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ABSTRACT OF DISSERTATION

Inverse Scattering For The Zero-Energy Novikov-Veselov Equation

For certain initial data, we solve the Novikov-Veselov equation by the inverse scat-
tering method. This is a (2+1)-dimensional completely integrable system that gen-
eralizes the (1+1)-dimensional Korteweg-de-Vries equation. The method used is the
inverse scattering method. To study the direct and inverse scattering maps, we prove
existence and uniqueness properties of exponentially growing solutions of the two-
dimensional Schrödinger equation. For conductivity-type potentials, this was done
by Nachman in his work on the inverse conductivity problem. Our work expands
the set of potentials for which the analysis holds, completes the study of the inverse
scattering map, and show that the inverse scattering method yields global in time
solutions to the Novikov-Veselov equation. This is the first proof that the inverse
scattering method yields classical solutions to the Novikov-Veselov equation for the
class of potentials considered here.
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Chapter 1 Introduction

The Novikov-Veselov equation at energy zero was first derived by Novikov and Veselov
in 1984 as part of a larger hierarchy of completely integrable equations which generate
families of explicit solutions to the two-dimensional Schrödinger equation. It is a
(2+1)-dimensional generalization of the (1+1)-dimensional Korteweg-de Vries (KdV)
equation

uτ + 6uux + uxxx = 0 (1.1)

which generate isospectral flows for the one-dimensional Schrödinger equation. The
KdV equation was the first example of an equation that admitted soliton solutions.
Soliton solutions are traveling wave solutions where the dispersion, uxxx, is exactly
balanced by the nonlinearity, 6uux. The simplest solutions of this kind are given by

u(x, τ) =
c

2
sech2

[√
c

2
(x− cτ)

]
.

There are also multi-soliton solutions where the individual solitons traveling at dif-
ferent speeds pass through each other with only a small change in phase [10].

Associated with the KdV equation are two operators that form a Lax pair:

L = −∂2
x + u(x, τ), A = ∂3

x −
3

4
(u(x, τ)∂x + ∂xu(x, τ)).

The KdV equation is equivalent to the compatibility condition

∂τL = [L,A] (1.2)

where [L,A] = LA − AL is the commutator. We may solve the KdV equation by
examining the spectral data of the Schrödinger equation. Under the KdV flow, if we
evolve a solution to Lφ(x, 0) = 0 according to the equation

∂τφ(x, τ) = −Aφ(x, τ)

then φ(x, τ) will continue to be solutions to Lφ(x, τ) = 0 for all time. The evolution
follows from taking derivatives of Lφ(x, τ) and applying the compatibility condition
(1.2):

(Lφ)τ = Lτφ+ Lφτ = L(Aφ+ φτ ) = 0.

The Novikov-Veselov equation generalizes KdV because the spectral problem is the
2-dimensional Schrödinger equation.

Manakov showed that the there are no nontrivial 2-dimensional equations de-
scribed with a Lax pair [20]. The proper generalization is a Manakov triple. Novikov
and Veselov derived the NV equation as the compatibility condition of a Manakov
triple where the operator L is the 2-dimensional stationary Schrödinger operator.
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The operators ∂x and ∂x are given by

∂x =
1

2

(
∂

∂x1

+ i
∂

∂x2

)
and ∂x =

1

2

(
∂

∂x1

− i ∂
∂x2

)
.

The Manakov triple for the NV equation is

L = −∂x∂x + q + E, A = ∂3
x + ∂

3

x + u∂ + ū∂x, B = ∂xu+ ∂xū,

and the NV equation is equivalent to the compatibility condition

∂τL = [L,A] +BL. (1.3)

Written out, equation (1.3) gives the Novikov-Veselov equation at energy E:{
∂τq = ∂3

xq + ∂
3

xq + 4∂(uq) + 4∂x(ūq)− E(∂xq + ∂xq)

∂xq = ∂xu.
(1.4)

For the rest of the paper, we write x ∈ R2 as (x1, x2), but we also will freely treat
it as a complex number x = x1 + ix2 when it is convenient. The function u in the
Novikov-Veselov equation is not well defined since ∂x has a kernel consisting of all
analytic functions. We will choose u such that

lim
|x|→∞

u(x, τ) = 0. (1.5)

With the Manakov triple in mind, there should be a set of functions that solve the
Schrödinger equation Lφ = 0 and evolve in time according to a prescribed equation
as in the case of KdV. To see this, we take the derivative of Lφ

(Lφ)τ = Lτφ+ Lφτ = L(φτ + Aφ) = 0.

Therefore, if q evolves according to the NV equation, then φ(x, τ) should satisfy

∂τφ = −Aφ.

The inverse scattering method involves finding a suitable set of solutions to the
Schrödinger equation, evolving these solutions, and then finding a map from these
solutions to the potential.

In 1987, Boiti, Leon, Manna, and Pempinelli developed the inverse scattering
method for the Novikov-Veselov equation [3]. The first step of the inverse scattering
method is to construct the Complex Geometric Optics (CGO) solutions to Lφ =
0.The next step is to use these solutions to construct the scattering data T [q] : R2 7→
C. The data T [q] has a linear evolution (1.15) when q evolves according to the
nonlinear NV equation. The last step of the inverse scattering method is to take the
evolved scattering data and reconstruct the CGO solutions and the evolved q.
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In this paper, we will present a complete proof that the inverse scattering method
yields classical solutions to the zero-energy (E = 0) Novikov-Veselov equation for a
large set of potentials. At E = 0, the NV equation is{

∂τq = ∂3
xq + ∂

3

xq + 4∂x(uq) + 4∂x(ūq)

∂xq = ∂xu.
(1.6)

For the forward scattering problem, we let q(x) = q(x, 0) be the initial data
for the NV equation. Let q be in Lp(R2) for p ∈ (1, 2). The set of solutions to the
Schrödinger equation we will use are the Complex Geometric Optics (CGO) solutions,
φ(x, k), originally described by Faddeev [9]. These functions satisfy{

(−∂x∂x + q(x))φ(x, k) = 0

e−ikxφ(x, k)− 1 ∈ W 1,p̃(R2)
(1.7)

where k ∈ C \ {0} is a complex parameter, xk is calculated through complex multi-
plication, and 1/p̃ = 1/p−1/2. This implies that exp(−ikx) is exponentially growing
in some directions and oscillating in others. We call points k for which there do not
exist unique solutions to (1.7) exceptional points and E is the set of exceptional
points.

In 1996, Nachman proved the exceptional set is empty for a special set of potentials
called conductivity-type [26]. Conductivity-type potentials are potentials in Lp(R2)
with the property that the equation ∂x∂xφ = qφ has a bounded, strictly positive
solution. We will generalize Nachman’s results to the more general class of potentials
with prescribed decay for which the associated Schrödinger operator is nonnegative.
We say that −∂x∂x + q ≥ 0 when∫

R2

1

4
|∇ψ|2 + q|ψ|2dm ≥ 0 (1.8)

for every ψ ∈ C∞c (R2).
In order for unique solutions to (1.7) to exist, we require q to be in a weighted Lp

space. We define Lpρ(R2) by

Lpρ(R2) = {f : 〈x〉ρf ∈ Lp(R2)}.

Let q be in Lpρ(R2). Murata, in 1986 [21], proved q satisfies (1.8) if and only if
there exists some positive solution to the Schrödinger equation. Conductivity-type
potentials, called critical by Murata, are the subset of Lpρ(R2) potentials for which the
the positive solutions are bounded. If the positive solution is unbounded, it is called
a subcritical potential. We give more detail about the theory developed by Murata
in Section 1.3.

We rescale solutions to (1.7) to have nicer behavior at infinity. Setting µ(x, k) =
e−ikxφ(x, k) gives us the modified equation{

∂x(∂x + ik)µ(x, k) = q(x)µ(x, k)

µ( · , k)− 1 ∈ W 1,p̃(R2)
(1.9)
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where
1

p̃
=

1

p
− 1

2
.

Faddeev’s Green function, gk is the fundamental solution kernel for (1.9) defined by

gk(x) =
1

π2

∫
R2

ei(ξx+ξ̄x̄)

ξ̄(ξ + k)
dm(ξ). (1.10)

This is the Fourier transform of a function in Lr(R2) for r ∈ (1, 2), and therefore
gk ∈ Lr

′
(R2). We have

∂x(∂x + ik)gk(x) = δ(x)

where the distribution δ(x) is the Dirac delta function.
Any solution of equation (1.9) will satisfy the integral equation

µ(x, k) = 1 + gk ∗ (qµ(x, k)). (1.11)

Taking a large-x expansion of gk (see [30, Theorem 3.11]), we find that

gk(x) = − 1

π

(
1

ikx
+
e−k(x)

ik̄x̄

)
+O(|x|−2) (1.12)

where
ek(x) = ei(kx+k̄x̄).

Substituting (1.12) into (1.11), we formally have a large-x asymptotic for µ(x, k):

µ(x, k) = 1 +
h(k)

πikx
− e−k(x)t(k)

πik̄x̄
+O(|x|−2).

The functions h and t are given by the integrals

h(k) =

∫
R2

q(x)µ(x, k)dm(x) (1.13)

and

T [q](k) = t(k) =

∫
R2

ek(x)q(x)µ(x, k)dm(x). (1.14)

The function t(k) is the inverse scattering data, and the map T is the forward scat-
tering map.

If q(x, τ) solves the NV equation, Boiti, Leon, Manna, and Pempinelli [3] showed
that we get the following evolution equations for h and t:

∂τt = i(k3 + k̄3)t

∂τh = 0.

We see that h is a conserved quantity under the NV flow, and t has the evolution

t(k, τ) = eiτ(k3+k̄3)t(k, 0). (1.15)
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Now that we have the inverse scattering data and the evolution of this data, we
need a method of reconstructing µ(x, k, τ) and q(x, τ) from this data. We have

∂k
1

ξ − k
= πδ(ξ),

so taking the ∂k derivative of Faddeev’s Green function gives us

∂kgk(x) = e−x(k)
1

πk̄
.

If we substitute this derivative into the integral equation (1.11) we get

∂kµ = e−x(k)
t(k)

πk̄
+ gk ∗ (q∂kµ). (1.16)

We have the identity gk ∗ (e−xf̄) = e−xgk ∗ f . Taking the complex conjugate of
equation (1.11) and multiplying by e−x(k) gives us

e−x(k)µ− e−x(k)gk ∗ qµ = e−x(k)

[I − gk ∗ (q · )]e−xµ̄ = e−x(k). (1.17)

Using identity (1.17), the integral equation (1.16) becomes

∂kµ = e−x(k)
t(k)

πk̄
µ.

Therefore, instead of evolving q under NV and solving the Schrödinger equation, we
may solve the ∂k-equation{

∂kµ(x, k, τ) = e−x(k)eiτ(k3+k̄3) t(k)

πk̄
µ

µ(x, · , τ)− 1 ∈ Lr(C)
(1.18)

to recover µ. We will reconstruct q from large-k asymptotics of µ. Define

s(k) =
t(k)

πk̄
.

The existence of solutions to (1.18) depends on the Lp(C) space properties of the
coefficient s. For the critical potentials, Nachman proved that s is in Lp1 ∩ Lp2(R2)
for p1 ∈ (1, 2) and p2 ∈ (2,∞). This is the classical space needed to get uniqueness in
the ∂k-problem [36]. For subcritical potentials, s(k) will be in L2(R2), but the theory
still works out due to results of Brown and Uhlmann [5] that we present in Theorem
1.2.6.

We wish to write (1.18) as an integral equation. If f ∈ Lp(R2) for p ∈ (1, 2), we
may define the Cauchy integral, an inverse of the ∂k operator, by

∂
−1

k f =
1

π

∫
R2

1

k − k′
f(k′)dm(k′). (1.19)

5



Using the ∂
−1

k operator, we rewrite the ∂k equation as an integral equation

µ(x, k, τ)− 1 =
1

π

∫
C

1

k − k′
e−x(k

′)eiτ(k′3+k̄′3)s(k′)µ(x, k′, τ)dm(k′). (1.20)

Assuming |k|ns(k) ∈ Lr1 ∩ Lr2(R2) for r1 ∈ (1, 2) and r2 ∈ (2,∞), we may use the
expansion

1

k − k′
=

n∑
j=1

k′j−1

kj
+

k′n

kn(k − k′)
(1.21)

in equation (1.20) to obtain the large-k expansion of µ(x, k, τ):

µ(x, k, τ) = 1 +
n∑
j=1

aj(x, τ)

kj
+ o(|k|−n). (1.22)

We can recover q(x, τ) by plugging (1.22) into the Schrödinger equation (1.9):

lim
|k|→∞

qµ = lim
|k|→∞

∂x(∂x + ik)µ

q = i∂xa1.

However, this assumes that µ(x, k, τ) constructed from the ∂k-equation (1.18) solves
the Schrödinger equation for all τ .

We would show that µ solves the Schrödinger equation by commuting the operator
−∂x(∂x + ik) + q through (1.18):

[−∂x(∂x + ik) + q]∂kµ = [−∂x(∂x + ik) + q]e−x(k)
t(k, τ)

πk̄
µ

∂k[−∂x(∂x + ik) + q]µ = e−x(k)
t(k, τ)

πk̄
[−∂x(∂x + ik) + q̄]µ.

The Liouville theorem by Brown and Uhlmann [5] says that if u ∈ Lr(C) for r ∈ (2,∞)
is a solution to

∂xu = au+ bū

then u ≡ 0. If we know a priori that q(x, τ) = q(x, τ), we would have µ solves
∂x(∂x + ik)µ = qµ.

Grinevich and Manakov worked out symmetries for the nonzero-energy scattering
transform when the Schrödinger equation has a special form [13, Theorem 2]. They
consider the problem of reconstructing the full Schrödinger operator with a magnetic
field through the inverse scattering method. This operator is

−∂x∂x + iA(x)∂x +B(x) + E,

and there are two symmetries that appear in the data assuming A ≡ 0 and B = B̄.
In the zero energy limit their symmetry becomes t(k) = t(−k). We prove in Lemma
4.3.1 that if the scattering data has the symmetry then Q[t] is real.

6



To get an integral form for the aj(x, τ) (and therefore q(x, τ)), we plug the ex-
pansion (1.21) into (1.20) to obtain

aj(x, τ) =
1

π

∫
C
k′j−1e−x(k

′)eiτ(k′3+k̄′3)s(k′)µ(x, k′, τ)dm(k′). (1.23)

Therefore, a reconstruction formula for q(x, τ) is

Q[t](x, τ) = q(x, τ) =
i

π
∂x

∫
e−x(k)eiτ(k3+k̄3)s(k)µ(x, k, τ)dm(k). (1.24)

All these steps together make up the inverse scattering method for solving the
Novikov-Veselov equation:

t(k, 0)
Multiplication by−−−−−−−−−−−−−→

eiτ(k3+k̄3)

t(k, τ)

T
x yQ

q(x, 0)
NV Evolution−−−−−−−−−−→ q(x, τ)

(1.25)

We will prove that the inverse scattering method produces classical solutions to the
NV equation for critical or subcritical initial data. The method here is from the paper
of Music and Perry in [23] and is the first formal proof that uses the inverse scattering
method directly for any of these potentials.

Theorem 1.0.1. Given q(x, 0) ∈ W 5,p
ρ (R2) with p ∈ (1, 2), ρ ∈ (2/p′,∞), and

−∂x∂x + q(x, 0) ≥ 0, q(x, τ) obtained from the inverse scattering method (1.25) is a
global classical solution to the Novikov-Veselov equation with initial data q(x, 0).

We prove the theorem using the large-k expansion (1.22) and finding a set of
identities among the coefficients aj(x, τ). We then find an evolution equation for
µ(x, k, τ) and use this to prove that the reconstructed q = i∂xa1 solves the Novikov-
Veselov equation. The requirement that q(x, 0) ∈ W 5,p

ρ (R2) guarantees that q(x, 0) ∈
C3(R2). This is necessary because we use classical derivatives in the method and not
weak derivatives.

There are examples where it is known that inverse scattering method from dia-
gram (1.25) fails completely. Taimanov and Tsarev constructed supercritical rational
potentials with explicit formulas for the scattering data and CGO solutions using the
Moutard transform [34, Section 3]. The solutions q(x, τ) to the NV equation with
this initial data are smooth, have decay q(x, 0) ≤ c〈x〉−3, and blow up in finite time.
To us, the most interesting feature is that the scattering transform of Taimanov and
Tsarev’s initial data is identically zero. R.G. Novikov and Grinevich calculated the
scattering transforms for point potentials and found that their scattering transforms
will sometimes have a circle of singularities [14]. Music, Perry, and Siltanen calculated
perturbations of radially symmetric critical potentials and found the same circle of
singularities when the perturbations are supercritical [24].

There are various groups who have worked on formalizing the zero-energy in-
verse scattering method for different potentials. Tsai in 1993 developed the small

7



data theory for the inverse scattering method in an attempt to solve the zero-energy
Novikov-Veselov equation rapidly decaying initial data [35] but did not know that
the spectral condition (1.8) was required.

In 2007, Lassas, Mueller, and Siltanen continued from Nachman’s work and
showed that for certain smooth, compactly supported critical initial data the in-
verse scattering map Q[t] is well-defined for all time and the reconstructed solution
satisfies the estimate |qτ (z)| ≤ C(1 + |x|)−2 [18]. Together with Stahel, they later
showed that radially symmetric initial data in the same class stay critical for all time
when the scattering data is evolved according to (1.15) [19].

In 2014, Perry [29] was the first to show that the inverse scattering method yields
solutions of the NV equation at zero-energy for critical initial data. His method does
not extend to subcritical initial data. As we shall see in Section 3.2, critical initial
data is the boundary of the set of data we treat in the present work.

In addition, Angelopoulos used PDE techniques to show that the Novikov-Veselov
equation is locally well-posed for initial data in Hs(R2) with s > 1/2 [1].

For history and results on nonzero-energy inverse scattering, we direct the reader
to the review articles by R.G. Novikov [27], Grinevich [12], and to the thesis of
Kazeykina [17]. The review article of Croke, Mueller, Music, Perry, Siltanen, and
Stahel contains a broad overview for the zero-energy Novikov-Veselov equation [7].

In the rest of this chapter, we gather some notation that will be used through-
out the text, present theorems from Murata’s work on positive solutions to the
Schrödinger equation, and then discuss some key theorems from Nachman’s work
on the inverse scattering method.

In Chapter 2, we show that if q is subcritical, then the Schrödinger equation
1.9 has a unique solution for all k 6= 0 and these solutions solve the ∂k-equation
(1.18). The uniqueness of the solutions in Section 2.1 is the largest technical hurdle
here. The rest of the proofs in the chapter are adapted from Nachman [26] to deal
with subcritical potentials. In some cases, we are able to prove the same results for
q ∈ Lpρ(R2) where ρ is smaller than was assumed by Nachman [26]. In Section 2.2,
we prove the existence and decay of the CGO solutions for subcritical potentials. In
Section 2.3, we show that the CGO solutions satisfy the ∂k equation.

In Chapter 3, we encounter a difference in the behavior of the scattering data t(k)
for subcritical potentials as opposed to critical potentials. For critical potentials, the
inequality t(k) ≤ c|k|ε holds near k = 0, and Nachman use this decay to prove that
s belongs to Lp1 ∩ Lp2(C) for p1 ∈ (1, 2) and p2 ∈ (2,∞). For subcritical potentials,
we will show in Section 3.1 that near the origin t(k) satisfies

t(k) =
πa

2(c∞ − a(γ + log |k|))
+O(|k|ε)

where γ is the Euler-Mascheroni constant and a and c∞ are constants derived from
the positive solution to the Schrödinger equation with potential q. This implies that
s will only belong to L2(C). We are still able to solve the ∂k-equation even with
these L2(C) coefficients. In Section 3.2, we prove that the subcritical potentials are
an open set in the Lpρ(R2) topology. In Section 3.3, we prove that if q has additional
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regularity then s has additional decay. Finally, in Section 3.4 we prove that if q(x) is
real than t has the symmetry t(k) = t(−k).

In Chapter 4 we analyze the inverse scattering transform Q. In Section 4.1 we
prove that, for suitable s, the CGO solutions coming from the ∂k equation (1.18) are
differentiable in x and τ and have the large-k expansion (1.22). Section 4.2 proves
continuity theorems for the map Q depending on the coefficient s, so that in Section
4.3 we can prove that the reconstructed potentials are real.

Finally, in Chapter 5 we complete the proof of Theorem 1.0.1.

1.1 Notation

dm(x) is 2-dimensional Lebesgue measure.

dσ(x) is 1-dimensional surface measure.

Lp(Ω) is the space of all measurable functions on Ω ⊂ R2 with finite Lp(Ω) norm
given by

‖f‖Lp(Ω) =

(∫
Ω

f(x)p dm(x)

)1/p

Wm,p(Ω) is the space of m times weakly differentiable functions with finite Wm,p(Ω)
norm given by

‖f‖Wm,p(Ω) =

 ∑
α: |α|≤m

‖Dαf‖pLp(Ω)

1/p

.

α ∈ Nn is a multiindex and Dαf is the derivative of f .

Lpw(Ω) consists of all functions f with fw ∈ Lp(Ω). The norm is given by

‖f‖Lpw(Ω) =

(∫
Ω

[f(x)w(x)]p dm(x)

)1/p

.

〈x〉 = (1 + |x|2)1/2 and Lpρ(Ω) for ρ ∈ R is

Lpρ(Ω) = Lp〈 · 〉ρ(Ω).

C(Ω) is the space of continuous functions on Ω.

Cn(Ω) for n ∈ N is the space of n-times continuously differentiable functions on Ω.

C(W,V ) consists of continuous function from W to V .

Cα(Rn) for α ∈ (0, 1) is the space of Hölder continuous functions with seminorm

‖f‖Cα(Rn) = sup
x,y∈Rn

|f(x)− f(y)|α.

9



C0(Rn) is the space of continuous functions with limit zero at infinity.

C∞c (Ω) consists of all infinitely differentiable functions with compact support on Ω.

S is the space of Schwartz class functions. f is in S if

|pDαf | ≤ C(α, p)

for all polynomials p and all multi-indices α.

B(W ) is the set of bounded linear operators on Banach space W equipped with the
norm

‖T‖B(W ) = sup
‖f‖W=1

‖Tf‖W .

uB is the average of u over the ball B.

BMO is the set of functions of Bounded Mean Oscillation with seminorm

‖u‖BMO(Ω) = sup
B⊂Ω

1

|B|

∫
B

|u− uB|dm <∞.

VMO is the set of functions of Vanishing Mean Oscillation. For Ω = R2, VMO is the
closure of C0(R2) functions in the BMO seminorm.

O(f(t)) is Big-Oh notation for the set of functions growing asymptotically slower or
the same as f(t). For a large (small) t-limit, g(t) = O(f(t)) if g(t) ≤ cf(t) for some
c > 0 and all t large (small) enough.

o(f(t)) is Little-Oh notation for the set of functions that grow strictly slower than
f(t). For a large (small) t-limit, g(t) = O(f(t)) if g(t) ≤ cf(t) for all c > 0 and all t
large (small) enough.

1.2 Operator Properties

We will need some classical results from functional analysis. The most useful is the
Fredholm alternative. This tells us when some operators of the form λI − K are
invertible. In the same vein, the Rellich-Kondrachov theorem will allow use to show
certain operators are compact. In addition to these, we will need sharp results on

the Cauchy integral operator ∂
−1

x , the Beurling transform ∂x∂
−1

x , and the logarithmic
potential (−∆)−1. A reference for results on the logarithmic potential, the Beurling
transform, and the Cauchy transform is the book by Astala, Iwaniec, and Martin [2].

Theorem 1.2.1 (Fredholm alternative). Let K be a compact operator from a Banach
space W to itself. Then either

1. λI −K is invertible

2. λ is an eigenvalue of K.

10



If λ is an eigenvalue of K then the kernel of λI −K is nontrivial. Therefore, we
can prove that λI −K is invertible if λI −K has trivial kernel.

For operators on a bounded domain, the Rellich-Kondrachov theorem gives us an
important compact embedding.

Theorem 1.2.2 (Rellich-Kondrachov). Let Ω ⊂ R2 be a bounded open set with Lip-
schitz boundary. Then, the space W 1,p(Ω) continuously embeds into Lp̃(Ω) and com-
pactly embeds into Lr(Ω) for p ∈ [1, 2) and r ∈ [1, p̃).

We say that u ∈ L1
loc(R2) satisfies the ∂x-equation

∂xu = a

for a ∈ L1
loc(R2) if for any φ ∈ C∞c (R2)∫

R2

u(−∂xφ) dm(x) =

∫
R2

aφ dm(x).

We may define an inverse of ∂x for Lp(R2) functions with p ∈ (1, 2) by

[∂
−1

x f ](x) =
1

π

∫
C

1

x− x′
f(x′)dm(x′). (1.26)

Of course, the kernel of ∂x is all analytic functions, so this inverse is not unique. For
functions in L2(R2), we must be a little more careful and define the Cauchy transform
by

[∂
−1

x f ](x) =
1

π

∫
R2

[
1

x− x′
+
χC\B1(x′)

x′

]
f(x′)dm(x′).

The ∂
−1

x operator is closely related to the singular integral operator (−∂x∂x)−1/2 =
2(−∆)1/2. The operator (−∂x∂x)α/2 for α ∈ (0, 2) is convolution with the Riesz
potential defined by

(−∂x∂x)α/2f =
1

cα

∫
R2

1

|x− y|2−α
f(y) dm(y)

for α 6= 2. For α = 2, the integral kernel of (−∂x∂x)−1 is the logarithmic potential
which we call G0:

G0(x) = − 2

π
log |x| (1.27)

We have the inequality

|∂−1

x f | ≤ c(−∆)1/2|f |.
The Hardy-Littlewood-Sobolev inequality gives us the mapping properties of the frac-
tional integral operator.

Theorem 1.2.3 (Hardy-Littlewood-Sobolev Inequality). Let 1 < p < q <∞ and let
q = 2p/(2− αp). Then

‖(−∆)α/2f‖Lq(R2) ≤ c‖f‖Lp(R2)

11



We gather more precise estimates on the ∂
−1

x operator from the book of Astala,
Iwaniec, and Martin [2, Section 4.3.2].

Theorem 1.2.4. Let u = ∂
−1

x f for f ∈ Lp(R2) and let p̃ = 2p/(2− p).

1. If p ∈ (2,∞) then ‖u‖Cα ≤ c‖f‖Lp(R2) for α = 1− 2/p.

2. If p ∈ (1, 2) then ‖u‖Lp̃ ≤ c‖f‖Lp(R2).

3. If p = 2 then u ∈ VMO(R2) and ‖u‖BMO ≤ ‖f‖L2(R2).

4. If f ∈ Lp ∩ Lq(R2) for p < 2 and q > 2 then

lim
|x|→∞

f(x) = 0.

We will need to use the Fredholm alternative to show that the equation ∂xu =
au + bū has unique solutions with u − 1 ∈ Lr(R2) for r ≥ 2. Therefore, we need to

know that the kernel of I − ∂−1

x [a( · ) + b( · )] is trivial. The Liouville type theorem
that will show this for coefficients better than L2(R2) is due to Vekua [36].

Theorem 1.2.5. Let a, b ∈ Lp ∩ Lq(R2) for p ∈ [1, 2) and q ∈ (2.∞]. If u ∈ Lr(R2)
for r ∈ [2,∞] satisfies

∂xu = au+ bū

in distribution sense, then u ≡ 0

Proof. We construct the function f = ue−∂̄
−1(a+bū/u) where ū/u is 1 when u = 0. We

have
∂xf = 0

and ∂
−1

x (a + bū/u) ∈ L∞(R2) and goes to zero in the limit |x| → ∞. Therefore, f is
analytic and in Lr(R2) so is identically zero.

Brown and Uhlmann prove a stronger version of this theorem which only requires
that the coefficients are in L2(R2) [5, Theorem 3.1].

Theorem 1.2.6. Given u is in Lp(R2) for p ∈ [1,∞] and in L2
loc(R2). If u satisfies

∂xu = au+ bū

in distribution sense, then u ≡ 0

We will modify their proof of the Liouville theorem to allow u to be in a negatively
weighted Lp space. In the proof, we will need classical estimates for BMO functions.
These can be found in Astala, Iwaniec, and Martin [2, Section 4.6.1].

Lemma 1.2.7. Let u ∈ BMO then
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1. (John-Nirenberg Inequality)

1

|B|

∫
B

exp

(
2δ
|u− uB|
‖u‖BMO

)
dm ≤ 2 (1.28)

2. If B1 ∩B2 6= ∅ and B2 has a radius between half and twice the radius of B1,

|uB1 − uB2| ≤ C‖u‖BMO (1.29)

Another important operator is the Beurling transform defined by ∂x∂
−1

x . This may
be viewed as a Fourier multiplier with symbol ξ/ξ̄. A classical result for Calderón-
Zygmund operators gives the following lemma (see for instance [2, Theorem 4.5.3]).

Lemma 1.2.8. The operator ∂x∂
−1

x is bounded on Lp(R2) for p ∈ (1,∞).

Sometimes it is more convenient to decompose the inverse of ∂x(∂x+ ik) using the
identity

[∂x(∂x + ik)]−1 =
1

ik

[
∂−1
x − (∂x + ik)−1

]
∂x∂

−1

x ,

so we will need to treat the operator (∂x + ik)−1 by itself. The operator (∂x + ik)−1

can be written as e−k(x)∂−1
x ek( · ), and we have the following estimates from Nachman

[26, Lemma 1.2]:

Lemma 1.2.9. 1. For f ∈ Lp(R2) there is a unique solution to (∂x + ik)u = f
with u ∈ Lp̃(R2).

2. If v ∈ Lp̃(R2) and ∂xv ∈ Lp(R2) then there is a unique solution w ∈ Lp̃(R2) to
(∂x + ik)w = v. Additionally w ∈ W 1.p̃(R2) and

‖w‖Lp̃(R2) ≤
c

|k|
(
‖v‖Lp̃(R2) + ‖∂xv‖Lp(R2)

)
We will also use the following estimates from Ben-Artzi, Koch, and Saut [4, Propo-

sition 5.4] on the decay of the fundamental solution kernel for the linear part of the

NV equation: ∂τv = ∂3
xv + ∂

3

xv.

Lemma 1.2.10. Let

Iτ (x) =

∫
eiτ(k3+k̄3)−i(kx+k̄x̄) dm(k). (1.30)

Then:
Iτ (x) = τ−2/3I1

(
xτ−1/3

)
and the estimates

|I1(x)| ≤ C (1 + |x|)−1/2 ,

|∇xI1(x)| ≤ C

hold.
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1.3 Positive Solutions to the Schrödinger Equation

We saw in the introduction the importance of a potential having a nonnegative
quadratic form (1.8). The inverse scattering method for critical potentials (called
conductivity-type by other authors) has been extensively studied. The full classifica-
tion of our potentials comes from Murata [21]:

Definition 1.3.1. We say a potential q ∈ L1
loc(R2) is

• Subcritical if there exists a positive Green’s function

• Critical if there is no positive Green’s function and −∂x∂x + q ≥ 0

• Supercritical if −∂x∂x + q � 0

A positive Green’s function G(x) satisfies (−∂x∂x + q)G(x, y) = δ(x − y) and
G(x, y) > 0. The key result from Murata for the present work is the existence
of special positive solutions to the Schrödinger equation for subcritical and critical
potentials.

Lemma 1.3.2. [21, Theorem 5.6] If q ∈ Lpρ(R2) for p ∈ (1, 2) and ρ > 2/p′ then

• q is subcritical if and only if there exists a positive solution φ with asymptotics
φ = log |x|+O(1)

• q is critical if and only if there exists a positive solution φ with asymptotics
φ = 1 + o(1)

• q is supercritical if and only if there is no positive solution

If we assume that a positive solution exists, the proof of the large-x asymptotics
is straightforward for smooth compact q. Any positive solution will satisfy

φ(x) = G0 ∗ (qφ) + h(x)

for a harmonic h(x) and G0 given by (1.27). For x large enough we get the approxi-
mation

φ(x) ≈ −2 log |x|
π

∫
qφdm(x) + h(x).

Since φ is positive, h(x) ≥ −c log |x| for large x and so h(x) is constant. Proving a
positive solution exists is harder: see [8, Theorem 2.12] for a proof.

Gesztesy and Zhao use Brownian motion techniques to obtain optimal criteria for
a potential to be critical [11, Theorem 1.3]. If q satisfies

lim
α↓0

{
sup
x∈R2

∫
|x−y|≤α

ln
(
|x− y|−1

)
|q(y)| dy

}
= 0
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and ∫
|y|≥1

ln |y||q(y)| dy <∞

then q is critical if and only if there is a positive, bounded solution to ∂x∂xφ = qφ.
In Section 3.2, we will prove that subcritical potentials form an open set in the

Lpρ(R2) and the critical potentials are the boundary. To complete the proof, we will
need Theorem 2.4 from Murata [21] which shows that the set of critical potentials is
unstable under compact perturbations and the subcritical potentials are stable.

Theorem 1.3.3. [21, Theorem 2.4] Let W ∈ Lploc(R2) be a nonnegative function with
compact support which is positive on a set of positive measure then

• V is critical if and only if −∂x∂x + V ≥ 0 and −∂x∂x + V − εW � 0 for all
ε > 0.

• V is subcritical if and only if −∂x∂x + V − εW ≥ 0 for any sufficiently small
ε > 0.

1.4 Nachman’s Results for Critical Potentials

In his 1996 paper [26], Nachman used the inverse scattering method for critical poten-
tials to solve the 2D inverse conductivity problem. This problem was formulated by
Calderón in a 1980 paper [6]. Calderón asks if it is possible to reconstruct the interior
conductivity, γ(x), of an object by applying different voltages on the boundary and
measuring the resulting currents.

Nachman takes a conductivity satisfying 0 < 1/c < γ < c with γ ∈ W 2,p(Ω). If ψ
is a voltage then γ∇ψ is a current which solves

∇ · γ∇ψ = 0. (1.31)

If we induce a voltage, f , on the boundary then the voltage potential in Ω is a solution
to (1.31) with boundary value ψ|∂Ω = f . We may compute the current γ∂ψ/∂ν on
the boundary to get the Dirichlet to Neumann map

Λγf = γ
∂ψ

∂ν
.

Reconstructing γ from Λγ is the goal of the inverse conductivity problem.
If γ ∈ W 2,p(Ω), we may use the change of variables q = ∂x∂x(γ

1/2)/γ1/2 and
φ = γ−1/2ψ to change the problem into the Schrödinger equation{

(∂x∂x + q)φ = 0

φ|∂Ω = g.
(1.32)

Potentials formed in this way are critical by Lemma 1.3.2 because γ1/2 is a bounded
positive solution to the Schrödinger equation.
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The Dirichlet to Neumann map for the problem (1.32) is

Λq =
∂φ

∂ν

∣∣∣∣
∂Ω

.

The map Λq is related to map Λσ for the conductivity problem by the identity

Λq = γ−1/2

(
Λγ +

1

2

∂γ

∂ν

)
γ−1/2.

The inverse scattering method is useful in solving the inverse conductivity problem
because the scattering transform t of q may be calculated from Λq when q is compactly
supported. Therefore, if we can reconstruct q from t, then we can reconstruct q from
Λq.

Let φ̃(x, k) be the solution to Laplace’s equation with the same boundary values
as φ(x, k), the solutions to Schrödinger’s equation (1.7). Using Green’s Identity, the
scattering transform may be calculated using the integral∫

∂Ω

eik̄x̄ (Λq − Λ0)φ( · , k)dγ(x) =

∫
∂Ω

eik̄x̄

(
∂φ

∂ν
(x, k)− ∂φ̃

∂ν
(x, k)

)
dσ(x)

=

∫
Ω

∇
(
eik̄x̄
)
· ∇φ(x, k) + eik̄x̄∆φ(x)dm(x)

−
∫
∂Ω

∂eik̄x̄

∂ν
φ̃(x, k)dσ(x)

=

∫
Ω

eik̄x̄q(x)φ(x, k)dm(x)

= t(k).

With this reconstruction in mind, Nachman proves the existence, uniqueness, and
decay of the CGO solutions.

Theorem 1.4.1. [26, Theorem 1.1] Let q ∈ Lp(R2), p ∈ (1, 2) be such that there exists
a real-valued φ0 ∈ L∞(R2) with q = (∂x∂xφ0)/φ0, φ0(x) ≥ c0 > 0 and ∇φ0 ∈ Lp(R2).
Then for any k ∈ C \ 0 there exists a unique solution φ(x, k) of

−∂x∂xφ+ qφ = 0 in R2

with e−ikxφ( · , k)− 1 ∈ Lp̃ ∩ L∞(R2). Furthermore, e−ikxφ( · , k)− 1 ∈ W 1,p̃(R2) and

‖eikxφ( · , k)− 1‖W s,p̃(R2) ≤ c|k|s−1‖q‖Lp(R2)

for s ∈ [0, 1] and k sufficiently large.

We will prove the same theorem for subcritical potential in Theorem 2.2.2. How-
ever to guarantee a positive solution for the subcritical potentials, we will assume
that q ∈ Lpρ(R2). The only hard part in proving this theorem comes when we prove
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that there unique solutions to the Schrödinger equation (1.9). For critical potentials,
Nachman uses the method of reduction of order and then the Liouville theorem 1.2.5
shows that there is a unique solution. For subcritical potentials, we will require a
much more precise version of the Liouville theorem. Below, we reproduce Nachman’s
proof that equation (1.9) has unique solutions. In Remark 1.4.3, we discuss what
differences arise when dealing with subcritical potentials.

Lemma 1.4.2. [26, Lemma 1.5] Let q ∈ Lp(R2) be such that there exists a real valued
solution φ0 ∈ L∞(R2) with q = (∂x∂xφ0)/φ0, φ0(x) ≥ c0 > 0 and ∇φ0 ∈ Lp(R2). If h
satisfies (−∂x∂x + q)h = 0 in R2 and he−ikx ∈ W 1,p̃(R2) for some k ∈ C, then h ≡ 0.

Proof. Without loss of generality, assume that h is real. Following Nachman, we
construct the function

v = (φ0∂xh− h∂xφ0)e−ikx.

The function v belongs to Lp̃(R2).
By construction, v satisfies the ∂x-equation

∂xv =
∂xφ0

φ0

v − e−k
∂xφ0

φ0

v̄.

These coefficients ∂xφ0/φ0 and ∂xφ0/φ0 are in Lp ∩ Lp̃(R2), so Vekua’s Liouville
theorem 1.2.5 implies that v ≡ 0.

Finally, since v ≡ 0, ∂x(h/φ0) = 0 and so h ≡ 0 by the classical Liouville theorem
for analytic functions.

Remark 1.4.3. There are two problems with trying to apply this Lemma to the sub-
critical case. The first is that the function v will only be in the negatively weighted
space Lp̃−ε(R2) because of the logarithmic growth of the positive solution φ0. The
second problem is that the coefficients ∂xφ0/φ0 and ∂xφ0/φ0 will be in L2(R2). To see
this, we note that φ0 = a log |x|+O(1), so we should have |∇φ0(x)| ≈ a/|x| for large
x. We have c/(|x| log |x|) is in L2(R2) away from the origin. Therefore, we will use
the Liouville theorem of Brown and Uhlmann 1.2.6, but we must change the theorem
to be able to deal with a negatively weighted Lp(R2) space. We do this in Theorem
2.1.4.

The next result that Nachman proves is that the CGO solutions satisfy the ∂k-
equation (1.18). Our proof will be essentially the same as his except we lower the
weight required for the potential. Nachman requires q ∈ Lpρ(R2) for p ∈ (1, 2) and
ρ > 1, and we will lower this to ρ > 2/p′.

Theorem 1.4.4. [26, Theorem 2.1] Let q be real-valued and in Lpρ(R2), p ∈ (1, 2)
and ρ > 1. Then for any k ∈ C \ 0 which is not an exceptional point, the equation
(1.18) holds in the W 1,p̃

−β (R2) topology, β > 2/p̃ with t the scattering transform defined
by (1.14).
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In order to prove that s is in Lp1∩Lp2(C) for p1 ∈ (1, 2) and p2 ∈ (2,∞), Nachman
examines the small-k behavior of t and proves that critical potentials have scattering
transforms satisfying |t(k)| ≤ c|k|ε for k small. In fact, he proves that small-k decay
along with a lack of exceptional points characterizes critical potentials.

Theorem 1.4.5. [26, Theorem 3] Let q be a real valued function in Lpρ(R2) with
p ∈ (1, 2) and ρ > 1. The following are equivalent:

1. q = (∂x∂xφ0)/φ0 for some φ0 ∈ L∞(R2) with φ0 ≥ c0 > 0 a.e.

2. There are no exceptional points k ∈ C and the scattering transform satisfies

|t(k)| ≤ c|k|ε

for some ε > 0 and all sufficiently small k.

Because we can prove that there are no exceptional points when the potential is
subcritical, this theorem implies that the scattering transform of subcritical potentials
must be more singular than for critical potentials. We calculate the exact behavior
in Theorem 3.1.4.

Nachman continues with a method to reconstruct φ(x, k) on ∂Ω in order to calcu-
late t from Λq. These results are not necessary to use the inverse scattering method
to solve the NV equation, so we omit them.
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Chapter 2 The Schrödinger Equation and Forward Scattering

We separate the inverse scattering method into two main parts. The first is solving
the Schrödinger equation (1.9) and using the CGO solutions to describe properties
of the scattering transform for a given potential. The second is using the scattering
transform and equation (1.18) to reconstruct the original potential which will come
in Chapter 4. The ideas and many of the proofs in this chapter are from [22].

2.1 Uniqueness of CGO Solutions

In this section, we will show that solutions to the Schrödinger equation (1.9) are
unique for critical or subcritical potentials in Lpρ(R2) for p ∈ (1, 2) and ρ > 2/p′ for
all k ∈ C \ {0}. After proving a sharper result for pseudoanalytic functions, we prove
this in the Liouville Theorem 2.1.4.

The results from Lemmas 1.2.4 and 1.2.7 allow us to prove a Liouville theorem for
pseudo-analytic functions. This lemma is essentially the same as Theorem 3.1 from
[5] except with a negatively weighted space for the function w. Our proof will rely

more on the fact that ∂
−1

x applied to an L2(R2) function is in VMO.

Lemma 2.1.1. Suppose f is in L2(R2), w ∈ Lp−ρ(R2) for 1 ≤ p < ∞, ρ <
min(1, 2/p), and assume that w exp(−∂̄−1

x f) is holomorphic. Then w is zero.

Proof. Let u = −∂̄−1
x f . By Theorem 1.2.4, u ∈ VMO. For x, y ∈ R2 with r > s, we

have ∣∣uBr(x) − uBs(y)

∣∣ ≤ C‖u‖BMO log(|x− y|/r + r/s+ 2). (2.1)

This follows from iterating inequality (1.29) and counting the number of steps neces-
sary to go from Br(x) to Bs(y). Since u is in VMO, we may decompose u = u0 + u1

so that u0 has small BMO norm depending on ε and u1 ∈ L∞(R2). We then get

|uBr(x) − uB1(0)| ≤ 2‖u1‖L∞ + |u0
Br(x) − u0

Br(0)|+ |u0
Br(0) − u0

B1(0)|
≤ C(r, u0, u1) + ε log(|x|/r + r + 2).

Taking the exponential of both sides, we find that for fixed r

exp(uBr(x)) = O(|x|ε), as x→∞, (2.2)

and for fixed x = 0

exp(uBr(0)) = O(|r|ε), as r →∞. (2.3)

We also have for given p > 1 there exists C > 0 and r0 = r0(p, f) so that if r < r0

then ∫
Br(x)

exp(p′|u− uBr(x)|)dm(x) ≤ Cµ(Br(x)). (2.4)
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This follows from the John-Nirenberg inequality (1.28) using the decomposition u =
u0 + u1 above.

Using (2.4) and Hölder’s inequality we find

|(euw)B| ≤ |euB |µ(B)−1‖〈x〉ρ‖L∞(B)‖ exp(p′|u− uB|)‖Lp′ (B)‖w〈x〉−ρ‖Lp(B)

≤ |euB |µ(B)−1

(
sup
x∈B
〈x〉ρ

)(∫
B

exp(p′|u− uB|)dm(x)

)1/p′

‖w‖Lp−ρ .

Using (2.2) and (2.4) we see that for fixed r0 = r0(p, u), ρ < 1 and ε < 1− ρ

|(euw)B| = o(|x|), as x→∞

Since euw is assumed holomorphic, this implies that euw is constant. Fixing x = 0,
we have the identity

|(euw)B| ≤ Crεr−2rρr2/p′‖w‖Lp−ρ(R2)

≤ Crε+ρ−2/p‖w‖Lp−ρ(R2).

If we choose ε ∈ (0, 2/p−ρ) and let r →∞, we see euw ≡ 0 and therefore w ≡ 0.

This leads to a new Liouville theorem for pseudoanalytic functions. The same
argument as in Lemma1.4.2 coupled with Lemma 2.1.1 now gives us the following
corollary.

Corollary 2.1.2. If the function v ∈ Lp−ρ ∩ L2
loc(R2) for p ∈ [1,∞) and ρ <

min(1, 2/p) solves
∂̄xv = av + bv̄

with coefficients a, b ∈ L2(C) then v ≡ 0.

In order to use Corollary 2.1.2 to prove Lemma 1.4.2, we will need to prove the
coefficients ∂xφ0/φ0 and ∂xφ0/φ0 are in L2(R2) where φ0 is a positive solution to the
Schrödinger equation.

Lemma 2.1.3. Let q(x) ∈ Lpρ(R2) for p ∈ (1, 2) and ρ > 2/p′ be subcritical, and let
φ0 be a bounded positive solution of the Schrödinger equation guaranteed by Lemma
1.3.2. The functions ∂̄xφ0(x)/φ0 and ∂xφ0(x)/φ0 are in L2(R2).

Proof. Let W (x) = log(|x| + e). According to the asymptotics from Lemma 1.3.2,
the statement of the Lemma is equivalent to showing ∂xφ0/W , and ∂xφ0/W are in
L2(R2).

We write ∂xφ0(x) = f(x) + 1
4
∂̄−1
x qφ0(x) for some analytic function f(x).

We will show that f(x) 6= 0 is incompatible with the growth of φ0. By Theorem
1.2.4, ∂̄−1

x qφ0 ∈ Lr for all r ∈ (p̃,∞). We will integrate against a radially-symmetric
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non-negative bump function, g ∈ C∞(R2), which is 1 for |x| < 1 and 0 for |x| > 2.
For fixed x ∈ R2 and large R > 0 we have∣∣∣∣∫

R2

g

(
|y − x|
R

)
∂xφ0(y)dy

∣∣∣∣
≥
∣∣∣∣∫
R2

g

(
|y − x|
R

)
f(y)dm(x)

∣∣∣∣− ∣∣∣∣∫
R2

g

(
|y − x|
R

)
1

4
∂̄−1
x qφ0(y)dy

∣∣∣∣ .
Integrating by parts on the left and using the mean value property and Hölder’s
inequality on the right, we get∣∣∣∣∫

R2

(a log |R|+O(1))∂xg

(
|y − x|
R

)
dy

∣∣∣∣ ≥ c1R
2|f(x)| − c2R

2/r′‖∂̄−1
x qφ0‖Lr .

We have ∂xg(|x− y|/R) = O(1/R), so

c3R ≥ c1R
2|f(x)| − c2R

2/r′‖∂̄−1
x qφ0‖Lr

Taking R large shows f(x) = 0 for all x.
Using the equality ∂xφ0(x) = 1

4
∂̄−1
x qφ0(x), we show ∂̄xφ0/W ∈ L2(R2). Let f(x) =

qφ0 ∈ Lpρ(R2) for p ∈ (1, 2) and ρ > 2/p′. First, we separate the L2 norm into three
regions. ∥∥∥∥ ∂̄−1

x f(x)

W (x)

∥∥∥∥2

L2

≤ 1

π

∫
|x|<1

1

W (x)2

(∫
R2

f(y)

x− y
dy

)2

dm(x)

+
1

π

∫
|x|>1

1

W (x)2

(∫
|x−y|<|x|/2

f(y)

x− y
dy

)2

dm(x)

+
1

π

∫
|x|>1

1

W (x)2

(∫
|x−y|>|x|/2

f(y)

x− y
dy

)2

dm(x)

=I + II + III.

For the first two integrals we will not use the extra W (x) weight. For integral I, we
have since f ∈ Lp(R2) that ∂̄−1

x f ∈ Lp̃(R2) ⊂ L2
loc(R2) by Theorem 1.2.4.

For integral II , we use Hölder’s inequality and then Theorem 1.2.4 on 〈 · 〉ρf ∈ Lp
for p ∈ (1, 2) to get

II ≤ c

∫
|x|>1

〈x〉−2ρ

W (x)2

(∫
|x−y|<|x|/2

〈y〉ρf(y)

x− y
dy

)2

dm(x)

≤ c‖〈x〉−2ρ‖Lp′‖∂̄−1〈·〉ρf( · )‖2
L2p/(2−p)

≤ c‖〈x〉−2ρ‖Lp′‖〈 · 〉ρf( · )‖2
Lp .
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For integral III, we simply use Hölder’s inequality, the embedding Lpρ(R2) ⊂ L1(R2),
and the extra (log |x|)2 weight to get

III ≤ 1

π

∫
|x|>1

1

W (x)2

(∫
|x−y|>|x|/2

f(y)

x− y
dw

)2

dm(x)

≤c
∫
|x|>1

1

|x|2W (x)2
dm(x)

(∫
C
|f(y)| dy

)2

≤c‖f‖2
L1

The last because for |x| > 1, the function (|x|W (x))−2 ∈ L1(R2).

We can now prove that solutions to the Schrödinger equation (1.9) are unique.
See Lemma 1.4.2 for the proof in the critical case.

Theorem 2.1.4. Let q be a critical or subcritical potential in Lpρ(R2). If φ solves the
Schrödinger equation

(−∂x∂x + q)φ = 0

with e−ikxφ(x) ∈ Lp(R2) for p ∈ (2,∞) then φ ≡ 0.

Proof. Without loss of generality, assume φ is real. Let φ0 be a positive solution to
the Schrödinger equation, and let

v = (φ0∂xφ− φ∂xφ0)e−ikx.

We have v ∈ Lp−ε(R2), and we may calculate

∂xv = (∂xφ0∂xφ− ∂xφ∂xφ0)eikx

=
∂xφ0

φ0

v − e−k(x)
∂xφ0

φ0

v̄.

By Lemma 2.1.3, the coefficients are in L2(R2), so by Corollary 2.1.2 ν ≡ 0. Therefore
∂(φ/φ0) = 0. The function φ/φ0 is in Lp(R2) and analytic, so φ ≡ 0.

2.2 Existence and Decay of CGO Solutions

We have proved that the solutions to the Schrödinger equation are unique, so we
will use Fredholm theory to prove the existence of the CGO solutions. The CGO
solutions, µ(x, k), to the Schrödinger equation (1.9) satisfy the integral equation

µ(x, k)− 1 = gk ∗ (qµ).

Define Tk = gk ∗ (q · ). We will show that Tk is a compact operator and that [I − Tk]
has a trivial kernel. The Fredholm alternative tells us that [I − Tk] is invertible, and
we get the existence of the CGO solutions through the identity

[I − Tk]−1Tk1 = µ(x, k)− 1. (2.5)

We use the following lemma of Nachman that gk maps Lp(R2) to W 1,p̃(R2).
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Lemma 2.2.1. [26, Lemma 1.3] For any f ∈ Lp(R2) and k ∈ C \ {0} there is a
unique u ∈ Lp̃(R2) satisfying

∂x(∂x + ik)u = f.

Furthermore, u ∈ W 1,p̃(R2) and

‖u‖W s,p̃(R2) ≤
c

|k|1−s
‖f‖Lp(R2) (2.6)

for |k| > k0 and s ∈ [0, 1]. We may write

u = − 1

ik

[
∂−1
x − (∂x + ik)−1

]
∂x∂

−1

x ]f = gk ∗ f (2.7)

Theorem 2.2.2. Given a critical or subcritical q ∈ Lpρ(R2) with p ∈ (1, 2) and
ρ > 2/p′, there exists a unique µ( · , k) − 1 ∈ W 1,p̃(R2) which solves (1.9). We also
have for all |k| > k0(q)

‖µ( · , k)− 1‖W s,p̃(R2) ≤
c

|k|1−s
‖q‖Lp(R2) (2.8)

for s ∈ [0, 1].

Proof. By equation (2.7), gk∗( · ) is bounded from Lp(R2) to W 1,p̃(R2). Multiplication
by q ∈ Lp(R2) is compact as a map from W 1,p̃(R2) to Lp(R2). Therefore, Tk is
compact.

By the Fredholm alternative, the operator I − Tk is invertible if and only if its
kernel is trivial. Take a solution f = gk ∗ (gf) with f ∈ W 1,p̃(R2). The function f
solves

∂x(∂x + ik)f = qf.

By Theorem 2.1.4, f ≡ 0, so I − Tk is invertible.
By Lemma 2.2.1, the function Tk1 = gk ∗ q ∈ W 1,p̃(R2) and ‖Tk1‖W 1,p̃(R2) ≤

c‖q‖Lp(R2). Therefore, for s0 ∈ (2/p̃, 1]

‖µ− 1‖L∞(R2) ≤ ‖µ− 1‖W s0,p̃(R2) ≤
c

|k|1−s0
‖q‖Lp(R2).

Writing
µ− 1 = gk ∗ (qµ)

and using Lemma 2.2.1 again gives

‖µ( · , k)− 1‖W s,p̃(R2) ≤
c

|k|1−s
‖qµ‖Lp(R2)

≤ c

|k|1−s

(
1 +

c

|k|1−s0
‖q‖Lp(R2)

)
‖q‖Lp(R2)

≤ c̃

|k|1−s
‖q‖Lp(R2).

In the last line we chose k0 large enough so that c/|k|1−s0‖q‖ would be small.
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From equation (2.8), we immediately get decay in t(k).

Lemma 2.2.3. Given q ∈ Lpρ(R2) subcritical or critical with p ∈ (1, 2) and ρ ∈
(2/p′,∞), the function s is in Lr(|k| > k0) for all r ∈ (p̃′,∞) and k0 large enough.

Proof. We have ∣∣∣∣t(k)

k̄

∣∣∣∣ ≤ 1

|k|
|Fq|+ 1

|k|

∫
|q(x)||µ(x, k)− 1|dm(x).

The Fourier term satisfies

‖Fq/k̄‖Lr(|k|>k0) ≤ ‖q‖Lp(R2)‖1/k̄‖Lσ(C)

for 1/r = 1/p′ + 1/σ and σ ∈ (2,∞]. This is equivalent to requiring r ∈ (p̃′,∞].
We have µ( · , k)− 1 ∈ W s,p̃(R2) ⊂ L∞(R2) if s > 2/p̃, so∥∥∥∥ 1

|k|

∫
|q(µ− 1)|dm(x)

∥∥∥∥
Lr(|k|>k0

≤ ‖q‖Lp(R2)‖µ− 1‖W s,p̃(R2)‖1/|k|2−s‖Lr(|k|>k0)

which holds for r(2− s) > 2 or r ∈ (p̃′,∞)

2.3 CGO Solutions Solve the DBar Equation

The main theorem in this section is that µ solves the ∂k equation (1.18) in the classical
sense when q ∈ Lpρ(R2) is critical or subcritical. To prove this, we will use Lemma 2.3
from Nachman concerning the Beurling transform between weighted Lp spaces [26].

Lemma 2.3.1. [26, Lemma 2.3] If α ∈ (2/p′, 1) and δ ∈ (α + 1− 2/p, 2/p′) then

∂x∂
−1

x Lpα(R2) ⊂ Lpα(R2) + {u ∈ Lpδ(R
2) : ∂xu ∈ Lpα(R2)}

Theorem 2.3.2. Let q ∈ Lpρ(R2) be subcritical or critical with p ∈ (1, 2) and ρ > 2/p′.
The CGO solution µ(x, k) is differentiable for all k ∈ C \ {0} in the classical sense
with

∂kµ(x, k) =
t(k)

πk̄
e−x(k)µ(x, k).

Proof. We will prove the ∂k equation holds for qµ with the derivative existing distri-
butionally in L1 ∩ Lp(R2). The proof follows Nachman [26, Theorem 2.1].

Let D1
h(f) = [f(k1 + h + ik2)− f(k1 + ik2)]/h and D2

h(f) = [f(k1 + i(k2 + h))−
f(k1 + ik2)]/h. We have

D1
h(qµ) =

q

h
[gk+h − gk] ∗ qµ( · , k + h) + gk ∗ [D1

hqµ],
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and
D1
h(qµ) = [I − qgk ∗ ( · )]−1

( q
h

[gk+h − gk] ∗ qµ( · , k + h)
)
.

We need the function
1

h
[gk+h − gk] ∗ qµ( · , k + h)

to converge in the L∞(R2) norm. We write

gk ∗ f =
1

ik

[
∂
−1

x − (∂x + ik)−1∂x∂
−1

x

]
f.

The derivatives of 1/(ik) will converge for all k 6= 0, so we focus our attention on

(∂x + ik)−1f = ek(−x)∂
−1

x ek( · )f =
1

π

∫
ek(y − x)

y − x
f(y)dm(y).

Taking finite differences of the above gives

D1
h(∂x + ik)−1f =

1

π

∫
ek(y − x)

y − x

(
eh(y − x)− 1

h

)
f(y)dm(y).

Using the fact that f(y) ∈ L1(R2) and the fact that |(eh(y − x)− 1)/h| ≤ 2|y1 − x1|,
we may use dominated convergence to have (uniformly for k ∈ Br(0))

lim
h→0

D1
h(∂x + ik)−1f =

∂

∂k1

(∂ + ik)−1f =
2e−k(x)

π

∫
ek(y)

y1 − x1

y − x
f(y)dm(y).

For all h ∈ (0, 1) the above is in L∞(R2) independent of h. We get a similar result
for D2

h and adding the two

∂k(∂x + ik)−1f =
e−k(x)

π

∫
ek(y)f(y)dm(y).

Now, a problem is that the Beurling transform does not map L1 to itself, so we use
the decomposition from Lemma 2.3.1 to write

(∂x + ik)−1∂x∂
−1

x qµ = (∂x + ik)−1f1 +
1

ik
f2 −

1

ik
(∂x + ik)−1∂xf2

Putting everything together (with the fact that the Beurling transform has symbol
k/k̄), we get the following convergence in Lp(R2):

q[∂kgk] ∗ (qµ( · , k)) = q
e−k(x)

π
t(k).

Therefore,

∂k(qµ) = [I − qgk ∗ ( · )]−1
(
q
e−k
π

t(k)
)
.

Finally, using the identity (1.17) gives us

[I − qgk ∗ ( · )]−1e−kq = e−k(x)qµ,
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so we have

∂kqµ(x, k) =
t(k)

πk̄
e−x(k)qµ(x, k)

in the L1 ∩ Lp(R2) norm.
To prove the result for µ, we write

∂kµ = ∂k[gk ∗ (qµ)]

= [∂kgk] ∗ (qµ) + gk ∗ (∂kqµ)

= e−k
t(k)

πk̄
+ e−k

t(k)

πk̄
µ− 1.
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Chapter 3 Properties of the Scattering Transform

In the previous chapter we showed that, if our potential is critical or subcritical, the
CGO solutions exist, are unique, and have decay |k|ns(k) ∈ Lr(R2). When q ∈ Lpρ(R2)
with p ∈ (1, 2) and ρ > 2/p′, we used the decay to show that s belongs to Lr(|k| > k0)
for some k0 > 0 and r ∈ (p̃′,∞) in Lemma 2.2.3. In this chapter, we will prove that
s is in L2 for k near the origin, and in fact we will get an explicit formula for the
behavior of t as k → 0. We will then show that the scattering transform behaves just
as the Fourier transform by interchanging smoothness in the potential for decay in
the scattering transform. The decay in the transform will come from a generalized
version of estimate (2.8) that takes into account the regularity of q. Theorems in
Sections 3.1 and 3.3 are from [22], and theorems in Section 3.2 and 3.4 are from [23].

3.1 Small-k Behavior of t(k)

Recall G0 = − 2
π

log |x| is the fundamental solution to Laplace’s equation and let

g̃k = gk + 2[log |k|+ γ]/π

where gk is Faddeev’s Green function and γ is the Euler-Mascheroni constant. Define

T̃0f = qG0 ∗ f

and
T̃kf = qg̃k ∗ f.

By Nachman [26, Lemma 3.4], we have the estimate.

|g̃k −G0| ≤ Cε|k|ε〈x〉ε (3.1)

for all ε ∈ (0, 1).
In Theorem 3.1.4, we will need to make reference to the positive solution φ0 to

Schrödinger’s equation. When q ∈ Lpρ(R2) with p ∈ (1, 2) and ρ > 2/p′, Nachman
proves that φ0 solves the integral equation

φ0 = c∞ −G0 ∗ (qφ0) (3.2)

for some real number c∞ [26, Lemma 3.1]. When studying this equation, it will
become necessary to have c∞ 6= 0 to invert the operators in the proof. The following
lemma shows how to scale the equation and be able to change the value of c∞ when
q is subcritical. This is needed for Theorem 3.1.4.

Lemma 3.1.1. Consider a subcritical potential q(x) ∈ Lpρ(R2) with p ∈ (1, 2), ρ ∈
(2/p′,∞), and positive solution φ0 which satisfies equation (3.2). If we rescale the
potential qr(x) = r2q(rx), then the positive solution φr0(x) = φ0(rx) solves (−∂x∂x +
qr)φ

r
0 = 0 and satisfies the asymptotic φr0(x) = a log |x|+O(1). The function φr0 also

solves equation (3.2) with cr∞ = c∞ + a log |r|. The associated scattering transform
tr(k) satisfies tr(k) = t(k/r).
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Proof. The identity tr(k) = t(k/r) is proved in Siltanen [30, Theorem 3.19]. From
Nachman [26, Lemma 3.1], by integrating φ0 +G0 ∗ (qφ0) over a ball of radius R, we
have

c∞πR
2 =

∫
|x|<R

φ0(x)dm(x)−
(

1

2
R2 logR +

1

4
R2

)∫
R2

qφ0 +O(R2/p′). (3.3)

Expanding the first integral with φ0 = a log |x| + O(1) and matching terms with
R2 log |R|, we find

a =
2

π

∫
qφ0.

Using this with equation (3.2) and the change of variables y′ = ry we find

φr0(x) = cr∞ +
2

π

∫
R2

(log |x− y|)qr(y)φr0(y)dy

= cr∞ +
2

π

∫
R2

(log |x− y|)r2q(ry)φ0(ry)dy

= cr∞ +
2

π

∫
R2

(log |rx− y′| − log |r|) q(y′)φ0(y′)dy′

= cr∞ − a log |r| − c∞ + φ0(rx).

This proves cr∞ = a log |r|+ c∞.

We now prove an elementary estimate on the logarithmic potential G0 (compare
to [26, Lemma 3.2]).

Lemma 3.1.2. For f ∈ Lpρ(R2) with p ∈ (1, 2) and ρ ∈ (2/p′,∞) we have∥∥∥∥G0 ∗ f +
2

π
log(|x|+ 1)

∫
f

∥∥∥∥
L∞(R2)

≤ c‖f‖Lpρ(R2)

Proof. The left hand side of the inequality is

2

π

∣∣∣∣∫ log

(
|x− y|
|x|+ 1

)
f(y)dm(y)

∣∣∣∣ .
We split R2 × R2 into three regions:

Ω1 = {(x, y) : |x− y| < 1}
Ω2 = {(x, y) : 1 < |x− y| < |x|+ 1}
Ω3 = {(x, y) : |x|+ 1 < |x− y|} .

In Ω1, we have log(|x|+ 1) < log(|y|+ 2) so∣∣∣∣log(|x|+ 1)

∫
f(y)dm(y)

∣∣∣∣ ≤ ∫ log(|y|+ 2)|f(y)|dm(y) ≤ c‖f‖Lpρ(R2)
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and ∣∣∣∣∫ log |x− y|f(y)dm(y)

∣∣∣∣ ≤ c‖ log | · |‖Lp′ (B1(0))‖f‖Lp(R2).

In Ω2, we have

|x|+ 1

|x− y|
≤ 4

〈x〉
〈x− y〉

≤ 4〈y〉,

so we estimate the integral by∣∣∣∣∫ log

(
|x− y|
|x|+ 1

)
f(y)dy

∣∣∣∣ ≤ c

∫
log(〈y〉)|f(y)|dm(y) ≤ c‖f‖Lpρ(R2).

A similar estimate holds in Ω3.

We are now ready to prove compactness and continuity of our maps T̃k

Lemma 3.1.3. Let q ∈ Lpρ(R2) for p ∈ (1, 2), ρ > 2/p′, and ρ′ ∈ (2/p′, ρ) then

1. T̃0 is bounded from Lpρ′(R2)→ Lpρ′(R2)

2. T̃0 is compact from Lpρ′(R2)→ Lpρ′(R2)

3. If q is critical or subcritical and there is a φ0 with c∞ 6= 0 then [I − T̃0] is
invertible

4. If q is critical or subcritical and there is a φ0 with c∞ 6= 0 then [I − T̃k] is
invertible for small k and

‖[I − T̃0]−1f − [I − T̃k]−1f‖Lp
ρ′ (R

2) ≤ C(q, ε, ρ′)|k|ε‖f‖Lp
ρ′ (R

2)

for ε ∈ (0,min[ρ− ρ′, ρ′ − 2/p′]).

Proof. (1) This follows from the operator estimate in Lemma 3.1.2 and the fact that
multiplication by q ∈ Lpρ(R2) maps a log(|x|+ e) + L∞(R2)→ Lpρ′(R2).

(2) Let qj ∈ C∞c (R2) and qj → q ∈ Lpρ(R2). We have by the Hardy-Littlewood-
Sobolev inequality that ‖∇G0 ∗ f‖Lp̃ ≤ ‖f‖Lp(R2) so that χBR(0)G0 ∗ f ∈ W 1,p̃(R2)
which compactly embeds into L∞(R2). Therefore the operator qjG0 ∗ [ · ] is compact
from Lpρ′(R2)→ Lpρ′(R2). Taking the limit j →∞ we have

lim
j→∞
‖(qj − q)G0 ∗ f‖Lp

ρ′ (R
2) ≤ lim

j→∞
c‖qj − q‖Lpρ(R2)‖f‖Lp

ρ′ (R
2) = 0

so T̃0 is a limit of compact operators and is compact.
(3) By the Fredholm alternative, we just need to show the kernel is empty. Take

f ∈ Lpρ′(R2) such that [I − T̃0]f = 0. Then h = G0 ∗ f satisfies

h = G0 ∗ [qG0 ∗ f ] = G0 ∗ [qh].
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We have h ∈ a log(|x|+ e) + L∞(R2) and ∇h ∈ Lp̃(R2) satisfies

∂x∂xh = qh.

Taking the function
v = h∂xφ0 − φ0∂xh ∈ Lp̃−ε(R2),

we see that v satisfies

∂xv =
∂xφ0

φ0

v − ∂xφ0

φ0

v̄.

By the Liouville theorem 2.1.2, v ≡ 0. Therefore h/φ0 is antianalytic and by the
Liouville theorem for analytic functions, must be a constant, c. Therefore

h = cφ0 = c∞c− cG0 ∗ [qφ0] = cc∞ +G0 ∗ (h).

Since c∞ 6= 0, we must have c = 0.
(4) This follows from the second resolvent identity. We have

[I − T̃0]−1f − [I − T̃k]−1f = [I − T̃0]−1[T̃k − T̃0][I − T̃k]−1f

= [I − T̃0]−1
(
q〈 · 〉ε〈 · 〉−ε(g̃k −G0) ∗ ([I − T̃k]−1f)

)
.

And by equation (3.1)

|(g̃k −G0) ∗ g| ≤ Cε|k|ε
∫
R2

〈x− y〉ε|g(y)|dy

≤ Cε|k|ε〈x〉ε‖〈 · 〉εg‖L1(R2).

Therefore, we have

‖[I − T̃0]−1f − [I − T̃k]−1f‖Lp
ρ′ (R

2) ≤ Cε|k|ε‖[I − T̃0]−1‖B(Lp
ρ′ )
‖q〈 · 〉−ε‖Lp

ρ′
‖f‖Lp

ρ′

≤ C(q, ε, ρ′)‖f‖Lp
ρ′ (R

2).

We are now ready to describe the behavior of t(k) near k = 0.

Theorem 3.1.4. Let q ∈ Lpρ(R2) for p ∈ (1, 2), ρ > 2/p′ be critical or subcritical.
The scattering transform satisfies

t(k) =
πa

2[c∞ − a(log |k|+ γ)]
+O(|k|ε).

for some ε > 0.

Proof. Let φ solve φ = 1 +G0 ∗ (qφ) which if c∞ 6= 0 is possible through scaling. Let
qµ̃ = [I − T̃k]−1q. Now, we have

qφ− qµ̃ = [I − T̃0]−1q − [I − T̃k]−1q.
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So by the second resolvent identity and part (4) of Lemma 3.1.3 we have

‖qφ− qµ̃‖Lp
ρ′ (R

2) ≤ C(q, ε, ρ′)|k|ε‖q‖Lp
ρ′ (R

2).

Letting

h̃(k) =

∫
q(x)µ̃(x, k) dm(x)

and

a =
2

π

∫
q(x)φ(x)dm(x),

we have for small k
h̃(k)− π

2
a = O(|k|ε). (3.4)

Another application of the second resolvent formula gives

qµ− qµ̃ = [I − qgk ∗ ( · )]−1q(g̃k − gk) ∗ [I − T̃k]−1q

= [I − qgk ∗ ( · )]−1q

(
2

π
log |k|+ γ

)∫
qµ̃ dm(x)

= qµ
2

π
(log |k|+ γ) h̃(k).

Integrating and rearranging we have the identity

h(k) =
h̃(k)

1− h̃(k)2(log |k|+ γ)/π.

Substituting equation (3.4) in the equality yields

h(k) =
πa

2[1− a(log |k|+ γ)]
+O(|k|ε).

For small k, t(k) = h(k) +O(|k|), so

t(k) =
πa

2[1− a(log |k|+ γ)]
+O(|k|ε).

Lastly, we consider the case when c∞ 6= 1. Combining the result for c∞ 6= 0 with
the scaling properties from Lemma 3.1.1, the asymptotics for an arbitrarily scaled
potential qr(x) are

tr(k) =
πa

2[cr∞ − a(log |k|+ γ)]
+O(kε).

Using the relation t(k) = tr(rk) we get

t(k) =
πa

2[cr∞ − a(log |rk|+ γ)]
+O(kε)

=
πa

2[(cr∞ − a log |r|)− a(log |k|+ γ)]
+O(kε)

=
πa

2[c∞ − a(log |k|+ γ)]
+O(kε).
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3.2 Topology of the Set of Subcritical Potentials

We now take a slight detour and prove an interesting result on the topology of sub-
critical potentials. From Theorem 1.3.3, we know that the set of critical potentials
is not stable under compact perturbations. Here we go a step further and show the
subcritical potentials are an open set in the topology of Lpρ(R2) for p ∈ (1, 2) and
ρ ∈ (2/p′,∞).

Theorem 3.2.1. The set of subcritical potentials is open in the Lpρ(R2) topology for
p ∈ (1, 2) and ρ ∈ (2/p′,∞) and the set of critical potentials is its boundary.

Proof. We prove that the set of subcritical potentials is open by finding positive
logarithmically growing solutions, φv, to (−∂x∂x + v)φv = 0 for all v close enough to
any given subcritical potential q.

Let φq be a positive solution to the Schrödinger equation with c∞ = 1 in (3.2).
By Lemma 3.1.3 with c∞ 6= 0, we have that [I − T̃0] is invertible on Lpρ′(R2) for
ρ′ ∈ (2/p′, ρ). If c∞ = 0, we may use the argument from 3.1.1 to scale q, and
therefore φq, so that c∞ = 1. For some ε > 0 the operator [I − vG0 ∗ ( · )] is invertible
for all potentials v satisfying ‖q − v‖Lp

ρ′
< ε. Thus we have vφv = [I − vG0 ∗ ( · )]−1v

and φv = 1 + G0 ∗ (vφv). Because q is subcritical, we have φq = a log |x| + O(1) is a
positive solution. The solutions φv satisfy the equation

φv = 1−G0 ∗ (vφv).

Taking the difference between φq and φv we find

φq − φv = G0 ∗ (vφv − qφq) +
2

π
log(|x|+ e)

∫
(vφv − qφq)dm(x)

− 2

π
log(|x|+ e)

∫
(vφv − qφq)dm(x).

While by Lemma 3.1.2,

|φq − φv| ≤ c‖vφv − qφq‖Lp
ρ′ (R

2) +
1

2π
log(|x|+ e)‖vφv − qφq‖L1(R2).

By the inequality ‖f‖L1(R2) ≤ c‖f‖Lpρ(R2) when ρ > 2/p′, we get

φv ≥ φq − c‖vφv − qφq‖Lp
ρ′
− 1

2π
log(|x|+ e)‖vφv − qφq‖Lpρ .

The right hand side is positive and logarithmically growing for ‖vφv − qφq‖Lpρ small.

The function φv is a positive distributional solution to (−∂x∂x + v)φv = 0, so by
Theorem 1.3.2 v is subcritical because the positive solutions for critical potentials in
this weighted space have the asymptotics φ = c+ o(1) whereas the positive solutions
for subcritical potentials obey φ = a log |x|+O(1). This proves the set of subcritical
potentials is open.
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From Theorem 1.3.3, we know that nonnegative compact perturbations of critical
potentials are subcritical and nonpositive perturbations are supercritical. Thus crit-
ical potentials are a subset of the boundary of subcritical potentials. If a sequence
of potentials qj has a nonnegative quadratic form (1.8) then its limit also has a non-
negative quadratic form and must either be subcritical or critical. Therefore, critical
potentials form the entire boundary.

3.3 Regularity and Decay

We will show that when q is n times weakly differentiable, µ(x, k) will be (n + 1)
times differentiable in x and (µ(x, k)− 1) will vanish in norm as |k| → ∞. We then
use this to show that |k|ns(k) ∈ Lr(|k| > k0) for r ∈ (p̃′,∞). The decay in s is exactly
comparable to the decay in the Fourier transform of a differentiable function.

The large-k behavior will allow us, in the next chapter, to show that µ(x, k) has a
large-k expansion. Siltanen proved a variation of the following lemmas on the decay
of µ and t for compactly supported, conductivity type potentials[30, Section 3.2.1].

Lemma 3.3.1. If q ∈ W n,p(R2) for p ∈ (1, 2) has no exceptional points then µ( · , k)−
1 ∈ W n+1,p̃(R2) and

‖Dα(µ( · , k)− 1)‖W s,p̃(R2) ≤
c

|k|1−s
n∑

m=0

‖q‖Wm,p(R2)‖q‖n−mL2(R2) (3.5)

for s ∈ [0, 1], |α| ≤ n, c depending on n, and k > k0(‖q‖Wn,p , n).

Proof. The case n = 0 is Theorem 2.2.2. We induct on this using Lemma 2.2.1. We
take derivatives in equation (1.9) with u = (µ− 1), f = q(µ− 1) + q, and assume the
result for all multi-indices less than α. We have Dα(µ− 1) ∈ Lp̃(R2) solves

∂x(∂x + ik)Dαµ(x, k) = f

with

f =

[
Dαq + qDα(µ− 1) +

∑
β:0<β<α

(
α

β

)
DβqDα−β(µ− 1)

]
= I + II + III.

(3.6)

We estimate the asymptotic behavior of the norms as k → ∞ using the three parts
in equation (3.6):

‖Dα(µ( · , k, 0)− 1)‖W s,p̃ ≤ c̃

|k|1−s
‖f‖Lp

≤ c̃

4|k|1−s
(‖I‖Lp + ‖II‖Lp + ‖III‖Lp).

The norm ‖I‖Lp ≤ ‖q‖Wn,p is independent of k and already accounted for in inequality
(3.5). For the second norm we use the induction hypothesis with

‖II‖Lp = ‖qDα(µ− 1)‖Lp ≤ ‖q‖L2‖Dα(µ− 1)‖Lp̃ ≤ c
n−1∑
m=0

‖q‖Wm,p‖q‖n−mL2 .
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Now we show the third norm decreases faster in k then the other terms, and therefore
it will not contribute to the asymptotic behavior. Choosing s0 ∈ (2/p̃, 1),

‖III‖ ≤
∑

β:0<β<α

(
α

β

)
‖DβqDα−β(µ− 1)‖Lp

≤
∑

β:0<β<α

(
α

β

)
‖Dβq‖Lp‖Dα−β(µ− 1)‖W s0,p̃

≤ c

|k|1−s0
∑

β:0<β<α

(
α

β

)
‖Dβq‖Lp‖q‖nLp .

Choosing k0 large enough finishes the result.

We are ready to prove the decay of s.

Lemma 3.3.2. If q ∈ W n,p
ρ (R2) with ρ ∈ (2/p′,∞) and p ∈ (1, 2) has no excep-

tional points then |k|ns(k) ∈ Lr(|k| > k0) for all r ∈ (p̃′,∞] and large enough k0.
Additionally, s(k) is continuous on C \ {0} and is in L2(C).

Proof. First note that W n,p
ρ (R2) ⊂ W n,1 ∩ W n,p(R2) when ρ > 2/p′. Denote the

Fourier transform by F(g)(k) =
∫
e−k(x)g(x) dm(x). Then we may write

k̄−1t(k) = k̄−1F(q)(k) + k̄−1

∫
R2

e−k(x)q(x)(µ(x, k)− 1) dm(x).

By the Hausdorff-Young inequality and the differentiability of q ∈ W n,1 ∩W n,p(R2),
the first term satisfies |k|n+1k̄−1F(q)(k) ∈ Lp′∩L∞(R2). For the second term, we may
integrate by parts because e−k(x) ∈ W n,∞(R2) for any n and the product q(µ− 1) ∈
W n,1(R2) by Lemma 3.3.1. Therefore we have

(ik̄)n
∫
R2

e−k(x)q(x)(µ(x, k)− 1)dm(x)

=

∫
R2

(−1)n[∂̄ne−k(x)]q(x)(µ(x, k)− 1)dm(x)

=

∫
R2

e−k(x)

(
n∑
j=0

(
n

j

)
∂̄jx(µ− 1)∂̄n−jx q

)
dm(x).

Using the decay estimate from Lemma 3.3.1 with s0 ∈ (2/p̃,∞), we get for k large,

|k|n|k̄−1(t(k)−F(q)(k))| ≤ |k|−1

(
n∑
j=0

(
n

j

)
‖∂̄jz(µ− 1)‖W s0,p̃‖∂̄n−jz q‖L1

)

≤ c

|k|2−s0

(
n∑

m=0

‖q‖Wm,p‖q‖n−mL2

)
‖q‖Wn,1 .

With this |k|s0−2 decay, we get the second term is in Lr(|k| > k0) if (2−s0)r > 2 which
is r > 2

2−2/p̃
= p̃′. Continuity of t(k) follows in the same way as that for conductivity
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type potentials. Nachman proves this in [26, Theorem 4]. Using the continuity and
the small k behavior of t from theorem 3.1.4 implies k̄−1t(k) ∈ L2(|k| < ε) for small
enough ε.

3.4 Continuity in q and Symmetries of the Scattering Transform

We follow the ideas of Grinevich and Manakov [13, Theorem 2] where they prove
similar symmetries in the case of nonzero-energy scattering. In the nonzero-energy
case, there are two different symmetries coming for the scattering transform of the
Schrödinger equation with an electromagnetic term

[−∂x∂x + iA(x)∂x +B(x) + E]f(x) = 0.

If A = 0, Grivenich and Manakov prove one symmetry, and if f is real they prove
a different symmetry. These symmetries could both be worked out for the case of
zero-energy, but the ∂k-problem is a system when A(x) 6= 0 or B(x) is not real.
There would also be additional scattering data. Therefore, we will only deal with the
Schrödinger equation with no magnetic term.

Given a real potential q the scattering transform has the symmetry t(k) = t(−k).
This fact will be necessary to prove that Qs(k, τ) is real for all time. To prove this
we will construct a particular closed differential form. The theory becomes easier if
the form is smooth, so we will approximate q by C∞c (R2) functions. Therefore, to
prove the symmetry we need to prove that T q(k) is continuous in q for each k.

In this section, we keep track of the explicit dependence of the operator Tk on q,
so we write

Tk(q)f = gk ∗ (qf)

and let µ(x, k; q) be the solution to the Schrödinger equation (1.9) for a given potential
q and k ∈ C \ {0} not an exceptional point. We have

µ(x, k; q)− 1 = [I − Tk(q)]−1Tk(q)1. (3.7)

Lemma 3.4.1. Fix p ∈ (1, 2), k ∈ C \ {0}, and q0 ∈ Lp(R2). Suppose that

R(q0) := (I − Tk(q0))−1

exists as a bounded operator from W 1,p̃(R2) to itself. There is a number r > 0 and a
constant c(p, k, q0) so that for all q ∈ Lp(R2) with ‖q0 − q‖Lp(R2) ≤ r, the estimate

‖µ( · , k, q)− µ( · , k, q0)‖W 1,p̃ ≤ c(p, k, q0) ‖q − q0‖p

holds.

Proof. In what follows c denotes a constant depending only on k, p, and q0 whose
value may vary from line to line. By Lemma 2.2.1, for a given k 6= 0

‖gk ∗ f‖W 1,p̃(R2) ≤ c‖f‖Lp(R2). (3.8)
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In particular,
‖Tk(q)‖B(W 1,p̃(R2)) ≤ c‖q‖Lp(R2).

It also follows from (3.8) that

‖Tk(q)1− Tk(q0)1‖W 1,p̃(R2) ≤ c‖q − q0‖Lp(R2). (3.9)

By the second resolvent identity

R(q)−R(q0) = R(q)[R(q0)−R(q)]R(q0).

Estimating the B(W 1,p̃(R2)) norm of the result

‖R(q)−R(q0)‖B(W 1,p̃(R2)) ≤ ‖R(q)‖B(W 1,p̃)‖R(q0)‖B(W 1,p̃)‖R(q0)−R(q)‖B(W 1,p̃)

(3.10)

≤ c‖q − q0‖Lp(R2). (3.11)

The last line follows since ‖q − q0‖ is small which implies that ‖R(q)‖ is close to
‖R(q0)‖, and both then only depend on the norm of q and r. We absorb the depen-
dence into the constant c. Using (3.7), we have

‖µ(x, k, q)− µ(x, k, q0)‖W 1,p̃(R2) = ‖R(q)Tk(q)1−R(q0)Tk(q0)1‖W 1,p̃(R2)

≤ ‖R(q)[Tk(q)1− Tk(q0)1]‖W 1,p̃(R2)

+ ‖[R(q)−R(q0)]Tk(q0)‖W 1,p̃(R2)

≤ c‖q − q0‖Lp(R2)

Lemma 3.4.1 allows us to prove continuity of t as a function of q.

Lemma 3.4.2. Suppose that p ∈ (1, 2), ρ ∈ (2/p′,∞), that q ∈ Lpρ(R2), and {qn} is a
sequence from Lpρ(R2) with qn → q in Lpρ(R2). Finally, let tn = T (qn) and t = T (q).
Then, for all non-exceptional nonzero k, tn(k)→ t(k) pointwise.

Proof. Using Lemma 3.4.1 we estimate

|tn(k)− t(k)| ≤
∣∣∣∣∫ ek(x)(qn(x)− q(x))µn(x) dm(x)

∣∣∣∣
+

∣∣∣∣∫ ek(x)q(x))(µn(x)− µ(x)) dm(x)

∣∣∣∣
≤ ‖qn − q‖L1‖µn‖L∞ + ‖q‖L1‖µn − µ‖L∞

≤ ‖qn − q‖Lpρ (‖µn − 1‖W 1,p̃ + 1) + ‖q‖Lpρ‖µn − µ‖W 1,p̃

and conclude that tn(k)→ t(k).

Theorem 3.4.3. If q ∈ Lpρ(R2) for p ∈ (1, 2) and ρ > 2/p′ is real and k and −k are

not exceptional points, then t(k) = t(−k).
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Proof. First assume that q ∈ C∞c (R2) so that the corresponding µ(x, k) is smooth in
x. Consider the form

ω = ek∂xµ(x,−k)dx+ ek∂xµ(x, k)dx̄

where
dx = dx1 + idx2, dx̄ = dx1 − idx2.

We have

dω = ek

(
(∂x + ik)∂xµ(x, k)− (∂x − ik)∂xµ(x,−k)

)
dx ∧ dx̄

= ek

(
q(x)µ(x, k)− q(x)µ(x,−k)

)
dx ∧ dx̄.

Hence, by Stokes’ Theorem,

t(k)− t(−k) =

∫
R2

ek(x)q(x)µ(x, k)− ek(x)q(x)µ(x,−k) dm(x) = 0.

To obtain the result for general q, we approximate q ∈ Lpρ(R2) by a sequence {qn}
from C∞c (R2) and appeal to Lemma 3.4.2.
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Chapter 4 The Inverse Scattering Transform

In the previous chapter we found the decay properties of the scattering transform t.
We can now use these properties in the ∂k-equation (1.18) to recover differentiability
of µ(x, k, τ) in x and τ and to write out the large-k expansion for µ(x, k, τ) from
equation (1.22). In Section 4.3, we will prove that the reconstructed q = i∂xa1 are
real, but we use an argument with differential forms that relies on the coefficient s(k)
being smooth. To get around the smoothness requirement, we prove continuity of Q
in t in Section 4.2. After we prove q is real for smooth s, we may take a limit sn → s
to prove the reality for q reconstructed from more general s. Arguments in Section
4.1 are from [22], and arguments in the rest of the chapter are from [23].

4.1 Properties of Reconstructed CGO Solutions

In the next two lemmas, we only need the results for equation (1.18) without time
included. However, under the flow for the Novikov-Veselov equation, the scattering
transform for later times τ becomes eiτ(k̄3+k3)t(k). The extra phase does not change
the Lp(C) space properties of s(k), but proving the results in the generality here will
allow their use in our study of the Novikov-Veselov equation at times τ 6= 0. We
therefore define the exponent S(x, k, τ) = −(kx+ k̄x̄)/τ + (k3 + k̄3). The evolved ∂̄k
equation (1.18) for µ(x, k, τ) then can be written as{

∂̄kµ(x, k, τ) = eiτSs(k)µ(x, k, τ)

µ(x, · , τ)− 1 ∈ Lr(C)

for some r ∈ (2,∞). The operator we must study is then

Txf(k) = ∂̄−1
k (eiτSs(k)f)(k).

The function (µ−1) solves the integral equation (µ−1) = Tx1 +Tx(µ−1). Inverting
the operator yields

µ− 1 = [I − Tx]−1Tx1. (4.1)

We prove the results in this chapter using only the properties of s proved in Lemma
3.3.2 and Theorem 3.4.3. We gather these into the definition of the space X ε

n,r

Definition 4.1.1. The space X ε
n,r for n ≥ 1, r ∈ (1, 2), and ε > 0 is the closure of

C∞c (C) functions which satisfy the relation k̄f(k) = −kf(−k) in the norm

‖f‖X εn,r = ‖f‖L2(C) + ‖( · )nf( · )‖Lr′+ε(C) + ‖( · )nf( · )‖Lr(C).

For n = 0 the norm is

‖f‖X ε0,r = ‖f‖L2(C) + ‖f( · )‖Lr′+ε(|k|>1) + ‖f( · )‖Lr(C).
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Remark 4.1.2. We saw in Theorem 3.4.3 that if q is real valued, then k̄s(k) =
−ks(−k), and we will see in Lemma 4.3.1 that this symmetry requirement guarantees
that the reconstructed potential is real-valued. The conditions in this definition are
preserved under the linearized NV flow (1.15). By Lemma 3.3.2, scattering trans-
forms s(k) coming from potentials q ∈ W n,p

ρ (R2) with p ∈ (1, 2) and ρ ∈ (2/p′,∞)
are in X ε

n,r for all r ∈ (p̃′,∞) and ε > 0.

When s ∈ L2(R2), the operator Tx is compact on Lp for p ∈ (2,∞). The proof can
be found in the preprint to Nachman’s 1996 paper [25, Lemma 4.2], but we reproduce
it here for the reader’s convenience.

Lemma 4.1.3. If s(k) ∈ L2(C), then the operator T = ∂̄−1
k (s(k) ·̄ ) is compact on

Lp(C) for all p ∈ (2,∞).

Proof. We will prove the result for the dual operator s(k)∂̄−1
k on Lq(C) for q ∈ (1, 2).

First, we have that the operator is bounded on Lq(C). Take f ∈ Lq(C), then by
Theorem 1.2.4 (ii) with 1/q̃ = 1/q − 1/2

‖s(k)∂̄−1
k f( · ))‖Lq(C) ≤ ‖s( · )‖L2(C)‖∂̄−1

k f( · )‖Lq̃(C) ≤ c‖s‖L2(C)‖f‖Lq(C). (4.2)

Now assume that s(k) is continuous with compact support. We have ∂k∂̄
−1
k f ∈ Lq(C)

by Lemma 1.2.8. We estimate ∇s∂
−1

k f by taking the ∂k and ∂k derivatives separately.
The estimate is

‖∂ks∂̄−1
k f‖Lq(C) ≤ ‖∂ks‖L2(C)‖∂̄−1

k f‖Lq̃(C) + ‖s‖L∞(C)‖∂k∂̄−1
k f‖Lq(C) ≤ c‖f‖Lq(C).

The same holds for the ∂k derivative. Thus, we have the inequality ‖s∂̄−1
k f‖W 1,q ≤

c‖f‖Lq , and since s has compact support, we can use the Rellich-Kondrachov theorem
1.2.2 to show s∂̄−1

k is a compact operator on Lq(C). For s a general function in L2(C),
we may approximate any Tx by compact operators and use inequality (4.2) to show
T is compact on Lq(C).

By the Fredholm alternative, the compactness of Tx, and Lemma 2.1.2, I − Tx is
invertible.

Lemma 4.1.4. If s(k) ∈ Lr ∩ L2(C) for some r ∈ (1, 2) then the operator I − Tx
is invertible on Lr̃(C) and there is a unique solution of equation (1.18) satisfying
µ(x, · , τ)− 1 ∈ Lr̃(C).

Proof. From Lemma 4.1.3, the operator Tx is compact on Lr̃(C) so I−Tx is Fredholm.
Assume h ∈ Lr̃(C) solves (I −Tx)h = 0, then ∂̄kh = eiτSs(k)h̄. By Lemma 2.1.2 with
the coefficient eiτSs(k) ∈ L2(C) we get h ≡ 0. Thus I − Tx is invertible on Lr̃(C).

To construct a solution, we note that formally

µ(x, k, τ)− 1 = [I − Tx]−1Tx1.

By definition Tx1 = ∂̄−1[eiτSs(k)], so using Lemma 1.2.4 we have Tx1 is in Lr̃(C).
Thus µ = 1 + [I − Tx]−1Tx1 solves (1.18).
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Equation (1.18) is conjugate linear. This makes it harder to prove differentiability
of µ in the x variable by looking at the ∂̄x and ∂x derivatives. Instead we will take
real derivatives in the x = (x1, x2) variables written as

Dα
x =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

where α = (α1, α2) is a multi-index.

Lemma 4.1.5. If s ∈ X ε
n,r then the unique solution µ(x, · , τ) − 1 ∈ Lr̃(C) of

equation (1.18) is α times differentiable in x and m times differentiable in τ for
(3m+ |α|) ≤ n. Additionally, the derivatives of the map (x, τ)→ µ(x, · , τ) ∈ Lr̃(C)
satisfy ∂mτ D

α
xµ(x, · , τ) ∈ Lr(C). The derivatives are given by

∂mτ D
α
xµ(x, k, τ) = [I − Tx]−1∂̄−1[s(k)f(x, k, τ)] (4.3)

where
f(x, k, τ) = ∂mτ D

α
x [eiτSµ(x, k, τ)]− eiτS∂mτ Dα

xµ(x, k, τ), (4.4)

and ∂̄−1[s(k)f(x, k, τ)] ∈ Lr(C).

Proof. We illustrate the case α = (1, 0), m = 0. In the following, let h ∈ R and
therefore x+ h = (x1 + h) + ix2. The function

Dhµ(x+ h, k, τ) =
µ(x+ h, k, τ)− µ(x, k, τ)

h

is in Lr̃(R2) and satisfies the equation

∂̄kDhµ(x, k, τ) = s(k)
(
µ(x+ h, k, τ)Dhe

iτS + eiτSDhµ(x, k, τ)
)
.

By dominated convergence, we have s(k)Dhe
iτS → i(k + k̄)s(k)eiτS ∈ L2(C) because

|k|s(k) ∈ L2. We also have µ(x+ h, k, τ)− 1→ µ(x, k, τ)− 1 ∈ Lr(C) by continuity,
and by the Lr(C) continuity of the operators Tx and [I − Tx]−1 we get

∂

∂x1

µ(x, k, τ) = [I − Tx]−1∂̄−1[i(k + k̄)eiτSs(k)µ(x, k, τ)− 1 + i(k + k̄)eiτSs(k)].

By the definition of X ε
n,r, the function i(k + k̄)eiτSs(k) is in Lr(C) and s(k) ∈ L2(C).

Therefore we have s(k)(µ(x, k, τ)− 1) is in Lr(C). Lemma 1.2.4 then shows

∂̄−1[i(k + k̄)eiτSs(k)µ(x, k, τ)− 1 + i(k + k̄)eiτSs(k)] ∈ Lr(C).

Derivatives in τ follow in the same manner except with factors of (k3 + k̄3) pulled
down from the exponential.

Now that we know the derivatives of the reconstructed CGO solutions exist, we
can show that the large-k expansion from equation (1.22) exists when s is in X ε

n,r. In
fact, we may differentiate some of the coefficients, aj(x, τ), if n is large enough.
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Lemma 4.1.6. Suppose s ∈ X ε
n,r. If µ solves the equation (1.18) with µ(x, · )− 1 ∈

Lr̃(C), then µ admits the large-k expansion (1.22) for fixed x and τ . Moreover, we
may take α spatial derivatives and m time derivatives with (|α|+ 3m) ≤ n of µ to get

∂mτ D
α
x (µ(x, k, τ)− 1) =

n−|α|−3m∑
j=1

∂mτ D
α
xaj(x, τ)

kj
+ o

(
|k|−n+|α|+3m

)
.

Proof. Note that

µ(x, k, τ) = 1 +
1

π

∫
C

1

k − k′
eiτS(x,k,τ)s(k′)µ(x, k′, τ)dm(k′).

Expanding (k − k′)−1 as the sum

1

k − k′
=

n∑
j=1

k′j−1

kj
+

k′n

kn(k − k′)
, (4.5)

we have

aj(x, τ) =
1

π

∫
C
k′j−1eiτS(x,k′,τ)s(k′)µ(x, k′, τ)dm(k′)

with remainder

Rn(x, k, τ) =
1

π
k−n

∫
C

k′n

k − k′
eiτS(x,k′,τ)s(k′)µ(x, k′, τ)d(k′).

We look at Ω1 = {k′ : |k′| ≤ 1} and Ω2 = C \ Ω1 separately. The function s(k) is in
L2(Ω1), and µ(x, · , τ) is in Lr̃(Ω1). The integral from Rn over this region decreases
like |k|−1, and the total contribution of to the integral over this region is therefore
|k|−(n+1) = o(|k|−(n+1)).

In Ω2, we have that kns(k) is in L2 ∩ Lr′+ε(Ω2) by definition. We also have
Dα(µ(x, · , τ)− 1) ∈ Lr̃(C) by Lemma 4.1.5. Combining these two results shows that
the product is in Lr1 ∩ Lr2(C) for

0 <
1

r1

=
1

r′ + ε
+

1

r̃
<

1

2
<

1

2
+

1

r̃
=

1

r2

< 1.

Therefore, we have the inequality 1 < r2 < 2 < r1 < ∞, and by Lemma 1.2.4, we
have the asymptotic Rn(x, k, τ) = o(|k|−n).

To show decay of the derivatives, we look at the difference quotients. As in Lemma
4.1.5 we will take derivatives with respect to x1. Let h be a real number, then we
have

Dhaj(x, τ) =
1

π

∫
C
k′j−1eiτS(x,k′,τ) e

i(k′h+k̄′h) − 1

h
s(k′)µ(x+ h, k′, τ)dm(k′)

+
1

π

∫
C
k′j−1eiτS(x,k′,τ)s(k′)Dhµ(x, k′, τ)dm(k′)

=I + II.
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From Lemmas 4.1.5, we have the following limits in the Lr̃(C) topology:

µ(x+ h, · , τ)− 1→ µ(x, · , τ)− 1,

Dhµ(x, · , τ)→ ∂x1µ(x, · ). (4.6)

By Lemma 3.3.2, we have the limit

k′j−1s(k′)
ei(k

′h+k̄′h) − 1

h
→ k′j−1i(k′ + k̄′)s(k) (4.7)

in the Lr
′
(C) topology when j ≤ n. Together, the limits (4.6) and (4.7) give conver-

gence of the difference quotients.
Using the same methods, we may get the derivatives for Rn(x, k, τ), but because

we get extra factors of k′ (3 for every time derivative, 1 for every space derivative)
we may only take the expansion to order (n− |α| − 3m) in order for the derivatives
of Rn−|α|−3m(x, k, τ) to exist.

Lemma 4.1.6 for n = 2 allows us to prove that the inverse scattering transform
recovers q at time zero.

Theorem 4.1.7. If q ∈ W 2,p
ρ (R2) with p ∈ (1, 2) and ρ > 2/p′ is subcritical or critical

then Q[T q] = q.

Proof. The solutions µ(x, k) from the equations (1.18) and (1.9) are the same by
Theorem 2.3.2, so we may plug in the large k expansion of µ into equation (1.9). By
our assumptions on q and Lemma 4.1.6 we may take 2 x-derivatives of µ(x, · )− 1 ∈
Lr(C). The large-k expansion of µ gives us |∂̄x∂xµ((x, k)| = o(1) as |k| → ∞ since q
has two derivatives. Thus, using equation (1.9) and formula 1.23 for a1(x), we write

q(x)µ(x, k) =∂̄x(∂x + ik)µ(x, k)

=
i

π
∂̄x

∫
C
e−k(x)s(k)µ(x, k) dm(k) + o(1).

Taking the limit as |k| → ∞, and using the fact that µ(x, k) → 1 point-wise as
|k| → ∞, we have

q(x) =
i

π
∂̄x

∫
C
e−k(x)s(k)µ(x, k) dm(k).

4.2 Continuous Dependence of Reconstructed q on t(k)

In this section we develop the continuity theory surrounding the scattering map Q.
We use the continuity of Q when proving the reality of the reconstructed potential
q = q̄.

We note the following estimates.
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Lemma 4.2.1. Suppose that s ∈ L2(C) and r ∈ (1, 2). Then (I − Tx,τ )−1 exists as
an operator in B(Lr̃(R2)) and

sup
(x,τ)∈R2×R

∥∥(I − Tx,τ )−1
∥∥
B(Lr̃)

<∞. (4.8)

Proof. The operator Tx,τ is continuous in its parameters in the strong operator topol-
ogy. To see this, note that for f ∈ Lr̃(R2)

Tx′,τ ′f − Tx,τf = ∂
−1

k

[(
eiτ
′S( · ,x′,τ ′) − eiτS( · ,x,τ)

)
sf
]
.

The function sf is in Lr(C), and the multiplication operator eiτ
′S( · ,x′,τ ′) − eiτS( · ,x,τ)

converges to zero in the strong operator topology on Lr(C). Since ∂
−1

l is a bounded
map from Lr(C) to Lr̃(C), Tx,τ is continuous in x and τ in the strong operator
topology. By Lemma 4.1.4, (I − Tx,τ ) is always invertible, so estimate (4.8) holds for
(x, τ) in any compact set.

To handle the region outside the compact set, we will prove the estimates:

lim
T→∞

sup
x∈R2, |τ |≥T

‖Tx,τ‖B(Lr̃) = 0 (4.9)

and for each T > 0
lim
R→∞

sup
|τ |≤T, |x|≥R

‖Tx,τ‖B(Lr̃) = 0. (4.10)

Instead of a direct proof, we will prove the result for the dual operator T ′x,τ =

eiτSs(k)∂
−1

k . First, note that T ′x,τ = eiτSW where W = s∂
−1

k is a compact operator in-

dependent of (x, τ). We have the estimate
∥∥T ′x,τ∥∥B(Lr̃′ )

≤ ‖W‖B(Lr̃′ ) uniform in (x, τ).

For any ε > 0 there is a finite-rank operator F on Lr̃
′
(C) so that ‖W − F‖B(Lr̃′ ) < ε.

The operator F is a finite sum
∑

j〈ϕj, · 〉ψj where ϕj ∈ Lr̃
′
(C), ψj ∈ Lr̃(C), and

〈 · , · 〉 is the usual dual pairing of Lr̃(C) and Lr̃
′
(C). Since S(C) is dense in Lp(R2),

we may take ψj and ϕj in S(C) without loss. Thus, it suffices to show that

lim
T→∞

sup
x∈R2, |τ |≥T

∣∣〈ϕ, eiτSψ〉∣∣ = 0 (4.11)

and that, for each fixed T > 0,

lim
R→∞

sup
|τ |≤T, |x|≥R

∣∣〈ϕ, eiτSψ〉∣∣ = 0 (4.12)

where ϕ and ψ belong to S(C).
Let f(k) = ψ(k)ϕ(k). A short computation shows that

〈ϕ, eiτSψ〉 =

∫
Iτ (x− y)

(
F−1f

)
(y) dy

where Iτ is given by (1.30) and(
F−1f

)
(x) =

1

π

∫
e−k(x)f(k) dm(k).
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We now appeal to Lemma 1.2.10 to estimate∣∣〈ϕ, eiτSψ〉∣∣ ≤ ∫ τ−2/3(1 + |(x− y)/τ 1/3|)−1/2
∣∣(F−1f

)
(y)
∣∣ dm(y). (4.13)

To prove (4.11), we estimate the right-hand side of (4.13) by T−2/3 ‖F−1f‖L1 . This
gives (4.9). To prove (4.12) we make the change of variables ξ = (x − y)/τ 1/3 and
obtain ∣∣〈ϕ, eiτSψ〉∣∣ ≤ ∫ (1 + |ξ|)−1/2

∣∣(F−1f
)

(x− ξτ 1/3)
∣∣ dm(ξ)

≤ C(f,N)(I1(x, τ) + I2(x, τ))

where C(f,N) depends on the Schwartz seminorms of f and

I1(x, τ) =

∫
|ξ|≤|x|/(2T 1/3)

(1 + |ξ|)−1/2(1 + |x− ξτ 1/3|)−N dm(ξ)

I2(x, τ) =

∫
|ξ|≥|x|/(2T 1/3)

(1 + |ξ|)−1/2(1 + |x− ξτ 1/3|)−N dm(ξ).

For |τ | > 1, equation (4.12) now follows from the preceding arguments and the
elementary estimates

|I1(x, τ)| ≤ c(N)

(
|x|

2T 1/3

)2

(1 + |x|)−N

|I2(x, τ)| ≤ c(N)

(
1 +

|x|
2T 1/3

)−1/2

.

For |τ | < 1, we note that the we can rewrite the operator T ′x,τ as

T ′x,τ = ei(τ−3)S(x,k,τ−3)
[
e3i(k3+k̄3)s(k)Pk

]
.

Equation (4.12) then holds for |τ − 3| > 1 as well. This implies (4.10).

Given the uniform resolvent bounds, we can use the second resolvent formula and
the continuous dependence of Tx,τ in B(Lr̃(C)) on its parameters to prove various
continuity results about the resolvent.

Lemma 4.2.2. Suppose that s ∈ L2(C). For any r̃ ∈ (2,∞),

(i) The mapping

R2 × R −→ B(Lr̃)

(x, τ) 7→ (I − Tx,τ )−1

is continuous.

(ii) The mapping

L2(C) −→ C0(R2 × R,B(Lr̃))

s 7→
(
(x, τ) 7→ (I − Tx,τ )−1)

is continuous.
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Proof. (i) This was already proved in the proof of Lemma 4.2.1.

(ii) Fix (x, τ) and write Tx,τ = Tx,τ (s) to emphasize the dependence on s. From
the second resolvent formula

(I − Tx,τ (s1))−1 − (I − Tx,τ (s2))−1

= (I − Tx,τ (s2))−1 [Tx,τ (s1)− Tx,τ (s2)] (I − Tx,τ (s1))−1

and the fact that

sup
(x,τ)∈R2×R

‖Tx,τ (s1)− Tx,τ (s2)‖B(Lr̃) ≤ Cr̃‖s1 − s2‖2

we easily deduce that
∥∥(I − Tx,τ (s))−1

∥∥
B(Lr̃)

is bounded uniformly in (x, τ) for s in a

small metric ball in L2 whose radius depends on the center but is uniform in (x, τ).
For s1 and s2 in such a metric ball B we may estimate

sup
(x,τ)∈R2×R

∥∥(I − Tx,τ (s1))−1 − (I − Tx,τ (s2))−1
∥∥
B(Lr̃)

≤ C(B)‖s1 − s2‖2.

This gives the claimed continuity.

We have already established in Lemma (4.1.5) that, for s ∈ X ε
n,r, the derivatives

∂mτ D
α
x (µ(x, · , τ)) exist in Lr̃(C), provided (3m + |α|) ≤ n. We are now ready to

prove that the maps from s to µ, its derivatives, and q are continuous.

Lemma 4.2.3. Given r ∈ (1, 2) and n ≥ 0

(i) For any m and α such that 3m+ |α| ≤ n, the maps

X ε
n,r −→ C(R2 × R, Lr̃(C))

s 7→
(

(x, τ) 7→ ∂mτ D
α
x (µ(x, · , τ)− 1)

)
are continuous.

(ii) For any m and α such that 3m+ |α|+ 2 ≤ n, the map

X ε
n,r 7→ C0(R2 × R)

s→ ∂mτ D
α
xq(x, τ)

is continuous.

Proof. For any n ≥ 3m+ |α| we will show the map

X ε
n,r −→ C(R2 × R, Lr̃(C))

s 7→
(

(x, τ) 7→ ∂mτ D
α
x [Tx,τ (s)(1)]

)
is continuous. From the computation

∂mτ D
α
xTx,τ1 = ∂

−1 [
eiτS(−2ik2)α1(2ik1)α2 [i(k3 + k̄3)]ms( · )

]
(4.14)
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and Theorem 1.2.4, we see that it suffices to bound∥∥| · |`(s1( · )− s2( · ))
∥∥
Lr(C)

≤ c ‖s1 − s2‖X εn,r ,

where ` = 3m+ |α| ≤ n. This is immediate from the definition.
We need to check that the expression (4.3) defines a continuous C(R2×R;Lr̃(C))-

valued function of s. By Lemma 4.2.2(ii), it suffices to show that s 7→ ∂
−1
f (with f

given by (4.4)) has the same property. A typical term of ∂
−1
f takes the form

∂
−1 [

s( · )eiτSkβ(i(( · )3 + ( · )3))`
(
∂`τ∂

β
xµ
)

(x, · , τ)
]

where |β|+ ` ≤ m− 1. We have |k|m−1bfs ∈ L2(C) and we assume inductively that
the derivatives ∂`τ∂

β
xµ are continuous C(R2 × R, Lr̃(C))-valued functions of s so that

f ∈ Lr(C). We can now use Theorem 1.2.4 to obtain the required continuity. Thus it
remains to prove that µ(x, · , k)−1 is a continuous C(R2×R;Lr̃(C))-valued function
of s. This is an immediate consequence of Lemma 4.2.2(ii) and equation (4.14).

Part (ii) follows directly from part (i). The proof is the same as in Lemma 4.1.5.
The result follows from equation (1.24), part (i), and the fact that s ∈ X ε

n+1,r ⊂
L1
n.

4.3 Reality of Reconstructed q from the Symmetries of t(k)

We now use the symmetry from Section 3.4 to prove that q reconstructed from formula
1.24 is real. Our proof follows ideas of Grinevich and Manakov [13, Theorem 2] from
the nonzero-energy Schrödinger equation adapted to zero-energy.

Lemma 4.3.1. If t ∈ C∞c (C) with t(k) = 0 for |k| < ε for some ε > 0 and t(k) =
t(−k) then q(x) defined by equation (1.24) is real. Moreover, the solution µ(x, k) of
the ∂k-equation (1.18) satisfies

∂x(∂x + ik)µ(x, k) = q(x)µ(x, k)

in distribution sense.

Proof. Consider the real differential form

ω =
µ(x, k)µ(x,−k)

k
dk +

µ(x, k)µ(x,−k)

k̄
dk̄.

Using the symmetry t(k) = t(−k) and (1.18), it is not difficult to see that ω is a
closed form. It now follows by Stokes’ Theorem applied to the region R−1 ≤ |k| ≤ R,
the large-k asymptotic behavior of µ and µ̄, and the identities∮

γ

dk

k
= −

∮
γ

dk̄

k̄
= 2πi,

true for any simple closed contour γ, that

µ(x, 0)2 =
[
µ(x, 0)

]2

. (4.15)
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Thus, µ(x, 0) is either purely real or purely imaginary. Next consider the differential
operators

P1ψ = −∂x (∂x + ik)ψ + qψ

P2ψ = −∂x
(
∂̄x − ik̄

)
ψ + qψ

where q is defined by the expansion (1.22) to be q = i∂̄xa1. Let χ1 = P1µ and
χ2 = P2µ. We need to show χ1 = χ2 = 0. From the expansion (1.22), we have

lim
|k|→∞

χ1(x, k) = 0.

By (4.15), we have
χ1(x, 0)2 − χ2(x, 0)2 = 0, (4.16)

and χ1 and χ2 satisfy (
∂kχ1

)
(x, k) = e−x(k)s(k)χ2(x, k)

(∂kχ2) (x, k) = ex(k)s(k)χ1(x, k).

where, for each fixed x,

lim
|k|→∞

χ2(x, k) = lim
|k|→∞

i∂xā1 + q +O
(
|k|−1

)
= i∂xā1(x) + q(x).

It is not (yet) clear that i∂xā1(x)+q(x) = 0 but we will prove this using the condition
(4.16).

To this end, consider the one-form

η =
χ1(x, k)χ1(x,−k)

k
dk +

χ2(x, k)χ2(x,−k)

k̄
dk̄.

A computation analogous to the one for ω together with (4.16) shows that η is a
closed form and that

χ1(x,∞)2 − χ2(x,∞)2 = χ1(x, 0)2 − χ2(x, 0)2

where χi(x,∞) means lim|k|→∞ χi(x, k) for i = 1, 2. By (4.16), the right-hand side
is zero, and also χ1(x,∞) = 0. We may conclude then that χ2(x,∞) = 0, thus

q = i∂̄xa1 = q as desired.

Combining the above result with Lemma 4.2.3 we have:

Corollary 4.3.2. If s ∈ X ε
2,r(C) for r ∈ (1, 2) and ε > 0 then q(x) defined by equation

(1.24) is real. Moreover, the solution µ(x, k) of the ∂k-problem (1.18) satisfies

∂x(∂x + ik)µ(x, k) = q(x)µ(x, k)

in the sense of distributions.
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It is now simple to prove the interesting fact that all scattering transforms in X ε
n,r

come from critical or subcritical potentials.

Proposition 4.3.3. If s ∈ X ε
2,r then q(x) = [Qt](x) is critical or subcritical.

Proof. This result follows easily using an approximation argument. Define qj(x) =
Q(tj)(x) where tj(k) = χj(k)t(k) and χj is a smooth radial function which is 1 for
|k| > 1/j and 0 for |k| < 1/(2j). Nachman [26, Theorem 4.1] proves that the solutions
µj(x, k) to equation (1.18) satisfy infx,k |µj(x, k)| > 0 and from (4.15) µj(x, 0) is
either real or imaginary. By multiplying this by the appropriate constant and using
Corollary 4.3.2, we have cµj(k, 0) is a positive solution to the Schrödinger equation
with potential qj. By Lemma 4.2.3 qj ∈ C(R2), so by [8, Theorem 2.12] qj is critical
or subcritical. By Lemma 4.2.3, on any compact subset Ω ⊂ R2 we have

lim
j→∞
|qj(x)− q(x)| = 0.

By Definition 1.3.1, a potential q is either critical or subcritical if the associated
quadratic form (1.8) is nonnegative. That is, for every qj and any ψ ∈ C∞c (R2)∫

R2

1

4
|∇ψ|2 + qε|ψ|2 dm(x) ≥ 0.

Taking limits preserves the non-negativity and the result follows.
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Chapter 5 Solution to the Novikov-Veselov equation

Now we pay close attention to identities in the large-k expansion of the reconstructed
CGO solutions µ(x, k, τ) in order to find that q = i∂xa1 solves the Novikov-Veselov
equation. We make use of only three facts now: µ(x, k, τ) has the large-k expansion
(1.22), µ(x, k, τ) and the terms in its expansion satisfies the Schrödinger equation
(1.9), and µ and its expansion satisfies the ∂k-equation (1.18). This method is sim-
ilar to that from [7], but they express the identities in terms of integrals involving
µ(x, k, τ). Here, we are using the coefficients in the large-k expansion of µ(x, k, τ).
The results in this chapter may be found in [23].

Corollary 5.0.4. Assume s ∈ X ε
n+1,r for n ≥ 2 and define q = i∂xa1. The following

identities hold:
i∂xan = −∂x∂xan−1 + (i∂xa1)an−1, (5.1)

which for n = 2 simplifies to

i∂xa2 = ∂x

(
−∂xa1 + i

a2
1

2

)
. (5.2)

Additionally we have

i∂xa2 = ∂x

(
−∂xa1 + i

a2
1

2

)
. (5.3)

Proof. Identity (5.1) follows by plugging in the large-k expansion (1.22) into (1.18).
Equation (5.2) can be rearranged to

∂x

(
ia2 + ∂xa1 − i

a2
1

2

)
= 0.

We then get identity (5.3) by applying Liouville’s theorem to the analytic function

ia2 + ∂xa1 − ia
2
1

2
and noting that a1, a2, and ∂xa1 are bounded.

Lemma 5.0.5. If s ∈ X ε
4,r for r ∈ (1, 2) and ε > 0 then the function µ(x, k, τ) defined

by (1.18) satisfies the equation

(∂τ − ik3)µ =
[
∂

3

x + (∂x + ik)3 − 3u(∂x + ik)− 3ū∂x

]
µ(x, k) (5.4)

where
u = i∂xa1. (5.5)

Proof. We have the two equations

∂x(∂x + ik)µ(x, k, τ) = q(x, τ)µ(x, k, τ)
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and
∂kµ(x, k, τ) = s(k, τ)e−x(k)µ(x, k, τ).

Expanding µ(x, k, τ) up to order k3, we have

µ(x, k, τ) = 1 +
a1(x, τ)

k
+
a2(x, τ)

k2
+
a3(x, τ)

k3
+ o(k−3). (5.6)

By commuting the following specially chosen differential operators through the ∂̄k
equation, we obtain the three identities:

∂k(∂τ − ik3)µ = s(k, τ)e−x(k)(∂τ − ik3)µ,

∂k[∂
3

x + (∂x + ik)3]µ = s(k, τ)e−x(k)
[
∂

3

x + (∂x + ik)3
]
µ,

and
∂k[−3ū∂x − 3u(∂x + ik)]µ = s(k, τ)e−x(k)

[
−3ū∂x − 3u(∂x + ik)

]
µ.

We combine these in such a way that all nonnegative powers of k cancel out in order
to obtain a formula for ∂τµ. Adding the three identities, we conclude that

Ψ =
[
∂τ − (∂

3

x + ∂3
x + 3ik∂2

x − 3k2∂x − 3u(∂x + ik)− 3ū∂x)
]
µ

satisfies
∂kΨ = s(k, τ)e−x(k)Ψ.

We will prove that Ψ = O(k−1) so that Corollary 2.1.2 implies Ψ ≡ 0. Plugging (5.6)
into the expression for Ψ, it is easy to see that we get no terms of order k2 or higher.
Collecting all terms of order k1, we find

−3k∂xa1 − 3iku = 0

which is zero by our choice of u in (5.5). Collecting terms of order k0 gives us

3i∂2
xa1 − 3∂xa1 − 3iua1 = 3i∂x

[
∂xa1 + ia2 −

i

2
a2

1

]
(5.7)

which is zero by identity (5.3). Thus we have Ψ = O(|k|−1), and by Theorem 1.2.6
Ψ ≡ 0.

We expand (5.4) and take a i∂x derivative to get a formula for ∂τq.

Corollary 5.0.6. If s ∈ X ε
5,r then the function q(x, τ) satisfies

∂τq = ∂
3

xq + ∂3
xq − 3∂x(uq)− 3∂x(ūq)

with
∂xq = ∂xu
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Proof. We expand Ψ at order k−1 to get

∂τa1 = ∂
3

xa1 + ∂3
xa1 + 3i∂2

xa2 − 3∂xa3 − 3u∂xa1 − 3iua2 − 3ū∂xa1.

Applying the operator i∂x to both sides we get

∂τq = ∂
3

xq + ∂3
xq − 3∂2

x∂xa2 − 3i∂x∂xa3 − 3∂x(u
2) + 3∂x(ua2)− 3∂x(ūq).

Now we use equation (5.1) with n = 2 to get

∂τq = ∂
3

xq + ∂3
xq − 3∂2

x∂xa2 + 3∂2
x∂xa2 − 3∂x(qa2)− 3∂x(u

2) + 3∂x(ua2)− 3∂x(ūq).

∂τq = ∂
3

xq + ∂3
xq − 3q∂xa2 − 3∂x(u

2) + 3u∂xa2 − 3∂x(ūq).

We wish to show the evolution equation is equal to the NV evolution (1.6), so the
final step is to prove the identity

−3q∂xa2 + 3u∂xa2 − 3∂x(u
2) = −3∂x(uq).

We use equations (5.2) and (5.3) to get

3iq∂x

(
−∂xa1 + i

a2
1

2

)
− 3iu∂x

(
−∂xa1 + i

a2
1

2

)
−3∂x(u

2)

= −3q∂xu+ 3u∂xq − 6u∂xu

= −3q∂xu− 3u∂xq

= −3∂x(uq)

It now follows that the inverse scattering method yields solutions to the Novikov-
Veselov equation.

Proof of Theorem 1.0.1. By Lemma 3.3.2, we have s ∈ X ε
5,r when q(x, 0) ∈ W 5,p

ρ (R2)
for p ∈ (1, 2), ρ > 1, ε > 0, and r ∈ (p̃′,∞). By Corollary 5.0.6, q(x, τ) solves the
Novikov-Veselov equation. By Lemma 4.2.3 part (ii) q( · , τ) ∈ C0(R2×R) and hence
q(x, τ) → q(x, 0), where q(x, 0), the inverse scattering transform of s(k, 0), is the
initial datum. By the same argument in Lemma 4.2.3 part (ii), we have u(x, τ) ∈
C0(R2 × R) making this the correct choice for u in (1.6).
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Chapter 6 Observations and Unsolved Problems

In a paper with Perry and Siltanen [24], we proved that certain supercritical per-
turbations of critical potentials have exceptional points. Suppose that ψ0 ∈ C∞(R2)
is a real-valued, positive, radial function, and φ0 − 1 ∈ C∞c (B1). Define a critical
potential q by q = (∂x∂xφ0)/φ0. Let w ∈ C∞c (B1) be a nonnegative, radial function
that is positive on a set of positive measure. We let qλ = q + λw and tλ = T [qλ]. By
Theorem 1.3.3 qλ is supercritical for λ < 0 and subcritical for λ > 0.

Theorem 6.0.7. [24, Theorem 1.2] Denote by tλ the scattering transform of qλ.

1. For λ > 0 sufficiently small, the exceptional set is empty and tλ ∈ C∞ away
from k = 0.

2. For λ < 0 sufficiently small and a unique r(λ) > 0, the exceptional set is a circle
Cλ of radius r(λ) about the origin, and the function tλ is C∞ on C \ {Cλ ∪ 0},
while

lim
|k|→r(λ)

|tλ(k)| =∞.

The radius r(λ) obeys the formula

r(λ) = exp

(
−γ +

1 +O(|λ|)
µ(λ)

)
as λ ↑ 0

where γ is the Euler Mascheroni constant, and µ(λ) is the eigenvalue of the
Dirichlet to Neumann operator qλ corresponding to the constant function on
S1.

Part (1) follows from the work in this paper. What is more interesting is part
(ii) where we have shown that supercritical potentials have a circle of exceptional
points for small λ < 0. We proved the theorem by explicitly computing for which
k the operator I + Sk(Λq − Λ0) has nontrivial kernel. Theorem 6.0.7 illustrates why
the current incarnation of the inverse scattering method cannot be used to solve the
Novikov-Veselov equation for supercritical potentials.

In the same paper [24], Siltanen computed the scattering transform for specific qλ.
We let q0 ≡ 0 and define the perturbation w(x) to be a radially symmetric function
with profile

w(|x|) =


1 for 0 ≤ |x| ≤ R1

p(|x|) for 0 ≤ |x| ≤ R1

0 otherwise

(6.1)

where p̃(t) = 1− 10t3 + 15t4 − 6t5 and

p(t) = p̃

(
t−R1

R2 −R1

)
.
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We choose R1 = 0.8 and R2 = 0.9. λ ∈ (−35, 35). If qλ is radially symmetyric then
so is tλ(k). A plot of tλ(|k|) is included in Figure 6.1. We see that an exceptional
set appears for λ < 0. Additionally, you can see that around λ = −8 the exceptional

Figure 6.1: The function tλ(|k|) for qλ. The darker areas are where tλ(|k|) is negative,
and the lighter areas are tλ(|k|) is positive.

set shrinks to a point. At λ ≈ −8.008 there is a Lr(R2) solution to the Schrödinger
equation (−∂x∂x + q)φ = 0. We calculate the evolution of the Novikov-Veselov
equation for potentials on both sides of this point. The evolutions were produced
with code provided by Andreas Stahel which uses a Crank-Nicolson method [32]. We
will focus on four potentials: q8, q−7, q−9, and q−8.008. The subcritical potential q8 is
expected to simply decay with time while we know nothing about the other functions
should evolve given their singular scattering transforms. The initial data in Figure 6
for all the functions looks the same. For the negative functions we plot −qλ to make
the evolutions easier to see. In Figure 6, we plot the evolutions at times tau = 0.5 and
τ = 1.0. We see that the subcritical potential q8 decays as expected. The supercritical
potential q−7 appears to be blowing up, q−8.008 is stabilizing, and q−9 is splitting up
into three spikes.

This leads to two conjectures: (1) when a potential has an eigenfunction at zero,
the circle of singularities collapses, and (2) these potentials consist of a soliton part
and a decaying part.

Finally, there is a theorem of Lassas, Mueller, and Siltanen [18] about the decay
of certain reconstructed critical potentials, q = Q[t], that we are unable to prove for
subcritical potentials but likely still holds.

53



Figure 6.2: The initial value of the function q8.

Theorem 6.0.8. [18, Theorem 1.2] Let t : C → C satisfy t(k)/k̄ and t(k)/k are
Schwartz class. Then the function Qt : C → R2 is well-defined and continuous.
Furthermore,

[Qt](x)| ≤ C〈x〉−2

By Theorem 1.4.5, such scattering transforms must come from critical potentials.
As of now, there is no similar proof that shows decay in Q[t] when the scattering
transform has the L2 singularity that comes from subcritical potentials.
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q8

−q−7

−q−8.008

−q−9

Figure 6.3: Solutions to the Novikov-Veselov equation at times τ = 0.5 and τ = 1.0.
q8 is a supercritical potential and is decaying. The other potentials are supercritical:
q−7 is beginning to blow up, q−8.008 is relatively stable, and q−9 is breaking up into
three spikes.
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