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ABSTRACT OF DISSERTATION

POLYHEDRAL PROBLEMS IN COMBINATORIAL CONVEX GEOMETRY

In this dissertation, we exhibit two instances of polyhedra in combinatorial convex
geometry. The first instance arises in the context of Ehrhart theory, and the polyhedra
are the central objects of study. The second instance arises in algebraic statistics, and
the polyhedra act as a conduit through which we study a nonpolyhedral problem.

In the first case, we examine combinatorial and algebraic properties of the Ehrhart
h*-polynomial of the r-stable (n,k)-hypersimplices. These are a family of polytopes
which form a nested chain of subpolytopes within the (n,k)-hypersimplex. We show
that a well-studied unimodular triangulation of the (n,k)-hypersimplex restricts to
a triangulation of each r-stable (n,k)-hypersimplex within. We then use this trian-
gulation to compute the facet-defining inequalities of these polytopes. In the k=2
case, we use shelling techniques to devise a combinatorial interpretation of the coef-
ficients of the h*-polynomials in terms of independent sets of certain graphs. From
this, we then extract some results on unimodality. We also characterize the Goren-
stein r-stable (n,k)-hypersimplices, and we conclude that these also have unimodal
h*-polynomials.

In the second case, for a graph G on p vertices we consider the closure of the cone
of concentration matrices of G. The extreme rays of this cone, and their associated
ranks, have applications in maximum likelihood estimation for the undirected Gaus-
sian graphical model associated to G. Consequently, the extreme ranks of this cone
have been well-studied. Yet, there are few graph classes for which all the possible
extreme ranks are known. We show that the facet-normals of the cut polytope of G
can serve to identify extreme rays of this nonpolyhedral cone. We see that for graphs
without K5 minors each facet-normal of the cut polytope identifies an extreme ray
in the cone, and we determine the rank of this extreme ray. When the graph is also
series-parallel, we find that all possible extreme ranks arise in this fashion, thereby
extending the collection of graph classes for which all the possible extreme ranks are
known.

KEYWORDS: r-stable hypersimplices, hypersimplices, cut polytope, graphical mod-
els, facet-ray identification.
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Chapter 1 Introduction

The notion of convexity will almost always be rediscovered by any curious student. A
set is defined to be convex if for any two points in the set, every point on the straight
line between these two points is also in the set. Intuitively put, a set is convex if
the shortest path between any two points in your set will never leave your set. This
definition roots itself in the question of accessibility of one location from another,
and as such, presents itself naturally to even the earliest students of the universe.
Following millennia of work, this intuitive concept of convexity has been shown to be
rich with applications. Even now some of the most important computational questions
of our time can be solved quickly and efficiently due to their convex structure.

While the notion of convexity is perhaps an intuitive one to discover, the invested
student will learn that seemingly simple questions about convex sets can be sur-
prisingly difficult to solve. An ancient and effective strategy for dealing with such
problems is to identify combinatorial objects whose structure encode interesting data
about the convex sets of interest. One then works to solve the problem using the
data provided by these combinatorial objects. A combinatorial object is most simply
described as an object defined by placing some structure on a finite set. Among the
fundamental examples of combinatorial objects are graphs and permutations. For
graphs, our finite set is the set of vertices and the structure placed upon the set is the
relationship between vertices specified by the edges. Permutations are combinatorial
objects defined on the finite set of numbers 1, 2, . . . , n with the added structure being
the order in which we list these numbers. Combinatorial convex geometry studies
when a convex set admits a natural association with a combinatorial object and what
data about the convex set can be extracted from these objects.

Some of the most fundamental convex sets studied in combinatorial convex ge-
ometry are a generalization of the convex polygons called polytopes. Polytopes are
defined in terms of their finitely many vertices or facets. Thus, their geometry is
inherently tied to a finite set, and we can have high hopes that they yield nice asso-
ciations to interesting combinatorial objects.

The strategy of studying a convex set by studying the properties of its associated
combinatorial structures has proven to be quite beneficial to the general study of con-
vexity and its applications. Indeed, some of the most informative and enlightening
examples within convex geometry are described in terms of their associated com-
binatorics. Simultaneously, problems in applied fields, such as convex optimization
and statistics, can be solved by examining the combinatorics of various convex sets.
Thus, important results in combinatorial convex geometry may come in the form of a
solution to a problem in convex geometry or as an informative collection of examples.
This dissertation aims to make contributions that fit both these important profiles.

Since polytopes are themselves objects defined by imposing structure on a finite
set, namely their set of vertices or faces, they can be viewed both as convex sets as
well as combinatorial objects. As such, they are doubly important in combinatorial
convex geometry since they can be both the object of study as well as the combi-
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natorial object that encodes data about another convex set. Thus, the goal of this
dissertation is two-fold. In the coming chapters we will define a family of polytopes
that serve as an interesting family of examples for problems in Ehrhart theory, a field
of mathematics devoted to the study of enumerating the number of integer-points
contained in a polytope. Ehrhart theory has connections to commutative algebra,
and we will examine how this family of polytopes offers interesting examples in re-
gards to fundamental questions about these connections. On the other hand, we will
also work towards a polyhedral and combinatorial solution of the statistical problem
of maximum likelihood estimation for Gaussian graphical models. Classic results for
Gaussian graphical models tell us that the maximum likelihood estimation problem
is a convex optimization problem with natural combinatorial interpretations.

This dissertation is organized as follows. In the remainder of this introduction, we
will introduce to the basic concepts to be studied, namely polyhedra, spectrahedra,
Ehrhart theory, and Gaussian graphical models. In chapter 2 we will then define and
study the combinatorial geometry of the r-stable (n, k)-hypersimplices, a family of
polytopes that generalize and refine the (n, k)-hypersimplices. In chapters 3 and 4 we
will study the Ehrhart theory of these polytopes via their combinatorial geometry.
Finally, in chapter 5, we will define the facet-ray identification property, a procedure
for using a polytope to study the nonpolyhedral convex geometry of the space of
canonical parameters of a Gaussian graphical model.

1.1 Polyhedra

A polyhedron P in Rd is the solution set to a finite collection of linear inequalities.

a11x1 + a12x2 + · · ·+ a1dxd ≤ b1,

a21x1 + a22x2 + · · ·+ a2dxd ≤ b2,

...

an1x1 + an2x2 + · · ·+ andxd ≤ bn.

To be concise, we write
P := {x ∈ Rd : Ax ≤ b},

where A is the n × d matrix with entries aij and b = (b1, . . . , bn)T ∈ Rn. We often
write x ∈ Rd with the understanding that x = (x1, x2, . . . , xd)

T . Recall that a set
C ⊂ Rd is convex if for every x, y ∈ A and 0 ≤ t ≤ 1 we have that tx+ (1− t)y ∈ A.
It is quick to check that polyhedra are convex sets. A polyhedron is always a closed
set, however, it need not be bounded. When a polyhedron P in Rd is bounded we
call it a polytope.

An important collection of unbounded polyhedra are the polyhedral cones. A
subset K ∈ Rd is called a cone if 0 ∈ K and for every element x in K and every
nonnegative real number λ ≥ 0 we have that λx is also in K. A convex cone is a
cone K that is also a convex set. Equivalently, a set K ∈ Rd is a convex cone if for
every x, y ∈ K and λ, γ ≥ 0 we have that λx + γy ∈ K. If a convex cone K ∈ Rd is

2



also a polyhedron then we call K a polyhedral cone. Polyhedral cones are unbounded
polyhedra, but not all unbounded polyhedra are polyhedral cones.

P

P

A polytope. An unbounded polyhedron.

P P

A convex cone. A nonconvex cone.

Provided with a set of points A ⊂ Rd there is a natural way to produce a convex
set containing A. The convex hull of A is the smallest convex set that contains the
set A, and it is denoted conv(A). Similarly, we can consider the cone over the set A,
which we call the conic hull of A:

co(A) := {λx : x ∈ A, λ ≥ 0}.

The conic hull of a set A yields a natural way to construct a cone associated to a
polytope. Given a polytope P ∈ Rd we first lift P to height one in Rd+1

P1 := {(x, 1) ∈ Rd+1 : x ∈ P}.

Here, (x, 1) := (x1, x2, . . . , xd, 1) ∈ Rd+1. We then define the cone over P to be the
polyhedral cone

cone(P) := co(P1).

Notice that we can recover P from cone(P) as the intersection of cone(P) with the
hyperplane defined by the linear equation xd+1 = 1. The relationship between P and
cone(P) generalizes nicely. A set B ⊂ Rd is called a base of a cone K ⊂ Rd if 0 /∈ B
and every x ∈ K has a unique representation as x = λb for some λ ≥ 0 and b ∈ B.

3



(-1,0,0)

(0,0,1)

(0,0,-1)

(0,1,0)(0,-1,0)

(1,0,0) (1,1,0)

(1,0,1)

(0,1,1)

Figure 1.1: The (3, 2)-hypersimplex is two-dimensional.

The Dimension of a Polyhedron

From our examples so far, it is easy to see that a polyhedron, or more generally,
any convex set should have an associated dimension. Intuitively, we would like this
dimension to be the smallest dimension of any ambient space containing our set.
For example, the polytope in Figure 1.1 is two-dimensional, even though we draw it
in dimension three. Recall that a set C ⊂ Rd is convex if for every x, y ∈ A and
0 ≤ t ≤ 1 we have that tx + (1 − t)y ∈ A. The expression tx + (1 − t)y is an
example of a convex combination of points. More generally, a convex combination of
x(1), x(2), . . . , x(n) ∈ Rd is an expression of the form

λ1x
(1) + λ2x

(2) + · · ·+ λnx
(n)

where λ1 +λ2 + · · ·+λn = 1 and λi ≥ 0 for all 0 ≤ i ≤ 1. If we drop the requirement
that λi ≥ 0 then we call this expression an affine combination of x(1), x(2), . . . , x(n).
The affine hull of A ⊂ Rd is the collection of points in Rd that can be expressed as
an affine combination of finitely many points in A. That is, the affine hull of A is
the set

aff(A) :=

{
λ1x

(1) + λ2x
(2) + · · ·+ λnx

(n) : x(1), x(2), . . . , x(n) ∈ A,
n∑
j=1

λj = 1

}
.

The resulting set aff(A) is an affine subspace of Rd, meaning that it is a translation
of some linear subspace L of Rd. The dimension of a convex set C ⊂ Rd is the
dimension of this linear subspace L.

4



The Faces of a Polyhedron

Recall, that an affine hyperplane in Rd is a set of the form

H = {x ∈ Rd : a1x1 + a2x2 + · · ·+ anxn = b}

where a1, a2, . . . , an, b ∈ R. Any hyperplane H defines two closed halfspaces of Rd,
and these are the sets

H− = {x ∈ Rd : a1x1 + a2x2 + · · ·+ anxn ≤ b}, and

H+ = {x ∈ Rd : a1x1 + a2x2 + · · ·+ anxn ≥ b}.

A face of a convex set C ⊂ Rd is a subset F of C with the property that for every
x, y ∈ C and 0 < t < 1, tx + (1 − t)y ∈ F implies that x, y ∈ F . In other words,
each open line segment in C that intersects F has the property that its closure lies
in F . Notice that each face of a closed convex set is a closed convex set itself. A
face F of a polyhedron P is always exposed, meaning there is some affine hyperplane
H in Rd for which F = H ∩ C and C lies entirely in one of the closed halfspaces
defined by H. In particular, each face of a polyhedron is a polyhedron. It is natural
to categorize the faces of a convex set by dimension. For a d-dimensional polytope
P ∈ Rd, the vertices, edges, and facets are the 0-dimensional, 1-dimensional, and
(d− 1)-dimensional faces, respectively. Notice that if we consider P ⊂ Rd+1, we can
also think of P being a d-dimensional face of itself. We also consider the empty set
to be a (−1)-dimensional face of P .

A d-dimensional polyhedron P ⊂ Rd has the wonderful property that it can be
described in terms of either its highest dimensional faces or its lowest dimensional
(nonempty) faces. To understand these two types of descriptions we first examine the
case of polytopes. For a polytope P ⊂ Rd, the former description is commonly called
an H-representation of P , and the latter description is known as a V -representation
of P . An H-representation of P is a description of P as the intersection of finitely
many closed halfspaces. Thus, the definition of a polytope provided at the start of
this section is precisely an H-representation.

A V -representation is an alternate definition of a polytope that is given in terms
of its set of vertices. Given a set A ⊂ Rd a point x ∈ A is called an extreme point
of A provided that for any two points a, b ∈ A such that x = a+b

2
we have that

x = a = b. For a polytope P ⊂ Rd, the extreme points of P are exactly its vertices.
This observation becomes quite powerful in light of the following special case of a
theorem due to M.G. Krein and D.P. Milman.

Theorem 1.1.1 (The Krein-Milman Theorem). Let C ⊂ Rd be a closed and bounded
convex set. Then C is the convex hull of its set of extreme points.

Thus, a polytope is exactly the convex hull of its set of vertices, and so we define
a V -representation of P to be

P = conv(V )

where V denotes the set of vertices of P .

5



The H and V -representations of polytopes serve to provide representations of
polyhedral cones. Indeed, a polyhedral cone is also defined as the intersection of
finitely many closed half-spaces. However, we can also describe a polyhedral cone in
terms of its one dimensional faces. Let K ⊂ Rd be a cone. Given a nonzero point
x ∈ Rd the cone co(x) is called the ray spanned by x. A ray R contained in K is
called an extreme ray of K if for every x ∈ R and a, b ∈ K such that x = a+b

2
we have

that a, b ∈ K. The following proposition provides the intuitive connection between
the extreme rays of a convex cone K and the extreme points of any base of K.

Proposition 1.1.2. Let K ⊂ Rd be a convex cone with base B. A nonzero point
x ∈ K spans an extreme ray of K if and only if x = λb for some λ ≥ 0 and extreme
point b of B.

If P is a polyhedral cone with a closed and bounded base then this base is a
polytope. Thus, it follows from the Krein-Milman Theorem that P is the smallest
cone containing its extreme rays. That is, the cone P is completely described by its
one-dimensional faces.

Subdivisions of Polyhedra

A useful technique for examining the geometry of a polyhedron is to decompose it
into simpler polyhedra and study these pieces and how they fit together. A polyhedral
subdivision of a polyhedron P ⊂ Rd is a collection of polyhedra S = {Qi}i∈Λ such
that

(i) If Q ∈ S and F is a face of Q then F ∈ S,

(ii) If Q1, Q2 ∈ S then Q1 ∩Q2 ∈ S,

(iii) P =
⋃
i∈ΛQi.

Polyhedra admit numerous subdivisions, but some are certainly more useful than
others. A common practice is to consider subdivisions of P consisting of relatively
simple polyhedra that are easier to study.

Among the simplest polyhedra are the simplices. A set of points v0, v1, . . . , vd ∈ Rd

are called affinely independent if the set of vectors a1 − a0, a2 − a0, . . . , ad − a0 are
linearly independent in Rd. A d-simplex is the convex hull of d+1 affinely independent
points. A 2-simplex is a triangle, and a 3-simplex is a tetrahedron. So a d-simplex
is nothing more than d-dimensional generalization of a triangle. As such, the d-
simplex is, in the sense of number of vertices or facets, the “simplest” d-dimensional
polytope. Analogously, the “simplest” d-dimensional cones are the simplicial cones.
A d-dimensional simplicial cone P is the conic hull of any (d − 1)-simplex σ ∈ Rd,
i.e.

P = co(σ).

A triangulation of a polytope P ∈ Rd is a polyhedral subdivision S of P consisting
entirely of simplices. A triangulation of a polyhedral cone P ⊂ Rd is a polyhedral
subdivision S of P consisting of simplicial cones.
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Figure 1.2: Two triangulations of the 2− by− 2 square [0, 2]2.

A d-simplex σ ⊂ Rd has the least number of vertices possible for a d-dimensional
polytope, and in this sense is relatively simple to understand. However, the other
geometric and combinatorial properties of σ could still be quite chaotic. For instance,
we could choose the vertices of a simplex such that it has arbitrarily small volume.

This particular problem can be surpassed by appropriately restricting the choice of
vertices for σ; the result will be an extraordinarily useful family of simplices.

A polytope P ⊂ Rd is called a lattice or integral polytope if all of its vertices
are points in Zd. A unimodular d-simplex is a lattice simplex with smallest possible
volume. A polyhedral subdivision of a lattice polytope P ⊂ Rd is called a lattice
subdivision if it consists entirely of lattice polytopes. A unimodular triangulation of
P is a lattice subdivision of P consisting entirely of unimodular simplices. Since it
consists only of simplices, we denote a unimodular triangulation of P by∇. Figure 1.2
depicts a triangulation of the 2 − by − 2 square first with nonunimodular simplices
and then with unimodular simplices.

A unimodular triangulation ∇ of a lattice polytope P ⊂ Rd can be useful for
studying geometric, combinatorial, and algebraic properties of P . Many such proper-
ties can be revealed if we are able to “build” P from the simplices in ∇ as if it were a
puzzle. Given a triangulation ∇ of a d-dimensional polytope P let max∇ denote the
set of d-dimensional simplicies in ∇. We call an ordering of the simplices in max∇,
(σ1, . . . , σs), a shelling of ∇ if for each 2 ≤ i ≤ s, σi ∩ (σ1 ∪ · · · ∪ σi−1) is a union
of facets of σi. An equivalent condition for a shelling is that every σi has a unique
minimal (with respect to dimension) face that is not a face of the previous simplices
[46]. A triangulation with a shelling is called shellable. For a shelling and a maximal
simplex σ in the triangulation define the shelling number of σ, denoted #(σ), to be
the number of facets shared by σ and some previous simplex. Notice that #(σ) is
also the dimension of the unique minimal new face of σ. In Figure 1.3 we order the
simplices of our unimodular triangulation of the 2− by− 2 square from Figure 1.2 in
two ways. The first way is not a shelling and the second way is a shelling.

7



Figure 1.3: a non-shelling and a shelling of a triangulation of [0, 2]2.

1.2 Ehrhart Theory for Lattice Polytopes

In this section, we let P ⊂ Rd be a d-dimensional lattice polytope. For a positive
integer t ∈ Z>0 we let tP := {tx ∈ Rd : x ∈ P}, and we call tP the tth dilate of P .
The fundamental question of Ehrhart Theory is

How many lattice points, i.e. points in Zd, are contained in tP for a given t?

This question finds its motivation in the study of the volume of a lattice polytope.
To see this, think of each lattice point z = (z1, z2, . . . , zd) ∈ Zd as the center of a
d-cube

C(z) :=
d∏
i=1

[
zi −

1

2
, zi +

1

2

]
.

Then notice that, rather than dilating P by a factor of t, we can simply shrink our
lattice by a factor of 1

t
, i.e. (

1

t
Z
)d

:=

{
1

t
z : z ∈ Zd

}
.

These two processes are the same since the number of lattice points in tP is the same
as the number of points of

(
1
t

)
Zd within P , i.e.

|tP ∩ Zd| =
∣∣∣∣∣P ∩

(
1

t
Z
)d∣∣∣∣∣ .

As we shrink our lattice, the boxes C(z) also shrink. Since these shrinking boxes will
have volume 1

td
when we shrink by a factor of 1

t
we see that

lim
t−→∞

1

td
|tP ∩ Zd| = m(P),

where m(P) denotes the standard Euclidean volume (Lesbesgue measure) of P . Thus,
we study the value |tP ∩ Zd| for a lattice polytope P as t grows large. The following
theorem is due to E. Ehrhart [19].
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Theorem 1.2.1 (Ehrhart’s Theorem). The value |tP ∩ Zd| is a polyomial in t of
degree d.

We call this polynomial the Ehrhart polynomial of P and denote it by LP(t). The
Ehrhart polynomial has some remarkable properties. For one, it is quickly deduced
from the above limit that leading coefficient of LP(t) is precisely the volume m(P) of
our polytope.

One way to prove Ehrhart’s Theorem is to use properties of the Ehrhart Series of
P . This is the generating function

EhrP(x) := 1 +
∑
t>0

|tP ∩ Zd|xt.

A result of R. Stanley [44] states that, in closed form, EhrP(x) is a rational function
of the form

EhrP(x) =
h∗0 + h∗1x+ h∗2x

2 + · · ·+ h∗dx
d

(1− x)d+1
,

where the coefficients h∗0, h
∗
1, . . . , h

∗
d are all nonnegative integers. The polynomial

h∗ (P ; x) := h∗0 + h∗1x+ h∗2x
2 + · · ·+ h∗dx

d is called the (Ehrhart) h∗-polynomial of P .
Ehrhart’s Theorem then follows from an application of the following lemma.

Lemma 1.2.2. Suppose that

1 +
∑
t>0

f(t)xt =
g(x)

(1− x)d+1
.

Then f(t) is a polynomial of degree d for every t if and only if g(x) is a polynomial
degree at most d and g(1) 6= 0.

The polynomial h∗ (P ; x) is not only fundamental in this proof of Ehrhart’s theo-
rem, but is also interesting in its own right. Indeed, h∗ (P ; x) arises naturally through
the enumeration of combinatorial data. Thus, the nonnegativity of its coefficients
suggest that h∗ (P ; x) encodes combinatorial data associated to our polytope. Conse-
quently, combinatorial interpretations of h∗ (P ; x) have been investigated for impor-
tant families of lattice polytopes. For example, the h∗-polynomial of the d-cube can
be computed using basic techniques from enumerative combinatorics.

Example 1.2.3 (h∗-polynomial of the d-cube). For the d-cube [0, 1]d ⊂ Rd we have
that |t[0, 1]d ∩ Zd| = (t+ 1)d. Thus,

Ehr[0,1]d(x) =
∑
t≥0

(t+ 1)dxt.

The formula on the right arises from repeated applications of the operator x d
dx

to the
geometric series

∑
t≥0 x

t. By applying this operator to the closed form as well we
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develop the following formula.(
x
d

dx

)d(
1

1− x

)
=

(
x
d

dx

)d∑
t≥0

xt,

∑d
k=1 A(d, k)xk

(1− x)d+1
=
∑
t≥1

tdxt.

The polynomial Ad :=
∑d

k=1A(d, k)xk is called the dth Eulerian polynomial. By this
construction, Ad satisfies the following recursion

Ad = x(1− x)
d

dx
Ad−1 + dxAd−1.

Following some brief computations we can see that h∗
(
[0, 1]d; x

)
= 1

x
Ad.∑d

k=1A(d, k)xk−1

(1− x)d+1
=

1

x

∑
t≥1

tdxt.

∑d−1
k=1 A(d, k + 1)xk

(1− x)d+1
=
∑
t≥0

(t+ 1)dxt.

The Eulerian polynomial can alternatively be defined in terms of permutation statis-
tics. Consider the symmetric group Sd on the elements [d] := {1, 2, . . . , d}. For a
permutation π := π1π2 · · · πd ∈ Sd we say that i ∈ [d] is a descent of π if πi > πi+1.
We let des(π) denote the number of descents in a given permutation π ∈ Sd. Consider
the polynomial

Ed(x) =
∑
π∈Sd

x1+des(π).

The coefficient ed,k of xk in Ed(x) is therefore the number of permutations π ∈ Sd with
k − 1 descents. By restricting the recursion for Ad to a recursion for the coefficients
A(d, k) we see that

A(d, k) = kA(d− 1, k) + (d− k + 1)A(d− 1, k − 1).

Indeed, ed,k also satisfies this recursion for every d and k. To see this, simply count
the number of permutations π ∈ Sd with k−1 descents as follows. Every permutation
π ∈ Sd with k − 1 descents arises from a permutation ω ∈ Sd−1 in one of two ways.
Either ω has k−1 descents and π is given by placing the letter d in immediately after
a descent in ω (or at the end of ω), or ω has k− 2 descents and π is given by placing
d after any letter that is not located at a descent of π (or the beginning of ω). There
are ked−1,k ways to complete the former operation, and (d − k + 1)ed−1,k−1 ways to
complete the latter. Thus, A(d, k) = ed,k, and we conclude that

Ad =
∑
π∈Sd

x1+des(π).

10



Figure 1.4: The 3-cube triangulated by the symmetric group S3.

It is fascinating to note that the elements of the symmetric group Sd identify the
maximal (with respect to dimension) simplices in a unimodular triangulation of [0, 1]d.
The points x ∈ Rd lying in the relative interior of the simplex ∆π corresponding to
the permutation π ∈ Sd satisfy

xπ(1) < xπ(2) < · · · < xπ(d).

The existence of this triangulation was shown by R. Stanley in [43], and it is depicted
for the 3-cube in Figure 1.4. We will now discuss a technique that allows us to
compute h∗

(
[0, 1]d; x

)
using this triangulation.

A useful endeavor is to search for combinatorial interpretations of the coefficients
of h∗ (P ; x) in terms of the geometric structure of P . The following theorem of Stanley
[44] provides a natural approach to this problem for any lattice polytope admitting
a shellable unimodular triangulation.

Theorem 1.2.4. Let ∇ be a unimodular shellable triangulation of a d-dimensional
polytope P. Then

d∑
j=0

h∗jx
j =

∑
α∈max∇

x#(α)+1.

Example 1.2.5 (Shelling the octahedron). The octahedron depicted in Figure 1.5 is
triangulated with eight tetrahedral faces whose edges are given by the green and blue
lines. A shelling order on these tetrahedra is given by first placing the tetrahedra in
the upper half in a clockwise fashion, and then placing the tetrahedra in the bottom
half in a similar fashion. At each stage we record the dimension of the unique minimal
new face, and then apply Theorem 1.2.4 to conclude that the h∗-polynomial of this
polytope is 1 + 3x+ 3x2 + x3.

For a combinatorially defined polynomial with nonnegative coefficients, it is nat-
ural, from a probabilistic perspective, to investigate the distribution of these coeffi-
cients. Suppose that the coefficients of a polynomial p(x) = a0 + a1x + a2x

2 + adx
d
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(0,0,1)

(0,0,-1)

(0,1,0)(0,-1,0)

(1,0,0)

(-1,0,0)

Figure 1.5: The triangulated octahedron.

have the property that ak is the number of elements with property k in a collection
of combinatorial objects Ω, and properties k = 0, 1, . . . , d are all mutually exclusive.
Then the coefficients of p(x) encode the probability distribution(

a0∑d
i=0 ai

,
a1∑d
i=0 ai

, . . . ,
ad∑d
i=0 ai

)
,

and so it is reasonable to investigate the modality of the coefficients of p(x). The
polynomial p(x), and its coefficient vector (a0, a1, . . . , ad), is said to be unimodal if
there exists some 0 ≤ k ≤ d such that ai ≤ ai+1 for all i < k and ai−1 ≥ ai for all
i > k. We end this subsection with an example summarizing these ideas.

Example 1.2.6 (The h∗-polynomial of a lattice simplex). Suppose we have a d-dimensional
lattice simplex σ = conv(v0, v1, . . . , vd) ⊂ Rd for which we would like to compute
h∗ (σ; x). To do this, we will utilize a multivariate generating function for enumerat-
ing lattice points. Notice that we can encode any lattice point z = (z1, z2, . . . , zd) ∈ Zd
as a (laurent) monomial xz = xz11 x

z2
2 · · ·xzdd . Given a set A ⊂ Rd, the integer-point

transform of A is the multivariate generating function

TA(x) = TA(x1, . . . , xd) :=
∑

z∈A∩Zd
xz.

Notice that for a lattice polytope P ⊂ Rd, the integer-point transform of cone(P)
specializes to the Ehrhart series of P when evaluated a (1,1,. . . ,1,x). That is,

Tcone(P)(1, 1, . . . , 1, x) =
∑

z∈cone(P)∩Zd
1z11z2 · · · 1zdxzd+1 = EhrP(x).

In the special case of the simplex σ we can use this fact to quickly compute a
formula for h∗ (σ; x). The key to this computation is the fact that each integer
point in cone(σ) is given by adding a nonnegative integer combination of the vectors
(v0, 1), (v1, 1), . . . , (vd, 1) to an integer point in the fundamental parallelpiped

Π := {λ0(v0, 1) + λ1(v1, 1) + · · ·+ λd(vd, 1) : 0 ≤ λ0, λ1, . . . , λd < 1} .
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It then follows that

Tcone(σ)(x) =
TΠ(x)

(1− x(v0,1))(1− x(v1,1)) · · · (1− x(vd,1))
.

Hence, h∗ (σ; x) = TΠ(1, 1, . . . , 1, x). In particular, h∗i is the number of lattice points
(z1, . . . , zd, zd+1) in Π lying on the hyperplane xd+1 = i, and

∑d
i=0 h

∗
i is the total

number of lattice points in Π. Thus, the distribution(
h∗1∑d
i=0 h

∗
i

,
h∗1∑d
i=0 h

∗
i

, . . . ,
h∗d∑d
i=0 h

∗
i

)
,

is the probability distribution for selecting a lattice point in Π lying at height i for
i = 0, 1, . . . , d. Indeed, this distribution may be unimodal. However in [39], S. Payne
provides a method for constructing simplices whose h∗-polynomials achieve as many
peaks and valleys (of arbitrary depth) as one could desire. While this is may not be
surprising based simply on the algebraic structure of the polynomial, it is perhaps,
from a geometric perspective, more shocking when one realizes these coefficients via
the distribution of lattice points in Π across a family of parallel hyperplanes. Such
geometric phenomena as this have resulted in a strong interest in lattice polytopes P
for which h∗ (P ; x) is unimodal.

1.3 Spectrahedra and Spectrahedral Shadows

In this subsection we introduce a particularly elegant and useful family of convex
bodies called spectrahedra. Simply put, these convex bodies are defined by affine
sections of the cone of positive semidefinite matrices. To formalize this, we let Sp
denote the space of p × p real symmetric matrices, and Sp�0 denote the collection of
positive semidefinite matrices within Sp. When A ∈ Sp�0 we write A � 0. Since a
matrix A ∈ Sp is positive semidefinite if and only if xTAx ≥ 0 for every x ∈ Rp, we
can quickly verify that Sp�0 is a closed convex cone in Sp. A spectrahedron is a closed
convex set of the form

S =
{
x ∈ Rd : A(x) � 0

}
,

where A(x) := A0 +
∑d

i=1 xiAi for some A0, A1, . . . , Ad ∈ Sp. The expression

A0 +
d∑
i=1

xiAi � 0

is called a linear matrix inequality, since it is essentially the linear inequality

a1x1 + a2x2 + · · ·+ adxd ≥ b

where we have replaced the real numbers a1, a2, . . . , ad, b with the symmetric p × p
matrices A0, A1, . . . , Ad. Indeed, the set of matrices

A :=

{
A0 +

d∑
i=1

xiAi : x ∈ Rd

}
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Figure 1.6: The PSD cone in S2.

is precisely a hyperplane in Sp. In the case that A0, A1, . . . , Ad are linearly indepen-
dent the sets Sp�0 ∩ A and S are affinely equivalent. Thus, it is common practice to
refer to the set Sp�0 ∩ A as a spectrahedron as well.

Since a positive semidefinite matrix has all nonnegative eigenvalues, a spectrahe-
dron S can be described in terms of scalar inequalities defined by the coefficients of
the characteristic polynomial of the matrix A(x), i.e. S is a basic semialgebraic set.
That is, if Ip denotes the p× p identity matrix and

det(A(x)− λIp) = λp + ap−1λ
p−1 + ap−2λ

p−2 + · · ·+ a1λ+ a0,

then A(x) is positive semidefinite if and only if (−1)p−jaj ≥ 0 for all 0 ≤ j < p.
As a first example, notice the the positive semidefinite cone is itself a spectrahedron.
To see this, let Aij denote the p × p matrix consisting of all zeros except for entries
aij = aji = 1. Then Sp�0 is affinely equivalent to the set{

x ∈ R(p+1
2 ) :

∑
1≤i≤j≤1

xijAij � 0

}
.

When p = 2, we see that S2
�0 is defined by the inequalities

−(x+ y) ≥ 0, and

xy − z2 ≥ 0.

This cone is depicted in Figure 1.6. Notice that the boundary of S2
�0 is given by

det(A(x)) = 0 and the inequality −(x + y) ≥ 0 serves to isolate the desired region.
Indeed, this will be the case for any spectrahedron S since we always have that
a0 = det(A(x)).

Classic algebraic sets can yield spectrahedra. For example, each of the conic
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sections bounds a spectrahedron defined using only 2× 2 linear matrix inequalities.

(
1− x y
y x

)
� 0.

(
1− x 1

3
y

1
3
y 1

4
x

)
� 0.

(
x− y 1

1 x+ y

)
� 0.

(
y x
x 1

)
� 0.

Using a 3× 3 linear matrix inequality we see that the convex hull of the bounded
portion of the real graph of the elliptic curve

2y2 + x3 + 3x2 − x− 3 = 0

is a spectrahedron [7]. This spectrahedron is depicted in Figure 1.7, and it is given
by the linear matrix inequalityx+ 1 0 y

0 2 −x− 1
y −x− 1 2

 � 0.
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Figure 1.7: The shaded region is a spectrahedron.

Spectrahedra and Polyhedra

An important family of spectrahedra are the polyhedra. Recall that a polyhedron
P ⊂ Rd is defined by a finite collection of linear inequalities

a11x1 + a12x2 + · · ·+ a1dxd ≤ b1,

a21x1 + a22x2 + · · ·+ a2dxd ≤ b2,

...

an1x1 + an2x2 + · · ·+ andxd ≤ bn.

For convenience, we let ai = (ai1, ai2, . . . , aid)
T and we write the inequality

ai1x1 + ai2x2 + · · ·+ aidxd ≤ bi

in the form 〈ai, x〉 ≤ bi. The polyhedron P then has the spectrahedral representationx ∈ Rd :


b1 − 〈a1, x〉 0 · · · 0

0 b2 − 〈a2, x〉 0
...

... 0
. . . 0

0 · · · 0 bn − 〈an, x〉

 � 0

 .

Moreover, any linear matrix inequality defined by diagonal matrices yields a polyhe-
dron.

From a convex optimization perspective, spectrahedra are perhaps the most nat-
ural relaxation of polyhedra. Recall that a linear program (LP) is a problem of the
form

minimize cTx,
subject to Ax = b,

x ≥ 0,

where c, x ∈ Rd, and A is an n × d matrix. The feasible region of this program is
the polyhedron defined by the linear inequalities xi ≥ 0 for 0 ≤ i ≤ 1, Ax ≤ b, and

16



−Ax ≤ −b. A semidefinite program (SDP) is the problem

minimize 〈C,X〉,
subject to 〈A,X〉 = bi, for i = 1, . . . , p

X � 0,

where C,A1, A2, . . . , Ap ∈ Sp, X ∈ Sp�0, and 〈X, Y 〉 = Tr(XTY ) is the Frobenius
inner product. The feasible region of a semidefinite program is a spectrahedron since
it is an affine section of the cone of positive semidefinite matrices. The program is
linear exactly when the feasible region is a polyhedron. Thus, the SDP programs
relax linear programs, and this is apparent in the geometry of the feasible regions.

Example 1.3.1 (The derivative of a simplex). Consider the linear program

minimize cTx,
subject to x1 + x2 + · · ·+ xd = 1,

x ≥ 0.

The feasible region of this linear program is the standard (d−1)-simplex or probability
simplex, which is precisely the convex hull of the standard basis vectors e1, . . . , ed ∈ Rd

∆d−1 = conv(e1, e2, . . . , ed).

To relax our feasible region to a (nonpolyhedral) spectrahedron we first consider the
cone over ∆d−1. Notice that

co(∆d−1) = Rd
≥0 =

{
x ∈ Rd : xi ≥ 0 for 1 ≤ i ≤ d

}
.

The boundary of this cone is given by the dth elementary symmetric polynomial
Ed,d(x) = x1x2 · · ·xd, and our feasible region ∆d−1 is returned by slicing this cone
with the hyperplane x1 + x2 + · · · + xd = 1. To relax this cone we consider the
hypersurface defined by the sum of all the partial derivatives of Ed,d, i.e. the (d−1)th

elementary symmetric polynomial

Ed,d−1(x) =
d∑
i=1

∂

∂xi
Ed,d(x).

Our relaxed cone has boundary defined by the hypersurface {Ed,d−1 = 0} and its inte-
rior is the connected component of Rd\{Ed,d−1 = 0} containing the point (1, 1, . . . , 1)T .
To return our relaxed simplex we intersect this cone with the hyperplane

x1 + x2 + · · ·+ xd = 1.

The result is the spectrahedron

Sd−1 :=

x ∈ Rd :


1−∑i 6=1 xi 1−∑i xi · · · 1−∑i xi

1−∑i xi 1−∑i 6=2 xi
...

... 1−∑i xi
. . . 1−∑i xi

1−∑i xi · · · 1−∑i xi 1−∑i 6=d−1 xi

 � 0

 .
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When d = 3, our feasible region is a triangle and this process returns an ellipse
containing our triangle.

(
1− y 1− x− y

1− x− y 1− y

)
� 0

When d = 4, the feasible region ∆3 is a tetrahedron, and our relaxation is the closed
and bounded portion of the Cayley nodal cubic surface. Notice that the four nodes
are precisely the vertices of ∆3, and the edges of ∆3 are still faces of S3, whereas the
facets of ∆3 have been relaxed to families of regular extreme points.

 1− y − z 1− x− y − z 1− x− y − z
1− x− y − z 1− x− z 1− x− y − z
1− x− y − z 1− x− y − z 1− x− y

 � 0

These spectrahedral representations were first identified by R. Sanyal in [42]. In [8] P.
Brändén generalizes this process to the higher derivatives of Rn

≥0, and a spectrahedral
representation of each of these derivatives is provided using the Matrix-Tree Theorem.

Spectrahedral Shadows and Polar Bodies

We have now seen a number of examples of convex sets that are spectrahedra but
not polyhedra. However, we have yet to identify a nonspectrahedral convex set.
A natural way to discern a nonspectrahedral convex set is by examining its facial
structure. Recall that a subset F of a closed convex set C ⊂ Rd is a face of C if for
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Figure 1.8: The convex hull of the two ellipses is the shadow of the cylinder.

every x, y ∈ C and 0 < t < 1, tx+(1− t)y ∈ F implies that x, y ∈ F . In other words,
each open line segment in C that intersects F has the property that its closure lies
in F . A face F of C is called exposed if there is some affine hyperplane H in Rd for
which F = H ∩C and C lies entirely in one of the closed halfspaces defined by H. In
[41], Ramana and Goldman show that all faces of a spectrahedron are exposed. So a
quick way to identify a nonspectrahedral body is to show that it has some nonexposed
faces. For example, the convex body depicted in Figure 1.8 has nonexposed faces and
therefore is not a spectrahedron. However, it is a projection of a spectrahedron. A
spectrahedral shadow is a closed convex set of the form

S =
{
x ∈ Rd : A(x, y) � 0

}
,

where

A(x, y) := A0 +
d∑
i=1

xiAi +
m∑
j=1

yiBi

for some A0, A1, . . . , Ad, B1, B2, . . . , Bm ∈ Sp. That is, S is the projection of the
spectrahedron in Rd+m defined by the linear matrix inequality A(x, y) � 0. The
convex body in Figure 1.8 is the spectrahedral shadow given by

A(x, y) =


1− x+z√

2
y 0 0

y x+y√
2

0 0

0 0 1− z−x√
2

0

0 0 0 1 + z−x√
2


This can be shown by constructing the ideal in R[x, y, z] generated by the determinant
of A(x, y) and its partial derivative with respect to z, and then computing the primary
decomposition of the ideal given by eliminating z.

Spectrahedral shadows play an important role in the theory of spectrahedra. Not
only do they generalize spectrahedra, but they offer a beautiful representation of the
polar body of a spectrahedron. Recall that the polar of a subset K ⊂ Rd is

K◦ := {z ∈ Rd : 〈x, z〉 ≤ 1 for all x ∈ K},
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and the dual of K, denoted K∨ is the negative of the polar, i.e. K∨ = −K◦. Let
W := A0 +spanR(A1, . . . , Ad) be the linear subspace of Sp defined by A0, . . . , Ad ∈ Sp,
and let

πW : Sp → Sp/W⊥ ' Rd, X 7→ (〈X,A1〉, . . . , 〈X,Ad〉)
be the canonical projection. We define the

(
p+1

2

)
-dimensional spectrahedron

R = {X ∈ Sp�0 : 〈X,A0〉 ≤ 1}.

In [41], Ramana and Goldman show that the polar of the spectrahedron S defined
by A0 +

∑d
i=1 xiAi � 0 is always a spectrahedral shadow, namely the closure of the

image of the spectrahedron R under the projection πW , i.e. S◦ = cl(πW(R)). As we
see from this example, the polar of a spectrahedron is not always be a spectrahedron.
This stands in stark contrast to the polarity conditions for polyhedra.

1.4 Gaussian Graphical Models

Many problems in statistics can be addressed using techniques from algebraic geom-
etry, commutative algebra, combinatorics, and convex geometry. This is the focus
of the field of study called algebraic statistics. Our interest is in the combinatorial
convex geometry of the maximum likelihood problem for Gaussian graphical models.
Recall that an p-dimensional random vector X ∈ Rp follows a multivariate Gaussian
(normal) distribution N (µ,Σ) if it has the probability density function

pθ =
1

(2π)
p
2 (det Σ)

1
2

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,

where θ = (µ,Σ), µ ∈ Rp is the mean vector, and Σ ∈ Sp�0 is the associated covari-
ance matrix. The Gaussian distributions are multivariate analogs of the standard
normal distribution or “bell curve.” Here, the mean vector serves as the center of the
distibution, and the eigenvalues of Σ define the spread of the distribution.

A statistical model is a family of probability distributions defined on some state
space X equipped with a base measure and a measurable function T : X −→ Rd.
The image of this map T (X ) is called the sufficient statistics. In the case of the
(saturated) multivariate Gaussian model we take X = Rp and T (x) = 1

2
xxT ∈ Sp.

Thus, the sufficient statistics is all p×p symmetric matrices of rank at most one. Since
the covariance matrix Σ is positive definite it is expressible as a sum of the sufficient
statistics of the Gaussian model. Thus, our probability distributions N (µ,Σ) are
defined by the choice of mean vector µ and an element in the interior of the cone of
sufficient statistics conv(T (X )), which in this case is the entire positive semidefinite
cone. More generally, a Gaussian model is a collection of probability distributions

PΘ := {N (µ,Σ) : θ = (µ,Σ) ∈ Θ} ,

where Θ is a subset of Rp × Sp�0.
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For random vectors X(1), X(2), . . . , X(n) ∈ Rp that are independently and iden-
tically distributed according to some unknown probability distribution pθ ∈ PΘ, we
define the likelihood function

Ln(θ) :=
n∏
i=1

pθ(X
(i)).

It is common to replace the likelihood function with its logarithm `n(θ) = log(Ln(θ)).
The maximum likelihood estimation problem is the convex optimization problem

maximize `n(θ),
subject to θ ∈ Θ.

The unknown parameter θ̂ that solves this problem is called the maximum likelihood
estimator of θ. Provided with data X(1) = x(1), X(2) = x(2), . . . , X(n) = x(n), the
maximum likelihood estimate of θ is the realization of the parameter θ̂ with respect
to this data. The maximum likelihood estimate is thus the parameter value θ̂ that
maximizes the likelihood of observing the given data. In the case of a Gaussian model,
following some arithmetic simplification, the log-likelihood function is

`n(θ) = −n
2

log det Σ− 1

2
Tr

(
Σ−1

n∑
i=1

(X(i) − µ)(X(i) − µ)T

)
,

up to a normalizing constant.
Many important Gaussian models are of the form Θ = Rp × Θ2 for a subset

Θ2 ⊂ Sp. In these models, we do not put any assumption on our choice of mean
vector µ, but we restrict the possible choices of covariance matrices. In this case, it
is helpful to parametrize the model in terms of the inverse matrix K := Σ−1, which
we call the concentration matrix. Using the concentration matrix, the log-likelihood
function becomes the strictly convex function

`n(K) =
n

2
log detK − n

2
Tr(SK),

where

S :=
1

n

n∑
i=1

(X(i) −X)(X(i) −X)T and X :=
1

n

n∑
i=1

X(i),

are the sample covariance matrix and sample mean vector, respectively.
We are interested in the Gaussian graphical models, which are nicely parametrized

in terms of their concentration matrices. For a graph G the cone of concentration
matrices of G, denoted KG, is the collection of all positive definite p×p matrices with
zeros in all entries ij corresponding to nonedges of the graph G. For a graph G on
[p] vertices, the (undirected) Gaussian graphical model for G is the Gaussian model
Rp ×Θ2 where

Θ2 =
{

Σ : Σ−1 ∈ KG
}
.
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For the Gaussian graphical models, the maximum likelihood estimation problem
can be rephrased as a matrix completion problem. Recall that a (real) p × p partial
matrix A = [aij] is a matrix in which some entries are specified real numbers and the
remainder are unspecified. It is called symmetric if all the specified entries satisfy
aij = aji, and it is called PD-completable if there exists a specification of the unknown

entries of A that produces a matrix Ã ∈ Sp that is positive definite. A partial sample
covariance matrix is a symmetric partial p × p matrix in which a specified entry Sij
is the covariance between the ith and jth entries in a random vector. For example,
the following matrix is a partial sample covariance matrix in which the specified
covariance data is supported by the edges and vertices of the cycle on four vertices.

4

1 2

3
S =


10 12 ? −3
12 16 1 ?
? 1 13 6
−3 ? 6 10

 −→


10 12 −6 −3
12 16 1 −4
−6 1 13 6
−3 −4 6 10

 ∈ S4
�0.

A positive definite completion of this partial sample covariance matrix amounts to a
specification of the remaining entries that results in a matrix living in the cone S4

�0.
The following theorem proven in [18] reduces maximum likelihood estimation for
Gaussian graphical models to identifying a specific PD-completion of a given partial
sample covariance matrix.

Theorem 1.4.1. Let G be a graph on vertex [p] with edge set E. For the Gaussian
graphical model Θ2, the maximum likelihood estimate Σ̂ for a given sample covariance
matrix S is the unique positive definite matrix Σ̂ for which Σ̂ij = Sij for every edge

ij ∈ E and for i = j that satisfies Σ̂−1 ∈ KG.

Theorem 1.4.1 introduces an excellent opportunity to study this problem via com-
binatorial convex geometry. For a fixed graph G the collection of all PD-completable
symmetric partial matrices M ∈ RE∪V forms a convex cone which we denote by
CG. Indeed, CG is precisely the image of the PD cone Sp�0 under the projection
πG : Sp −→ RE∪V . Theorem 1.4.1 implies that we need to be able to identify when
a given partial sample covariance matrix S ∈ RE∪V lies in CG. It is well-known that
the dual cone to CG is KG, the cone of concentration matrices of G. Thus, our partial
sample covariance matrix S is PD-completable if and only if 〈S,X〉 > 0 for every
extreme matrix X in the topological closure of KG. In Chapter 5 we will study the
combinatorial convex geometry of these extreme matrices.

Copyright c© Liam Solus, 2015.
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Chapter 2 The r-stable Hypersimplices

2.1 Hypersimplices and r-stable Hypersimplices

We now turn our attention to a special collection of polytopes which we will call
the r-stable (n, k)-hypersimplices. The (n, k)-hypersimplices are an important col-
lection of integer polytopes arising naturally in the settings of convex optimization,
matroid theory, combinatorics, and algebraic geometry. For integers 0 < k < n let
[n] := {1, 2, . . . , n} and let

(
[n]
k

)
denote the collection of all k-subsets of [n]. The

characteristic vector of a subset I of [n] is the (0, 1)-vector εI = (ε1, . . . , εn) for which
εi = 1 for i ∈ I and εi = 0 for i /∈ I. The (n, k)-hypersimplex is the convex hull
in Rn of the collection of characteristic vectors {εI : I ∈

(
[n]
k

)
}, and it is denoted

∆n,k. Generalizing the standard (n − 1)-simplex, the (n, k)-hypersimplices serve as
a useful collection of examples in these various contexts. While these polytopes are
well-studied, there remain interesting open questions about their properties in the
field of Ehrhart theory, the study of integer point enumeration in dilations of rational
polytopes (see for example [14]). We will now define a family of subpolytopes nested
within the (n, k)-hypersimplex that share interesting geometric similarities with the
hypersimplex in which they are contained.

Label the vertices of a regular n-gon embedded in R2 in a clockwise fashion from
1 to n. We define the circular distance between two elements i and j of [n], denoted
cd(i, j), to be the number of edges in the shortest path between the vertices i and
j of the n-gon. We also denote the path of shortest length from i to j by arc(i, j).
A subset S ⊂ [n] is called r-stable if each pair i, j ∈ S satisfies cd(i, j) ≥ r. The
following polytopes will be the focus of our attention in chapters 2, 3, and 4.

Definition 2.1.1. The r-stable (n, k)-hypersimplex, denoted ∆
stab(r)
n,k , is the convex

hull of the characteristic vectors of all r-stable k-subsets of [n].

For fixed n and k, these polytopes form the nested chain

∆n,k ⊃ ∆
stab(2)
n,k ⊃ ∆

stab(3)
n,k ⊃ · · · ⊃ ∆

stab(bnkc)
n,k .

In this chapter, our goal is to investigate the geometry of these polytopes in detail.
In chapters 3 and 4 we will then use this geometry to study the combinatorics of the
Ehrhart h∗-polynomials of these polytopes. The contents of this chapter is in part
joint work with Benjamin Braun and Takayuki Hibi.

2.2 A Regular Unimodular Triangulation

In [32], Lam and Postnikov compare four different triangulations of the hypersim-
plex, and show that they are identical. While these triangulations possess the same
geometric structure the constructions are all quite different, and consequently each
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one reveals different information about the triangulation’s geometry. Here, we uti-
lize properties of two of these four constructions. The first is a construction given by
Sturmfels in [47] using techniques from toric algebra. The second construction, known
as the circuit triangulation, is introduced in [32] by Lam and Postnikov. We will show
that this triangulation restricts to a triangulation of the r-stable hypersimplex.

Sturmfels’ Triangulation.

We recall the description of this triangulation presented in [32]. Let I and J be two k-
subsets of [n] and consider their multi-union I ∪J . Let sort(I ∪ J) = (a1, a2, . . . , a2k)
be the unique nondecreasing sequence obtained by ordering the elements of the multi-
set I ∪J from least-to-greatest. Now let U(I, J) := {a1, a3, . . . , a2k−1} and V(I, J) :=
{a2, a4, . . . , a2k}. As an example consider the 4-subsets of [8], I = {1, 3, 4, 6} and
J = {3, 5, 7, 8}. For this pair of subsets we have that sort(I ∪ J) = (1, 3, 3, 4, 5, 6, 7, 8),
U(I, J) = {1, 3, 5, 7}, and V(I, J) = {3, 4, 6, 8}. The ordered pair of k-subsets (I, J)
is said to be sorted if I = U(I, J) and J = V(I, J). Moreover, an ordered d-collection
I = (I1, I2, . . . , Id) of k-subsets is called sorted if each pair (Ii, Ij) is sorted for all
1 ≤ i < j ≤ d. For a sorted d-collection I we let σI denote the (d − 1)-dimensional
simplex with vertices εI1 , εI2 , . . . , εId .

Theorem 2.2.1. [47, Sturmfels] The collection of simplices σI, where I varies over
the sorted collections of k-element subsets of [n], forms a triangulation of ∆n,k.

Notice that the maximal simplices in this triangulation correspond to the maximal-
by-inclusion sorted collections, which all have d = n.

This triangulation of ∆n,k was identified by Sturmfels’ via the correspondence
between Gröbner bases for the toric ideal associated to ∆n,k and regular triangulations
of ∆n,k. To construct the toric ideal for ∆n,k let k[xI ] denote the polynomial ring in
the

(
n
k

)
variables xI labeled by the k-subsets of [n], and define the semigroup algebra

homomorphism

ϕ : k[xI ] −→ k[z1, z2, . . . , zn]; ϕ : xI 7−→ zi1zi2 · · · zik , for I = {i1, i2, . . . , ik}.

The kernel of this homomorphism, kerϕ, is the toric ideal of ∆n,k. The correspondence
between Gröbner bases for kerϕ and regular triangulations of ∆n,k is given as follows.
Any sufficiently generic height vector induces a regular triangulation of ∆n,k. On the
other hand, such a height vector induces a term order < on the monomials in the
polynomial ring k[xI ]. Thus, we may identify a Gröbner basis for kerϕ with respect
to this term order, say G<. Moreover, the initial ideal associated to a Gröbner basis
is square-free if and only if the corresponding regular triangulation is unimodular.
The details of this correspondence are outlined nicely in [47].

Theorem 2.2.2. [47, Sturmfels] The set of quadratic binomials

G< :=

{
xIxJ − xU(I,J)xV(I,J) : I, J ∈

(
[n]

k

)}
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(0, 1, 0, 0, 1) (0, 0, 1, 0, 1) (1, 0, 1, 0, 0)

(0, 1, 0, 1, 0) (1, 0, 0, 1, 0)

2 5

3

1

4

Figure 2.1: Here is a minimal circuit in the directed graph G5,2.

is a Gröbner basis for kerϕ under some term order < on k[xI ] such that the underlined
term is the initial monomial. In particular, the initial ideal of G< is square-free, and
the simplices of the corresponding unimodular triangulation are σI, where I varies
over the sorted collections of k-element subsets of [n].

We denote this triangulation of ∆n,k by ∇n,k, and we let max∇n,k denote the
set of maximal simplices in ∇n,k. In [32], Lam and Postnikov prove a more general
version of Theorem 2.2.2 which we will utilize to show that this triangulation restricts
to a triangulation of the r-stable hypersimplex ∆

stab(r)
n,k .

The Circuit Triangulation.

The second construction of this triangulation that we will utilize first appeared in
[32], and it arises from examining minimal length circuits in a particular direct graph
with labeled edges. We construct this directed graph as follows. Let Gn,k be the
directed graph with vertices εI , where I varies over all k-subsets of [n]. For a vertex
ε = (ε1, . . . , εn) of Gn,k we think of the coordinate indices i as elements of the cyclic
group Z/nZ. Hence, εn+1 = ε1. We construct the directed, labeled edges of Gn,k as
follows. Suppose ε = (ε1, . . . , εn) and ε′ are vertices of Gn,k for which (εi, εi+1) = (1, 0)
and the vector ε′ is obtained from ε by switching εi and εi+1. Then we include the

directed labeled edge ε
i→ ε′ in Gn,k. Hence, each edge of Gn,k is given by shifting a

1 in a vertex ε exactly one entry to the right (modulo n), and this can happen if and
only if the next place is occupied by a 0.

We are interested in the circuits of minimal possible length in the graph Gn,k. We
will call such a circuit minimal. A minimal circuit in Gn,k containing the vertex ε is
given by a sequence of edges moving each 1 in ε into the position of the 1 directly to
its right. Hence, the length of such a circuit is precisely n. An example of a minimal
circuit is given in Figure 2.1.

For a fixed initial vertex, the sequence of labels of edges in a minimal circuit forms
a permutation ω = ω1ω2 · · ·ωn ∈ Sn, the symmetric group on n elements. There is
one such permutation for each choice of initial vertex in the minimal circuit. Hence,
a minimal circuit in Gn,k corresponds to an equivalence class of permutations in Sn
where permutations are equivalent modulo cyclic shifts ω1 · · ·ωn ∼ ωnω1 · · ·ωn−1. In
the following, we choose the representative ω of the class of permutations associated
to the minimal circuit for which ωn = n. We remark that this corresponds to picking
the initial vertex of the minimal circuit to be the lexicographically maximal (0, 1)-
vector in the circuit. For example, the lexicographic ordering on the (0, 1)-vectors in
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the circuit depicted in Figure 2.1 is

(1, 0, 1, 0, 0) > (1, 0, 0, 1, 0) > (0, 1, 0, 1, 0) > (0, 1, 0, 0, 1) > (0, 0, 1, 0, 1),

and the permutation given by reading the edge labels of this circuit beginning at
vertex (1, 0, 1, 0, 0) is ω = 31425. Thus, we see that ωn = n as desired.

Theorem 2.2.3. [32, Lam and Postnikov] A minimal circuit in the graph Gn,k cor-
responds uniquely to a permutation ω ∈ Sn modulo cyclic shifts. Moreover, a permu-
tation ω ∈ Sn with ωn = n corresponds to a minimal circuit in Gn,k if and only if the
inverse permutation ω−1 has exactly k − 1 descents.

We label the minimal circuit in the graph Gn,k corresponding to the permutation
ω ∈ Sn with ωn = n by (ω). Let v(ω) denote the set of all vertices εI of ∆n,k used by
the circuit (ω), and let σ(ω) denote the convex hull of v(ω).

Theorem 2.2.4. [32, Lam and Postnikov] The collection of simplices σ(ω) corre-
sponding to all minimal circuits in Gn,k forms the collection of maximal simplices
of a triangulation of the hypersimplex ∆n,k. This triangulation is identical to the
triangulation ∇n,k.

We call this construction of ∇n,k the circuit triangulation. To simplify notation we
will often write ω for the simplex σ(ω) ∈ ∇n,k.

The induced triangulation of the r-stable hypersimplex.

Let M be a collection of k-subsets of [n], and let PM denote the convex hull in Rn

of the (0, 1)-vectors {εI : I ∈ M}. Notice that PM is a subpolytope of ∆n,k. The
collection M is said to be sort-closed if for every pair of subsets I and J in M the
subsets U(I, J) and V(I, J) are also in M. In [32], Lam and Postnikov proved the
following theorem.

Theorem 2.2.5. [32, Lam and Postnikov] The triangulation ∇n,k of the hypersimplex
∆n,k induces a triangulation of the polytope PM if and only if M is sort-closed.

We then have the following corollary to this theorem.

Corollary 2.2.6. Fix an integer 0 < r ≤
⌊
n
k

⌋
. Let M be the collection of r-stable

k-subsets of [n]. The triangulation ∇n,k induces a triangulation of the r-stable hyper-

simplex PM = ∆
stab(r)
n,k .

Proof. By Theorem 2.2.5, it suffices to show that the collectionM is sort-closed. Let
I and J be two elements ofM, and consider sort(I ∪ J) = (a1, a2, . . . , a2k). Suppose
for the sake of contradiction that for some i, ai+2 = ai + t for some t ∈ [r − 1]. Here
we think of our indices and addition modulo n. We remark that t must be nonzero
since the multiplicity of each element of [n] in sort(I ∪ J) is at most two. Without
loss of generality, we assume that ai ∈ I. Hence, ai+2 ∈ J since I is r-stable and
cd(ai, ai+2) < r. Since sort(I ∪ J) is nondecreasing it follows that ai+1 = ai + j for
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some j ∈ {0, 1, . . . , t}. First consider the cases where j = 0 and j = t. In the former
case we have that ai+1 = ai, and in the latter case ai+1 = ai+2. Hence, in the former
case, the multiplicity of ai in sort(I ∪ J) is two. Thus, ai appeared in both I and J .
Since ai+2 ∈ J , this contradicts the assumption that J is r-stable. Similarly, in the
latter case the multiplicity of ai+2 in sort(I ∪ J) is two, so ai+2 must also appear in I,
and this contradicts the assumption that I is r-stable. Now suppose that 0 < j < t.
Then since I is r-stable and ai ∈ I, it must be that ai+1 ∈ J . But since J is r-stable
and ai+2 ∈ J , then ai+1 ∈ I, a contradiction.

We let ∇r
n,k denote the triangulation of ∆

stab(r)
n,k induced by ∇n,k. This gives the

following nesting of triangulations

∇n,k ⊃ ∇2
n,k ⊃ ∇3

n,k ⊃ · · · ⊃ ∇
bnkc
n,k .

In Section 3.1, the following lemma will play a key role.

Lemma 2.2.7. If n ≡ 1 mod k, then ∆
stab(r)
n,k is (n−1)-dimensional for all r ∈

[
bn
k
c
]
.

In particular, ∆
stab(bnk c)
n,k is a unimodular (n− 1)-simplex.

Proof. Notice first that for r =
⌊
n
k

⌋
there are precisely n r-stable k-subsets of [n].

Hence, ∆
stab(r)
n,k is an (n − 1)-dimensional simplex. Now suppose ε is a vertex of this

simplex. Then precisely k entries in ε are occupied by 1’s, k − 1 pairs of these 1’s
are separated by r − 1 0’s, and the remaining pair is separated by r 0’s. Hence, the
only 1 that can be moved to the right and result in another r-stable vertex is the
left-most 1 in the pair of 1’s separated by r 0’s. Making this move n times results
in returning to the vertex ε, and produces a minimal circuit (ω) in Gn,k using only

r-stable vertices. Since there are only n such vertices it must be that σ(ω) = ∆
stab(r)
n,k .

We may also prove this result using Sturmfels’ construction of this triangulation.
Simply notice that there are precisely n

⌊
n
k

⌋
-stable k-subsets of [n], namely

{1, 1 +
⌊
n
k

⌋
, 1 + 2

⌊
n
k

⌋
, . . . , 1 + (k − 1)

⌊
n
k

⌋
},

{2, 2 +
⌊
n
k

⌋
, 2 + 2

⌊
n
k

⌋
, . . . , 2 + (k − 1)

⌊
n
k

⌋
},

...
{n, n+

⌊
n
k

⌋
, n+ 2

⌊
n
k

⌋
, . . . , n+ (k − 1)

⌊
n
k

⌋
}.

It is easy to see that these subsets form a sorted collection of k-subsets of [n].
Hence, they correspond to a unimodular (n−1)-simplex in the triangulation∇n,k.

We now utilize the triangulation ∇r
n,k to compute the facets of ∆

stab(r)
n,k .

2.3 The Facets of the r-stable Hypersimplices

We first recall the definitions of the (n, k)-hypersimplices and the r-stable (n, k)-
hypersimplices. For integers 0 < k < n let [n] := {1, 2, . . . , n} and let

(
[n]
k

)
denote

the collection of all k-subsets of [n]. The characteristic vector of a subset I of [n] is
the (0, 1)-vector εI = (ε1, . . . , εn) for which εi = 1 for i ∈ I and εi = 0 for i /∈ I. The
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(n, k)-hypersimplex is the convex hull in Rn of the collection of characteristic vectors
{εI : I ∈

(
[n]
k

)
}, and it is denoted ∆n,k. Label the vertices of a regular n-gon embedded

in R2 in a clockwise fashion from 1 to n. Given a third integer 1 ≤ r ≤
⌊
n
k

⌋
, a subset

I ⊂ [n] (and its characteristic vector) is called r-stable if, for each pair i, j ∈ I,
the path of shortest length from i to j about the n-gon uses at least r edges. The
r-stable n, k-hypersimplex, denoted by ∆

stab(r)
n,k , is the convex polytope in Rn which

is the convex hull of the characteristic vectors of all r-stable k-subsets of [n]. For a
fixed n and k the r-stable (n, k)-hypersimplices form the nested chain of polytopes

∆n,k ⊃ ∆
stab(2)
n,k ⊃ ∆

stab(3)
n,k ⊃ · · · ⊃ ∆

stab(bnkc)
n,k .

Notice that ∆n,k is precisely the 1-stable (n, k)-hypersimplex.

The definitions of ∆n,k and ∆
stab(r)
n,k provided are V -representations of these poly-

topes. In this section we provide the minimal H-representation of ∆
stab(r)
n,k , i.e. its

collection of facet-defining inequalities. It is well-known that the facet-defining in-
equalities of ∆n,k are

∑n
i=1 xi = k together with x` ≥ 0 and x` ≤ 1 for all ` ∈ [n]. Let

H denote the hyperplane in Rn defined by the equation
∑n

i=1 xi = k. For 1 ≤ r ≤
⌊
n
k

⌋
and ` ∈ [n] consider the closed convex subsets of Rn

H
(+)
` := {(x1, x2, . . . , xn) ∈ Rn : x` ≥ 0} ∩H, and

H
(−)
`,r :=

{
(x1, x2, . . . , xn) ∈ Rn :

`+r−1∑
i=`

xi ≤ 1

}
∩H.

In the definition of H
(−)
`,r the indices i of the coordinates x1, . . . , xn are taken to be

elements of Z/nZ. We also let H` and H`,r denote the (n − 2)-flats given by strict
equality in the above definitions. In the following we will say an (n− 2)-flat is facet-

defining (or facet-supporting) for ∆
stab(r)
n,k if it contains a facet of ∆

stab(r)
n,k .

Theorem 2.3.1. Let 1 < k < n− 1. For 1 ≤ r <
⌊
n
k

⌋
the facet-defining inequalities

for ∆
stab(r)
n,k are

∑n
i=1 xi = k together with

∑`+r−1
i=` xi ≤ 1 and x` ≥ 0 for ` ∈ [n]. In

particular,

∆
stab(r)
n,k =

⋂
`∈[n]

H
(+)
` ∩

⋂
`∈[n]

H
(−)
`,r .

The following is an immediate corollary to these results.

Corollary 2.3.2. All but possibly the smallest polytope in the nested chain

∆n,k ⊃ ∆
stab(2)
n,k ⊃ ∆

stab(3)
n,k ⊃ · · · ⊃ ∆

stab(bnkc)
n,k

has 2n facets.

This is an interesting geometric property since the number of vertices of these
polytopes strictly decreases down the chain. To prove Theorem 2.3.1 we will utilize
the geometry of the circuit triangulation of ∆n,k, and the nesting of triangulations:

∇n,k ⊃ ∇2
n,k ⊃ ∇3

n,k ⊃ · · · ⊃ ∇
bnkc
n,k .
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The method by which we will do this is outlined in the following remark.

Remark 2.3.3. To compute the facet-defining inequalities of ∆
stab(r)
n,k we first consider

the geometry of their associated facet-defining (n − 2)-flats. Suppose that ∆
stab(r)
n,k

is (n − 1)-dimensional. Since ∆
stab(r−1)
n,k ⊃ ∆

stab(r)
n,k then a facet-defining (n − 2)-flat

of ∆
stab(r)
n,k either also defines a facet of ∆

stab(r−1)
n,k or it intersects relint ∆

stab(r−1)
n,k , the

relative interior of ∆
stab(r−1)
n,k . Therefore, to compute the facet-defining (n − 2)-flats

of ∆
stab(r)
n,k it suffices to compute the former and latter collections of (n − 2)-flats

independently. To identify the former collection we will use an induction argument
on r. To identify the latter collection we work with pairs of adjacent (n−1)-simplices
in the set max∇r

n,k. Note that two simplices u, ω ∈ max∇r
n,k are adjacent (i.e. share

a common facet) if and only if they differ by a single vertex. Therefore, their common
vertices span an (n− 2)-flat which we will denote by H[u, ω]. Thus, we will identify
adjacent pairs of simplices u ∈ max∇r−1

n,k and

ω ∈ max∇r−1
n,k \max∇r

n,k for which H[u, ω] is facet-defining.

Computing facet-defining inequalities via a nesting of triangulations.

Suppose 1 < k < n − 1. In order to prove Theorem 2.3.1 in the fashion outlined by
Remark 2.3.3 we require a sequence of lemmas. Notice that ∆

stab(r)
n,k is contained in

H
(+)
` and H

(−)
`,r for all ` ∈ [n]. So in the following we simply show that H` and H`,r

form the complete set of facet-defining (n− 2)-flats.

Lemma 2.3.4. Let 1 ≤ r <
⌊
n
k

⌋
. For all ` ∈ [n], H` is facet-defining for ∆

stab(r)
n,k .

Proof. First notice that the result clearly holds for r = 1. So we need only show that
n− 1 affinely independent vertices of ∆

stab(r)
n,k lie in H`. Hence, to prove the claim it

suffices to identify a simplex ω ∈ max∇r
n,k such that H` supports a facet of ω. Since

r ≤
⌊
n
k

⌋
− 1 it also suffices to work with r =

⌊
n
k

⌋
− 1.

Fix ` ∈ [n]. For r =
⌊
n
k

⌋
−1 we construct a minimal circuit in the graph Gn,k that

corresponds to a simplex in max∇r
n,k for which H` is facet-supporting. To this end,

consider the characteristic vector of the k-subset {(`− 1)− (s− 1)r : s ∈ [k]} ⊂ [n].
Denote this characteristic vector by ε`, and think of its indices modulo n. Labeling
the 1 in coordinate (`−1)− (s−1)r of ε` as 1s, we see that 1s and 1s+1 are separated
by r − 1 zeros for s ∈ [k − 1]. That is, the coordinate ε`i = 0 for every (`− 1)− sr <
i < (` − 1) − (s − 1)r (modulo n), and there are precisely r − 1 such coordinates.
Moreover, since kr = k

(⌊
n
k

⌋
− 1
)
≤ n then there are at least r − 1 zeros between

11 and 1k. Hence, this vertex is r-stable. From ε` we can now construct an r-stable
circuit (ω`) by moving the 1’s in ε` one coordinate to the right (modulo n), one at a
time, in the following pattern:

(1) Move 11.

(2) Move 11. Then move 12. Then move 13. . . . Then move 1k.

(3) Repeat step (2) r − 1 more times.
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ǫℓ = (0, 1, 0, 1, 0, 0, 0, 0, 1) (0, 1, 0, 0, 1, 0, 0, 0, 1) (0, 1, 0, 0, 0, 1, 0, 0, 1)

(0, 0, 1, 0, 0, 1, 0, 0, 1)

(0, 1, 0, 1, 0, 0, 0, 1, 0) (1, 0, 1, 0, 0, 1, 0, 0, 0)

(0, 1, 0, 1, 0, 0, 1, 0, 0) (1, 0, 0, 1, 0, 0, 1, 0, 0) (1, 0, 1, 0, 0, 0, 1, 0, 0)

4 5

2

9

6

31

7

8

Figure 2.2: The minimal circuit (ω`) for n = 9, k = 3, and ` = 5 constructed in
Lemma 2.3.4.

(4) Move 11 until it rests in entry `− 1.

An example of (ω`) for n = 9, k = 3, and ` = 5 is provided in Figure 2.2. This
produces a minimal circuit in Gn,k since each 1s has moved precisely enough times to
replace 1s+1. Moreover, since k > 1 then k

(⌊
n
k

⌋
− 1
)
≤ n − 2. So there are at least

r+ 1 0’s between 11 and 1k in ε`. From here, it is a straight-forward exercise to check
that every vertex in (ω`) is r-stable. Therefore, ω` ∈ max∇r

n,k. Finally, since r > 1,

the simplex ω` has only one vertex satisfying x` = 1, and this is the vertex following
ε` in the circuit (ω`). Hence, all other vertices of ω` satisfy x` = 0. So H` supports a

facet of ω`. Thus, we conclude that H` is facet-defining for ∆
stab(r)
n,k for r <

⌊
n
k

⌋
.

The following theorem follows immediately from the construction of the (n −
1)-simplex ω` in the proof of Lemma 2.3.4, and it justifies the assumption on the

dimension of ∆
stab(r)
n,k made in Remark 2.3.3.

Theorem 2.3.5. The polytope ∆
stab(r)
n,k is (n− 1)-dimensional for all r <

⌊
n
k

⌋
.

Lemma 2.3.6. Suppose r > 1 and ∆
stab(r)
n,k is (n − 1)-dimensional. Then H`,r−1 is

not facet-defining for ∆
stab(r)
n,k .

Proof. Suppose for the sake of contradiction that H`,r−1 is facet-defining for ∆
stab(r)
n,k .

Since ∆
stab(r)
n,k is (n−1)-dimensional then there exists an (n−1)-simplex ω ∈ max∇r

n,k

such that H`,r−1 is facet-defining for ω. In other words, every vertex in (ω) satisfies∑`+r−2
i=` xi = 1 except for exactly one vertex, say ε?. Since all vertices in (ω) are

(0, 1)-vectors, this means all vertices other than ε? have exactly one coordinate in
the subvector (ε`, ε`+1, . . . , ε`+r−2) being 1 and all other coordinates are 0. Similarly,
this subvector is the 0-vector for ε?. Since (ω) is a minimal circuit this means that
the move preceding the vertex ε? in (ω) results in the only 1 in (ε`, ε`+1, . . . , ε`+r−2)
exiting the subvector to the right. Similarly, the move following the vertex ε? in (ω)
results in a single 1 entering the subvector on the left. Suppose that

ε? = (. . . , ε?`−1, ε
?
` , ε

?
`+1, . . . , ε

?
`+r−2, ε

?
`+r−1, . . .) = (. . . , 1, 0, 0, . . . , 0, 1, . . .).
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Then this situation looks like

ǫ⋆ = (. . . , 1, 0, 0, . . . , 0, 1, . . .)

(. . . , 1, 0, 0, . . . , 1, 0, . . .) (. . . , 0, 1, 0, . . . , 0, 1, . . .)

ℓ+r−2 ℓ−1

Hence, neither the vertex preceding or following the vertex ε? is r-stable. For
example, in the vertex following ε? there is a 1 in entries ` and ` + r − 1. This
contradicts the fact that ω ∈ max∇r

n,k.

To see why Lemma 2.3.6 will be useful suppose that Theorem 2.3.1 holds for
∆

stab(r−1)
n,k for some 1 ≤ r <

⌊
n
k

⌋
. Then Lemmas 2.3.4 and 2.3.6 tell us that the

collection of facet-defining (n − 2)-flats for ∆
stab(r−1)
n,k that are also facet-defining for

∆
stab(r)
n,k is {H` : ` ∈ [n]}. This is the nature of the induction argument mentioned

in Remark 2.3.3. To identify the facet-defining (n− 2)-flats of ∆
stab(r)
n,k that intersect

relint ∆
stab(r−1)
n,k we will use the following definition.

Definition 2.3.7. Suppose u and ω are a pair of simplices in max∇n,k satisfying

• u ∈ max∇r
n,k,

• ω ∈ max∇r−1
n,k \max∇r

n,k, and

• ω uses exactly one vertex that is not r-stable, called the key vertex, and this is
the only vertex by which u and ω differ.

We say that the ordered pair of simplices (u, ω) is an r-supporting pair of H[u, ω],
where H[u, ω] is the flat spanned by the common vertices of u and ω.

Lemma 2.3.8. Suppose 1 < r <
⌊
n
k

⌋
. Suppose also that HF is a (n− 2)-flat defining

a facet F of ∆
stab(r)
n,k such that HF ∩ relint ∆

stab(r−1)
n,k 6= ∅. Then HF = H[u, ω] for

some r-supporting pair of simplices (u, ω).

Proof. Since HF ∩ relint ∆
stab(r−1)
n,k 6= ∅ and ∆

stab(r)
n,k is contained in ∆

stab(r−1)
n,k then F ∩

relint ∆
stab(r−1)
n,k 6= ∅. That is, there exists some α ∈ F such that α ∈ relint ∆

stab(r−1)
n,k .

Recall that∇r−1
n,k is a triangulation of ∆

stab(r−1)
n,k that restricts to a triangulation∇r

n,k of

∆
stab(r)
n,k . It follows that ∇r

n,k and ∇r−1
n,k \∇r

n,k give identical triangulations of ∂∆
stab(r)
n,k ∩

relint ∆
stab(r−1)
n,k . Since ∆

stab(r)
n,k is (n − 1)-dimensional we may assume, without loss

of generality, that α lies in the relative interior of an (n − 2)-dimensional simplex

in the triangulation of ∂∆
stab(r)
n,k ∩ relint ∆

stab(r−1)
n,k induced by ∇r

n,k and ∇r−1
n,k \∇r

n,k.
Therefore, there exists some u ∈ max∇r

n,k such that HF is facet-defining for u and

α ∈ u ∩HF , and there exists some ω ∈ max∇r−1
n,k \max∇r

n,k such that α ∈ ω ∩HF .

Since ∇r−1
n,k is a triangulation of ∆

stab(r−1)
n,k it follows that u∩HF = ω ∩HF . Hence, u
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and ω are adjacent simplices that share the facet-defining (n− 2)-flat HF , and they
form an r-supporting pair (u, ω) with H[u, ω] = HF .

It will be helpful to understand the key vertex of an r-supporting pair (u, ω). To
do so, we will use the following definition.

Definition 2.3.9. Let ε ∈ Rn be a vertex of ∆n,k. A pair of 1’s in ε is an ordered
pair of two coordinates of ε, (i, j), such that εi = εj = 1, and εt = 0 for all i < t < j
(modulo n). A pair of 1’s is called an r-stable pair if there are at least r − 1 0’s
separating the two 1’s.

Lemma 2.3.10. Suppose (u, ω) is an r-supporting pair, and let ε be the key vertex of
this pair. Then ε contains precisely one (r−1)-stable but not r-stable pair, (`, `+r−1).
Moreover, H[u, ω] = H`,r.

Proof. We first show that ε has precisely one (r − 1)-stable but not r-stable pair,
(`, `+r−1). To see this, consider the minimal circuit (ω) in the graph Gn,k associated
with the simplex ω. Think of the key vertex ε as the initial vertex of this circuit,
and recall that each edge of the circuit corresponds to a move of exactly one 1 to
the right by exactly one entry. Hence, in the circuit (ω) the vertex following ε differs
from ε by a single right move of a single 1. Since ε is the only vertex in (ω) that is
(r−1)-stable but not r-stable then the move of this single 1 to the right by one entry
must eliminate all pairs that are (r− 1)-stable but not r-stable. Moreover, this move
cannot introduce any new (r − 1)-stable but not r-stable pairs. Since a single 1 can
be in at most two pairs, and this 1 must move exactly one entry to the right, then
this 1 must be in entry j in the pairs (i, j) and (j, t) where (i, j) is (r− 1)-stable but
not r-stable, and (j, t) is (r + 1)-stable. Moreover, since the move of the 1 in entry
j can only change the stability of the pairs (i, j) and (j, t) then it must be that all
other pairs are r-stable.

Finally, since ω has the unique (r−1)-stable but not r-stable vertex ε, and since ε
has the unique (r−1)-stable but not r-stable pair (`, `+ r−1) then all other vertices
in ω satisfy

∑`+r−1
i=` xi = 1. Hence, H[u, ω] = H`,r.

Lemma 2.3.11. Suppose 1 < r <
⌊
n
k

⌋
. Suppose also that HF is an (n − 2)-flat

defining a facet F of ∆
stab(r)
n,k and HF ∩ relint ∆

stab(r−1)
n,k 6= ∅. Then HF = H`,r for

some ` ∈ [n].

Proof. By Lemma 2.3.8 HF = H[u, ω] for some r-supporting pair (u, ω). By
Lemma 2.3.10 ω has a unique vertex that is (r − 1)-stable but not r-stable with a
unique (r − 1)-stable but not r-stable pair (`, ` + r − 1) for some ` ∈ [n]. Thus,
HF = H[u, ω] = H`,r.

We now show that H`,r is indeed facet-defining for ∆
stab(r)
n,k for all ` ∈ [n].

Lemma 2.3.12. Suppose 1 ≤ r <
⌊
n
k

⌋
or n = kr+ 1. Then H`,r is facet-defining for

∆
stab(r)
n,k for all ` ∈ [n].
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Proof. First we note that the result is clearly true for r = 1. So in the following we
assume r > 1. To prove the claim we show that H`,r supports an (n − 1)-simplex
ω ∈ max∇r

n,k.
To this end, consider the characteristic vector of the k-subset

{(`− 1) + (s− 1)r : s ∈ [k]} ⊂ [n]. Denote this characteristic vector by ε`, and think
of its indices modulo n. Labeling the 1 in coordinate (`−1)+(s−1)r of ε` as 1s, it is
quick to see that 1s and 1s+1 are separated by r − 1 zeros for every s ∈ [k]. That is,
ε`i = 0 for every (`−1)+(s−1)r < i < (`−1)+sr (modulo n), and there are precisely
r − 1 such coordinates. Moreover, since r <

⌊
n
k

⌋
or n = kr + 1 then n ≥ kr + 1. So

there are at least r zeros between 11 and 1k. Hence, this vertex is r-stable. From ε`

we can now construct an r-stable circuit (ω`) by moving the 1’s in ε` one coordinate
to the right (modulo n), one at a time, in the following pattern:

(1) Move 1k. Then move 1k−1. Then move 1k−2. . . . Then move 11.

(2) Repeat step (1) r − 1 more times.

(3) Move 1k to entry `.

Each move in this pattern produces a new r-stable vertex since there are always at
least r − 1 zeros between each pair of 1’s. So ω` ∈ max∇r

n,k and H`,r supports ω`

since every vertex of (ω`) lies in H`,r except for the vertex preceding the first move
of 11 in the circuit (ω`).

Remark 2.3.13. When n = kr + 1 then ω` = ∆
stab(r)
n,k for all ` ∈ [n]. So the facet-

defining inequalities for ω` = ∆
stab(r)
n,k are precisely H

(−)
`,r for ` ∈ [n].

From Lemmas 2.3.11 and 2.3.12 we see that when 1 < r <
⌊
n
k

⌋
the facet-defining

(n − 2)-flats for ∆
stab(r)
n,k that intersect relint ∆

stab(r−1)
n,k are precisely H`,r for ` ∈ [n].

We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1.

First recall that Theorem 2.3.1 is known to be true for r = 1. Now let 1 < r <
⌊
n
k

⌋
.

By Theorem 2.3.5 we know that ∆
stab(r)
n,k is (n − 1)-dimensional. First let r = 2.

By Lemma 2.3.4 we know that H` is facet-defining for ∆
stab(2)
n,k for all ` ∈ [n]. By

Lemma 2.3.6 we know that for every ` ∈ [n] H`,1 is not facet-defining for ∆
stab(2)
n,k .

Thus, the collection of facet-defining (n− 2)-flats for ∆n,k that are also facet-defining

for ∆
stab(2)
n,k are {H` : ` ∈ [n]}, and all other facet-defining (n − 2)-flats for ∆

stab(2)
n,k

must intersect the relative interior of ∆n,k. Therefore, by Lemmas 2.3.11 and 2.3.12

the remaining facet-defining (n−2)-flats for ∆
stab(2)
n,k are H`,2 for ` ∈ [n]. Since ∆

stab(r)
n,k

is contained in H
(+)
` and H

(−)
`,r , this proves the result for r = 2. Theorem 2.3.1 then

follows by iterating this argument for 2 < r <
⌊
n
k

⌋
.
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2.4 The Facets for the r-stable Second Hypersimplices

In combinatorics, it is desirable to have more than one proof of the same result, as
this often results into different insights into the underlying combinatorial, algebraic,
or geometric structures. In section 2.3, we computed the facets of ∆

stab(r)
n,k using the

geometry of a unimodular triangulation, and this revealed much about the geometry
of these polytopes. When k = 2 the polytope ∆

stab(r)
n,2 is an edge polytope, meaning

that it can be defined in terms of the edges of a graph. In this section, we offer a
second computation of the facets of ∆

stab(r)
n,2 that uses properties of this graph, thereby

revealing the combinatorics associated to this geometric result. Indeed, the facets of
∆

stab(r)
n,2 demonstrate a high level of symmetry, and we will see that this symmetry is

also apparent in their underlying graphs.
Let G be a finite connected graph on vertex set V (G) = [n] having no loops or

multiple edges (e.g. G is simple). Let E(G) := {{i, j} : i, j ∈ V (G)} denote the set
of edges of G. If e = {i, j} ∈ E(G) then define ρ(e) = ei + ej, where ei denotes the
ith standard basis vector in Rn. The edge polytope of G, denoted PG, is the convex
hull of the collection of vectors {ρ(e) : e ∈ E(G)}.

To compute the facets of ∆
stab(r)
n,2 we will use a well-known result of Ohsugi and

Hibi which describes the defining hyperplanes of an edge polytope PG [28]. To state
this result we first recall a few definitions. For a vertex i ∈ [n] a neighbor of i is a
vertex j ∈ [n] such that {i, j} ∈ E(G). We write N(G, i) for the set of all neighbors
of i, and for a nonempty subset X of [n] we write N(G,X) :=

⋃
i∈X N(G, i). An odd

cycle in a graph G is a cycle whose length is odd. We will also denote a path p from
i to j in G by p : i  j. For a nonempty subset W of [n] we let GW denote the
subgraph of G having vertex set W and edge set {{i, j} ∈ E(G) : i, j ∈ W}. We say
that i ∈ [n] is regular in G if every connected component of G[n]\{i} has at least one
odd cycle. A nonempty subset T of [n] is called independent in G if N(G, i) ∩ T = ∅
for every i ∈ T (in other words, there is no edge {i, j} in G such that i, j ∈ T ). If
T is independent in G, then the bipartite graph induced by T is the bipartite graph
with vertex set T ∪ N(G, T ) and edge set {{i, j} ∈ E(G) : i ∈ T, j ∈ N(G, T )}. If
the graph G has at least one odd cycle we say that a nonempty subset T of [n] is
fundamental in G if

(i) T is independent in G and the bipartite graph induced by T is connected, and

(ii) either [n] = T ∪N(G, T ) or every connected component of the subgraph
G[n]\(T∪N(G,T )) contains at least one odd cycle.

For i ∈ [n], let Ki denote the hyperplane

Ki := {(x1, x2, . . . , xn) ∈ Rn : xi = 0} ,

and for a nonempty subset T ⊂ [n] let KT denote the hyperplane

KT :=

(x1, x2, . . . , xn) ∈ Rn :
∑
i∈T

xi =
∑

j∈N(G,T )

xj

 .
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With these definitions in hand we are ready to state the result of Hibi and Ohsugi.

Theorem 2.4.1. [28, Theorem 1.7(a)] Let G be a finite connected graph on the vertex
set [n] allowing loops and having no multiple edges, and suppose that G contains at
least one odd cycle (i.e. dimPG = n− 1). Let Ψ denote the set of those hyperplanes
Ki such that i is regular in G and KT such that T is fundamental in G. Then the set
of facets of PG is

{K ∩ PG : K ∈ Ψ}.

As noted in the introduction, the polytope ∆
stab(r)
n,2 is an edge polytope. In par-

ticular, the underlying graph for ∆
stab(r)
n,2 is the graph with vertex set [n] and edges

{i, j} such that the set {i, j} is an r-stable 2-subset of [n]. We call this graph the
r-stable graph on n elements and denote it by Gn,r.

Proposition 2.4.2. Fix a positive integer r. For every n ≥ 2r+ 1 the r-stable graph
on n elements Gn,r is connected.

Proof. Notice first that for all i ∈ [n]

N(G, i) = {i+ r, i+ r + 1, i+ r + 2, . . . , i− r − 2, i− r − 1, i− r}, and

N(G, i+ 1) = {i+ r + 1, i+ r + 2, i+ r + 3, . . . , i− r − 1, i− r, i− r + 1}.

Since n ≥ 2r + 1 we have that 2r < n. Hence #N(G, i) ≥ 2. Thus,

{i+ r, i+ r + 1} ⊂ N(G, i).

So fix v, w ∈ [n]. Suppose, without loss of generality, that v < w. Then w = v + s
for some s ∈ [n]. It then follows that we have the path p : v  w given by

p =({v, v + r + 1}, {v + r + 1, v + 1}, {v + 1, v + r + 2}, {v + r + 2, v + 2}, . . .
. . . , {v + s− 1, v + r + s}, {v + r + s, v + s = w}).

Hence, Gn,r is connected.

Remark 2.4.3. In Gn,r, we have that for every i ∈ [n]

N(G, i) = {i+ r, i+ r + 1, i+ r + 2, . . . , i− r − 2, i− r − 1, i− r}, and

N(G, i+ 1) = {i+ r + 1, i+ r + 2, i+ r + 3, . . . , i− r − 1, i− r, i− r + 1}.

This relationship between the sets of neighbors of vertices in terms of their relative
distance from one another on the n-gon will play an important role in the coming
proofs.

Proposition 2.4.4. Fix a positive integer r. For all n ≥ 2r + 1 the r-stable graph
on n elements Gn,r contains an odd cycle of length 2r + 1.
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Proof. Just as in Proposition 2.4.2, since n ≥ 2r + 1 then 2r < n so #N(G, i) ≥ 2.
In particular,

{i+ r, i+ r + 1} ⊂ N(G, i).

Fix i ∈ [n]. Using the same method as before we can construct the cycle p : i  i
given by

p =({i, i+ r + 1}, {i+ r + 1, i+ 1}, {i+ 1, i+ r + 2}, {i+ r + 2, i+ 2}, . . .
. . . , {i+ r − 1, (i+ r − 1) + r + 1 = i+ 2r}, {i+ 2r, i+ r}, {i+ r, i}).

The cycle p uses precisely two edges to go from i+s to i+s+1 for all s ∈ {0, 1, 2, . . . , r−
1}, and then finishes with the edge {i + r, i}. Hence, Gn,r contains an odd cycle of
length 2r + 1.

Proposition 2.4.5. Fix a positive integer r and let n ≥ 2r+ 2. Then the vertex i is
regular in Gn,r for every i ∈ [n].

Proof. First notice that (Gn,r)[n]\{i} always contains Gn−1,r as a subgraph on the
vertex set [n]\{i}. Since n ≥ 2r + 2 then n − 1 ≥ 2r + 1. So by Propositions 2.4.2
and 2.4.4, Gn−1,r is connected and contains at least one odd cycle. Thus, i is regular
in Gn,r.

We would next like to compute the fundamental sets in Gn,r. To do this, we first
show that the cardinality of a fundamental set in Gn,r is at most r. It will be helpful
to have the following definition. Fix i ∈ [n]. Let Bi denote the bipartite graph with
vertex set U ∪ V where

U = {i+ 1, i+ 2, . . . , i+ r − 1},
V = {i− 1, i− 2, . . . , i− r + 1},

and with edge set {{i, j} ∈ E(G) : i ∈ U, j ∈ V }. Notice that there is a perfect
matching of U into V , which will denote by Mi, that is given by

Mi = {{i+ s, i− (r − s)} : s ∈ [r − 1]}.

Proposition 2.4.6. Let T be fundamental in Gn,r. Then #T ≤ r.

Proof. Since T 6= ∅ then there exists i ∈ T . Since we may have no j ∈ T with {i, j}
an edge of Gn,r it follows that

T ⊂ {i− r + 1, i− r + 2, . . . , i− 1, i, i+ 1, . . . , i+ r − 1}.

Consider the bipartite graph Bi, and the perfect matching Mi. Since T is an in-
dependent set then T contains at most one vertex in each edge of Mi. Hence,
#T ≤ #Mi + 1 = r.
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Remark 2.4.7. The matching Mi is in fact the only perfect matching in the bipartite
graph Bi. To see this, suppose M ′ is a perfect matching of U into V . By the
description of N(G, i) given in Remark 2.4.3 it follows that for i − s ∈ V , where
s ∈ [r − 1],

U ∩N(G, i− s) ⊂ {i+ r − 1, i+ r − 2, . . . , i+ r − s}.

Hence, {i+ r− 1, i− 1} ∈M ′. But this implies {i+ r− 2, i− 2} ∈M ′, which implies
that {i + r − 3, i − 3} ∈ M ′, and so on. Hence, Mi ⊂ M ′, and we conclude that
Mi = M ′.

We next show that there are precisely n fundamental sets of size r in Gn,r.

Proposition 2.4.8. There are precisely n fundamental sets of size r in Gn,r and they
are of the form

{i, i+ 1, i+ 2, . . . , i+ r − 1}
for i ∈ [n].

Proof. We would like to construct a fundamental set T of size r. Hence, T 6= ∅, and
so there exists some i ∈ T . Since T must also be an independent set it follows that

T ⊂ {i− r + 1, i− r + 2, . . . , i− 1, i, i+ 1, . . . , i+ r − 2, i+ r − 1}.

In other words, with respect to the bipartite graph Bi, T ⊂ U∪V ∪{i}. Since #T = r
then T contains precisely one vertex of each element of the perfect matching Mi. Now,
suppose that for some edge {i + s, i − (r − s)} ∈ Mi we have that i − (r − s) ∈ T .
Then i+ s+ 1 /∈ T since

i+ s+ 1 = i− (r − s) + r + 1 ∈ N(G, i− (r − s)).

Hence, i− (r − (s+ 1)) ∈ T . It follows that i− (r − s′) ∈ T for all s′ > s. Hence, T
is of the form

{i− r + s, i− r + s+ 1, i− r + s+ 2, . . . , i− 1, i, i+ 1, . . . , i+ s− 1}.

Note that there are exactly n such sets in [n], and by reindexing, these sets are of the
form

{i, i+ 1, i+ 2, . . . , i+ r − 1}.
Since we have only used the facts that #T = r and T is independent then so far
we have shown that these sets are the only independent sets in Gn,r with cardinality
r. To see that they are also fundamental recall the description of N(G, i) given in
Remark 2.4.3. From this description of N(G, i) it is easy to see that

N(G, T ) = {i+ r, i+ r + 1, . . . , i− 1}.

Hence, [n] = T ∪N(G, T ).
Finally, to see that the bipartite graph induced by T is connected recall the

argument used in Proposition 2.4.2 to show that Gn,r is connected. Suppose that
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v, w ∈ T . Without loss of generality assume w = v + s for some positive integer s,
and then apply the path p : v  w from Proposition 2.4.2. Now suppose v ∈ T and
w ∈ N(G, T ). Then w is adjacent to some u ∈ T . So apply the path p : v  u from
Proposition 2.4.2 and then attach the edge {u,w}. Hence, T is fundamental in Gn,r.
Hence, we conclude that the sets

{i, i+ 1, i+ 2, . . . , i+ r − 1}

for i ∈ [n] are the only fundamental sets of size r in Gn,r.

So far we have seen that for all i ∈ [n] the vertex i is regular in Gn,r, there are
precisely n fundamental sets with cardinality r, and there are no fundamental sets of
cardinality greater than r. We next wish to show that there are no fundamental sets
with cardinality less than r. To do this, we first need the following two lemmas.

Lemma 2.4.9. Suppose T ⊂ [n] is nonempty. Then G[n]\(T∪N(G,T )) contains no odd
cycle.

Proof. Since T 6= ∅ then there exists some i ∈ T . Hence, N(G, i) ⊂ N(G, T ).
Therefore, [n]\N(G, T ) ⊂ [n]\N(G, i). Thus,

[n]\(T ∪N(G, T )) = [n]\T ∩ [n]\N(G, T ),

⊂ [n]\(N(G, T ) ∪ {i}),
⊂ [n]\(N(G, i) ∪ {i}).

Hence, G[n]\(T∪N(G,T )) is a subgraph of Bi, a bipartite graph. Therefore, it contains
no odd cycle.

It then follows from Lemma 2.4.9 and (ii) of the definition of a fundamental set
that if T is fundamental in Gn,r then [n] = T ∪N(G, T ).

Lemma 2.4.10. Suppose T is a fundamental set in Gn,r. Then T is a consecutive
list of elements of [n].

Proof. Suppose for the sake of contradiction that T is fundamental in Gn,r, and T is
not a consecutive list of elements of [n]. Then there exists some i ∈ T and s ∈ [r− 1]
such that i, i+ s ∈ T , and for 0 < s′ < s, i+ s′ /∈ T . Since T is fundamental in Gn,r

then by Lemma 2.4.9
[n] = T ∪N(G, T ).

So i+ s′ ∈ N(G, T ) for 0 < s′ < s.
Now consider the bipartite graph induced by T , and call it X. Let B = {i + s′ :

0 < s′ < s}. We claim that no b ∈ B is connected to i ∈ T . To see this, first notice
that

N(X,N(X,B)) = B.
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To prove this equivalence, we show containment in both directions. First let w ∈ B.
Since B ⊂ N(G, T ) then there is some v ∈ T such that v is a neighbor of w. So
v ∈ N(X,B). Hence, w ∈ N(X,N(X,B)). Conversely, suppose w ∈ N(X,N(X,B)).
Then w is a neighbor of some neighbor v ∈ T of some element b ∈ B. Since v is a
neighbor of b ∈ B then N(G, v) ⊂ B. This is because N(G, v) is a consecutive list of
elements of [n] and T is independent with i, i+ s ∈ T . So w ∈ B.

Next notice that since

B ⊂ {i− r + 1, i− r + 2, . . . , i− 1, i, i+ 1, . . . , i+ r − 2, i+ r − 1}

then no element of B is adjacent to i.
Now fix b ∈ B and suppose b is connected to i. Then there is a path in X

p = ({v0 = b, v1}, {v1, v2}, {v2, v3}, . . . , {vm−1, vm = i}).

Since b ∈ B and N(X,N(X,B)) = B then each vj, with j ≤ m − 1, is either an
element of B or a neighbor of an element of B. However, vm−1 cannot be an element
of B since no element of B is adjacent to i. So vm−1 is a neighbor of B, and thus
i ∈ N(X,N(X,B)) = B, which is a contradiction. Hence, b is not connected to i. So
the bipartite graph induced by T is not connected, which contradicts the assumption
that T is fundamental.

We are now ready to show that no fundamental set in Gn,r has cardinality less
than r.

Proposition 2.4.11. Suppose T is fundamental in Gn,r. Then #T ≥ r.

Proof. Suppose for the sake of contradiction that T is fundamental in Gn,r with
#T < r. Since T 6= ∅ then there exists some i ∈ T . Select i to be the “least element”
of T in the following sense. Recall that #T < r, n ≥ 2r + 1, and that we have
constructed Gn,r on a convex n-gon labeled in a clockwise fashion with the elements
of [n]. Hence, by Lemma 2.4.10 the elements of T form an arc of length less than
half the n-gon. Let i be the counterclockwise-most element of this arc. We claim
i− 1 /∈ T ∪N(G, T ).

By the minimality of i ∈ T we know that i − 1 /∈ T . So it suffices to show that
i− 1 /∈ N(G, T ). To see this, suppose otherwise. Then there is some j ∈ T such that
i− 1 ∈ N(G, i). Since j ∈ T and T is independent with i ∈ T then

j ∈ {i− r + 1, i− r + 2, . . . , i− 1, i, i+ 1, . . . , i+ r − 1}.

Since i is minimal in T then T ⊂ {i, i+ 1, . . . , i+ r − 2, i+ r − 1}. So

j ∈ {i, i+ 1, . . . , i+ r − 2, i+ r − 1}.

But since i − 1 ∈ N(G, j) then it must be that j = i + r − 1 (otherwise j is not a
neighbor of i− 1). Hence, by Lemma 2.4.10, we have that

T = {i, i+ 1, . . . , i+ r − 1}.
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So #T = r, a contradiction. Hence i− 1 /∈ N(G, T ). Thus, [n] 6= T ∪N(G, T ). But,
by Lemma 2.4.9, this contradicts the assumption that T is fundamental. Hence, it
must be that #T ≥ r.

Putting all of this together we arrive at the following theorem.

Theorem 2.4.12. Fix a positive integer r. The number of facets of the r-stable
(n, 2)-hypersimplex ∆

stab(r)
n,2 is n for n = 2r + 1 and 2n for n > 2r + 1. Moreover, for

n = 2r + 1 the facets of ∆
stab(r)
n,2 are KT ∩ PG, and for n > 2r + 1 they are Ki ∩ PG

for i ∈ [n] and KT ∩ PG for

T = {i, i+ 1, i+ 2, . . . , i+ r − 1},

for every i ∈ [n].

Proof. For n > 2r + 1, by Proposition 2.4.5 i is regular in Gn,r for every i ∈ [n],
and by Propositions 2.4.6, 2.4.8, and 2.4.11 there are precisely n fundamental sets in
Gn,r. Moreover, by Proposition 2.4.8 it is clear that the hyperplanes Ki for i ∈ [n]
and KT for T fundamental in Gn,r are all distinct. By Propositions 2.4.2 and 2.4.4

we may then apply Theorem 2.4.1 to conclude that the number of facets of ∆
stab(r)
n,2

is 2n. Moreover, these facets are precisely Ki ∩ PG for i ∈ [n] and KT ∩ PG for

T = {i, i+ 1, i+ 2, . . . , i+ r − 1},

for every i ∈ [n]. For n = 2r + 1, ∆
stab(r)
n,2 is a unimodular (n − 1)-simplex by [?,

Lemma 2.8]. By Propositions 2.4.6, 2.4.8, and 2.4.11 its facets are precisely those
given by the fundamental sets in Proposition 2.4.8.

Copyright c© Liam Solus, 2015.
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Chapter 3 Ehrhart h∗-polynomials of r-stable Second Hypersimplices

In this chapter we study the r-stable (n, 2)-hypersimplices and their h∗-polynomials.
We will identify a shelling of the triangulation ∇n,2 defined in Section 2.2 that first
builds the r-stable (n, 2)-hypersimplex and then the (r−1)-stable (n, 2)-hypersimplex
for every 1 < r <

⌊
n
2

⌋
. We then apply Theorem 1.2.4 to compute the h∗-polynomials

of these polytopes via this shelling order. In Sections 3.1 and 3.2 we identify the
desired shelling and compute the associated h∗-polynomials in the case that n is odd.
Then in Section 3.3 we extend the results to the case when n is even. Finally, in
Section 3.4 we examine some unimodality results arising from these computations.
The contents of this chapter are in part joint work with Benjamin Braun.

3.1 Shelling the r-stable Odd Second Hypersimplices

Fix k = 2 and n odd. In this section, we define a shelling of the triangulation ∇n,2

of the hypersimplex ∆n,2 that first shells the simplices within ∇r
n,2 and then extends

this to a shelling of the ∇r−1
n,2 for every 1 < r <

⌊
n
2

⌋
.

Theorem 3.1.1. Let k = 2 and n odd. There exists a shelling of ∇n,2 that first builds

∆
stab(r)
n,2 and then builds ∆

stab(r−1)
n,2 for every 1 < r ≤

⌊
n
2

⌋
. Hence, we say there exists

a stable shelling of the odd second hypersimplex.

Remark 3.1.2. Notice first that by Lemma 2.2.7 we can certainly shell ∇r
n,2 where

r =
⌊
n
2

⌋
. Our goal is to inductively shell ∇r

n,2 with this as our base case. That is,

assume we have previously shelled ∇r+1
n,2 for 0 < r <

⌊
n
2

⌋
. In the following we describe

a continuation of this shelling to ∇r
n,2. A summary of our method for describing this

continuation is as follows.
Since we are assuming we have previously shelled the simplices in ∇r+1

n,2 we must

extend this order to the set of simplices ω ∈ max∇r
n,2\max∇r+1

n,2 . Each simplex ω
in this set uses some vertices that are r-stable but not (r + 1)-stable. We will call
these vertices the r-adjacent vertices. We first select a particular r-adjacent vertex
of ω, and think of this as the initial vertex in the cycle (ω). Given this choice, we
then associate to ω a composition of r into n − r − 1 parts that describes the cycle
(ω) in terms of the selected initial vertex. Using this composition and its relationship
with the vertices of ω we associate to ω a lattice path in a decorated ladder-shaped
region of the plane. We then order the simplices in ω ∈ max∇r

n,2\max∇r+1
n,2 by first

collecting them into sets based on their initial vertex and the number of r-adjacent
vertices they use, ordering these sets from least to most r-adjacent vertices used, and
then ordering the elements within these sets via the colexicographic ordering applied
to their associated compositions. We then utilize their associated lattice paths to
identify the unique minimal new face for each simplex. In particular, we shell the
simplices in terms of least r-adjacent vertices used to most r-adjacent vertices used.
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r-adjacent vertices.

For ` ∈ [n], let adjr(`) denote the vertex εI where I = {`, ` + r} ∈
(

[n]
2

)
}. We call a

vertex adjr(`) an r-adjacent vertex. Let Adjr[n] := {adjr(`) : ` ∈ [n]}. So Adjr[n] is
precisely the set of vertices that are r-stable but not (r + 1)-stable.

Lemma 3.1.3. Let ε and ε′ be two vertices in (ω) for some simplex ω ∈ max∇n,2.
Suppose that ε has entries εi = εj = 1 with i < j, and εt = 0 for all t 6= i, j. Suppose
also that ε′ has entries ε′k = ε′l = 1 with k < l, and ε′t = 0 for all t 6= k, l. Then
(modulo n) we have that

i ≤ k ≤ j ≤ l.

Proof. Since ε and ε′ are vertices of a simplex in ∇n,2 they correspond to a sorted
pair of 2-subsets of [n].

Corollary 3.1.4. Let ω ∈ max∇n,2, and suppose that adjr(`) and adjr(`
′) are vertices

in v(ω) ∩ Adjr[n]. Then cd(`, `′) ≤ r.

Proof. Lemma 3.1.3 indicates that

` ≤ `′ ≤ `+ r ≤ `′ + r, or

`′ ≤ ` ≤ `′ + r ≤ `+ r.

Remark 3.1.5. Consider a simplex ω ∈ max∇n,2. Notice that for a fixed 0 < r <
⌊
n
2

⌋
we may order the elements of the set v(ω) ∩Adjr[n] as adjr(`) <adj adjr(`

′) if and only
if ` < `′. In this way, there exists a unique maximal element of the set v(ω) ∩Adjr[n].

Associating a composition to ω ∈ max∇r
n,2\max∇r+1

n,2 .

Fix ω ∈ max∇r
n,2\max∇r+1

n,2 . Then ω uses at least one element of Adjr[n]. We may
fix one such adjr(`), and consider the circuit (ω) as having initial vertex adjr(`). We
refer to the 1 in entry ` of the vertex adjr(`) as the left 1 and the 1 in entry `+ r as
the right 1. Then, in (ω) each edge corresponds to a move of the left 1 or of the right
1. In particular,

(?) the left 1 makes r moves,

(?) the right 1 makes n− r moves, and

(?) the left 1 cannot move first or last.

Note that the first two conditions are immediate from the definition of (ω) and the
fact that k = 2. The third condition holds since ω uses only vertices that are r-stable.
It follows that for a fixed adjr(`) ∈ v(ω) we can think of the circuit (ω) as a sequence
of moves of the left 1 and moves of the right 1 satisfying these conditions. Moreover,
we may encode this as a composition

λ = (λ1, λ2, . . . , λn−r−1)
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(∗) adj4(15) = (0, 0, 0, 1R, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1L) (0, 0, 0, 0, 1R, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1L) adj4(1) = (1L, 0, 0, 0, 1R, 0, 0, 0, 0, 0,

(0, 0, 0, 1L, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1R, 0)

adj4(14) = (0, 0, 1L, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1R, 0) (1L, 0, 0, 0, 0, 1R, 0, 0, 0, 0, 0, 0,

(0, 0, 1L, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1R, 0, 0) (1L, 0, 0, 0, 0, 0, 1R, 0, 0, 0, 0, 0,

(0, 0, 1L, 0, 0, 0, 0, 0, 0, 0, 0, 1R, 0, 0, 0) (1L, 0, 0, 0, 0, 0, 0, 1R, 0, 0, 0, 0,

(0, 0, 1L, 0, 0, 0, 0, 0, 0, 0, 1R, 0, 0, 0, 0) (0, 1L, 0, 0, 0, 0, 0, 1R, 0, 0, 0, 0,

(0, 0, 1L, 0, 0, 0, 0, 0, 0, 1R, 0, 0, 0, 0, 0) (0, 1L, 0, 0, 0, 0, 0, 0, 0, 1R, 0, 0, 0, 0, 0) (0, 1L, 0, 0, 0, 0, 0, 0, 1R, 0, 0, 0,

R L

R

R

R

L

R

RL

R

R

R

R

L

R

Figure 3.1: The minimal circuit corresponding to the simplex ω =
5671892(10)(11)(12)(13)3(14)4(15).

(∗) adj3(7) = (1R, 0, 0, 0, 0, 0, 1L, 0, 0) (0, 1R, 0, 0, 0, 0, 1L, 0, 0) (0, 0, 1R, 0, 0, 0, 1L, 0, 0)

adj3(4) = (0, 0, 0, 1R, 0, 0, 1L, 0, 0)

(1L, 0, 0, 0, 0, 1R, 0, 0, 0) (0, 0, 0, 1R, 0, 0, 0, 1L, 0)

(1L, 0, 0, 0, 1R, 0, 0, 0, 0) adj3(1) = (1L, 0, 0, 1R, 0, 0, 0, 0, 0) (0, 0, 0, 1R, 0, 0, 0, 0, 1L)

R R

R

L

L

LR

R

R

Figure 3.2: The minimal circuit corresponding to the simplex ω = 456123789.

of r into n − r − 1 parts, where part λi denotes the number of moves of the left 1
after the ith move of the right 1 and before the (i+ 1)st move of the right 1.

Example 3.1.6. Consider the minimal circuit in G15,2 depicted in Figure 3.1. This cir-
cuit corresponds to a simplex ω ∈ max∇4

15,2\max∇5
15,2. If we choose the initial vertex

of this circuit to be the unique maximal element of the set v(ω) ∩ Adj4[15], namely
adj4(15), then this circuit has associated composition λ = (1, 0, 0, 1, 0, 1, 0, 0, 0, 1).

Example 3.1.7. Next consider the minimal circuit in G9,2 depicted in Figure 3.2. This
circuit corresponds to a simplex ω ∈ max∇3

9,2\max∇4
9,2. If we choose the initial

vertex of this circuit to be the unique maximal element of the set v(ω) ∩ Adj3[9],
namely adj3(7), then this circuit has associated composition λ = (0, 0, 3, 0, 0).

Proposition 3.1.8. Fix adjr(`) ∈ Adjr[n]. Each simplex ω ∈ max∇r
n,2\max∇r+1

n,2

that uses the vertex adjr(`) corresponds uniquely to a composition

λ = (λ1, λ2, . . . , λn−r−1)
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of r into n− r − 1 parts that satisfies

i+ 1 + 2r − n ≤
i∑

j=1

λj ≤ i (3.1.1)

for all i = 1, 2, . . . , n− r − 1.

Proof. Let ω ∈ max∇r
n,2\max∇r+1

n,2 that uses vertex adjr(`). Then (ω) is a minimal
circuit in the directed graph Gn,2, one of whose vertices is adjr(`). Thinking of adjr(`)
as the initial vertex we consider the 1 in place ` as the left 1 and the 1 in place `+ r
as the right 1. By the above conditions it is clear that we may construct the partition
λ of r into n− r − 1 parts, where part λi denotes the number of moves of the left 1
after the ith move of the right 1 and before the (i + 1)st move of the right 1. Since
ω ∈ max∇r

n,2 the left 1 can never have made more moves that the right 1. This gives

the upper bound on
∑i

j=1 λj for each i = 1, 2, . . . , n− r − 1.
Similarly, since ω ∈ max∇r

n,2 after the (r + 1)st-to-last move of the right 1 and
before its rth-to-last move we must have that the left 1 moved at least once. More
generally, after the n − r − t + 1st move of the right 1 we must have that the left 1
moved at least r− t+ 2 times for t = r + 1, r, r− 1, . . . , 2. Hence, the number of left
moves that occur after the ith right move and before the (i + 1)st right move is at
least i+ 1 + 2r − n. This gives the lower bound on

∑i
j=1 λj.

Conversely, suppose that we have a composition λ satisfying the given conditions.
We can construct a simplex ω(λ) ∈ max∇r

n,2\max∇r+1
n,2 that uses the vertex adjr(`)

by constructing a minimal circuit in Gn,2 as follows. Starting with adjr(`), and la-
beling the left 1 and right 1 as we have been, after the ith move of the right 1 move
the left 1 λi times. Once this has been done for all i = 1, 2, . . . , n− r − 1, move the
right 1 once more. The upper bound ensures that the right distance between the 1s is
always at least r. Similarly, the lower bound ensures that the left distance is always
at least r. Since adjr(`) is in the circuit (ω(λ)) then this corresponds to a simplex
ω(λ) ∈ max∇r

n,2\max∇r+1
n,2 .

Remark 3.1.9. By Remark 3.1.5 we can identify each simplex ω ∈ max∇r
n,2\max∇r+1

n,2

with the unique maximal element of v(ω) ∩ Adjr[n], say adjr(`). Let λ be the compo-
sition associated to ω via adjr(`) by Proposition 3.1.8. Then we may uniquely label
the simplex ω as ω`,λ.

Definition 3.1.10. For a simplex ω`,λ recall that we think of the 1 in entry ` of
adjr(`) as the left 1, and the 1 in entry `+ r as the right 1.

• A left move in (ω`,λ) is an edge in (ω`,λ) corresponding to a move of the left
1, and

• A right move in (ω`,λ) is an edge in (ω`,λ) corresponding to a move of the right
1.

• The parity of an edge in (ω`,λ) is left if the edge is a left move, and right if the
edge is a right move.
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y=x y=x-n+2r

adj  (15)
4

adj  (1)
4

adj  (2)
4

adj  (3)
4

adj  (11)
4

adj  (12)
4

adj  (13)
4

adj  (14)
4

adj  (4)
4

adj  (15)
4

Figure 3.3: The lattice path p(ω15,λ), where λ = (1, 0, 0, 1, 0, 1, 0, 0, 0, 1).

Remark 3.1.11 (Lattice Path Correspondence). Notice that each simplex ω`,λ
in the set max∇r

n,2\max∇r+1
n,2 corresponds to a lattice path, p(ω`,λ), from (0, 0) to

(n− r, r) that uses only North (0,1) and East (1,0) moves. Here, right moves in the
circuit (ω`,λ) correspond to East moves in p(ω`,λ), and left moves in (ω`,λ) correspond
to North moves in p(ω`,λ). By Proposition 3.1.8 the lattice path p(ω`,λ) is bounded
between the lines y = x and y = x−n+2r. Each vertex in (ω`,λ) corresponds uniquely
to a lattice point on p(ω`,λ). In particular, for 0 ≤ t ≤ r the vertex adjr(`+ t)
corresponds to the lattice point (t, t), and the vertex adjr(`-r + t) corresponds to the
lattice point (t, n− 2r + t).

Here are some examples of simplices and their corresponding lattice paths.

Example 3.1.12. Let n = 15 and r = 4. Recall the simplex from Example 3.1.6

ω = 5671892(10)(11)(12)(13)3(14)4(15) ∈ max∇4
15,2\max∇5

15,2.

This simplex corresponds to the minimal circuit in the graph G15,2 depicted in Figure
3.1.

From this, we can see that ω uses the vertices adj4(15), adj4(1), and adj4(14).
Hence, we label ω as ω15,λ, where

λ = (1, 0, 0, 1, 0, 1, 0, 0, 0, 1).

The lattice path corresponding to ω via this labeling is depicted in Figure 3.3.

Example 3.1.13. Let n = 9 and r = 3. Recall the simplex from Example 3.1.7

ω = 456123789 ∈ max∇3
9,2\max∇4

9,2.

This simplex corresponds to the minimal circuit in the graph G9,2 depicted in Figure
3.2.

From this, we can see that ω uses the vertices adj3(7), adj3(4), and adj3(1). Hence,
we label ω as ω7,λ, where

λ = (0, 0, 3, 0, 0).

The lattice path corresponding to ω via this labeling is depicted in Figure 3.4.

45



y=x y=x-n+2r
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3
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3

adj  (6)
3

adj  (7)
3

Figure 3.4: The lattice path p(ω7,λ), where λ = (0, 0, 3, 0, 0).

The shelling order.

Recall that the colexicographic order on a pair of ordered m-tuples a = (a1, . . . , am)
and b = (b1, . . . , bm) is defined by b <colex a if and only if the right-most nonzero
entry in a − b is positive. Let W`,s denote the set of all simplices with label ω`,λ
that use precisely s elements of Adjr[n]. Order the elements in each set W`,s with
respect to the colexicographic ordering on their associated compositions (from least
to greatest). We write ω`,λ <colex ω`,λ′ if and only if λ <colex λ

′. Next order the
sets W`,s (from least to greatest) with respect to the colexicographic ordering on the
labels (`, s). We then write ω`,λ < ω`′,λ′ if and only ω`,λ ∈ W`,s and ω`′,λ′ ∈ W`′,s′ with
(`, s) <colex (`′, s′) or if (`, s) = (`′, s′) and ω`,λ <colex ω`,λ′ .

Theorem 3.1.14. The order < on the simplices ω ∈ max∇r
n,2\max∇r+1

n,2 (from least

to greatest) extends the shelling of ∇r+1
n,2 to a shelling of ∇r

n,2.

Theorem 3.1.1 follows immediately from Theorem 3.1.14. To prove Theorem
3.1.14 it suffices to identify the unique minimal new face associated to each simplex
in the shelling order. To do so, we first prove a sequence of lemmas.

Lemma 3.1.15. Suppose the ω`,λ uses adjr(`
′) for `′ 6= `. Then adjr(`

′) is a vertex
in (ω`,λ) that is either

(i) produced by a right move for which the preceding number of left moves is minimal
and not maximal with respect to equation (3.1.1), or

(ii) produced by a left move and followed by a right move for which the number of
left moves preceding the right move is maximal and not minimal with respect to
equation (3.1.1).

Proof. Since adjr(`) is selected to be the greatest element of v(ω) ∩Adjr[n] then each
other adjr(`

′) used by ω`,λ is produced in (ω`,λ) by doing n − 2r + t right moves for
some number t of left moves, or adjr(`

′) is produced by doing 0 < t < r right moves
and the same number of left moves. In the former case, such a vertex corresponds to
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an entry λm in the composition λ with m = n− 2r + t for which

t = m+ 2r − n = (m− 1) + 1 + 2r − n ≤
m−1∑
j=1

λj = t.

Hence, the number of left moves preceding the mth right move is minimal. Moreover,
the number of left moves preceding the mth right move is maximal only if

m+ 2r − n = t =
m−1∑
j=1

λj = m− 1.

Thus,

r =
n− 1

2
=
⌊n

2

⌋
.

But recall that since ∆
stab(bn2 c)
n,2 is a unimodular (n−1)-simplex we are only completing

the shelling of ∇r+1
n,2 to a shelling of ∇r

n,2 for r <
⌊
n
2

⌋
. So we conclude that the sum

is minimal and not maximal.
In the latter case, the vertex adjr(`j) is produced by doing 0 < t < r right moves

and the same number of left moves. Thus, following this vertex with another left
move results in a vertex that is no longer r-stable. So the move following adjr(`j)
must be a right move. Such a vertex corresponds to an entry λm in the composition λ
for which m = t, and the right move following the vertex is the (m+ 1)st right move
in the circuit. Thus,

m+ 1 + 2r − n ≤
m∑
j=1

λj = t = m.

Hence, the number of left moves preceding the right move following the vertex is
maximal. If this number is also minimal then it must be that

m+ 1 + 2r − n = m,

r =
n− 1

2
=
⌊n

2

⌋
,

and so we conclude that the sum is not minimal just as in the previous case. It
remains to show that the move preceding the vertex adjr(`j) is a left move. Suppose
for the sake of contradiction that adjr(`j) is preceded by a right move. Then λm = 0.
Thus, since the number of left moves preceding the (m+ 1)st right move is maximal
we have that

m =
m∑
j=1

λj =
m−1∑
j=1

λj ≤ m− 1,

which is a contradiction. Thus, we conclude that adjr(`j) is produced by a left move
and followed by a right move for which the number of left moves preceding the right
move is not minimal.
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Lemma 3.1.16. Suppose that the simplex ω`,λ uses the elements

adjr(`1) <adj adjr(`2) <adj · · · <adj adjr(`s) = adjr(`)

of Adjr[n]. For j 6= s, the parities of the edges preceding adjr(`j) in (ω`,λ) and following
adjr(`j) are opposite. Also, the parity of the edges about adjr(`) is right.

Proof. First recall that we have already noted that the first and last moves of (ω`,λ)
must be right moves. Hence, the parity of the edges about adjr(`) is right.

Now consider adjr(`j) for j 6= s. By Lemma 3.1.15 we have two cases. In case
(ii), adjr(`j) is produced by a left move and followed by a right move for which the
number of left moves preceding the right move is not minimal. Hence, the result is
immediate.

In case (i), adjr(`j) is produced by a right move for which the preceding number
of left moves is minimal and not maximal. Suppose for the sake of contradiction that
the parities of the moves about adjr(`j) are the same. So if adjr(`j) is produced by
the mth right move we have that

m+ 2r − n = (m− 1) + 1 + 2r − n =
m−1∑
j=1

λj.

Since the parities of the edges about adjr(`j) are the same it is followed by a right
move, and so it must be that λm = 0. Hence, by equation (3.1.1)

m+ 1 + 2r − n ≤
m∑
j=1

λj =
m−1∑
j=1

λj = m+ 2r − n,

which is a contradiction.

Lemma 3.1.17. Suppose that the simplex ω`,λ uses the vertex adjr(`
′). Then switch-

ing the parities of the moves about adjr(`
′) does not replace adjr(`

′) with another vertex
in Adjr[n].

Proof. First consider the case where `′ 6= `. By Remark 3.1.11 the simplex ω`,λ
corresponds to a lattice path p(ω`,λ) that is bounded between the lines y = x and
y = x−n+ 2r, and the elements of Adjr[n] reachable from adjr(`) all lie on these two
lines. Suppose for the sake of contradiction that switching the parities of the moves
about adjr(`

′) replaced this vertex with another element of Adjr[n], say adjr(`
′′). Then

the resulting change in the lattice path p(ω`,λ) implies that adjr(`
′′) lies on the opposite

of these two lines from that on which adjr(`
′) lies. It then follows that n− 2r = 2, or

equivalently, n = 2r + 2. Since we have chosen n to be odd this is a contradiction.
Now consider the case where `′ = `. Suppose for the sake of contradiction that

switching the parities of the moves about adjr(`) replaces adjr(`) with another vertex
adjr(`

′′). Consider the vertex before the right move producing adjr(`). Since this right
move produces adjr(`) then in this preceding vertex there must be precisely r 0’s to
the right of the right 1 and before the left 1. Similarly, since the left move produces
the vertex adjr(`

′′) it must be that there are r 0’s to the right of the left 1 and before
the right 1. Hence, n = 2r + 2, a contradiction.
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Lemma 3.1.18. Suppose that the simplex ω`,λ uses the elements

adjr(`1) <adj adjr(`2) <adj · · · <adj adjr(`s) = adjr(`)

of Adjr[n]. Switching the parity of the edges about adjr(`j) replaces the vertex adjr(`j)
with an (r + 1)-stable vertex, and leaves all other vertices in (ω`,λ) fixed.

Proof. First fix adjr(`j) for j 6= s, and switch the parity of the moves directly before
and after adjr(`j) in (ω`,λ). By Lemma 3.1.15 there are two cases. In case (i), Lemma
3.1.16 implies that the parity switch changes the move before from a right to a
left, and the move after from a left to a right. Since each vertex in the circuit is
determined by the number of left moves and right moves by which it differs from
adjr(`) this switching does not change any of the vertices preceding adjr(`j) in (ω`,λ).
Similarly, it does not change any of the vertices following adjr(`j). The reader should
also note that this switch changes the composition λ. However, Lemma 3.1.15 ensures
that the resulting composition, say λ′, still satisfies the bounds of equation (3.1.1).
Hence, by Proposition 3.1.8 this switch produces a circuit (ω`,λ′) for which ω`,λ′ ∈
max∇r

n,2\max∇r+1
n,2 . Moreover, the vertex which replaces adjr(`j) is not an element

of Adjr[n] by Lemma 3.1.17. As an example, consider the following scenario for r = 3:

(0, 1R, 0, 0, 0, 1L, 0, . . . , 0)

(0, 0, 1R, 0, 0, 1L, 0, . . . , 0) ∈ Adj3[n] (0, 1R, 0, 0, 0, 0, 1L, 0, . . . , 0) /∈ Adj3[n]

(0, 0, 1R, 0, 0, 0, 1L, 0, . . . , 0)

R

L

L

R

We remark that ω`,λ ∈ W`,s, so ω`,λ′ ∈ W`,s−1.
In case (ii), Lemma 3.1.16 implies that the parity switch changes the move before

adjr(`j) from a left to a right, and the move after adjr(`j) from a right to a left. Now
apply the same argument as for case (i), and the result follows. We again remark
that since ω`,λ ∈ W`,s then the parity switch results in a simplex ω`,λ′ ∈ W`,s−1.

Now consider adjr(`). By the same argument as before, switching the parities of
the moves about adjr(`) replaces adjr(`) with an (r + 1)-stable vertex that is not in
Adjr[n]. This scenario is depicted in the following diagram for r = 3.

(0, 1, 0, 0, 0, 1, 0, . . . , 0)

(0, 1, 0, 0, 1, 0, . . . , 0) = adj3(ℓ) (1, 0, 0, 0, 0, 1, 0, . . . , 0) /∈ Adj3[n]

(1, 0, 0, 0, 1, 0, . . . , 0)

Notice that we omit the labels R and L. This is because removing adjr(`), the
vertex which defines the labels, demands a relabeling of the resulting circuit, and in
general the new labels will not agree with the old. However, this is acceptable since
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4

adj  (15)
4

Figure 3.5: The lattice path p(ω15,λ?). Here, λ? = (0, 1, 1, 1, 1, 0, 0, 0, 0, 0).

to switch the parities of the moves about adjr(`) we simply note that the vertices
directly before and after adjr(`) in the circuit are completely determined by adjr(`).
Moreover, the edges before and after adjr(`) each correspond to a move of a different
1 in adjr(`). Hence, to switch the parities, starting at the vertex preceding adjr(`)
simply switch the order in which the 1’s move.

Corollary 3.1.19. For the simplex ω`,λ, switching the parities of the edges about
adjr(`j), for j 6= s, reduces the simplex ω`,λ ∈ W`,s to a simplex ω`,λ′ ∈ W`,s−1. For
s 6= 1, switching the parities of the edges about adjr(`) reduces the simplex ω`,λ ∈ W`,s

to a simplex ω`s−1,λ′ ∈ W`s−1,s−1. For s = 1, switching the parities of the edges about
adjr(`) reduces the simplex ω`,λ ∈ W`,s to a simplex in max∇r+1

n,2 .

Proof of Theorem 3.1.14.

We are now ready to prove Theorem 3.1.14. Recall, to prove Theorem 3.1.14 it suffices
to identify the unique minimal new face associated to each simplex in the shelling
order. Given ω`,λ ∈ W`,s recall that we can associate to ω`,λ a lattice path p(ω`,λ).
Notice also that for each adjr(`) ∈ Adjr[n] the first simplex in our order that uses
adjr(`) is ω`,λ? where

λ? = (0, 1, 1, . . . , 1, 0, 0, . . . , 0).

A picture of the lattice path p(ω15,λ?) corresponding to λ? for n = 15, r = 4, and
` = 15 is given in Figure 3.5.

We claim that the unique minimal new face of ω`,λ is the collection of vertices

• adjr(`),

• those vertices corresponding to lattice points on p(ω`,λ) that lie on y = x, and

• those vertices corresponding to lattice points on p(ω`,λ) that are

– right-most in their row of the lattice,

50



y=x y=x-n+2r
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4

adj  (1)
4

adj  (2)
4
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adj  (4)
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adj  (15)
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Figure 3.6: The lattice path p(ω15,λ) compared to p(ω15,λ?). Here, λ =
(1, 0, 0, 1, 0, 1, 0, 0, 0, 1). The unique minimal new face of ω15,λ is given by the open
lattice points.

– corners of p(ω`,λ), and

– do not lie on p(ω`,λ?).

That is to say, the corners of p(ω`,λ) that are “furthest away” or “point away”
from the path p(ω`,λ?).

Example 3.1.20. Let n = 15 and r = 4. Consider the simplex ω15,λ from Example
3.1.12. The unique minimal new face for ω15,λ is given by the vertices

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
(1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
(0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

These vertices correspond to the open lattice points on the path p(ω15,λ) depicted in
Figure 3.6. The reader should note the position of these points relative to the lattice
path p(ω15,λ?).

To see these vertices form the unique minimal new face fix a simplex ω`,λ ∈ W`,s,
and suppose that this set of vertices is

Gω = {v0 := adjr(`), v1, v2, . . . , vq}.

We will show that any face of ω`,λ not using Gω has previously appeared, and that
Gω is indeed a new face.

First consider a face F of ω`,λ that does not use vertex vt ∈ Gω for t 6= 0. There
are then two cases:

(1) vt ∈ Adjr[n], or
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(2) vt /∈ Adjr[n].

In case (1), we saw in Corollary 3.1.19 that ω`,λ reduces to a previously shelled
simplex that only differs for ω`,λ by the vertex vt. That is, to construct a simplex
ω`,λ′ that uses the face F and was shelled before ω`,λ switch the parities of the moves
about vt. This results in a simplex ω`,λ′ ∈ W`,s−1, which was therefore shelled before
ω`,λ.

In case (2), we can identify a previously shelled simplex ω`,λ′ ∈ W`,s that uses the
face F and for which ω`,λ′ <colex ω`,λ as follows. Since vt /∈ Adjr[n] then it must be
that vt corresponds to a lattice point on p(ω`,λ) that is a right-most vertex on a row
of the lattice, that is a corner of the path, and is also not a point on the path p(ω`,λ?)
(since all points on the line y = x correspond to elements of Adjr[n]). Hence, the
vertex vt is produced by a right move and followed by a left move in (ω`,λ). Switching
the parities of these moves results in replacing vt with a vertex v′t which is produced
by a left move and followed by a right move in the resulting cycle, say (ω`,λ′). Notice
that the vertex v′t is not an element of Adjr[n]. To see this, assume otherwise. Then
by Lemma 3.1.15 v′t is a vertex produced by a left move and followed by a right move
for which the number of left moves preceding the right move is maximal and not
minimal with respect to equation (3.1.1). Hence, the lattice point corresponding to
v′t lies on the line y = x. But this implies that vt is a vertex on p(ω`,λ?), which is a
contradiction. Thus, v′t is not an element of Adjr[n]. Notice also that it is immediate
from the parity switch of the moves about vt that ω`,λ′ <colex ω`,λ. Hence, ω`,λ′ ∈ W`,s

with ω`,λ′ <colex ω`,λ. Moreover, since ω`,λ′ uses the face F since this simplex only
differs from ω`,λ by the vertex vt, which is not used in F .

Now suppose vt = v0 = adjr(`). By Corollary 3.1.19 we know that switching the
parities about v0 reduces to a previously shelled simplex, which only differs from the
simplex ω`,λ by the vertex v0. Hence, the face F also appears in the previously shelled
simplex.

We next show that Gω is indeed a new face. Notice that by Remark 3.1.11 Gω

contains all the vertices in v(ω) ∩Adjr[n]. For the sake of contradiction, suppose that
Gω appeared in a previously shelled simplex, say ω`′,λ′ . That is, ω`′,λ′ < ω`,λ. Since
ω`,λ ∈ W`,s and we are assuming ω`′,λ′ < ω`,λ then ω`′,λ′ uses at most s elements of
Adjr[n]. But since Gω contains s elements of Adjr[n] we have that ω`′,λ′ ∈ W`′,s. In
particular, ω`′,λ′ uses precisely the same elements of Adjr[n] as ω`,λ, and so `′ = `.
Hence, ω`′,λ′ = ω`,λ′ ∈ W`,s. So it must be that λ′ <colex λ. That is, the right-most
nonzero entry in λ− λ′ is positive, say λm − λ′m > 0.

Consider the vertex in ω`,λ, say vt, produced by the mth right move in (ω`,λ). In
p(ω`,λ) vt corresponds to the right-most corner vertex in a row of the lattice since
λm > 0. We then have two cases.

(1) The vertex vt does not correspond to a point on p(ω`,λ?).

(2) The vertex vt does correspond to a point on p(ω`,λ?).

In case (1), it follows that vt ∈ Gω. Since ω`,λ and ω`,λ′ both have the same
largest element in the set Adjr[n], namely adjr(`), every element of Gω is uniquely

52



y=x

adj  (l')
3

v  
t

y=x

adj  (l')
3

v  
t

m

m+1

m+2 m+3

m-1m-2

m

m-1

m-2

m+1 m+2

Figure 3.7: The case when vertex vt is a point on p(ω`,λ?).

determined by the number of left and right moves needed to produce it from adjr(`).
In particular, we have that vt is produced by m right moves and

∑m−1
j=1 λj left moves

in ω`,λ, and vt is produced by m right moves and
∑m−1

j=1 λ′j left moves in ω`,λ′ . But
since λm − λ′m > 0 and λj − λ′j = 0 for all j > m we have that

m−1∑
j=1

λj <
m−1∑
j=1

λ′j,

a contradiction.
In case (2), it follows that ω`,λ does not contain the vertex adjr(`

′) corresponding
to the lattice point diagonally across from vt on the line y = x. This scenario is
depicted if Figure 3.7. However, since λm − λ′m is the right-most nonzero entry in
λ − λ′ then ω`,λ′ does contain adjr(`

′), since one of the left moves accounted for by
λm must now be accounted for in λ′t for t < m. But this contradicts the fact that

v(ω`,λ′ )
∩ Adjr[n] = v(ω`,λ) ∩ Adjr[n] .

Thus, Gω is indeed a new face. This completes the proof of Theorem 3.1.14.

Some Corollaries of the Stable Shelling Theorem.

We first note that inductively Theorem 3.1.14 results in a shelling of the odd second
hypersimplex ∆n,2, thereby proving Theorem 3.1.1. This shelling is interesting in
the sense that it begins with simplices that use only the “most stable” vertices of
the polytope and at each stage adds a simplex that uses more and more of the “less
stable” vertices. We now give a few results that will be helpful in Section 3.2, where
we examine the h∗-polynomials of these polytopes.

Corollary 3.1.21. Let ω`,λ ∈ max∇r
n,2\max∇r+1

n,2 . The maximum dimension of the
minimum new face Gω is r + 1.

Proof. Consider the lattice path p(ω`,λ) and recall that the vertices of the minimal
new face Gω correspond to lattice points on p(ω`,λ) that lie on the line y = x together
with those that are the right-most such points in their row of the lattice, that are
corners of p(ω`,λ), and are not on the path p(ω`,λ?). In particular, these are the
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lattice points (x, x) for x ∈ [r] (which we will call type 1 ), and (x, y) where y ≤ x−3,
y ∈ {0, 1, . . . , r − 1}, and (x, y) is a corner of p(ω`,λ) that is not also on the path
p(ω`,λ?) (which we will call type 2 ). The lattice path p(ω`,λ) can have at most one
such point on each line y = α for α ∈ [r], and at most two such points on the line
y = 0 (one of which is always adjr(`)). This gives a maximum possible dimension of
r + 2 for Gω.

Assume now that there exists ω`,λ such that Gω has dimension r + 2. Consider
the vertices of Gω corresponding to lattice points (x, x) for x ∈ [r]. Label this
set of vertices by V , and for v ∈ V label its corresponding lattice point by pv :=
(xv, yv). Notice that V is nonempty since by our assumption Gω contains a vertex
corresponding to a lattice point on the line y = r, and (since we do not wish to
over-count the vertex adjr(`)) the only option is adjr(`+ r) ∈ V . So let v ∈ V . Then
p(ω`,λ) cannot contain any type 2 points on the lines y = yv − 1 or y = yv − 2 (this
is because p(ω`,λ) may only use North and East moves). But by our assumption the
lines y = yv−1 and y = yv−2 must each contain a point corresponding to an element
of Gω. Hence, they are type 1 points, and therefore elements of V .

Beginning with v = adjr(`+ r), which has corresponding lattice point pv = (r, r),
iterating this argument shows that for each line y = α, α ∈ {0, 1, 2, . . . , r−1}, the path
p(ω`,λ) uses the point (α, α), and no type 2 points on y = α. Hence, #(Gω) = r + 1,
a contradiction.

For the case when r = 1, the next corollary is also a corollary to the algebraic
formula given for the h∗-polynomial of ∆n,2 by Katzman in [?]. However, we are now
able to give an entirely combinatorial proof of this result.

Corollary 3.1.22. Let n be odd and r <
⌊
n
2

⌋
. The degree of the h∗-polynomial of

∆
stab(r)
n,2 is

⌊
n
2

⌋
, and it has leading coefficient n.

Proof. Since r <
⌊
n
2

⌋
we have shelled the simplices in max∇b

n
2 c−1

n,2 \max∇b
n
2 c

n,2 in

order to build the hypersimplex ∆
stab(r)
n,2 . By Corollary 3.1.21 for a simplex ω ∈

max∇b
n
2 c−1

n,2 \max∇b
n
2 c

n,2 the maximum dimension of Gω is
⌊
n
2

⌋
. It remains to show

that this maximum dimension is achieved precisely n times.
Notice first that for r =

⌊
n
2

⌋
− 1 we have that the lattice paths labeling simplices

in max∇r
n,2\max∇r+1

n,2 are bounded between the lines y = x and y = x− 3. Also, for
ω to satisfy #(Gω) = r + 1 then there must be a total of r points of p(ω`,λ) on the
lines y = x and y = x− 3 other than (0, 0) and (n− r, r).

For max(v(ω) ∩ Adjr[n]) = adjr(`) with ` ≤ r this is impossible since there are
less than r points on these lines that we may use without violating the choice of
max(v(ω) ∩ Adjr[n]) = adjr(`).

For r < ` < n consider the following. Suppose p(ω`,λ) uses a point (α, α) for
0 < α ≤ r. Then by the same argument as in Corollary 3.1.21 this implies that
p(ω`,λ) uses (α − 1, α − 1). Iterating this just as before we get that p(ω`,λ) uses the
points

{(0, 0), (1, 1), (2, 2), . . . , (α, α)}.
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However, this contradicts the fact that r ≤ ` < n and max(v(ω) ∩ Adjr[n]) = adjr(`).
Hence, the only point used by p(ω`,λ) on the line y = x is (0, 0). Therefore, p(ω`,λ)
must be the path using all the points on the line y = x− 3.

For ` = n there are exactly r+ 1 paths such that #(Gω) = r+ 1. This is also seen
from the iterative argument we used in Corollary 3.1.21. Suppose the path p(ω`,λ)
uses s ≤ r points of the set {(1, 1), (2, 2), . . . , (r, r)}, and let (α, α) be the point in
this collection for which the value of α is maximal. It then follows that p(ω`,λ) uses
all the points

{(0, 0), (1, 1), (2, 2), . . . , (α, α)}.
Hence, it must be that α = s. Since there is exactly one path that uses r + 1 points
on the lines y = x and y = x− 3 and uses the points {(0, 0), (1, 1), (2, 2), . . . , (α, α)},
then we conclude that there are exactly r + 1 simplices ωn,λ with #(Gω) = r + 1.

Considering all of these cases together we conclude that there are exactly n sim-
plices with #(Gω) = r + 1.

Remark 3.1.23. We remark that the proofs of the previous corollaries are intriguing
since they point out that this shelling allows us to study the Ehrhart Theory of the
odd second hypersimplices, as well as the r-stable odd second hypersimplices, by
enumerating lattice paths in various ladder-shaped regions of the plane. However,
this enumeration problem, in general, is not trivial as suggested by the work of
Krattenthaler in [31].

3.2 The h∗-polynomials of the r-stable Odd Second Hypersimplices

In the following we compute the h∗-polynomial of ∆
stab(r)
n,2 for n odd. For every

1 ≤ r ≤
⌊
n
2

⌋
we give a formula for the h∗-polynomial of ∆

stab(r)
n,2 in terms of a sum of

independence polynomials of certain graphs. In the case of r =
⌊
n
2

⌋
− 1 we show that

the h∗-polynomial of ∆
stab(r)
n,2 is precisely the independence polynomial of the cycle on

n vertices, or equivalently, the nth Lucas polynomial. Then, via Ehrhart-MacDonald
Reciprocity, we demonstrate that the h∗-polynomial of the relative interior of this
polytope is a univariate specialization of a polynomial that plays an important role
in the theory of proper holomorphic mappings of complex balls in Euclidean space.
Specifically, this polynomial is the squared Euclidean norm function of a well-studied
CR mapping of the Lens space into the unit sphere within Cr+3 [11, 12, 13].

The h∗-polynomial of ∆
stab(r)
n,2 via Independence Polynomials of Graphs.

It will be helpful to recall some basic facts about independence polynomials of graphs.
Suppose that G is a finite simple graph with vertex set V (G) and edge set E(G). An
independent set in G is a subset of the vertices of G, S ⊂ V (G), such that no two
vertices in S are adjacent in G. Let si denote the number of independent sets in G
with cardinality i, and let β(G) denote the maximal size of an independent set in G.
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The independence polynomial of G is the polynomial

I(G;x) :=

β(G)∑
i=0

six
i.

Independence polynomials of graphs are well-studied structures. Levit and Mandrescu
nicely survey properties of these polynomials in [36]. Here, we restrict our attention
only to those properties which we will use to compute h∗-polynomials. Suppose that
G1 and G2 are two finite simple graphs, and let G1 ∪G2 denote their disjoint union.
It is a well known fact (see for instance [22] or [36]) that

I(G1 ∪G2;x) = I(G1;x) · I(G2;x).

Let Pn and Cn denote the path and cycle on n vertices, respectively. In [2], Arocha
showed that

I(Pn;x) = Fn+1(x) and I(Cn;x) = Fn−1(x) + 2xFn−2(x),

where Fn(x) denotes the nth Fibonacci polynomial. The Fibonacci polynomials are
defined for n ≥ 0 by the recursion

F0(x) = 1, F1(x) = 1, and Fn(x) = Fn−1(x) + xFn−2(x).

A closely related class of polynomials are the Lucas polynomials, which are defined
by the recursion

L0(x) = 2, L1(x) = 1, and Ln(x) = Ln−1(x) + xLn−2(x).

These collections of polynomials will play important roles in our computations of
h∗-polynomials.

In the following we let h∗
(

∆
stab(r)
n,2 ; x

)
denote the h∗-polynomial of ∆

stab(r)
n,2 . Recall

that Theorem 3.1.14 provides a shelling of the unimodular triangulation of ∆
stab(r)
n,2

induced by the circuit triangulation of ∆n,2. We let ∇r
n,2 denote this triangulation

of ∆
stab(r)
n,2 and max∇r

n,2 denote the collection of maximal simplices in ∇r
n,2. By a

theorem of Stanley [44], we may compute

h∗
(

∆
stab(r)
n,2 ; x

)
=

n−1∑
i=0

h∗ix
i

where h∗i equals the number of simplices in max∇r
n,2 with unique minimal new face

of dimension i − 1 with respect to the shelling described by Theorem 3.1.14. Also
recall that by Lemma 2.2.7 {

∆
stab(bn2 c)
n,2

}
= max∇b

n
2 c

n,2 ,
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and this simplex has unique minimal new face ∅. Moreover, every simplex in max∇r
n,2

other than this simplex has unique minimal new face of dimension at least 0. By the
construction of the shelling, for a fixed 1 ≤ r ≤

⌊
n
2

⌋
, the simplices in

max∇r
n,2\max∇r+1

n,2 correspond to lattice paths in decorated ladder-shaped regions
of the plane. Since the shape of this region is fixed for fixed values of n and r, and
there is one such region for each ` ∈ [n], we will refer to the decorated ladder-shaped
region with origin label ` as an `-region.

Suppose ω ∈ max∇r
n,2\max∇r+1

n,2 is a simplex with corresponding lattice path
λ(ω). Then, for a fixed `, λ(ω) is a lattice path in the corresponding `-region if and
only if adjr(`) is the maximal r-adjacent vertex used by ω. Hence, any point on the
boundary lines y = x and y = x− n+ 2r labeled by s with s > ` cannot be used by
λ(ω). In this way, these lattice points are inaccessible lattice points of the `-region.
We now formalize these definitions.

Definition 3.2.1. Fix an odd n > 2 and 1 ≤ r ≤
⌊
n
2

⌋
. For each ` ∈ [n], we call

the decorated ladder-shaped region of Z2 containing the lattice paths corresponding
to simplices in max∇r

n,2 with maximal r-adjacent vertex adjr(`), an `-region. For
a fixed ` ∈ [n], an accessible point in an `-region is a lattice point that does not
lie on the path λ?, but does lie on a path λ(ω) for some simplex ω ∈ max∇r

n,2 with
maximal r-adjacent vertex adjr(`). Otherwise, it is called inaccessible.

Recall that the vertices of the unique minimal new face of ω correspond to the
lattice points labeled by ` and the corners of λ(ω) that “point away” from the path

λ?. With these facts in hand, we are ready to compute the h∗-polynomials of ∆
stab(r)
n,2

for n odd.
We first examine the case where r =

⌊
n
2

⌋
− 1. Then we will extend this result

to the remaining values of r. So fix an odd n > 2 and set r :=
⌊
n
2

⌋
− 1. Then the

boundary lines of the `-regions are given by y = x and y = x− 3. Since the vertices
of the unique minimal new face of ω correspond to the lattice points labeled by `
and the corners of λ(ω) that “point away” from the path λ? then the dimension of
the unique minimal new face of ω is the number of corners of λ(ω) that lie on the
lines y = x and y = x − 3. (Notice that the cardinality of the unique minimal new
face is one more than this value, in which case we include the vertex corresponding
to the origin in our count as well.) Suppose that (x, x) is an accessible lattice point
in an `-region. Then the lattice path λ(ω) may either use the lattice point in the
set {(x, x)} or it may use lattice points in the set {(x + 2, x − 1), (x + 1, x − 2)},
but it may not use points from both sets. This is an immediate consequence of the
fact that λ(ω) only uses North and East moves. In this way, the lattice point (x, x)
inhibits the lattice points in the set {(x+ 2, x− 1), (x+ 1, x− 2)} and vice versa. For
convenience, we make this a formal definition.

Definition 3.2.2. Fix odd n > 2, 1 ≤ r ≤
⌊
n
2

⌋
, and ` ∈ [n]. Suppose a and b

are lattice points in the corresponding `-region. We say that a and b inhibit one
another if and only if the vertices corresponding to a and b cannot appear together in
the unique minimal new face of any simplex in max∇r

n,2\max∇r+1
n,2 with maximum
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r-adjacent vertex adjr(`). Moreover, if a and b possess labels `1 and `2, we also say
that `1 and `2 inhibit one another.

Using the labels of these points in the `-region this scenario can be represented in
the following manner. Consider a line of 2r spots labeled as follows:

ℓ− 1ℓ+ rℓ− 2ℓ+ r − 1ℓ− r + 1ℓ+ 2ℓ− rℓ+ 1

Notice that each label is adjacent to exactly those labels that it inhibits. For each
` ∈ [n] we will use this diagram to construct a graph Gn,r,` whose independent sets
(together with the origin) are precisely the unique minimal new faces of the simplices
whose lattice paths reside in the `-region. Fix ` ∈ [n], and let S denote the set of
accessible vertices in the corresponding `-region. Construct the graph Gn,r,` by filling
in each spot in the above diagram corresponding to a vertex in S. We think of these
filled in spots as the vertices of Gn,r,`, and we place an edge between any two vertices
that are not separated by a spot.

Example 3.2.3. Here are the graphs Gn,r,` for each choice of ` when n = 13 and
r =

⌊
n
2

⌋
− 1 = 5.

ℓ G13,5,ℓ

1 ∅

2 •

3 • •

4 • • •

5 • • • •

6 • • • • •

7 • • • • •

8 • • • • •

9 • • • • • •

10 • • • • • • •

11 • • • • • • • •

12 • • • • • • • • •

13 • • • • • • • • • •
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Proposition 3.2.4. Fix odd n > 2 and let r =
⌊
n
2

⌋
− 1. Then

h∗
(

∆
stab(r)
n,2 ; x

)
= 1 + x

n∑
`=1

I(Gn,r,`;x).

Equivalently,

h∗
(

∆
stab(r)
n,2 ; x

)
= 1+x

(
r−1∑
i=0

(1 + x)i + 3(1 + x)r +
r−2∑
i=0

(1 + x)iF2r−2i(x) + F2r+1(x)

)
.

Proof. Suppose

I(Gn,r,`;x) = s0 + s1x+ s2x
2 + · · ·+ sβ(Gn,r,`)x

β(Gn,r,`).

Then si is equal to the number of independent sets of cardinality i in Gn,r,`. By the
construction of Gn,r,` this number is precisely the number of simplices in
max∇r

n,2\max∇r+1
n,2 that have unique minimal new face of dimension i and maximal

r-adjacent vertex adjr(`). Hence,

h∗
(

∆
stab(r)
n,2 ; x

)
= 1 + x

n∑
`=1

I(Gn,r,`;x).

To prove the second equality we must identify the graphs Gn,r,`. In order to do
this, we must understand the accessible lattice points in an `-region for each ` ∈ [n].
In general, the set of accessible points for each `-region is given by

` Set of accessible points in the `-region
1 {`}
2 {`, `− 1}
3 {`, `− 1, `− 2}
...

...
r {`, `− 1, `− 2, · · · , `− r + 1}

r + 1 {`, `− 1, `− 2, · · · , `− r + 1, `− r}
r + 2 {`, `− 1, `− 2, · · · , `− r + 1, `− r}
r + 3 {`, `− 1, `− 2, · · · , `− r + 1, `− r}
r + 4 {`, `− 1, `− 2, · · · , `− r + 1, `− r, `+ r}
r + 5 {`, `− 1, `− 2, · · · , `− r + 1, `− r, `+ r, `+ r − 1}
r + 6 {`, `− 1, `− 2, · · · , `− r + 1, `− r, `+ r, `+ r − 1, `+ r − 2}

...
...

n− 1 {`, `− 1, `− 2, · · · , `− r + 1, `− r, `+ r, `+ r − 1, `+ r − 2, . . . , `+ 2}
n− 1 {`, `− 1, `− 2, · · · , `− r + 1, `− r, `+ r, `+ r − 1, . . . , `+ 2, `+ 1}
That is, as ` increases, we first gain points on the diagonal y = x − 3 from top-

to-bottom, and then those on y = x from top-to-bottom. This happens one point
at a time except for ` = r + 2 and ` = r + 3, which have the same set of accessible
points as ` = r + 1. This is because n = 2r + 3 when r =

⌊
n
2

⌋
− 1, and the labels
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on the diagonals of an `-region are precisely those vertices of a convex n-gon labeled
1, 2, . . . , n with circular distance at most r from `.

Given this characterization of the accessible points in each `-region we can deter-
mine the graphs Gn,r,` as follows. For ` ≤ r the graph Gn,r,` is simply a collection of
`− 1 disjoint vertices. For ` ∈ {r + 1, r + 2, r + 3} the graph Gn,r,` is a collection of
r disjoint vertices. For r + 4 ≤ ` ≤ n− 1 we begin to add edges. For convenience let
` = r + 3 + t for the suitable value of t. Then the graph Gn,r,` includes the vertices

`+ r, `+ r − 1, `+ r − 2, . . . , `+ r − (t− 1).

Each of these vertices attaches to each vertex next to it in the diagram. This produces
a path of length 2t + 1 and a collection of r − (t + 1) disjoint vertices. Finally, for
` = n, all points are accessible so Gn,r,` = P2r. Then, if we make the change of
variables i = r − (t+ 1), we have the following.

h∗
(

∆
stab(r)
n,2 ; x

)
= 1 + x

n∑
`=1

I(Gn,r,`;x),

= 1 + x

(
r−1∑
i=0

(1 + x)i + 3(1 + x)r

+
r−2∑
i=0

(1 + x)iI(P2r−2i−1;x) + I(P2r;x)

)
,

= 1 + x

(
r−1∑
i=0

(1 + x)i + 3(1 + x)r +
r−2∑
i=0

(1 + x)iF2r−2i(x) + F2r+1(x)

)

This formula for h∗
(

∆
stab(r)
n,2 ; x

)
is convenient since it allows us to compute this

polynomial via rows and diagonals of Pascal’s Triangle. In subsection 3.2, we will see
that this formula is equal to the nth Lucas polynomial. However, we first show how

we may generalize this formula to h∗
(

∆
stab(r)
n,2 ; x

)
for 1 ≤ r <

⌊
n
2

⌋
− 1. To do so, we

construct an inhibition diagram similar to the one used for r =
⌊
n
2

⌋
− 1.

Fix 1 ≤ r <
⌊
n
2

⌋
− 1. Construct a graph Gn,r with vertex set consisting of all

lattice points in the n-region that do not lie on the path λ?, and edge set {{i, j} :
i inhibits j}. Let Gn,r,` denote the subgraph of Gn,r that is induced by the set of
accessible points in the `-region. We refer to the graph Gn,r,` as the inhibition diagram
for its associated `-region.

Proposition 3.2.5. Fix odd n > 2 and 1 ≤ r ≤
⌊
n
2

⌋
− 1. Then

h∗
(

∆
stab(r)
n,2 ; x

)
= 1 + x

bn2 c−1∑
j=r

n∑
`=1

I(Gn,j,`;x)

 .
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In particular, the h∗-polynomial of ∆n,2 is given by a sum of independence polynomi-
als.

Proof. The proof of this formula is identical to the proof of the first formula given in
Proposition 3.2.4.

Notice that Proposition 3.2.5 proves Theorem ??. We end this subsection with a
few examples of the graphs Gn,r,` and the resulting h∗-polynomials.

Example 3.2.6. In Example 3.2.3 we saw that the inhibition diagrams for `-regions
when r =

⌊
n
2

⌋
− 1 correspond to subgraphs of a path of length 2r. Suppose now that

r =
⌊
n
2

⌋
− 2. Here are the general `-regions for n = 7, 8, and 9, respectively.

y = x y = x− n+ 2r

ℓ

ℓ

a2 a1 ℓ+ 1

ℓ+ 1

y = x y = x− n+ 2r

ℓ

ℓ

a2 a1

b2 b1

ℓ− 1

ℓ− 2

ℓ+ 1

ℓ+ 2

y = x y = x− n+ 2r

ℓ

ℓ

a2 a1

b2 b1

c2 c1

ℓ− 1

ℓ− 2

ℓ− 3

ℓ+ 1

ℓ+ 2

ℓ+ 3

The corresponding inhibition diagrams are, respectively,

a1 a2

ℓ− 1 ℓ+ 1

a1 a2 b1 b2

ℓ− 1 ℓ+ 1

ℓ− 2 ℓ+ 2

a1 a2 b1 b2 c1 c2

ℓ− 1 ℓ+ 1

ℓ− 2 ℓ+ 2

ℓ− 3 ℓ+ 3

Using the formula given in Proposition 3.2.5, we can compute h∗
(

∆
stab(2)
9,2 ; x

)
. By

Proposition 3.2.4 we know that

h∗
(

∆
stab(3)
9,2 ; x

)
= 1 + 9x+ 27x2 + 30x3 + 9x4.

Hence, it remains to compute the independence polynomials for G9,2,` for each ` ∈ [9].
These polynomials are identified in the following table.
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ℓ G9,2,ℓ I (G9,2,ℓ;x)

1 • • • • 1 + 4x+ 3x2

2 • • • •

•

1 + 5x+ 5x2

3− 7 • • • •

•

•

1 + 6x+ 6x2

8 • • • •

•

• •

1 + 7x+ 6x2

9 • • • •

• •

• •

1 + 8x+ 10x2

It follows that

h∗
(

∆
stab(2)
9,2 ; x

)
= h∗

(
∆

stab(3)
9,2 ; x

)
+x(9 + 54x+ 54x2),

= 1 + 18x+ 81x2 + 84x3 + 9x4.

Similarly, we can also compute that

h∗
(

∆
stab(1)
7,2 ; x

)
= 1 + 14x+ 35x2 + 7x3,

h∗
(

∆
stab(2)
9,2 ; x

)
= 1 + 18x+ 81x2 + 84x3 + 9x4, and

h∗
(

∆
stab(3)
11,2 ; x

)
= 1 + 22x+ 143x2 + 297x3 + 165x4 + 11x5.

The h∗-polynomial of ∆
stab(bn2 c−1)
n,2 and CR Mappings of Lens Spaces.

Fix odd n > 2 and r :=
⌊
n
2

⌋
−1. We begin this subsection by demonstrating that the

h∗-polynomial of ∆
stab(r)
n,2 is the independence polynomial of the cycle on n vertices.

As a corollary, we show that the h∗-polynomial of the relative interior of ∆
stab(r)
n,2 is a

univariate specialization of an important class of polynomials in CR geometry.

Theorem 3.2.7. Fix odd n > 2 and r =
⌊
n
2

⌋
− 1. Then

h∗
(

∆
stab(r)
n,2 ; x

)
= I(Cn;x) = Ln(x).

To prove Theorem 3.2.7 we first need a lemma that relates Lucas polynomials and
Fibonacci polynomials.
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Lemma 3.2.8. For n ≥ 2, the nth Lucas polynomial can be computed as

Ln(x) = Fn(x) + xFn−2(x).

Proof. In [37] it is noted that the diagonals of Pascal’s Triangle given by(
n

0

)
,

(
n− 1

1

)
,

(
n− 2

2

)
, . . . ,

(⌈n
2

⌉⌊
n
2

⌋)
are precisely the coefficients of the nth Fibonnaci polynomial

Fn(x) =

(
n

0

)
+

(
n− 1

1

)
x+

(
n− 2

2

)
x2 + · · ·+

(⌈n
2

⌉⌊
n
2

⌋)xbn2 c.
In Appendix A of [29] it is noted that the nth Lucas polynomial is given by the same
diagonal in the modified Pascal’s Triangle

2

1 2

1 3 2

1 4 5 2

1 5 9 7 2

1 6 14 16 9 2

For convenience, we refer to this triangle as Lucas’ Triangle. One way to produce
Lucas’ Triangle is to write the 2′s on the right boundary as 2 = 1b + 1g. In this way,
we have a blue 1 and and green 1 summing to give 2. Imagine that the 1′s on the
left boundary are also blue 1′s. Now as we fill in the interior of the triangle using
the standard Pascalian recursion write each entry as the sum of the blue 1′s plus the
sum of the green 1′s. This yields

1b + 1g

1b 1b + 1g

1b (2)b + (1)g 1b + 1g

1b (3)b + (1)g (3)b + (2)g 1b + 1g

1b (4)b + (1)g (6)b + (3)g (4)b + (3)g 1b + 1g

With this decomposition we see that Lucas’ Triangle can be produced by a term-
by-term sum of Pascal’s Triangle and the Pascal-like triangle
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1

0 1

0 1 1

0 1 2 1

0 1 3 3 1

0 1 4 6 4 1

From this it is then easy to deduce the identity

Ln(x) = Fn(x) + xFn−2.

With this lemma in hand, we are ready to prove Theorem 3.2.7.

Proof of Theorem 3.2.7.

Recall that for a fixed ` ∈ [n] the number of simplices in max∇r
n,2\max∇r+1

n,2 with
maximum r-adjacent vertex adjr(`) with unique minimal new face of dimension i is
the number of ways to construct a lattice path in the `-region that uses precisely i
accessible lattice points on the lines y = x and y = x − 3. Recall however, that in
the `-region the lattice points (0, 0) and (n− r, r) correspond to the same vertex. In
particular, we can think of the `-region as repeating itself in the region translated right
n−r and up r. Reflecting this translated copy of the `-region about the line y = x−3
results in a strip of height n in the region between y = x and y = x− 3 containing a
lattice path, corresponding to λ?, that only touches the boundary diagonals at lattice
points labeled by `. Flip the corner of this path at the lattice point labeled by ` (also
making the corresponding flips at the top and bottom of the diagram), and label the
two points on the opposite boundary line that are inhibited by ` as ` − (r + 1) and
`+ (r+ 1). This results in a diagram with (t, t) labeled by `+ t and (t, t− 3) labeled
by ` − r + t for t ∈ [n]. The diagram below represents these manipulations of the
`-region for n = 9.

y = x

y = x− 3 y = x− 6

ℓ

ℓ + 1

ℓ + 2

ℓ + 3
ℓ

ℓ− 1

ℓ− 2

ℓ− 3

ℓ + 1

ℓ + 2

ℓ + 3

ℓ− 3

ℓ− 2

ℓ− 1

ℓ

y = x y = x− 3

ℓ

ℓ + 1

ℓ + 2

ℓ + 3

ℓ + 6 = ℓ− 3

ℓ + 7 = ℓ− 2

ℓ + 8 = ℓ− 1

ℓ

ℓ

ℓ− 1 = ℓ + 8

ℓ− 2 = ℓ + 7

ℓ− 3 = ℓ + 6

ℓ + 1

ℓ + 2

ℓ + 3

y = x y = x− 3

ℓ

ℓ + 1

ℓ + 2

ℓ + 3

ℓ + 4

ℓ + 5

ℓ + 6

ℓ + 7

ℓ + 8

ℓ

ℓ

ℓ− 1

ℓ− 2

ℓ− 3

ℓ + 1

ℓ + 2

ℓ + 3

ℓ + 4

ℓ + 5

ℓ + 6

For this region, the inhibition diagram for the spots

X = {1, 2, 3, . . . , n}

is exactly a cycle on n vertices labeled as
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n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r

n

1 + (r + 1)

1

1 − (r + 1)
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1

1 − (r + 1)

2

1 − r

3

1 − (r − 1)

4

n − 2

1 + (r − 1)

n − 1

1 + r
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We remark that this labeling of Cn is precisely the underlying graph of the edge

polytope ∆
stab(bn2 c)
n,2 , the next smallest r-stable hypersimplex in the chain.

Notice now that for a simplex with maximum r-adjacent vertex adjr(`) and unique
minimal new face of dimension i we have a unique independent set in this labeled copy
of Cn of cardinality i+1 with maximal vertex label being `. Conversely, if we pick an
arbitrary independent (i+1)-set in this labeled copy of Cn it has a unique maximally
labeled element, say the vertex labeled by `. In the region for which this inhibition
diagram arises we may then flip the corners of the lattice path corresponding to λ?

such that it touches the boundary diagonals y = x and y = x − 3 precisely at the
lattice points labeled by the elements of the independent set. Then translate the
diagram so that ` is labeling the origin (and the first move is an East move). This
lattice path in this `-region gives the corresponding simplex in max∇r

n,2\max∇r+1
n,2 .

This establishes a bijection between the independent (i+ 1)-sets in this labeled copy
of Cn and the simplices in max∇r

n,2\max∇r+1
n,2 with unique minimal new face of

dimension i. Hence,

h∗
(

∆
stab(r)
n,2 ; x

)
= I(Cn;x).

Finally, to see that this polynomial is also the nth Lucas polynomial we utilize a
result of Arocha [2] which states that

I(Cn;x) = Fn−1(x) + 2xFn−2(x).

From this fact, and the identity from Lemma 3.2.8, we see that

h∗
(

∆
stab(r)
n,2 ; x

)
= I(Cn;x),

= Fn−1(x) + 2xFn−2(x),

= (Fn−1(x) + xFn−2(x)) + xFn−2(x),

= Fn(x) + xFn−2(x),

= Ln(x).

This completes the proof of Theorem 3.2.7.

We now describe a connection between our polytopes and CR geometry. CR
geometry is a fascinating field of study that examines properties of real hypersurfaces
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as submanifolds of Cn and their intrinsic complex structure induced by the ambient
space Cn. The interested reader should refer to [11] for a nice introduction to this
theory. In [11, Chapter 5], D’Angelo describes the theory of proper holomorphic
mappings between balls that are invariant under subgroups of the unitary group
U(n). These maps are particularly interesting as they induce maps from spherical
space forms into spheres. In [13], D’Angelo, Kos, and Riehl define recursively the
following collection of polynomials (the former-most author also defines this collection
explicity in [11, 12]). Let

g0(x, y) = x, g1(x, y) = x3 + 3xy,

and
gn(x, y) = (x2 + 2y)gn−1(x, y)− y2gn−2(x, y),

for n ≥ 2. Then set
pn(x, y) = gn(x, y) + y2n+1.

For odd n > 2 consider the group Γ(n, 2) of 2× 2 complex matrices of the form(
γ 0
0 γ2

)k
where γ is a primitive nth root of unity and k = 0, 1, 2, . . . , n − 1. Recall that the
Lens space, L(n, 2) is defined as the quotient L(n, 2) = S3/Γ(n, 2). In [11, 12] it
is shown that the polynomials pn(x, y) correspond to proper holomorphic monomial
maps between spheres (given by their monomial components) that are invariant under
Γ(n, 2). In [13] it is shown that these polynomials are of highest degree with respect

to this property. These polynomials share the following relationship with ∆
stab(r)
n,2 via

Ehrhart-MacDonald reciprocity.

Theorem 3.2.9. Fix odd n > 2 and let r =
⌊
n
2

⌋
− 1. Then

pr+1(x, x) = h∗
(

∆
stab(r)◦

n,2 ; x
)

+xn,

where ∆
stab(r)◦

n,2 denotes the relative interior of ∆
stab(r)
n,2 . Hence, the h∗-polynomial of the

relative interior of ∆
stab(r)
n,2 (plus an xn term) is a univariate evaluation of the squared

Euclidean norm function of a monomial CR mapping of the Lens space, L(n, 2), into
the unit sphere of complex dimension r + 3.

Proof. Consider the Lucas sequence defined by the recurrence

L0(x, y) = 2, L1(x, y) = x, and Ln(x, y) = xLn−1(x, y) + yLn−2(x, y)

for n ≥ 2. Comparing this sequence to the Lucas polynomials {Ln} we may deduce
that

Ln(x, y) = xnLn

( y
x2

)
.
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By applying the recurrence, we see that

Ln+2(x, y) = Ln(x, y)(x2 + 2y)− y2Ln−2(x, y).

It then follows that the odd terms of the sequence {Ln} are precisely the terms of
the sequence {gn(x, y)}. That is, if n = 2m+ 1 then

Ln(x, y) = gm(x, y).

Recall now that n = 2r + 3 = 2(r + 1) + 1. Applying these facts, together with
Ehrhart-MacDonald reciprocity, we see that

pr+1(x, x) = gr+1(x, x) + xn,

= Ln(x, x) + xn,

= xnLn

( x
x2

)
+ xn,

= xn h∗
(

∆
stab(r)
n,2 ;

1

x

)
+xn,

= h∗
(

∆
stab(r)◦

n,2 ; x
)

+xn.

The fact that pr+1(x, y) is the squared Euclidean norm function of a monomial CR
mapping of the Lens space, L(n, 2), into a sphere of complex dimension r+3 is proven
via the discussion in [11, pp.171-174].

More generally, for r ≤
⌊
n
2

⌋
−1, the h∗-polynomial of the relative interior of ∆

stab(r)
n,2

is a univariate specialization of the squared Euclidean norm function of certain poly-

nomial maps that induce smooth immersions of the Lens space L(n, 2) into Cbn2 c+1.
However, it is unclear that these maps are mapping L(n, 2) into a hypersurface with
interesting structure. For this reason we pose the following question.

Question 3.2.10. For r <
⌊
n
2

⌋
− 1, does the h∗-polynomial of the relative interior of

∆
stab(r)
n,2 arise as a univariate specialization of a polynomial corresponding to maps

between interesting manifolds?

3.3 The r-stable Even Second Hypersimplices

In this section we extend the results of sections 3.1 and 3.2 to the case of the even
second hypersimplices, that is ∆

stab(r)
n,k where n is even and k = 2. Unlike the case

when n is odd, the smallest (n− 1)-dimensional r-stable even second hypersimplices
are not necessarily unimodular simplices. Thus, if we wish to parallel the results
of sections 3.1 and 3.2 by providing a shelling of each triangulation ∇r

n,2 of ∆
stab(r)
n,2

for n even that inducts on r, we must first identify a base case and a shelling of

this base case. By Theorem 2.3.5, we know that for n even ∆
stab(n2−1)
n,2 is (n − 1)-

dimensional. As we will see in Chapter 4, these are the Gorenstein r-stable even
second hypersimplices, and they will serve as our base case.
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Shelling the r-stable Even Second Hypersimplices.

In the following, let n be even. Our first goal is to provide a shelling of ∇
n
2
−1

n,2 .
Following this, we will extend our inductive techniques of the previous sections to shell
all r-stable even second hypersimplices, and compute their h∗-polynomials via sums
of independence polynomials of graphs. Notice first that the labeling of the simplices
in max∇r

n,2 given by Remarks 3.1.9 and 3.1.11 still apply. That is, ω ∈ max∇r
n,2 is

uniquely described by ω`,λ where adjr(`) is the unique maximal r-adjacent vertex in
the simplex and λ = (λ1, . . . , λn−r−1) is a composition of r into n − r − 1 parts for
which

i− 1 ≤
i∑

j=1

λj ≤ i

for i = 1, . . . , n − r − 1. Since n = 2r + 2 when r = n
2
− 1 we cannot implement

the same shelling as in section 3.1 since Lemma 3.1.17, and thus Corollary 3.1.19, no
longer hold. In fact, switching the parity about an r-adjacent vertex always produces
another r-adjacent vertex when n = 2r + 2. Thus, we need to modify our shelling to
accommodate for this fact.

Recall, the order on the simplices for the n odd case first collects simplices into
sets W`,s where W`,s consists of all simplices with maximal r-adjacent vertex adjr(`)
that use s elements of Adjr[n]. We then order the elements in W`,s from least-to-
greatest with respect to the colexicographic order on their associated compositions.
Finally, we order the collection of sets {W`,s} from least-to-greatest with respect to
the colexicographic order on the labels (`, s). In the following remark, we define a
new order on the simplices in ∇r

n,2 for n = 2r+2 which will allow us to shell our base
case.

Remark 3.3.1. When n = 2r + 2 every simplex in max∇r
n,2 uses precisely r + 1

r-adjacent vertices. This is seen by noting that the lattice path corresponding to
ω`,λ lies in the region between the lines y = x and y = x − 2. Thus, we no longer
require the parameter s in the above formula. That is, for n = 2r+ 2, we denote the
collection of simplices in max∇r

n,2 with unique maximal r-adjacent vertex adjr(`) by
W`. We now order the elements of each set W` from greatest-to-least with respect to
the colexicographic order, and then order the sets W` as

W1,W2, . . . ,Wn.

Denote this order on the simplices in max∇r
n,2 by <e.

Theorem 3.3.2. Let n = 2r + 2. The order <e on max∇r
n,2 is a shelling order.

Proof. To show that this order is indeed a shelling it suffices to identify the unique
minimal new face of each simplex in the order. We claim that the unique minimal new
face of a simplex ω consists of all vertices whose corresponding lattice point in p(ω)
lies on the line y = x. Denote this collection by Gω = {v0 = adjr(`), v1, v2, . . . , vq}.

We must first show that any face F of ω consisting of Gω\{vt} for some t = 0, . . . , q
appears as a face of a previously shelled simplex. Consider first the case in which
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t 6= 0. Let F be a face of ω`,λ that does not use vt. To construct a simplex ω`′,λ′ <e ω`,λ
that uses F we do the following. Since t 6= 0 then vt lies on y = x and switching the
parities of the moves about vt replaces it with a vertex on y = x − 2. This lattice
path corresponds to a simplex ω`′,λ′ with `′ = `. Moreover, λ′ >colex λ since switching
the parities of the moves about vt amounts to shifting a move of 1 in λ one entry to
the right. Thus, ω`,λ′ ∈ W` such that ω`,λ′ <e ω`,λ.

To understand the case when t = 0 we first note that switching the parity about
a point adjr(`) replaces it with the point adjr(`+ r + 1). This can be seen quickly
from the labeling of the lattice region. Thus, switching the parity about v0 replaces
v0 = adjr(`) with adjr(`+ r + 1). Note adjr(`+ r + 1) < adjr(`) whenever ` > r + 1.
Since W1 = W2 = · · · = Wr = ∅ and Wr+1 = {ωr+1,λ?} then Gωr+1,λ?

= ∅, as it is the
first simplex in our shelling. Thus, it only remains to verify that Gω is indeed a new
face.

To see that Gω is a new face, we simply note that every lattice path in the
decorated region corresponding to adjr(`) for n = 2r + 2 is uniquely determined by
its vertices that lie on y = x. In other words, if Gω were indeed used previously then
the simplex that used it must be W`. However, the only simplex in W` that uses the
vertices in Gω is ω`,λ itself.

Corollary 3.3.3. There exists a stable shelling of the even second hypersimplex.

Proof. Recall that the stable shelling of the odd second hypersimplex given in sec-
tion 3.1 happens inductively, and the base case shells the smallest (n−1)-dimensional
r-stable (n, 2)-hypersimplex. The previous Theorem establishes the base case for n
even. Moreover, the inductive step then applies here, just as in the odd case, since
the only issue was in Lemma 3.1.17. In the proof of this lemma, a contradiction
occurs for n = 2r + 2. However, we are not taking this r value in our inductive step.
Thus, the same inductive shelling holds here with the Gorenstein r-stable second
hypersimplices serving as the base case.

Remark 3.3.4. One might be concerned that to shell the Gorenstein center of the
even second hypersimplices we do almost the same shelling as in the odd case, but
we reverse the order of the simplices in the sets W`. However, this choice is in fact
consistent with our previous shelling in the sense that in both cases we always shell
the simplices given by the lattice path λ? first.

The h∗-polynomials of the r-stable Even Second Hypersimplices.

Provided with the inductive shelling of the r-stable even second hypersimplices de-
scribed in Corollary 3.3.3 we may now apply Theorem 1.2.4 to compute the h∗-
polynomials of these polytopes. We first compute the h∗-polynomial of ∆

stab(r)
n,2 when

n = 2r + 2 in terms of the shelling provided in Theorem 3.3.2.

Theorem 3.3.5. Let n = 2r + 2. Then

h∗
(

∆
stab(r)
n,2 ; x

)
= (x+ 1)r+1.
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Proof. We count the simplices contributing to the coefficient h∗i by counting those
arising from each set W`, ` = 1, . . . , n. For ` = 1, . . . , r, we have that W` = ∅, so
nothing is contributed the coefficient h∗i . For ` = r + 1, we have that W` = {ω`,λ?},
and this simplex has the unique minimal new face ∅. Thus, h0 = 1.

For ` > r + 1, we have that ` = r + 2 + t for some 0 ≤ t ≤ r. Moreover,
the lattice point on the line y = x in the ladder shaped region assoicated to adjr(`)
that is furthest from the origin is adjr(`+ r) = adjr(2r + 2 + t) = adjr(t). Thus, for
` = r + 2 + t, there are t available lattice points on y = x (other than the origin).
Since any choice of s ≤ t of these available points corresponds to a unique path in
the region, which in turn corresponds to a unique simplex in max∇r

n,2 with unique
minimal new face of dimension s− 1, then the polynomial

h∗1x+ h∗2x
2 + · · ·+ h∗n−1x

n−1 = x(x+ 1)t.

Thus,

h∗
(

∆
stab(r)
n,2 ; x

)
= 1 + x

r∑
t=0

(x+ 1)t = (x+ 1)r+1.

We may now extend the apply the computations of section 3.2 the the r-stable even
second hypersimplices ∆

stab(r)
n,2 for any 1 ≤ r <

⌊
n
2

⌋
. Recall that for each `-region, we

can construct a graph Gn,r,` called the inhibition diagram for the associated `-region
(see subsection 3.2). Since the inductive step for the stable shelling of the r-stable
even second hypersimplices is the same as that of the odd ones we have the following
corollary to Theorem 3.3.5.

Corollary 3.3.6. Let n > 0 be even and 1 ≤ r <
⌊
n
2

⌋
. Then

h∗
(

∆
stab(r)
n,2 ; x

)
= (x+ 1)r+1 + x

n
2
−2∑
j=r

n∑
`=1

I(Gn,j,`;x)

 .

Remark 3.3.7. Proposition 3.2.5 and Corollary 3.3.6 combine to show that the h∗-
polynomial of ∆

stab(r)
n,2 for any n and r for which this polytope is (n− 1)-dimensional

can be expressed as a sum of independence polynomials of certain graphs. This

provides a combinatorial interpretation of the coefficients of h∗
(

∆
stab(r)
n,2 ; x

)
, and in

particular, this is true for the second hypersimplices ∆n,2.

3.4 Some Results on Unimodality of h∗-polynomials

A consequence of work by Katzman [30] is that the h∗-polynomial of ∆n,2 is uni-
modal. It appears that this is also true for the r-stable hypersimplices within. In this
subsection, we utilize the shelling and our computations of h∗-polynomials to show
that this observed unimodality does in fact hold in some specific cases. We begin
with a two quick corollaries, one to Theorem 3.2.7 and the other to Theorem 3.3.5.
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Corollary 3.4.1. Fix odd n > 2 and let r =
⌊
n
2

⌋
− 1. The h∗-polynomial of ∆

stab(r)
n,2

is log-concave and hence unimodal.

Proof. Since the h∗-polynomial of ∆
stab(r)
n,2 is I(Cn;x) and Cn is a claw-free graph then

by [23] it is log-concave and consequently unimodal.

Corollary 3.4.2. Let n = 2r + 2. The h∗-polynomial of ∆
stab(r)
n,2 is log-concave and

unimodal.

Proof. This corollary is immediate for the result of Theorem 3.3.5, which shows this
h∗-polynomial is the generating polynomial for the binomial coefficiencts

(
n
r+1

)
.

For n = 2r + 2, the r-stable hypersimplex ∆
stab(r)
n,2 is an example of a Gorenstein

r-stable hypersimplex. In Chapter 4, we will use geometric techniques to extend the
unimodality result of Corollary 3.4.2 to all Gorenstein r-stable hypersimplices. We
also note that the polynomials describe in Corollaries 3.4.1 and 3.4.2 possess the much
stronger property of real-rootedness, meaning that all zeros of these h∗-polynomials
are real numbers.

The following results utilize the formula for the h∗-polynomial of ∆n,2 given by
Katzman in [30]. Using this formula, we subtractively compute formulas for the

h∗-polynomials of ∆
stab(2)
n,2 and ∆

stab(3)
n,2 by “undoing” our shelling.

Corollary 3.4.3. The h∗-vector of ∆
stab(2)
n,2 is unimodal for n odd.

Proof. Consider the completion of the shelling of ∇2
n,2 to a shelling of ∇n,2. Here,

r = 1, and so the simplices ω`,λ ∈ max∇n,2\max∇2
n,2 are labeled with compositions

of length n− 2. The composition λ is a composition of 1 that must satisfy equation
(3.1.1). We now determine which compositions are admissible for a fixed adj1(`) =
max v(ω) ∩ Adj1[n].

For ` ∈ {2, 3, 4, . . . , n−1} the composition (1, 0, 0, . . . , 0) does not label a simplex
with adj1(`) = max v(ω) ∩ Adj1[n], since such a composition would necessarily have
max v(ω) ∩ Adj1[n] = adj1(`+ 1). This is depicted in Figure 3.8. On the other hand,
each other composition of 1 into n − 2 parts does correspond to a simplex with
adj1(`) = max v(ω) ∩ Adj1[n]. By considering the associated lattice paths in Figure
3.9 it is easy to see that the simplex ω`,λ? has #(Gω) = 1, and the other n−4 simplices
ω`,λ with λ = (0, 0, . . . , 0, 1, 0, . . . , 0) have #(Gω) = 2.

For ` = 1, the compositions (1, 0, 0, . . . , 0) and (0, 0, . . . , 0, 1) do not label a simplex
with adj1(1) = max v(ω) ∩ Adj1[n], since such a simplex necessarily has max v(ω) ∩
Adj1[n] ∈ {2, n}. This is depicted in Figure 3.9. Again, the simplex ω1,λ? has #(Gω) =
1, and the remaining n−5 simplices ω1,λ, for λ = (0, 0, . . . , 0, 1, 0, . . . , 0) have #(Gω) =
2.

Finally, for ` = n both the compositions (1, 0, 0, . . . , 0) and (0, 0, . . . , 0, 1) label a
simplex with adj1(1) = max v(ω) ∩ Adj1[n], since adj1(n) = max Adj1[n]. Hence there
is one simplex, namely ωn,λ? , with #(Gω) = 1, and the remaining n − 3 simplices
have #(Gω) = 2. Summarizing this analysis we have n simplices with #(Gω) = 1,
and n(n− 4) simplices with #(Gω) = 2.
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Figure 3.8: Here we let n = 9.

y=x y=x-n+2

adj  (l)
1
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4
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4

Figure 3.9: Here we let n = 9.

In [30], Katzman computed that for ∆n,2

h∗i =

(
n

2i

)
for i 6= 1, and

h∗1 =

(
n

2

)
− n.

Thus, since there are n elements in Adj1[n] we have that

(h∗1)stab(2) = h∗1 − n =

(
n

2

)
− 2n,

(h∗2)stab(2) = h∗2 − n(n− 4) =

(
n

4

)
− n(n− 4), and for i 6= 1, 2

(h∗i )
stab(2) = h∗i .

It is then easy to verify that (h∗1)stab(2)− (h∗0)stab(2) ≥ 0 and (h∗2)stab(2)− (h∗1)stab(2) ≥ 0
for all n ≥ 0. As well, (h∗3)stab(2) − (h∗2)stab(2) ≥ 0 for all n 6= 6, 7, 8. But this is fine

since the h∗-vector for ∆
stab(2)
7,2 is

h∗
(

∆
stab(2)
7,2

)
= (1, 7, 14, 7, 0, 0).

We also remark that
h∗
(

∆
stab(2)
6,2

)
= (1, 3, 3, 1, 0), and

h∗
(

∆
stab(2)
8,2

)
= (1, 12, 38, 28, 1, 0, 0).

72



Notice that the result given by this subtractive formula for h∗
(

∆
stab(2)
9,2 ; x

)
agrees

with the result via independence polynomials computed in Example 3.2.6. It is pos-
sible to apply the same strategy used in the proof of Corollary 3.4.3 to show that the
h∗-vector of ∆

stab(3)
n,2 is unimodal. In short, we count the lattice paths corresponding to

simplices in the set max∇2
n,2\max∇3

n,2 with unique minimal new face of cardinality
i = 1, 2, 3 for each choice of maximal adjr(`), ` ∈ [n]. We then subtract these values

from the corresponding coefficients in the h∗-vector of ∆
stab(2)
n,2 , and check that the

unimodality condition is satisfied for the resulting h∗-vector. However, the details of
this computation are quite unpleasant, so we omit them.

Corollary 3.4.4. Let n be odd. The h∗-vector of ∆
stab(3)
n,2 is given by

(h∗1)stab(3) =

(
n

2

)
− 3n,

(h∗2)stab(3) =

(
n

4

)
− 1

2
(n(7n− 55) + 94),

(h∗3)stab(3) =

(
n

6

)
− 1

2
(n3 − 13n2 + 40n+ 16), and for i 6= 1, 2, 3

(h∗i )
stab(3) =

(
n

2i

)
.

Moreover, h∗
(

∆
stab(3)
n,2

)
is unimodal.

We end this chapter with two conjectures.

Conjecture 3.4.5. The h∗-polynomials of the r-stable second hypersimplices ∆
stab(r)
n,2

are unimodal.

A natural first-step to validating Conjecture 3.4.5 would be to prove the following.

Conjecture 3.4.6. The independence polynomials I(Gn,r,`;x) are unimodal.

Indeed, computational evidence computed by the author suggests that these poly-
nomials possess the much stronger property of real-rootedness, which would in turn
imply log-concavity and unimodality. One approach to answering these conjectures
would be to investigate when these polynomials are in fact real-rooted.
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Chapter 4 The Gorenstein r-stable Hypersimplices

In Chapter 3, we saw that the r-stable hypersimplices appear to have unimodal
Ehrhart h∗-vectors, and verified this observation for a collection of these polytopes in
the k = 2 case. In [10], it is shown that a Gorenstein integer polytope with a regular
unimodular triangulation has a unimodal h∗-vector. In section 2.2 it is shown that
∆

stab(r)
n,k has a regular unimodular triangulation. One application for the equations of

the facets of a rational convex polytope is to determine whether or not the polytope
is Gorenstein [27]. We now utilize Theorem 2.3.1 to identify 1 ≤ r <

⌊
n
k

⌋
for which

∆
stab(r)
n,k is Gorenstein. We identify a collection of such polytopes for every k ≥ 2,

thereby expanding the collection of r-stable hypersimplices known to have unimodal
h∗-vectors. The contents of this chapter are in part joint work with Takayuki Hibi.

In this section we let 1 < k < n− 1. This is because ∆n,1 and ∆n,n−1 are simply
copies of the standard (n−1)-simplex, which are well-known to be Gorenstein [6, p.29].
We now recall the definition of a Gorenstein polytope. Let P ⊂ RN be a rational
convex polytope of dimension d, and for an integer q ≥ 1 let qP := {qα : α ∈ P}. Let
x1, x2, . . . , xN , and z be indeterminates over some field K. Given an integer q ≥ 1, let
A(P )q denote the vector space over K spanned by the monomials xα1

1 x
α2
2 · · ·xαNN zq for

(α1, α2, . . . , αN) ∈ qP ∩ ZN . Since P is convex we have that A(P )pA(P )q ⊂ A(P )p+q
for all p and q. It then follows that the graded algebra

A(P ) :=
∞⊕
q=0

A(P )q

is finitely generated over K = A(P )0. We call A(P ) the Ehrhart Ring of P , and we
say that P is Gorenstein if A(P ) is Gorenstein.

We now recall the combinatorial criterion given in [16] for an integral convex
polytope P to be Gorenstein. Let ∂P denote the boundary of P and let relint(P ) =
P −∂P . We say that P is of standard type if d = N and the origin in Rd is contained
in relint(P ). When P ⊂ Rd is of standard type we define its polar set

P ? =

{
(α1, α2, . . . , αd) ∈ Rd :

d∑
i=1

αiβi ≤ 1 for every (β1, β2, . . . , βd) ∈ P
}
.

The polar set P ? is again a convex polytope of standard type, and (P ?)? = P . We call
P ? the dual polytope of P . Suppose (α1, α2, . . . , αd) ∈ Rd, and K is the hyperplane in
Rd defined by the equation

∑d
i=1 αixi = 1. A well-known fact is that (α1, α2, . . . , αd)

is a vertex of P ? if and only if K ∩P is a facet of P . It follows that the dual polytope
of a rational polytope is always rational. However, it need not be that the dual of an
integral polytope is always integral. If P is an integral polytope with integral dual
we say that P is reflexive. This idea plays a key role in the following combinatorial
characterization of Gorenstein polytopes.
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Theorem 4.0.1. [16, De Negri and Hibi] Let P ⊂ Rd be an integral polytope of
dimension d, and let q denote the smallest positive integer for which

q(relint(P )) ∩ Zd 6= ∅.

Fix an integer point α ∈ q(relint(P )) ∩ Zd, and let Q denote the integral polytope
qP − α ⊂ Rd. Then the polytope P is Gorenstein if and only if the polytope Q is
reflexive.

Since Theorem 4.0.1 requires that the polytope be full-dimensional we consider

ϕ−1
(

∆
stab(r)
n,k

)
, where ϕ : Rn−1 −→ H is the affine isomorphism

ϕ : (α1, α2, . . . , αn−1) 7−→
(
α1, α2, . . . , αn−1, k −

(
n−1∑
i=1

αi

))
.

Notice that ϕ is also a lattice isomorphism. Hence, we have the isomorphism of
Ehrhart Rings as graded algebras

A
(
ϕ−1

(
∆

stab(r)
n,k

))
∼= A

(
∆

stab(r)
n,k

)
.

Let P
stab(r)
n,k := ϕ−1

(
∆

stab(r)
n,k

)
, and recall from Theorem 2.3.1 that

∆
stab(r)
n,k =

(
n⋂
`=1

H
(+)
`

)
∩
(

n⋂
`=1

H
(−)
`,r

)
.

4.1 The H-representation for P
stab(r)
n,k

We now give a description of the facet-defining inequalities for P
stab(r)
n,k in terms of

those defining ∆
stab(r)
n,k . In the following, it will be convenient to let T (`) = {`, ` +

1, `+ 2, . . . , `+ r− 1} for ` ∈ [n]. We also let T (`)c denote the complement of T (`) in
[n]. Notice that for a fixed 1 ≤ r <

⌊
n
k

⌋
and ` ∈ [n], the set T (`) is precisely the set of

summands in the defining equation of the (n− 2)-flat H`,r. The defining inequalities

of P
stab(r)
n,k corresponding to the (n − 2)-flats H`,r come in two types, dependent on

whether n /∈ T (`) or n ∈ T (`). If n /∈ T (`) then

K
(−)
`,r := ϕ−1

(
H

(−)
`,r

)
=

(x1, x2, . . . , xn−1) ∈ Rn−1 :
∑
i∈T (`)

xi ≤ 1

 .

If n ∈ T (`) then

K̃
(+)
`,r := ϕ−1

(
H

(−)
`,r

)
=

(x1, x2, . . . , xn−1) ∈ Rn−1 :
∑

i∈T (`)c

xi ≥ k − 1

 .
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Similarly, if ` 6= n then

K
(+)
` := ϕ−1

(
H

(+)
`

)
=
{

(x1, x2, . . . , xn−1) ∈ Rn−1 : x` ≥ 0
}
.

Finally, if ` = n then

K(−)
n := ϕ−1

(
H(+)
n

)
=

{
(x1, x2, . . . , xn−1) ∈ Rn−1 :

n−1∑
i=1

xi ≤ k

}
.

Thus, we may write P
stab(r)
n,k as the intersection of closed halfspaces in Rn−1

P
stab(r)
n,k =

 ⋂
n/∈T (`)

K
(−)
`,r

 ∩
 ⋂
n∈T (`)

K̃
(+)
`,r

 ∩(n−1⋂
i=1

K
(+)
`

)
∩K(−)

n .

To denote the supporting hyperplanes corresponding to these halfspaces we simply
drop the superscripts (+) and (−).

4.2 The codegree of P
stab(r)
n,k

Given the above description of P
stab(r)
n,k , we would now like to determine the smallest

positive integer q for which qP
stab(r)
n,k contains a lattice point in its relative interior. To

do so, recall that for a lattice polytope P of dimension d we can define the (Ehrhart)
h∗-polynomial of P . If we write this polynomial as

h∗P (z) = h∗0 + h∗1z + h∗2z
2 + · · ·+ h∗dz

d

then we call the coefficient vector h∗(P ) = (h∗0, h
∗
1, h
∗
2, . . . , h

∗
d) the h∗-vector of P . We

let s denote the degree of h∗P (z), and we call q = (d+ 1)− s the codegree of P . It is a
consequence of Ehrhart Reciprocity that q is the smallest positive integer such that
qP contains a lattice point in its relative interior [6]. Hence, we would like to compute

the codegree of P
stab(r)
n,k . To do so requires that we first prove two lemmas. In the

following let q =
⌈
n
k

⌉
. Our first goal is to show that there is at least one integer point

in relint
(
qP

stab(r)
n,k

)
for 1 ≤ r <

⌊
n
k

⌋
. We then show that q is the smallest positive

integer for which this is true. Recall that q = n+α
k

for some α ∈ {0, 1, . . . , k − 1}.
Also recall that for a fixed n and k we have the nesting of polytopes

Pn,k ⊃ P
stab(2)
n,k ⊃ P

stab(3)
n,k ⊃ · · · ⊃ P

stab(bnkc−1)
n,k ⊃ P

stab(bnkc)
n,k .

Hence, if we identify an integer point inside relint

(
qP

stab(bnkc−1)
n,k

)
then this same

integer point lives inside relint
(
qP

stab(r)
n,k

)
for every 1 ≤ r <

⌊
n
k

⌋
. Given these facts,

we now prove two lemmas.
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Lemma 4.2.1. Suppose that q =
⌈
n
k

⌉
= n+α

k
where α ∈ {0, 1}. Then the integer

point (1, 1, . . . , 1) ∈ Rn−1 lies inside relint
(
qP

stab(r)
n,k

)
for every 1 ≤ r <

⌊
n
k

⌋
.

Proof. It suffices to show that (x1, x2, . . . , xn−1) = (1, 1, . . . , 1) satisfies the set of
inequalities

(i) xi > 0, for i ∈ [n− 1],

(ii)
∑n−1

i=1 xi < kq,

(iii)
∑

i∈T (`) xi < q, for n /∈ T (`), and

(iv)
∑

i∈T (`)c xi > (k − 1)q, for n ∈ T (`).

We do this in two cases. First suppose that α = 0. Then k divides n and q = n
k
.

Clearly, (i) is satisfied. To see that (ii) is also satisfied simply notice that n− 1 < kq.
To see that (iii) is satisfied recall that #T (`) = r and r <

⌊
n
k

⌋
= q. Finally, to see

that (iv) is satisfied notice that #T (`)c = n−r. So we would like that n−r > (k−1)q.
However, this follows quickly from the fact that r < n

k
.

Now consider the case where α = 1. Recall that it suffices to consider the case
when r =

⌊
n
k

⌋
− 1. Inequalities (i), (ii), and (iii) are all satisfied in the same fashion

as the case when α = 0. So we need only check that (iv) is also satisfied. Again we
would like that n− r > (k− 1)q. Notice since α = 1 then k does not divide n, and so⌈
n
k

⌉
=
⌊
n
k

⌋
+1. Hence, q = r+2. The desired inequality then follows from n+2 > n+α.

Thus, whenever α ∈ {0, 1}, the lattice point (1, 1, . . . , 1) ∈ relint
(
qP

stab(r)
n,k

)
for every

1 ≤ r <
⌊
n
k

⌋
.

Next we would like to identify an integer point in the relative interior of qP
stab(r)
n,k

for 1 ≤ r <
⌊
n
k

⌋
when α ≥ 2. In this case, the point (1, 1, . . . , 1) does not always

work, so we must identify another point. Recall that it suffices to identify such a
point for r =

⌊
n
k

⌋
− 1. To do so, we construct the desired point using the notions of

r-stability. Fix n and k such that q = n+α
k

for α ≥ 2, and let r =
⌊
n
k

⌋
− 1. This also

fixes the value α ∈ {2, 3, . . . , k− 1}. Since r =
⌊
n
k

⌋
− 1 we may construct an r-stable

vertex in Rn as the characteristic vector of the set

{n− r, n− 2r, n− 3r, . . . , n− (k − 1)r} ⊂ [n].

Notice that there are at least r 0’s between the nth coordinate of the vertex and the
n−(k−1)rth coordinate (read from right-to-left modulo n). In particular, this implies
that the nth coordinate (and the 1st coordinate) is occupied by a 0. To construct the
desired vertex replace the 1’s in coordinates

n− (α + 1)r, n− (α + 2)r, . . . , n− (k − 1)r

with 0’s. Now add 1 to each coordinate of this lattice point. If the resulting point is
(x1, x2, . . . , xn) then replace xn = 1 with the value kq−

(∑n−1
i=1 xi

)
. Call the resulting
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vertex εα, and consider the isomorphism ϕ̃ : Rn−1 −→ Hq, defined analogously to ϕ,
where Hq is the hyperplane in Rn defined by the equation

∑n
i=1 xi = kq. Notice that

by our construction of εα, the point ϕ̃−1 (εα) is simply εα with the last coordinate
projected off.

Lemma 4.2.2. Suppose that q =
⌈
n
k

⌉
= n+α

k
for α ∈ {2, 3, . . . , k − 1}. Then the

lattice point ϕ̃−1 (εα) lies inside relint
(
qP

stab(r)
n,k

)
for every 1 ≤ r <

⌊
n
k

⌋
.

Proof. It suffices to show that when r =
⌊
n
k

⌋
− 1 the lattice point

(x1, x2, . . . , xn−1) = ϕ̃−1 (εα) satisfies inequalities (i), (ii), (iii), and (iv) from the proof
of Lemma 4.2.1. It is clear that (i) is satisfied. To see that (ii) is satisfied notice that∑n−1

i=1 xi = n − 1 + α. This is because α coordinates of ϕ̃−1 are occupied by 2’s
and all other coordinates are occupied by 1’s. Thus, inequality (ii) is satisfied since
n− 1 + α < kq. To see that (iii) is satisfied first notice that for T (`) with n /∈ T (`)

∑
i∈T (`)

xi =

{
r if T (`) contains no entry with value 2,

r + 1 otherwise.

This is because we have chosen the 2’s to be separated by at least r − 1 0’s. Thus,
since k does not divide n we have that

∑
i∈T (`) xi ≤ r + 1 =

⌊
n
k

⌋
< q. Finally, to see

that (iv) is satisfied first notice that for T (`) with n ∈ T (`)

∑
i∈T (`)c

xi =

{
n− r + α− 1 if T (`) contains an entry with value 2,

n− r + α otherwise.

Hence, we must show that n−r+α−1 > (k−1)q. However, since
⌈
n
k

⌉
=
⌊
n
k

⌋
+1 then

r = q − 2, and so the desired inequality follows from n + α + 1 > n + α. Therefore,

ϕ̃−1 (εα) ∈ relint
(
qP

stab(r)
n,k

)
for every 1 ≤ r <

⌊
n
k

⌋
.

Using Lemmas 4.2.1 and 4.2.2 we now show that q =
⌈
n
k

⌉
is indeed the codegree

of these polytopes.

Theorem 4.2.3. Let 1 ≤ r <
⌊
n
k

⌋
. The codegree of P

stab(r)
n,k is q =

⌈
n
k

⌉
.

Proof. First recall that P
stab(r)
n,k is a subpolytope of ∆n,k. By a theorem of Stanley [45]

it then follows that h∗
(
P

stab(r)
n,k

)
≤ h∗ (∆n,k). Therefore, the codegree of P

stab(r)
n,k is no

smaller than the codegree of ∆n,k. In [30, Corollary 2.6], Katzman determines that

the codegree of ∆n,k is q =
⌈
n
k

⌉
. Since Lemmas 4.2.1 and 4.2.2 imply that qP

stab(r)
n,k

contains a lattice point inside its relative interior we conclude that the codegree of
P

stab(r)
n,k is q =

⌈
n
k

⌉
.

Recall that if an integral polytope P of dimension d with codegree q is Gorenstein
then

#
(
relint (qP ) ∩ Zd

)
= 1.

With this fact in hand, we have the following corollary.
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Corollary 4.2.4. Suppose that q =
⌈
n
k

⌉
= n+α

k
, where α ∈ {2, 3, . . . , k − 1}. Then

the polytope ∆
stab(r)
n,k is not Gorenstein for every 1 ≤ r <

⌊
n
k

⌋
.

Proof. Recall the vertex (x1, x2, . . . , xn) from which we produce εα. Since x1 = 1 then
cyclically shifting the entries of this vertex one entry to the left, and then applying
the construction for εα results in a second vertex, say ζα, such that ϕ̃ (ζα)−1 also lies

in the relative interior of qP
stab(r)
n,k . Thus, #

(
relint

(
qP

stab(r)
n,k

)
∩ Zd

)
> 1, and we

conclude that ∆
stab(r)
n,k is not Gorenstein.

4.3 Gorenstein r-stable hypersimplices and unimodal h∗-vectors

Notice that by Corollary 4.2.4 we need only consider those r-stable hypersimplices
satisfying the conditions of Lemma 4.2.1. For these polytopes we now consider the
translated integral polytope

Q := qP
stab(r)
n,k − (1, 1, . . . , 1).

From our H-representation of P
stab(r)
n,k we see that the facets of Q are supported by

the hyperplanes

(a) xi = −1, for i ∈ [n− 1],

(b)
∑n−1

i=1 xi = kq − (n− 1),

(c)
∑

i∈T (`) xi = q − r, for n /∈ T (`), and

(d)
∑

i∈T (`)c xi = (k − 1)q − (n− r), for n ∈ T (`).

Given this collection of hyperplanes we may now prove the following theorem.

Theorem 4.3.1. Let 1 ≤ r <
⌊
n
k

⌋
. Then ∆

stab(r)
n,k is Gorenstein if and only if n =

kr + k.

Proof. By Theorem 4.0.1 we must determine when all the vertices of Q? are integral.
We do so by means of the inclusion-reversing bijection between the faces of Q and the
faces of Q?. It is immediate that the vertices of Q? corresponding to hyperplanes given
in (a) are integral. So consider the hyperplane given in (b). Recall that q =

⌈
n
k

⌉
= n+α

k

for some α ∈ {0, 1}. Hence, this hyperplane is equivalently expressed as

n−1∑
i=1

1

α + 1
xi = 1.

Therefore, the corresponding vertex in Q? is integral only if α = 0. Notice next that
the hyperplanes given in (c) will have corresponding vertex of Q? integral only if
q− r = 1. Since α = 0 we have that q = n

k
where k divides n, and so it must be that

n = kr + k. Finally, when n = kr + k the hyperplanes given in (d) reduce to∑
i∈T (`)c

xi = −1.
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Hence, the corresponding vertex of Q? is integral, and we conclude that, for 1 ≤ r <⌊
n
k

⌋
, the polytope ∆

stab(r)
n,k is Gorenstein if and only if n = kr + k.

Theorem 4.3.1 demonstrates that the Gorenstein property is quite rare amongst
the r-stable hypersimplices. It also enables us to expand the collection of r-stable
hypersimplices known to have unimodal h∗-vectors. Previously, this collection was
limited to the case when k = 2 or when ∆

stab(r)
n,k is a simplex [9]. Theorem 4.3.1

provides a collection of r-stable hypersimplices with unimodal h∗-vectors for every
k ≥ 1.

Corollary 4.3.2. Let k ≥ 1. The r-stable n, k-hypersimplices ∆
stab(r)
n,k for r ≥ 1 and

n = kr + k have unimodal h∗-vectors.

Proof. By [9, Corollary 2.6] there exists a regular unimodular triangulation of ∆
stab(r)
n,k .

By Theorem 4.3.1 the polytope ∆
stab(r)
n,k is Gorenstein for n = kr + k when k > 1.

By [10, Theorem 1] we conclude that the h∗-vector of ∆
stab(r)
n,k is unimodal. Finally,

notice that when k = 1 these polytopes are just the standard (n− 1)-simplices.

Copyright c© Liam Solus, 2015.
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Chapter 5 The Facet-Ray Identification Property

5.1 Introduction

For a positive integer p let [p] := {1, 2, . . . , p}, and let G be a graph with vertex set
V (G) = [p] and edge set E := E(G). To the graph G we associate the closed convex
cone Sp�0(G) consisting of all real p×p positive semidefinite matrices with zeros in all
entries corresponding to the nonedges of G. In this chapter, we study the problem of
characterizing the possible ranks of the extremal matrices in Sp�0(G). This problem
has applications to the positive semidefinite completion problem, and consequently,
maximum likelihood estimation for Gaussian graphical models. Thus, the extreme
ranks of Sp�0(G), and in particular the maximum extreme rank of Sp�0(G), have been
studied extensively [1, 21, 25, 34]. However, as noted in [1] the nonpolyhedrality of
Sp�0(G) makes this problem difficult, and as such there remain many graph classes for
which the extremal ranks of Sp�0(G) are not well-understood. Our main contribution
to this area of study is to show that the polyhedral geometry of a second well-studied
convex body, the cut polytope of G, serves to characterize the extremal ranks of
Sp�0(G) for new classes of graphs. This work is in part joint work with Caroline Uhler
and Ruriko Yoshida.

The thrust of the research in this area has been focused on determining the (spar-
sity) order of G, i.e. the maximum rank of an extremal ray of Sp�0(G). In [1] it is
shown that the order of G is one if and only if G is a chordal graph, that is, a graph
in which all induced cycles have at most three edges. Then in [34] all graphs with
order two are characterized. In [25], it is shown that the order of G is at most p− 2
with equality if and only if G is the cycle on p vertices, and in [21] the order of the
complete bipartite graph is computed and it is shown that all possible extreme ranks
are realized. However, beyond the chordal, order two, cycle, and complete bipartite
graphs there are few graphs for which all extremal ranks are characterized. Our main
goal is to demonstrate that the geometric relationship between Sp�0(G) and the cut
polytope of G can serve to expand this collection of graphs.

A cut of the graph G is a bipartition of the vertices, (U,U c), and its associated
cutset is the collection of edges δ(U) ⊂ E with one endpoint in each block of the
bipartition. To each cutset we assign a (±1)-vector in RE with a −1 in coordinate
e if and only if e ∈ δ(U). The (±1)-cut polytope of G is the convex hull in RE of
all such vectors. The polytope cut±1 (G) is affinely equivalent to the cut polytope
of G defined in the variables 0 and 1, which is the feasible region of the max-cut
problem in linear programming. Hence, maximizing over the polytope cut±1 (G) is
equivalent to solving the max-cut problem for G. The max-cut problem is known
to be NP-hard [40], and thus the geometry of cut±1 (G) is of general interest. In
particular, the facets of cut±1 (G) have been well-studied [17, Part V], as well as a
positive semidefinite relaxation of cut±1 (G), known as the elliptope of G [4, 5, 33, 35].

Let Sp denote the real vector space of all real p × p symmetric matrices, and let
Sp�0 denote the cone of all positive semidefinite matrices in Sp. The p-elliptope is the
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collection of all p× p correlation matrices, i.e.

Ep = {X ∈ Sp�0 : Xii = 1 for all i ∈ [p]}.

The elliptope EG is defined as the projection of Ep onto the edge set of G. That is,

EG = {y ∈ RE : ∃Y ∈ Ep such that Ye = ye for every e ∈ E(G)}.

The elliptope EG is a positive semidefinite relaxation of the cut polytope cut±1 (G)
[35], and thus maximizing over EG can provide an approximate solution to the max-cut
problem.

In this chapter, we show that the facets of cut±1 (G) identify extremal rays of
Sp�0(G) for any graph G that has no K5 minors. We will see in addition that the
rank of the extreme ray identified by the facet with supporting hyperplane 〈α, x〉 = b
has rank b, and if G is also series-parallel (i.e. no K4 minors), then all possible
ranks of extremal rays are given in this fashion. The method by which we will make
these identifications arises via the geometric relationship that exists between the three
convex bodies cut±1 (G), EG, and Sp�0(G). A key component of this relationship is
the following theorem which is to be proven in Section 5.3.

Theorem 5.1.1. The polar of the elliptope EG is

E◦G = {x ∈ RE : ∃X ∈ Sp�0(G) such that XE = x and tr(X) = 2}.

An immediate consequence of Theorem 5.1.1 is that the extreme points in E◦G are
projections of extreme matrices in Sp�0(G) (recall that a subset F of a convex set K
is called an extreme set of K if, for all x ∈ F and a, b ∈ K, x = (a + b)/2 implies
a, b ∈ F ; so an extreme point is any point in the set that does not lie on the line
segment between any two distinct points of K).

With Theorem 5.1.1 in hand, the identification of extremal rays of Sp�0(G) via
facets of cut±1 (G) is guided by the following geometry. Since EG is a positive semidef-
inite relaxation of cut±1 (G), then cut±1 (G) ⊂ EG. If all singular points on the bound-
ary of EG are also singular points on the boundary of cut±1 (G), then the supporting
hyperplanes of facets of cut±1 (G) will be translations of supporting hyperplanes of
regular extreme points of EG or facets of EG, i.e. extreme sets of EG with positive
Lebesgue measure in a codimension one affine subspace of the ambient space. It fol-
lows that the outward normal vectors to the facets of cut±1 (G) generate the normal
cones to these regular points and facets of EG. Dually, the facet-normal vectors of
cut±1 (G) are then extreme points of E◦G, and consequently projections of extreme
matrices of Sp�0(G). Thus, we can expect to find extremal matrices in Sp�0(G) whose
off-diagonal entries are given by the facet-normal vectors of cut±1 (G). This motivates
the following definition.

Definition 5.1.2. Let G be a graph. For each facet F of cut±1 (G) let αF ∈ RE

denote the normal vector to the supporting hyperplane of F . We say that G has the
facet-ray identification property (or FRIP) if for every facet F of cut±1 (G) there
exists an extremal matrix M = [mij] in Sp�0(G) for which either mij = αFij for every
{i, j} ∈ E(G) or mij = −αFij for every {i, j} ∈ E(G).
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An explicit example of facet-ray identification and its geometry is presented in
Section 5.3. With this example serving as motivation, our main goal is to identify
interesting collections of graphs exhibiting the facet-ray identification property. Using
the combinatorics of cutsets as well as the tools developed by Agler et al. in [1], we
prove the following theorem.

Theorem 5.1.3. Graphs without K5 minors have the facet-ray identification prop-
erty.

Recall that a cycle subgraph of a graph G is called chordless if it is an induced
subgraph of G. For graphs without K5 minors the facet-defining hyperplanes of
cut±1 (G) are of the form 〈α, x〉 = b, where b = 1 or b = p − 2 for Cp a chordless
cycle of G [3]. In [1], it is shown that the p-cycle Cp is a (p − 2)-block, meaning
that if Cp is an induced subgraph of G, then the sparsity order of G is at least
p − 2. Since the facets of cut±1 (G) are given by the chordless cycles in G, then
Theorem 5.1.3 demonstrates that this condition arises via the geometry of the cut
polytope cut±1 (G). That is, since the elliptope EG is a positive semidefinite relaxation
of cut±1 (G) we can translate the facet-supporting hyperplanes of cut±1 (G) to support
points on EG. By Theorem 5.1.1 these supporting hyperplanes correspond to points
in E◦G, and by Theorem 5.1.3 we see that these points are all extreme. In this way, the
lower bound on sparsity order of G given by the chordless cycles is a consequence of
the relationship between the chordless cycles and the facets of cut±1 (G). In the case
that G is a series-parallel graph, we will prove that the facets determine all possible
extremal ranks of Sp�0(G) in this fashion.

Theorem 5.1.4. Let G be a series-parallel graph. The constant terms of the facet-
defining hyperplanes of cut±1 (G) characterize the ranks of extremal rays of Sp�0(G).
These ranks are 1 and p − 2 where Cp is any chordless cycle in G. Moreover, the
sparsity order of G is p∗− 2 where p∗ is the length of the largest chordless cycle in G.

The remainder of this chapter is organized as follows: In Section 5.2 we recall
some of the previous results on sparsity order and cut polytopes that will be funda-
mental to our work. Then in Section 5.3, we describe the geometry underlying the
facet-ray identification property. We begin this section with the motivating example
of the 4-cycle, in which we explicitly illustrate the geometry described above. We then
provide a proof of Theorem 5.1.1 and discuss how this result motivates the defini-
tion of the facet-ray identification property. In Section 5.4, we demonstrate that any
graph without K5 minors has the facet-ray identification property, thereby proving
Theorem 5.1.3. We then identify the ranks of the corresponding extremal rays. In
Section 5.5 we prove Theorem 5.1.4, showing that if G is also series-parallel then the
facets are enough to characterize all extremal rays of Sp�0(G). Finally, in Section 5.6,
we discuss how to identify graphs that do not have the facet-ray identification prop-
erty.

83



5.2 Preliminaries

Graphs.

For a graph G with vertex set [p] and edge set E we let E denote the set of nonedges
of G, that is, all unordered pairs {i, j} for which i, j ∈ [p] but {i, j} /∈ E. For such a
graph G we define the complement of G to be the graph Gc on vertex set [p] with edge
set E. Recall that a subgraph of G is any graph H whose vertex set is a subset of [p]
and edge set is a subset of E. A subgraph H of G with edge set E ′ is called induced
if there exists a subset V ′ ⊂ [p] such that the vertex set of H is V ′ and E ′ consists
of all edges of G connecting any two vertices of V ′. We let Kp denote the complete
graph on p vertices, Cp denote the cycle on p vertices, and Kp,m denote the complete
bipartite graph with vertex set the disjoint union of [p] and [m]. A subgraph H of
G is called a chordless cycle if H is an induced cycle subgraph of G. A graph G is
called chordal if every chordless cycle in G has at most three edges. We can delete
an edge of G by removing it from the edge set E, and contract an edge {i, j} of G
by identifying the two vertices i and j and deleting any multiple edges introduced by
this identification. Similarly, we delete a vertex of G by removing it from the vertex
set of G as well as all edges of G attached to it. A graph H is called a minor of G if
H can be obtained from G via a sequence of edge deletions, edge contractions, and
vertex deletions.

Sparsity order of G.

We are interested in Sp�0(G), the closed convex cone consisting of all p × p positive

semidefinite matrices with zeros in the ijth entry for all {i, j} ∈ E. Recall that a
matrix X ∈ Sp�0(G) is extremal in Sp�0(G) if it lies on an extreme ray of Sp�0(G). The
(sparsity) order of G, denoted ord(G), is the maximum rank of an extremal matrix
in Sp�0(G). In [1] the authors work to develop a general theory for studying graphs
G with high sparsity order. Fundamental to their theory is the so-called dimension
theorem, which is stated in terms of the expression of a positive semidefinite matrix
as the Gram matrix for a collection of vectors. Recall that a (real) p × p matrix
X = [xij] is positive semidefinite if and only if there exist vectors u1, u2, . . . , up ∈ Rk

such that xij = uTi uj. The sequence of vectors (u1, . . . , up) is called a (k-dimensional)
Gram representation of X, and if X has rank k this sequence of vectors is unique up
to orthogonal transformation. Following the notation of [34], for a subset A ⊂ E ∪E
define the set of p× p matrices

UA := {uiuTj + uju
T
i : {i, j} ∈ A}.

The real span of UE is a subspace of the trace zero k×k real symmetric matrices that
we call the frame space of X. The following theorem says that a matrix is extremal
in Sp�0(G) if and only if this frame space is the entire trace zero subspace of Sk.

Theorem 5.2.1. [1, Corollary 3.2] Let X ∈ Sp�0(G) with rank k and k-dimensional
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Gram representation (u1, . . . , up). Then X is extremal if and only if

rank (UE) =

(
k + 1

2

)
− 1.

In [1] it is shown that ord(G) = 1 if and only if G is a chordal graph. Using
Theorem 5.2.1, the authors then develop a general theory for detecting existence of
higher rank extremals in Sp�0(G) based on a fundamental collection of graphs. A graph
G is called a k-block provided that G has order k and no proper induced subgraph of
G has order k. The k-blocks are useful for identifying higher rank extremals since if
H is an induced subgraph of G then ord(H) ≤ ord(G) [1]. In [1] it is shown that the
cycle on p vertices is a (p− 2)-block. A particularly important collection of k-blocks
are the k-superblocks, the k-blocks with the maximum number of edges on a fixed
vertex set. Formally, a k-superblock is a k-block whose complement has precisely
(k2 + k − 2)/2 edges. Understanding the k-blocks and k-superblocks is equivalent to
understanding their complements. In [1, Theorem 1.5] the 3-blocks are characterized
in terms of their complement graphs, and in [24, Theorem 0.2] the 4-superblocks are
characterized in a similar fashion.

In related works the structure of the graph G is again used to describe the extreme
ranks of G. In [25] it is shown that if G is a clique sum of two graphs G1 and G2

then ord(G) = max{ord(G1), ord(G2)}, and ord(G) ≤ p− 2 with equality if and only
if G is a p-cycle. Similarly, in [21] the order of the complete bipartite graph Kp,m is
determined and it is shown that all ranks 1, 2, . . . , ord(Kp,m) are extremal.

The cut polytope of G.

First recall that to define the cut polytope in the variables 0 and 1 we assign to
each cutset δ(U) a (0, 1)-vector xδ(U) ∈ RE with a 1 in coordinate xe if and only if
e ∈ δ(U). The polytope cut01 (G) is the convex hull of all such vectors, and it is affinely
equivalent to cut±1 (G) under the coordinate-wise transformation xe 7→ 1−2xe on RE.
In order to prove that a graph G has the facet-ray identification property we need an
explicit description of the facet-supporting hyperplanes of cut±1 (G), or equivalently
those of cut01 (G). For the complete graph Kp one of the most interesting classes of
valid inequalities for cut±1 (G) are the hypermetric inequalities. For an integer vector
b = (b1, . . . , bp) satisfying

∑p
i=1 bi = 1 we call∑
1≤i<j≤p

bibj ≤
∑

1≤i<j≤p

bibjxij

the hypermetric inequality defined by b. Notice that every facet-supporting hyperme-
tric inequality identifies an extreme ray in Sp = Sp�0(Kp). Despite this large collection
of inequalities having this property, not all complete graphs have the facet-ray iden-
tification property, as we will see in Section 5.6. Moreover, since the only extreme
rank of Sp is 1, we are mainly interested in facet-defining inequalities that identify
higher rank extreme rays for sparse graphs. The hypermetric inequalities generalize
a collection of facet-defining inequalities of cut±1 (G) called the triangle inequalities,
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i.e. the hypermetric inequalities defined by b = (1, 1,−1). The triangle inequalities
admit a second generalization to a collection of facet-defining inequalities for sparse
graphs. Let Cm be a cycle in a graph G and let F ⊂ E(Cm) be an odd cardinality
subset of the edges of Cm. The inequality∑

e∈E(Cm)\F

xe −
∑
e∈F

xe ≤ p− 2

is called a cycle inequality. Using these inequalities Barahona and Mahjoub provide
a linear description of cut±1 (G) for any graph without K5 minors.

Theorem 5.2.2. [3, Barahona and Mahjoub] Let G be a graph with no K5 minor.
Then cut±1 (G) is defined by the collection of hyperplanes

(1) −1 ≤ xe ≤ 1 for all e ∈ E(G), and

(2)
∑

e∈E(Cm)\F xe −
∑

e∈F xe ≤ m− 2 for all chordless cycles Cm of G and any odd

cardinality subset F ⊂ E(Cm).

Suppose that Cm is a chordless cycle in a graph G without K5 minors. For an
odd cardinality subset F ⊂ E(Cm) ⊂ E(G) define the vector vF ∈ RE, where

vFe =


−1 if e ∈ F ,
1 if e ∈ E(Cm)\F ,
0 if e ∈ E(G)\E(Cm).

Similarly, let ve denote the standard basis vector for coordinate e ∈ E(G) for RE.
Then by Proposition 5.2.2 we see that the facet-supporting hyperplanes of cut±1 (G)
are

(1) 〈±ve, x〉 = 1 for all e ∈ E, and

(2) 〈vF , x〉 = m−2 for all odd cardinality subsets F ⊂ E(Cm) for all chordless cycles
Cm in G.

In Section 5.4, we identify for each facet-supporting hyperplane 〈α, x〉 = b of
cut±1 (G) an extremal matrix A = [aij] in Sp�0(G) of rank b in which the off-diagonal
nonzero entries aij are given by the coordinates αe, for e = {i, j}, of the facet normal
α ∈ RE. In Section 5.5, we then show that the ranks b are all extremal ranks of
Sp�0(G) as long as G is also series-parallel. To do so, it will be helpful to have the
following lemma on the cut polytope of the cycle, the proof of which is left as an
exercise.

Lemma 5.2.3. The vertices of cut±1 (Cm) are all (±1)-vectors in RE containing an
even number of −1’s.

The polytope cut±1 (Cm) appears in the literature as the m-halfcube or demihy-
percube.
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5.3 The Geometry of Facet-Ray Identification

In this section, we examine the underlying geometry of the facet-ray identification
property. Recall that the facet-ray identification property is defined to capture the
following geometric picture. Since cut±1 (G) ⊂ EG then if all singular points on the
boundary of EG are also singular points on the boundary of cut±1 (G), the supporting
hyperplanes of facets of cut±1 (G) will be translations of supporting hyperplanes of
regular extreme points of EG or facets of EG. It follows that the outward normal
vectors to the facets of cut±1 (G) generate the normal cones to these regular points
and facets of EG. In the polar, the facet-normal vectors of cut±1 (G) are then extreme
points of E◦G, and consequently projections of extreme matrices of Sp�0(G). Thus, we
can expect to find extremal matrices in Sp�0(G) whose off-diagonal entries are given
by the facet-normal vectors of cut±1 (G). Since the geometry of the elliptope is not
at all generic this picture is, in general, difficult to describe from the perspective of
real algebraic geometry. In subsection 5.3 we provide this geometric picture in the
case of the cycle on four vertices. This serves to demonstrate the difficulty of the
algebro-geometric approach for an arbitrary graph G, and consequently motivate the
combinatorial work done in the coming sections. Following this example, we prove
Theorem 5.1.1, the key to facet-ray identification.

Geometry of the 4-cycle: an example.

Consider the cycle on four vertices, C4. For simplicity, we let G := C4, and we identify
RE(G) ' R4 by identifying edge {i, i+ 1} with coordinate i for all i = 1, 2, 3, 4. Here
we take the vertices of C4 modulo 4. By Lemma 5.2.3, the cut polytope of G is the
convex hull of all (±1)-vectors in R4 containing precisely an even number of −1’s.
Equivalently, cut±1 (G) is the 4-cube [−1, 1]4 with truncations at the eight vertices
containing an odd number of −1’s. Thus, cut±1 (G) has sixteen facets supported by
the hyperplanes

±xi = 1, and 〈vF , x〉 = 2,

where F is an odd cardinality subset of {1, 2, 3, 4}, and vF is the corresponding vertex
of the 4-cube [−1, 1]4 with an odd number of −1’s.

To see that the 4-cycle G has the facet-ray identification property amounts to
identifying for each facet of cut±1 (G) an extremal matrix in Sp�0(G) whose off-diagonal
entries are given by the normal vector to the supporting hyperplane of the facet. For
example, the facets supported by the hyperplanes ±x1 = 1 correspond to the rank 1
extremal matrices

Y =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 and Y =


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 .
Similarly, the facets 〈vF , x〉 = 2 for vF = (1,−1, 1, 1) and vF = (1,−1,−1,−1)
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respectively correspond to the rank 2 extremal matrices

Y = 1
3


1 −1 0 −1
−1 2 1 0
0 1 1 −1
−1 0 −1 2

 and Y = 1
3


1 −1 0 1
−1 2 1 0
0 1 1 1
1 0 1 2

 .
As indicated by Theorem 5.1.1, these four matrices respectively project to the four
extreme points in E◦G

(1, 0, 0, 0), (−1, 0, 0, 0),
1

3
(−1, 1,−1,−1), and

1

3
(−1, 1, 1, 1),

with the former two being vertices of E◦G (extreme points with full-dimensional normal
cones) and the latter two being regular extreme points on the rank 2 locus of E◦G.
Indeed, all extreme points corresponding to the facets ±xi = 1 will be rank 1 vertices
of E◦G, and all points corresponding to the facets 〈vF , x〉 = 2 will be rank 2 regular
extreme points of E◦G. Consequently, all sixteen points arise as projections of extremal
matrices of Sp�0(G) of the corresponding ranks.

To see why these sixteen points in E◦G are extreme points of the specified type
we examine the relaxation of cut±1 (G) to EG, and the stratification by rank of the
spectrahedral shadow E◦G. We compute the algebraic boundary of EG as follows. The
4-elliptope is the set of correlation matrices

E4 =

(x1, x2, x3, x4, u, v) ∈ R6 : X =


1 x1 u x4

x1 1 x2 v
u x2 1 x3

x4 v x3 1

 � 0

 .

The algebraic boundary ∂E4 of E4 is defined by the vanishing of the determinant
D := det(X). The elliptope of the 4-cycle is defined as EG := πG (E4) where

πG : S4 −→ RE(G); Xi,i+1 7→ xi.

To identify the algebraic boundary of EG we form the ideal I :=
(
D, ∂

∂u
D, ∂

∂v
D
)
,

and eliminate the variables u and v to produce an ideal J ⊂ R[x1, x2, x3, x4]. Using
Macaulay2 we see that J is generated by the following product of eight linear terms
corresponding to the rank 3 locus,

(x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1)(x3 − 1)(x3 + 1)(x4 − 1)(x4 + 1),

and the following sextic polynomial (with multiplicity two) corresponding to the rank
2 locus,

(4x2
1x

2
2x

2
3 − 4x3

1x2x3x4 − 4x1x
3
2x3x4 − 4x1x2x

3
3x4 + 4x2

1x
2
2x

2
4 + 4x2

1x
2
3x

2
4

+ 4x2
2x

2
3x

2
4 − 4x1x2x3x

3
4 + x4

1 − 2x2
1x

2
2 + x4

2 − 2x2
1x

2
3 − 2x2

2x
2
3 + x4

3

+ 8x1x2x3x4 − 2x2
1x

2
4 − 2x2

2x
2
4 − 2x2

3x
2
4 + x4

4)2.
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Figure 5.1: Level curves of the rank 2 locus of EC4 . The value of x4 varies from 1 to
0 as we view the figures from left-to-right.

The sextic factor is the 4th cycle polynomial Γ′4 as defined in [48]. To visualize the
portion of the elliptope cut out by this term we treat the variable x4 as a parameter
and vary it from 0 to 1. A few of these level curves (produced using Surfex) are
presented in Figure 5.1. An interesting observation is that the level curve with x4 =
1 is the Cayley nodal cubic surface, the bounded region of which is precisely the
elliptope EC3 . We note that this holds more generally, i.e. the cut polytope of the
p-cycle Cp is the p-halfcube, and the facets of this polytope that lie in the hyperplane
±xi = 1 are (p−1)-halfcubes. Thus, the elliptope EG demonstrates the same recursive
geometry exhibited by the polytope it relaxes.

The eight linear terms define the rank 3 locus as a hypersurface of degree eight.
Since cut±1 (G) ⊂ EG ⊂ [−1, 1]p, the eight linear terms of the polynomial p indicate
that the facets of cut±1 (G) supported by the hyperplanes ±xi = 1 are also facets of
EG. From this we can see that the eight hyperplanes ±xi = 1 correspond to vertices
in E◦G. We can also see from this that only the simplicial facets of cut±1 (G) have
been relaxed in EG, and this relaxation is defined by the hypersurface {Γ′4 = 0}.

Recall that we would like the relaxation of the facets to be smooth in the sense that
all singular points on ∂EG are also singular points on ∂ cut±1 (G). If this is the case,
then we may translate the supporting hyperplanes of the relaxed facets to support
regular extreme points of EG. The normal vectors to these translated hyperplanes
will then form regular extreme points in the polar body E◦G. To see that this is indeed
the case, we check that the intersection of the singular locus of {Γ′4 = 0} with ∂EG is
restricted to the rank 3 locus of EG. With the help of Macaulay2, we compute that
{Γ′4 = 0} is singular along the six planes given by the vanishing of the ideals

〈x3 − x4, x1 − x2〉, 〈x3 + x4, x1 + x2〉, 〈x2 − x3, x1 − x4〉,
〈x2 + x3, x1 + x4〉, 〈x2 + x4, x1 + x3〉, 〈x2 − x4, x1 − x3〉,

and at eight points

1√
3

(∓1,±1,±1,±1) , 1√
3

(±1,∓1,±1,±1) ,
1√
3

(±1,±1,∓1,±1) , 1√
3

(∓1,∓1,∓1,±1) .
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The six planes intersect ∂EG only along the edges of cut±1 (G), and therefore do not
introduce any new singular points that did not previously exist in cut±1 (G). The
eight singular points sit just outside the cut polytope cut±1 (G) above the barycenter
of each simplicial facet. However, these singular points lie in the interior of EG. This
can be checked using the polyhedral description of EG first studied by Barrett et
al. [5]. The idea is that each point (x1, x2, x3, x4) of the elliptope EG arises from
a point (a1, a2, a3, a4) in the (0, 1)-cut polytope, cut01 (G), by letting xi = cos(πai)
for every i ∈ [4]. Since cut01 (G) is affinely equivalent to cut±1 (G) under the linear
transformation yi = 1 − 2xi, we apply the arccosine transformation of Barrett et
al. to the barycenter of each simplicial facet of cut01 (G) to produce the eight points
on ∂EG:

1√
2

(∓1,±1,±1,±1) , 1√
2

(±1,∓1,±1,±1) ,
1√
2

(±1,±1,∓1,±1) , 1√
2

(∓1,∓1,∓1,±1) .

Thus, each of the eight singular points of Γ′4 lies in the interior of EG on the line
between the barycenter of a simplicial facet of cut±1 (G) and one of these eight points
in ∂EG. From this we see that the relaxation of the simplicial facets of cut±1 (G) is
smooth, and so we may translate the supporting hyperplanes 〈vF , x〉 = 2 away from
cut±1 (G) until they support some regular extreme point on ∂EG.

In the polar E◦G we check that the normal vectors to the hyperplanes ±xi = 1 form
vertices of rank 1, and the normal vectors corresponding to the translated versions of
the hyperplanes 〈vF , x〉 = 2 are regular points on the rank 2 strata of E◦G. The polar
E◦G is the spectrahedral shadow

E◦G =

(x1, x2, x3, x4) ∈ R4 : ∃a, b, c ∈ R : Y =


a x1 0 x4

x1 b x2 0
0 x2 c x3

x4 0 x3 2− a− b− c

 � 0

 ,

and the matrix Y is a trace two matrix living in the cone Sp�0(G). The rank 3 locus
of E◦G can be computed by forming the ideal generated by the determinant of Y and
its partials with respect to a, b, and c, and then eliminating the variables a, b, and c
from the saturation of this ideal with respect to the 3× 3 minors of Y . The result is
a degree eight hypersurface that factors into eight linear forms:

x1 − x2 − x3 + x4 + 1, −x1 + x2 − x3 + x4 + 1,
−x1 − x2 + x3 + x4 + 1, x1 + x2 + x3 + x4 + 1,
x1 − x2 − x3 + x4 − 1, −x1 + x2 − x3 + x4 − 1,
−x1 − x2 + x3 + x4 − 1, x1 + x2 + x3 + x4 − 1.

The eight points in E◦G that are dual to the hyperplanes ±xi = 1 are vertices of
the convex polytope whose H-representation is given by these linear forms. These
vertices are projections of rank 1 matrices in Sp�0(G). Our remaining eight hyperplanes
supporting regular extreme points in EG should correspond to rank 2 regular extreme
points in E◦G. We check that the normal vectors to these hyperplanes don’t lie on the
singular locus of the rank 2 strata of E◦G. To compute the rank 2 strata of E◦G we

90



Figure 5.2: Level curves of the rank 2 locus of E◦C4
defined by the hyperplane x1 +

x2 + x3 + x4 = b. The value of b varies from 1 to 0 from left-to-right.

eliminate the variables a, b, and c from the ideal generated by the 3× 3 minors of Y
and all of their partial derivatives with respect to the variables a, b, and c. The result
is a degree four hypersurface defined by the polynomial

x2
1x

2
2x

2
3 − x3

1x2x3x4 − x1x
3
2x3x4 − x1x2x

3
3x4 + x2

1x
2
2x

2
4 + x2

1x
2
3x

2
4 + x2

2x
2
3x

2
4

− x1x2x3x
3
4 + x1x2x3x4

that is singular along six planes defined by the vanishing of the ideals

〈x3, x4〉, 〈x2, x3〉, 〈x1, x3〉, 〈x2, x4〉, 〈x1, x2〉, 〈x1, x4〉.

To visualize the rank 2 locus of E◦G we intersect this degree four hypersurface with
the hyperplane x1 + x2 + x3 + x4 = b and let b vary from 0 to 1. A sample of these
level curves is presented in Figure 5.2. Since the normal vectors to our hyperplanes
are nonzero in all coordinates, their corresponding points are regular points in the
rank 2 locus of E◦G, and therefore arise as projections of extremal matrices of rank 2
in Sp�0(G). The combinatorial work in Section 5.4 supports this geometry.

The polar of an elliptope

Recall that the polar of a subset K ⊂ Rd is

K◦ = {y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ K}.

In this subsection we prove Theorem 5.1.1 via an application of spectrahedral polarity.
We first review how to compute the polar for a spectrahedron via the methods of
Ramana and Goldman described in [41].

Let C,A1, . . . , Ad ∈ Sp, where A1, . . . , Ad are linearly independent. A spectrahe-
dron a closed convex set S of the form

S =

{
x ∈ Rd : A(x) = C +

d∑
i=1

xiAi � 0

}
,
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where A(x) � 0 indicates that A(x) is positive semidefinite. Since the matrices
A1, . . . , Ad are linearly independent then S is affinely equivalent to the section of the
positive semidefinite cone

A ∩ Sp�0,

where A = C + spanR(A1, . . . , Ad). Thus, the affine section A ∩ Sp�0 is often also
called a spectrahedron. Let W = spanR(A1, . . . , Ad) be the linear subspace defined
by A1, . . . , Ad and

πW : Sp → Sp/W⊥ ' Rd, X 7→ (〈X,A1〉, . . . , 〈X,Ad〉)

be the canonical projection. We define the
(
p+1

2

)
-dimensional spectrahedron

R = {X ∈ Sp�0 : 〈X,C〉 ≤ 1}.

Then the polar of the spectrahedron S is a spectrahedral shadow, namely the closure
of the image of the spectrahedron R under the projection πW , i.e. S◦ = cl(πW(R))
[41].

Proof of Theorem 5.1.1

We first apply the general theory about spectrahedra to compute the polar of the set
of correlation matrices

Ep = {X ∈ Sp�0 : Xii = 1 for all i ∈ [p]}.

Let Aij = [aij] ∈ Sp, 1 ≤ i < j ≤ p be the zero matrix except with aij = aji = 1.
Then Ep is a spectrahedron

Ep = Sp�0 ∩ A,
where A is the affine subspace

A = Ip + spanR(Aij : 1 ≤ i < j ≤ p).

Notice that since C = Ip, then R = {X ∈ Sp�0 : 〈X,C〉 = 1}. Applying the above
techniques we get that the polar of Ep is the spectrahedral shadow

E◦p = {Y ∈ R(p2) : ∃X ∈ Sp�0 such that Xij = Yij for all i < j and tr(X) = 2}.

We now compute the polar of the elliptope

EG = {y ∈ RE : ∃Y ∈ Ep such that YE = y}.

Let L be a linear subspace of R(p2) defined by Aij, ij ∈ E. We denote by L⊥ the

orthogonal complement of L in R(p2). Then

((Ep + L⊥)/L⊥)◦ = E◦p ∩ L,
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which means that

E◦G = {x ∈ RE : ∃X ∈ Sp�0(G) such that XE = x and tr(X) = 2}.

This completes the proof of Theorem 5.1.1. �
It is clear that the constraint tr(X) = 2 is just a scaling. So the extreme points

of the convex body E◦G correspond to the extremal rays of Sp�0(G). Since an extreme
point of E◦G either has a full-dimensional normal cone without lineality or is a regular
point of E◦G we arrive at the following corollary.

Corollary 5.3.1. The hyperplanes supporting facets of the elliptope EG or regular
extreme points of EG correspond to extremal rays of the cone Sp�0(G).

A supporting hyperplane of EG of the type described in Corollary 5.3.1 identifies
an extremal ray of rank r if it corresponds to a point in the rank r strata of E◦G. This
is the basis for the facet-ray identification property.

5.4 Facet-Ray Identification for graphs without K5 minors

In this section, we show that all graphs without K5 minors have the facet-ray iden-
tification property. We first demonstrate that the p-cycle Cp has the facet-ray iden-
tification property, and then generalize this result to all graphs without K5 minors.

Facet-Ray Identification for the Cycle.

Let G := Cp for p ≥ 3. Here, we will make the identification RE ' Rp by identifying
the coordinate e = {i, i + 1} in RE with the coordinate i in Rp. For an edge e ∈ E
we define two p× p matrices, Xe and X−e where

(Xe)s,t :=

{
1 if s, t ∈ e,
0 otherwise,

and (X−e )s,t :=


1 if s = t and s, t ∈ e,
−1 if s 6= t and s, t ∈ e,
0 otherwise.

Proposition 5.4.1. The matrices Xe and X−e are extremal in Sp�0(G) of rank 1.
Moreover, the off-diagonal entries of Xe and X−e are given by the normal vector to
the hyperplane 〈±ve, x〉 = 1, respectively.

Proof. These matrices are of rank 1 and have respective 1-dimensional Gram repre-
sentations (ue1, . . . , u

e
p) and (we1, . . . , w

e
p), where

uet :=

{
1 if t ∈ {i, j},
0 otherwise,

and wet :=


1 if t = i,

−1 if t = j,

0 otherwise.

Consider the collection UE with respect to these Gram representations. If {s, t} ∈ E
then either s /∈ {i, j} or t /∈ {i, j} (or both). Thus, us = 0 (ws = 0) or ut = 0
(wt = 0) (or both). Hence, UE = {0} and rank (UE) = 0. So by Theorem 5.2.1 the
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matrices Xe and X−e are extremal in Sp�0(G). Since for all e 6= e′ ∈ E the matrices
Xe, Xe′ , X

−
e and X−e′ are not scalar multiples of each other, each such matrix lies on

a different extremal ray of Sp�0(G).

Our next goal is to identify rank p − 2 extremal matrices in Sp�0(G) whose off-
diagonal entries are determined by the normal vectors to the facet-supporting hyper-
planes 〈vF , x〉 = p− 2. Thus, we wish to prove the following theorem.

Theorem 5.4.2. Let F ⊂ [p] be a subset of odd cardinality. There exists a rank p−2
extremal matrix ∆p,F ∈ Sp�0(G) such that (∆p,F )i,i+1 = −vFi for all i ∈ [p] (modulo
p).

To prove Theorem 5.4.2 we first construct the matrices ∆p,F when F is a maximal
odd cardinality subset of [p], and then prove a lemma showing the existence of such
matrices in all the remaining cases. Let F be a maximal odd cardinality subset of [p],
and let e1, e2, . . . , ep−2 denote the standard basis vectors for Rp−2. Notice that for p
even, F = [p]\{i} for some i ∈ [p], and for p odd, F = [p]. For i ∈ [p] we define the
collection of vectors

ui := ep−2,

ui+1 :=
∑p−2

j=1(−1)j+1ej,

ui+2 := e1,
uj := ej−i−2 + ej−i−1, for i+ 3 ≤ j ≤ i+ p− 1.

Here, we view the indices of these vectors modulo p, i.e. p + 1 = 1. For p
even and F = [p]\{i}, let ∆p,F denote the positive semidefinite matrix with Gram
representation (u1, u2, . . . , up). Similarly, for p odd and F = [p], let i = 1, and let
∆p,F denote the matrix with Gram representation (u1, u2, . . . , up).

Remark 5.4.3. While independently discovered by the authors in terms of facets
cut±1 (G), the Gram representation (u1, . . . , up) for i = p − 1 was previously used
in [1, Lemma 6.3] to demonstrate that the sparsity order of the p-cycle is larger than
1 for p ≥ 4. Here, we verify that this representation is indeed extremal, and show
that it arises as part of a collection of extremal representations given by the facets of
the cut polytope cut±1 (G).

Lemma 5.4.4. Let F be a maximal odd cardinality subset of [p]. Then the matrix
∆p,F is extremal in Sp�0(G) with rank p− 2.

Proof. It is easy to check that all entries of ∆p,F corresponding to nonedges of G
will contain a zero. Notice also that all adjacent pairs uj, uj+1 have inner product 1
except for the pair ui, ui+1, when p is even, whose inner product is −1. Moreover,
(u1, u2, . . . , up) spans Rp−2, and therefore rank(∆p,F ) = p − 2. Thus, by Theorem
5.2.1, it only remains to verify that rank(UE) =

(
p−1

2

)
− 1. However, since #E =(

p
2

)
−p =

(
p−1

2

)
−1, it suffices to show that the collection of matrices UE are a linearly

independent set.
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Without loss of generality, we set i = 1. First it is noted that the set u3, u4, . . . up
are linearly independent in Rp−2. Thus we can write u1 and u2 as the following:

u1 =
∑p

i=3(−1)(p+i)ui,
u2 =

∑p
i=3(−1)i(i− 2)ui + (−1)p−1(p− 1)u1.

Since {u3, . . . , up} are linearly independent, we consider them as a basis of the vector
space R(p−2).

Since the graph G is a cycle of length p, E does not contain {i, i + 1} for i =
1, . . . p− 1 and {p, 1}. Thus, we consider the set of matrices

V := {ui · uTj + uj · uTi : i = 3, . . . , p, i < j, j 6= i+ 1} ⊂ R(p−2)×(p−2).

Note that ui · uTj + uj · uTi is a (p− 2)× (p− 2) matrix M whose (i′j′)th element is

Mi′j′ =


1 if i′ = i, j′ = j, j′ 6= i′ + 1,

1 if i′ = j, j′ = i, j′ 6= i′ + 1,

0 otherwise.

Hence, the set

V = {ui · uTj + uj · uTi |i = 3, . . . p, i < j, j 6= i+ 1}

is linearly independent.
Now we consider the matrix u1 · uTk + uk · uT1 for k = 3, . . . , p− 1. Note that

u1 · uTk + uk · uT1 =
(∑p

i=3(−1)(p+i)ui
)
· uTk + uk ·

(∑p
i=3(−1)(p+i)ui

)T
=

(∑p
i=3(−1)(p+i)ui · uTk

)
+
(∑p

i=3(−1)(p+i)uk · uTi
)

=: M̄k,

where

M̄k
i′j′ =


(−1)(p+i′) · 2 if i′ = j′ = k,

(−1)(p+i′) if i′ 6= k, i′ = 3, . . . , (p− 1) and j′ = k,

(−1)(p+j′) if i′ = k, j′ 6= k, and j′ = 3, . . . , (p− 1),

0 else.

In addition, we consider the matrix u2 · uTk + uk · uT2 for k = 4, . . . , p. Note that

u2 · uTk + uk · uT2 = (
∑p

i=3(−1)i(i− 2)ui) · uTk + uk · (
∑p

i=3(−1)i(i− 2)ui)
T

=
(∑p

i=3(−1)i(i− 2)ui · uTk
)

+
(∑p

i=3(−1)i(i− 2)uk · uTi
)

=: M̃k,

where

M̃k
i′j′ =


(−1)i

′ · 2 · (i′ − 2) if i′ = j′ = k,

(−1)i
′ · (i′ − 2) if i′ 6= k, i′ = 3, . . . , (p− 1) and j′ = k,

(−1)j
′ · (j′ − 2) if i′ = k, j′ 6= k, and j′ = 3, . . . , (p− 1),

0 else.

95



Since V does not contain the matrices M̂ i for i = 3, . . . p such that

M̂ i
i′j′ =

{
1 if i′ = i, j′ = i+ 1,

0 otherwise,

and the matrices M ′i for i = 3, . . . p such that

M ′i
i′j′ =

{
1 if i′ = i, j′ = i,

0 otherwise,

we cannot write M̃k in terms of M̄k′ and elements of V (and also we cannot write
M̄k in terms of M̃k′ and elements of V ) for k = 3, . . . , p− 1 and k′ = 4, . . . , p. Hence,
the matrices M̃k for k = 4, . . . , p, M̄k for k′ = 3, . . . , p− 1, and the matrices in V are
linearly independent.

To provide some intuition as to the construction of the remaining extremal matri-
ces we note that a k-dimensional Gram representation of a graph G with vertex set
[p] is a map Y : [p] −→ Rk such that spanR{Y (i)|i ∈ [p]} = Rk and Y (i)TY (j) = 0
for all {i, j} ∈ E. Hence, the Gram representation (u1, u2, . . . , up) is an inclusion of
the graph G into the hypercube [−1, 1]p−2. Here, the vertex i of G is identified with
the vector ui ∈ Rk. In this way, the underlying cut U of a cutset δ(U) of G is now
a collection of vectors as opposed to a collection of indices. We now consider the
cutsets δ(U) of G with respect to the representation (u1, u2, . . . , up) for the maximal
odd cardinality subsets F , and negate the vectors in the underlying cut U to produce
the desired extremal matrices for lower cardinality odd subsets of [p]. This is the
content of the following lemma.

Lemma 5.4.5. Let F ⊂ [p] be a subset of odd cardinality. There exists a rank p− 2
extremal matrix ∆p,F in Sp�0(G) with off-diagonal entries satisfying

(∆p,F )s,t =


0 if {s, t} ∈ E,
1 if t = s+ 1 and s ∈ F ,
−1 if t = s+ 1 and s /∈ F .

Proof. We produce the desired matrices in two separate cases, when p is odd and
when p is even. Suppose first that p is odd, and consider the (p − 2)-dimensional
Gram representation (u1, u2, . . . , up) defined above for the extremal matrix ∆p,[p].
This Gram representation includes G into the hypercube [−1, 1]p−2 such that vertex
i of G corresponds to ui.

We now consider the cuts of G with respect to this inclusion. Recall from Sec-
tion 5.2 that even subsets of E are the cutsets δ(U) of G, and they correspond to a
unique cut (U,U c) of G. For each i ∈ [p] we can consider the edge {i, i + 1} ∈ E.
Let F ⊂ [p] be of odd cardinality. Then F c is of even cardinality and hence has an
associated cut (U,U c) such that F c = δ(U). Now, thinking of U ⊂ [p] = V (G), negate
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all vectors in (u1, u2, . . . , up) with indices in U to produce a new (p− 2)-dimensional
representation of G, say (w1, w2, . . . , wp), where

wt :=

{
−ut if t ∈ U,
ut if t /∈ U.

Let ∆p,F denote the matrix with Gram representation (w1, w2, . . . , wp). Since F c =
δ(U) is a cutset, negating all the vectors ut with t ∈ U results in (∆p,F )i,i+1 =
−1 for every i ∈ F c, and all other entries of ∆p,F remain the same as those in
∆p,[p]. Moreover, rank(∆p,F ) = rank(∆p,[p]) and rank(UE) =

(
p−1

2

)
− 1. Thus, ∆p,F is

extremal in Sp�0(G) with rank p− 2.
Now suppose that p is even. Fix i ∈ [p] and consider the (p − 2)-dimensional

Gram representation (u1, u2, . . . , up) defined above for the extremal matrix ∆p,[p]\{i}.
Partition the collection of odd subsets of [p] into two blocks, A and B, where A
consists of all odd subsets of [p] containing i. Let F ⊂ [p] be of odd cardinality,
and suppose first that F ∈ A. Consider the even cardinality subset M = F c ∪ {i}.
Thinking of each i in [p] as corresponding to the edge {i, i + 1} ∈ E, it follows that
M = δ(U) for some cut (U,U c) of G. Once more, thinking of U ⊂ [p] = V (G), set

wt :=

{
−ut if t ∈ U,
ut if t /∈ U,

and let ∆p,F denote the matrix with Gram representation (w1, w2, . . . , wp). Since M is
a cutset, it follows that (∆p,F )s,s+1 = −(∆p,[p]\{i})s,s+1 for every s ∈M . In particular,
(∆p,F )i,i+1 = 1.

Finally, suppose F ∈ B, and consider the even cardinality subset M = F c\{i}.
Proceeding as in the previous case produces the desired matrix ∆p,F . Just as in the
odd case, the matrices ∆p,F for p even are extremal of rank p− 2.

Example 5.4.6. We illustrate the construction in the proof of Lemma 5.4.5 by con-
sidering the case p = 4 and i = 1. The corresponding maximum cardinality subset is
{2, 3, 4}. The (p− 2)-dimensional Gram representation for this maximum cardinality
odd subset is (u1, u2, u3, u4), where

u1 :=

[
0
1

]
u2 :=

[
1
−1

]
u3 :=

[
1
0

]
u4 :=

[
1
1

]
.

The resulting extremal matrix in Sp�0(G) is

∆4,{2,3,4} =


1 −1 0 1
−1 2 1 0
0 1 1 1
1 0 1 2

 .
Now consider the odd cardinality subset F := {2} ⊂ [4]. Then M = F c\{1} =

{3, 4} ' {{3, 4}, {4, 1}} ⊂ E(C4). Thus, M = δ(U) where U = {4}. The Gram repre-
sentation identified in the proof of Lemma 5.4.5 is (w1, w2, w3, w4) := (u1, u2, u3,−u4).
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Figure 5.3: C4 included into [−1, 1]2 via its Gram representation, and the Gram
representations for Example 5.4.6.

Both of these Gram representations are depicted in Figure 5.3. The resulting extremal
matrix associated to F is

∆4,{2} =


1 −1 0 −1
−1 2 1 0
0 1 1 −1
−1 0 −1 2

 .
Notice that the off-diagonal entries corresponding to the edges of C4 are given by

−vF = (−1, 1,−1,−1) ∈ RE(C4),

the normal vector to the facet-supporting hyperplane 〈vF , x〉 = 2 of cut±1 (C4). �

Lemmas 5.4.4 and 5.4.5 combined provide a proof of Theorem 5.4.2:

Proof of Theorem 5.4.2

Recall that we identify RE ' Rp by identifying the coordinate e = {i, i + 1} in RE

with the coordinate i in Rp. Consider the projection map πE : Sp −→ RE ' Rp that
projects a matrix onto its coordinates corresponding to the edges of G. For an odd
cardinality subset F of [p], the matrix ∆p,F satisfies πE(∆p,F ) = −vF . This completes
the proof of Theorem 5.4.2. �

Proposition 5.4.1 and Theorem 5.4.2 combine to prove that the p-cycle has the
facet-ray identification property. We now use these results to provide a proof of
Theorem 5.1.3.

Proof of Theorem 5.1.3

Let G be a graph without K5 minors. To show that G has the facet-ray identification
property, we must produce for every facet F of cut±1 (G) an extremal matrix M ∈
Sp�0(G) whose off-diagonal entries are given by the normal vector to F . Recall from
Section 5.2 that the supporting hyperplanes of cut±1 (G) are
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(1) 〈±ve, x〉 = 1 for all e ∈ E, and

(2) 〈vF , x〉 = m−2 for all odd cardinality subsets F ⊂ E(Cm) for all chordless cycles
Cm in G.

In the case of the cycle Cm we have constructed the desired extremal matrices Xe, X
−
e ,

and ∆m,F for each such hyperplane, and each such matrix possesses an underlying
Gram representation (u1, . . . , um). Thus, we define the (m − 2)-dimensional Gram
representation (w1, w2, . . . , w|E|) where

wt :=

{
ut if t ∈ [m] ' V (Cm) ⊂ [p] = V (G),

0 otherwise.

Let X̃e, X̃
−
e , and ∆̃m,F denote the resulting matrices in Sp�0(G) with Gram representa-

tion (w1, . . . , w|E|). It follows from Proposition 5.4.1, Lemma 5.4.4 and Lemma 5.4.5
that these matrices are extremal in Sp�0(G) of rank 1, 1, and m−2, respectively. This
completes the proof of Theorem 5.1.3. �

The Geometry of Facet-ray Identification Revisited

In Section 5.3 we saw that some distinguished extreme points of the polar E◦G lift to
matrices lying on extremal rays of the cone Sp�0(G). Via polarity, this means that
an extremal ray of Sp�0(G) corresponds to a hyperplane supporting EG. Since the
extremal rays of Sp�0(G) are the dimension 1 faces of the cone, we say that the rank
of an extremal ray r of Sp�0(G) is the rank of any nonzero matrix lying on r. Thus, the
rank of an extremal ray of Sp�0(G) is given by the rank of the corresponding vertex
of E◦G. In the polar, the rank of a supporting hyperplane of EG is the rank of the
corresponding extremal ray in Sp�0(G).

Let G be a graph without K5 minors. For each facet of cut±1 (G) we have identified
an extremal matrix Xe, X

−
e , or ∆m,F , and each such matrix generates an extremal

ray of Sp�0(G):

re := span≥0(Xe), r−e := span≥0(X−e ), and rm,F := span≥0(∆m,F ),

respectively. Recall from Theorem 5.1.1 that E◦G is a projection of the trace two
affine section of the cone Sp�0(G). Since Tr(Xe) = Tr(X−e ) = 2 these matrices corre-
spond to vertices of E◦G, which dually correspond to the facet-supporting hyperplanes
〈±ve, x〉 = 1 of the elliptope EG. On the other hand, Tr(∆m,F ) =

∑m
t=1 u

T
t ut =

3m − 6. Thus, the matrix Ym,F := 2
3m−6

∆m,F corresponds to the regular extreme

point πE(Ym,F ) = − 2
3m−6

vF of E◦G. Hence, the corresponding hyperplane in EG is

〈vF , x〉 =
6− 3m

2
.

So the supporting hyperplane 〈vF , x〉 = m− 2 of cut±1 (G) is a translation by 5m−10
2

of this rank m−2 hyperplane. This illustrates the geometry described in Section 5.3.
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Remark 5.4.7. Note that the geometric correspondence between facets and extremal
rays discussed in this section holds for any graph with the facet-ray identification
property. Thus, while our proof of this property is combinatorial, the property itself
is inherently geometric.

5.5 Characterizing Extremal Ranks

In this section, we discuss when facet-ray identification characterizes all extreme ranks
of Sp�0(G).

Series-parallel graphs.

Let G be a series-parallel graph. We show that the extremal ranks identified by the
facets of cut±1 (G) are all the possible extremal ranks of Sp�0(G), thereby completing
the proof of Theorem 5.1.4. To do so, we consider the dual cone of Sp�0(G), namely
the cone of all PSD-completable matrices, which we denote by CG. Recall that a
(real) p × p partial matrix A = [aij] is a matrix in which some entries are specified
real numbers and the remainder are unspecified. It is called symmetric if all the
specified entries satisfy aij = aji, and it is called PSD-completable if there exists

a specification of the unknown entries of A that produces a matrix Ã ∈ Sp that
is positive semidefinite. It is well-known that the dual cone to Sp�0(G) is the cone
CG of all PSD-completable matrices. Let H be an induced subgraph of G, and let
A[H] denote the submatrix of A ∈ Sm whose rows and columns are indexed by the
vertices of H. A symmetric partial matrix A is called (weakly) cycle-completable if
the submatrix A[Cm] ∈ Sm is PSD-completable for every chordless cycle Cm in G.

Proof of Theorem 5.1.4

By Theorem 5.1.3, G has the facet-ray identification property, and the extreme ma-
trices in Sp�0(G) identified by the facets of cut±1 (G) are of rank 1 and m− 2, where
m varies over the length of all chordless cycles in G. So it only remains to show that
these are all the extremal ranks of Sp�0(G). To do so, we consider the dual cone to
Sp�0(G).

In [4] it is shown that a symmetric partial matrix A is in the cone CG if and only
if A is cycle completable. Since CG is the dual cone to Sp�0(G) it follows that A ∈ CG
if and only 〈A,X〉 ≥ 0 for all X ∈ Sp�0(G). Applying this duality, we see that the
matrix A satisfies 〈A,X〉 ≥ 0 for all X ∈ Sp�0(G) if and only if 〈A[Cm], X〉 ≥ 0 for
all extremal matrices X ∈ Sm�0(Cm) for all chordless cycles Cm in G. Here, we think
of the matrices A[Cm] and X ∈ Sm�0(Cm) as living in Sp by extending the matrices

A[Cm] and X in SV (Cm) by placing zeros in the entries corresponding to edges not in
the chordless cycle Cm. It follows from this that the cone CG is dual to Sp�0(G) and
the cone whose extremal rays are given by the chordless cycles in G. Thus, these
two cones must be the same, and we conclude that the only possible ranks of the
extremal rays of Sp�0(G) are those given by the ranks of Sm�0(Cm) as Cm varies over
all chordless cycles in G. This completes the proof of Theorem 5.1.4. �
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Figure 5.4: The graph G from Example 5.5.2 and its complement Gc.

Some further examples.

Theorem 5.1.4 provides a subcollection of the graphs with no K5 minors for which
the facets of cut±1 (G) characterize all extremal ranks of Sp�0(G), namely those which
also have no K4 minors. It is then natural to ask whether or not the extreme ranks
of the graphs with K4 minors but no K5 minors are characterized by the facets as
well. The following two examples address this issue. Example 5.5.1 is an example of
a graph G with a K4 minor but no K5 minor for which the facets do not characterize
all extremal ranks of Sp�0(G), and Example 5.5.2 is an example of a graph G with a
K4 minor but no K5 minor for which the extremal ranks of Sp�0(G) are characterized
by the facets of cut±1 (G).

Example 5.5.1. Consider the complete bipartite graph G := K3,3. In [21] the extremal
rays of Sp�0(G) are characterized, and it is shown that G has extremal rays of ranks
1, 2, and 3. However, with the help of Polymake [20] we see that the facet-supporting
hyperplanes of cut±1 (G) are xe = ±1 for each edge e ∈ E(G) together with 〈vF , x〉 =
m − 2 as Cm varies over the nine (chordless) 4-cycles within G. Thus, the constant
terms of the facet-supporting hyperplanes only capture extreme ranks 1 and 2, but
not 3.

Example 5.5.2. Consider the graph G depicted in Figure 5.5.3. Recall that a k-block is
a graph P with order k that has no proper induced subgraph with order k. Agler et al.
characterized all 3-blocks in [1, Theorem 1.5] in terms of their complements. It follows
immediately from this theorem that G contains no induced 3-block. Thus, ord(G) ≤
2, and since G is not a chordal graph we see that ord(G) = 2. By Theorem 5.1.4 the
facets of cut±1 (G) identify extremal rays of rank 1 and 2. Thus, all possible extremal
ranks of G are characterized by the facets of cut±1 (G).

The reader may also notice that the graph G from Example 5.5.2 also has no K3,3

minor, but the graph from Example 5.5.1 is K3,3. Thus, it is natural to ask if the
collection of graphs for which the facets characterize the extremal ranks of Sp�0(G)
are those with no K3,3 minor. The following example says that this is not the case.

Example 5.5.3. Consider the following graph G and its complement Gc:
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Figure 5.5: A graph with a K5 minor whose facets characterize all extremal rays.
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Notice that G contains no K3,3 minor, but it does contain a K4 minor. By [1, Theorem
1.5] G is a 3-block since its complement graph is two triangles connected by an edge.
Thus, G has an extremal ray of rank 3, but by Theorem 5.1.3 they facets of cut±1 (G)
only detect extremal rays of ranks 1 and 2.

Examples 5.5.1, 5.5.2, and 5.5.3 collectively show that describing the collection of
graphs for which the facets of cut±1 (G) characterize the extremal ranks of Sp�0(G)
is more complicated that forbidding a particular minor. Indeed, the collection of
graphs with this property is not even limited to the graphs with no K5 minors, as
demonstrated by Example 5.5.4.

Example 5.5.4. Consider the graph G depicted in Figure 5.5. To see that this graph
has the facet-ray identification property we first compute the 114 facets of cut±1 (G)
using Polymake [20]. The resulting computation yields 72 cycle inequalities, 16 for
the three 3-cycles, and 56 for the seven chordless 4-cycles, as well as eight inequalities
for the four edges not in a 3-cycle. These 80 facets identify extremal rays of ranks 1
and 2 just as in the case of the graphs with no K5 minors. The remaining 64 facet-
supporting inequalities of cut±1 (G) are given by applying the switching operation
defined in [17, Chapter 27] to the inequality

x14 − x15 − x34 − x36 − x37 − x67 + x16 + x17 + x25 + x26 + x35 + x57 ≤ 4.

This new collection of facets identifies extremal rays of rank 3. For example, the
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presented inequality specifies the off-diagonal entries of the following rank 3 matrix:

2 0 0 1 1 −1 −1
0 1 0 0 −1 −1 0
0 0 2 1 −1 1 1
1 0 1 1 0 0 0
1 −1 −1 0 2 0 −1
−1 −1 1 0 0 2 1
−1 0 1 0 −1 1 1


.

This matrix has the 3-dimensional Gram representation

u1 =

1
1
0

 , u2 =

 0
0
−1

 , u3 =

 1
−1
0

 , u4 =

1
0
0

 ,

u5 =

0
1
1

 , u6 =

 0
−1
1

 , u7 =

 0
−1
0

 .

It follows via an application of Theorem 5.2.1 that this matrix is extremal in Sp�0(G).
Similar matrices can be constructed for each of the 64 facets of this type. Thus, G
has the facet-ray identification property, and the facets identify extreme rays of rank
1, 2, and 3.

To see that these are all of the extremal ranks of Sp�0(G) recall from Section 5.2
that since G has 7 vertices then ord(G) ≤ 5 with equality if and only if G is the cycle
on 7 vertices. Thus, it only remains to show that ord(G) 6= 4. To see this, notice
that the complement of G depicted in Figure 5.5. By [24, Theorem 0.2] G is not a
4-superblock since the complement of G can be obtained by identifying the vertices
of the graphs

Thus, if G as rank 4 extremal rays then it must contain an induced 4-block. However,
it can be checked that all induced subgraphs either have order 1, 2, or 3. Therefore,
G is a graph with a K5 minor that has the facet-ray identification property and
for which the extremal ranks of Sp�0(G) are characterized by the facets of cut±1 (G).
Moreover, this example shows that the types of facets which identify extreme rays of
Sp�0(G) are not limited to those arising from edges and chordless cycles.

We end this section with a problem presented by these various examples.

Problem 5.5.5. Determine all graphs G with the facet-ray identification property for
which the facets of cut±1 (G) characterize all extremal ranks of Sp�0(G).
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Figure 5.6: The parachute graph on 7 vertices.

5.6 Graphs Without the Facet-Ray Identification Property

In the previous sections we discussed various graphs G which have the facet-ray
identification property. Here, we provide an explicit example showing that not all
graphs admit the facet-ray identification property.

Example 5.6.1. Consider the parachute graph on 7 vertices depicted in Figure 5.6.
Using Polymake [20] we compute the facets of cut±1 (G) to see that

x13 + x14 + x15 + x16 + x25 + x26 + x27 + x37 + x47 − x23 − x34 − x45 − x56 − x67 ≤ 4

is a facet-defining inequality. Thus, if G has the facet ray identification property
there exists a filling of the partial matrix

M :=



x1 0 1 1 1 1 0
0 x2 −1 0 1 1 1
1 −1 x3 −1 0 0 1
1 0 −1 x4 −1 0 1
1 1 0 −1 x5 −1 0
1 1 0 0 −1 x6 −1
0 1 1 1 0 −1 x7


.

that results in a positive semidefinite matrix which is extremal in Sp�0(G). Notice
that the minimum rank of a positive semidefinite completion of M is 5. To see this,
recall that if the rank(M) < 5 then the point (x1, x2, . . . , x7) must lie on the variety
of the ideal I generated by the 5× 5 minors of M . Using Macaulay2, we see that the
minimal generating set for the ideal I includes the generator x1 + x2 + . . .+ x7 + 10.
If M is positive semidefinite then xi ≥ 0 for all 1 ≤ i ≤ 7, and so (x1, . . . , x7) cannot
be a point in the variety of the ideal I.

On the other hand, the maximum dimension of the frame space

spanR (UE) = spanR(uiu
T
j + uju

T
i : ij ∈ E)

for any k-dimensional Gram representation of G is at most the number of nonedges
of G, which is seven. By Theorem 5.2.1, since 7 <

(
5+1

2

)
− 1 no positive semidefinite

completion of M can be extremal in Sp�0(G). Thus, G does not have the facet-ray
identification property.
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The facet-defining inequality considered in Example 5.6.1 has been studied before
as a facet-defining inequality of the cut polytope of the complete graph K7 by Deza
and Laurent [17], and is referred to as a parachute inequality. Thus, one consequence
of the above example is that K7 also does not have the facet-ray identification prop-
erty, nor does any G for which the above inequality is facet-defining. This suggests
that one way to determine the collection of graphs which have the facet-ray identifi-
cation property is to study those facets which can never identify an extremal matrix
in Sp�0(G), i.e. determine “forbidden facets” as opposed to forbidden minors.

Problem 5.6.2. Determine facet-defining inequalities of cut±1 (G) that can never iden-
tify extremal matrices in Sp�0(G).

Copyright c© Liam Solus, 2015.

105



Bibliography

[1] J. Agler, J.W. Helton, S. McCullough, and L. Rodman. Positive semidefinite
matrices with a given sparsity pattern. Linear algebra and its applications 107
(1988): 101-149.

[2] J. L. Arocha. Propriedades del polinomio independiente de un grafo. Revista
Ciencias Matematicas 5 (1984): 103-110.

[3] F. Barahona and A.R. Mahjoub. On the cut polytope. Mathematical Program-
ming 36.2 (1986): 157-173.

[4] W. Barrett, C.R. Johnson, and R. Loewy. The real positive definite completion
problem: cycle completability. Vol. 584. American Mathematical Soc., 1996.

[5] W. Barrett, C. R. Johnson, and P. Tarazaga. The real positive definite completion
problem for a simple cycle. Linear Algebra and its Applications 192 (1993): 3-31.

[6] M. Beck and S. Robins. Computing the continuous discretely: Integer-point enu-
meration in polyhedra. Springer, 2007.

[7] G. Blekherman, P.A. Parrilo, and R.R. Thomas, eds. Semidefinite optimization
and convex algebraic geometry. Vol. 13. Siam, 2013.
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