechanical weathering are 

non-random.  This also implies nonequilibrium soil thickness, which will be explained in 

the next chapter.         

 

The advantage of locally thicker soil likely presents itself differently depending on the 

site productivity.  In xeric conditions, trees try to gain a competitive advantage in water 

availability.  Former tree locations in dry environments could locally improve moisture 

availability in two ways.  First, these locations have systematically deeper soils that allow 

for the storage of more water due to there being more soil volume.  Tromp-van Meerveld 

and McDonnell (2006) suggested that locally deeper soils lead to faster depletion of soil 

moisture in nearby shallow areas, which make former tree locations even more important 

in dry, upland areas.  Second, stump holes fill with organic matter and detached soil from 

the walls (Phillips and Marion 2006).  This increase in organic matter could lead to more 

water holding capacity.  In mesic environments, soil resources are not as limited, so 

competition is for available light.  Tree species try to position themselves to take 

advantage of recently opened pathways to sunlight.  Former tree locations in mesic 

environments could provide pathways to more nutrients and better root development, 

enabling trees to outgrow adjacent trees when light becomes available.  Hydric soil 

environments are limited by O2, which is needed for respiration.  As with stump holes 
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found in xeric environments, stump holes in wet environments are also likely to fill with 

organic matter and detached soil from the walls (Phillips and Marion 2006), which 

aerates the soil.  Poor aeration of the soil can slow the decay of organic materials and 

limit nutrient availability to plants (Brady and Weil 1996).  It is possible that the 

increased aeration in former tree locations from stump hole filling and collapse could 

provide a better source of readily available nutrients, thus creating a competitive 

advantage.     

 

Of the limited research that has been conducted on the biomechanical effects of trees, 

most has focused on tree uprooting (e.g., Johnson et al. 1987; Schaetzl et al. 1989; 

Johnson 1990, Gabet and Mudd, 2010; Šamonil et al. 2010).  Tree uprooting is a major 

form of surface disturbance in forest communities.  Tree uprooting can occur during 

many disturbance events, including thunderstorms, ice storms, hurricanes, and tornadoes.  

An important aspect of tree uprooting is the creation of pit/mound microtopography.  

Tree uprooting refers to the toppling of a tree that remains attached to large roots near the 

bole, which results in the upward twisting of the root mass with soil (Osterkamp et al. 

2006).  When a tree >13 cm in diameter at breast height (DBH) is uprooted, a portion of 

the soil that anchored the roots is transported to the surface, both vertically and 

horizontally, leaving a pit and over time a mound (Gabet et al. 2003, Gallaway et al. 

2009).  Schaetzl et al. (1990) explained the creation of pit/mound microtopography as 

two separate processes.  During the uprooting of trees, a pit is formed where the root ball 

was located.  As the tree lies, soil and rock will slump off of the root plate and create an 

adjacent treethrow mound, which is an upbuilding process.  These visible pit-and-mound 

formations provide evidence of the impact trees have on soil processes.  If the tree is 

anchored in bedrock it is possible for fragments of parent material to be transported 

vertically and horizontally as well, as part of the root wad.  This is an important indicator 

of biomechanical weathering, via root/bedrock interaction, that can be observed in the 

field.  

 

Schaetzl et al. (1990) reviewed observational research on pit/mound microtopography, 

including size of pits, size of mounds, distribution of pits and mounds, longevity of 
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pit/mound topography, and slope of mounds.  Perhaps more to the interest of pedologists, 

they showed that pit/mound microtopography plays an important role in soil processes.  

They specifically discussed the effects of uprooting on soil morphology, effects of 

microtopography on soil characteristics, and the effects of uprooting on pedogenesis and 

soil classification.  Ulanova (2000) reviewed the soil impacts of tree uprooting, where she 

placed a large emphasis on spatial and temporal scale, with regards to biologic and 

geomorphic processes.  She claimed that uprooting results in sharp changes in the soil 

profile, which include a high amount of organic content during the first 50-200 years.  

She claimed that in a shallow pit the background soil combination and processes are 

completed in 100-200 years and in larger pits it can take more than 200-300 years. 

 

One of the latest reviews on the role of tree uprooting, by Šamonil et al. (2010) advanced 

the discussion of many of the same topics discussed in Schaetzl et al. (1990) and Ulanova 

(2000), and provided updated information.  This material included tackling scale issues in 

uprooting research, which entailed dating the age of pits and mounds and explaining their 

properties.  Like Schaetzl et al. (1990), Šamonil et al. (2010) discussed the temperature 

fluctuations of pits and mounds, but also included details about humidity.  According to 

Schaetzl et al. (1990) mounds are typically warmer and drier than pits, with the exception 

that pits can be warmer during snow cover.  Newer research presented in Šamonil et al. 

(2010) now reports that the temperature of mounds can be several degrees higher and the 

humidity may be several tens of percent different than pits; which has impacts on soil 

classification and formation.  Šamonil et al. (2010) also discussed the impacts of tree 

uprooting on soil formation across different scales.  They, like Schaetzl (1990), stated 

that enhanced leaching is present in the pit, possibly due to the presence of decomposed 

wood.   

 

The infilling of depressions caused by stump rot and uprooting represents one method by 

which tree growth aids in the development and thickening of regolith at a specific 

location.  Depressions fill with organic material, rock, and or soil through gravitational 

forces (Phillips et al. 2005b).  Depending on the rate of material breakdown this can 

either (momentarily) bury soils, or deepen them.  Similar to the formation of mounds, this 
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is representative of a type of local upbuilding, or bioconstruction.  As mentioned 

previously, the breakdown of this material can provide nutrients to the soil, increase the 

water storage capacity of the soil, and/or aerate the soil, thus creating a competitive 

environment for canopy tree establishment and growth.  While not a focus of this 

research, these depressions may also aid in the biochemical weathering of bedrock by 

providing a pathway.  Organic matter from decomposing trees has been shown to 

influence soil organic properties, chemistry, and weathering (Schaetzl and Follmer 1990, 

Van Lear et al. 2000, Phillips and Marion 2004).   

 

While tree uprooting and depression infilling have significant impacts to soil 

characteristics, it is the interaction of roots with bedrock that directly facilitates the 

biomechanical deepening of soil.  Lutz (1960) reviewed some of the earliest examples of 

research on root penetration, where tree roots grew several meters into sandstone and 

granite.  Phillips and Marion (2004, 2005) suggested that trees growing on soils formed 

from weathered bedrock may play a significant role in local deepening and mixing of soil 

by facilitating weathering in joints occupied by roots and the infilling of depressions 

created by stump rotting.  They showed that soil underlying individual tree locations were 

systematically deeper or thicker than at adjacent locations in the shallow forested soils of 

the Ouachita Mountains (Phillips and Marion 2004, Phillips 2008).  Their findings 

suggested that individual trees may “engineer” sites to produce relatively thicker soil 

when thickness is less than the preferred or optimum rooting depth.  Gabet and Mudd 

(2010) considered this microtopographical variation due to root fracture when simulating 

the production of soil from bare rock.  Through computer simulation based on empirical 

data they demonstrated that root fracture, a term used to describe the occupation of roots 

in bedrock fractures, leads to a rough and uneven bedrock surface.  It is unlikely that the 

biomechanical weathering required to explain this rough and uneven surface occurred 

during one generation of tree growth.   

 

Gabet et al. (2003) reviewed root interactions with bedrock fractures and found that roots 

penetrate fractures in bedrock as small as 100 µm and expand over time, generating 

sufficient pressure to fracture soft bedrock.  They report that radial pressure can reach .92 
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MPa and axial pressure can reach up to 1.45 MPa.  It was also shown that roots are able 

to penetrate bedrock by inducing mineral dissolution.  A positive feedback loop was 

hypothesized between the two processes; where chemical weathering causes the bedrock 

to be more susceptible to mechanical breakup and mechanical breakup leads to more 

surface area for chemical weathering.  Matthes-Sears and Larson (1995) also provided 

key information about rooting into bedrock.  They excavated eastern white cedar trees 

from a limestone cliff and analyzed the rooting characteristics.  Their results showed that 

eastern white cedar could grow directly into rock without soil (32.3% of their samples).  

They also reported that 79.0% of their samples penetrated bedrock an average of 9 cm, 

with a maximum of 30 cm.  The trees they observed were between 6 – 27 years old.  

Phillips et al. (2008) have also documented the relationship between roots and bedrock 

joints and fractures.  Their study was conducted on recently exposed bedrock benches in 

the Ouachita Mountains, where trees had begun to colonize.  They found that trees 

consistently penetrated bedrock through joints and bedding planes.  

 

It is well known that tree uprooting is a mechanism by which rocks or rock fragments are 

brought to the surface (Lutz 1960, Ulanova 2000, Phillips et al. 2005a, Osterkamp et al. 

2006).  Of significance to the SRPIT model, rock fragments are removed from the tree 

location during this process.  Phillips and Marion (2005) considered a low soil rock 

volume as an advantage to tree growth so the local displacement of rocks represents a 

positive feedback.  Rocks and rock fragments are also displaced through general root 

growth (Phillips et al. 2005a).  Further, locations currently occupied by trees are not 

impacted by the downward movement of rocks and rock fragments.  An examination of 

the volume of rocks or rock fragments in tree throw root wads should indicate interaction 

between roots and bedrock, a key component to soil deepening.  Phillips et al. (2005a) 

suggested three methods in which rocks and rock fragments may be introduced in 

regolith; (1) they could be present in their original stratigraphic position through 

inheritance from the parent material, (2) transported from upslope by mass wasting, 

erosion, or human agency, and, most importantly for deepening (3) they can be produced 

in situ by upward transport from the weathering front.  For an examination of the volume 

of rocks or rock fragments in a tree throw root wad to conclusively indicate 
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biomechanical weathering by trees it would have to be determined that the rocks or rock 

fragments were produced in situ.  The first step in determining this would be to identify 

the underlying bedrock and see if the rocks or rock fragments match the parent material.  

For example, if sandstone rock fragments were found in a tree throw at the bottom of a 

slope and the underlying bedrock is shale, then the likely explanation would be that the 

sandstone was transported to that location from an upslope location.  However, if shale 

fragments were found in the tree throw then this provides some evidence or root/bedrock 

interaction.  Orientation of the rocks or rock fragments found in the root wad is also 

important; if these are mined from underlying sedimentary rock they should have a 

consistent orientation.  

 

It is reasonable to assume that other agents of weathering could result in variable bedrock 

weathering and regolith deepening, and thus variable soil thickness.  In the Ouachita 

Mountains, one of the primary controls of local soil spatial variability is local lithological 

variation (Phillips et al. 2005b).  It is possible that local lithological diversity could play 

an important role in controlling soil depth (Phillips 2010).  For example, in areas where 

an easily erodible material, such as shale, is interbedded with an erosion resistant 

material, such as sandstone, it is possible for weathering to be unevenly distributed 

(Vanwalleghem et al. 2010).  The number and size of bedrock joints and fractures in a 

given area could also influence soil depth spatial variability.  Though this may be related 

to reciprocal interaction between roots and bedrock (Phillips and Marion 2005), it could 

also play an important role in the absence of trees.  Further potential lithological controls 

of soil depth spatial variability could include karst processes.  Uneven dissolution and 

structural failure can lead to a locally variable bedrock surface (La Valle 1968).  Coal 

seams, which are sometimes present in the study area, could also aid in creating a 

variable bedrock landscape.  In addition to coal seams dissecting other softer materials, 

they could also contribute to joint expansion and ground collapse through underground 

combustion (Stracher and Taylor 2004).  If lithological variation was controlled and the 

bedrock still displayed a variable surface, then this would be indicative of biomechanical 

weathering by trees via SRPIT processes.     
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Phillips and Marion (2005) suggested that topography was a likely contributor to soil 

depth spatial variability.  Even when rock type is consistent, weathering can still result in 

local soil spatial variability (Saco et al. 2006).  This is due to topographic controls on 

water transport, water storage, and microclimate.  One reason for this unequal weathering 

across homogenous rock types is related to microclimatic variations due to aspect, as 

shown by Hall et al. (2005).  Aspect controls the amount of available sun available to a 

specific location, which results in differing moisture and temperature gradients.  A slope 

with afternoon sun will be warmer that an equivalent slope with morning sun in North 

America (McCune et al. 2002).  In Hall et al. (2005) aspect controlled the distribution of 

lichens, which act as biological weathering agents in many systems.  In addition to 

biomechanical weathering, chemical weathering can be topographically controlled 

(Burke et al. 2007).  Burke et al. (2007) found that weathering rates decreased with slope 

across the divergent ridge and increased with upslope contributing area in the convergent 

swale.  They also found that weathering intensity decreased linearly with an increase in 

saprolite PH from 4.7 to almost 7 (Burke et al. 2007).  If soil depth is not related to 

topography for a given area of homogenous parent material, then this is consistent with 

biomechanical effects of trees or some other localized effect on thickness.  

 

Beyond trees, microbes play an important role in local weathering in soil-covered 

landscapes (see Viles 1995; van Scholl et al. 2008).  Much of the research on forest soil 

microbial communities has focused on mineral weathering within soil.  Many microbial 

communities have been shown to have spatially variable distributions (Calvaruso et al. 

2007, Uroz et al. 2007, Calvaruso et al. 2010, Uroz et al. 2011).  Based on this notion, it 

can be reasoned that microbial communities that directly impact bedrock could also have 

spatially variable distributions, which in turn could result in in a variable bedrock surface, 

which is manifested as pockets of increased soil thickness.  However, the effects of 

microbes cannot necessarily be removed from tree effects do to a strong dependence, and 

in some cases symbiosis, between tree roots and soil microbial communities (Andrews et 

al. 2008, Bonneville et al. 2011).   
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The purpose of this research is to understand the biomechanical effects of trees on 

localized soil deepening across spatial scales.  This study focuses on soil/regolith 

thickness and its relationship with individual trees, and does not directly address the bio- 

and geochemical weathering processes at the root-rock interface.  However, because the 

latter require contact with or penetration of bedrock, for the purposes of this study these 

impacts are lumped into the biomechanical category.  
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CHAPTER 2 

RESEARCH QUESTIONS, STUDY AREA, AND BACKGROUND 

 

The approach taken to better understand the role of biomechanical weathering by trees in 

this research was to answer the following three research questions, which collectively 

address issues related to pattern and scale.  (1) How does spatial variability of forest soil 

depth differ between steeply-dipping and horizontally oriented underlying bedrock?  (2) 

What is the relative importance of individual trees vs. other potential controls of local 

variability in soil depth?  (3) How is the variance of soil depth partitioned across spatial 

scales?  These research questions apply to forests with relatively thin soils overlying 

sedimentary bedrock.  The explanation of each research question’s development and its 

relationship to the research goals is presented below.  In addition, this chapter will 

provide details about the study areas used, and provide relevant theoretical background 

needed to interpret the results and discussions. 

 

RESEARCH QUESTIONS 

Research Question 1 (RQ1): How Does Spatial Variability of Forest Soil Depth Differ 

Between Steeply-Dipping and Horizontally Oriented Underlying Bedrock? 

 

Phillips and Marion (2004) observed that soil was deeper beneath stump holes than at 

adjacent locations in the Ouachita Mountains, Arkansas.  In that area the sedimentary 

rocks are strongly dipping and contorted, providing more opportunity for root penetration 

of fractures and bedding planes than would be the case in other geologic settings.  

Phillips and Marion (2005) found that biomechanical effects of trees and lithological 

variations were linked to spatial variability of soil depth in shallow (<1.5 m) forest soils.  

They considered this evidence of divergent evolution of the soil system and suggested 

that future work be conducted to investigate the importance of geological variation in this 

process.  Thus the evaluation of this research question will test the hypothesis of 

systematically deeper soils beneath tree stumps in a different geologic setting, the 

Cumberland Plateau, where bedrock is composed of flat-bedded sedimentary rocks, 

which presumably offer less opportunity for roots to penetrate bedrock.  If soil is 
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systematically deeper beneath trees in the absence of such extreme lithological variation 

then it will suggest that primarily the biomechanical effects of trees control this divergent 

condition; otherwise a major role for lithological and structural variability of parent 

material is indicated.  In this case, and for the remainder of the dissertation, lithological 

variation is used interchangeably with structural variation.  Due to structural variability 

the bedrock type at the soil interface differs more frequently at the tree influence scale in 

the Ouachita Mountains compared to the Cumberland Plateau even where bedrock type is 

the same.  The expected outcome was that soil thickness would be less at the Cumberland 

Plateau sites than at the Ouachita Mountains sites due to this structural variation.  

Compressional stress in Ouachita Mountains leads to extensive fracturing and jointing, 

and may expose bedding planes to root penetration from above.  Flat-bedded rock of the 

Cumberland Plateau is jointed, but has not experienced strong tectonic stress, and dips do 

not expose bedding planes to root invasion from above.  More details on each study area 

are presented in the next section of this chapter. 

 

Research Question 2 (RQ2): How effective are relief and organic factors from the 

standard soil factors model at predicting soil depth in the Cumberland Plateau?  

The standard soil factors model, which is credited to Jenny (1941) and sometimes 

referred to as the clorpt model, conceptualizes soil (S) as,  

 

S = f(cl, o, r, p, t, …)                                                                                       (Equation 2.1) 

 

where soil types or soil properties are a function (f) of climate (cl), organisms (o), relief 

(r), parent material (p), and time (t).  For this research question climate, parent material, 

and time were held (mostly) constant by examining soils sampled in similar geographic 

and geologic areas.  Using linear regression, the relationships between soil depth 

characteristics and plot and landscape variables were explored.  Specific variables 

included were aspect, slope gradient, slope shape, and slope position, which are 

topographic (relief) factors and basal area, trees per hectare, and stump-hole diameter, 

which are ecological factors.  Aspect, the horizontal direction a slope is facing, is 

topographic in nature, but primarily influences soil properties via microclimatic controls 
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to moisture regimes and vegetative communities (see, Olivero and Hix 1998; Abnee et al. 

2004; Hall et al. 2005).  Slope gradient is directly proportional to the rate of erosion, an 

important factor in soil thickness (Minasny and McBratney 1999).  Slope shape, or 

topographic curvature, affects flow acceleration and deceleration (Odeh et al. 1991, 

Minasny and McBratney 1999).  Slope position impacts the amount of sediment 

deposition, and thus soil depth (Sariyildiz et al. 2005).  Basal area and trees per hectare 

are derivatives of tree density, which impact soil depth via vegetative community 

structure and leaf litter accumulation (Sariyildiz et al. 2005, Yimer et al. 2006).  The role 

of stump diameter has not been evaluated in terms of soil thickness, but it seems logical 

that larger trees have a better likelihood of bedrock interaction due to their larger root 

systems.  

 

Research Question 3 (RQ3): How is the Variance of Soil Depth Partitioned across Spatial 

Scales? 

 

Scale-dependence has been recognized as a central concern in ecological and 

geographical research, where different ecological patterns and processes are dominant at 

different spatial scales (Mooney and Hobbs 2000, Wilson et al. 2007, Kim et al. 2012).  

This implies that changes in scale, by changes in grain (i.e., size of unit plot) or extent 

(i.e., size of study area), can result in significant changes in biotic and abiotic 

relationships.  Recently, biogeomorphologists have placed a particular interest on 

understanding how broad-scale properties can emerge from lower-level interactions 

between geomorphic and ecological components (Stallins 2006, Corenblit et al. 2011).  

The effects of single trees on local soil properties are significant (Boettcher and Kalisz 

1990, Phillips and Marion 2004).  Examining the spatial heterogeneity of specific single 

tree effects with respect to scale will help better explain the biogeomorphological role of 

biomechanical weathering by trees.  Yet, the extent to which tree effects impact the 

landscape across scales is unknown.  This research question will examine the variance of 

soil depth across scales in a forest system where soil depth variability may be due to 

biomechanical weathering by trees.  If the impacts of biomechanical weathering by trees 

are dominant, the local scale should explain a significant amount of variation.  If the 
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broader, landscape scale explains a significant amount of variation, then the topographic 

controls of soil depth will be considered dominant. 

 

STUDY AREAS 

The sampling of biological and physical characteristics needed to answer the each 

research questions took place in the Ouachita Mountains and the Cumberland Plateau 

physiographic regions.  Within the Ouachita Mountains, sampling took place in the 

eastern Ouachita National Forest.  Within the Cumberland Plateau, sampling was 

conducted in the Koomer Ridge section of Daniel Boone National Forest and the Indian 

Trails section of Berea College Forest.   

 

Ouachita Mountains 

The Ouachita Mountains are an east-west trending folded mountain range in west central 

Arkansas and southeastern Oklahoma with elevations ranging from 230 m to 839 m.  

This research took place within the Ouachita National Forest (ONF) (34°29’45” north, 

94°07’30” west) (Figure 2.1).  The Ouachita Mountains have a humid subtropical climate 

and a mean annual precipitation of about 1200 mm yr-1 (Phillips and Marion 2005).  

Average daily summer and winter temperature ranges are 20-30 °C and 4-10 °C, 

respectively.  Forest cover is dominated by shortleaf pine (Pinus echinata) and various 

oak species (Quercus sp.). 

 

Geology in the Ouachita National Forest consists primarily of extensively faulted and 

strongly dipping and contorted Paleozoic sedimentary bedrock (Stone and Bush 1984) 

that are primarily composed of sandstone and shale (Jordan et al. 1991).  Chert, quartzite, 

and novaculite are also found in lesser amounts.  The sample locations were within the 

Stanley Shale, Jackfork Sandstone, and Atoka Formation lithologic units.  Intermixing 

and alternating strata of sandstone and shale are commonly found, in steeply dipping 

strata ranging from about 30o to near-vertical bedrock orientations.  Phillips et al. (2005b) 

observed that exposed shales were deeply weathered and highly erodible, whereas 

sandstones were noticeably less weathered and more durable.  They also noted that many 

of the shales were soft enough, particularly when weathered, to permit root penetration 

20 

 



(Phillips and Marion 2004; Phillips et al. 2008).  While shale ranges from hard to soft 

depending on the formation, weathered shale is typically soft and has low shear strength 

(Bryson et al. 2012).   

Figure 2.1: Ouachita Mountains and Ouachita National Forest 
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Soils in the study area are derived from weathered rock and colluvial deposits (alluvial 

and valley bottom sites were not sampled).  Extensive mapping of depth to bedrock in the 

area indicates that average soil depth is less than typical tree rooting depth, which results 

in arboreal bedrock mining and root penetration of bedrock joints (Phillips and Marion 

2004).  Phillips et al. (2005b, 2008) provided a thorough explanation of the soils in this 

region.  They are typically described as Hapludults (Phillips et al. 2008) and often have a 

high content of rock fragments.  Phillips et al. (2005c) showed that sandstone fragments 

were common in all layers, even in cases where sandstone was not the parent material.  

Their work suggested that sandstone fragments were transported downslope from upper 

slope outcrops and entered the subsurface via treethrow pits and stump holes.  The 

weathering of these fragments often resulted in sandy soil layers, even in areas with high 

clay content (Phillips et al. 2005b, 2008).          

 

Cumberland Plateau 

Study sites in Kentucky were located in the Cumberland Plateau physiographic region.  

This region is sometimes referred to as the eastern Kentucky coalfields due its abundant 

bituminous coal deposits.  The Cumberland Plateau is in the southern section of the 

Appalachian Plateau province and is characterized by deeply incised drainages, narrow 

ridges, and steep slopes.  The Cumberland Plateau has a humid subtropical climate and a 

mean annual precipitation of about 1200 mm yr-1.  According to Phillips (2010), who 

queried the USDA Official Soil Series Descriptions database, most soils in the Kentucky 

regions of the Cumberland Plateau are less than 2 m thick.  Within the Cumberland 

Plateau, the Indian Trails section of Berea College Forest (BCF) and the Koomer Ridge 

section of the Daniel Boone National Forest (DBNF) were sampled.  These areas were 

chosen due to their accessibility and their representativeness of forested areas of the 

western Cumberland Plateau in Kentucky that have been minimally disturbed by human 

activity such as mining and agriculture, though both have been logged before the early 

20th century. 
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Figure 2.2: Berea College Forest 

Berea College Forest (BCF) (37°29’21” north, 84°09’27” west) is a 3380 ha mixed 

mesophytic forest that is dominated by hickory (Carya sp.), oak (Quercus sp.), and pine 
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(Pinus sp.) overstory species (Figure 2.2).  Berea College Forest elevation ranges from 

250-500 m and is located at the intersection of three USGS physiographic regions: 

Bluegrass, Highland Rim, and Cumberland Plateau, though all sample sites were from the 

latter.  The geology of BCF, as reported in Thompson (2008), includes Pennsylvanian 

conglomerate and sandstone, Mississippian limestone, dolomitic limestone, Devonian 

shale, and other types of shale, siltstone, and sandstone (Gualtieri 1968; Weir 1971; 

Thomson 2008).  Specific sample sites for this study were limited to areas in, or along the 

boundary of, the Cumberland Plateau where sandstone and shale are dominant and 

horizontally bedded.  The specific formations in these areas included the Slade formation, 

Borden Formation, Livingston Conglomerate Member, and the Grundy Formation.  

Although karst terrain was avoided, there was some limestone outcropping on the valley 

sides of Berea College Forest as typical of the Pottsville escarpment.  Areas with 

sinkholes were specifically avoided.  Based on the USDA web soil survey 

(websoilsurvey.nrcs.usda.gov) the majority of Berea College Forest samples were 

Hapludalfs from the Rarden series or Dystrudepts from the Weikert series.  These are 

moderately to well-drained silt loams derived from shale and sandstone.  Along the 

ridgetops and upper slope locations, Hapludalfs from the Caneyville series and 

Argiudolls from the Woolper series are present.  These series have associations with 

limestone.  Of these two series, the Caneyville series is most associated with limestone 

and extra caution was taken in these areas in an attempt to avoid karst influences.       

 

Daniel Boone National Forest is an 8,500 km2 mixed mesophytic forest.  Koomer Ridge 

(37°47’20” north, 83°36’54” west) is located in the cliff section of the Northern 

Cumberland Plateau ecoregion where the overstory is dominated by red maple (Acer 

rubrum), oak (Quercus sp.), and pine (Pinus sp.) species (Washburn and Arthur 2003).  

In the Koomer Ridge area the underlying bedrock is horizontally oriented and composed 

primarily of sandstone, shale, limestone, and siltstone (Hinrichs 1978).  Specifically, 

geology in this study site includes the Corbin sandstone member of the Lee Formation of 

the Breathitt Group and the Pikeville formation of the Breathitt Group.  The Corbin 

Member of the Lee formation dates back to the Middle Pennsylvanian and is composed 

of relatively friable conglomerate, conglomeritic, and quartz sandstone.  The Pikeville  
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Figure 2.3. Daniel Boone National Forest 
 
Formation includes shale, siltstone, and coal and dates back to the lower Pennsylvanian.  

Significant interbedding exists at the contact between these two formations (Rice 1986).  
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Sites were limited to areas underlain by shale and/or sandstone.  Based on the USDA web 

soil survey soils in the sample locations for Koomer Ridge are from the Gilpin-Shelocta 

complex and the Alticrest-Ramsey-Rock outcrop complex.  These are well drained 

Hapludults and Dystrudepts derived from shale and/or sandstone. 

 

THEORETICAL BACKGROUND 

This section will introduce concepts pertinent to interpreting and discussing the results of 

each research question.  First, the concepts of equilibrium and nonequilibrium, with 

specific emphasis on soil thickness, will be presented.  Second, a discussion on the 

importance of scale will be presented, along with a description of how it issues of scale 

will be addressed in this research.   

     

Equilibrium Concepts and Soil Thickness 

Soil thickness, and more generally landscapes and landforms, can be characterized as 

being in a state of equilibrium, disequilibrium, or nonequilibrium.  These concepts 

provide systems for geomorphologists to analyze landscapes and landforms through time.  

Renwick (1992), who cited Howard (1982, 1988), defined equilibrium as a constant 

relationship between input and output or form, toward which a landform tends or 

fluctuates through time.  With the exception of unstable equilibrium, equilibrium implies 

some sort of balance as well as the maintenance of that balance (Inkpen 2005).  

Essentially, equilibrium implies both a condition for a system and an ability of a system 

to maintain that condition.  Dynamic equilibrium exists when an annual average input is 

changing through time slowly enough for the system to adjust the condition.  This is 

sometimes referred to as quasi-equilibrium because of the tendency towards a steady-

state with a trending mean (Thomas and Goudie 2000).  Dynamic equilibrium has also 

been described as a gradual shift in response to longer-term landscape level trends (see 

Renwick 1992).  Disequilibrium is used to describe landforms that tend towards 

equilibrium but have not had time to reach this condition (Inkpen 2005; Renwick 1992).   

 

According to Phillips (1992), equilibrium implies that a given set of processes and/or 

environmental controls will produce, or result in a tendency toward, a particular 
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landscape response.  Equilibrium in geomorphology is most commonly based on the 

concept of steady-state, which results in a balance between force and resistance.  Under 

the equilibrium worldview, landforms and geomorphic systems move toward a steady-

state, which are stable and maintain themselves through convergent evolution (Phillips, 

2007).  Phillips et al. (2005b) stated that under similar lithology, climate, vegetation, 

topography, and history, a soil system under equilibrium should have minimally variable 

thickness.  Self-regulating adjustments, through negative feedbacks, were thought to 

control soil thickness and help the system return to a steady-state equilibrium (Chorley 

and Kennedy 1971).   

 

The soil production function is a conceptual model for the formation of soil over time 

through biological, chemical, and physical rock weathering and the transport of soil 

through erosional processes.  The model is based on a reduction of weathering rate with 

thickening soil (and vice-versa), which maintains an eventual steady-state.  This model 

suggests that the rate of bedrock weathering (de/dt) can be represented as an exponential 

decline with soil thickness:  

 

de/dt = P0 exp [-kh]                                                                                         (Equation 

2.2) 

 

where h (m) is soil thickness, P0 (mm/year) is the potential weathering rate of bedrock, 

and k (m-1) is an empirical constant.  Soil thickness is increased through the 

weathering/breakdown of parent material.  According to Minasny and McBratney (1999), 

temperature is the most important factor in the mechanical breakdown of rock.  It affects 

weathering indirectly through processes such as freezing-thawing and also controls 

chemical weathering.  Soil depth is decreased by the loss of soil through erosion 

processes, a product of elevation.  The first impact of elevation on soil production is 

slope gradient.  Slope gradient is directly proportional to the rate of erosion (Minasny and 

McBratney 1999).  The second impact of elevation on soil erosion is through profile 

curvature, which can increase or decrease the rate of sediment flux (Minasny and 

McBratney 1999).   
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The origin of the soil production function dates back to 1877, when G.K. Gilbert (1877) 

wrote about the dependence of soil production on soil depth, and recognized the 

relationships between soil production, soil depth, soil transport, and slope (Humphreys 

and Wilkinson 2007).  Humphreys and Wilkinson (2007) believed that Gilbert was 

suggesting that the rate at which bedrock is converted to soil reaches a maximum under 

an optimal soil depth that facilitates contact between bedrock and water such that freeze-

thaw and weathering are maximized.  However, further development of this idea did not 

appear again until 1891 when Nathaniel Shaler discussed soil transport and weathering in 

pedogenesis (Humphreys and Wilkinson, 2007).  Other geoscientists that picked up on 

this idea were George Merrill (1906), who considered soil depth as an important factor in 

weathering, and W. M. Davis (1899), who acknowledged that soil production was 

inversely related to soil depth and that weathering is key (Humphreys and Wilkinson 

2007).  Quantitative research on soil production did not occur until the 1960’s when 

multiple scientists began measuring and modeling soil formation processes.  One of the 

key studies that emerged from this period was Carson and Kirkby (1972), who 

graphically represented Gilbert’s soil production function through the widely accepted 

“humped” function (Humphreys and Wilkinson 2007).  As mentioned previously, 

freezing-thawing and chemical processes are important factors in soil production.  When 

regolith cover is limited, the water essential to both processes is unavailable and soil 

production stalls.  The rate of soil production rapidly increases as regolith depth increases 

until a maximum is reached.  At depths beyond this point, soil production is self-limiting 

as thicker soil shields the underlying bedrock from weathering (Humphreys and 

Wilkinson 2007).  

 

Minasny and McBratney (1999) focused on quantifying the soil production function 

through mechanistic modeling.  Their model quantitatively represented soil thickness as a 

function of weathering rate and soil diffusivity (slope-dependent downslope soil 

movement).  Weathering rate parameters were produced using an exponential decay 

function similar to eq. 2.2.  Soil diffusivity was derived from existing soil erosion models 

developed by various researchers.  Simulation was run on a hypothetical valley/hill 
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landscape more than 80,000 times, with a 500 year time-step.  Simulation results 

indicated that over time soil thickness would reach a steady-state, where weathering and 

erosion are equal and soil depth is constant.  Heimsath et al. (2000) examined the 

relationship between soil production and soil thickness on slopes associated with a 

retreating escarpment underlain by granite and granodiorite located in the Nunnock River 

basin, southeastern Australia.  They calculated soil production rates by examining 

cosmogenic nuclide (10Be and 26Al) concentrations in soil minerals collected at the soil-

bedrock interface.  They also tested the assumption of steady-state soil thickness by 

comparing these results with cosmogenic nuclide analysis of nearby tors; portions of the 

bedrock that rise abruptly above the soil surface.  In agreement with Minasny and 

McBratney (1999), they interpreted their results as confirming the notion of steady-state 

soil thickness. 

 

This view has since been disputed through nonequilibrium concepts.  Nonequilibrium 

contrasts with traditional equilibrium while still recognizing the presence of steady-state 

equilibria, the difference being that equilibrium is not necessarily more common or 

important that nonequilibrium.  Nonequilibrium concepts arose out of nonlinear 

dynamical systems approaches.  Within the nonequilibrium worldview multiple possible 

equilibrium states can exist for geomorphic systems, equilibria may be unstable or stable, 

geomorphic systems are overwhelmingly nonlinear, and landscape evolution may be 

divergent or convergent (Phillips 2007).  Nonequilibrium systems are inherently 

dominated by frequent disturbances and/or dynamical instability and do not develop a 

steady-state condition (Phillips et al. 2005b).  Nonequilibrium describes landforms that 

do not tend toward a steady-state, even during long periods of environmental stability 

(Renwick 1992).  This could either be the result of thresholds at high-magnitude/low-

frequency levels, positive feedbacks, or deterministic chaos (Phillips 1992, Renwick 

1992, Phillips 1999a, Phillips et al. 2005b, Phillips 2006).   

 

With respect to soil thickness, steady-state implies that that over sites of consistent parent 

material small enough so that regional climate and the general biotic community are 

constant, soil thickness is “tuned” to topography.  Thus, under these conditions, soil 
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thickness not closely related to topography indicates nonequilibrium, as found for the 

Cumberland Plateau in Kentucky by Boettcher and Kalisz (1990), for the Ouachita 

Mountains by Phillips et al. (2005b) and elsewhere by, e.g., Zinke (1962), Yair (1990), 

Twidale (1991), Stolt et al. (1993), Wright (1996), Migon (1997), Phillips (1997a; 2001) 

Tromp van-Meerwald and McDonnell (2006), Migon and Latocha (2008) and Delrue et 

al. (2009).  

 

Phillips (2010) argued that deep weathering, regolith stripping, inherited regolith 

features, spatial patterns of depth, and nonlinear complexity in weathering-erosion 

feedbacks imply that steady-state soil thickness is not a normative condition for soil, 

regolith, or weathering profile evolution.  Phillips (2010) demonstrated deep weathering 

using a simple ratio of soil thickness (S) to weathering profile thickness (WP) in the 

Cumberland Plateau.  In his study weathering profile thickness was considered the length 

from the surface extending to an R-horizon.  The thickness of the soil was considered the 

length from the surface to a C-horizon with relatively low rock fragment content and no 

unweathered bedrock material.  Between soil and the R-horizon, was the non-soil 

regolith, which included Cr horizons, and C-horizons with high rock fragment contents, 

which included unweathered rock.  The mean S/WP for soils derived from shales was 

0.72 while the mean S/WP for soils derived from sandstone was 0.87.  A value 1.0 would 

indicate steady-state soil thickness.  This research will examine steady-state soil thickness 

by analyzing local patterns of soil depth in generally homogenous areas.  If the pattern of 

soil thickness is both spatially variable and not closely related to topography, then soil 

depth will be considered nonequilibrium.       

 

A threshold is defined as the critical condition at which a landform (or system) changes 

(Goudie 2004).  According to Thomas and Goudie (2000), this concept is closely bound 

to the view that a landform is a system or part of a system in which there is normally a 

balance between morphology and processes involved.  Thresholds are crossed as the 

result of extrinsic or intrinsic changes.  That is, the change can be the result of an external 

variable (extrinsic) or the result of an internal variable (intrinsic), respectively (Charlton 

2007; Schumm 1979).  An intrinsic threshold implies that changes can take place in the 
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absence of an external variable (Thomas and Goudie 2000).  Internal variations that 

develop over time “prime” the system, which in turn makes the system sensitive to abrupt 

changes.  The example used in Thomas and Goudie (2000) is that of a surging glacier.  

The accumulation of snow and ice to a critical level leads to a sudden transition to a fast 

mode of flow.  This leads to the lowering of the ice surface to a point where the flow is 

once again slowed.  Another example is when a relatively minor rainfall triggers a 

landslide (Charlton 2007; Schumm 1979).  An example of more relevant to pedology and 

soil geomorphology would be the humped function.  At low soil depth, the soil 

production rate increases rapidly.  As soil depth continues to increase, a threshold is 

crossed where the rate of soil production decreases as soil depth increases.  

 

Phillips (2014) reviewed convergence and divergence theory in geomorphology.  

Convergence results in increasing isotropy, decreasing amplitudes of variations, and 

progression towards spatial uniformity.  An example of convergence presented by 

Phillips (2014) relevant to this dissertation research was the smoothing of rough, irregular 

rock surfaces by weathering processes.  On the other hand, divergence results in 

decreasing isotropy, increased amplitudes of variations, and increasing spatial variability.  

An example of divergence presented by Phillips (2014) is the diversification of soils and 

regoliths over time.  The formation of soil can be convergent, where minor initial 

variations or effects of small disturbances are reduced or obscured, or it can be divergent, 

where minor initial variations and disturbance effects can be exaggerated (Phillips and 

Marion 2005).  Phillips and Marion (2005) suggested that instability and chaos leads to 

divergent soil variability, whereby the impacts of biomechanical weathering by trees 

persist and become exaggerated over time.  

 

Phillips et al. (2005b) stated that “Untangling the relative importance of various 

processes of deepening, up-building, and removals may allow the interpretation of 

regolith thickness variations in terms of the interacting geomorphic, pedologic, and 

biological processes involved”.  They examined these interacting processes in the 

Ouachita Mountains and suggested that regolith thickness in the Ouachita Mountains is in 

a state of nonequilibrium.  Their assumption was that if regolith thickness was in 
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equilibrium then settings with relatively uniform topography and geomorphology should 

have a predictable relationship with elevation, slope gradient, and/or slope curvature 

(Phillips et al. (2005b).  A similar approach is taken in this study, using sites small 

enough so that the underlying geologic formations, general geomorphic setting, climate, 

and vegetation community are constant, so that only local topographic variations and 

local factors such as tree effects could conceivably account for spatial variations.  

 

Spatial Variability of Soil  

Soil and soil properties vary in space and time and are influenced by different 

combinations of soil-forming factors acting through space and time.  Soil spatial 

variability in this research focuses on soil depth or thickness and ignores soil 

characteristics such as pH, organic matter, and carbon.  The latter soil characteristics are 

generally fast-reacting and transient, and arguably do not offer as much insight into 

landscape evolution and pedologic memory as geomorphic properties do.  According to 

Lin et al. (2005) soil variability is a function of five-space-time factors including, spatial 

extent or area size, spatial resolution or map scale, spatial location and physiographic 

region, specific soil properties or processes, and time.  Scale plays an important role in 

evaluating spatial variability and will be discussed further in the next section.  Lin et al. 

(2005) found that soil spatial variability is a function of map scale, spatial location, and 

specific soil property.  This research is concerned about soil variability over small areas, 

which suggests a potential role for the effects of individual trees.  Phillips and Marion 

(2005) pursued this topic in the Ouachita Mountains, Arkansas and found that the 

diversity of soils in the Ouachita Mountains was high and that soil series varied with 

respect to geomorphological properties.  This research is also concerned with how this 

localized variability is partitioned over larger scales.  Lin et al. (2005) pursued this topic 

in the Backswamp Watershed in South Carolina and found that the majority of soil 

variability for A-horizon thickness, depth to calcium carbonate, and surface pH values 

were best explained at the local scale.  

 

Because soil is variable over space and time, sampling at a finite number of places in 

space and time provides an incomplete picture.  Lapses in this picture, manifested as gaps 
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between soil samples predictions about the future, can be remedied via modelling 

approaches.  This was the central theme in Heuvelink and Webster (2001), which 

discussed this topic in detail and reviewed different modelling approaches that could be 

implemented in different scenarios.  They mentioned two principal approaches to 

representing spatial variability.  The first approach is traditional soil mapping and 

classification.  Soil mapping divides soils into discrete classes based on their physical 

properties at a predetermined scale.  Soil maps are created using information from soil 

surveying.  Typical soil surveying is based on aerial photo interpretation and collated 

information on the soil as it relates to landform, geology, vegetation, and land use (Lin et 

al 2005; Schaetzl and Anderson 2005).  From this, field observations are conducted and 

areas are classified based on formal knowledge and intuition (Lin et al 2005; Schaetzl and 

Anderson 2005).  Phillips and Marion (2005) classified soils in the Ouachita Mountains 

and supported it as a viable evaluation technique of soil spatial variability based on three 

factors.  They argued that soil classification is useful because it integrates the effects of 

many soil properties, is a rule-based approach that distinguishes similar soils from 

dissimilar soils, and has been frequently used with great success (Phillips and Marion 

2005).  

 

The second principal approach to representing soil spatial variability mentioned in 

Heuvelink and Webster (2001) envisions soil as a suite of continuous variables and seeks 

to describe how they vary.  This is more aligned with the approach utilized in this 

research, focused specifically on soil thickness.  Because it is a continuous variable it can 

be modeled using traditional statistical methods, making it a convenient object of 

analysis.  As will be discussed in later chapters, soil thickness measured and defined in 

different scenarios to compare its variability between two physiographic regions, to 

evaluate the biomechanical effects of trees on its spatial variability, and to examine the 

controls of its spatial variability across scales.    

 

Scale Concepts and Biogeomorphology 

Scale issues have been recognized as a central concern to environmental and earth 

science disciplines.  Schneider (2001) noted a sharp rise in scale considerations occurred 
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in the 1980’s.  This coincided with the rapid growth of the sub-discipline of landscape 

ecology (Turner 2005), which deals extensively with the issues of scale in geographic 

landscapes.  Schneider (2001) suggested that growth in scale considerations was related 

to the recognition of the “problem of scale in ecology”.  The “problem of scale in 

ecology” consists of three components: (1) problems in ecology exist at large temporal 

and spatial scales, which include large ecosystems, (2) most variables and rates can only 

be measured in small study sites over short periods of time, and (3) patterns identified at 

small scale studies do not scale-up to large scales in a linear fashion, if at all (Schneider 

2001).  Ecologists have long understood that generalizations and conclusions made at one 

scale do not necessarily hold true at other scales (Haggett et al. 1965, Schneider 2001).  

This implies that as scale changes, the questions that can be asked change, as well as the 

answers that can be obtained.  

 

The issue of scale is also a concern in the field of geomorphology and has been for quite 

some time.  Schumm and Lichty (1965) suggested that geomorphic variables dependent 

at one time scale may not be dependent at other times scales.  McMaster and Sheppard 

(2004) reviewed the concept of scale in geography.  Related to geomorphology, they 

reviewed Phillips (1997b; 1999b) who argued that research on scale in earth science 

addresses four kinds of issues.  The first issue was to identify and measure the range of 

scales of a particular process (Phillips 1997b; 1999b; McMaster and Sheppard 2004).  

The second issue was to reconcile the scales of processes with those of observation and 

measurement (Phillips 1997b; 1999b; McMaster and Sheppard 2004).  The third issue 

was to address ranges of scale across which relationships are constant or where down- or 

up-scaling are appropriate (Phillips 1997b; 1999; McMaster and Sheppard 2004).  The 

fourth issue of scale was related to operational problems of scale linkage, where 

relationships may vary across multiple scales (Phillips 1997b; 1999b; McMaster and 

Sheppard 2004).  McMaster and Sheppard (2004) argue that key take away from this list 

is that there are multiple spatial and temporal scales to consider.    

  

Prior to the development of this list, Phillips (1995) discussed the “problems of scale” in 

biogeomorphology and landscape evolution and addressed the scale linkage problem.  
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Vegetation change and landform change operate on disparate temporal scales, which 

create challenges for investigating their interactions.  Phillips (1995) proposed four 

methods for handling this scale linkage problem.  First, he proposed using a landscape 

sensitivity analysis to compare landform or ecosystem relaxation time with the recurrence 

interval of geomorphic or vegetative disturbances.  Second, he developed the information 

criterion approach, which was based on the ratio of the most rapid vegetation changes 

and slowest geomorphic responses.  Third, he proposed the abstracted earth surface 

systems model where the rates of geomorphic and vegetation responses were estimated.  

If the rates were more than an order of magnitude different, based on this approach the 

geomorphic and vegetation responses could be treated independently.  Fourth, he 

suggested comparing relaxation times and durations of endogenous forcings.  To address 

scale linkage issues in this research, hierarchy theory and methods will be adopted.   

 

As Levin (1992) suggested, a single phenomenon can actually be observed at a range of 

spatial and temporal scales.  Hierarchy theory conceptualizes this notion of variable scale 

interactions by defining isolated levels of organization that each operate at distinct time 

and space scales (Pachepsky et al. 2003; Phillips 2004).  O’Neill et al. (1989) discussed 

scale within a hierarchy theory framework.  Their argument is rooted in the assumption 

that all biological systems are hierarchically structured.  Being hierarchically structured 

implies that at a given level of resolution, a biological system is composed of interacting 

components, and is itself a component of a larger system (O'Neill et al. 1989).  A 

hierarchical framework removes some of the “problems of scale” by including multiple 

scales in analysis.  

 

Delcourt and Delcourt (1988) provided an early example of a hierarchical framework in 

research that could be considered biogeomorphic in nature.  By using paleoecological 

methods combined with geomorphic data, paleoethnobiological data, historic records, and 

shorter-term ecological data, they were able to reconstruct past landscapes and their 

changes through the Quaternary period (Delcourt and Delcourt 1988).  This hierarchical 

multi-spatiotemporal scale project used data from multiple case studies, from many 

disciplines, to understand Quaternary environmental changes in the southern 
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Appalachians.  They examined major biota shifts during the late Pleistocene and early 

Holocene periods of the Quaternary period.  Through this analysis they found that 

quaternary time scales influenced natural landforms slowly, while human cultural 

evolution has transformed the landscape more profoundly, on a temporal scale of 5,000 

years (Delcourt and Delcourt 1988).   

 

de Boer (1992) reviewed hierarchies and spatial scale in geomorphology.  He identified 

four characteristics of scale linkage in geomorphology that are still relevant today.  First 

he found a relationship between catastrophic events and hierarchical level.  Second, he 

stated that differences between the temporal patterns of process-oriented inputs and 

outputs increases with hierarchical level.  Third, he identified that nonlinear processes 

can occur at the same hierarchical level.  The fourth point he made was “differences 

between geomorphic systems at the same level are controlled by variables varying over 

distances equal to or smaller than the distance between the system, but equal to or larger 

than the spatial dimensions of the systems”.  

 

In many cases the identification of the appropriate scale involves identifying which 

variables explain changes in the phenomena under observation.  In soil science, the 

patterns identified in a landscape and the interpretations of those patterns are determined 

by the scale at which they are viewed (Hupy et al 2004).  Turkington and Paradise (2005) 

discussed scale issues relative to sandstone weathering and identified seven contributing 

factors in durability studies.  These were variability of external conditions, heterogeneity 

of internal conditions, inheritance effect, inconsistent response, episodicity of processes 

and response, singularity, and inherent complexity (Turkington and Paradise 2005).  

Phillips (2007) identified these same factors as having applications to geomorphology 

more generally.  Identifying characteristic scales involves a deep understanding of the 

forcing agents and constraints of the phenomena under question.  In many cases it might 

be beneficial to consider a hierarchical framework, which provides information about 

constraints placed on the phenomena from forcing agents at different scales.  Figuring out 

the scales at which forcing agents interact with phenomena is critical for applying results 

from one scale to another.  For this reason, a hierarchical (or nested) sample design was 
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used in this dissertation to evaluate Research Question 3.  In addition, multi-scale 

covariates were used in modeling procedures to answer Research Question 2.   

 

The hierarchical levels of scale considered in this research were termed subplot, plot, and 

stand.  These scales generally follow the scales used by Ulanova (2000).  The subplot 

level, which is 10 m2 in this study, was meant to capture the variance of soil depth due to 

individual tree effects.  The goal of selecting this scale boundary was to represent the 

influence of single trees capable of interacting with the bedrock interface in shallow soil.  

This was based on the concepts of single tree influence circles (Boettcher and Kalisz 

1990) and soil influence area (Phillips and Marion 2006).  The single tree influence 

concept suggests that soil properties vary predictably in relation to distance from the bole 

and edge of the tree crown.  The soil influence area concept estimates the area of 

influence of a single tree on soil physical properties as a circle whose diameter is twice 

the tree diameter at breast height.  Ulanova (2000) considered this the “fallen tree 

ecosystem” scale of disturbance and associated it with pit-and-mound and log creation.  

The plot scale, which is 1.0 ha, was meant to capture the variance in soil depth due to 

forcing agents associated with a small number of trees.  This scale generally coincided 

with the forest community scale as described by Ulanova (2000).  This level of 

organization likely captured environmental factors related to species competition, 

resource availability, and microtopographical variability.  In this research, the plot scale 

variables slope shape, basal area, and trees per hectare were used in a multi-scale 

modeling procedure to answer Research Question 2.  Temporally, this organization level 

operates on longer time scales than the tree influence, but shorter time scales than the 

stand level.  The stand level, which is 10 ha, was intended to capture forcing agents that 

operate over longer time and space intervals.  This level of organization likely captured 

controls of soil depth other than single tree effects.  Ulanova (2000) associated a similar 

organization level with the phenomenon of catastrophic windthrow and secondary 

succession.  Variables that were referenced and/or measured at this scale included the 

topographic variables slope gradient, slope position, aspect, and elevation.  Additionally, 

environmental changes related to forest composition or successional changes were 

thought to have occurred at this organization level.   
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A nested sampling scheme can be used, along with analysis of variance methods, so that 

a limited number of study sites can be used while still representing a number of spatial 

scales.  Essentially, a nested sampling scheme can upscale data from a lower level of a 

hierarchical structure to higher levels.  Lin et al. (2005) demonstrated and stated that a 

hierarchical sampling design was a useful approach for assessing soil property variability 

at multiple scales.  For this research, soil depth variance at a lower scale, can be used to 

estimate soil depth variance at the next level in the hierarchy.  Therefore, a thorough 

sampling of depth to bedrock at the subplot level was all that was required to examine 

how the variance of soil depth was partitioned across spatial scales.  Using well 

established and accepted statistical techniques this data was then used to make informed 

estimates of soil depth variance at the plot and stand scales.  This research utilized nested 

ANOVA procedures, which have been an accepted statistical analysis in geography for 

nearly 50 years (Haggett et al. 1965; Phillips 1986; Lin et al. 2005).  By using a nested 

ANOVA procedure the contribution of each level of sampling hierarchy to the variance 

of soil depth was determined.  For example, if it was determined that the majority of soil 

depth variance is accounted for by the subplot level, then it can be reasoned that single 

tree processes are most important.  If it was determined that the majority of soil depth 

variance is accounted for by the stand level, then is can be reasoned that tree effects only 

have a local influence on soil depth variance.   

 

In addition to hierarchical scale procedures, the issue of upscaling can be resolved using 

theoretical and empirical evidence.  Underwood et al. (2005) identified three challenges 

of up-scaling in population biology: (1) increased abiotic and biotic heterogeneity as 

scale increases, (2) changes to species pools as spatial scale changes, and (3) behavioral 

changes that can occur as spatial scale changes.  They addressed each problem in a 

theoretical framework and provided examples of empirical analysis.  While the final two 

challenges identified in Underwood et al. (2005) were primarily biological, the first 

challenge related quite well to biogeomorphic research.  Melbourne and Chesson (2005) 

overcame this challenge by quantifying the degree of nonlinearity and spatial 
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heterogeneity at different scales.  They demonstrated how to scale up from a local-scale 

to a regional-scale using an integration of scale transition theory and field data.   

 

With any scale oriented research an understanding of “domains of scale” is important.  

Domains of scale exist when phenomena exhibit discontinuities in scale-dependence 

(Wiens 1989).  Domains are separated by transitions from dominance by one set of 

factors to dominance by a different set of factors.  In this research a hierarchical scheme 

was used as discussed above.  As explained previously, a nested sampling strategy was 

designed to allow for the measurement of variance of a particle phenomenon at different 

scales.  If domains of scale exist in the system, then the results of the nested ANOVA 

should reflect this.  If variance is convincingly explained by one level of organization, 

and thus one scale, then it is likely that domains of scale exist in the system.  If variance 

is equally distributed across levels of organization, then it is possible that scale-

dependence of soil depth is continuous and generalizations will be difficult to make 

(Wiens 1989).   

 

Related to the domains of scale concept is the notion of the proper choice of scale.  Kim 

et al. (2012) explained that an arbitrary choice of scale could greatly hinder the resultant 

insights into biogeomorphological relationships.  However, it is often difficult to choose 

an appropriate scale at which to analyze a particular pattern or process.  It some cases, 

choosing different scales can lead to different results.  Turner et al. (2001) used the 

example of oak seedling mortality.  At local scales, an increase in precipitation led to 

increased mortality, while at regional scales the relationship between oak seedling 

mortality and precipitation was negative (Neilson and Wullstein 1983, Turner et al. 

2001).  According to Turner et al. (2001) the best approach to choosing the correct choice 

of scale might not be to choose one scale, but rather incorporate multiple scales in 

analysis.  Further, multiple regression using variables from multiple scales has confirmed 

that there is no single appropriate scale at which researchers can expect to analyze their 

data (Pearson 1993, Turner et al. 2001).  This dissertation research avoided issues of 

domains of scale and scale choice by incorporating multiple regression analysis with 

multi-scale variables and by incorporating a hierarchical framework.  
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The spatial scale constraints of biomechanical effects of trees are more difficult to 

speculate, though presumably they would relate to tree size as represented by trunk 

diameter, rooting depth, and rooting area.  The hierarchical analysis of variance 

procedure proposed in the research has the potential to provide insight about which level 

of organization accounts for the most variance in soil depth.  The stand level of 

organization is thought to represent the scale at which factors such as topography or 

forest structure become dominant.  If results from the hierarchical analysis of variance 

procedure indicate that factors at this scale are dominant, this would suggest that factors 

that control slope position are most important and that biomechanical effects of trees is 

constrained within this hierarchy (that is, individual tree influences on soil depth are 

small compared to topographic controls).  If the tree influence level of organization is 

found to be dominant in this hierarchy, then considerations could be made to consider 

additional levels or organization.  In this system, single tree effects are thought to be the 

dominant process at the tree influence scale.  As spatial scale increases, it is likely that 

tree effects decrease.  So while tree rooting processes could contribute to soil depth 

variance at the plot scale, other forcing agents could play a more important role.   
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CHAPTER 3 

SOIL DEPTH VARIABILITY: STEEPLY DIPPING VS. FLAT-BEDDED 

PARENT MATERIAL 

METHODOLOGY 

As discussed earlier, the Ouachita Mountains and Cumberland Plateau have comparable 

climatic, geologic, biologic, and topographic conditions.  However, they differ quite 

greatly in their structural characteristics.  The sedimentary rocks in the Ouachita 

Mountains are strongly dipping and contorted and in many areas bedded near-vertical.  

The sedimentary rocks in the Cumberland Plateau are flat-bedded and presumably offer 

less opportunity for roots to penetrate bedrock, as bedding planes are not accessible to 

penetration from above.  Figure 3.1 shows a comparison of each situation.  To evaluate 

the role of this structural variation on the presence and extent of biomechanical 

weathering by trees the following methodology was employed. 

Figure 3.1: An example of the contrasting bedrock orientations of the Ouachita 
Mountains, on the left, and the Cumberland Plateau, on the right.  The yellow arrows 
indicate the bedding direction.   

Stump Pair Sampling 

Opportunistic sampling was conducted to collect depth to bedrock measurements within 

and adjacent to stump-holes in the Ouachita Mountains and Cumberland Plateau 

physiographic regions.  Partially rotted tree stumps provide an opportunity to sample soil 

depth at former tree locations without having to damage live trees.  The SRPIT 

conceptual model posits that the effects of trees are reciprocal due to generations of 
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growth (see Chapter 1).  This generational impact is discussed further in Chapter 4, but it 

is acknowledged here that the soil characteristics beneath a stump are not necessarily due 

to the tree that was last growing at that location, but also possibly due to previous trees 

occupying that same location.  For this reason, stump-holes were not excluded from 

sampling based on size.  The criteria for identifying a stump-hole and the general 

methodology of their measurement closely followed the procedure used in (Phillips and 

Marion 2006).  A stump hole was considered such only if there was evidence of an 

identifiable bark ring or the presence of decayed wood remnants around the edges of the 

depression.  A soil auger was used to drill a hole until lithic or paralithic contact 

(hereafter bedrock) was made within the stump-hole and at an adjacent location within 1 

m of the stump-hole on the same contour (Figure 3.2).  To reach bedrock, the auger was 

used until a point of refusal (lithic contact) or when three-dimensional fragments of 

weathered parent material could be identified from the extracted soil (paralithic contact).  

The 1.0 m radius was derived from the soil influence area concept, which estimates that 

the area of influence of a single tree on soil physical properties is as a circle whose 

diameter is twice the tree diameter at breast height (Phillips and Marion 2006).  The 

depth to bedrock was recorded for each pair (hereafter referred to as a stump-pair) using a 

metric folding ruler.  If bedrock could not be reached, then the depth to bedrock was 

recorded as greater than the maximum measurement and the data was omitted from 

comparative analysis.   

 

Stump-pairs were collected in the Cumberland Plateau and the Ouachita Mountains 

physiographic regions at locations described in Chapter 2.  Opportunistic sampling in the 

Cumberland Plateau began in 2012 and continued through the fall of 2013.  At the time 

of writing, 122 stump-pairs have been collected in the Cumberland Plateau with the help 

of many people, including undergraduate geography students at the University of 

Kentucky.  The Ouachita Mountains samples were collected over a larger timeframe.  

Phillips and colleagues began conducting soil geomorphology research in the Ouachita 

Mountains more than ten years ago (see Phillips 2008, 2009; Phillips and Lorz 2008; 

Phillips and Marion 2004, 2005, 2006; Phillips et al. 2005a, 2005b, 2008).  For this 

research, stump-pair data from Phillips (2008) was updated, which itself was updated 
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from Phillips and Marion (2006).  At the time of writing, 118 stump-pairs have been 

sampled in the Ouachita Mountains.   

Figure 3.2: Illustration of the sampling procedure in a theoretical stump pair.  The basic 
procedure uses a soil auger and folding ruler to measure the distance to bedrock contact 
beneath a stump hole, Stumpn, and the distance to bedrock beneath an adjacent non-
stump location, Adjn, that is located on the same contour within one meter.  

Variable Creation and Analysis 

The Ouachita Mountains data and the Cumberland Plateau data were treated as separate 

datasets for analysis.  For each stump-pair the following variables were derived:   

1. Stumpn = soil depth beneath stumps

2. Adjn = soil depth adjacent to stumps

3. Diffn = Stumpn - Adjn = difference between measurements at each stump pair

4. Ration = Stumpn ÷ Adjn = ratio of measurements at each stump pair

Where, n = i = Ouachita Mountains samples
j = Cumberland Plateau samples 
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To analyze the data within each physiographic region the mean, standard deviation, and 

variance was calculated for each variable.  To analyze the data between each 

physiographic region, and thus compare the role of structural variation, four null 

hypotheses were tested using unpaired t-tests to determine if the means of each 

corresponding variable were equal: 

 

H01: Stumpi is greater than Stumpj 

H02: Adji  is greater than Adjj  

H03: Diffi  is greater than Diffj  

H04: Ratioi  is greater than Ratioj  

 

Analysis of student’s t-tests were based on α ≤ 0.05 to determine statistically significant 

differences.  Based on the background information presented on the Ouachita Mountains 

soil system, one-tailed t-tests were used for this analysis.  F tests were conducted on the 

variance of each corresponding variable to determine the type of t-test to be calculated.  If 

the variances were equal, unpaired equal variance t-tests were performed in Microsoft 

Excel 2010.  If the variances were not equal, unpaired unequal variance t-tests were 

conducted. 

 

RESULTS 

The augering of stump-pairs in the Ouachita Mountains and Cumberland Plateau 

concluded in the fall of 2013 for the analysis presented in this dissertation.  Augering was 

found to be sufficient in accurately measuring lithic and paralithic contact in both 

environments.  Stumps located on trail embankments were used to ensure the 

methodology was sound.  At these locations, augering was conducted as normal, but as a 

secondary check, a mattock was used to clear material so that a profile view of the stump-

pair could be visually inspected.  The ability to confidently and accurately measure the 

soil depth using this methodology remains high.  Determining the bedrock type using 

only an auger was difficult, especially when a lithic contact was made.  Due to this, much 

of the data was recorded without confirming bedrock type in the field.  This was 
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especially difficult to discern in the Ouachita Mountains because of the high degree of 

interbedding between shale and sandstone.  As a result, bedrock type was excluded as an 

independent parameter for Research Question 1 and Research Question 2.     

  

Results are shown in Table 3.1.  In the Ouachita Mountains, soil depth under stumps had 

a mean of 69.54 cm (standard deviation (σ) = 28.19), which was 24.11 cm greater than 

mean depth of the paired adjacent samples.  Ratioi had a mean value of 1.75 (σ = 0.99), 

meaning that on average the depth of a stump-hole in the Ouachita Mountains was 1.75 

times as deep as the depth at the adjacent location.  In the Cumberland Plateau, mean soil 

depth under the stumps was 60.94 cm (σ = 28.95), which was 18.51 cm greater than the 

adjacent samples.  Ratioj had a mean value of 1.67 (σ = 0.80).  

 
Table 3.1: Comparison of paired-soil sample statistics for the Ouachita Mountains and 
the Cumberland Plateau physiographic regions. 
  Ouachita Mountains Cumberland Plateau  
Number of sample pairs 118 122 
Pairs with stump > adjacent 102 (86.4%) 102 (83.6%) 
Stumpn     
     Mean (cm) 69.54 60.94 
     Standard deviation 28.19 28.95 
     Variance 794.51 838.12 
Adjn     
     Mean (cm) 45.43 42.43 
     Standard deviation 19.75 24.75 
     Variance 390.01 612.40 
Diffn     
     Mean (cm) 24.11 18.52 
     Standard deviation 27.29 20.14 
     Variance 744.83 405.52 
Ration     
     Mean (cm) 1.75 1.67 
     Standard deviation 0.99 0.80 
     Variance 0.98 0.63 

 

F-tests were conducted to determine if the corresponding variables in each physiographic 

region were equal.  This was then used to determine what type of t-test would be used.  

Results of this analysis are recorded in Table 3.2.  The variances related to Stumpn were 
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statistically equal, so a one-tailed unpaired equal variance t-test was conducted.  Results 

of this t-test indicate that soil depth beneath stumps in the Ouachita Mountains is deeper, 

on average, than in the Cumberland Plateau  Therefore, H01  wasn’t rejected.  F-tests for 

the other 3 variable pairs indicated that the variances were not equal so one-tailed 

unpaired unequal variance t-tests were required.  Based on a p-value of 0.04 (see Table 

3.3) H03 wasn’t rejected either.  However,  H02 and H04 were rejected meaning that the 

adjacent depths and ratio of stump depth to adjacent depth weren’t greater in the Ouachita 

Mountains compared to the Cumberland Plateau    

 

Table 3.2: F-test results for soil depth variables Stumpn, Adjn, Diffn, and Ration. 
  Ouachita Mountains Cumberland Plateau p-value 

variance, Stumpn 794.51 838.12 0.39 
variance, Adjn 390.01 612.4 <0.01 
variance, Diffn 744.83 405.52 <0.01 
variance, Ration 0.98 0.63 <0.01 

 

Table 3.3: t-test results for soil depth variables Stumpn, Adjn, Diffn, and Ration. 
  Ouachita Mountains  Cumberland Plateau  p-value 

mean, Stumpn 69.54 .60.94 *0.01 
mean, Adjn 45.43 42.43 **0.15 
mean, Diffn 24.11 18.52 **0.04 
mean, Ration 1.75 1.67 **0.23 

* one-tailed unpaired equal variance t-test 
** one-tailed unpaired unequal variance t-test 
 

DISCUSSION 

The primary goal of this research question was to determine if the systematically deeper 

soil associated with sites recently occupied by trees observed in the Ouachita Mountains, 

was observable in the Cumberland Plateau, where lithological variation is much less 

extreme.  This analysis was based on the assumption that soil depth differences between 

stumps and adjacent sites were due to tree effects.   

 

Surprisingly, the descriptive statistics from each physiographic region were remarkably 

close.  So close in fact, that when evaluated, it could not be concluded that the adjacent 

soil depths (Adjn), difference between stump-pair depths (Diffn), or ratio of stump-pair 
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depths (Ration) were statistically different between each physiographic region.  It would 

be interesting to measure ratio of stump-pairs from additional physiographic regions to 

determine if this relationship is universal, or if the value of this ratio in the Ouachita 

Mountains and the Cumberland Plateau were coincidently equal.  The only significant 

difference was that depth beneath stumps in the Ouachita Mountains was greater than in 

the Cumberland Plateau.  Based on the results of this analysis it is evident that trees 

effects in the Cumberland Plateau are similar to the Ouachita Mountains.  So while soil 

beneath tree stumps in the Ouachita Mountains is deeper than the soil beneath tree stumps 

in the Cumberland Plateau, the effects of biomechanical weathering by trees still result in 

variable soil thickness.  In other words, the soil deepening effects of biomechanical 

weathering by trees are not limited to areas with strongly dipping, contorted, near 

vertical, extensively faulted bedrock.  This is evidence that the variability of soil depth in 

the Cumberland Plateau is likely influenced by positive feedbacks from tree root growth.   

 

One possible explanation for this difference in depth beneath stumps is related to 

vegetation differences between the two physiographic regions.  Tree uprooting literature 

shows species composition is an important factor in uprooting rates (Brewer and Merritt 

1978; Osterkamp et al. 2006; Whitney 1986).  Gallaway et al. (2009) reported that the 

volume of displaced soil during an uprooting event is likely influenced by tree species 

and age, health of tree at time of fall, soil texture, soil moisture, and rooting architecture, 

structure, and depth.  Species-specific differences in rooting architecture and rooting 

depth are likely influential in the biomechanical weathering by trees.  Roering et al. 

(2010) showed that differences in root density impacted biomechanical weathering.  If 

there are species-specific differences in how roots interact with bedrock, then differences 

in species composition could result in differences in soil thickness variability.  

Unfortunately, identifying trees species based on rotted stumps is not possible in the 

field.  Even if it could be determined, it would be impossible, based on current research, 

to know exactly which species have occupied, and possibly interacted with bedrock, at 

that location in the past.  This is especially true for ecosystems as biologically rich as 

temperate forests.  Root architecture typically falls within one of the following patterns; 

plate-like, herringbone, tap, or heart-like patterns (Dupuy et al. 2007).  Differences in 
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these rooting patterns could have significant impacts on how tree species interact with the 

bedrock surface, how well they grow in shallow soils, and how deep their roots grow.  

Under normal conditions, the tree species of a stump is immeasurable based on field 

observation alone and detailed species data was not recorded for stump-pairs or stump-

pair sites.  Future research should thoroughly detail the current species composition at the 

plot level.  For this research, general observation and published research will help discern 

differences between the two physiographic regions.   

 

Generally, the Ouachita Mountains have an abundance of coniferous species, particularly 

shortleaf pine (Pinus echinata), that are not dominant in the Cumberland Plateau.  

Coniferous species typically have a taproot style architecture, which would likely root 

deeper than differing architectures, all other things being equal.  Many of the hardwood 

species in the Ouachita Mountains also exhibit taproot style architecture including 

blackjack oak (Quercus marilandica), post oak (Quercus stellate), and Mockernut 

hickory (Carya tomentosa), which were the most common hardwood species at many of 

the Ouachita Mountains stump-pair sites (Phillips and Marion 2005).  This differs from 

the Cumberland Plateau, where rooting architecture is more diverse.  Washburn and 

Arthur (2003) described the overstory of the Koomer Ridge section of Daniel Boone 

National Forest as being dominated by chestnut oak (Quercus prinus), white oak 

(Quercus alba), scarlet oak (Quercus coccinea), and black oak (Quercus veluntina).  

Shortleaf Pine (Pinus echinata), pitch pine (Pinus rigida), and red maple (Acer rubrum) 

were also present in the overstory (Washburn and Arthur 2003).  Parrot et al. (2012) and 

Dillaway et al (2007) described the canopy of Berea College Forest as primarily mixed 

oak.  These descriptions are consistent with general observation of the Cumberland 

Plateau during soil sampling.  Chestnut oaks (Quercus prinus) were commonly observed 

along the ridgetop and upper slope positions in the Cumberland Plateau.  Chestnut oaks 

utilize a taproot, but also has an extensive lateral root system that extends more than five 

times the radius of the crown (Burns and Honkala 1990).  Other examples from the 

Cumberland plateau include red oak (Quercus rubra) and beech species (Fagus sp.) 

which have a heart-like rooting pattern that exhibits strong roots near the base of the tree 
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and dense rooting further away from the tree (Burns and Honkala 1990, Dupuy et al. 

2007).   

 

One of the main differences between the two physiographic regions is the rock content of 

the soil.  Based on observation, the Ouachita Mountains has higher rock content 

compared to the Cumberland Plateau on the surface and in the soil.  Perhaps the high 

rock content favors a taproot architecture where SRPIT processes are present.  Phillips 

and Marion (2004) showed that trees are preferentially established in nutrient rich, rock 

fragment poor locations and suggested that these types of sites are repeatedly occupied.  

In this area, a tree root growing vertically downward would be less likely to be impeded 

by rock fragments than a tree root growing laterally.  If high rock content prevents the 

growth of lateral roots then trees that develop a taproot would be better equipped to 

occupy the locations of former trees and contribute to the positive feedback explained by 

the SRPIT model.  In the Cumberland Plateau, lateral tree growth is not impeded by high 

rock content of the soil, which could promote more diverse root architectures.  Lateral 

root systems provide additional stability and anchorage to a tree without as much 

dependence on a taproot.  Stokes et al. (1996) suggested a positive relationship between 

root length and shear resistance of the soil, decreasing the likelihood of uprooting.  

    

A stronger reasoning for the differences observed in soil depth beneath stumps and 

adjacent samples between the Ouachita Mountains and the Cumberland Plateau is the 

difference in bedrock orientation.  The more steeply dipping interbedded sedimentary 

parent material common in the Ouachita Mountains likely provides easier root access to 

bedrock, and thus more biomechanical weathering and bedrock mining opportunities than 

the Cumberland Plateau.  The results of this research support this claim.  In the 

Cumberland Plateau, tree roots are plausibly taking advantage of joints and fissures in a 

horizontally oriented bedrock surface and due to this arrangement the tree roots are likely 

contacting a single bedrock type at a given depth.  For example, in sandstone layered on 

top of shale in a horizontal orientation, then tree roots occupying a joint in the sandstone 

must weather the sandstone before reaching the softer shale.  The results of this research 

suggest that this interaction still results in an uneven, nonequilibrium bedrock surface; 
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but not quite to the extent of the Ouachita Mountains.  Tree roots in the Ouachita 

Mountains are likely selectively weathering softer bedrock material within an interbedded 

system that includes harder material due to the vertical bedrock orientation observed in 

the Ouachita National Forest. 

 

Because bedrock orientation and type was consistent within the Kentucky study sites, this 

study also provides evidence that the positive feedback from biomechanical effects by 

trees leads to divergent development of soil thickness.  Phillips and Marion (2004) 

observed that soil was deeper beneath stump holes than at adjacent locations in the 

Ouachita Mountains, Arkansas.  In Phillips and Marion (2005) they found that 

biomechanical effects by trees and lithological variations were linked to spatial 

variability of soil depth in shallow forest soils.  They considered this evidence of 

divergent evolution of the soil system and suggested that future work be conducted to 

investigate the importance of geological variation in this process.  Because soil in the 

Cumberland Plateau is systematically deeper beneath trees in the absence of such unique 

lithological variation, lithological variation can be ruled out, suggested that this divergent 

condition is controlled primarily by the effects of individual trees.  While the role of 

lithological variation may not be the primary control of divergent soil development in 

these soil environments, such variations could help explain why the depth of soil beneath 

tree stumps in the Ouachita Mountains is deeper than in the Cumberland Plateau, even 

though the adjacent depths in each region are the same, presumably because the more 

common and vertically-oriented rock partings of the Arkansas sites facilitate root 

penetration of bedrock.  
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CHAPTER 4 

SOIL DEPTH IN THE CUMBERLAND PLATEAU 

 

METHODOLOGY 

Data Collection in the Cumberland Plateau 

In the last chapter (Chapter 3) stump-pair sampling was described for the Cumberland 

Plateau.  Of these 122 stump pairs, additional data was collected for 116 of them to 

answer research question 4.  Aspect, slope gradient, slope shape, slope position, and 

stump-hole diameter were also measured for each stump-pair.  Slope gradient was 

recorded using a clinometer to measure the gradient downslope of the stump-hole.  Slope 

shape was categorized as linear, concave, or convex based on field observation from the 

stump hole position.  Slope position was categorized as ridge top, upper slope, mid slope, 

lower slope, or valley bottom.  Aspect was recorded using an orienteering compass and 

categorized in eight directions: N, E, S, W, NE, NW, SE, and SW.  The stump-hole 

diameter was measured using a folding ruler where the trunk meets the ground.  

Additionally, basal area and trees per acre, measurements of tree density, were calculated 

based on point sampling procedures at each stump-pair location.   

 

Point sampling, also known as angle-count sampling, variable-plot sampling, or prism 

cruising, is a method of selecting trees to inventory based on their sze and distribution 

rather than on their frequency of occurrence.  This is accomplished using a wedge prism 

that subtends a fixed angle of view to select (and count) trees from a single point of 

reference based on distance and size (Avery and Burkhart 2001).  The sighting angle 

recommended for use in the eastern United States, and the one used in this research, was 

fixed at 104.18 min.  At this angle all trees located within a distance of 33 times their 

DBH will be included in the sample (Avery and Burkhart 2001).  Essentially, trees are 

selected based on the sighting angle used and their cross sectional areas.  Each tree 

counted in this way represents a basal area of 10 square feet per acre.  This is considered 

the basal area factor (BAF) for that angle (Avery and Burkhart 2001).  In other settings 

different sighting angles are more appropriate that have different BAF values.  An 
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estimate for the average basal area per acre was calculated using the following equation 

from Avery and Burkhart (2002). 

 

BA =  �𝑛
𝑖
� ∗ BAF                                                                                             (Equation 4.1) 

 

In this equation basal area (BA) is equal to the total number of trees tallied (n) divided by 

the number of points (i) multiplied by BAF.  To represent the conditions at each stump, 

the number of points (i) was set to one and the basal area per acre for each point was 

equal to the number of trees tallied multiplied by ten.   

 

Point sampling was also used to calculate trees per acre (TPA), which required the 

measurement of diameter at breast height (DBH) for each sighted tree.  Trees were then 

classified based on their DBH, in 2 in. increments, and a per-acre conversion factor (cf) 

was determined using Avery and Burkhart (2001): 

 

cf = BAF
0.005454 * DBH2                                                                                            (Equation 4.2) 

 

The conversion factor is used in the following equation for trees per acre for any given 

diameter class (TPAclass). 

 

TPAclass =  (𝑛) ∗ (cf)
𝑖

                                                                                         (Equation 4.3) 

       

Total TPA is the sum of TPA associated with each class.  To represent the conditions at 

each stump, the total number of points was constricted to one so TPA is essentially the 

sum of each tallied tree multiplied by its per-acre conversion factor.  Basal area and TPA 

were converted to metric units for analysis.  Basal area was converted to m2/ha, which is 

abbreviated as BAHA hereafter.  Trees per acre were converted to trees per hectare, 

which is abbreviation as TPHA hereafter.       
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Statistical Analysis 

To determine the relative importance of current organic and relief soil state factors on soil 

thickness, numerous multiple linear regression models were developed.  The dependent 

variables considered for this analysis included soil depth variables Stumpj, Adjj, Diffj, 

Ratioj, Comboj, and Avej.  The variable Comboj was created by combining the Stumpj 

measurements with the Adjj measurements under the assumption that soil samples from 

the same stump-pair were independent measurements of soil depth.  The variable Avej is 

the average of each stump-pair sample.  Prior to the development of statistical models the 

dependent variables were tested for spatial dependence using Moran’s I in ArcGIS 10.2.  

Spatial autocorrelation occurs when the values of variables sampled at neighboring 

locations are not independent from each other (Tobler 1970; Dormann et al. 2007).  

Spatial autocorrelation is almost always present in natural systems and can occur over a 

wide range of spatial and temporal scales (Fortin and Dale 2005).  Statistically, it violates 

the assumption of independently and identically distributed (i.i.d.) errors, which inflates 

Type I errors (Legendre 1993; Dormann et al. 2007).  Moran’s I is a statistical test of 

spatial autocorrelation that results in a value ranging from -1 to 1.  Negative values 

indicate negative spatial autocorrelation where -1 indicates perfect dispersion from 

randomness.  Positive values indicate positive spatial autocorrelation where +1 indicates 

perfect correlation.  A value of zero indicates a random spatial pattern and the absence of 

any spatial autocorrelation.  The independent variables considered for analysis included 

the categorical variables aspect, slope position, and slope shape (see, Table 4.1), and the 

continuous variables slope gradient, stump-hole diameter, basal area, and tree density.  

Each explanatory variable was evaluated in a correlation matrix to determine 

independence, where r ≥ 0.7 was considered dependent.  If any variables were found to 

be dependent they were considered for removal.   

 

Multiple linear regression modeling was used to analyze the unique effects between each 

dependent variable and all independent variables.  Unique effects describe the 

relationship between the dependent variable and one independent variable, holding all 

other independent variables fixed.  Multiple linear regression modeling uses least squares 

analysis to determine significance and direction of the relationship between the 
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dependent variable and each independent variable and is one of the most widely used 

tools in statistical analysis (Burt et al. 2009).  For this research a series of multiple linear 

regression models were developed for each dependent variable with the end goal to 

produce a full model and a best fit model that was significant based on a p-value (p) ≤ 

0.05 for each.  R2 values, which determine the amount of variance explained, were also 

used to evaluate each model.  All modeling was conducted in SAS 9.3. 

 

The first step was to produce a full Generalized Linear Model (GLM) with a multiple 

regression structure for each dependent variable.  The term full means that all 

independent variables were included in the model.  This included the categorical 

variables aspect, slope position, and slope shape (see Table 4.1) and the continuous 

variables slope percent, elevation, stump diameter, trees per ha, and basal area (see Table  

 

Table 4.1: List of categorical variables and a breakdown of their classes 
Variables Classes 
Aspect north (N) 
  northeast (NE) 
  East (E) 
  southeast (SE) 
  south (S) 
  southwest (SW) 
  west (W) 
  northwest (NW) 
slope position (slpos) Valley 
  lower slope 
  mid slope 
  upper slope 
  Ridgetop 
slope shape (slshp) Concave 
  Flat 
  Convex 

 

4.2).  Full models indicate how well all of the chosen variables combine to explain the 

variance in in the data.  As such, full models produce the largest R2 values and are useful 

in speculating the absence of additional variables.  For example, an R2 = 0.30 implies that 
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30% of variance is accounted for by the model terms.  This means that the remaining 

70% of variance may be accounted for by other, possibly immeasurable, factors.  The 

PROC GLM function was used for this step because it allows both categorical and 

continuous variables for linear regression.  In many cases, this would be sufficient for an 

analysis framed like Research Question 2.  This research took this a step further by 

limiting each model to only those variables that expressed significant relationships with 

the dependent variables.  The PROC GLMSELECT function was used for this.  This 

function utilizes a model selection criterion.  For this step, stepwise selection with an 

entry and exit p–value of 0.15 was selected as a conservative model structure.  The 

purpose of this step was to identify independent variables that expressed a significant 

relationship with the dependent variable using the well know stepwise selection.  

However, the GLMSELECT function is considered experimental by the SAS Corporation 

so it was not used as a standalone function.  Instead, the variables identified as having a 

significant relationship with the dependent variable were used as model terms in a best fit 

GLM model using the PROC GLM function once again.   

 
Table 4.2: List of continuous variables and their abbreviations 

Continuous Variables Abbreviations 
slope percent (%) Slope % 
elevation (m) elem 
stump diameter (cm) dia 
trees per ha TPHA 
basal area (m2/ha) BAHA 

 

In summary, a workflow of Full GLM  GLMSELECT  Best Fit GLM was performed 

for each dependent variable Stumpj, Adjj, Diffj, Ratioj, Comboj, and Avej using 

functions in SAS 9.3 that accept both categorical and continuous variables.  The best fit 

GLM models for each dependent variable are representative of the strongest, most 

significant relationships found in the data.  These models were used to discuss the impact 

of current organic and relief soil state factors on soil thickness in the Cumberland 

Plateau.          
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RESULTS 

Comboj was highly spatially auto-correlated (Moran’s I = 0.44) and violated the 

assumption of i.i.d. errors.  This made sense due to the paired nature of the data.  

However, Stumpj and Adjj were spatially non-dependent.  As a result, the Comboj 

variable was dropped from analysis with the understanding that the results from Stumpj 

and Adjj modeling were more robust and represented the same data as two separate 

models.  Avej, Diffj and Adjj were also spatially non-dependent, so traditional modeling 

techniques were employed for Stumpj, Adjj, Avej, Diffj, and Ratioj.  Correlation 

analysis, presented in Table 4.3, indicated that all variables were independent based on 

the criteria of r ≤ 0.7, although BAHA and TPHA were somewhat correlated (r = 0.54).  

These variables weren’t removed from analysis but their potential for model interaction 

was noted.     

 

Table 4.3: Correlation matrix for all continuous variables used for analysis. 
 Slope % dia elem TPHA BAHA 

Slope % - 0.31 -0.01 -0.18 -0.28 
dia 0.31 - 0.01 -0.02 -0.11 

elem -0.01 0.01 - 0.27 0.21 
TPHA -0.18 -0.02 0.27 - 0.54 
BAHA -0.28 -0.11 0.21 0.54 - 

 

Results from Adjj indicated that the full model accounted for a significant amount of 

variance based on the F-test (p = 0.05).  While the model was significant, the R2 value 

indicated that the model only accounted for 24% of total variance in Adjj.  The only 

significant variable in this model was elevation, which had a p-value < 0.01 (Table 4.4).  

The stepwise regression model for Adjj was in agreement with the full GLM model and 

selected only one variable, elevation.  Both models indicated a negative relationship 

between Adjj and elevation.  When the GLM was limited to just elevation the resulting 

model was highly significant (p < 0.01) but it only explained 6% of total variance (R2 = 

0.06).  The full GLM model provided much better results, but did not identify any 

significant relationships besides elevation.  To further explore Adjj, another GLM was 

developed that included all variables except elevation.  This resulted in a significant 

model (p = 0.04) that explained 24% of the variance of Adjj (r2 =0.24).  This model 
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identified two new variables as having significant relationships with the dependent 

variable: trees per ha and slope position (see Table 4.5).  One logical explanation for this 

complexity is that elevation and slope position are interacting and correlated.  Because 

slope position was recorded in the field and better reflected the intended relationship 

between soil depth and plants, elevation was removed from all modeling procedures in 

this research.   

 

Table 4.4: Results from regression analysis using all independent variables for the 
dependent soil depth variable Adjj.       

Source of variation df Type III SS Mean Square F p 
Slope % 1 88.68 88.68 0.18 0.68 
Elevation (m) 1 125.06 125.06 0.25 0.62 
Stump Diameter (cm) 1 0.08 0.08 <0.01 0.99 
Trees per Ha 1 1625.09 1625.09 3.21 0.08 
Basal Area (m2/ha) 1 1105.82 1105.82 2.18 0.14 
Aspect 7 4501.59 643.08 1.27 0.27 
Slope Position 4 2769.68 692.42 1.37 0.25 
Slope Shape 2 588.61 294.31 0.58 0.56 

 

After model selection, the only variable left in the best fit GLM for Adjj was slope 

position.  The results of this model are presented in Table 4.6.  This final best fit model 

was highly significant (p < 0.01) and explained 13% of variation.  This more than 

doubled the explanatory power of the model that included only elevation, justifying its 

removal from analysis.  The intercept for this model was based on the mean Adjj depth 

for the valley slope position class, which was 60.71 cm.  The individual parameter 

estimates reveal how much change in Adjj depth was expected at each slope position with 

respect to the valley slope position.  For example, a soil sample taken at a “lower slope” 

location would be predicted to be 4.36 cm less than the average valley slope position 

mean.  Generally, the lower slope and valley slope positions were similar and the mid 

slope, upper slope, and ridgetops were similar.  Based on this model, the deepest adjacent  

 

 
 

57 

 



Table 4.5: Results from regression analysis using all independent variables except 
elevation for the dependent soil depth variable Adjj.  

Source of variation df Type III SS Mean Square F p 
Slope % 1 115.13 115.13 0.23 0.63 
Stump Diameter 
(cm) 1 0.02 0.02 <0.01 0.99 

Trees per Ha 1 2024.80 2024.80 4.03 0.05 
Basal Area (m2/ha) 1 1163.38 1163.38 2.32 0.13 
Aspect 7 4388.77 626.97 1.25 0.28 
Slope Position 4 6073.33 1518.33 3.02 0.02 
Slope Shape 2 521.07 260.53 0.52 0.60 

 

soil depths would be expected at valley slope positions and the shallowest would be 

expected at mid slope positions.    

  

Table 4.6: The final best fit regression model for the soil depth variable Adjj. This model 
included only categorical variables and is equivalent to an ANOVA model. 

Parameter Estimate SE F p 
Intercept 60.71 8.53 7.12 <0.01 
slpos mid slope -26.50 9.39 -2.82 0.01 
slpos ridgetop -24.13 9.44 -2.56 0.01 
slpos upper slope -20.65 9.44 -2.19 0.03 
slpos lower slope -4.36 10.44 -0.42 0.68 
slpos valley 0.00 - - - 

 

The full GLM model for Stumpj accounted for a significant amount of variance based on 

the F-test (p = 0.01).  While the model was significant, the R2 value indicated that the 

model only accounted for 27% of total variation.  The terms aspect and slope position 

were the only variables that shared a significant relationship with Stumpj, which had p-

values of 0.04 and 0.01, respectively (Table 4.7).  The stepwise regression model for 

Stumpj identified significant relationships with aspect and slope position.  A final best-fit  
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Table 4.7: Results from regression analysis using all independent variables for the 
dependent soil depth variable Stumpj are presented in this table.       

Source of variation df Type III SS Mean Square F p 
Slope % 1 4.20 4.20 0.01 0.94 
Stump Diameter 
(cm) 1 321.47 321.47 0.40 0.53 

Trees per Ha 1 729.95 729.95 0.91 0.34 
Basal Area (m2/ha) 1 339.08 339.08 0.42 0.52 
Aspect* 7 13696.46 1956.64 2.45 0.02 
Slope Position* 4 13213.65 3303.41 4.13 <0.01 
Slope Shape* 2 2228.13 1114.07 1.39 0.25 

 

GLM model was created for Stumpj using these two variables (aspect and slope position) 

only.  This produced a highly significant model (p < 0.01) that explained 24% (R2 = 0.24) 

of total variation in the data (Table 4.8).  Specific relationships of the best fit model are 

presented in Table 4.9.  With respect to the valley slope position, the lower slope position 

had a positive relationship with Stumpj while the mid slope, upper slope, and ridgetop 

slope positions had a negative relationship.  Soil thickness was expected to decline for all 

aspect classes with respect to the SE aspect class.  Based on the parameter estimates, 

aspect had a greater influence over soil thickness at stump locations than slope position.     

 

Table 4.8: The best fit regression model for the soil depth variable Stumpj.  This model 
included only categorical variables and is equivalent to an ANOVA model. 

Source of variation df Type III SS Mean Square F p 
Aspect 7 12344.00 1763.43 2.24 0.04 
Slope Position 4 12058.19 3014.55 3.83 0.01 

 

Modeling of Diffj and Ratioj did not produce any significant results.  Diffj had a p-value 

of 0.18 and an R2 of 0.20.  Ratioj had a p-value of 0.07 and an R2 of 0.23.  Model 

selection did not increase the significance of either model.  

  

Results from the Avej full GLM model were significant based on a p-value of 0.01.  This 

model explained 27% of variance in average soil depth and revealed significant 

relationships with slope position and slope shape.  Results from this model are presented 

in Table 4.10.  The stepwise regression model was in agreement with the full GLM 
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model.  The best fit GLM model, presented in Table 4.11, was highly significant and 

explained 23% of variance in the dependent variable.  However, aspect had a p-value of 

0.09 and was not significant based on the criteria of p ≤ 0.05.  This was the only example 

where the conservative entry and exit points for model selection included a questionable 

result.  As a result, a final best fit GLM was developed using only slope position.  This 

model, presented in table 4.11, was significant and explained 14% of variance in the 

average soil depth at each stump-pair location.  The valley slopes position was again 

selected as the control class.  The mean depth of Avej was 67.43 cm and all other 

parameter estimates were with respect to this.  The parameter estimate for the lower slope 

position indicated that an expected change between it and the valley slope position would 

be only 2.32 cm.  The other classes were all negatively associated with the mid slope 

position being the most influential.    

 
Table 4.9: Detailed view of the best fit model for Stumpj , which includes parameter 
estimates for each categorical variable class. 

Parameter Estimate SE F p 
Intercept 99.21 12.91 7.69 <0.01 
aspect W -30.38 11.11 -2.73 0.01 
aspect NE -37.43 11.61 -3.22 <0.01 
aspect S -34.63 12.48 -2.77 0.01 
aspect SW -38.64 12.06 -3.20 <0.01 
aspect E -29.87 12.50 -2.39 0.02 
aspect N -21.90 12.91 -1.70 0.09 
aspect NW -43.62 14.39 -3.03 <0.01 
aspect SE 0.00 - - - 
slpos mid slope -18.17 12.34 -1.47 0.14 
slpos ridgetop -12.27 12.00 -1.02 0.31 
slpos upper slope -11.63 12.15 -0.96 0.34 
slpos lower slope 19.28 14.56 1.32 0.19 
slpos valley 0.00 - - - 
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Table 4.10: Results from regression analysis using all independent variables for the 
dependent soil depth variable Avej. 

Source of variation df Type III SS Mean Square F p 
Slope % 1 40.83 40.83 0.07 0.79 
Stump Diameter (cm) 1 81.79 81.79 0.15 0.70 
Trees per Ha 1 1296.55 1296.55 2.32 0.13 
Basal Area (m2/ha) 1 689.65 689.65 1.24 0.27 
Aspect* 7 7991.74 1141.68 2.05 0.06 
Slope Position* 4 8765.27 2191.32 3.93 0.01 
Slope Shape* 2 965.32 482.66 0.87 0.42 

 

For Adjj and Avej only one factor, slope position, was significant.  Because of this, the 

resulting best fit models were equivalent to one-way Analysis of Variance (ANOVA) 

models.  Analysis of Variance is a common statistical method used to analyze differences 

between group means.  More detail on the ANOVA model will be presented in Chapter 5.  

Based on an ANOVA perspective, the models for Adjj and Avej indicated that the means 

of Adjj and Avej were significantly different between each slope position class.  The 

best-fit model for Stumpj included slope position and aspect.  The result of this model 

was equivalent to a two-way ANOVA, where the main effects of two factors were tested.  

The result of this model indicated that the mean soil depth beneath stumps at each slope 

position class was different and that the mean soil depth beneath stumps at each aspect 

class was different.   

 
Table 4.11: The best fit regression model for the soil depth variable Avej.  This model 
included only categorical variables and is equivalent to an ANOVA model. 

Source of variation df Type III SS Mean Square F p 
Aspect 7 7155.62 1022.23 1.85 0.09 
Slope Position 4 8708.43 2177.11 3.95 0.01 
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Table 4.12: Detailed view of the best fit model for Avej that includes parameter estimates 
for each categorical variable class. 

Parameter Estimate SE T p 
Intercept 67.43 9.11 7.40 <0.01 
slpos mid slope -26.23 10.03 -2.61 0.01 
slpos ridgetop -20.54 10.09 -2.04 0.04 
slpos upper slope -18.35 10.09 -1.82 0.07 
slpos lower slope 2.32 11.16 0.21 0.84 
slpos valley 0.00 - - - 

 

Because slope shape has been identified by many researchers to be a key control of soil 

thickness (see Minasny and McBratney 1999), more analysis was conducted to evaluate it 

as a predictor of soil depth.  This was accomplished by calculating descriptive statistics 

for each slope shape class for each dependent variable and by conducting one-way 

ANOVA for each dependent variable and slope shape.  The descriptive statistics are 

presented in Table 4.13.  

 
Table 4.13: Shows the mean and standard deviation for soil depth variables based on 
slope shape classification. 

 
 

The concave slope shape class had the lowest mean for Stumpj, Adjj, and Avej and the 

highest mean for Diffj and Ratioj.  However, results from one-way ANOVA, which are 

presented in Table 4.14., indicate that the mean soil depths of each slope shape class are 

not statistically different.  As one final measure the slope shape class was reclassified as 

Concave and Other, and the process was conducted again.  Results revealed the same 

non-significance for every depth variable except Ratio, which had a p-value of 0.026.  So 

for the Ratio variable, there was a significant difference between ratio values on concave 

slope shapes and ratio values on other slope shape.    

 

Slope segment n mean stdev mean stdev mean stdev mean stdev mean stdev

Convex *50 57.2 32.0 41.2 24.3 16.1 21.0 1.6 0.8 49.2 26.4
Straight 44 62.5 31.0 43.9 23.8 18.6 20.7 1.5 0.6 53.2 25.6
Concave 22 56.2 27.4 33.1 21.5 23.1 14.5 2.0 1.1 44.7 23.5
*for Ratio n was 49

Stump Adj Diff Ratio Ave
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Table 4.14: The ANOVA results for each soil depth variable based on the 
categorical variable slope shape.   

DISCUSSION 

Recall, from Chapter 2, that the standard soil state factors climate, parent material, and 

time were all controlled for at the broad scale in the sampling of soil thickness in the 

Cumberland Plateau (recognizing that local topographic variations may be associated 

with variations in, e.g., microclimate).  This was based on the premise that all soils 

sampled for this research question were of the same age, subject to the same climate, and 

derived from the same parent materials.  It would be expected then, that if soil thickness 

in this area were in equilibrium, than it would be closely related to the topographic 

variables included in this analysis.  Most ANOVA procedures are only interested in 

determining if a relationship exists and are not necessarily interested in the strength of the 

relationship, or the amount of variance explained.  As such, R2 values are not typically 

calculated in ANOVA procedures.  In this case, the lack of significant relationships with 

slope gradient and slope shape, and poor R2 values of models that included aspect and/or 

slope position is of upmost importance, because it indicates nonequilibrium soil 

thickness.   

The amount of variance explained is also important because it allows for the inference of 

other possible sources of variance not accounted for by the model parameters, such as 

biomechanical weathering.  Based on the low R2 values of the best fit models, which were 

essentially ANOVA models, it is clear that the relief factors included in this analysis do 

not tell the entire story of soil depth in the Cumberland Plateau.  As mentioned 

previously, slope curvature has been shown to be an important factor in soil development.  

Slope shape, which was used as a proxy for slope, did not help to explain soil depth 

whatsoever.  Phillips et al. (2005b) did not find a significant statistical relationship 

Depth variable F-value p-value
Stump 0.45 0.64
Adj 1.55 0.22
Diff 0.96 0.39
Ratio 2.54 0.08
Ave 0.84 0.44
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between soil thickness and slope curvature in the Ouachita Mountains either.  They 

concluded that the variable soil thickness observed was most likely due to the 

biomechanical effects of trees and lithological variation.  As sampling in the Cumberland 

Plateau was limited to horizontally bedded lithology of specific parent materials, this is 

consistent with biomechanical effects of trees as a potential source of unexplained 

variation.  So while, relief factors were identified as important indicators of soil 

thickness, there is some evidence that soil deepening by trees could play an important 

role in controlling soil thickness in the Cumberland Plateau.       

 

None of the current ecological factors included in this research were shown to have 

significant interaction with the soil depth variables.  The likely explanation for this 

missing relationship is temporal in nature.  Of the standard soil state factors, it can be 

argued that the organic factors are the most temporally dynamic.  Tree density is snapshot 

measurement of the current forest condition and does not reflect changes in tree density 

or forest composition through time; both of which have drastically changed since the last 

glacial maximum.  Williams (2002) evaluated tree densities since the last glacial 

maximum (21ka) based on fossil and pollen records.  Between 21 ka and 11 ka tree 

density increased in the eastern United States, with a rapid increase occurring between 14 

ka and 11 ka (Williams 2002).  Tree density continued to increase during the late 

Holocene (Williams 2002).  Wilkins et al. (1991) also evaluated pollen records during 

this time period for changes in species composition.  They estimated that Kentucky was 

dominated by a closed canopy spruce forest between 21 ka and 17 ka, which shifted to an 

open canopy spruce-jack pine forest in 17 ka and continued to 11 ka.  Between 11 ka and 

7 ka drastic changes occurred that led to the decline of spruce and pine and the incline of 

oak and other deciduous species.  Between 7 ka to 3 ka forest composition changed once 

again to the oak-hickory forest associated with Kentucky to the present day.  It is possible 

that at some point since the last glacial maximum, tree density could have explained the 

current variability in soil thickness.  What is known is that current tree density does not 

have a significant relationship with soil thickness.   
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The lack of relationship with stump diameter, which ranged from 9.0 to 93.0 cm, 

indicates that soil depth beneath trees and differences relative to nearby depths are not 

related to the size of the most recent tree to occupy the patch.  This is consistent with the 

SRPIT model.  If trees occupy the same locations over time, then the effects of 

biomechanical weathering by trees are not necessarily related to the last tree that 

occupied the site.  As the soil beneath trees deepens over time, it is likely that the size of 

trees capable of impacting the site will also have to increase.  Based on this research it is 

not possible to know whether or not the last occupant (i.e. tree stump) had any impact on 

regolith thickness during its life.  Essentially, this research question did not capture the 

direct biomechanical effects of trees, because these effects could be active or dormant 

depending on the size of the tree, depth of the soil, and possible the architecture of the 

roots.   

 

Chapter 3 suggested that individual trees could be having an impact of soil thickness in 

the Cumberland Plateau.  This was supported by evidence showing that more than 80% 

of soil depths beneath stumps were deeper than their adjacent partners and that the 

Cumberland Plateau is comparable to the Ouachita Mountains, where biomechanical 

impacts have been shown to contribute to soil thickness.  Interestingly, the soil depth 

variables used to validate the biomechanical effects of trees on soil depth variability, 

Diffj and Ratioj, had no relationship with any of the biological or relief factors tested.  

One interpretation of this is that biomechanical weathering by trees is independent of 

these factors.  Overall, the modeling efforts in this chapter indicate that topography has 

some weak relationship to soil depth, but there are other agents at work.  Based on results 

of this study, topographic effects manifest at the scale of slope position differences.  The 

biomechanical effects of trees are thought to locally influence nonequilibrium soil 

thickness.  An analysis of these scale relationships is logically the next step in 

understanding soil thickness variability in the Cumberland Plateau.  
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CHAPTER 5 

SOIL DEPTH VARIABILITY AND SCALE 

 

METHODOLOGY 

The analysis of research question 1 (see Chapter 3) provided evidence that the 

biomechanical effects by trees were expressed locally in the Cumberland Plateau.  The 

analysis of research question 2 (see Chapter 4) identified relationships between soil 

thickness and landscape level topographic variables in the Cumberland Plateau.  The 

purpose of this research question, research question 3, was to further investigate the 

relationship between scale and soil thickness variability in a forested area where tree 

effects were present.   

 

Study Design 

This study used a three factor hierarchy to examine variance in soil depth across one 

forested hill-slope in Berea College Forest.  This specific hill-slope was located in the 

Cumberland Plateau and possessed the horizontally bedded shale and sandstone lithology 

desired, and is accessible via hiking trails.  Details regarding Berea College Forest can be 

found in Chapter 3.  The highest level of the hierarchy was deemed the stand level.  One 

10 ha stand was established at the top, middle, and bottom of the hill-slope.  Within each 

stand two 1.0 ha plots were selected.  This represented the plot level in the hierarchical 

structure.  Within each plot, two subplots, measuring 0.1 ha were established.  This 

hierarchy is displayed in Figure 5.1.  The locations of each subplot (Figure 5.2) were 

generally chosen due to their location on the hill-slope, with two caveats.  First, subplots 

had to remain on Berea College Forest Property.  Second, subplots needed to be free of 

potential disturbances by the trail system.  The general location of each subplot was 

selected based on a topographic map and field reconnaissance.  To minimize bias, the 

specific location of each subplot center was randomly selected once the general location 

was chosen.  The orientation of the grid was laid out perpendicular to the base of the 

slope.  The aspect relative to the downslope direction was recorded.  Measurements of 

depth to bedrock at the subplot scale were aggregated to estimate soil depth variance at 
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higher levels of the hierarchy.  Soil depth was sampled at 25 locations within each 

subplot, as described in the next section. 

Figure 5.1: A diagram of the three factor hierarchy used to investigate the impacts of 
scale on soil depth variability. 

A nested sampling scheme was used so that a limited number of study sites could be 

sampled while still allowing for an investigation of multiple spatial scales using nested 

Analysis of Variance (ANOVA).  ANOVA is a common statistical method used to 

analyze differences between group means.  It allows for significance testing using the F-

distribution.  The assumptions of ANOVA are: (1) each population has a normal 

distribution, (2) the variances of all the population are equal, and (3) the samples from 

each population are independent and random.  The ANOVA procedure is robust, so 

modest departures from these assumptions will still result in accurate significance testing 

(Burt et al. 2009).  Nested ANOVA is a special case of ANOVA that allows for the 

variance of the lowest level of a hierarchy to be used to estimate the variance of all other  
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Figure 5.2: This figure depicts the hiearchical structure used in this research.  Each 
subplot is represented by a square.  The green lines link subplots that are within the same 
plot.  The color of the squares are representative of the slope position.   
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levels.  Nested ANOVA procedures have been an accepted statistical analysis method in 

geography dating back at least to 1965 (Haggert 1965; Phillips 1985).   

 

In nested ANOVA there is a hypothesis being tested at each level.  In this research the 

null hypotheses are, 

 

H01: The variance between stands is different 

H02: The variance between plots, within the stands is different 

H03: The variance between sites, within plots is different 

 

The nested ANOVA procedure also allows the contribution of each level of sampling 

hierarchy to the total variance to be determined.  This means that the percent of variance 

attributable to each hierarchical level will be determined, and as a result the role 

biomechanical weathering by trees has on soil depth spatial variability across multiples 

scales will be inferred.  For example, if it is determined that the majority of soil depth 

variance is accounted for by the subplot scale, then it can be reasoned that single tree 

processes are most important.  Alternatively, if it is determined that the majority of soil 

depth variance is accounted for by the stand level, then it can be reasoned that the 

topographic processes are most important.  Results of this analysis are referred to as 

nested effects.    

 

Analysis of Variance testing was conducted in SAS 9.3. 

 

Sampling Depth to Bedrock  

Due to the nested design, soil depths were measured within each subplot.  To keep with 

the design of the stump-pair sampling presented in previous chapters, each 10 x 10 m 

subplot was divided into 2 x 2 m cells, so that 2 points measured 1.0 m apart could be 

located in a different grid.  Essentially, each 2 x 2 m grid represented a possible soil 

influence area.  The soil influence area concept estimates that the area of influence of a 

single tree on soil physical properties is as a circle whose diameter is twice the tree 

diameter at breast height (Phillips and Marion 2006).  In the study area the typical tree 
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diameter at breast height is < 1.0 m.  Soil depth was measured in each 2 x 2 m cell for a 

total of 25 soil depth samples per subplot.  The soil type at each location was determined 

based on the USDA Web Soil Survey (websoilsurvey.nrcs.usda.gov) for Madison 

County.  The underlying geology at each subplot was determined based on the 1:24,000 

Kentucky Geologic map accessed via the Kentucky Geologic Survey map services 

(kgs.uky.edu) in ArcGIS 10.1.  An attempt was made to measure depth to bedrock using 

a Malå GeoScience RAMAC/GPR ground penetrating radar (GPR) system with a 500 

MHz shielded antenna following the procedure used in Roering et al. (2010).  However, 

field trials in a pilot study indicated that GPR would not work for the intended 

application because of high clay contents in the soil, and difficulties in maintaining direct 

ground contact and in maneuvering around obstacles in the forest.  Personal 

communication with archaeologists and engineers using GPR in the region suggests that 

these difficulties are common. 

 

A piece of rebar (steel bar) and a hammer is one tried and true method of measuring 

depth to bedrock.  This is a straight forward technique of physically hammering a piece 

of rebar into the ground until refusal.  Once the rebar is as deep as possible a 

measurement is recorded of how much of the rebar remains above the ground.  This 

measurement is then subtracted from the total length of the rebar to get the depth to 

bedrock measurement.  There are a few drawbacks to this technique, however.  The rebar 

can be quite difficult to remove from the ground once it is deeply inserted.  This can be 

overcome by attaching something to the end of the rebar to provide a point of contact to 

hammer in the upward direction.  A piece of metal welded to the rebar to form a “T” 

shape accomplishes this, as does a set of vise grip pliers.  Another drawback is that this 

process can be very tiring by itself and even more so when compounded with a difficult 

hike.  One of the positives of employing this method is that the rebar is effective at 

moving subsurface rock fragments out of the way.  In this way, it is better than a soil 

auger, especially in rocky soils.  This method is also less invasive, particularly on the 

surface, than a soil auger, which leaves a much larger hole or a GPR unit, which requires 

the removal of surface debris and ground litter to maintain a contact.       

 

70 

 



Based on this hammer and rebar method, a new technique for quickly and accurately 

measuring soil depth in shallow soils was developed for this research.  Instead of using a 

hammer to drive the rebar into soil, a cordless hammer drill was used.  A traditional drill 

turns a drill bit at a fast rate and uses the shape of the drill bit, which usually includes a 

sharp point, and the force of the user to drill into materials.  A hammer drill adds an 

action along the axis of the drill bit that delivers thousands of low force blows per minute 

to the bit to help it to penetrate into hard materials.  The primary use of a hammer drill is 

to crack and penetrate hard materials, such as concrete or brick, using a masonry bit that 

has a wedge shaped tip.  A jack hammer is sometimes considered a type of hammer drill.  

Experimentation using flat tipped rebar as the bit revealed that a cordless hammer drill 

would not penetrate shale or sandstone bedrock in Berea College Forest—an advantage, 

as the measurements require a method that will penetrate regolith but not underlying 

bedrock.  

 

Specifically, a DeWalt hammer drill (Model Number DCD985M2) with DeWalt 20V 

MAX VR Premium Lithium Ion batteries (4.0 Ah) was used.  This drill has a 13mm 

keyless chuck that tightly fits onto a 120 cm diameter piece of rebar.  Keyless means that 

it is easy to remove the drill from the rebar, a useful feature in the event that wasp nests 

or other hazards are accidently impaled.  This drill has a 3-speed all metal transmission 

which allows for the precise control in the number of revolutions per minute (0 to 575, 0 

to 1350, and 0 to 2000, for first, second, and third gear, respectively) and the number of 

blows per minute (0 to 9,775, 0 to 22,950, and 0 to 34,000, for first, second, and third 

gear, respectively).  The drill itself weighs 2.35 kg, which is a little more than a hammer 

but weighs significantly less than the GPR equipment.  Besides its low weight, one key 

benefit of using a hammer drill was that it was easy to remove from the ground using the 

reverse gear.  The spinning action of the drill made the hole wider than the rebar itself 

(due to a very small bending force) so in many cases the drill and rebar could be pulled 

directly out of the ground if needed.    

 

As a proof of concept, exposed shale and sandstone bedrock along the trail system in 

Berea College Forest was used to test that the rebar would not penetrate into bedrock 
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once contact was made and to ensure that it would make it all the way to contact before 

refusal.  In some locations, the trails are cut into the side of the hill, revealing the contact 

between bedrock and regolith.  The hammer drill method worked perfectly in these 

demonstration areas.  Video was recorded of this as evidence that the drill does not 

penetrate shale, the softer of the two strata.  As it turned out, first gear was sufficient to 

penetrate the soil without problems and was used in all sampling to reserve battery life.  

A soil auger was also used at approximately 10% of subplot hammer drill samples to 

confirm that the hammer drill method gets comparable results.  The most any sample 

differed was 3.0 cm, and the majority of comparisons yielded identical results.  The 

hammer drill did have problems going through thick tree roots, as is the case with any 

drilling, probing, or excavation method.  If tree root contact was suspected, additional 

samples were taken a few cm away to ensure an accurate depth measurement was taken.  

Thanks to the grid system employed, soil depth next to living trees could still be taken, 

just not in the same physical space.  Again, this would be no different if alternative 

methods were employed.  Tree stumps were not excluded from being sampled but were 

not preferentially selected either.    

 

RESULTS 

Details describing the four upper slope subplots are presented in Figure 5.3.  Slope shape 

was not consistent between subplots in the upper slope position, where each qualitative 

possibility was represented at least once.  According to the USDA Web Soil Survey 

(websoilsurvey.nrcs.usda.gov) three different soil types were represented by these four 

subplots.  Basal area per hectare ranged from 21 to 34 m2/ha with an average of 26 m2/ha.  

Aspect was generally in the southwest direction.  The mean slope gradient and mean 

elevation of subplots in the upper slope position was 17.2 and 368 m, respectively.  The 

mean soil depth for subplots in this landscape position was 33.1 cm with a standard 

deviation of 14.6 cm.  Figure 5.3 also displays 3D charts of the actual soil depth 

measurements for each subplot.  Note that the color scheme is representative of soil depth 

categories and do not describe the soil profile.  Based on the 1:24,000 Kentucky Geologic 

Map (kgs.uky.edu) subplot 05 and 11 (the right pair in Figure 5.3) were underlain by 

limestone and shale from the Slade Formation.  The other two subplots were underlain by 
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shale from the Borden Formation.  Subplot 05 was located near a limestone outcrop but 

shale fragments were found near the bedrock surface while auguring.  No visible karst 

formations were present.  Each site in this stand had sandstone fragments on the surface 

which suggested transport from further upslope  

Figure 5.3: 3D soil depth charts for each subplot in the upper slope position.  
Additionally, subplot characteristics are presented.  Note that the color scheme is 
representative of soil depth categories and do not describe the soil profile. 

Descriptive statistics and 3D charts for the mid slope position are presented in Figure 5.4.  

All possible qualitative slope shapes were represented by the four subplots within this 

stand.  Three of the subplots were from the Weikert series and one subplot was from the 

Caneyville series based on the USDA web soil survey (websoilsurvey.nrcs.usda.gov).  

Basal area had a mean of 26 m2/ha.  Aspect ranged from 215° to 270° and elevation 
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ranged from 341 m to 382 m.  The mean slope gradient for subplots in the mid slope 

position was 17.8 percent.  Mean soil depth ranged from 25.5 to 39.3 cm and had an 

overall average of 33.1 cm (σ = 15.8) for all soil samples.  Based on the 1:24,000 

Kentucky Geologic Map (kgs.uky.edu) soils in this stand were underlain by shale from 

the Borden Formation.  Shale and small amounts of sandstone were found on the surface 

of each subplot.  Subplot 07 was located near a shale outcrop and there were significant 

amounts of weathered shale fragments on the surface.   

Figure 5.4: 3D soil depth charts for each subplot in the mid slope position.  Additionally, 
subplot characteristics are presented.  Note that the color scheme is representative of soil 
depth categories and do not describe the soil profile. 

Figure 5.5 shows the 3D charts for soil depth and soil characteristics in the lower slope 

stand position.  Every subplot within this stand had a flat slope curvature and soil from 
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the Rarden series.  Basal area ranged from 18 to 30 m2/ha and slope gradient ranged from 

3.5 percent to 12.5 percent.  Aspect ranged from 190° to 310°.  Mean elevation was 308 

m. Mean soil depth for this stand position was 59.2 cm (σ = 18.04).  Subplots in plot 01

were located near a deeply incised channel so fluvial activity could have contributed to 

the soil thickness in this area.  Based on the 1:24,000 Kentucky Geologic Map 

(kgs.uky.edu) subplots in this slope position were underlain by shale from the Borden 

Formation.   

Figure 5.5: 3D soil depth charts for each subplot in the upper slope position.  
Additionally, subplot characteristics are presented.  Note that the color scheme is 
representative of soil depth categories and do not describe the soil profile. 

The mean soil depth for all subplots was 41.79 cm (σ = 22.89).  Each slope position had 

similar aspects and basal areas.  Soil series and elevation were distinguishable between 
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each slope position.  Mean soil depth between the upper slope position and mid slope 

position was nearly identical but the standard deviations suggest that upper slope position 

might be more variable.  Mean soil depth at the lower slope position was much greater 

and mean slope was much less than the other two slope positions.  The mid slope position 

had the highest mean slope gradient.       

 

Results of the nested ANOVA are presented in Table 5.1.  Hypothesis testing was based 

on the reported P-values listed in this table.  The variance between stands, and thus slope 

position, was significant based on a p-value of 0.04.  Therefore, H01 was accepted and 

slope position is an important factor in determining the variance of soil depth.  The 

variance between plots was found not to be significant based on a p-value of 0.67 and as 

a result H02 was rejected.  The results indicate significant variation between the subplots 

based on a p-value approaching zero.  Based on this result, H03 was accepted and site 

local scale mechanisms are important.  In summary, the main effects of the nested 

ANOVA model indicate significant variance between slope positions and significant 

variance between sites.  

 

Table 5.1: Results from three factor nested ANOVA for soil depth along a hillslope in 
Berea College Forest, KY. 

Variance 
Source DF Sum of 

Squares F-Value P-value Error 
Term 

Mean 
Square 

Variance 
Component 

Percent of 
Total 

Total 299 156692 - - - 524.06 630.79 100.00 
Slope 
Position 2 45484 11.48 0.04 Plot 22742.00 207.61 32.91 

Plot 3 5941 0.55 0.67 Subplot 1980.32 -32.68 0.00 
Subplot 6 21685 12.45 0.00 Error 3614.13 132.96 21.08 
Error 288 83583  - - - 290.22 290.22 46.01 

 

Variance is apportioned to 3+1 = 4 scales, where the +1 (“error”) represents the localized 

variation within the sites themselves, akin to nugget variance in geostatistical analysis 

(Miesch (1975) showed that nested ANOVA can be used to estimate a geostatistical 

variogram).  The variance component is provided as a percent of variation associated 

with each spatial scale in the column named “percent of total” in Table 5.1.  The stand 

level accounted for nearly 33% of total variation in the data.  The plot level accounted for 
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none of total variation in the data.  The subplot level accounted for 21% of total variation 

in the data.  The error, or within subplot effects, accounted for 46% of total variance.  In 

total, the local scale conditions accounted for two thirds of the variation (21% between 

subplots + 46% within subplots) of total soil depth in the area sampled.  

 

DISCUSSION 

Broader scale impacts acting at the stand level were shown to be important factors in the 

variance of soil depth.  This hierarchical level was thought to represent the level of 

organization where topographic changes could play a significant role in limiting the 

biomechanical impacts of tree growth.  With the exception of two upper slope position 

subplots that were located on mapped limestone (but near the geologic contact), all other 

subplots were underlain by horizontally oriented shale so lithological variations were not 

acting on the slope position level of organization.  Based on the descriptive statistics 

reported in Figures 5.3, 5.4, and 5.5 the upper slope and mid slope subplots were more 

similar than the lower slope subplots in terms of mean slope gradient and mean soil 

depth.  At the upper slope and mid slope positions, where soil thickness is shallower, 

there is more variability in soil thickness.  The upper slope position had the highest 

standard deviation for mean soil depth, followed by the mid slope position.  This is made 

even more meaningful by the fact that the lower slope position had much deeper soil on 

average.  The deeper soils at the lower slope position could be a function of colluvial 

processes.  Colluvial material derived from ridgetops and upper slopes accumulates on 

lower slope positions, and soil and regolith, in the aggregate, is typically deeper.  Perhaps 

the deeper soils in the lower slope position limits variability because of reduced 

weathering rates at the bedrock surface as theorized by soil production parameters 

discussed in Chapter 2 and described in Minasny and McBratney (1999).  Humphreys 

and Wilkinson (2007) suggested that the rate at which bedrock is converted to soil 

reaches a maximum under an optimal soil depth that facilitates contact between bedrock 

and water such that freezing-thawing and weathering are maximized.  Perhaps the upper 

slope and mid slope positions are more susceptible to these processes because they are 

not heavily impacted by colluvial processes.  
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The plot level complicated the issue through both its main and nested effects.  This could 

be due to study design or because plot level mechanisms do not contribute much 

influence to soil depth properties.  To determine if this was due to study design, a second 

nested ANOVA model was conducted with only two factors: stand and subplot.  Results 

(Table 5.2) show the same general relationships with respect to both the main effects and 

nested effects.  Therefore, the inclusion of the plot level in the three factor nested 

ANOVA model did not limit the results interoperability.  Based on this, it can be 

concluded that plot level dynamics did not significantly contribute to soil depth 

variability in this system.  As a result, the variance between plots, within the stands was 

not shown to be different and was the reasoning for rejecting H02.   

 

Table 5.2: Two factor nested ANOVA results 
Variance 
Source DF Sum of 

Squares F-Value p-value Error 
Term 

Mean 
Square 

Variance 
Component 

Percent of 
Total 

Total 299 156692 - - - 524.06 598.11 100 
Slope 
Position 2 45484 7.41 0.012 Subplot 22742 196.73 32.89 

Subplot 9 27626 10.58 0 Error 3069.53 111.17 18.59 
Error 288 83583 - - - 290.22 290.22 48.52 

 
More than two-thirds of the total variation was due to mechanisms at the local scale, 

irrespective of slope position or plot location.  This is consistent with the idea that effects 

of individual trees are the dominant control of local soil depth in relatively thin forested 

soils overlying bedrock.  Slope shape was considered a between-subplot factor for this 

research, but results from Chapter 4 and from Phillips and Marion (2006) suggest that the 

influence of slope shape is insignificant as a control of soil depth.  Chapter 4 also showed 

that basal area was not a significant contributor to soil thickness.  This also seems to be 

the case in this analysis, since basal area was similar in each slope position.  The 

influence of pit-mound processes likely act at the within-subplot scale as well (Šamonil et 

al. 2010), but pit-mound formations were not present in any subplots sampled.  Neither 

lithological variation nor topography seemed to be variable at the subplot or lower scale.  

The most plausible explanation, and the one supported by field observation, is that 

biomechanical effects of trees control local variability of soil depth.  The majority of 

variance was explained by within subplot effects.  Since the grid design used in this 
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research was representative of the soil influence area concept it can be reasoned that 

single tree influences are operating at this level.  This supports the notion that the location 

of self-reinforcing feedbacks between biota and subsurface processes are not random.  

 

From a scale perspective, it seems that first-order control is associated with the stand 

level, representing topographic position and lithological variations.  Overlaid on this, 

however, the primary controls over variations in soil depth and thickness operate at a 

local scale.  Given the characteristics of the study site, and other findings reported here 

regarding soil depth variations between stump and adjacent sites, tree effects on soil 

deepening are certainly a contributing factor and most likely the dominant factor.  It is 

possible that other localized biological effects such as faunalturbation contribute to this 

variability.  Microtopography can also contribute to local variation in soil thickness in 

some settings, but the lack of a relationship between topographic variables and thickness 

at the study site argues against this in the present study.  Independently of bedrock type, 

slope, or any number of broad scale influences, local scale processes are actively altering 

soil thickness.  Chapter 3 and 4 showed convincing evidence that the trees preferentially 

select pockets of deeper soil and strengthened the argument for the self-reinforcing 

pedologic influences of trees.  Based on this information it can be reasoned that the high 

variability of soil depth found within and between subplots is representative of divergent 

soil evolution. 
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CHAPTER 6 

CONCLUSION 

 

Phillips and colleagues have been publishing on the topic of biomechanical effects of 

trees for over a decade.  They have released a myriad of research located in the Ouachita 

Mountains and have linked the interaction between trees and bedrock to concepts of 

nonlinear dynamics, nonequilibrium soil thickness, divergent soil evolution, and 

pedological memory.  However, the geology of the Ouachita Mountains is atypical and 

can be characterized by its variable structural resistance associated with fractures and 

bedding planes associated with strongly dipping and tilted Paleozoic sedimentary parent 

material.  Limited similar work (e.g. Roering et al. 2010) has also been conducted in 

areas of high lithological and structural complexity.  Thus it has been difficult to separate 

tree effects—which, after all, are largely associated with root interaction with bedrock—

from geological variability.  Thus some testing of the model of self-reinforcing pedologic 

influence of trees in a region less geologically complex than the Ouachita Mountains was 

needed.     

 

The purpose of this research was to gain further insight into this phenomenon by 

separating the biomechanical effects of trees from extreme lithological variation with the 

hope to further highlight the role of local, point centered pedological influences of trees 

in forests with relatively thin soils overlaying sedimentary bedrock material and to 

encourage future research into this biogeomorphological topic.  This project extended 

these concepts to the Cumberland Plateau region of Kentucky, where flat, level-bedded 

sedimentary rocks are the norm.  The approach taken to better understand the role of 

biomechanical weathering by trees in this research was to answer three research 

questions, which collectively address issues related to pattern and scale.  (1) How does 

spatial variability of forest soil depth differ between vertically and horizontally oriented 

underlying bedrock?  (2) What is the relative importance of individual trees vs. other 

potential controls of local variability in soil depth?  (3) How is the variance of soil depth 

partitioned across spatial scales?  As a result of this research the following statements can 

now be made: 
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• A cordless hammer drill is a fast and reliable method of sampling soil depth in thin 

soils underlain by sedimentary bedrock.   

 

• Soil thickness on forested sideslopes in the Cumberland Plateau is highly variable.  

This variability is at least partially controlled by tree locations, as soil is 

systematically thicker beneath stumps than at adjacent locations.  Soil thickness in the 

sampled areas could be classified as nonequilibrium due to the lack of any significant 

relationship with topographic variables.  The model of self-reinforcing pedologic 

influences of trees is a reasonable explanation for the observed variability. 

 

• The biomechanical weathering by trees in the Cumberland Plateau is comparable to 

that of the Ouachita Mountains, with the primary difference being that soils are 

deeper beneath stumps in the latter.  While bedrock orientation may limit 

biomechanical processes in the Cumberland Plateau, it does not prevent their effects 

from being expressed through divergent soil evolution.  Results also suggest that in 

the Ouachita Mountains tree effects are more important than local lithological 

variation as an influence on soil thickness.  

 

• In both the Ouachita Mountains and the Cumberland Plateau, two areas impacted by 

biomechanical effects of trees, neither slope gradient nor slope shape were significant 

factors in determining soil thickness.  In the landscape-scale topographic variation—

slope position--does have significant influence over soil thickness in the Cumberland 

Plateau. 

 

• Slope position explained a significant amount of variation in soil depth in the 

Cumberland Plateau and is a first-order control.  However, local scale effects linked 

explained twice as much variance.   

• This highly localized variability is consistent with, and most plausibly explained by, 

individual tree effects. 
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The take home message of this dissertation is that the effects of biomechanical 

weathering by trees are not limited to areas with strongly dipping and contorted bedrock.  

However, they are most likely limited to areas where soil depth is less than the optimal 

rooting depth for trees.  This research has provided evidence that the variability of soil 

depth in the Cumberland Plateau is likely influenced by positive feedbacks from tree root 

growth, that these interactions occur over multiple generations of growth, and that the 

effects of trees are the dominant control of local soil thickness.  This study also provides 

evidence that the positive feedback from biomechanical weathering by trees leads to 

divergent development of soil thickness.  Presumably, this divergent development will 

perpetuate until pockets of deeper, relatively rock free, nutrient-rich soil no longer 

provides a competitive advantage for trees in a given area.  However, the uneven bedrock 

surface would likely persist for much longer periods of time.     

 

Naylor et al (2002) suggested six approaches that would benefit future biogeomorphic 

research, which are echoed, at least indirectly, in more recent commentaries (c.f. 

Marston, 2010; Corenblit et al., 2011; Fei et al., 2014).  The first approach was to identify 

key theoretical and practical research questions (Naylor et al. 2002).  The research 

presented in this dissertation was designed around three research questions that included 

both theoretical and practical components.  The second approach was to modify existing, 

or develop new, methodologies to investigate biogeomorphic relationships (Naylor et al. 

2002).  This dissertation research borrowed the stump-pair sampling method and 

developed the hammer drill method for sampling soil thickness.  The third, fourth, and 

fifth approaches were to place the research into the context of existing knowledge, 

develop sound sample designs and to improve the quality of existing data (Naylor et al. 

2002).  These approaches were utilized in this research by building directly on previous 

work in the Ouachita Mountains, expanding it to a new region using a hierarchical study 

design, and by more than doubling the existing data on the topic.  The sixth approach was 

to develop theoretical, conceptual, and process models which illustrate the role of 

organisms in geomorphological processes (Naylor et al. 2002).  This research provided 

new empirical support for the SRPIT model, and demonstrated that the controls over 

process-response relationships and spatial variability can vary with spatial scale even 
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within a relatively small range of resolutions.  This suggests that future work on 

reciprocal interactions between vegetation, soils, and landforms in forests—and in 

biogeomorphology more generally—should pay explicit attention to scale linkage issues.  

Overall, beyond the well known geographical and historical contingency in the Earth and 

environmental sciences, this work highlights the issue of scale contingency.   
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