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ABSTRACT OF DISSERTATION

Deletion-Induced Triangulations

Let d > 0 be a fixed integer and let A ⊆ Rd be a collection of n ≥ d + 2 points
which we lift into Rd+1. Further let k be an integer satisfying 0 ≤ k ≤ n − (d + 2)
and assign to each k-subset of the points of A a (regular) triangulation obtained by
deleting the specified k-subset and projecting down the lower hull of the convex hull
of the resulting lifting. Next, for each triangulation we form the characteristic vector
defined by Gelfand, Kapranov, and Zelevinsky by assigning to each vertex the sum of
the volumes of all adjacent simplices. We then form a vector for the lifting, which we
call the k-compound GKZ-vector, by summing all the characteristic vectors. Lastly,
we construct a polytope Σk(A) ⊆ R|A| by taking the convex hull of all obtainable
k-compound GKZ-vectors by various liftings of A, and note that Σ0(A) is the well-
studied secondary polytope corresponding to A. We will see that by varying k, we
obtain a family of polytopes with interesting properties relating to Minkowski sums,
Gale transforms, and Lawrence constructions, with the member of the family with
maximal k corresponding to a zonotope studied by Billera, Fillamen, and Sturmfels.
We will also discuss the case k = d = 1, in which we can provide a combinatorial
description of the vertices allowing us to better understand the graph of the polytope
and to obtain formulas for the numbers of vertices and edges present.
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Chapter 1 k Deletion-Induced Polytope

1.1 Introduction

In this dissertation, we will discuss the construction and properties of a family of poly-
topes which, in a sense, refines the secondary polytope corresponding to a point set
[13] and which reaches maximum refinement in the form of a zonotope corresponding
to the point set studied in [1]. The secondary polytope corresponding to a point set A
is one which has a vertex corresponding to every regular triangulation of A. We can
define regular triangulations as those which are obtained by taking general liftings of
the point set A into one higher dimension and projecting down the simplices of the
lower hull of the resulting polytope onto the convex A. The zonotope, on the other
hand, has a vertex corresponding to every set of compatible orientations which can
be placed on each of the simplices of a general liftings of the points of A into one
higher dimension.

To obtain polytopes which interpolate between the secondary and the zonotope,
we think of fixing a size k which will determine the cardinality of the sets which we
will delete. We will then consider the set of triangulations that we can obtain from
a particular lifting of A by deleting every k-subset of lifted points in A in turn and
projecting the lower hull triangulations of the convex hull of the remaining |A| − k
points. By adapting the method outlined by Gelfand, Kapranov, and Zelevinsky in
[6] to construct the secondary, we obtain a method to construct a polytope corre-
sponding to the different k deletion-induced triangulations of A, which we will call
the k deletion-induced polytope. We can see that by choosing k = 0 we obtain the
secondary, and by choosing k large enough to leave only simplices in the lifting, we
essentially record all orientations of every simplex in the lifting, and hence recover
the zonotope.

In the first chapter, we will outline the specifics of the construction of the various
k deletion-induced polytopes and follow up with some structural results regarding
this family of polytopes. In particular, we will see that for each k > 0, we can
obtain the k deletion-induced polytope as the Minkowski sum of various secondary
polytopes corresponding to appropriate subsets of our initial point set A. This rela-
tion to secondary polytopes will allow us to determine the dimension of the family
of polytopes. We will also examine alternate constructions of the k deletion-induced
polytope which will yield polytopes with equivalent combinatorial structure. We then
examine the construction of the secondary polytope using the Gale transform in [1]
and adapt this construction to study the k deletion-induced polytope. Further, we
uncover a connection between our family of polytopes and the Lawrence polytope,
which will yield yet another construction for the k deletion-induced polytopes.

In the second chapter, we restrict our view to collections A of points in R1 and
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consider the 1 deletion-induced polytope. For this particular restriction, we are able
to describe a combinatorial structure which underlies the vertices. This allows us
to efficiently determine the various types of 1 deletion-induced triangulations and to
define a combinatorial condition for when two vertices will form an edge in the poly-
tope. We also provide counting arguments which allow us to determine the number
of vertices and edges present in the 1 deletion-induced polytope coming from the set
of the first n integers in R1.

For good general references on polytopes, see [13] and [8].

1.2 Definitions and Notation

Let n ≥ d+2 and k ≤ n− (d+2) be positive integers and let A denote a collection of
points in general position in Rd with |A| = n. By general position, we mean that no
set of d+1 points is affinely dependent. Further, let ω ∈ Rn be thought of as a “lifting
vector” with coordinate ωi being appended to the point vi ∈ A, 1 ≤ i ≤ n, to lift
each point off of the natural embedding of Rd ⊂ Rd+1 and into Rd+1. We will refer to
the set of lifted points as ω(A) and will initially only consider vectors ω for which the
lifted points ω(A) are general position. We will defer the description of what we mean
by “general” position for a lifting vector until after the first definition. To each ω,
we assign a set of triangulations which we will call the deletion-induced triangulations.

Definition 1.2.1 Fix the set of points A and assign to each general lifting vector
ω a set of

(
n
k

)
triangulations via the following method: List the k-subsets of n,

K1, K2, . . . K(n
k)

and for i from 1 to
(
n
k

)
disregard the points in the set Ki ⊂ A and

consider only the lifting of the remaining points ω (A \Ki). Project the lower hull
of conv (ω (A \Ki)) onto the natural embedding of Rd ⊂ Rd+1 to obtain a (regular)
triangulation Ti of conv(A \ Ki). We refer to the set of

(
n
k

)
triangulations assigned

to ω in this manner as the deletion-induced triangulations corresponding to ω.

Note, a lifting which is in general position with respect to the deletion size k
will be defined as one where no lower hull after a k deletion will have d + 2 points
in affinely dependent position. That is, a lifting ω corresponding to A may have
collinearities/coplanarities/etc. and still be considered in general position as long
as these collinearities/coplanarities/etc. are not revealed in the lower hull by any k
deletion. If k = n − (d + 2), however, this forces us to require that no set of d + 2
points in ω(A) are affinely dependent.

Example 1.2.2 Suppose we start with the set A =
{(2,−3), (1,−9), (8, 7), (−7,−7), (7,−1), (−1, 5), (−8, 9)} ⊂ R2. If we apply
the lifting vector ω = 〈8, 5, 2, 2, 4, 8, 3〉 to our set A, we obtain the diagram shown
in Figure 1.1, where the red lines indicate the lower hull and the green lines indicate
the upper hull.

2



Figure 1.1: Point lifting

If we were to take 2 deletions, i.e., set k = 2, we would be considering deletions
such as those shown in Figure 1.2. Notice that there would be a total of

(
7
2

)
= 21

triangulations in this particular set of 2 deletion-induced triangulations, but only 3
are shown. In particular, the deletion of the points i and j is indicated by Ki,j. ♦

(i) K1,3 (ii) K2,7

(iii) K3,6

Figure 1.2: 2 deletions of a point set

3



Definition 1.2.3 Each triangulation Ti is assigned a characteristic vector, denoted
φ(Ti), according to the procedure outlined in [6]. Note, this is also referred to as the
GKZ-vector in [3]. Specifically, φ(Ti) ∈ Rn where coordinate j records the sum of the
d-dimensional volumes of all simplices in the triangulation Ti incident to the point
indexed by j in A . If j ∈ Ki, then j is a deleted point and coordinate j of φ(Ti) is
assigned a 0.

Example 1.2.4 Suppose we focus on the particular 2 deletion induced triangulation
T1,3 corresponding K1,3 (Figure 1.2i) of A in Example 1.2.2. This triangulation, along
with the areas of its triangles, is shown in Figure 1.3.

Figure 1.3: Triangulation T1,3

The characteristic vector corresponding to this triangulation is given by:

φ(T1,3) = 〈0, 38, 0, 38 + 115, 5 + 115 + 38, 5, 115 + 5〉 = 〈0, 38, 0, 153, 158, 5, 120〉.

♦

Definition 1.2.5 We collect the information for the entire set of deletion-induced
triangulations corresponding to the lifting ω and deletion size k into a single vec-
tor which we call the k-compound GKZ-vector associated to ω, denoted by φk(ω).
If T1, . . . , T(n

k)
denote the set of deletion-induced triangulations we obtain under k-

deletion, we set

4



φk(ω) :=

(n
k)∑
i=1

φ(Ti).

If a vector v = φk(ω) for some lifting ω, we will say that the lifting ω realizes
the k compound GKZ-vector v, or equivalently, ω realizes the corresponding set of k
deletion-induced triangulations T1, . . . , T(n

k)
which compose v.

Proposition 1.2.6 Two different general liftings ω and ω′ of A produce the same
k-compound GKZ-vector iff the corresponding deletion-induced triangulations Ti and
T ′i match for deletions i = 1, . . . ,

(
n
k

)
.

Proof. In [6] (and [3]), it is shown that if ω is a lifting vector in general position
corresponding to some set of points C, then for the triangulation T ′ corresponding
to the lower hull of conv (ω(C)) and any other regular triangulation T 6= T ′ of C,
we have that ω · φ(T ′) < ω · φ(T ). Extending to k-compound-GKZ vectors, we see
that a set of deletion-induced triangulations will uniquely minimize the inner product
with a general lifting ω exactly when the triangulation corresponding to each indi-
vidual deletion Ki for 1 ≤ i ≤

(
n
k

)
is coming from a projection of the lower hull of

conv (A \Ki).

For a given regular triangulation T of the underlying point set A and lifting ω, the
inner product ω·φ(T ) can be interpreted as (d+1) times the sum of (d+1)-dimensional
volumes of simplicial prisms whose bases are determined by the triangulation T and
heights at each vertex are determined by ω. It should be clear that such a sum would
be minimized (for fixed lifting ω and varying triangulations T ) if T corresponds to
the lower hull of conv(ω(A)), and that such a T would be the unique minimizer if ω
is a general lifting (only simplices appear as lower hull facets).

Definition 1.2.7 We construct the k-deletion-induced polytope corresponding to A,
Σk(A), by first forming the set

B :=
{
v | v = φk(ω) for some lifting ω of A

}
,

and taking

Σk(A) := conv (B) .

That B is a finite set follows from the fact that φk(ω) can be uniquely determined
if one knows the orientations of every set of d + 2 points in ω(A), which gives the

rough upper bound |B| ≤ 2( n
d+2). This bound is an overestimate, however, since

not every set of orientations is realizable by a lifting and because two liftings with
slightly differing sets of orientations may still potentially produce the same compound
GKZ-vector for non-maximal k.

5



Corollary 1.2.8 Each k-compound GKZ-vector is a vertex of Σk(A). In other words,
no k-compound GKZ-vector lies in the interior of the convex hull of the other k-
compound GKZ-vectors.

Proof. In Proposition 1.2.6, we saw that if ω were a lifting which produced the k-
compound GKZ-vector v, then ω ·v < ω ·v′ for any k-compound GKZ-vector v′ 6= v.
Thus ω ·x = ω ·v is a vertex supporting hyperplane for the k-compound GKZ-vector
v.

Figure 1.4 shows the family Σk(A) for A corresponding to a (regular) hexagon,
with k = 0 (the associahedron), k = 1 and k = 2.

(i) Σ0(A) (ii) Σ1(A)

(iii) Σ2(A)

Figure 1.4: Σk(A) for a hexagon - k = 0, 1, 2

6



1.3 Structural Results

If we let v1,v2, . . ., denote the vertices of Σk(A) (i.e., the distinct k-compound-GKZ
vectors), then each of the vertices vi will satisfy the following d + 1 linearly distinct
relations:

• 〈1, 1, . . . , 1〉 · vi =

(n
k)∑
j=1

(d+ 1)vol (conv (A\Kj)),

• 〈xs,1, xs,2, . . . , xs,n〉 · vi =

(n
k)∑
j=1

(d+ 1)vol (conv (A\Kj)) cs,(A\Kj), s = 1, . . . , d,

where xs,t denotes the sth coordinate of the tth point in A and cs,(A\Kj) denotes the
sth coordinate of the centroid of conv(A\Kj). This is a natural consequence of the
relations found to be satisfied by “ordinary” GKZ-vectors in [3] and [6]. This tells us
that Σk(A) is not full-dimensional and has at most dimension n− (d+ 1).

Theorem 1.3.1 The k′ deletion-induced triangulations are uniquely determined by
the k deletion-induced triangulations for any k′ < k and fixed general lifting ω of a
set of points A.

Proof. We induct on the size of k and begin with the basis case k = 1. The claim is
that if we know the d-simplices that appear on the lower hull after each 1-deletion,
then we can determine which d-simplices appear on the lower hull of conv(A). Clearly
any d-simplex that appears on the lower hull of conv(A) must appear in the lower
hull in all single deletions but those of its vertices. This condition is sufficient to
identify the d-simplices of the original lower hull, as any simplex that is not in the
original lower hull will fail to appear in the lower hull of at least one other deletion
than those of its vertices. Specifically, if k = 1, then d + 3 ≤ n. If a simplex is not
on the original lower hull, then there is a point p in A (not one of the vertices of the
simplex) which lies “below” this simplex, hiding it from view. Since n ≥ d+ 3 there
is at least one point which we can delete that is neither p, nor one of the vertices of
our simplex, thus we are guaranteed that this simplex does not appear on the lower
hull under the deletion of this particular point.

Next assume that knowledge of the m deletions up to some m ≥ 1 uniquely deter-
mines the m′ deletions for all 0 ≤ m′ ≤ m and consider the k deletions for k = m+ 1
(supposing that this k still satisfies k ≤ n−(d+2)). If we collect all of the k deletions
which involve the deletion of some fixed point vi ∈ A, then we see that this set is
exactly the m deletions of the point set A \ vi. By the inductive hypothesis, we can
reconstruct all of the m′ deletions of A\vi for all 0 ≤ m′ ≤ m. In the original point set
A, this means we have determined the deletion-induced triangulations corresponding
to any deletion set which included the point vi. Repeating this process for all vi as

7



i ranges from 1 to n gives us knowledge of any non-trivial deletion-induced triangu-
lation. Since this includes all of the 1 deletion-induced triangulations, our base case
gives us that the original lower hull of A may also be determined.

The following definition and theorem will allow us to extend our definition of
k-compound GKZ-vectors while maintaining the combinatorial structure of the the
polytope that is obtained. This will be useful in new constructions which we will
introduce later in the section.

Definition 1.3.2 Let Nk :=
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
k

)
and let S1, S2, . . . , SNk

enumerate
the subsets of {1, 2, . . . , n} of cardinality ≤ k. Further, let χ be a characteristic vector
of length Nk with multiplicity. That is, let χ ∈ [0, 1, 2, . . .]Nk such that a y in position
z of χ, χ(z) = y, indicates that the subset Sz appears y times in the collection of
subsets indicated by χ.

If χ is such that χ(z) ≥ 1 for all z where Sz indicates a subset of {1, 2, . . . , n} of
cardinality equal to k, then we define augmented k-compound GKZ-vectors by

φ̃k(ω) :=

Nk∑
i=1

χ(i)φ(Ti),

where Ti is the regular triangulation given by projecting the lower hull of conv(ω(A\
Si)) onto Rd. We then form the augmented k deletion-induced polytope corresponding
to A and χ by

Σ̃χ,k(A) := conv
({

v | v = φ̃k(ω) for some general lifting ω of A
})

Theorem 1.3.3 If χ is selected according to the conditions in Definition 1.3.2, then
the polytopes Σk(A) and Σ̃χ,k(A) have identical normal fans, and hence have identical
combinatorial structure.

Proof.
It is sufficient to demonstrate that the vertices of the two polytopes can be put into

bijective correspondence and to show that the normal cones for paired vertices are
identical. We will make use of the fact that any normal vector for a vertex supporting
hyperplane to a vertex ṽ of Σ̃χ,k(A) or a vertex v of Σk(A) can be re-interpreted as
a lifting vector which realizes that vertex. In other words, the normal vector must
correspond to a general lifting with respect to k deletions, and hence a general lifting
with respect to all lower order deletions, which has lower hulls matching the set of
triangulations corresponding to ṽ or v under the appropriate deletions.

For the bijection, we will map a vertex ṽ of Σ̃χ,k(A) to the unique vertex v of
Σk(A) which has the same triangulations appearing after corresponding deletions of
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size k. Such a vertex is always available to map to as any normal vector for a vertex
supporting hyperplane for ṽ is also a lifting which realizes ṽ, and hence which realizes
a corresponding v (it produces the appropriate triangulations under k deletions, we
simply ignore the lower order deletions). The fact that the lifting is one-to-one follows
from Theorem 1.3.1, and the fact that it is surjective is clear as the same lifting ω
which realizes a vector v of Σk(A) will realize an augmented k-compound GKZ-vector
with the same k deletion induced triangulations and determined lower order deletions.

It is clear that for a matched pair of vertices v and ṽ any normal vector for a
vertex supporting hyperplane of v can be considered as a lifting which realizes v,
which must also be a lifting which realizes ṽ, which then serves as a normal for a
vertex supporting hyperplane for ṽ and vice versa.

Example 1.3.4 If we construct the 1 deletion-induced polytope for a point set A,
Σ1(A), and then take the 1 compound-GKZ vectors and append the characteristic

vector for the original lower hull of the corresponding lifting to obtain Σ̃χ,k(A), then
the combinatorial structure of the two polytopes will be identical by Theorem 1.3.3.
If we take A = {1, 2, 3, 4, 5}, k = 1, and the previously described χ, the two poly-
topes are shown in Figure 1.5. We can see in the pictures that the normal vectors
defining the facets do not appear to change, only the sizes of facets seem to change.
In particular, the rhombus at top front consisting of vertices {15, 25, 32, 24} appears
to grow in size in this particular augmented k deletion-induced polytope. ♦

(i) Σ1(A) (ii) Σ̃χ,1(A)

Figure 1.5: Comparing Σk(A) and Σ̃χ,k(A)

Definition 1.3.5 If PA and PB are two polytopes in Rd, then the vector sum (or
Minkowski Sum) of these two polytopes is defined to be
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PA + PB := {vA + vB : vA ∈ PA, vB ∈ PB} .

The Minkowski sum PA + PB of two polytopes is a polytope, and any vertex of
PA + PB must arise as the sum of two vertices from PA and PB, though not all such
sums are guaranteed to be vertices of PA + PB. For more references on Minkowski
sums, see [11], [13], [12].

Example 1.3.6 For an example of a Minkowski sum of two polygons, consider the
pentagon PA and triangle PB in Figure 1.6.

(i) PA (ii) PB

Figure 1.6: Minkowski summands

The construction of the Minkowski sum and the final result PA + PB are shown
in Figure 1.7. ♦

Figure 1.7: Minkowski sum PA + PB

Theorem 1.3.7 The polytope Σk(A) is equal to the Minkowski sum of the polytopes
Σ0(A \K1),Σ0(A \K2), . . . ,Σ0(A \K(n

k)
), where K1, . . . , K(n

k)
denoted the k-subsets

of the points in A. In other words, the k deletion-induced polytope is given by the
Minkowski sum of the secondary polytopes corresponding to the various k-deletions of
the point set A.

Proof.
We first note that the vertices of the polytope obtained by the Minkowski sum

correspond to some sum of
(
n
k

)
vertices, one from each individual secondary polytope.

In other words, if M denotes the polytope that we obtain from the Minkowski sum
of the secondaries, then every vertex v of M is of the form v = v1 + v2 + · · ·+ v(n

k)
,
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where vi is a vertex of Σ0(A \ Ki) for 1 ≤ i ≤
(
n
k

)
. Note, however, that not every

point of this form is guaranteed to be a vertex of M . If we consider the set of all
possible combinations of secondary vertices, we see that we obtain all possible sums
of characteristic vectors φk(T1) + · · ·+ φk(T(n

k)
), where each Ti can be independently

chosen to be any regular triangulation of the corresponding point set A \ Ki for
1 ≤ i ≤

(
n
k

)
. Thus we see that all possible k-compound GKZ-vectors occur as sums

of appropriate vertices of these secondaries. Further, we know that any k-compound
GKZ-vector u will be extremal in M , due to the fact that if ω is a lifting which realizes
u, then the set of deletion-induced triangulations which u encodes, Tu,1, . . . , Tu,(n

k)
,

will uniquely minimize the inner products ω · φk(Tu,i) for 1 ≤ i ≤
(
n
k

)
simultaneously.

Thus if we let

V =

{
v

∣∣∣∣∣ v=v1+v2+···+v(nk), where vi

is a vertex of Σ0(A\Ki) for 1≤i≤(nk)

}
,

then we see that the linear function ω ·x−ω ·u is uniquely minimized by u if x ranges
over V , and hence ω · x = ω · u defines a vertex supporting hyperplane for u in M .
Lastly, we note that if v ∈ V does not correspond to a k-compound GKZ-vector, then
v will not be extremal in M . To see why, suppose that v was extremal, then there
would exist a vertex supporting hyperplane with normal ω′ such that ω′ ·x > ω′ ·v for
all x ∈ V \v. This implies that the set of deletion-induced triangulations encoded by
v, Tv,1, . . . , Tv,(n

k)
, is the only set of triangulations which minimize each inner product

ω′ ·φk(Tv,i) for all 1 ≤ i ≤
(
n
k

)
simultaneously. Then we would have that ω′ is a lifting

which has v as a k-compound GKZ-vector. This demonstrates that the polytopes M
and Σk(A) are (geometrically) identical.

Since the dimension of each secondary polytope Σ0(A \ K), for 0 ≤ |K| = k ≤
n − (d + 2), is guaranteed to be n − (d + 1) for a point set A (and hence A \ K)
in general position, we obtain that the k deletion-induced polytope Σk(A) must also
have dimension n−(d+1). In other words, every relation satisfied by the k-compound
GKZ-vectors arises as a consequence of the d+1 relations mentioned at the beginning
of the section.

Corollary 1.3.8 The polytope Σk(A) is a zonotope if k is assigned the maximal
possible value for the point set A, i.e. if k = n− (d+ 2).

Proof. By Theorem 1.3.7, we are given that Σk(A) is given by the Minkowski sum
of the polytopes Σ0(A \K1),Σ0(A \K2), . . . ,Σ0(A \K(n

k)
). Since k = n − (d + 2),

we have that |A \ Ki| = d + 2 for each 1 ≤ i ≤
(
n
k

)
, and hence ω(A \ Ki) forms a

simplex in Rd+1. Since a simplex can have only two orientations, we see that there
are only two possible lower hulls of conv(ω(A \ Ki)) and hence only two possible
k deletion-induced triangulations of A \ Ki for this size k. This tells us that each
secondary polytope Σ0(A \ Ki) is the convex hull of two points and hence forms a
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line segment in Rd, which implies that Σk(A) is a zonotope.

The zonotopes arising in Corollary 1.3.8 are well studied in [1]. We will see a
second way to construct these zonotopes later in the section.

Next we will discuss how to utilize Gale diagrams to study k deletion-induced
triangulations and the corresponding polytope Σk(A), but first we will give a brief
review how a Gale diagram is constructed and how it can help us study the set of
regular triangulations, and hence the secondary polytope Σ0(A), corresponding to a
set of points A in Rd. What follows is a summary of Gale transforms based on [14],
[1], and [8].

Let v1, . . . ,vn ∈ Rd denote column vectors corresponding to the points in A and
form a matrix out of the homogenized coordinates

M :=

[
v1 v2 · · · vn
1 1 · · · 1

]
(d+1)×n

Since |A| = n > d+2 and no set of d+1 points in A is affinely dependent, we have
that M has full row rank, and hence the dimension of the nullspace of M , N (M), is
n − (d + 1). We can then form a new matrix M where the rows correspond to any
set of basis elements of N (M) and label the columns by

M =
[

v1 v2 . . . vn
]
n−(d+1)×n .

The set of n points given by the columns of M : v1, . . . ,vn ∈ Rn−(d+1) is referred
to as a Gale transform corresponding to the point set A. (Note that some points may
occur with multiplicity in this collection.) We will use M to refer to refer to both the
matrix as well as the set of columns of the matrix. We consider the corresponding
points vi and vi as being paired for 1 ≤ i ≤ n and note that since the row [1, . . . , 1]
is guaranteed to be orthogonal to every row of M , we have that v1 + . . . + vn = 0.
The Gale transform can be utilized to study the faces of the polytope conv(A) in the
following manner: if some collection of points F = {vi1 , . . . , vis} ⊆ A forms a face of
conv(A) of dimension < d, then there is some hyperplane with normal n such that

n · vi1 = · · · = n · vis and n · v > n · vi1 ∀ v /∈ F .

If we let r = [n, −(n · vi1)] ∈ Rd+1 be a row vector, then we see that we can
interpret the row vector rM as a vector in the set [0,+]n. Specifically, coordinate i of
rM is a 0 precisely if vi ∈ F and is positive (+) precisely when vi /∈ F for 1 ≤ i ≤ n.
We also note that this new row vector rM is in the row span of M , and is hence
perpendicular to each row of M . Thus we have
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[
v1 v2 . . . vn

]
· (rM)> =

 0
...
0


1×n

If we let F ⊂ M be the corresponding collection to F ⊂ M , we see that the
above is simply a positive linear combination of the points in M \ F which pro-
duces the origin. With some positive rescaling, we see this implies that collections
of points F ⊂ M which correspond to complements M \ F where F forms a face
of conv(A) will capture, i.e., contain, the origin in the relative interior of their con-
vex hull, relint(conv(F)). It is not hard to reverse the argument and show that if
0 ∈ relint(conv(F)), then the collection F ⊂M corresponding to M \F forms a face
of conv(A). Thus we note that the facets of conv(A) are given as the complements
corresponding to minimal collections F such that 0 ∈ relint(conv(F)).

Further, we note that independently scaling the points in the Gale transform by
some positive scalar factors does not change which collections capture the origin in the
relative interior of their convex hulls. Thus the nonzero points of the Gale transform
are traditionally scaled so that they lie on the unit sphere in Rn−(d+1) centered at the
origin. Any new such placement of the n points of M in Rn−(d+1) which preserves
which sets of points capture the origin in the relative interior of their convex hulls is
referred to as a Gale diagram corresponding to the point set A.

Example 1.3.9 Consider the point set A = {v1,v2,v3,v4} = {0, 1, 2, 3} ⊂ R. Con-
structing the Gale transform, we have

M =

[
0 1 2 3
1 1 1 1

]
, M =

[
1 −2 1 0
0 1 −2 1

]
.

If we form a Gale diagram by scaling the points onto the unit circle centered at
the origin in R2, we obtain Figure 1.8.

We see that the minimal sets which capture the origin in the relative interior of
their convex hull are {v1,v2,v3} and {v2,v3,v4}, which correctly indicates that the
only facets of conv(A) are v1 and v4. ♦

To study the regular triangulations of the point set A, we first form the Gale
diagram M associated to A by positively scaling the nonzero points of the Gale
transform so that they lie on the unit sphere. We then insert a new point z on the
unit sphere in the Gale diagram so that z lies on no hyperplane spanned by n− d− 2
elements from {v1, . . . ,vn}, i.e., z does not lie on the boundary of any cone formed by
elements of M . We see that M ∪ {z} is no longer a Gale diagram which corresponds
to A ⊂ Rd, but instead corresponds to a new point set A′ ∪ {z} ⊂ Rd+1.

It can be shown that this new set of points A′ is of the form {(v1, λ1), . . . , (vn, λn)}
for some λ1, . . . , λn ∈ R, and that z corresponds to the point at infinity (see [14] and
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Figure 1.8: Gale diagram for 4 points on a line

[10]). In other words, the point set with Gale diagram M ∪ {z} can be thought
of as ω(A) for a general lifting vector ω = 〈λ1, . . . , λn〉 together with a point z at
infinity (the fact that the lifting is in general position follows from the placement
of z in affinely general position). We will think of the points vi in A as being in
bijective correspondence with the points (vi, λi) in A′ and will identify collections
F ⊂ A with collections F ′ ⊂ A′ in the natural manner. We see that any facet
given by F in conv(A) will have a corresponding facet F ′ ∪ {z} in conv(A′), since
0 ∈ relint(conv((M \ F)) before and after the addition of the point z to the Gale
diagram. These facets of conv(A′ ∪ {z}) which contain the point at infinity z can be
thought of as the lateral facets. The only “new” facets that we obtain correspond to
sets M \ S where 0 ∈ relint(conv((S ∪ {z})). Since z is placed in affinely general
position, all such new faces M \ S will be simplices, and will in fact correspond to
the simplices in the lower hull of conv(A′ ∪ {z}).

We see that a particular d-dimensional simplex S appears in in the lower hull of
conv(A′ ∪ {z}) exactly when 0 ∈ relint( conv((M \ S) ∪ {z})). This is equivalent to
the condition that the opposite point −z lies in the interior of the cone formed by
the vectors of the set M \ S. Thus if we think about removing the boundaries for
all such cones formed by n − d + 1 elements of M from Rn−(d+1), we see that the
sphere is divided into different regions where any two −z, −z′ placed in the same
region would give identical lower hulls for the corresponding sets conv(A′ ∪ {z}) and
conv(A′ ∪ {z′}), whereas two −z, −z′ placed in differing regions would give distinct
lower hulls for the corresponding sets conv(A′ ∪ {z}) and conv(A′ ∪ {z′}).

We finally note that there will be a region in this spherical complex for every
possible lower hull of conv(ω(A)) for arbitrary general liftings ω, as it is possible to
reverse-engineer the lifting ω to determine an affinely general placement of z in the
Gale diagram to make the corresponding A′ match ω(A). Thus the regions in this
spherical complex are in bijective correspondence with the set of regular triangula-

14



tions of A.

Example 1.3.10 If we return to the Gale diagram discussed in Example 1.3.9, we
see that by removing the boundaries of all possible cones spanned by two elements of
M we divide the surface of the circle into 4 distinct regions depicted in Figure 1.9. If
we think of placing the opposite of z, −z, into each of these regions, we obtain the 4
corresponding representative liftings, ω(A), pictured in Figure 1.10. Notice that the
lower hulls of these liftings give all possible distinct regular triangulations of A after
projection. ♦

Figure 1.9: Gale diagram regions - line example

(i) (ii) (iii) (iv)

Figure 1.10: Representative liftings - line example, k = 0

Example 1.3.11 If we consider the hexagon given by

A = {v1,v2,v3,v4} = {(−1, 1.5), (−2, 0), (−1,−1.5), (1,−1.5), (2, 0), (1, 1.5)} ⊂ R2,
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we find that the 2-dimensional Gale transform is given by

M =

 −1 −2 −1 1 2 1
1.5 0 −1.5 −1.5 0 1.5
1 1 1 1 1 1

 , M =

 1 0 0 −1 2 −2
0 1 0 −2 3 −2
0 0 1 −2 2 −1

 .
If we form a Gale diagram by scaling the points onto the unit sphere centered at

the origin in R3, we obtain Figure 1.11.

Figure 1.11: Gale diagram regions - hexagon example, k = 0

It is not easy to see from the static picture of the 3-dimensional sphere, but by
“removing” the boundaries of all cones of 3 elements of M , we obtain 14 distinct
regions on the sphere which correspond to the 14 possible regular triangulations of
the hexagon. This correctly reflects the number of vertices of the corresponding
secondary polytope, which is also known as the associahedron corresponding to the
hexagon, see [9], [3], and [13]. This polytope was pictured in Figure 1.4i. ♦

In [1], Billera, Filliman, and Sturmfels demonstrated another method to construct
the secondary polytope Σ0(A) corresponding to the point set A. In this construc-
tion, the point set A is translated so that

∑
v∈A v = 0 prior to constructing the Gale

diagram M . This way, we can consider the original set of points as the Gale diagram
of M and vice versa. We then think about moving the origin about in the interior
of conv(A) such that it never lies on an affine hyperplane through d elements of A.
Each new placement of the origin in A will correspond to a scaling of the points of
M , thus we can form polytopes Pi = conv(M) for i ranging from 1 to R = #(regions
of conv(A) formed by all hyperplanes through d elements). By taking the Minkowski
sum of the polars of these polytopes, we obtain a polytope P whose normal fan is
a common refinement of the normal fans of the polars of P1,P2, . . . ,PR, and which
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was demonstrated to be combinatorially equivalent to the secondary polytope Σ0(A).

The following theorem describes how to alter the Gale diagram construction to
describe the set of k deletion-induced triangulations associated to various general
liftings ω of our point set A.

Theorem 1.3.12 Let M be a Gale diagram corresponding to the point set A, rep-
resented by the matrix M , where the nonzero points have been scaled to lie on the
unit sphere centered at the origin in Rn−(d+1). Denote the columns of M , v1, . . . ,vn,
and their opposites, −v1, . . . ,−vn, as the positive and negative elements of M , re-
spectively, and let z be placed so that it lies on no hyperplane spanned by n− (d+ 1)
elements from {±v1, . . . ,±vn}. Then a collection F ⊂ M of points forms a lower
hull facet of the lifting ω(A) ∪ {z} (for some placement of z in the Gale diagram)

after the deletion of a cardinality k set K̃ of M iff there exists a (possibly empty)

subset K ⊆ K̃ such that 0 ∈ relint(conv((M \ (F ∪K)) ∪ −K)).

Proof. We have previously seen that if we focus on the Gale diagram consisting of
v1, . . . ,vn and z in general position, then the polytope P which possesses this Gale
diagram can be thought of as the convex hull of a general lifting ω (determined by the
placement of z) of the points of A and a point z at infinity. If F = {vi1 , . . . ,vis} ⊂M

denotes a lower hull facet of P after the k-deletion of some points K̃ = vj1 , . . . ,vjk ⊂
M (F ∩ K̃ = ∅), then there is some hyperplane with normal n and subset K ⊆ K̃
(possibly empty) such that

n · v = n · v′ ∀ v,v′ ∈ F , n · v > n · v′ ∀ v ∈ F , v′ ∈ K,

and n · v < n · v′ ∀ v ∈ F , v′ ∈M \ (F ∪K).

Thus if we let r = [n, −(n ·vi1)] ∈ Rd+1 be a row vector, then we see that we can
interpret the row vector rM as a vector in the set [0,+,−]n. Specifically, coordinate
i of rM is a 0 precisely if vi ∈ F , is positive (+) precisely when vi /∈ F ∪K, and is
negative (−) when vi ∈ K for 1 ≤ i ≤ n. This new row vector rM is in the row span
of M , and is hence perpendicular to each row of M . Thus we have

[
v1 v2 . . . vn

]
· (rM)> =

 0
...
0


1×n

which implies that F is a facet of the lower hull of conv(A \ K) precisely when

0 ∈ relint(conv(F ′ ∪ (−K))), where F ′ = M \ (F ∪K) and −K denotes the nega-
tives of the points in K.

As is the case when studying facets of the lower hull of liftings of A with the Gale
diagram, it is easy to see that if there are some subsets K,F ′ ⊂ M , K ∩ F ′ = ∅,
|K| ≤ k, such that 0 ∈ relint(conv(F ′ ∪ (−K))), then the previous argument may

be reversed to show that the set F ⊂ M corresponding to M \ (K ∪ F ′) will form a
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face of the lower hull of P after the deletion of any k point collection K̃ such that
K ⊆ K̃ and F ∩ K̃ = ∅. Similarly, if some set of k deletion-induced triangulations
is realizable by some lifting ω of A, then a placement of z can be determined in the
Gale diagram which will correspond to the set of points ω(A) ∪ {z} where z is the
point at infinity, which will hence produce the correct lower hulls after k-deletions.

Example 1.3.13 If we alter the Gale diagram for the set of 4 points on a line dis-
cussed in Example 1.3.9 by adding in the negatives of every point, we obtain the
diagram in Figure 1.12 which can be seen to split the circle into eight regions if we
remove the boundaries of all cones formed by two distinct positive points vi and vj
(which tell us which simplices are in the original lower hull) and cones formed by a
positive and a negative point vi and −vj (which tell us which simplices only appear
in the lower hull after deletion of the point vj ∈ A ∪ {z}). Note we do not consider
cones involving more negative elements of M as we only go so far as to take k = 1
deletions for a set of this size in this dimension.

Figure 1.12: Gale diagram regions, line example, k = 1

If we place negative z in each region, then Theorem 1.3.12 guarantees that the
collection of representative polytopes conv(ω(A)∪ {z}) corresponding to each place-
ment of −z will contain liftings which realize every possible 1-compound GKZ-vector
corresponding to the point set A. Figure shows 8 representative liftings obtained by
the placement of −z in the corresponding region of Figure 1.12.

For an example of how to interpret what sort of lifting is produced from each
region, suppose that −z is placed in region I. Then we see that −z is in the cones
formed by (v1,v4), (v1,v2), and (v3,v4), which implies that (v2,v3), (v3,v4), and
(v1,v2) are original lower hull facets, respectively. Next we want to consider what
new minimal sets can capture the origin with z when we consider cones with one
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 1.13: Representative liftings - line example, k = 1

negative element. Since −z in this region does not lie in a cone formed by −v1 and
any positive vi, we see no new lower hull facets are introduced after the deletion of v1,
similarly with the deletion of v4 . Since −z is in the cones (v1,−v3) and (v4,−v2), we
gather that (v2,v4) forms a new lower hull facet after the deletion of v3 and (v1,v3)
forms a new lower hull after the deletion of v2.

To see the particular effects of the further subdivision of the sphere by the addi-
tion of the negative elements of M , focus on regions IV, V, and VI in Figure 1.12. We
see that these regions formed the single region III in Figure 1.9 of Example 1.3.10.
This reflects the fact that all representative liftings of regions IV, V, and VI, have
the same original lower hull, but have differing 1 deletion-induced triangulations. ♦

Example 1.3.14 We can also alter the Gale diagram for the hexagon discussed in
Example 1.3.11 by adding in the negatives of every point. In this example, however,
we have the option to choose k as high as 2.

Figure 1.14i is the diagram that we would use to study the 1-deletions of the
hexagon. In this diagram, we have removed all boundaries of cones formed by 3 posi-
tive elements of M (these corresponded to the original lower hull) and the boundaries
of cones formed by 2 positive elements of M and 1 negative element (these cor-
responded to new lower hull facets which appear after the 1-deletion of the point
corresponding to the negative element used in the cone). We see that some new arcs
(removed boundaries of cones) appear, specifically between positive and negative el-
ements of M . This subdivides the sphere into more regions than were present in
Figure 1.11, and reflects the fact that two liftings ω and ω′ which had the same origi-
nal lower hulls, i.e., represented the same region in Figure 1.11, may have had distinct
1-deletion induced triangulations, which would require them to lie in distinct regions
of Figure 1.14i. The deletion-induced polytope corresponding to this subdivision of
the sphere was shown in Figure 1.4ii.
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(i) (ii)

Figure 1.14: Gale diagram regions - hexagon example, k = 1, k = 2

Figure 1.14ii is the diagram that we would use to study the 2-deletions of the
hexagon. We remove the same cones as we did for k = 1, but now we also remove
cones which are formed by two negative elements and 1 positive element of M . These
cones allowed us to detect the new lower hull simplices which would appear after
the deletion of the two points corresponding to the negative elements of the cone.
We see that the surface of the sphere is subdivided further by arcs connecting two
negatives of elements of M . The polytope corresponding to this maximal subdivision
was shown in Figure 1.4iii. ♦

We have seen that if we choose a maximal value for k, then by removing the bound-
aries of all cones formed by k′ up to n− (d+ 2) negative elements and n− (d+ 1)−k′
positive elements of M , we obtain the finest possible subdivision of the sphere ob-
tained by deleting the boundaries of cones consisting of any set of n − (d + 1) pos-
itive/negative elements of M . In particular, this finest possible subdivision of the
surface of the sphere can be thought of as being induced by deleting a particular cen-
tral hyperplane arrangement from Rn−(d+1), which leads us to a second construction
of the zonotope Σn−(d+2)(A).

The creation of this particular zonotope via a hyperplane argument is discussed
in [1]. In particular, we saw that knowledge of the orientation of every set of d + 2
points in a general lifting ω(A) of our point set will determine the k deletion-induced
triangulations for any k; in particular k = n− (d+ 2). The set of sets of compatible
orientations that can be placed on the (d+ 2)-tuples of points in A can be put into a
natural bijection with the cells of the hyperplane arrangement given by the zero sets
of the polynomials arising from the (d+ 2)× (d+ 2) minors of the matrix
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 v1 v2 v3 . . . vn
x1 x2 x3 . . . xn
1 1 1 . . . 1


(d+2)×n

,

where the vi correspond to the points of A in column vector form and the variables
xi give an arbitrary lifting vector ω = 〈x1, x2, . . . , xn〉. Thus if we let n1, . . . ,n( n

d+2)
denote the normal vectors to the various hyperplanes in our arrangement, then defin-
ing li to be the line segment from 0 to the tip of the vector ni in Rn for 1 ≤ i ≤

(
n
d+2

)
,

we have that our zonotope is combinatorially equivalent to the Minkowski sum∑( n
d+2)
i=1 li ⊂ Rn ([13]).

Lastly, we outline a construction for deletion-induced polytopes similar to the
method used to construct the secondary in [1], which was described earlier. To
this end, we note that we had considered the positions of the negatives of points
−v1, . . . ,−vn in the Gale diagram when studying the lower hull facets after particu-
lar deletions, but we hadn’t thought of these points as proper members of the Gale
diagram. We see that by considering these points as part of the collection M , then
the corresponding point set A must increase by n points and increase in dimension
by n. In particular, adding the negatives of points in the Gale diagram corresponds
to applying Lawrence extensions to the point set A ([13], [7]).

Definition 1.3.15 If V is a point set in Rd, adding the negative of an element −vi
into M , for some vi ∈M , produces a new Gale diagram corresponding to a Lawrence
extension on V . A Lawrence extension σi(V ), 1 ≤ i ≤ |V |, is the point set we obtain
from V by replacing the point vi ∈ V with v+

i := vi+c1 ·ed+1, and v−i := vi+c2 ·ed+1,
where 0 < c1 < c2 ∈ R, and ed+1 is the (d+ 1)st standard basis vector. Note that the
“lower” point v+

i is assigned a “+” because it corresponds to the positive version of
vi in the Gale diagram, and v−i corresponds to −vi. Traditionally, we choose c1 = 1
and c2 = 2, but by varying the value of these weights, we end up with a construction
which is combinatorially equivalent (In the sense that the convex hull of σi(V ) has
the same combinatorial structure).

For a point set V ⊂ Rd with no coloops (i.e., the deletion of any single vector from
the set of vectors corresponding to V still leaves a set which spans Rd), the Lawrence
Polytope corresponding to the point set V , Λ(V ), is defined by

Λ(V ) := σ1 ◦ σ2 ◦ · · · ◦ σ|V |(V ) ⊂ Rd+|V |.

Example 1.3.16 The Lawrence polytope Λ(V ) corresponding to V = {v1, v2, v3}
consisting of three copies of the origin in R0 is depicted in Figure 1.15. ♦
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Figure 1.15: Lawrence polytope Λ(V )

This means that for a particular k-subset, K ⊂ A, the different possible deletion-
induced triangulations of the set A \ K should be, in some way, connected to the
secondary polytope corresponding to the “k-Lawrence extension” LK , where

LK := σvi1
◦ · · · ◦ σvik

(A), where K = {vi1 , . . . ,vik} ⊂ A.

This follows from the fact that both of these combinatorial structures rely on varying
the general placement of z into the Gale diagram given by the points {v1,v2, . . . ,vn}∪
{−vi | vi ∈ K}.

Example 1.3.17 Suppose we wish to study the deletion-induced triangulations of
the point set studied in Example 1.8, specifically where we are deleting the element
v2 = 1 from A. This means we only consider adding −v2 into the Gale diagram,
producing Figure 1.16.

If we think of adding the opposite of z, −z, into the various regions depicted
in Figure 1.16, we determine 5 representative liftings which model the only possible
triangulations induced after the deletion of v2 = 1 ∈ A. Five possible representative
liftings for the corresponding regions in Figure 1.16 are shown in Figure 1.17 (read
left to right, top to bottom), along with the triangulations induced by their original
lower hulls T∅ (top) and lower hulls after the deletion of v2 = 1, T2 (bottom).
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Figure 1.16: v2-deletion Gale diagram
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T∅ :

T2 :

T∅ :

T2 :

T∅ :

T2 :

Figure 1.17: v2-deletion-induced triangulations
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The compound GKZ-vectors obtained by adding the characteristic vectors corre-
sponding to the triangulations T∅ and T2 for the representative liftings of each region
in Figure 1.16 are shown below:

Region I: 〈1, 2, 2, 1〉+ 〈2, 0, 3, 1〉 = 〈3, 2, 5, 2〉,
Region II: 〈2, 0, 3, 1〉+ 〈2, 0, 3, 1〉 = 〈4, 0, 6, 2〉,
Region III: 〈3, 0, 0, 3〉+ 〈3, 0, 0, 3〉 = 〈6, 0, 0, 6〉,
Region IV: 〈1, 3, 0, 2〉+ 〈3, 0, 0, 3〉 = 〈4, 3, 0, 5〉,
Region V: 〈1, 3, 0, 2〉+ 〈2, 0, 3, 1〉 = 〈3, 3, 3, 3〉.

Next, we will utilize the same diagram in Figure 1.16, but we will instead use it
to study the regular triangulations corresponding to the Lawrence extension σv2(A)
(using c1 = 2, c2 = 4), pictured in Figure 1.18.

Figure 1.18: Lawrence extension σv2(A)

The 5 regular triangulations of this Lawrence extension corresponding to the place-
ment of −z in the 5 regions of Figure 1.16 are shown in Figure 1.19.
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(i) (ii) (iii)

(iv) (v)

Figure 1.19: Regular triangulations of the Lawrence extension

If we order the points in the Lawrence extension by v1,v
−
2 ,v

+
2 ,v3,v4, then the

corresponding characteristic vectors for the triangulations given by the regions of
Figure 1.16 are shown below:

Region I: 〈3, 4, 4, 5, 2〉,
Region II: 〈4, 6, 0, 6, 2〉,
Region III: 〈6, 6, 0, 0, 6〉,
Region IV: 〈4, 3, 6, 0, 5〉,
Region V: 〈3, 3, 6, 3, 3〉.

♦

Definition 1.3.18 Let A = {v1, . . . ,vn} be a collection of points in Rd of car-
dinality n ≥ d + 2 such that no (d + 1) points are affinely dependent and let
K = {vi1 , . . . ,vik} ⊂ A be such that |K| = k for some integer 0 ≤ k ≤ n− (d + 2).
Further, let LK denote the k-Lawrence extension:

Lk := σvi1
◦ . . . ◦ σvik

(A) ⊂ Rd+k.
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For any simplex S in a triangulation of LK , we see that the simplex must contain
at least one version, v−ij or v+

ij
corresponding to each point vij ∈ K, otherwise the

simplex would not have the appropriate dimension. For a particular simplex, we will
define the following sets:

K+(S) := {vij ∈ K | v+
ij
∈ S, v−ij /∈ S},

K−(S) := {vij ∈ K | v−ij ∈ S, v+
ij
/∈ S},

K±(S) := {vij ∈ K | v+
ij
∈ S, v−ij ∈ S}.

It is easy to see that these sets will partition K. We will also define the support
of S in A, suppA(S), by

suppA(S) := (S ∩A) ∪K±(S).

Lemma 1.3.19 Let A and K be defined as in Definition 1.3.18 and construct the
k-Lawrence extension so that if σvij

is the extension from Rd+j−1 to Rd+j, then the

corresponding extension heights c1 and c2 are chosen so that v−ij = vij + 2(d+ j)ed+j
and v+

ij
= vij + (d + j)ed+j. If volr(S) denotes the r-dimensional volume of an r-

dimensional simplex S, then we have that for any (d + k)-dimensional simplex S in
a triangulation of LK,

vold+k(S) = 2|K
−(S)| · vold(suppA(S)),

where K−(S) is as defined in Definition 1.3.18.

Proof. Note that Figure 1.20 may be helpful to look at when visualizing this proof.
Fix an arbitrary simplex S in LK and proceed by induction on k, noting that the
base case for k = 0 is trivially satisfied. Suppose the assumption holds up to some
k = r and consider the next case k = r + 1. We break into three cases depending
on which set K+(S), K−(S), or K±(S) the “last” element vik ∈ K falls into for the
simplex S:

Case 1: vik ∈ K+(S)

In this case, S can be thought of as a pyramid over a (d+k−1)-dimensional simplex
S ′ with apex v+

ik
at height d+k. Since suppA(S) = suppA(S ′) and K−(S) = K−(S ′),

we see by induction that the claim is satisfied.

Case 2: vik ∈ K−(S)

In this case, S can be thought of as a pyramid over a (d + k − 1)-dimensional
simplex S ′ with apex v+

ik
at height 2(d + k). Since suppA(S) = suppA(S ′) and
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|K−(S)| − 1 = |K−(S ′)|, we see by induction that the claim is satisfied.

Case 3: vik ∈ K±(S)

In this case, we note that our simplex S may be expressed as the difference of two
pyramids with common base S ′ = (S \{v+

ik
,v−ik})∪{vik} and with apexes v−ik and v+

ik
,

with heights 2(d + k) and d + k, respectively. This difference has the same volume
as the pyramid P with base S ′ and apex v+

ik
, which satisfies suppA(P ) = suppA(S)

and |K−(P )| = |K−(S)|. Since this reduces to Case I, we see by induction that our
claim is satisfied.

Figure 1.20: Double Lawrence extension in R3

Theorem 1.3.20 If LK1 , . . . , LK(n
k)

denote the
(
n
k

)
k-Lawrence extension polytopes

of A, then the k deletion-induced polytope Σk(A) is combinatorially equivalent to
a Minkowski sum of certain projections of the secondary polytopes corresponding to
LK1 , . . . , LK(n

k)
.
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Proof. Let A = {v1, . . . ,vn} be given and focus on a particular subset K =
{vi1 , . . . ,vik} ⊂ A of cardinality k. Let M be a Gale diagram corresponding to
A where the negatives of the points corresponding to vij ∈ K have been added. We
have seen previously that this diagram is not only the Gale diagram corresponding to
the k-Lawrence extension LK (defined in Definition 1.3.18), but also could be used to
study the possible deletion induced triangulations obtainable by removing K (or any
of its subsets) from a lifting ω of A. If we place a new point −z in general position
somewhere into the diagram, we saw that this induced a representative lifting ω(A)
which corresponded to a list of deletion-induced triangulations, and also produced a
particular regular triangulation of LK .

If we let

u :=
∑
K′⊂K

φ(TK′) where TK′ corresponds to the lower hull of ω(A \K ′),

and let u′ denote the characteristic vector corresponding to our regular triangulation
of LK , our aim is to first produce a projection P : Rd+k −→ Rd which will send u′ 7→ u
for −z placed in any general region. First label the set A \K by {vik+1

, . . . ,vin−k
}

and assume, without loss of generality, that coordinates of the characteristic vectors
u and u′ are ordered by:

u := (vi1 , . . . ,vik ,vik+1
, . . . ,vin−k

),

u′ := (v+
i1
,v−i1 , . . . ,v

+
ik
,v−ik ,vik+1

, . . . ,vin−k
).

The proposed projection P that will map u′ to u is defined by

P := (x1, x2, . . . , x2k−1, x2k, x2k+1, x2k+2 . . . , xn+k)

7→ (x1 + x2 − vol(LK), . . . , x2k−1 + x2k − vol(LK), x2k+1, x2k+2, . . . , xn)

To verify that this is the correct projection, first note that the presence of a
particular (d + k)-dimensional simplex S in LK implies that suppA(S) forms a d-
dimensional simplex in ω(A) where only the elements in K+(S) appear “below” the
simplex, and all other elements K−(S) appear “above” the simplex (recall that in
the Gale diagram we are looking at complements of these sets, this is why elements
vij ∈ K+(S) appear below, because these correspond to −vij being used to capture
the origin).

Now, if v ∈ A\K, and S is a simplex which contains v in our triangulation of LK ,
then Lemma 1.3.19 implied that S’s contribution to the coordinate corresponding to
v in u′ is equal to 2|K

−| · vold(suppA(S)). When we consider the corresponding sim-
plex suppA(S) in ω(A), we see that it only contributes its volume to the coordinate
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corresponding to v in u in deletions of sets K ′ ⊆ K where K+ ⊆ K ′. In other words,
in order for this simplex to be picked up in a lower hull after a deletion, we must
at least delete all of the vertices that appear below this simplex in ω(A). There are
2|K

−| such sets K ′, hence the coordinates corresponding to v in u and u′ will be equal
if v /∈ K.

Next, suppose that vij ∈ K. The only simplices S of LK which will correspond to
simplices suppA(S) in ω(A) which contain vij are those which have vij ∈ K±(S). If
we can restrict our view to the contribution of these simplices, Lemma 1.3.19 would
guarantee that the sum of their volumes would appropriately match the coordinate
corresponding to v in u. In order to obtain the sum of volumes of this restricted set of
simplices, we note that every simplex S must be adjacent to at least one of v+

ij
or v−ij

in LK . Thus if we sum the volumes of all simplices adjacent to v+
ij

and the volumes

of all simplices adjacent to v−ij and subtract the total volume of LK , we obtain the

sum of volumes of all simplices S adjacent to both v+
ij

and v−ij . This is equivalent to

summing the coordinates corresponding to v+
ij

and v−ij in u′ and subtracting the total
volume of LK . This establishes that P is indeed the correct projection.

Finally, we note that by projecting the secondary of LK for a particular K, we
are obtaining polytopes whose vertices are of the form u described previously. By
taking the Minkowski sum of these polytopes projected from LK1 , . . . , LK(n

k)
, we will

obtain the polytope Σ̃χ,k(A) where χ is defined as follows:

χ(x) =

(
n

k −#(x)

)
,

where #(x) denotes the cardinality of the subset corresponding to coordinate x. In
other words, the characteristic vectors corresponding to deletions of k-subsets are each
counted once, characteristic vectors corresponding to deletions of (k− 1)-subsets are
each counted n times, and so on down to the characteristic vector corresponding to
the original lower hull (no deletions) which is counted

(
n
k

)
times. This polytope was

proven to be combinatorially equivalent to Σk(A) in Theorem 1.3.3.

Example 1.3.21 Consider the secondary polytope corresponding to the Lawrence
extension σv2(A) constructed as the convex hull of the characteristic vectors pro-
vided in Example 1.3.17. Theorem 1.3.20 implies that we can construct the following
projection to map the characteristic vectors of the secondary onto the compound
GKZ-vectors also provided in Example 1.3.17:

P : R5 −→ R4, (x1, x2, x3, x4, x5) 7→ (x1, x2 + x3 − Area(σv2(A)), x4, x5),

where coordinates x2 and x3 in the characteristic vector recorder the area of triangles
incident to v−2 and v+

2 , respectively, and Area(σv2(A))=6. We verify the projection
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for each region in Figure 1.16:

Region I: P (〈3, 4, 4, 5, 2〉) = 〈3, 2, 5, 2〉,
Region II: P (〈4, 6, 0, 6, 2〉) = 〈4, 0, 6, 2〉,
Region III: P (〈6, 6, 0, 0, 6〉) = 〈6, 0, 0, 6〉,
Region IV: P (〈4, 3, 6, 0, 5〉) = 〈4, 3, 0, 5〉,
Region V: P (〈3, 3, 6, 3, 3〉) = 〈3, 3, 3, 3〉,

If we were to repeat this process for elements v1,v3, and v4, then take the
Minkowski sum of each of the projected polytopes, Theorem 1.3.20 would imply that
the result would be combinatorially equivalent to Σ1(A), where A = {0, 1, 2, 3} ⊂ R.

♦

1.4 Further Questions

The deletion construct discussed so far gives a method to construct a family of poly-
topes corresponding to a point set A with the secondary polytope corresponding to
A as the “base” member. We have seen that the Gale diagrams of each successive
member in the family correspond to finer and finer subdivisions of the surface of a
hypersphere, and so, in a sense, each polytope in the family is a refinement of the
previous member.

The secondary polytope introduced in [5] was later described as a special case of
fiber polytope arising from the projection of the (n−1)-simplex onto a polytope with
n vertices. It would be interesting to see what connections, if any, could be made
using this deletion process to study more general fiber polytopes than the secondary.
Of particular interest would be the study of zonotopes, which arise as the projections
of high dimensional cubes.

Copyright c© Clifford Taylor, 2015.
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Chapter 2 The Case of 1 Deletions of the Line

2.1 Definitions and Notation

In this chapter, we will explicitly focus on point sets A ⊂ R, i.e. d = 1. Specifically,
let n > 4 be an integer and let A denote the set of integers {1, . . . , n}. As in the pre-
vious chapter, we will let ω ∈ Rn be thought of as a “lifting vector” with coordinate
ωi being appended to the point vi ∈ A, 1 ≤ i ≤ n, to lift each point off of the x-axis
and into R2. We will refer to the set of lifted points as ω(A) and will initially only
consider ω such that no set of 3 points in ω(A) are collinear. In this chapter, we will
also fix k = 1 and so only consider 1 deletion-induced triangulations. To each ω, we
assign the set of 1 deletion-induced triangulations as outlined previously.

Example 2.1.1 Let A = {1, 2, 3, 4, 5} and consider the lifting ω = 〈1, 3, 2, 3, 1〉. The
set of 1 deletion-induced triangulations T1, T2, T3, T4, and T5 corresponding to this
ω is shown in Figure 2.1. ♦

(i) T1 (ii) T2 (iii) T3

(iv) T4 (v) T5

Figure 2.1: 1 deletion-induced triangulations
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Example 2.1.2 The following are the characteristic vectors corresponding to the
triangulations given in Figure 2.1:

φ(T1) = 〈0, 1, 3, 0, 2〉, φ(T2) = 〈4, 0, 0, 0, 4〉, φ(T3) = 〈4, 0, 0, 0, 4〉

φ(T4) = 〈4, 0, 0, 0, 4〉, φ(T5) = 〈2, 0, 3, 1, 0〉.

♦

For the lifting ω given in Example 2.1.1, we find φ1(ω) = 〈14, 1, 6, 1, 14〉. For the
rest of this chapter, we will omit referring to the “1-compound” GKZ-vectors since k
will always be fixed at 1. Instead, we will just call them compound GKZ-vectors. To
further investigate the properties of the compound GKZ-vectors when k = d = 1, we
introduce some machinery.

Definition 2.1.3 We define the orientation function O on the set of lifted points
ω(A), as follows:

Oω : A3 −→ R, (i, j, k) 7→ det

∣∣∣∣∣∣
i j k

ω(i) ω(j) ω(k)
1 1 1

∣∣∣∣∣∣
where i < j < k. We will omit the subscript if it is clear from which lifting we are
considering orientations.

Definition 2.1.4 Utilizing the orientation function described in Definition 2.1.3, we
classify the points (j, ω(j)) corresponding to a particular lifting ω of A via the
following. The point (j, ω(j)) is

• Visible (from below) in ω if O(i, j, k) < 0 for all pairs (i, k) with i < j and
k > j,

• Not Visible (from below) in ω if there exists i, k such that i < j < k and
O(i, j, k) > 0,

• Semi-Visible (from below) in ω if i and k are the positions of the nearest visible
neighbors to the left and right of j, respectively, and O(i, j, k) = 0.

We will extend these descriptions to particular deletions of ω in the natural manner
and will usually refer to a particular point (j, ω(j)) in a lifting simply as “j”. Note
that initially we only consider liftings which produce points in general position, thus
no point would be semi-visible. We will require this distinction later in the paper.

Example 2.1.5 Consider the lifting ω = 〈4, 2, 1, 2, 4, 4, 2〉 where we delete the point
3, illustrated in Figure 2.2. The points are classified as follows: points 1, 2, and 7 are
visible, point 4 is semi-visible, and points 5 and 6 are not visible in this particular
deletion of ω. ♦
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Figure 2.2: Visibility example

Definition 2.1.6 We will define the support of a characteristic vector φ(T ) as the
set of indices of nonzero positions in φ(T ), and denote it by supp(φ(T )). Note that we
can determine the entries in the characteristic vector with knowledge of the support
and vice versa, which in turn allows us to reconstruct the triangulation T .

Proposition 2.1.7 Two different liftings ω and ω′ of A produce the same compound
GKZ-vector iff the corresponding deletion-induced triangulations Ti and T ′i match for
deletions i = 1, . . . , n.

Proof. This result for characteristic vectors of regular triangulations is given in [3]
and [6], but we will reproduce the spirit of the argument here and extend to sets of
deletion-induced triangulations as it will be useful to reference later in the chapter.
The fact that two liftings with identical sets of deletion-induced triangulations will
produce the same compound GKZ-vectors is clear, as the characteristic vectors will
match at each deletion. Next, for a fixed lifting ω and any regular triangulation T
of the set of points A, consider the inner product ω · φ(T ). For liftings into R2, this
inner product records the sum of 2 times the areas of the trapezoids whose bases are
determined by T and whose heights are determined by the lifting ω. It is an easy
algebraic exercise to show the following:

• If T is a triangulation of A satisfying i /∈ supp(φ(T )) for some position i which
is visible in ω, then T ′ satisfying supp(φ(T ′)) = supp(φ(T )) ∪ {i} gives the
relation ω · φ(T ′) < ω · φ(T ).

• If T is a triangulation of A satisfying i ∈ supp(φ(T )) for some position i which
is not visible in ω, then T ′ satisfying supp(φ(T ′)) = supp(φ(T )) \ {i} gives the
relation ω · φ(T ′) < ω · φ(T ).
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• If T is a triangulation of A satisfying i ∈ supp(φ(T )) for all positions i which
are visible in ω, then T ′ satisfying supp(φ(T ′))4 supp(φ(T )) = {j}, for some
position j which is semi-visible in ω gives the relation ω · φ(T ′) = ω · φ(T ).

This allows us to conclude that a characteristic vector φ(T ) minimizes ω · φ(T )
exactly when supp(φ(T )) contains all visible positions of ω, no non-visible posi-
tions, and some (possibly empty) subset of semi-visible positions of ω. Since we
initially only consider general liftings, we do not have semi-visible points, and hence
the support of characteristic vectors must be exactly the set of visible points of ω,
which in turn corresponds to selecting the triangulation obtained by projecting the
lower hull of conv(ω(A)) in order to minimize this inner product. Since φ(ω) is con-
structed precisely as the sum of these lower hull induced triangulations, we have that
ω ·φ(ω) ≤ ω ·φ(ω̃) for any lifting ω̃. Further, we are given that ω ·φ(ω) = ω ·φ(ω′), so
it must be the case that the set of deletion-induced triangulations corresponding to
ω′, T ′1 , . . . , T ′n minimize the individual inner products ω · φ(T ′i ) which in turn implies
that the triangulations Ti and T ′i must match for i = 1, . . . , n, as both must be given
by projections of the lower hulls of conv(ω(A) \ {i}) for i = 1, . . . , n.

Definition 2.1.8 We construct the deletion-induced polytope corresponding to A,
Σ1(n), by first forming the set

B :=
{
v | v = φ(ω) for some lifting ω of A

}
,

and taking

Σ1(n) := conv (B) .

In this particular chapter, we denote the polytope by Σ1(n) and not Σ1(A), since
A will always correspond to n equally spaced points on the line.

That B is a finite set follows from the fact that φ(ω) can be uniquely determined
if one knows the orientations of every set of 3 points in ω(A), which gives the rough

upper bound |B| ≤ 2(n
3). This bound is a large overestimate, however, since not every

set of orientations is realizable by a lifting and because two liftings with slightly
differing sets of orientations may still potentially produce the same compound GKZ-
vector.

Corollary 2.1.9 Each compound GKZ-vector is a vertex of Σ1(n). In other words,
no compound GKZ-vector lies in the interior of the convex hull of the other compound
GKZ-vectors.
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Proof. In Proposition 2.1.7, we saw that if ω was a lifting which produced the com-
pound GKZ-vector v, then ω ·v < ω ·v′ for any compound GKZ-vector v′ 6= v. Thus
ω · x = ω · v is a vertex supporting hyperplane for the compound GKZ-vector v.

If we let v1,v2, . . . denote the vertices of Σ1(n) (i.e. the distinct compound-GKZ
vectors), then each of the vertices vi will satisfy the following two linearly distinct
relations:

• 〈1, 1, . . . , 1〉 · vi =
n∑
j=1

(d+ 1)vol (conv (A\{j})),

• 〈1, 2, . . . , n〉 · vi =
n∑
j=1

(d+ 1)vol (conv (A\{j})) c(A\j),

where c(A\j) denotes the position of the centroid of conv(A\j). This is a natural
consequence of the relations found to be satisfied by “ordinary” GKZ-vectors in [3] and
[6]. We have established indirectly in Chapter 1 that Σ1(n) has dimension n− 2, and
later in Section 2.2, after we describe and utilize a combinatorial structure underlying
the vertices, we will be able to give a different argument for this fact.

Figure 2.3 shows the family Σk(A) for A corresponding to 5 evenly spaced points
on a line, with k = 0, 1 and 2.
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(i) Σ0(A) (ii) Σ1(A)

(iii) Σ2(A)

Figure 2.3: Σk(A) for 5 points on a line - k = 0, 1, 2

2.2 Combinatorial Structure

In order to further investigate the properties of Σ1(n), we will outline a combinatorial
structure underlying the compound GKZ-vectors. In particular, we will describe a
map which sends compound GKZ-vectors / representative liftings to words in a special
alphabet.

Definition 2.2.1 Let C denote the set of equivalence classes on liftings of A where
we declare two liftings to be equivalent if they are associated with the same compound
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GKZ-vectors. Consider the map

f : C → [M,L,R, LR,E]n, f(ω) 7→ P (ω),

which assigns to each lifting ω an n-tuple of letters P (ω). Each position i from 1 to
n in a particular lifting ω will be assigned a letter via the following method:

• i 7→M if and only if the point (i, ω(i)) is a part of the lower hull of conv(ω(A)).
Note, this means positions 1 and n will always be assigned an M .

• i 7→ LR if and only if the point (i, ω(i)) is not visible in the original lower hull,
but becomes visible after the single deletion of each its nearest “M neighbors”
to the left and right.

• i 7→ L if and only if the point (i, ω(i)) only becomes visible after the deletion
of its nearest left M neighbor, but it is not visible after the deletion of its right
M neighbor.

• i 7→ R if and only if the point (i, ω(i)) only becomes visible after the deletion
of its nearest right M neighbor, but it is not visible after the deletion of its left
M neighbor.

• i 7→ E if and only if the point (i, ω(i)) is not visible in the deletion of its left M
neighbor nor its right M neighbor, and hence not visible in any single deletion
of A.

It is not difficult to check that this map is well defined on C. We will call the
n-tuple P (ω) the deletion pattern associated to ω and will interchangeably refer to
a vertex by the compound-GKZ vector which formed it or by its associated deletion
pattern. This is reasonable since two distinct compound-GKZ vectors cannot share
the same pattern.

The letters were chosen as an extension of the combinatorial structure that can
be placed on the vertices of the secondary polytope ([13], [1]) corresponding to points
on a line. The secondary polytope is formed by taking the convex hull of all char-
acteristic vectors corresponding to regular triangulations formed by projecting just
the lower hull of conv(ω(A)) and taking no deletions. In the case of the secondary,
the only characteristic that we need keep track of for a particular lifting is whether a
point is a “+” (not visible from below in the lifting), or a “−” (visible from below in
the lifting). This led to the choice of “M” to represent minus. As for the points that
are not visible, we see that the only possible deletions which could reveal them were
the nearest visible neighbors to the left and right which should make the meaning
behind L, R, and LR is self-explanatory. The “E” corresponds to “empty” reflecting
the fact that no single deletion can bring this point into visibility.
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Example 2.2.2 The lifting ω = 〈1, 3, 4, 2, 3, 5, 1〉 in Figure 2.4 will have the associ-
ated deletion pattern P = (M,L,E, LR,R,R,M). ♦

Figure 2.4: Deletion pattern example

For the proof of the following theorem, when we are considering a particular lifting
ω, we will write l(i, j) for 1 ≤ i, j ≤ n with i 6= j, to refer to the line through the
lifted points (i, ω(i)) and (j, ω(j)).

Theorem 2.2.3 Let P be an arbitrary deletion pattern of length n and let P [i] denote
the ith position in the pattern P . The following conditions are necessary and sufficient
for the pattern P to be realized by a lifting, i.e. P = P (ω) for some lift ω:

i) P [1] and P [n] must both be M ’s.

ii) P [2] must be in the set {M,L,LR} and P [n− 1] must be in the set {M,R,LR}.

iii) Let i < k with P [j] 6= M for all i < j < k. Then it cannot be the case that both
P [i] belongs to the set {R,LR} and P [k] belongs to the set {L,LR}. In other
words, a term containing an R cannot appear before a term containing an L if
they are not separated by an M .

Proof. It is easy to see that the conditions are necessary for a pattern P to be
realized by a lifting ω. In order to show that they are also sufficient, first consider a
pattern P which has only two M ’s, M1 < M2. It is clear that if |P | = 2 or 3 then
a lifting ω which supports P is constructible. If |P | ≥ 4, then we are guaranteed
that 2 is assigned an L or LR and n − 1 is assigned an R or LR (though not both
an LR). If pattern P has a position assigned an LR, let j denote the index of this
position. Otherwise, let j denote the position exactly midway between the last L
and the first R appearing in P (guaranteed to exist if |P | ≥ 4 and doesn’t have an
LR). Set ω(M1) = ω(M2) = 0 and set ω(j) = 1. If we let f(x) = (x− j)2 + 1, then
for positions i assigned an L, we set ω(i) = l(j,M2)(x) + εLf(x) and for positions i
assigned an R we set ω(i) = l(M1, j)(x) + εRf(x) for some small εL, εR > 0. We see
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that we can shrink εL small enough so that the x coordinate of the intersection of
lines l(2,M2) and l(M1, j) occurs strictly between j and j+1. Similarly we can shrink
εR small enough so that the x-coordinate of the intersection of lines l(M1, n− 1) and
l(j,M2) occurs strictly between j − 1 and j. This process is depicted in Figure 2.5.

(i)
(ii)

Figure 2.5: Single interval construction example

To finish describing the lifting vector ω, consider the positions i which are assigned
an E. We set ω(i) large enough so that (i, ω(i)) lies above both lines l(1, n− 1) and
l(2, n). This guarantees that these positions will not be revealed by single deletion,
and we can clearly place the lifted E’s to avoid forming any collinearities with the
previously placed points. It is clear that this lifting ω is in general position and will
correspond to the pattern P .

For patterns P with strictly more than 2 M ’s, we can build up the corresponding
lifting by an inductive process. We will label the positions of the M ’s appearing
in the pattern P with M1,M2,M3, . . ., and begin by placing ω(M1) = ω(M2) = 0
as before. This time, however, we will not necessarily be guaranteed positions with
both L- and R-visibility which would be used to “hide” the positions that lack L-
and R-visibility. We get around this by structuring the M ’s to hide visibility for the
appropriate points. We notice that if M2 −M1 ≤ 3, it is apparent how to construct
the first interval, so we will focus on cases where M2 −M1 ≥ 4.

If the interval [M1,M2] has an LR appearing, we will denote this position with
j. If no LR appears, we note that we are guaranteed positions with L-visibility, so
let iL denote the last L position in this interval. If there is a first R position in this
interval, let j denote the position exactly halfway between the two, otherwise, set
j = iL + 1

2
. Regardless of how j was picked, we set ω(j) = 1. If we let g(x) denote

the equation of line l(j,M2) and f(x) = (x− j)2 + 1, then for all positions i assigned
an L with M1 < i < j, we can set ω(i) = g(i) + εf(i) for some small ε > 0. We
see that we can choose ε small enough so that line l(2,M2) will intersect l(M1, j) at
x < j + 1

4
, which is depicted in Figure 2.6i. Since all positions assigned an R will be

placed above line l(M1, j) and have x-coordinate greater than or equal to j + 1, this
guarantees that l(2,M2) hides all of these points from L-visibility. Also, notice that
the point (j, 1) is visible after the deletion of M1 since all points with L visibility lie
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above the line l(j,M2).

Next, we set ω(M3) high enough so that this point lies strictly above line l(M1, j)
(to ensure that the point (j, 1) would be visible under deletion of M2 in case this
position corresponded to an LR). If there were positions assigned an L between M1

and j, let iL denote the rightmost of these positions. We will also want to guarantee
that ω(M3) is strictly below l(M1, iL), so that l(M1,M3) hides all L positions from
visibility under the deletion of M2. Note that ω(iL) > ω(j) in the case that iL exists,
so it is always possible for ω(M3) to fit appropriately between these lines. In practice
we will want to place ω(M3) very close to l(M1, j) for reasons which we will outline
shortly. This process is depicted in Figure 2.6ii. This extra restriction is not always
necessary to hide the L’s (many times they will be appropriately hidden by other
points), but it will be helpful when we are discussing liftings which support edges of
Σ1(n).

To place the R’s, let (xm, ym) denote the midpoint of the line segment from (j, 1)
to (M3, ω(M3)). We will consider a new point q = (xm, ym − ε) for some small ε > 0
and let P (x) denote the equation of the unique (necessarily upward opening) parabola
between (j, 1), (xm, ym − ε), and (M3, ω(M3)). Since M3 lies above l(M1, j), we see
that we can choose ε small enough so that P (x) > l(M1, j)(x) for all x ∈ [j + 1,M3].
We then set ω(i) = P (i) for any position i assigned an R with j < i < M2, which is
depicted in Figure 2.6iii. Since the slope of l(M1, i) must be steeper than the slope
of l(M1, i) for any such i, we see that point (j, 1) and all points assigned an R be-
tween j and M2 must be visible under the deletion of M2. Further note that since
we could place ω(M3) arbitrarily close to the line l(M1, j) and we are free to make
the drop ε of point q from line l(j,M3) as slight as we like, we can orchestrate the
placement of the R’s such that if there is a last R position, call it k, we can make
|l(M1,M3)(x)− l(k,M3)(x)| as small as we like for any fixed position x > M3. We
will utilize this fact when we append more lifted intervals to this one.

For any positions assigned an E in the entire pattern, we will wish to guarantee
that they lie above both the line l(M1, n−1) and the line l(2,Mn). Since we do not yet
know the lifting heights of positions n− 1 and Mn, we will assume that the E’s have
been placed suitably high. To recap the construction so far, we note all L positions
and (j, 1) are visible after the removal of M1, all R positions and (j, 1) are visible
after the removal of M2, the line l(M1,M3) hides the L positions from R-visibility,
and the line l(2,M2) hides all the R positions from L-visibility, as seen in Figure 2.6iv.

Now suppose that we have finished determining the height of our lifting up to
some Mm for 2 ≤ m < n and have already reached forward and placed Mm+1 to
ensure the appropriate visibility of any L-positions occurring between Mm−1 and Mm

after the deletion of Mm. Further, if there is a last R position in [Mm−1,Mm], which
we will call k, we will make the assumption that |l(k,Mm+1)(x)− l(Mm−1,Mm+1)(x)|
can be made arbitrarily small over all 1 ≤ x ≤ n without affecting the visibility of
any points in [M1,Mm] (Note that our base case satisfied this condition). We will
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(i)
(ii)

(iii) (iv)

Figure 2.6: First interval construction example

start by assuming that Mm+1 < n, so we know that there are additional M ’s to
place. Before determining the lifting heights of the non-M positions between Mm

and Mm+1, we first locate a position j to separate the L’s from the R’s as we did in
[M1,M2]. We are no longer guaranteed either an LR or last L in this interval, so we
must add a few steps. If the interval [Mm,Mm+1] has an LR, let j denote its position.
If not, then check for the existence of a position iL denoting the position of the last
L in the interval, and a position iR denoting the first R. If both exist, set j equal
to (iL + iR)/2. If only iL exists, set j = il + 1

2
, and similarly, if only iR exists, set

j = iR − 1
2
. Lastly, note that if neither an LR, iL, nor iR exists in this interval, then

either Mm+1 −Mm = 1, or all positions in (Mm,Mm+1) are assigned an E. In either
case it is clear how the interval should be constructed, and we only need place Mm+2

so that it lies strictly above l(Mm,Mm+1).

Supposing that we are able to find a position j in this interval, then we lift Mm+2

high enough so that the intersection of lines l(Mm,Mm+2) and l(k,Mm+1) occurs on
the line x = j, where k denotes the rightmost position with R-visibility (assigned an
LR or R) in [Mm−1,Mm]. Notice that we may utilize our previous condition on the
lines l(k,Mm+1) and l(Mm−1,Mm+1) to assure that the intersection of l(Mm−1,Mm+1)
and l(Mm,Mm+2) occurs within some arbitrarily small interval around j. If no such
position k exists, then lift Mm+2 to the appropriate height so that the intersection of
lines l(Mm,Mm+2) and l(Mm−1,Mm+1) occurs on the line x = j. Note this is always
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possible and guarantees that Mm+2 will lie strictly above the line l(Mm,Mm+1). This
step is illustrated in Figure 2.8i.

Within the interval [Mm,Mm+1] our goal is to place any position assigned an L
inside the triangle bounded by lines l(Mm,Mm+2), l(Mm−1,Mm+1), and x = Mm,
any R’s in the triangle formed by l(Mm,Mm+2), l(Mm−1,Mm+1), and x = Mm+1, any
LR’s in the triangle formed by lines l(Mm,Mm+2), l(Mm−1,Mm+1), and l(Mm,Mm+1),
and lastly, any E’s above both lines l(Mm,Mm+2) and l(Mm−1,Mm+1). These regions
are outlined in Figure 2.7, and we note that the placement of Mm+2 dependent on
the position j guarantees that a point can be lifted into the appropriate region when
necessary (not so much of an issue if we failed to assign a position j). Although it is
possible to have a lifting where an R can lie below line l(Mm−1,Mm+1), for instance, as
long as there are nearby L positions to hide it from visibility when Mm is deleted, we
are avoiding such pathological examples, and will only rely on the positions of nearby
M ’s: Mm−1,Mm,Mm+1 and Mm+2, to restrict visibility to the points in (Mm,Mm+1)
appropriately. This is another condition which will become very handy when we are
constructing liftings which support edges of Σ1(n).

Figure 2.7: Deletion regions

We first focus on lifting the L’s in interval [Mm,Mm+1] so that not only do they
have the appropriate visibility, but also they do not adversely affect the visibility of
any position with R-visibility in [Mm−1,Mm]. If interval [Mm−1,Mm] had a point
with R-visibility (assigned an LR or an R), let k denote the rightmost such position.
If y denotes the y-coordinate of the intersection of l(k,Mm+1) and l(Mm,Mm+2), we
will set ω(j) = y − ε for some small ε > 0 (recall that the intersection of these lines
was orchestrated to occur on x = j). If we let PL(x) denote the (necessarily up-
ward opening) parabola through (k, ω(k)), (j, y− ε), and (Mm+1, ω(Mm+1)), then we
note that ε can be chosen small enough so that any lifted position with R-visibility
in [Mm−1,Mm] lies above PL(x). Further, a sufficiently small ε will also guarantee
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that PL(x) > l(Mm,Mm+2)(x) for Mm ≤ x ≤ j − 1
4

(this requires the condition that
restricts the x-coordinate of the intersection of l(Mm−1,Mm+1) and l(Mm,Mm+2) to
occur within some arbitrarily small interval around j) . With such an ε chosen,
we set ω(i) = PL(i) for any position i assigned an L with Mm < i < j. We no-
tice that neither position j nor one of these positions i is capable of hiding an R in
[Mm−1,Mm] from visibility under the deletion of Mm. Further, each of these positions
i and position j is visible under the deletion of Mm, and all of these i are shielded
from R-visibility by the line l(Mm,Mm+2). If the previous interval [Mm−1,Mm] had
no position k with R-visibility, we repeat this argument with k = Mm−1 (No need to
worry about affecting R-visibility in the previous interval). This step is illustrated in
Figure 2.8ii.

We invoke a similar process to lift the R’s in [Mm,Mm+1] and consider the (neces-
sarily upward opening parabola) PR(x) through the points (Mm, ω(Mm)), (j, y − ε),
and (Mm+2, ω(Mm+2)). We can shrink ε even further if necessary to guarantee that
PR(x) > l(Mm−1,Mm+1)(x) for all j+ 1

4
< x ≤Mm+2 (again relying on the condition

which forces the x-coordinate of the intersection of l(Mm−1,Mm+1) and l(Mm,Mm+2)
to occur within some arbitrarily small interval around j). Notice that shrinking ε fur-
ther will not adversely affect the visibility of the L’s that we had placed previously,
though it will perturb them a bit. We can then set ω(i) = PR(i) for any i assigned an
R with j < i < Mm+1. This step is illustrated in Figure 2.8iii. Notice that when we
delete Mm+1 we are guaranteed that position j and all of these i are visible. Further,
all of these positions i are shielded from L-visibility by the line l(Mm−1,Mm+1). Fig-
ure 2.8iv depicts all of the newly lifted points in our interval. We note that if there
is a last R in the interval [Mm,Mm+1], say at position k′, we can choose ε sufficiently
small enough to guarantee that |l(Mm,Mm+2)(x)− l(k′,Mm+2)(x)| is as small as we
like for any fixed position x > Mm+2, which will satisfy one of our inductive hypothe-
ses.

Our last case to consider is if Mm+1 = n, that is, if there was no need to
reach forward to place Mm+2. In this case, we can put an artificial Mm+2 so that
Mm+2 = Mm+1 + 1 and proceed with the construction of the lifting as we did in
previous intervals. Although we no longer really have the line l(Mm,Mm+2) to block
any L’s in [Mm,Mm+1] from R-visibility, we are guaranteed to have some points with
R-visibility (that is, as long as Mm+1 6= Mm + 1, in which case this argument would
be unnecessary). We note that for any position i with R-visibility in this interval,
the line l(Mm, i) will serve to hide our L’s from R-visibility.

We see that if we string enough of these constructions together, we will be able
to complete the lifting interval by interval. As was mentioned earlier, we will want
to double check that all E’s are lifted sufficiently high enough so that they lie above
both the line l(M1, n−1) and the line l(2,Mn) (which are now determined). The last
thing to note is that we may have coincidentally introduced some collinearities while
constructing this lifting. We know, however, that all of the important orientations on
triples of points which determine visibility are strictly positive or negative. Thus we
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(i) (ii)

(iii) (iv)

Figure 2.8: Middle interval construction

may make small enough perturbations on the points to break any collinearities while
maintaining the appropriate visibility of the points. This will give us a lifting ω in
general position which corresponds to the pattern P .

Although we have established the dimension of these polytopes in the previous
chapter, we can utilize our combinatorial structure to produce an explicit set of
vertices of Σ1(n) whose affine span is n − 2 dimensional. To this end, let P1 denote
the length n pattern consisting entirely of M ’s and for i from 2 to n− 1 let Pi denote
the length n pattern consisting entirely of M ’s except for an LR at position i. Clearly
these patterns are all valid, and so correspond to vertices of Σ1(n). Working out the
compound GKZ-vectors φ(vj) from the given deletion patterns Pj, we find:

φ(v1) = 〈n, 2n− 2, 2n, 2n, . . . , 2n, 2n− 2, n〉.
φ(v2) = 〈2n− 3, 4, 3n− 3, 2n, 2n, . . . , 2n, 2n− 2, n〉,
φ(v3) = 〈n, 3n− 5, 6, 3n− 3, 2n, 2n, . . . , 2n, 2n− 2, n〉,
φ(vn−2) = 〈n, 2n− 2, 2n, 2n, . . . , 2n, 3n− 3, 6, 3n− 5, n〉, (the reverse of v3)

φ(vn−1) = 〈n, 2n− 2, 2n, 2n, . . . , 2n, 3n− 3, 4, 2n− 3〉, (the reverse of v2)

For 4 ≤ i ≤ n− 3, we have
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φ(vi) = 〈n, 2n−2, 2n, 2n, . . . , 2n, 3n− 3︸ ︷︷ ︸
i−1

, 6︸︷︷︸
i

, 3n− 3︸ ︷︷ ︸
i+1

, 2n, . . . , 2n, 2n−2, n〉.

Next we form a matrix whose rows correspond to the homogenized coordinates of
the compound GKZ-vectors corresponding to our chosen set of vertices:



1 n 2n− 2 2n 2n 2n 2n · · · 2n 2n 2n− 2 n
1 2n− 3 4 3n− 3 2n 2n 2n · · · 2n 2n 2n− 2 n
1 n 3n− 5 6 3n− 3 2n 2n · · · 2n 2n 2n− 2 n
1 n 2n− 2 3n− 3 6 3n− 3 2n · · · 2n 2n 2n− 2 n
1 n 2n− 2 2n 3n− 3 6 3n− 3 · · · 2n 2n 2n− 2 n
1 n 2n− 2 2n 2n 3n− 3 6 · · · 2n 2n 2n− 2 n
...

...
...

...
...

...
...

. . .
...

...
...

1 n 2n− 2 2n 2n 2n 2n · · · 6 3n− 3 2n− 2 n
1 n 2n− 2 2n 2n 2n 2n · · · 3n− 3 6 3n− 5 n
1 n 2n− 2 2n 2n 2n 2n · · · 2n 3n− 3 4 2n− 3


.

This matrix is row equivalent to the following full row rank matrix:



1 n 2n− 2 2n 2n 2n 2n · · · 2n 2n 2n− 2 n
0 n− 3 ? ? ? ? ? · · · ? ? ? ?
0 0 n− 3 ? ? ? ? · · · ? ? ? ?
0 0 0 n− 3 ? ? ? · · · ? ? ? ?
0 0 0 0 n− 3 ? ? · · · ? ? ? ?
0 0 0 0 0 n− 3 ? · · · ? ? ? ?
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · ? ? ? ?
0 0 0 0 0 0 0 · · · n− 3 ? ? ?
0 0 0 0 0 0 0 · · · 0 n− 3 ? ?


,

which implies that the affine span of our chosen vertices, and hence the polytope
Σ1(n), is n− 2 dimensional for n ≥ 4.

2.3 Vertex Count

In order to enumerate the number of distinct possible compound GKZ-vectors, and
hence the number of vertices of Σ1(n), we will utilize the combinatorial structure of
the compound GKZ-vectors outlined in the previous section. To begin, we introduce
the concept of an interval of a deletion pattern and classify 3 different types.
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Definition 2.3.1 An interval in a deletion pattern is a maximal block of consecutive
coordinates where the first (leftmost) coordinate is an M and which contains no other
M ’s. Intervals can be partitioned into 3 disjoint types:

i) A type A interval contains either the first M of the deletion pattern or the entry
in position n− 1, but not both.

ii) A type Â interval contains every entry of the deletion pattern except the rightmost
M .

iii) A type B interval contains neither the first nor the penultimate M .

The length of an interval will refer to the number of coordinates that it contains.

Example 2.3.2 To illustrate the different types of intervals, consider the following
two patterns:

(M,L,E,R︸ ︷︷ ︸
Type-A

,M,L,E, LR,E︸ ︷︷ ︸
Type-B

,M,L,E,E,R︸ ︷︷ ︸
Type-B

, M︸︷︷︸
Type-A

,M)

(M,L,E,E, L, L,E, LR,E,E,R,R,R,E,E︸ ︷︷ ︸
Type-Â

,M)

Note that every pattern is always terminated by a single “M”, which we will refer
to as a trivial interval. ♦

In order to count the total number of valid deletion patterns of length n, we note
that every such pattern is either: a composition of a type A interval followed by some
number of type B intervals (possibly 0) followed by a type A interval, or a single type
Â interval of length n − 1 (each case terminated by a trivial interval). In order to
find the o.g.f. (ordinary generating function) for valid deletion patterns, we will first
find the o.g.f.’s for the intervals of each type.

We will start with type B intervals as they have the least number of restrictions
on their entries. Let bn denote the number of type B intervals of length n and let
B(x) :=

∑
n≥1 bnx

n be the corresponding o.g.f. To determine an expression for bn,
we consider two separate cases:

Case 1: The interval has no LR term present.
In this case, there are n−1 places for the last (rightmost) L to appear in the interval.
After this, we are free to choose whether the remaining n − 2 entries are E or not,
with the non-empty entries being determined by their position relative to the last
L. If there is no last L, then we can freely choose which of the n − 1 entries are E,
with the rest being forced as R. Thus we have (n− 1)2n−2 + 2n−1 type B intervals of
length n with no LR term. Note that this formula correctly gives one trivial type B
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interval of length 1.

Case 2: The interval has an LR term present.
We have n − 1 positions to place the LR, and we can freely choose which of the
remaining n − 2 entries are E, with the non-empty positions being determined by
their position relative to the LR. This leaves us with (n− 1)2n−1 type B intervals of
length n with an LR appearing.

Combining the two cases, we can obtain the closed form of B(x):

B(x) =
∑
n≥1

(
(n− 1)2n−2 + 2n−1 + (n− 1)2n−1

)
xn =

x

(1− 2x)2
(2.1)

Next we will consider type A intervals and let an denote the number of type A in-
tervals of length n with A(x) :=

∑
n≥1 anx

n as the corresponding o.g.f. We will solve

for an using a count similar to that of bn, but we must exercise caution, as the 2nd

and (n− 1)st entries of valid deletion patterns have some extra restrictions. Without
loss of generality, we will assume that we are counting type A intervals which contain
the first M of the deletion pattern as the other case is symmetric. We will again
break into two cases depending on the entry in the “special” second position, with
the trivial length 1 case being considered afterwards.

Case 1: The second position is an L.
Filling the remaining n− 2 positions is analogous to enumerating the number of type
B intervals of length n− 1, thus we find there are (n− 1)2n−2 type A intervals of this
form.

Case 2: The second position is an LR.
We may freely choose which of the remaining n − 2 positions are E, with all non-
empty positions being forced as R’s. This gives us 2n−2 type A intervals of this form.

Combining the two cases and noting that we have a single trivial type A interval
of length 1 we obtain the following formula for A(x):

A(x) = x+
∑
n≥2

(
(n− 1)2n−2 + 2n−2

)
xn =

x(1− 2x+ 2x2)

(1− 2x)2
.

Lastly, we consider the type Â intervals of length n which have restrictions on
both the 2nd and (n− 1)st entries. We will let ân denote the number of type Â inter-
vals of length n and Â(x) := ânx

n be the corresponding o.g.f. We will consider the
degenerate cases n = 1, 2 separately and assume for now that n ≥ 3. This means that
we truly have two separate restricted positions, and we break into cases depending
on the entries in these locations:
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Case 1: The first position is an L and the (n− 1)st is an R.

Filling the remaining n− 3 positions is analogous to enumerating the number of
type B intervals of length n− 2, thus we find there are (n− 2)2n−3 type Â intervals
of this form.

Case 2: The first position is an LR and the (n− 1)st is an R.
In this case, we are free to choose which of the remaining n − 3 positions are filled
with an E and the rest must be R’s. This gives us 2n−3 type Â intervals of this form.

Case 3: The first position is an L and the (n− 1)st is an LR.
As in the previous case, we have 2n−3 type Â intervals of this form.

Noting that there is a single type Â interval of length 1 and a single of length 2,
we find that Â(x) is given by the following:

Â(x) = x+ x2 +
∑
n≥3

(
(n− 2)2n−3 + 2n−3 + 2n−3

)
xn =

x(1− 3x+ 3x2)

(1− 2x)2
.

Lastly, we let fn denote the number of valid deletion patterns of length n and
F (x) :=

∑
n≥1 fnx

n be the corresponding o.g.f. Recalling that deletion patterns are
built up as particular compositions of the 3 types of intervals, we find that

F (x) =
(
Â(x) + A(x)

(
B0(x) +B1(x) +B2(x) + · · ·

)
A(x)

)
x

=
(x3 + 2x2 − 3x+ 1)x2

1− 5x+ 4x2
,

where the middle expression is multiplied by x to account for the trivial length 1
interval that ends all deletion patterns. Our last task is to unpack this o.g.f. to solve
for a formula giving the number of vertices of Σ1(n):

F (x) =
(x3 + 2x2 − 3x+ 1)x2

1− 5x+ 4x2
,

=
77

256
+

13

64
x+

13

16
x2 +

1

4
x3 − 1

3

(
1

1− x

)
+

25

768

(
1

1− 4x

)
,

= x2 + 2x3 +
∑
n≥4

(
−1 + 25 · 4n−4

3

)
xn.

This establishes the following theorem.

Theorem 2.3.3 For |A| = n ≥ 4, Σ1(n) has
−1 + 25 · 4n−4

3
vertices.
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2.4 Edges

In order to derive a formula for the number of edges of Σ1(n) we must first outline
a combinatorial condition to determine exactly when a pair of vertices form an edge
in the polytope. In other words, we must look for liftings ω which “support” exactly
two vertices. This means that if we think of the lifting vector as the normal vector
to a hyperplane, we must have ω · v = ω · v′ = k, for two compound GKZ-vectors v
and v′ and some integer k. Further, for all other compound GKZ-vectors u 6= v,v′,
we require ω · u > k.

Recalling Proposition 2.1.7, we note that a lifting in general position (i.e. one
which possesses no semi-visible points in any of its deletions) will support only a
single vertex, namely the vertex given by the compound GKZ-vector corresponding
to this lifting. If our lifting had some collinearities, however, we saw that two distinct
triangulations could be supported by the same lifting so long as both had supports
containing all visible points, no non-visible points, and which differed only on the
semi-visible points. Example 2.4.1 outlines a case where a single lifting can support
two distinct lifting patterns.

Example 2.4.1 Consider the lifting ω = 〈1, 3, 2, 1〉 and the two distinct deletion
patterns P = (M,L,LR,M) and P ′ = (M,L,R,M). Figure 2.9 depicts the four
deletions of the lifting, and the four deletion-induced triangulations corresponding
to each P and P ′. We see that the deletions of 2, 3, and 4 have no semi-visible
points, hence when breaking the inner product up into its components ω · φ(ω) =
ω · φ(T1) + · · · + ω · φ(Tn), there is a single unique triangulation Ti of the appro-
priate point set which minimizes ω · φ(Ti) for i = 2, 3, 4. We see that both P and
P ′ have these appropriate triangulations, and so both minimize the inner products
corresponding to these deletions. In deletion 1, however, we have a single point which
is semi-visible. This means that there are exactly two possible triangulations which
could minimize the inner product with ω for this deletion, one that includes the semi-
visible point, and another which doesn’t. We see that P produces one of the possible
triangulations and P ′ the other.

The end result is that if v and v′ are the compound GKZ-vectors corresponding
to patterns P and P ′, respectively, then ω ·v = ω ·v′ ≤ ω ·u, for any other compound
GKZ-vector u. Further, we see that patterns P and P ′ are the only two patterns
which minimize the inner product as there are no other sets of triangulations which
would minimize the inner product of each deletion. This means that this lifting ω
provides the normal vector for an edge supporting hyperplane of Σ1(4). ♦

The following definition allows us to quantify how many vertices can be supported
by a particular non-general lifting.
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P :

P ′ :

P :

P ′ :

Figure 2.9: Edge-supporting lifting

Definition 2.4.2 An essential collinearity is a triple of collinear points (i, ω(i)),
(j, ω(j)), (k, ω(k)), i < j < k, in ω(A) such that there is at least one single deletion
of A in which the outer two points are visible and the middle point is semi-visible.
Note for |A| = n ≥ 4, this means that collinearities where (i, ω(i)) and (k, ω(k)) are
already visible on the lower hull of conv(ω(A)) qualify as essential. We will continue
to refer to a point (i, ω(i)) simply by “i”.
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Example 2.4.3 Consider liftings ω1, ω2, ω3, and ω4 depicted in Figure 2.10. We see
in ω1 we have the single essential collinearity (2, 3, 5) revealed by the deletion of point
4. Although ω2 has a couple of collinearities: (2,3,4) and (4,5,6), neither are essential
because they do not become visible under single deletion. Lifting ω3 has two essential
collinearities, namely (2,3,5) and (3,4,6). Lifting ω4 has the four essential collineari-
ties (2,3,5), (2,4,5), (2,3,4), and (3,4,5). ♦

(i) ω1 = 〈3, 1, 2, 1, 4〉 (ii) ω2 = 〈4, 1, 2, 3, 2, 1, 4〉

(iii) ω3 = 〈3, 1, 1, 2, 1, 4〉 (iv) ω4 = 〈3, 1, 1, 1, 1, 3〉

Figure 2.10: Essential collinearities

Lemma 2.4.4 A lifting can support exactly two compound GKZ-vectors, and hence
an edge in Σ1(n), if and only if it has a single essential collinearity. Further, if two
compound GKZ-vectors do form an edge, their corresponding deletion patterns differ
from each other in exactly one spot, and the differing labels must form one of the
pairs (M,LR), (LR,L), (LR,R), (L,E) or (R,E).

Proof. If a lifting has no essential collinearities, then that lifting has no semi-visible
points in any of its deletions. This means that the underlying triangulations Ti which
will minimize the inner product ω · φ(Ti) in each deletion i are uniquely determined,
which implies that this lifting can only support a single vertex.
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Next suppose that a lifting has at least two essential collinearities. This means
that we must have two distinct positions i and j with 1 ≤ i, j ≤ n which are semi-
visible in at least one deletion-induced triangulation. We can form at least four
distinct deletion patterns which will be supported by this lifting by independently
choosing to make the two semi-visible points either visible or not (if we incidentally
have more semi-visible positions, these can also be set to visible or non-visible sta-
tus as necessary). The liftings which produce these four sets of triangulations can
be constructed by slight perturbations of the semi-visible points of the original lifting.

Now that we have established that edge supporting liftings must have a single
collinearity, we pick an arbitrary lifting with a single collinearity and show that it
will support exactly two vertices of the form mentioned above. We break into cases
depending on how the single essential collinearity becomes visible. That is, either
the middle point j is already semi-visible in the lower hull, or it must be the case
that it becomes semi-visible in the single deletion one of its nearest M neighbors to
the left or to the right (if j is not semi-visible in the original lower hull, then it is
impossible for it to be revealed by both the deletion of its left and right nearest M
neighbors). Notice that in each case, position j is the only semi-visible position, thus
the presence or absence of all other positions in each deletion-induced triangulation
is determined, and hence their letter descriptor in the deletion pattern is fixed.

Case 1: The middle point j is semi-visible in the original lower hull.
Being visible in the original lower hull forces the letters assigned to i and k to be

M ’s, and hence the single deletions of both i and k must make j visible. This rules
out the letters E,L, and R for position j. We see that a pattern with j set to either
M or LR would be supported. Setting j to an M would correspond to perturbing j
downward so that it becomes visible in all deletions but its own. Setting j to an LR
would make it visible only in the deletions that it is required to be, namely i and k,
and setting it to be non-visible in the other deletions.

Case 2: The middle point j becomes semi-visible after the deletion of its left M
neighbor and is not visible in the deletion of k.

Here there is only a single triangulation where we have the opportunity to choose
whether to make j visible or not. If we perturb up so that it is not visible in the
deletion of its left neighbor, then it is not visible in any deletions and hence must be
an E. If we perturb down to make it visible in this deletion, then it must be an L.

Case 3: The middle point j becomes semi-visible after the deletion of its left M
neighbor and is visible in the deletion of k.

In this case, j is not visible in the lower hull which rules out the possibility of
supporting a pattern with j assigned an M . Since it does become visible after a
deletion of k (which incidentally forces k to be an M), then we also rule out assigning
j the letters E and L. Assigning j to either LR or R would be supported, however,
and corresponds to perturbing j down or up, respectively.
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Case 4: The middle point j becomes semi-visible after the deletion of its right M
neighbor and is not visible under the deletion of i.

This is analogous to Case 2, and shows that this lifting supports patterns with j
assigned an E or an L.

Case 5: The middle point j becomes semi-visible after the deletion of its right M
neighbor and is visible under the deletion of i.

This is analogous to Case 3, and shows that this lifting supports patterns with j
assigned an LR or an R.

In each case, a lifting with a single essential collinearity supports exactly two ver-
tices which differ in a single position where the differences are exactly of the form
described.

The previous lemma allows us to observe that for a lifting with a single essential
collinearity, we may still assign letters to describe the deletion pattern on all positions
but the one in the middle of the essential collinearity, call it position j, as the visibil-
ity or non-visibility in each deletion is exactly determined. We can also see that the
inner product of a compound GKZ-vector and this lifting will be minimized exactly
when the deletion patterns match on all positions but j, and the letter assigned to
j in the GKZ vector is one of the two possibilities determined by how the essential
collinearity in the lifting becomes visible.

Definition 2.4.5 The following functions will aid in the proof of Theorem 2.4.6 and
will describe the positions of various neighbors for a given position i and lifting ω.
They are defined as follows:

ML,MR,M
2
L,M

2
R,M

′
L,M

′
R : {1, 2, . . . , n} × Rn −→ {1, 2, . . . , n} ∪ {∅},
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ML(i, ω) 7→ j, where j is the position of the nearest visible neighbor (M) to the

left of i on the original lower hull of ω. If no such j exists, we

return ∅,
MR(i, ω) 7→ j, where j is the position of the nearest visible neighbor (M) to the

right of i on the original lower hull of ω. If no such j exists, we

return ∅,
M2

L(i, ω) 7→ j, where j is the position of the second nearest visible neighbor (M)

to the left of i on the original lower hull of ω. If no such j exists,

we return ∅,
M2

R(i, ω) 7→ j, where j is the position of the second nearest visible neighbor (M)

to the right of i on the original lower hull of ω. If no such j exists,

we return ∅,
M ′

L(i, ω) 7→ j, where j is the position of the nearest visible neighbor to the left

of i after the deletion of ML(i, ω) in ω. If ML(i, ω) = ∅ or

this new nearest neighbor does not exist, we return ∅,
M ′

R(i, ω) 7→ j, where j is the position of the nearest visible neighbor to the right

of i after the deletion of MR(i, ω) in ω. If MR(i, ω) = ∅ or

this new nearest neighbor does not exist, we return ∅.

Note that the label assigned to a position M ′
L(i, ω),M ′

R(i, ω) (assuming it is not ∅)
does not have to be an M . It could be brought into the lower hull after the deletion.
If it is clear from context, we will omit writing which lifting ω we are analyzing.

Theorem 2.4.6 There is an edge between two vertices if and only if the two corre-
sponding deletion patterns differ in exactly one coordinate, and the differing entries
are connected by an edge in the following graph:
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Figure 2.11: Diamond swap graph

Note: throughout the rest of this section, we will refer to the replacing of a single
element in a deletion pattern by an adjacent element in the graph depicted in Figure
2.11 as a “diamond swap”. We will refer to the position being changed in the dia-
mond swap as the “swapped position”.

Proof. Lemma 2.4.4 provided the necessity of this statement, what remains is to
prove the sufficiency. So suppose that two deletion patterns PA and PB are given
which match the conditions claimed to produce an edge. Our goal is to produce a
lifting ω with a single essential collinearity that supports these two vertices (the fact
that it can only support two vertices was also established in Lemma 2.4.4).

To produce this lifting, take the patterns corresponding to the two given vertices,
PA and PB, and perform the construction outlined in Theorem 2.2.3 to obtain two
liftings ωA and ωB which support the vertices. For certain types of diamond swaps,
we will require the liftings to satisfy additional properties, so let ωA and ωB denote
liftings which correspond to the reverse of patterns A and B, respectively, which are
then reflected across the line x = (n + 1)/2. We will refer to the swapped position
in the two corresponding patterns as position j. Note that in any lifting, M ′

L(j) and
M ′

R(j) will not be ∅ for positions j with 2 < j < n− 1, but M ′
L(j) = ∅ if j = 2 and

M ′
R(j) = ∅ if j = n− 1. We will not need the “existence” of M ′

L(j) and M ′
R(j) in the

liftings ωA and ωB in these restricted circumstances due to the fact that the types of
swaps which are allowable at these positions are suitably limited. Lastly, we see that
we need not distinguish between consideration of ωA or ωB as ML(j, ωA) = ML(j, ωB),
MR(j, ωA) = MR(j, ωB), M ′

L(j, ωA) = M ′
L(j, ωB), and M ′

R(j, ωA) = M ′
R(j, ωB).

For the various types of diamond swaps, construct ω as follows:
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LR−M : ω =
ωA∣∣∣∣∣∣det

ωA(ML(j)) ωA(j) ωA(MR(j))
ML(j) j MR(j)

1 1 1

∣∣∣∣∣∣
+

ωB∣∣∣∣∣∣det
ωB(ML(j)) ωB(j) ωB(MR(j))

ML(j) j MR(j)
1 1 1

∣∣∣∣∣∣
,

LR− L
or R− E

: ω =
ωA∣∣∣∣∣∣det

ωA(ML(j)) ωA(j) ωA(M
′
R(j))

ML(j) j M ′R(j)
1 1 1

∣∣∣∣∣∣
+

ωB∣∣∣∣∣∣det
ωB(ML(j)) ωB(j) ωB(M

′
R(j))

ML(j) j M ′R(j)
1 1 1

∣∣∣∣∣∣
,

LR−R
or L− E

: ω =
ωA∣∣∣∣∣∣det

ωA(M
′
L(j)) ωA(j) ωA(MR(j))

M ′L(j) j MR(j)
1 1 1

∣∣∣∣∣∣
+

ωB∣∣∣∣∣∣det
ωB(M

′
L(j)) ωB(j) ωB(MR(j))

M ′L(j) j MR(j)
1 1 1

∣∣∣∣∣∣
.

We see that this new lifting ω does indeed create at least one collinearity between
precisely the points required. Since we have taken a positive scaling of two liftings,
we still need to verify that the non-swapped positions in the new lifting still have
the appropriate visibility (recall the letters in the deletion patterns match in every
position but j). In other words, if a position was an R in both of the original liftings,
we need to make sure that it remains an R in the new lifting. For ease of notation,
we will simply call the lifting which we use to represent PA and PB by ωA and ωB,
i.e. we will drop the bar notation which indicates that the liftings corresponding to
LR− L and R− E swaps came from a reflection process.

Due to the nature of ω’s construction, we see that the orientation of any three
points in ω is given as the sum of positive scalings of those points’ orientations in the
original two liftings:

Oω(a, b, c) = c1·OωA
(a, b, c) + c2·OωB

(a, b, c), where 1 ≤ a, b, c ≤ n, and c1, c2 > 0.

This will immediately give us that (non-swapped) M ’s in the original patterns will
be “preserved” (also assigned the letter M) in the new lifting. To see this, suppose
i is the position of a non-swapped M in the original liftings for which there exists
h < i < k such that Oω(h, i, k) ≥ 0. This implies that at least one of OωA

(h, i, k) or
OωB

(h, i, k) is positive, which is impossible.

A similar argument will show that E’s in the original liftings are also preserved.
In Theorem 2.2.3, we constructed the liftings so that any position i assigned an E
satisfied O(1, i, n− 1),O(2, i, n) > 0. This gives Oω(1, i, n− 1),Oω(2, i, n) > 0, which
forces position i to be assigned an E in the new lifting.

To finish the rest of the argument, we will need to split into two cases depending
on what type of swap is occurring:
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Case 1: The swap is not between an LR and an M .
We next wish to establish that the only M ’s appearing in the new lifting cor-

respond to M ’s in the original liftings. Suppose that position i 6= j in the original
liftings does not correspond to an M , and consider ML(i) and MR(i). With these
types of swaps, we are guaranteed that the positions recorded by ML (and MR)
match in both ωA and ωB, so there is no need to specify the lifting. We have that
OωA

(ML(i), i,MR(i)),OωB
(ML(i), i,MR(i)) > 0 and hence Oω(ML(i), i,MR(i)) > 0,

which guarantees that i cannot be assigned an M in the new lifting.

Next, we wish to show that non-swapped, non-M positions i 6= j cannot lose L-
or R-visibility. That is, L’s and R’s in the original liftings cannot become E’s in the
new lifting, nor could an LR in the originals become an L or R in the new. Since the
arguments are symmetric, we focus on losing L-visibility and assume that position i
was visible under left deletion in the original liftings, but is no longer visible under
left deletion in ω. This implies there exist positions h < i < k with h 6= ML(i) such
that Oω(h, i, k) ≥ 0, which in turn requires that either OωA

(h, i, k) or OωB
(h, i, k) is

non-negative. This contradicts the fact that i had L-visibility in the original liftings.

The last requirement to check is that no non-swapped, non-E position could gain
L- or R-visibility. We will first focus on L-visibility and assume that position i 6= j
does not have L-visibility in the original liftings (assigned an R). To show that i
cannot gain L-visibility, we need to provide fixed positions h < i < k with h 6= ML(i)
such that both OωA

(h, i, k) and OωB
(h, i, k) are strictly positive, which guarantees

that Oω(h, i, k) > 0 and hence i cannot gain L-visibility in the new lifting.

If M2
L(i, ωA),M2

L(i, ωB) 6= ∅ (we know if they do exist, they match in this
case), then according to the construction outlined in Theorem 2.2.3, we have
O(M2

L(i), i,MR(i)) > 0 in both original liftings, which prevents the gain of L-
visibility in ω. If this is not the case, then i lies between the first two M ’s in the
patters PA and PB, and we also note that ML(i) = 1 and i 6= 2 as position 2 cannot
have the label R. We next check whether M ′

L(i, ωA) = M ′
L(i, ωB) (we know neither

can be ∅ for these i’s). If this position is fixed in both liftings, then M ′
L(i),MR(i)

will serve as viable candidates for h and k. The only way that the position M ′
L(i) is

not fixed in the original liftings is if we are making an L−E or LR−R swap. In this
case, we reference Theorem 2.2.3 again and note that if position 2 is not an M , it is
placed so that the line through 2 and the second M in the pattern hide any R posi-
tions between them. Thus we see Oω(2, i,MR(i)) > 0 in both liftings by construction.

The argument that position i cannot gain R-visibility runs similarly, with the
difference being that we may need to utilize the fact that we can construct the
liftings so that if position n− 1 is not an M , we can guarantee that the line between
the penultimate M and position n − 1 hides any L positions between them. This
is accomplished by reflecting the initial pattern, performing the construction, then
reflecting that lifting back across the line x = (n+ 1)/2. Notice that we only need to
perform this reflection process in the event that the swap is from R−E or LR−R,
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which avoids any problems involving an overlap between which side of the pattern is
going to require this special restriction.

Case 2: The swap is between an LR to an M . Again we will establish that the
only M ’s appearing in the new lifting ω come from M ’s in the original lifting. The
difference in this case is that for some non-M , non-swapped position i 6= j in the
original liftings, we may have ML(i, ωA) 6= ML(i, ωB) or MR(i, ωA) 6= MR(i, ωB)
(we do know that both exist for the i’s that we are considering, however). If they
do both match for each lifting, then the argument in Case I shows that position
i cannot possibly become an M in the new lifting. The only way that they do
not match is if i is in the same interval as the swapped LR, or equivalently has
the swapped M appearing at the edges of its interval. We have already removed
the possibility of i being assigned an E in the original liftings, so the only other
possibilities are that i < j, so ML(i, ωA) = ML(i, ωB), and is assigned an L or i > j,
so MR(i, ωA) = MR(i, ωB), and is assigned an R. Any other labeling of i would
render one of the patterns PA or PB invalid. We see, however, that if i < j, then
O(ML(i), i, j) > 0 regardless of whether j is an M or an LR, and similarly if i > j
that O(j, i,MR(i)) > 0 regardless of the labeling on j. This establishes that the M ’s
appearing in the new lifting ω correspond exactly to the M ’s in the original liftings,
with the exception of the swapped M .

Next we will argue that non-swapped, non-M positions i 6= j cannot lose L- or
R-visibility. We will start off by assuming that position i has L-visibility in the
original liftings, but not in the new lifting. If ML(i, ωA) = ML(i, ωB) (recall they
both must exist), then the previous argument shows that the loss of L-visibility will
produce a contradiction. There is the possibility that the position of ML(i) may not
be fixed for a position i if j = ML(i) in one of the liftings, but in this case, we are
guaranteed that the label of i must be an R or an E, otherwise one of the original
patterns is invalid; thus in either case, it is impossible for i to lose L-visibility. The
argument to show that these type of positions cannot lose R-visibility is similar.

Lastly we verify that no non-swapped, non-E position could gain L- or R-
visibility. We start with a position i 6= j that does not have L-visibility in the
original liftings, which forces i to be assigned an R. Our aim here is the same
as it was in the previous case, to find positions h < i < k with h 6= ML(i, ω)
such that O(h, i, k) > 0 in both ωA and ωB. If M2

L(i, ωA) = M2
L(i, ωB) 6= ∅, then

M2
L(i, ωA),MR(i, ω) will serve as viable candidates for h and k. If M2

L(i) 6= ∅ in
at least one of the original liftings, then we can separate into two separate cases.
If swapped position ML(i) = j in at least one lifting, then j 6= ML(i, ω) and MR

serve as candidates for h and k as O(j, i,MR(i, ω)) > 0 for i assigned an R whether
j is an LR or an M . If M2

L(i) = j in one of the liftings, then j 6= ML(i, ω) and
MR(i, ω) will still work as candidates for h and k. We see that O(j, i,MR(i, ω)) > 0
when j is an M by our particular construction; further, O(j, i,MR(i, ω)) > 0 when
j is an LR, because we would have O(ML(j), j,MR(i, ω)) < 0 by virtue of j being
an LR, and this would force O(j, i,MR(i, ω)) > 0 for any i assigned an R with

59



j < i < MR(i, ω). This follows from the fact that ML(j, ωA)) = ML(j, ωB)) = M2
L(i)

in this scenario. Since the previous two cases cover all possibilities where M2
L(i)

exists in at least one lifting, the last case to consider is if M2
L(i) = ∅ in either lifting.

This will force i to occur in a left Type-A interval, but we are guaranteed that
M ′

L(i, ωA) = M ′
L(i, ωB) 6= ∅ as we must have j > i. The argument in Case I shows

that this type of i cannot gain L-visibility. The case for not gaining R-visibility is
similar. Notice that when we need to use the existence of M ′

L(i) or M ′
R(i) in the

Type-A intervals, we are guaranteed that the position will match in both liftings,
otherwise we would be able to find candidates for h and k with a different argument.
This is why we do not require the reflection tactic that was used in Case I.

The previous cases demonstrate that letters can be assigned to all positions i 6= j
in the new lifting ω as their visibility in each deletion is exactly determined. Fur-
ther, we see that the letters applied to position i 6= j must exactly correspond to the
matching letters assigned to i in PA and PB, which in turn demonstrates that the
collinearity that we have constructed in ω must indeed be essential. Although ω may
coincidentally have other collinearities, the previous argument shows that they cannot
be essential (we may perturb these points slightly to break all other collinearities if
we wish, without affecting the visibility of ω). By construction, we see that ω · v is
minimized over the set of compound-GKZ vectors exactly when v corresponds to the
compound GKZ-vector corresponding to either PA or PB.

Example 2.4.7 In this example, we will demonstrate why it was useful to have
the liftings in Theorem 2.4.6 be constructed via the method outlined in Theorem
2.2.3. Consider the liftings ωA = 〈2.4, 0, 0.7, 0.5, 0, 2〉 and ωB = 〈2.4, 0, 3.7, 0.8, 0, 2〉,
pictured in Figure 2.12 which have the corresponding deletion patterns PA =
(M,M,L,R,M,M) and PB = (M,M,E,R,M,M).

Figure 2.12: Vertex-supporting liftings

Note that if we were to construct a lifting ω′A to support PA via the method
outline in Theorem 2.2.3, we would have that position 4 (which is assigned an R) has
M2

L(4) = 1 and MR(4) = 5, and would satisfy Oω′A(1, 4, 5) > 0. In the given lifting
which supports pattern PA, however, we have that OωA

(1, 4, 5) < 0 and instead the
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orientation OωA
(3, 4, 5) > 0 denies L-visibility to position 4.

We see that we can perform an L − E diamond swap on position 4 to get from
pattern PA to PB, so they should form an edge in Σ1(6). If we utilize the sum of
positive scalings of ωA and ωB (as described in Theorem 2.4.6) to create an edge
supporting lifting ω with the appropriate essential collinearity between positions 1,
3, and 5, we obtain

ω =
〈2.4, 0, 0.7, 0.5, 0, 2〉∣∣∣∣∣∣det

 1 3 5
2.4 0.7 0
1 1 1

∣∣∣∣∣∣
+
〈2.4, 0, 3.7, 0.8, 0, 2〉∣∣∣∣∣∣det

 1 3 5
2.4 3.7 0
1 1 1

∣∣∣∣∣∣
= 〈1.44, 0, 0.72, 0.33, 0, 1.2〉.

Figure 2.13 shows the constructed lifting ω which contains the appropriate
collinearity, but the visibility of position 4 has changes from an R in the original
liftings to an LR in the new lifting. This prevents the collinearity that we created
from being classified as essential; it is not revealed by a single deletion. Thus the
lifting that we have created is a vertex supporting lifting, corresponding to the
pattern PC = (M,M,E,LR,M,M).

Figure 2.13: Edge-supporting lifting counterexample

The first image in Figure 2.14 illustrates an altered lifting ω′A corresponding
to pattern PA satisfying Oω′A(M2

L(4), 4,MR(4)) = Oω′A(1, 4, 5) > 0 (Notice the
construction in Theorem 2.2.3 would guarantee a lifting with this property). If
we repeat the edge-supporting lifting construction with ω′A and ωB, we see that
we obtain the second lifting, ω′ in Figure 2.14, which indeed would be uniquely
minimized by the compound GKZ-vectors corresponding to patterns PA and PB. ♦

Corollary 2.4.8 The polytope Σ1(n) is neither simplicial, nor simple for n ≥ 5.
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(i) ω′A (ii) ω′

Figure 2.14: Rectified edge-supporting lifting

Proof. To see that the polytope Σ1(n) is not simplicial, pick an arbitrary face defin-
ing hyperplane and consider its normal vector as a lifting ω. If the lifting has one or
fewer essential collinearities, it must support either an edge or a vertex. If the lifting
has two or more essential collinearities, we saw in Lemma 2.4.4 that it must support
at least 4 vertices. Since Σ1(n) can have no triangles as faces, it cannot be simplicial
for n ≥ 5.

Having established that Σ1(n) is n − 2 dimensional in Section 2.2, we need to
find a vertex of Σ1(n) with more than n − 2 incident edges to establish that Σ1(n)
is not simple. To this end, assume n is even and consider the deletion pattern
P = (M,LR,M,LR,M, . . . , LR,M,M) which corresponds to a vertex. We see that
this vertex has (n − 2)/2 LR’s, with only one in special position 2. Any LR not in
position 2 may be replaced with either an M , L, or an R to produce a valid deletion
pattern, and hence produce 3 edges incident to this vertex, whereas the LR in posi-
tion 2 produces only 2 edges. Thus we see that this vertex has at least 3(n− 2)/2− 1
edges, which is strictly greater than the required n− 2 for n ≥ 5. The argument if n
is odd runs similarly.

2.5 Edge Count

In order to enumerate the number of edges of Σ1(n), we wish to count all possible
diamond swaps between valid deletion patterns of length n. We must take care,
however, as performing a diamond swap on a valid deletion pattern may produce a
deletion pattern that no longer satisfies the conditions of Theorem 2.2.3, as illustrated
in Example 2.5.1.
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Example 2.5.1 The following is a diamond swap on a valid pattern which produces
an invalid pattern:

( M, L, R, M, R, M )
↓

( M, L, R, LR, R, M )

♦

To get around this problem, we will only count an edge when the diamond swap is
made in a particular direction. Specifically, we will take the graph in Theorem 2.4.6
and turn it into the digraph depicted in Figure 2.15:

Figure 2.15: Diamond swap digraph

We now consider a particular diamond swap as forming an edge only if the swap
conforms to the direction of the corresponding edge in the digraph. For example, a
swap from an LR to an M will be counted as an edge, whereas a swap from an M
to an LR would not. This serves the dual purpose of avoiding a double-count of the
edges, and preventing us from performing a swap which would result in a non-valid
deletion pattern. For example, any LR can be swapped to an M without violating
the conditions outlined in Theorem 2.2.3, yet we cannot swap an M to an LR if there
is already an LR present in the immediate intervals surrounding the M . The only
case we have yet to be careful of is that we cannot swap an L in position 2 or an R
in position n − 1 to an E, nor can we swap an LR in position 2 or n − 1 to an R
or L, respectively, as this would violate the conditions in Theorem 2.2.3. With these
conditions in mind, we see that LR’s in position 2 or n − 1 generate 2 edges each,
while LR’s in any other position generate 3 edges each. L’s and R’s in positions 2
and n− 1, respectively, do not generate any edges, whereas L’s and R’s in any other
position will generate 1 edge each. We note that E’s and M ’s are not considered to
generate edges under our conditions.

Our plan of attack will proceed as follows: We will first go through and count the
total number of LR’s appearing in every deletion pattern of length n. For the time
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being, we will assume that each of these LR’s contribute 3 edges to the total edge
count, one each for a swap with an M , an L, and an R. After the count is finished,
we will need to correct for the fact that LR’s in the special positions 2 and n − 1
actually only contribute 2 edges. We will perform a separate count of these LR’s in
special positions 2 and n−1 and subtract off the appropriate number of edges. Lastly,
we will perform a count of the total number of L’s and R’s appearing in any length
n valid deletion pattern and note that each occurrence contributes exactly one edge
for a swap with an E. We will again run into the issue of L’s and R’s appearing in
positions 2 and n−2 being unable to swap, but we can ignore the contributions from
these L’s and R’s directly in the count instead of having to deal with the erroneous
edges after the fact.

The count of all LR’s appearing in a valid deletion pattern of length n will be
the easiest as most of the work is done for us already in Section 2.3. Let bLRn,k, a

LR
n,k,

and âLRn,k denote the number of length n intervals of type B, A, and Â, respectively,

which have exactly k LR’s appearing, and further, let BLR(x, y) :=
∑

n≥1,k≥0 b
LR
n,kx

nyk,

ALR(x, y) :=
∑

n≥1,k≥0 a
LR
n,kx

nyk, and ÂLR(x, y) :=
∑

n≥1,k≥0 â
LR
n,kx

nyk denote the cor-
responding o.g.f.’s. To determine these o.g.f.’s, we simply need to return to the
arguments counting the length n intervals of each type and tag the contributions
that contain LR’s with a y. We obtain:

BLR(x, y) =
∑
n≥1

2n−2(n+ 1)xn +
∑
n≥2

(n− 1)2n−2yxn =
x(1− x+ xy)

(2x− 1)2
,

ALR(x, y) = x+
∑
n≥1

(
2n−3n+ (n− 2)y2n−3 + 2n−2y

)
=

x(1− 3x+ 3x2 + xy − x2y)

(2x− 1)2
,

ÂLR(x, y) = x+ yx2 +
∑

n≥3,k≥0

((
2n−3 + 2n−3 + (n− 3)2n−4

)
y + 2n−4(n− 1)

)
xn

= y
x2(1− 2x+ x2)

(2x− 1)2
+
x(1− 4x+ 5x2 − x3))

(2x− 1)2
.

Now we let fLRn,k denote the number of length n deletion patterns which have

exactly k LR’s appearing and let FLR(x, y) :=
∑

n≥1,k≥0 f
LR
n,k x

nyk denote the cor-
responding o.g.f. As in the previous section, we will utilize the fact that deletion
patterns are built by very specific compositions of the three types of intervals to find
that
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FLR(x, y) =
(
ALR(x, y) ·

(
B0
LR(x, y) +B1

LR(x, y) + · · ·
)
· ALR(x, y) + ÂLR(x, y)

)
x,

=
x2(x3 − 2x2y + 4x2 − 4x+ xy + 1)

1− 5x+ 5x2 − x2y
.

Now we will use FLR(x, y) to determine a new O.G.F F#LR(x) with the property
that [xn]F#LR(x) records the total number of all LR’s occurring in all valid deletion
patterns of length n. To obtain this new o.g.f. we first consider the function

y
∂

∂y
FLR(x, y) =

∑
n≥1,k≥0

kfn,kx
nyk,

which has the property that [xnyk]y
∂

∂y
FLR(x, y) records the total number of LR’s

appearing in all length n valid deletion patterns that each contain exactly k LR’s.
This, in turn, will help us count all the edges obtained by performing diamond swaps
on LR’s. Specifically, we find that

y
∂

∂y

x2(x3 − 2x2y + 4x2 − 4x+ xy + 1)

1− 5x+ 5x2 − x2y
=

yx3(1− 6x+ 11x2 − 6x3 + x4)

(−1 + 5x− 5x2 + x2y)2
. (2.2)

Lastly, we note that by setting y = 1 in equation (2.2), we obtain F#LR(x). We
compute

F#LR(x) =
x3(1− 6x− 6x3 + x4 + 11x2)

(1− 5x+ 4x2)2

At this stage we have almost obtained the total number of edges of Σ1(n) arising
from diamond swaps originating with an LR. All that remains is to count the number
of LR’s in the special positions 2 and n − 1 as these only contribute 2 edges, as
opposed to the 3 edges contributed by LR’s in non-special positions. Let aS:LRn,k

and âS:LRn,k denote the number of length n valid deletion patterns with exactly k

LR’s appearing in special position (i.e. 2 or n − 1) of type A and Â respectively,
and let AS:LR(x, y) :=

∑
n≥1,k≥0 a

S:LR
n,k xnyk, and ÂS:LR(x, y) :=

∑
n≥1,k≥0 â

S:LR
n,k xnyk

denote the corresponding o.g.f.’s. Again we return to the arguments in Section which
enumerate the type A and type Â valid deletion patterns of length n and tag the
pieces which contribute an LR in special positions 2 or n− 1 with a y. We obtain:
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AS:LR(x, y) = x+
∑
n≥2

(
2n−3n+ (n− 2)2n−3 + 2n−2y

)
xn

=
x(1− 3x+ xy + 4x2 − 2x2y)

(1− 2x)2
,

ÂS:LR(x, y) = x+ x2y2 +
∑
n≥3

(
2n−3y + 2n−3y + (n− 2)2n−3

)
xn

=
x2y(2x+ y − 2xy)

1− 2x
+
x(1− 4x+ 5x2)

(1− 2x)2
.

Notice that in ÂS:LR(x, y), we have the term x2y2, since the deletion pattern
M,LR,M is considered to have 2 LR’s, one for each special position; this is an iso-
lated special case that only occurs in deletion patterns of length 3. As for the type
B intervals, we see they never contribute an LR in special position, so we may use
equation (2.1) for the following argument.

Let fS:LRn,k denote the number of length n deletion patterns which have exactly k

LR’s appearing in positions 2 and n − 1 and let FS:LR(x, y) :=
∑

n≥1,k≥0 f
S:LR
n,k xnyk

denote the corresponding o.g.f. We find:

FS:LR(x, y)

=
(
AS:LR(x, y)

(
B0(x) +B1(x) +B2(x) + · · ·

)
AS:LR(x, y) + ÂS:LR(x, y)

)
x,

=
x2(−8x3y + 5x3y2 + 4x3 + 4x2y − 5x2y2 + 3x2 − 4x+ xy2 + 1)

4x2 − 5x+ 1
.

Again we will take a partial derivative with respect to y and multiply by y to
obtain an o.g.f. whose xnyk coordinate counts the total number of LR’s appearing
in special positions 2 and n− 1 in all length n valid deletion patterns with exactly k
LR’s in special position:

y
y

∂y
FS:LR(x, y) =

x2y(−8x3 + 10x3y + 4x2 − 10x2y + 2xy)

4x2 − 5x+ 1
(2.3)

Lastly, we set y = 1 in Equation (2.3) to obtain F#S:LR(x), the o.g.f. whose xn

coordinate counts the total number of LR’s in special positions 2 and n − 1 in all
length n valid deletion patterns. We compute

F#S:LR(x) := y
∂

∂y
FS:LR(x, y)

∣∣∣∣
y=1

=
x2(2x3 − 6x2 + 2x)

4x2 − 5x+ 1
.
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Now that we know how many LR’s appear in the special positions 2 and n − 1
and how many total LR’s appear in all length n valid deletion patterns, we can
compute exactly how many edges in Σ1(n) occur as a result of diamond swapping an
LR. We let eLRn denote the total number of edges occurring as a result of diamond
swaps of LR’s appearing in length n valid deletion patterns and let ELR(x) be the
corresponding o.g.f. Since each LR in non-special position contributes 3 edges from
diamond swaps, where each LR in special positions contribute only two edges, we
find:

ELR(x) :=
∑
n≥1

eLRn xn = 3F#LR(x)−F#S:LR(x) =
x3(1− 2x+ 16x3 − 5x4 − 7x2)

(1− 5x+ 4x2)2
.

(2.4)

Now that we have finished counting the edges obtained from diamond swaps on
LR’s, we switch focus to counting the edges coming from diamond swaps on L’s and
R’s. We recall that each L and R in a non-special position generates exactly one edge
when we swap to an E, and L’s and R’s in special position generate none. With this
in mind, we make the following definitions: let bL,Rn,k , aL,Rn,k , and âL,Rn,k denote the number
of length n intervals with exactly k L’s and R’s appearing in non-special positions in
type B, A, and Â intervals, respectively. Further let BL,R(x, y) :=

∑
n≥1,k≥0 b

L,R
n,k x

nyk,

AL,R(x, y) :=
∑

n≥1,k≥0 a
L,R
n,k x

nyk, and âL,R(x, y) :=
∑

n≥1,k≥0 â
L,R
n,k x

nyk denote the cor-
responding o.g.f.’s.

We first consider type B and focus on the coefficient of xn and note that in this
type of interval we do not have to worry about L’s and R’s in special position. We
break into two cases depending on whether or not an LR appears in the interval:

Case 1: The interval has no LR term present.

In this case, we break into two subcases based on whether or not there is a right-
most L term present in the interval. If the rightmost L is present, we have a y for
that L term, we have n− 1 choices to place the rightmost L, and we have the possi-
bility of 0 to n − 2 of the remaining positions being E or non-E, where each non-E
position will be tagged with a y. Notice that the value of the non-E positions is de-
termined by their relative position to the rightmost L. Thus this subcase contributes
a y(n− 1)

∑n−2
i=0

(
n−2
i

)
yi to the coefficient of xn.

Next, we consider the case where there is no rightmost L present in the interval.
In this case, we need only choose the location of the non-E terms which must all be
R’s. Notice that we may have anywhere from 0 to n− 1 non-E terms. This subcase
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contributes
∑n−1

i=0

(
n−1
i

)
yi to the coefficient of xn.

Case 2: The interval has an LR term present.

In this case, we have n − 1 locations to place the LR and n − 2 remaining posi-
tions which may be E or non-E. Notice that the location of the term with respect
to the LR will determine whether the non-E term must be an L or an R. Thus if we
sum over all possible choices of non-E vs. E locations, we obtain a contribution of
(n− 1)

∑n−2
i=0

(
n−2
i

)
yi to the coefficient of xn.

Summing together all contributions to [xn]BL,R(x, y), we find

BL,R(x, y) =∑
n≥1

(
y(n− 1)

n−2∑
i=0

(
n− 2

i

)
yi +

n−1∑
i=0

(
n− 1

i

)
yi + (n− 1)

n−2∑
i=0

(
n− 2

i

)
yi

)
xn

=
x

(1− xy − x)2
.

Next we consider type A intervals and focus on the coefficient of xn. Recall again
that we do not append a y for L’s and R’s occurring in the special positions 2 and
n− 1 since these will not contribute any edges. As in the vertex count, we will only
consider type A intervals which contain the first M since the other case is symmetric.
We focus on intervals with n ≥ 2 and break into two cases depending on the value in
special position 2:

Case 1: Position 2 is an LR.

In this case we may freely choose which of the n − 2 remaining positions are
non-E, with the rest being forced to be R’s. Notice that each non-E position chosen
will be tagged with a y. The contribution to the coefficient of xn from this case is∑n−2

i=0

(
n−2
i

)
yi.

Case 2: Position 2 is an L.

We will consider two subcases based on whether or not an LR appears after po-
sition 2 in the interval:

Case 2.a: No LR appears in the interval.

We further break into subcases based on whether or not a rightmost L appears
(ignoring the L in position 2). If such a rightmost L appears, we append a y for that
L, choose from the n − 2 available positions to place that L, and choose which of
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the remaining n − 3 positions will be non-E. This particular situation contributes
y(n− 2)

∑n−3
i=0

(
n−3
i

)
yi to the coefficient of xn.

If no rightmost L appears after the L in position 2, this implies that all non-E
positions must be R’s. We may freely choose which of the remaining (n−2) positions
are non-E, obtaining a contribution of

∑n−2
i=0

(
n−2
i

)
yi to the coefficient of xn.

Case 2.b: An LR appears in the interval.

In this case, we have n − 2 positions to place the LR. After this, we may freely
choose which of the n − 3 remaining positions are non-E. Notice that the relative
placement with respect to the LR will determine the value, L or R, of any non-E term.
We obtain a contribution of (n−2)

∑n−3
i=0

(
n−3
i

)
yi to the coefficient of xn from this case.

Summing together all contributions to [xn]AL,R(x, y) and noting the special case
n = 1, we find

AL,R(x, y) = x+
∑
n≥2

(
n−2∑
i=0

(
n− 2

i

)
yi + (n− 2)

n−3∑
i=0

(
n− 3

i

)
yi

+
n−2∑
i=0

(
n− 2

i

)
yi + (n− 2)

n−3∑
i=0

(
n− 3

i

)
yi

)
xn

=
x(x2y2 + x2y − 2xy + 1)

(xy + x− 1)2
.

Lastly, we consider type Â intervals and focus on the coefficient of xn. Again we
recall that L’s and R’s in the special positions 2 and n − 1 will not be tagged with
a y and focus on the cases n ≥ 3. We break into 3 cases depending on the values in
positions 2 and n− 1:

Case 1: Position 2 is an LR, position n− 1 is an R.

In this case, all non-E positions are forced to be R’s. We get to freely choose
which of the n − 3 positions are non-E and tag with y’s accordingly. The contribu-
tion from this case is

∑n−3
i=0

(
n−3
i

)
yi.

Case 2: Position 2 is an L, position n− 1 is an LR.

This is the same as Case 1 by symmetry, so we get another contribution of∑n−3
i=0

(
n−3
i

)
yi to the coefficient of xn.

Case 3: Position 2 is an L, position n− 1 is an R.
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We break into subcases based on whether or not an LR appears in the interval:

Case 3.a: The interval contains an LR.

In this case, we have n− 3 positions to place the LR. Once placed, we may freely
choose which of the remaining n − 4 positions are non-E, with their value, L or R,
being determined by their placement with respect to the LR. For this case we get a
contribution of (n− 3)

∑n−4
i=0

(
n−4
i

)
yi.

Case 3.b: The interval does not contain an LR.

If we ignore the L in position 2 and find that there is still a rightmost L occurring,
we will note that there are n − 3 possible locations for this rightmost L. After we
place this L and tag it with a y, we may freely choose which of the remaining n− 4
positions are non-E, with their specific value being determined by their placement
with respect to the last L. This subcase contributes (n− 3)y

∑n−4
i=0

(
n−4
i

)
yi.

If there is no rightmost L occurring after the L in position 2, this means that all
non-E positions must be filled by R’s. We may freely choose which of the remaining
n− 3 positions are non-E to obtain a contribution of

∑n−3
i=0

(
n−3
i

)
yi.

Summing together all contributions to [xn]ÂL,R(x, y) and noting the special cases
n = 1, 2, we find

ÂL,R(x, y) = x+ x2
∑
n≥3

(
2
n−3∑
i=0

(
n− 3

i

)
yi + (n− 3)

n−4∑
i=0

(
n− 4

i

)
yi

+(n− 3)y
n−4∑
i=0

(
n− 4

i

)
yi +

n−3∑
i=0

(
n− 3

i

)
yi

)
xn

=
x(x3y2 + x2y2 − x3 + 2x2 − 2xy − x+ 1)

(1− xy − x)2
.

We are now in the position to begin to compute the number of edges resulting
from diamond swaps on L’s and R’s. Let fL,Rn,k denote the number of length n deletion
patterns with exactly k L’s and R’s appearing, all of which are in non-special posi-
tions. Further, let FL,R

n,k (x, y) :=
∑

n≥1,k≥0 f
L,R
n,k x

nyk denote the corresponding o.g.f.
Utilizing the compositional nature of valid deletion patterns, we find
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FL,R
n,k (x, y)

=
(
AL,R(x, y) ·

(
B0
L,R(x, y) +B1

L,R(x, y) + · · ·
)
· AL,R(x, y) + ÂL,R(x, y)

)
x,

=
x2(2x3y2 + x2y2 − x3 − 2x2y + 3x2 − 2xy − x+ 1)

x2y2 + 2x2y + x2 − 2xy − 3x+ 1
.

Again we will take a partial derivative with respect to y and multiply by y to obtain
an o.g.f. whose xnyk coordinate counts the total number of L’s and R’s appearing
in non-special positions in all length n valid deletion patterns with exactly k L’s and
R’s in non-special position.

y
y

∂y
FL,R(x, y) =

2yx5(2x2y2 + 3x2y + x2 − 8xy − 5x+ 6)

(x2y2 + 2x2y + x2 − 2xy − 3x+ 1)2
. (2.5)

Lastly, we set y = 1 in Equation (2.5) to obtain EL,R(x), the o.g.f. whose xn

coefficient counts the total number of L’s and R’s in non-special positions in all
length n valid deletion patterns, and hence all the edges arising as diamond swaps on
L’s and R’s. We compute

EL,R(x) := y
∂

∂y
FL,R(x, y)

∣∣∣∣
y=1

=
2x5(6x2 − 13x+ 6)

(4x2 − 5x+ 1)2
. (2.6)

If we let en denote the total number of edges of Σ1(n) and let E(x) :=
∑

n≥1 enx
n

denote the corresponding o.g.f., we may put together Equations (2.4) and (2.6) and
find that

E(x) = ELR(x) + EL,R(x)

=
x3(1− 2x+ 16x3 − 5x4 − 7x2)

(1− 5x+ 4x2)2
+

2x5(6x2 − 13x+ 6)

(4x2 − 5x+ 1)2

=
x3(1− 2x− 10x3 + 7x4 + 5x2)

(1− 5x+ 4x2)2
.

Lastly, we unpack E(x) to determine a closed formula for the number of edges of
Σ1(n). We find:
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E(x) =
163

256
+

149

256
x+

15

32
x2 +

7

16
x3 − 19

27(1− x)
− 1745

27648(1− 4x)
+

1

9(1− x)2

+
175

9216(1− 4x)2
,

= x3 +
∑
n≥4

525 · 4nn− 1220 · 4n + 3072n− 16384

27648
xn.

This established the following theorem.

Theorem 2.5.2 For |A| = n ≥ 4, Σ1(n) has
525 · 4nn− 1220 · 4n + 3072n− 16384

27648
edges.

2.6 Further Questions

Up to this point, we have been able to utilize the combinatorial structure to under-
stand the vertices and edges of Σ1(n), but we have not yet been able to determine
how to describe combinatorial conditions which indicate the structure of the higher
dimensional faces. We strongly suspect that the number of essential collinearities
present in a lifting determines the dimension of the face that it will support in Σ1(n).
In particular, we have seen that a lifting supports a vertex iff it has no essential
collinearities, and that it supports an edge iff it has exactly one essential collinear-
ity. This naturally leads us to suspect that the facets of Σ1(n) are supported by
liftings which are nontrivially maximally collinear. This means that not all points
are collinear, but the addition of one more collinearity in the lifting would force all
points to be collinear.

Example 2.6.1 If we consider n = 6, then the lifting ω =
〈
2, 1, 0, 1, 1, 3

2

〉
can be

seen to be maximally nontrivially collinear in Figure 2.16.

Figure 2.16: Maximally nontrivially collinear lifting
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It was verified in Polymake [4] that this lifting supports a facet of Σ1(6) consisting
of vertices with patterns

(M,LR,M,E, LR,M),
(M,LR,M,L, LR,M),
(M,M,M,E,LR,M),
(M,M,M,L, LR,M),
(M,M,M,E,M,M),
(M,M,M,L,M,M),
(M,LR,M,E,M,M),
(M,LR,M,L,M,M).

♦

When considering facets of the secondary polytope corresponding to n points on
a line (combinatorially equivalent to a hypercube), it can be shown that each facet
can be supported by a lifting where all but one of the points are set at height 0 and
the remaining point is lifted to height 1. Example 2.6.1 shows that maximally non-
trivially collinear liftings may be more convoluted in the case of 1 deletion-induced
polytopes.

Another possible avenue of inquiry would be trying to determine a way to adapt
the combinatorial structure assigned to 1-deletions of a line to study higher order
deletions, like 2-deletions.

Additionally, it would be interesting to determine if a combinatorial structure
could be placed on the 1-deletions of n-gons. The previous chapter outlined a method
to construct these particular deletion-induced polytopes, but we have yet to determine
a formula for the number of vertices they would contain. Unlike the combinatorial
structure used for points on a line, this new structure could not be based on the
“visibility” of the points of A in the lifting, as all of the points of an n-gon would be
visible in every lifting.

Copyright c© Clifford Taylor, 2015.
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