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ABSTRACT OF DISSERTATION

Kronecker’s Theory of Binary Bilinear Forms with Applications to
Representations of Integers as Sums of Three Squares

In 1883 Leopold Kronecker published a paper containing a few explanatory remarks
to an earlier paper of his from 1866. His work loosely connected the theory of inte-
gral binary bilinear forms to the theory of integral binary quadratic forms. In this
dissertation we discover the statements within Kronecker’s paper and offer detailed
arithmetic proofs. We begin by developing the theory of binary bilinear forms and
their automorphs, providing a classification of integral binary bilinear forms up to
equivalence, proper equivalence and complete equivalence.
In the second chapter we introduce the class number, proper class number and com-
plete class number as well as two refinements, which facilitate the development of a
connection with binary quadratic forms.
Our third chapter is devoted to deriving several class number formulas in terms of
divisors of the determinant. This chapter also contains lower bounds on the class
number for bilinear forms and classifies when these bounds are attained.
Lastly, we use the class number formulas to rigorously develop Kronecker’s connec-
tion between binary bilinear forms and binary quadratic forms. We supply purely
arithmetic proofs of five results stated but not proven in the original paper. We con-
clude by giving an application of this material to the number of representations of an
integer as a sum of three squares and show the resulting formula is equivalent to the
well-known result due to Gauss.
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Chapter 1 Introduction

“A pessimist sees the difficulty in every opportunity; an optimist sees the
opportunity in every difficulty.”
- Sir Winston Churchill

The theory of binary quadratic forms is a source of classical problems in number the-
ory and has been studied extensively. A lesser known paper by Leopold Kronecker
in 1883 [Kr1897] contains a novel manner for connecting the classical class number
theory of binary quadratic forms to the class number for binary bilinear forms. Al-
though correct, Kronecker’s paper requires prior knowledge of several key results in
order to construct his ultimate result; a purely arithmetic proof of the number of
representations of a positive integer as a sum of three squares. This weakness was
pointed out in a much later paper by André Weil in 1974 [We1974, 3., p. 219].

Kronecker’s formula for the number of representations of a positive integer as a sum
of three integer squares differs materially from the traditional formulation due to
Carl FriedrichGauss, see Theorem 5.4.1 or Grosswald, [Gr1985, p. 51]. The main
aim of this dissertation is to provide a detailed arithmetic proof of Kronecker’s paper
[Kr1897], that does not require any prior analytic results, and to demonstrate that
Kronecker’s formulation is indeed equivalent to the traditional Gauss formula.

Chapter2 is devoted to providing the reader with the necessary technical background
that is required to understand bilinear form theory in the current sense. The culmi-
nation of this chapter is Section 2.5, where we develop the theory of automorphs for
binary bilinear forms. Our treatment follows in the manner of the classical treatment
for automorphs of binary quadratic forms as given by Flath in [Fl1989, p. 125].

Next, Chapter 3 commences our journey towards understanding Kronecker’s paper
[Kr1897]. We begin with Kronecker’s definition of a reduced bilinear form and de-
velop materials to aid our understanding of Kronecker reduced bilinear forms. Notable
results include showing there are finitely many Kronecker reduced forms for a given
determinant (Theorem 3.1.15), and proving a fundamental claim of Kronecker’s - that
we may use Kronecker reduced forms to count the complete class number for bilinear
forms, Clc (D) (Theorem 3.1.29). We also introduce in Section 3.3 the refinement
Clc (D) of the class number. The remainder of this chapter begins the exploration of
how we count Clc (D) and Clc (D) via Kronecker reduced bilinear forms.

In Chapter 4 we derive expressions for the complete class number, Clc (D) (see Theo-
rem 4.4.3), and its refinement Clc (D) in terms of sums of divisors of the determinant
D. The latter result may be found in Section 4.7. Also of interest in this chapter
is Section 4.5. Here we take a break from examining Kronecker’s paper in order to
derive some lower bounds for the proper bilinear class number, Cl+ (D). Corollary
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4.5.5 shows 2D 6 Cl+ (D), and Theorem 4.5.6 shows equality is obtained if and only
if D is a prime congruent to 11 mod 12. We go on to obtain various improvements
to our lower bound and provide an interesting observation which links the proper
bilinear class number to the problem of factoring a product of two distinct primes.
Observation 4.5.29 shows if one knows a positive integer D is a product of two distinct
primes p and q, then calculating Cl+ (D) allows for the recovery of the integers p and q.

Our final chapter, Chapter 5, is where we rigorously prove Kronecker’s connection
between binary quadratic forms and binary bilinear forms. We supply proofs of key
results stated by Kronecker but not proven. These are found in Lemma 5.1.7, Lemma
5.1.8, Theorem 5.2.2 and Theorem 5.2.21. Section 5.3 is then where we utilize all of
our previous work to derive Kronecker’s formula for the number of representations of
a positive integer as a sum of three integer squares. Lastly, in Section 5.4 we give a
detailed proof of Gauss’ Theorem 5.4.1 by using Kronecker’s relationships. Thus we
show when primitivity is taken into account, Kronecker’s formulation concurs with
the traditional statement due to Gauss.

We also include several appendices. These initially consist of complementing the
reader’s knowledge of representations of sums of squares, before providing a detailed
walk-through of Weil’s 1974 paper, [We1974]. Weil’s paper is of particular interest
because it offers an elegant way to calculate the number of representations of a positive
integer m as a sum of three squares when m ≡ 3 mod 8. The proof is much shorter
than that of Kronecker and it avoids the use of infinite sets. Weil claims to have read
Kronecker’s paper for inspiration before deriving his method. Weil also states the
other cases can be done similarly but with additional complications. It is my hope
to continue studying the connections between the papers of Weil and Kronecker in
order to understand what Weil had in mind to complete the other cases.
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Chapter 2 Preliminaries

“Success is not final, failure is not fatal: it is the courage to continue that
counts.”
- Sir Winston Churchill

We begin by developing some preliminary ideas and examples for the theory of bilinear
forms.

2.1 Introduction to Bilinear Forms

Definition 2.1.1.
Let R be a commutative ring and V be an R-module of rank n. Then B : V ×V → R
is a bilinear form if the following conditions hold:

• B(u + v,w) = B(u,w) + B(v,w)

• B(u,v + w) = B(u,v) + B(u,w)

• B(λu,v) = λB(u,v) and B(u, λv) = λB(u,v) for λ ∈ R.

We may use a matrix to represent B in the following manner. Assume V is a free
R-module and let {e1, · · · , en} be a basis for V . Define the n × n matrix [B]e by
aij = B(ei, ej). Then for any v,w ∈ V , let x,y be the n× 1 vectors that represent v
and w respectively with respect to this basis.

B(v,w) = xt[B]ey =
n∑

i,j=1

aijxiyj

Lemma 2.1.2.
Let x = x1e1 + · · ·+ xnen and y = y1e1 + · · ·+ ynen with respect to some R-basis.

Then B (x,y) =
(
x1 · · · xn

)
[B]e

 y1
...
yn

.

Proof.
By repeatedly applying the properties of a bilinear form (see Definition 2.1.1) we
have:

B (x,y) = B (x1e1 + · · ·+ xnen, y1e1 + · · ·+ ynen)

=
n∑
i=1

n∑
j=1

B (ei, ej)xiyj

=
(
x1 · · · xn

)
[B]e

 y1
...
yn

 .

3



Definition 2.1.3.
Let {f1, · · · , fn} be another basis for V such that {f1, · · · , fn} = {e1, · · · , en}M ,
where M ∈ GLn(F). Then M is called a change of basis matrix.

The new matrix representation for the bilinear form under this new basis is given by
M tAM , where A = [aij] is the matrix representation for the bilinear form under the
original basis.

Notation 2.1.4.

Let u = p1e1 + · · ·+ pnen ∈ V then we write [u]e =

 p1
...
pn

.

Suppose f = {f1, · · · , fn} is another R-basis of V . Then f1 = q1,1e1 + · · ·+ qn,1en, ...,
and fn = q1,ne1 + · · ·+ qn,nen.

We denote the change of basis matrix by M =

 q1,1 · · · q1,n
...

. . .
...

qn,1 · · · qn,n

 ∈ GLn (V ).

Lemma 2.1.5.
For u ∈ V , we have [u]e = M [u]f .

Proof.

Let [u]f =

 p1
...
pn

. Then

u = p1f1 + · · ·+ pnfn

= p1 (q1,1e1 + · · ·+ qnen) + · · ·+ pn (q1,ne1 + · · ·+ qn,nen)

= (p1q1,1 + · · ·+ pnq1,n) e1 + · · ·+ (p1qn,1 + · · ·+ pnqn,n) en.

Thus [u]e =

 p1q1,1 + · · ·+ pnq1,n
...

p1qn,1 + · · ·+ pnqn,n

 = M [u]f .

Lemma 2.1.6.
Let B be a bilinear form, then [B]f = M t [B]eM .

Proof.
By Lemmas 2.1.2 and 2.1.5 we have for each u,v ∈ V that

[u]tf [B]f [v]f = B (u,v)

= [u]te [B]e [v]e
= [u]tf M

t [B]eM [v]f .

Hence [B]f = M t [B]eM .

4



Definition 2.1.7.
A bilinear form B is said to represent r ∈ R\{0} if there exists v ∈ V , v 6= 0 such
that B (v,v) = r.
If we let R = Z then the integer r is said to be properly represented by B if
v = (v1, · · · , vn)t satisfies gcd (v1, · · · , vn) = 1.

We now define a subset of bilinear forms, the skew-symmetric bilinear forms, and
demonstrate why it will be necessary to consider this subset separately.

Definition 2.1.8.
The bilinear form B is said to be

1. symmetric if B(v,w) = B(w,v) for all v,w ∈ V .

2. skew-symmetric if B(v,w) = −B(w,v) for all v,w ∈ V .

3. alternating if B(v,v) = 0 for all v ∈ V

Theorem 2.1.9.
Let B be a bilinear form. Then for charR 6= 2, B is alternating if and only if B is
skew-symmetric.
When charR = 2 then B is skew-symmetric if and only if it is symmetric.

Proof.
We first prove that regardless of the characteristic of R, if B is alternating then B is
skew-symmetric. Let v,w ∈ V then

0 = B(v + w,v + w) (2.1)

= B(v,v) + B(v,w) + B(w,v) + B(w,w) (2.2)

= B(v,w) + B(w,v). (2.3)

Therefore B(v,w) = −B(w,v) for all v,w ∈ V .
Now assume charR 6= 2 and B is skew-symmetric. This implies 2B(v,v) = 0 and
hence B is alternating. Lastly assume charR = 2 and B is skew-symmetric, then
B(v,w) = −B(w,v) and characteristic 2 implies B(v,w) = B(w,v) so B is symmet-
ric. The converse follows immediately due to 1 = −1 when charR = 2.

Corollary 2.1.10.
Let B be a bilinear form. If B is skew-symmetric then its matrix representation, A,
satisfies A = −At irrespective of our choice of basis.

Proof.
By Theorem 2.1.9 if charR 6= 2 then B is alternating. From Definition 2.1.1 it is then
clear that the matrix representation [B]e with respect to any basis e satisfies aii = 0
and aij = −aji for all i, j ∈ {1, · · · , n}. Therefore A = −At.
If charR = 2 then B is symmetric and thus aij = aji in the matrix representation
[B]e with respect to any basis e. Since 1 = −1 when the characteristic is two,
A = At = −At follows immediately.

5



Lemma 2.1.11.
The subset of elements of R represented by a non-skew-symmetric bilinear form A is
independent of our choice of basis. Further, the set of properly represented elements
of R is also independent of our choice of basis.

Proof.
Let e and f be the bases defined at the beginning of this section. Let r be a non-zero
ring element represented by A. Then there exists v 6= 0 with respect to the basis e
so that A (v,v) = r. Let M denote the change of basis matrix from e to f . We see
M−1v 6= 0 as M is invertible and v 6= 0. Then

A
(
M−1v,M−1v

)
= vt

(
M−1)t (M tAM

)
M−1v = vtAv = r.

Hence every integer represented by A with respect to the basis e is represented by A
with respect to the basis f .
By applying the same reasoning but starting with the basis f and using the change
of basis matrix M−1 to reach the basis e, we see the converse statement holds true.

Now suppose r ∈ R\{0} is properly represented by v ∈ V \{0} with respect to the
basis e. In particular this means gcd(v1, · · · , vn) = 1. Since properly represented
implies represented this means r is represented by Mv with respect to the basis f .
Suppose Mv = sw where w satisfies gcd(w1, · · · , wn) = 1, then applying M−1 yields
v = M−1sw = sM−1w. Therefore s = ±1 because gcd(v1, · · · , vn) = 1. Hence r is
properly represented by w = Mv with respect to the basis f .

In our next subsection we introduce the concept of equivalence between bilinear
forms.

2.2 Equivalence of Bilinear Forms

In this subsection we introduce the various notions of equivalence.
Let V be a free R-module. Recall we may write any bilinear form as a matrix in
GLn (V ) with respect to some basis. We consider the group Aut (GLn (V )) acting on
GLn (V ) by conjugation. This gives rise to the following definition of G-Equivalence.

Definition 2.2.1.
Let G be a subgroup of Aut (GLn(V )) and A, B be bilinear forms with matrix rep-
resentations A and B. We say A and B are G-equivalent if there exists γ ∈ G such
that γ(A) = B.

Lemma 2.2.2.
G-equivalence is an equivalence relation on the set of bilinear forms.

Proof.
Let A, B and C be bilinear forms. We observe the identity element, In ∈ G transforms
A into itself. Next, if M ∈ G transforms A into B, then since M is invertible, M−1

transforms B into A. Lastly, let M,N ∈ G transform A to B and B to C respectively.
Since G is a group, MN ∈ G and transforms A into C.

6



We observe that Definition 2.2.1 does not depend on our choice of basis for the matrix
representations of the bilinear forms.
In our work G will be either GLn(Z), SLn(Z), or the kernel of the homomorphism
given in Lemma 2.3.2.

Definition 2.2.3.
Let R be a commutative ring and let A and B be bilinear forms with matrix repre-
sentations A and B. We say

• A and B are equivalent if there exists M ∈ GLn(R) such that M tAM = B.

• A and B are properly equivalent if there exists M ∈ SLn(R) such that
M tAM = B. They are improperly equivalent if they are equivalent but not
properly equivalent.

Notation 2.2.4.
We will utilize the following notation, let

1. A ∼ B denote when A and B are equivalent,

2. A ∼+ B denote when A and B are properly equivalent, and

Observation 2.2.5.
The characterisations of the types of equivalence between bilinear forms amounts
to choosing the right basis. In Lemma 2.1.11 we showed that there is a one-to-
one correspondence between the (properly) represented non-zero elements in R of a
bilinear form under any two bases. Thus we see that with our definition of equivalence,
there is a one-to-one correspondence between the non-zero (properly) represented
elements in R of any two equivalent bilinear forms.

Lastly, we introduce the notion of the determinant of a bilinear form.

Definition 2.2.6.
Let A be a bilinear form. We define the determinant of A to be the determinant of
its matrix representation A.

Lemma 2.2.7.
The determinant of a bilinear form A is well-defined up to squares of units in R.

Proof.
Let A and B be equivalent bilinear forms. Then there exists M ∈ GLn(R) such that
M tAM = B. Since det(M t) = det(M) = u for some unit u ∈ R, by the multiplicative
property of the determinant that equivalent bilinear forms have the same determinant
up to multiplication by a square of a unit in R.

Notes on Section 2.2

Kronecker introduced the concept of complete equivalence on page 434 of [Kr1897].
He observed this is an extension of the idea of proper equivalence as introduced by
Gauss.
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2.3 R = Z

From this section onwards we let R = Z and for the moment we will continue to work
in the n-dimensional case.

We first prove a lemma regarding the determinant of a bilinear form.

Lemma 2.3.1.
The determinant of a bilinear form is invariant under conjugation via M ∈ GLn(Z).

Proof.
Let A and B be bilinear forms and M ∈ GLn(Z) be such that M tAM = B. Since
det(M t) = det(M) = ±1 it follows that det(A) = det(B).

Next, we introduce a homomorphism that will play a pivotal role in Kronecker’s
investigation.

Lemma 2.3.2.
The map

σ : GLn(Z) −→ {±1} ×GLn (Z/2Z)

A 7−→ (det(A), A mod 2),

is a surjective homomorphism with |GLn(Z) : kerσ| = 2
n−1∏
k=0

(
2n − 2k

)
.

Note {±1} is treated as the multiplicative group of order 2.

Proof.
First note the homomorphism property follows immediately from the multiplicative
property of determinants. Next observe changing the sign in a single column will
multiply the determinant by −1 yet the representation mod2 will remain the same -
Thus σ is surjective. Lastly, we count the number of invertible n × n matrices over
Z/(2Z). Consider such an n × n matrix then we have 2n − 1 choices for the first
column. Next, there are (2n − 1) − 1 = 2n − 2 choices for the second column by a
linear independence argument. We continue in this manner to the nth column where
we have 2n − 2n−1 choices. Taking the product gives the number of invertible n× n
matrices over Z/(2Z). Finally, multiplying by 2 takes into account the sign of the
determinant and yields the result.

Using this homomorphism we may extend the idea of equivalence between bilinear
forms (see Definition 2.2.3) as follows:

Definition 2.3.3.
Let A and B be bilinear forms. We say:

• A and B are completely equivalent if there exists M ∈ kerσ such that
M tAM = B. They are incompletely equivalent if they are equivalent but
not completely equivalent.
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Notation 2.3.4.
We extend the notation found in Notation 2.2.4 as follows:
Let A ∼c B denote when A and B are completely equivalent.

We now define three types of class number for positive definite binary bilinear forms.

Definition 2.3.5.
Let n be a positive (non-zero) integer. Then

1. Cl (k) is the number of equivalence classes of bilinear forms with determinant
k under GLn(Z)-equivalence.

2. Cl+ (k) is the number of proper equivalence classes of bilinear forms with de-
terminant k under SLn(Z)-equivalence.

3. Clc (k) is the number of complete equivalence classes of bilinear forms with
determinant k under complete equivalence.

The quantities Cl (k), Cl+ (k) and Clc (k) are called class numbers. We will be par-
ticularly interested in the complete class number. Thus if not said explicitly, we will
assume we mean Clc (k).

We now use the concept of G-equivalence to determine when bilinear forms properly
represent certain integers.

Lemma 2.3.6.
A bilinear form A properly represents a non-zero integer m if and only if A is properly
equivalent to a bilinear form B with matrix representation B satisfying B1,1 = m.

Proof.
(⇐) Let m be a non-zero integer. Assume A be a bilinear form that is properly
equivalent to the bilinear form B with matrix representation B satisfying B1,1 = m.
From Lemma 2.1.11 we know properly represented integers are independent of our
choice of basis. So we may use the standard basis e1, · · · , en. Then B(e1, e1) = m as
B1,1 = m. Hence B properly represents m and since A is properly equivalent to B,
Observation 2.2.5 shows A properly represents m.
(⇒) Assume A properly represents the non-zero integer m. Then there exists v =
(v1, · · · , vn) ∈ V such that A(v,v) = m and gcd(v1, · · · , vn) = 1. By the unimodular
column lemma (see Lemma 5.20 [Ro2002, p. 260]) we may extend v to an n × n
matrix M over Z with determinant 1. Thus A is properly equivalent to the bilinear
form B, where the matrix representation of B with respect to the standard basis is
M tAM . We observe B(e1, e1) = A(Me1,Me1) = A(v,v) = m and therefore the
matrix representation of B satisfies B1,1 = m.

Lemma 2.3.7.
The minimal non-zero integer in absolute value that is represented by a non-skew-
symmetric bilinear form B is in fact properly represented.
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Proof.
Let m be the minimal non-zero integer in absolute value that is represented by B.
This exists because we cannot have an infinite decreasing sequence of positive inte-
gers. Let m = B(v,v) for some v = (v1, · · · , vn) ∈ V where gcd(v1, · · · , vn) = d.
Let w = 1

d
(v1, · · · , vn) and therefore gcd(w1, · · ·wn) = 1. Now observe B(v,v) =

n∑
i=1

n∑
j=1

aijvivj = d2
n∑
i=1

n∑
j=1

aijwiwj. Thus m = d2B(w,w). However, m is the min-

imal non-zero integer in absolute value that is properly represented by B. So d | m
implies d = 1 and therefore gcd(v1, · · · , vn) = 1. Hence B properly represents m.

Lemma 2.3.8.
Assume B is a bilinear form obtained from A via a change of basis then the number
of solutions to A = r and B = r are equal for any r ∈ Z\{0}.

Proof.
From Lemma 2.1.11 we know a bilinear form represents the same elements regardless
of our choice of basis. Let M ∈ GLn(Z) be the change of basis matrix. Since M
and M−1 are unique, it follows that there is a one-to-one correspondence between
representations of a non-zero r ∈ Z under the basis e and the representations of r
under the basis f .

We now introduce the concept of definite and indefinite bilinear forms.

Definition 2.3.9.
Let B be a bilinear form and v ∈ V \{0}. We say

1. B is positive definite if B(v,v) > 0, and is positive semi-definite if B(v,v) >
0 for all such v.

2. B is negative definite if B(v,v) < 0, and is negative semi-definite if
B(v,v) 6 0 for all such v.

3. B is indefinite if B represents both positive and negative integers.

2.4 R = Z, n = 2

In this section we restrict ourselves to working over the integers and to having dimen-
sion two. It is important to note we will diverge from Kronecker’s exposition slightly.
This is explained in detail in the notes at the end of this section.

We begin by giving a full description of the map σ found in Definition 2.3.2 for the
two dimensional case.

Lemma 2.4.1.
Let n = 2 and consider the map σ from Definition 2.3.2.

We have kerσ = 〈M,N,−I2〉 =
〈( 1 2

0 1

)
,

(
1 0
2 1

)
,

(
−1 0

0 −1

)〉
.

10



Proof.
(⊇) This inclusion is straightforward to verify.

(⊆) Observe

(
1 2
0 1

)k
=

(
1 2k
0 1

)
and

(
1 0
2 1

)k
=

(
1 0

2k 1

)
for any k ∈ Z.

Let M =

(
1 2
0 1

)
, N =

(
1 0
2 1

)
and A =

(
α β
γ δ

)
∈ kerσ.

Case 1: γ = 0.
In this case we have det(A) = 1 implies 1 = αδ and thus α = δ = ±1. Further,

β ≡ 0 mod 2 implies β = 2k for some k ∈ Z and thus we have A =

(
1 2k
0 1

)
or

A =

(
−1 2k

0 −1

)
=

(
−1 0

0 −1

)(
1 −2
0 1

)k
. Both of these are clearly formed

from our generating set.
Case 2: |γ| > 0.

In this case we have MkA =

(
1 2k
0 1

)(
α β
γ δ

)
=

(
α + 2kγ β + 2kδ

γ δ

)
, there-

fore we may find a value of k such that 0 < |α + 2kγ| < |γ|. Note both inequalities
are strict because γ ≡ 0 mod 2 and α ≡ 1 mod 2. Thus we may assume A satisfies
|α| < |γ|.

Next, N qA =

(
1 0

2q 1

)(
α β

γ + 2qα δ + 2qβ

)
and so we may choose q ∈ Z so that

0 < |γ + 2qα| < |α|. Again, note both inequalities are strict.
Therefore by repeatedly left multiplying by Mk and N q we get a strictly decreasing
sequence of integers |γ|. This sequence must terminate with |γ| = 0. Therefore we
are now back in the first case and thus kerσ ⊆ 〈M,N,−I2〉.

Notation 2.4.2. For notational convenience we may write the matrix representation
of the bilinear form A in one line notation as A = (A11, A12, A21, A22).

Lemma 2.4.3.
The determinant of an n = 2 skew-symmetric bilinear form is always a square.

Proof.

Any such skew-symmetric bilinear form A has matrix representation

(
0 A12

−A12 0

)
for A12 ∈ Z\{0}. Therefore det(A) = A2

12.

We are now able to give a full description of the equivalence class structure for skew-
symmetric bilinear forms. Recall the definition of a skew-symmetric bilinear form
from Definition 2.1.8.

Lemma 2.4.4.
The equivalence classes of skew-symmetric bilinear forms of determinant k2 are de-
termined by k, and each equivalence class contains exactly two forms.
The proper equivalence classes of skew-symmetric bilinear forms are singletons de-
termined by k. Further complete equivalence is the same as proper equivalence for
skew-symmetric bilinear forms.
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Proof.
From Lemma 2.4.3 we know skew-symmetric bilinear forms exist only when the de-
terminant is a square. Further, this implies A12 = k where det(A) = k2.
Let A be a skew-symmetric bilinear form with matrix representation

A =

(
0 A12

−A12 0

)
. Recall from Observation 2.1.10 a skew-symmetric bilinear form

is always transformed to another skew-symmetric bilinear form. Suppose A ∼ B via

M ∈ GL2 (Z), where B has matrix representation

(
0 B12

−B12 0

)
.

Let M =

(
α β
γ δ

)
. Note that det (M) = ±1.

Then

M tAM =

(
α γ
β δ

)(
0 A12

−A12 0

)(
α β
γ δ

)
=

(
0 (αδ − βγ)A12

− (αδ − βγ)A12 0

)
=

(
0 det (M)A12

− det (M)A12 0

)
.

Thus if M ∈ GL2 (Z) we see that A is equivalent to only B = ±A. Hence the
equivalence class of A contains precisely two bilinear forms. Further, the equivalence
classes are determined by |A12| > 0.
If M ∈ SL2 (Z) we see that A is only properly equivalent to itself. Thus each proper
equivalence class contains a single bilinear form and the proper equivalence classes
are uniquely determined by A12.
Since kerσ 6 SL2 (Z) it follows that proper and complete equivalence are in fact the
same.

We now return to discussing relations between bilinear forms. The following obser-
vation shall be useful for condensing some calculations in future proofs.

Observation 2.4.5.

Let A be a bilinear form with matrix representation A =

(
A11 A12

A21 A22

)
and let

M =

(
α β
γ δ

)
∈M2×2. Then

B = M tAM

=

(
α γ
β δ

)(
A11 A12

A21 A22

)(
α β
γ δ

)
=

(
α2A11 + αγ (A12 + A21) + γ2A22 αβA11 + γβA21 + αδA12 + γδA22

βαA11 + αδA21 + βγA12 + δγA22 β2A11 + βδ (A12 + A21) + δ2A22

)
. (I)

We highlight

B12 +B21 = 2αβA11 + (αδ + βγ) (A12 + A21) + 2γδA22 and
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B12 −B21 = det(M)(A12 − A21).

Further if M ∈ SL2 (Z), B has matrix representation

(
B11 B12

B21 B22

)
, and A ∼+ B we

have M tA = BM−1, that is(
αA11 + γA21 αA12 + γA22

βA11 + δA21 βA12 + δA22

)
=

(
B11 B12

B21 B22

)(
δ −β
−γ α

)
=

(
δB11 − γB12 αB12 − βB11

δB21 − γB22 αB22 − βB21

)
. (II)

Lemma 2.4.6.

Assume A and B are equivalent bilinear forms via the matrix M =

(
α β
γ δ

)
. Let

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
be their respective representation matri-

ces.
Then A12−A21 ≡ B12−B21 mod 2. Further, if A and B are in fact properly equivalent
then we have A12 −A21 = B12 −B21. That is, the difference between the off-diagonal
elements of their matrix representations is invariant under a transformation matrix
M ∈ SL2(Z).

Proof.
Let A and B be equivalent bilinear forms. We use Observation 2.4.5 to calculate
M tAM , this yields

B12 −B21 = βγ(A21 − A12) + αδ(A12 − A21)

= (αδ − βγ)︸ ︷︷ ︸
det(M) = ±1

(A12 − A21).

Hence we see A12 − A21 ≡ B12 − B21 mod 2, and if M ∈ SL2 (Z) then A12 − A21 =
B12 −B21.

Lemma 2.4.7.
Let A and B be completely equivalent bilinear forms, then Aij ≡ Bij mod 2, i, j ∈
{1, 2}.

Proof.

Let M =

(
α β
γ δ

)
∈ kerσ and use Observation 2.4.5. It is helpful to recall α ≡ δ ≡

1 mod 2 and β ≡ γ ≡ 0 mod 2. Then we have:

B11 = α2︸︷︷︸
≡ 1 mod 2

A11 + αγ︸︷︷︸
≡ 0 mod 2

(A12 + A21) + γ2︸︷︷︸
≡ 0 mod 2

A22

≡ A11 mod 2

B12 = αβ︸︷︷︸
≡ 0 mod 2

A11 + αδ︸︷︷︸
≡ 1 mod 2

A12 + γβ︸︷︷︸
≡ 0 mod 2

A21 + γδ︸︷︷︸
≡ 0 mod 2

A22
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≡ A12 mod 2

B21 = αβ︸︷︷︸
≡ 0 mod 2

A11 + βγ︸︷︷︸
≡ 0 mod 2

A12 + αδ︸︷︷︸
≡ 1 mod 2

A21 + δγ︸︷︷︸
≡ 0 mod 2

A22

≡ A21 mod 2

B22 = β2︸︷︷︸
≡ 0 mod 2

A11 + βδ︸︷︷︸
≡ 0 mod 2

(A12 + A21) + δ2︸︷︷︸
≡ 1 mod 2

A22

≡ A22 mod 2.

We now relate a binary quadratic form to a given bilinear form as follows.

Definition 2.4.8.

Let B be a bilinear form with matrix representation

(
A11 A12

A21 A22

)
. We define the

associated binary quadratic form to B to be

AB = A11x
2 + (A12 + A21)xy + A22y

2.

Lemma 2.4.9.
The binary quadratic forms ax2 + 2bxy + cy2, a, b, c ∈ Z are a subset of the bilinear
forms with integer coefficients.

Proof.
Let ax2+2bxy+cy2 where a, b, c ∈ Z be a binary quadratic form. Consider the matrix
representation of a bilinear form given by A11 = a, A12 = A21 = b and A22 = c. Then

letting x = y =

(
x
y

)
yields our binary quadratic form.

Since our work will involve binary quadratic forms from time to time we present a
parallel definition of definiteness for binary quadratic forms (see Definition 2.3.9).

Definition 2.4.10.
Let f(x, y) = ax2 + rxy + cy2 be a binary quadratic form. We say

• f is positive definite if f(x, y) > 0 for all (x, y) 6= (0, 0). This can be relaxed
to positive semi-definite if f(x, y) > 0 for all (x, y) 6= (0, 0).

• f is negative definite if f(x, y) < 0 for all (x, y) 6= (0, 0). This relaxes to
negative semi-definite if f(x, y) 6 0 for all (x, y) 6= (0, 0).

• f is indefinite if f represents both positive and negative integers.

Lemma 2.4.11.
Let f = ax2 + rxy + cy2 be a binary quadratic form. Then

1. f is positive definite if and only if a > 0 and 4 det(f) > 0

2. f is negative definite if and only if a < 0 and 4 det(f) > 0
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3. f is indefinite if and only if 4 det(f) < 0.

Proof.
We have

4af = 4a2x2 + 4arxy + 4acy2

= (2ax+ ry)2 +
(
4ac− r2

)
y2

= 4a2 (2ax+ ry)2 +
(
4ac− r2

)
y2.

Therefore we may write

f = a
(
x+

r

2a
y
)2

+

(
4ac− r2

4a

)
y2. (2.4)

1. (⇒) Assume f is positive definite. Then Equation 2.4 implies we must have
a > 0 and 4ac−r2

4a
> 0. From this is follows that 4ac− r2 = 4 det(f) > 0.

(⇐) Suppose a > 0 and 4 det(f) = 4ac − r2 > 0. Then Equation 2.4 implies
f(x, y) > 0 for all (x, y) ∈ (Z× Z)\(0, 0).

2. (⇒) Assume f is negative definite. Then Equation 2.4 implies we must have
a < 0 as otherwise whenever y = 0 and x 6= 0 f would return a positive number.
However, we must also have 4ac−r2

4a
< 0 to cope with when x = 0 and y 6= 0.

This gives the other condition, 4 det(f) = 4ac− r2 > 0 as a < 0.
(⇐) Suppose a < 0 and 4 det(f) = 4ac − r2 > 0. Then Equation 2.4 implies
f(x, y) < 0 for all (x, y) ∈ (Z× Z)\(0, 0).

3. (⇒) Assume f is indefinite. Firstly, if a 6= 0 then we must have 4 det(f) = 4ac−
r2 < 0 as 4 det(f) = 4ac− r2 = 0 yields f producing all positive or all negative
(and possibly zero) integers and (1.) and (2.) above exclude 4 det(f) > 0. If
a = 0 then 4 det(f) = 4ac− r2 = −r2 < 0.
(⇐) Suppose 4 det(f) = 4ac− r2 < 0. If a = 0 then our binary quadratic form
simplifies to f = rxy + by2 from which it is straightforward to see it represents
both positive and negative integers for (x, y) 6= (0, 0). Thus suppose a 6= 0.
Then Equation 2.4 implies with careful choice of (x, y) it is possible for f to
produce both positive and negative integers. Hence f is an indefinite binary
quadratic form.

Lemma 2.4.12.
Let A and B be (properly) equivalent bilinear forms. Then their associated binary
quadratic forms, AA and AB, are also (properly) equivalent.

Proof.

Let A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
be the matrix representations of the

bilinear forms A and B respectively. Let M =

(
α β
γ δ

)
∈ GL2(Z) (resp. SL2(Z))
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be such that M tAM = B. Using Observation 2.4.5 (I) we see that the associated
binary quadratic form AB = AMtAM is given by

AMtAM =
(
α2A11 + αγ(A12 + A21) + γ2A22

)
x2+

= (2αβA11 + (αδ + βγ)(A12 + A21) + 2βδA22)xy+(
β2A11 + βδ(A12 + A21) + δ2A22

)
y2.

Now we calculate M tAAM directly via Observation 2.4.5 (I)

M tAAM =

(
α γ
β δ

)(
A11

A12+A21

2
A12+A21

2
A22

)(
α β
γ δ

)
=

(
α2A11 + αγ(A12 +A21) + γ2A22 αβA11 +

αδ+βγ
2 (A12 +A21) + γδA22

αβA11 +
αδ+βγ

2 (A12 +A21) + γδA22 β2A11 + βδ(A12 +A21) + δ2A22

)
= AMtAM

= AB.

Hence we see AA ∼ AB (AA ∼+ AB) via M .

Corollary 2.4.13.
Assume A and B are equivalent bilinear forms. Then det(AA) = det(AB).

Proof.
Since the bilinear forms A and B are equivalent there exists M ∈ GL2(Z) such that
M tAM = B. From Lemma 2.3.1 we know M tAAM = AB, using det(M) = ±1 and
det(M t) = det(M) it follows immediately that det(AA) = det(AB).

We now present a second proof of Corollary 2.4.13.

Proof of Corollary 2.4.13:
Assume A and B are equivalent bilinear forms. Then there exists M ∈ GL2(Z) such
that M tAM = B. From Lemmas 2.3.1 and 2.4.6 we know det(A) = det(B) and
A12 − A21 = B12 −B21. Thus we consider the determinant of AA as follows:

det(AA) = A11A22 −
(
A12 + A21

2

)2

which implies

4 det(AA) = 4A11A22 − (A12 + A21)
2

= 4 (A11A22 − A12A21)− (A12 − A21)
2.

Thus A11A22 −
(
A12 + A21

2

)2

= det(A)−
(
A12 − A21

2

)2

.

Thus we see the determinant of AA is invariant under M and hence det(AA) =
det(AB).

�
We now introduce the concept of a reduced bilinear form.
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Definition 2.4.14.

Let A be a bilinear form with matrix representation A =

(
A11 A12

A21 A22

)
with respect

to some basis. We say that A is reduced if one of the following conditions holds:

1. − |A11| < A12 + A21 6 |A11| < |A22|, or

2. 0 6 A12 + A21 6 |A11| = |A22|.

This definition is an extension of the definition of a reduced binary quadratic form.
The definition for binary quadratic forms may be found in [NZM1991, p 159].
The following definition defines two types of transformation matrices that are useful
when reducing bilinear forms.

Definition 2.4.15.
Let β, γ ∈ Z. We define the following transformation matrices:

U(β) =

(
1 β
0 1

)
and L(γ) =

(
1 0
γ 1

)
.

Lemma 2.4.16.
Assume A is a definite reduced bilinear form with matrix representation A, then
det(A) > 0.

Proof.
Since A is a definite form we have A11A22 > 0. This is because A11 and A22 are
represented by A and so are non-zero and have the same sign. For the same reason
we see A is not the zero bilinear form. Using this we have

det(A) = A11A22 − A12A21 > (A12 + A21)
2 − A12A21 as A is reduced

= A2
12 + A12A21 + A2

21

=
1

4

[
(2A12 + A21)

2 + 3A2
21

]
> 0.

In the first line of the above equation we have equality if and only if (A12 + A21)
2 =

A11A22. However A is reduced so we have (A12 + A21)
2 6 |A11|2 = A2

11, and |A11| 6
|A22|.
Thus in order to have det(A) = 0 we must have A12 + A21 = |A11| and A11 = A22 as
A is a definite form. We note that A12 + A21 6= − |A11| because A is reduced.

Then by the last line of the above equation we see that in order to obtain 0 we require
both 2A12 + A21 = 0 and A21 = 0. It follows that A12 = A21 = 0 for this to occur.
To conclude, we have a strict inequality on the first line above unless A12+A21 = |A11|
and A11 = A22, and we have a strict inequality on the third line unless A12 = A21 = 0.
Hence det(A) = 0 if and only if A is the zero bilinear form. But A is not the zero
bilinear form and thus det(A) > 0.

The following lemma is provided as an aide-memoir.
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Lemma 2.4.17.
Let a and b be real numbers, then |a+ b| > ||a| − |b||.

Proof.
We see |b| = |a + b + (−a)| 6 |a + b| + | − a| = |a + b| + |a|. Rearranging yields
|a+ b| > |b| − |a|. By symmetry we may interchange a and b to get |a+ b| > |a| − |b|
and hence |a+ b| > ||a| − |b||.

Lemma 2.4.18.

Let B be a positive definite reduced bilinear form. Let v =

(
x
y

)
. If gcd (x, y) = 1

for some integers x, y ∈ Z and B (v,v) 6 A22, then B (v,v) = A11 or A22, and (x, y)
is one of the six points ± (0, 1), ± (1, 0), or ± (−1, 1).
Further, the number of proper representations of A11 by B is:

6 if A11 = A22 and A12 + A21 = A11,
4 if A11 = A22 and A12 + A21 6= A11,
2 otherwise.

Proof.
Recall B positive definite implies B (v,v) > 0 for all v 6= 0. In particular, A11 > 0.

Let v =

(
x
y

)
where gcd (x, y) = 1. Then multiplying by 4A11, we obtain the

following:

4A11B (v,v) = 4A2
11x

2 + 4A11 (A12 + A21)xy + 4A11A22y
2 (2.5)

= (2A11x+ (A12 + A21) y)2 +
(
4A11A22 − (A12 + A21)

2) y2.
If y = 0 then x = ±1 and Equation 2.5 yields 4A2

11.

Thus B
((
±1
0

)
,

(
±1
0

))
= A11.

Now let y = ±1 and suppose |x| > 2. Then using the Lemma 2.4.17 we have

|2A11x+ (A12 + A21)y| > 2A11|x| − |A12 + A21||y|
= 2A11|x| − |A12 + A21|
> 4A11 − |A12 + A21|
> |A12 + A21|.

Using this Equation 2.5 becomes:

4A11B(v,v) = (2A11x+ (A12 + A21) y)2 +
(
4A11A22 − (A12 + A21)

2) y2
> (A12 + A21)

2 + 4A11A22 − (A12 + A21)
2

= 4A11A22.

Hence B (v,v) > A22 when |y| = 1 and |x| > 2.
Now suppose |y| > 2. Then Equation 2.5 becomes:

4A11B (v,v) = (2A11x+ (A12 + A21) y)2 +
(
4A11A22 − (A12 + A21)

2) y2
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> (2A11x+ (A12 + A21) y)2 + 4
(
4A11A22 − (A12 + A21)

2)
> 4

(
4A11A22 − (A12 + A21)

2)
> 4 (4A11A22 − A11A22) as 0 6 (A12 + A21)

2 6 A2
11 6 A11A22

= 12A11A22.

Thus B (v,v) > 3A22 > A22 > 0.

So we are left to consider (x, y) = ± (0, 1) ,± (1, 1), and ± (−1, 1).

By direct calculation, B
((

0
±1

)
,

(
0
±1

))
= A22 > A11 as B is reduced. We note

that equality holds if and only if A22 = A11.

Similarly, B
((
±1
±1

)
,

(
±1
±1

))
= A11 + (A12 + A21) + A22 > A22.

This is because −A11 < A12 + A21 6 A11 thus A11 + (A12 + A21) > 0.

Lastly, B
(
±
(
−1

1

)
,±
(
−1

1

))
= A11 − (A12 + A21) + A22 > A22 > A11.

This is due to −A11 < A12 +A21 6 A11 yielding A11− (A12 + A21) > 0. We note that
we have equality if and only if A11 = A22 and A12 + A21 = A11.

Hence A11 is properly represented by B in the following ways:
6 times if A22 = A11 and A12 + A21 = A11

4 times if A22 = A11 and A12 + A21 6= A11

2 times otherwise.

Corollary 2.4.19.
A bilinear form B is positive definite if and only if A11 > 0 and
4A11A22 − (A12 + A21)

2 > 0.

Proof.

Let B be a bilinear form with matrix representation

(
A11 A12

A21 A22

)
.

(⇒) Assume B is positive definite, so B (v,v) > 0 for all v 6= 0. Since v =

(
1
0

)
yields B (v,v) = A11, we must have A11 > 0.
We now use the result found in Equation 2.5:

4A11B (v,v) = (2A11x+ (A12 + A21) y)2 +
(
4A11A22 − (A12 + A21)

2) y2.
Since B is positive definite and A11 > 0 it follows that 4A11B (v,v) > 0 for all v 6= 0.

Since A11 > 0, taking v =

(
A12 + A21

−2A11

)
6= 0 yields
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4A11B (v,v) = (2A11 (A12 + A21) + (A12 + A21) (−2A11))
2︸ ︷︷ ︸

=0

+

(
4A11A22 − (A12 + A21)

2) (−2A11)
2 .

This implies B (v,v) =
(
4A11A22 − (A12 + A21)

2)A11. Since A11 > 0, it follows that

4A11A22 − (A12 + A21)
2 > 0 for B to be positive definite.

Hence if B is positive definite then A11 > 0 and 4A11A22 − (A12 + A21)
2 > 0.

(⇐) Assume A11 > 0 and 4A11A22 − (A12 + A21)
2 > 0.

Then for v 6= 0, Equation 2.5 yields

4A11B (v,v) = (2A11x+ (A12 + A21) y)2︸ ︷︷ ︸
>0

+

4A11A22 − (A12 + A21)
2︸ ︷︷ ︸

>0

 y2︸︷︷︸
>0

.

Since 4A11 > 0, we will only have B (v,v) = 0 if both y = 0 and
2A11x + (A12 + A21) y = 0. However, this implies 2A11x = 0 and so A11 > 0 means
x = 0. Thus v = 0.
So 4A11B (v,v) > 0 for all v 6= 0 and hence B (v,v) > 0 for all v 6= 0.
Hence B is a positive definite bilinear form.

Corollary 2.4.20.
A reduced bilinear form B is positive definite if and only if 0 < A11A22 and 0 < A11.

Proof.
Let B be a reduced bilinear form.
(⇒) Assume B is positive definite. Then v = (1, 0) yields B (v,v) = A11 > 0, and
w = (0, 1) yields B (w,w) = A22 > 0. Hence we have 0 < A11A22 and 0 < A11.

(⇐) Assume B satisfies 0 < A11A22 and 0 < A11. Observe the first condition implies
0 < A11A22 < 4A11A22. Since B is reduced, we have −A11 < A12 + A21 6 A11 < A22

or 0 6 A12 + A21 6 A11 = A22 and this gives 4A11A22 > (A12 + A21)
2.

Hence we have 0 < 4A11A22− (A12 + A21)
2 and Corollary 2.4.19 implies B is positive

definite.

Corollary 2.4.21.
Let M ∈ GL2(Z) and A be a positive definite bilinear form. Then M tAM is a positive
definite bilinear form.

Proof.
By Corollary 2.4.19 we need to show B = M tAM satisfies B11 > 0 and 4B11B22 −
(B12 +B21)

2 > 0. We note A satisfies 0 < 4A11A22 − (A12 + A21)
2 and

4A11A22 − (A12 + A21)
2 = 4(A11A22 − A12A21)− A2

12 − A2
21 + 2A12A21

= 4 det(A)− (A12 − A21)
2.
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Since det(B) = det(M tAM) = det(A) and by the proof of Lemma 2.4.6 we have
(B12−B21)

2 = (A12−A21)
2, it follows that 4B11B22−(B12+B21)

2 = 4A11A22−(A12+
A21)

2 > 0. Lastly, using Observation 2.4.5 yields B11 = α2A11+αγ(A12+A21)+γ2A22.

Since det(M) 6= 0 we cannot have α = γ = 0 and thus

(
α
γ

)
6= 0. Then we have

(
α γ

)( A11 A12

A21 A22

)(
α
γ

)
= α2A11 + αγ(A12 + A21) + γ2A22.

Since A is positive definite, it follows that α2A11 + αγ(A12 + A21) + γ2A22 > 0.
Therefore we see B11 > 0, completing the requirements of Corollary 2.4.19 for M tAM
to be a positive definite bilinear form.

Observation 2.4.22.
Lemma 2.4.18 implies that the minimal non-zero integer properly represented by a
positive definite reduced bilinear form is A11.

Theorem 2.4.23.
Every bilinear form B that is not skew-symmetric is properly equivalent to a reduced
bilinear form.

Proof.
Let B be a non-skew-symmetric bilinear form, then B represents non-zero integers.
Choose m ∈ Z\ {0} properly represented by B and such that |m| is minimal. By
Lemma 2.3.6 B is properly equivalent to the bilinear form with matrix representation(
m b
c d

)
. Thus without loss of generality we may assume that B =

(
A11 A12

A21 A22

)
,

where A11 6= 0 is the integer properly represented by B such that |A11| is minimal.

Observe that A22 = B
((

0
1

)
,

(
0
1

))
. Thus since |A11| is properly represented by

B and is minimal, we see that 0 < |A11| 6 |A22| as A22 is properly represented by B.
Thus if B is not reduced then we have A12 + A21 6∈ (− |A11| , |A11|].
By the division algorithm there exists a unique q ∈ Z\ {0} such that A12 + A21 =
2qA11 + r where − |A11| < r 6 |A11|. Applying the SL2 (Z) change of basis U (−q)
(see Definition 2.4.15) yields

U (−q)tAU (−q) =

(
A11 A12 − qA11

A21 − qA11 A22 − q (A12 + A21) + q2A11

)
.

Observe the “A11” entry is still properly represented by B and |“A11”| is minimal.
Also observe the new “A12 +A21” entry is (A12 + A21)− [(A12 + A21 − r)] = r. Thus
we have − |A11| < “A12 + A21” 6 |A11|. It remains to show that |“A22”| > |A11|.

This follows immediately because B
((

0
1

)
,

(
0
1

))
= “A22” and since |A11| is the

minimal non-zero integer represented by B we have 0 < |A11| 6 |“A22”|.
Thus the only problem that may remain is if |A11| = |“A22”| and r = “A12 +

21



A21” < 0. If this is the case then applying

(
0 1
−1 0

)
∈ SL2 (Z) yields the form(

“A22” −“A21”
−“A12” A11

)
. Since “A22” = A11 and 0 6 −r 6 |A11| we see that this new

form is reduced.
Hence every non-skew-symmetric bilinear form is properly equivalent to a reduced
bilinear form.

Theorem 2.4.24.
Let A be a positive definite bilinear form. Then A is properly equivalent to a unique
reduced bilinear form.

Proof.
Let A be a positive definite bilinear form. Note this implies A(v,v) > 0 for all v 6= 0
and therefore A is not skew-symmetric. We assume A is properly equivalent to the
reduced bilinear forms B and C. Let the matrix representations of the reduced forms

be B =

(
B11 B12

B21 B22

)
and C =

(
C11 C12

C21 C22

)
respectively.

By Observation 2.4.22, B11 is the smallest non-zero integer properly represented by
B, and for C it is C11. By Lemma 2.1.11 and Observation 2.2.5, properly equivalent
bilinear forms represent the same set of properly represented integers. Thus B11 =
C11.
Now suppose B22 = B11. Then Lemma 2.4.18 implies B properly represents B11 at
least 4 times. Lemma 2.1.11 and Observation 2.2.5 then forces C22 = C11 = B11 as
otherwise C would only represent B11 twice.
Recall from Corollary 2.4.13 that the negative discriminant of the associated binary
quadratic form is an invariant. Thus we have

B11B22 −
(
B12 +B21

2

)2

= det(AB) = det(AC) = B11B22 −
(
C12 + C21

2

)2

.

Hence (B12 +B21)
2 = (C12 + C21)

2. Then since B and C are reduced and B22 = B11,
we have 0 6 B12 + B21 and 0 6 C12 + C21, and so we see B12 + B21 = C12 + C21.
Using Lemma 2.4.6 we have B12−B21 = C12−C21; this yields a pair of simultaneous
equations with sole solution B12 = C12 and B21 = C21.
Hence if B22 = B11 then we have a unique reduced form.

Next suppose B11 < B22. Lemma 2.4.18 implies that there are exactly two represen-
tations of B11, consequently Lemma 2.1.11 and Observation 2.2.5 imply C represents
B11 exactly twice as well. Thus we have B11 < C22. By Lemma 2.4.18 we see that B22

is the second smallest integer properly represented by B, while for C it is C22. Then
Lemma 2.1.11 and Observation 2.2.5 imply C22 = B22. Again using Corollary 2.4.13
we see that (C12 + C21)

2 = (B12 +B21)
2 and thus (C12 + C21) = ± (B12 +B21).

Now let M =

(
r s
t u

)
∈ SL2 (Z) be such that M tBM = C. Then det (M) =

ru− ts = 1 implies gcd (r, t) = 1 and gcd (s, u) = 1. We see that
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B11 = C
((

1
0

)
,

(
1
0

))
= B

((
r
t

)
,

(
r
t

))
and gcd (r, t) = 1 implies this is a

proper representation of B11. Thus Lemma 2.4.18 implies

(
r
t

)
= ±

(
1
0

)
as we

only have two proper representations of A11.

Similarly, B22 = C
((

0
1

)
,

(
0
1

))
= B

((
s
u

)
,

(
s
u

))
and gcd (s, u) = 1 im-

plies this is a proper representation of B22. Thus Lemma 2.4.18 implies either(
s
u

)
= ±

(
0
1

)
or

(
−1
1

)
. Hence the only possibilities for M are ±I2 or

±
(

1 −1
0 1

)
.

Applying M = ±
(

1 −1
0 1

)
yields

(
B11 B12 −B11

B21 −B11 B11 − (B12 +B21) +B22

)
.

Thus C12 + C21 = B12 + B21 − 2B11. However, B is reduced and so satisfies −B11 <
B12 + B21 6 B11. This implies −3B11 < B12 + B21 − 2B11 6 B11, contradicting C
being reduced.
Hence M = ±I2 and thus we must have C12 + C21 = B12 + B21. Then Lemma
2.4.6 yields C12 − C21 = B12 − B21 and solving these equations simultaneously gives
C12 = B12 and C21 = B21.
Hence B = C and thus A is properly equivalent to a unique reduced bilinear form
when B11 < B22.
Hence every positive definite bilinear form is properly equivalent to a unique reduced
bilinear form.

We now use our theory of reduced bilinear forms to show a parallel result for binary
quadratic forms.

Lemma 2.4.25.
Let B be a reduced bilinear form. Then its associated binary quadratic form AB is
reduced. Further, if B is positive (negative) definite then AB is positive (negative)
definite.

Proof.

Let B be a reduced bilinear form with matrix representation

(
A11 A12

A21 A22

)
. Then

we have −|A11| < A12 + A21 6 |A11| < |A22| or 0 6 A12 + A21 6 |A11| = |A22|.
The associated binary quadratic form is AB = A11x

2 + 2
(
A12+A21

2

)
xy +A22y

2. From
Definition 2.4.14 we require either −|A11| < A12 + A21 6 |A11| < |A22| or 0 6
A12 + A21 6 |A11| = |A22|. But these are the exact conditions that define B as a
reduced bilinear form. Hence AB is reduced.
Now assume B is positive (negative) definite and thus A11A22 > 0 and A11 > 0 (A11 <
0). From Lemma 2.4.11 it remains to show in either case that det (AB) > 0. We have

det (AB) =
(
A11A22 − A12+A21

2

)2
and since B is reduced, we have 0 6 (A12 + A21)

2 6
A11A22. Hence det (AB) > 0 with equality if and only if A12+A21

2
= A12 +A21 = A11 =
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A22 = 0. That is B would have to be a skew-symmetric bilinear form, contradicting
B being a definite form.

Corollary 2.4.26.
Every positive definite binary quadratic form f = ax2 + 2bxy + cy2 is properly equiv-
alent to a unique reduced binary quadratic form.

Proof.
By Lemma 2.4.9 we know these binary quadratic forms are a subset of the bilinear
forms. From Lemma 2.4.24 we know f is properly equivalent to a unique positive
definite bilinear form. We now show this bilinear form is in fact a binary quadratic
form. In Theorem 2.4.23 we demonstrated one can reduce a bilinear form via a

sequence of the transformations

(
0 1
−1 0

)
and U(q)’s for some q ∈ 2Z. Using

Observation 2.4.5 we see the first transformation yields a bilinear form with “A12” =
−A21 and “A21” = −A12. Since we started with a binary quadratic form we had
A12 = A21 and thus we see the first transformation preserves binary quadratic forms.
Again by Observation 2.4.5 transformations of the type U(q) yield a bilinear form
with “A12” = A12 + qA11 and “A21” = A21 + qA11. Since we started with a binary
quadratic form we have A12 = A21 and thus “A12” = “A21” so these transformations
preserve binary quadratic forms.
Hence since these transformations are sufficient to transform any bilinear form to
a reduced bilinear form which, by Theorem 2.4.24, is unique, we have shown every
positive definite binary quadratic form is properly equivalent to a unique reduced
binary quadratic form.

For the remainder of this section we will assume A is a positive definite reduced
bilinear form with determinant D. We now develop bounds for the coefficients of
such a bilinear form and use this to show there are finitely many such bilinear forms.
It will be useful to recall xy 6 (x+y

2
)2 for all real numbers x and y.

Lemma 2.4.27.

The bilinear form A satisfies 0 < A11 6
√

4D
3

.

Proof.
We have 4A11A22 − 4D = 4A12A21 6 (A12 + A21)

2 6 A2
11. Consequently, we get

3A2
11 = 4A2

11−A2
11 6 4A11A22−A2

11 6 4D. Since 0 < A11 this yields 0 < A2
11

√
4D
3

.

Lemma 2.4.28.
The bilinear form A satisfies −D < A12A21 6 D

3
.

Proof.
From Lemma 2.4.27 we have 4A12A21 6 (A12 +A21)

2 6 A2
11 6

4D
3

and thus A12A21 6
D
3

. We also have −A12A21 = D − A11A22 < D as A11A22 > 0 by the definiteness of
our bilinear forms. Hence we have −D < A12A21 6 D

3
.

Lemma 2.4.29.

The bilinear form A satisfies A2
11 6 A11A22 6

√
4D
3

.
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Proof.
From Lemmas 2.4.27 and 2.4.28 we have A11A22−D = A12A21 6 D

3
. By the reduced

criteria it then follows that A2
11 6 A11A22 6 4D

3
.

Lemma 2.4.30.
The bilinear form A satisfies A22 6

A11

4
+ D

A11
and A22 6 D.

Proof.

From the proof of Lemma 2.4.28 we have A11A22 = A12A21 + D 6 A2
11

4
+ D. Since

A11 > 0, dividing yields A22 6
A11

4
+ D

A11
. By Lemma 2.4.27 we know 1 6 A11 6

√
4D
3

.

Since the function f(x) = x
4

+ D
x

is decreasing on the interval 1 6 x 6
√

4D
3

, it follows

that A22 6
A11

4
+ D

A11
6 1

4
+D. Since A22, D are integers it follows that A22 6 D.

Lemma 2.4.31.
The bilinear form A satisfies |A12 − A21| 6 2

√
D.

Proof.
Applying Proposition 2.4.28 we have

(A12 − A21)
2 = (A12 + A21)

2 − 4A12A21

6 A11A22 − 4A12A21

= D − 3A12A21

6 D + 3D

= 4D.

Therefore |A12 − A21| 6 2
√
D.

Lemma 2.4.32.

The bilinear form A satisfies |A12|, |A21| 6
√

4D
3

.

Proof.
By Lemma 2.4.31 we may write A12 = r

√
D and A21 = s

√
D where r, s are real

numbers. Then using the reduced criteria we have
A22 > A11 > A12 + A21 = (r + s)

√
D. Consider the bilinear form

B =

(
(r + s)

√
D r

√
D

s
√
D (r + s)

√
D

)
.

Then det(B) = ((r + s)2 − rs)D 6 A11A22 − A12A21 = D. From this it follows that
r2+rs+s2 6 1. To maximise |A12| requires finding the maximal real number |r| where
this inequality holds. We have s2+rs+(r2−1) 6 0 if and only (2s+r)2+(3r2−4) 6 0.

Therefore 3r2 − 4 6 0 and hence r2 6 4
3
. Thus |A12| = |r|

√
D 6

√
4D
3

. Rewriting

the initial inequality as r2 + rs+ (s2− 1) 6 0 and proceeding in an identical manner

then yields |A21| 6
√

4D
3

.
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Corollary 2.4.33.
There are finitely many positive definite reduced bilinear forms with determinant D.

Proof.

In Lemma 2.4.27 we have shown 0 < A11 6
√

4D
3

and in Lemma 2.4.30 we showed

0 < A22 6 D. Lastly, in Lemma 2.4.32 we showed |A12|, |A21| 6
√

4D
3

. Therefore

there are finitely many choices for each ofA11, A12, A21 andA22 for a fixed determinant
D. Hence there are only finitely many reduced bilinear forms.

We now provide several examples which show these bounds are optimal.

Example 2.4.34.

Let D = 3n2 for some integer n. Then the bilinear form B =

 √
4D
3

√
D
3√

D
3

√
4D
3

 is

reduced with determinant D. This example shows that Lemma 2.4.27, the second
inequality of Lemma 2.4.28, Lemma 2.4.29 and the first inequality in Lemma 2.4.30
are optimal.

Example 2.4.35.
Assume r is a rational number such that rD and (1−r)D are both squares of integers.
For example, let r = a2

a2+b2
and D = (a2 + b2)n2 where a, b, n ∈ Z. Then the bilinear

form B =

( √
(1− r)D

√
rD

−
√
rD

√
(1− r)D

)
is a reduced bilinear form with determinant

D. We have A12−A21 = 2
√
rD and A12A21 = −rD. We can make r arbitrarily close

to 1 by choosing a sufficiently large and letting b = 1. This shows Lemma 2.4.31 and
the first inequality in Lemma 2.4.28 are optimal.

Example 2.4.36.

Consider the bilinear form B =

(
1 1
0 D

)
. This is a reduced bilinear form with

determinant D and that the second inequality in Lemma 2.4.30 is optimal.

Example 2.4.37.

Assume D = 3n2 for some integer n. Then the bilinear form B =

 √
D
3

√
4D
3

−
√

D
3

√
D
3


is a reduced bilinear form with determinant D. This example shows Lemma 2.4.32 is
optimal.

We now demonstrate in detail how to calculate the proper class number for bilinear
forms with determinants D = 1, D = 2, D = 3, D = 4 and D = 6 respectively. These
results will be used later in Section 4.5.

Example 2.4.38.
We wish to determine all positive definite reduced bilinear forms with determinant
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D = 1. From above we see 0 < A11 6
√

4·1
3
< 2, 0 < A22 6 1 and |A12|, |A21| 6

√
4
3
.

Therefore A11 = A22 = 1. Hence A12A21 = 0 and therefore we get precisely three
reduced bilinear forms: (

1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
.

Example 2.4.39.
Our goal is to find all positive definite reduced bilinear forms of determinant D = 2.

From above we see 0 < A11 6
√

4·2
3
< 3, 0 < A22 6 2 and |A12|, |A21| 6

√
8
3
. Thus

A11 = 1 or 2.
Case 1: A11 = 1
Then 2 = D = A22 − A12A21, if A22 = 1, then A12A21 = −1 and thus A12 = ±1,

A21∓ 1. It is then straightforward to check that

(
1 1
−1 1

)
and

(
1 −1
1 1

)
are the

only reduced bilinear forms.
Now if A22 = 2 then A12A21 = 0 and using the conditions for being reduced we see

that

(
1 0
0 2

)
,

(
1 1
0 2

)
and

(
1 0
1 2

)
are the only reduced bilinear forms.

Case 2: A22 = 2
Then 2 = D = 4 − A12A21 and thus A12A21 = 2. Therefore either A12 = 2, A21 = 1
or A12 = 1 and A21 = 2. However, both of these options yield A12 + A21 > A11.
Therefore this case does not contribute any reduced bilinear forms.
By Theorem 2.4.24 every bilinear form is properly equivalent to a unique reduced
bilinear form. Since we have five distinct reduced bilinear forms it follows that none
of these are properly equivalent to another. Therefore since every proper equivalence
class contains a unique reduced bilinear form, it follows that Cl+ (2) = 5.

Example 2.4.40.
Our goal is to find all positive definite reduced bilinear forms of determinant D = 3.

From above we see 0 < A11 6
√

4·3
3

= 2, 0 < A22 6 3 and |A12|, |A21| 6 2. Thus

A11 = 1 or 2.
Case 1: A11 = 1
Then A22 is either 1, 2 or 3. If A22 = 1 then we must have A12A21 = −2 and then
the reduced criterion implies A12 = 2 and A21 = −1. Since we may interchange the
roles of A12 and A21 this gives rise to two reduced forms. Next, if A22 = 2 then
A12A21 = −1 and therefore A12 = 1 and A21 = −1 or vice versa. This yields another
two reduced forms. Lastly, if A22 = 3 then A12A21 = 0 and we get three reduced
forms which correspond to (A12, A21) = (0, 0), (1, 0) and (0, 1).
Case 2: A11 = 2
Then A22 = 2 or 3. If A22 = 2 then we have A12A21 = 1 and then the reduced criterion
yields a single reduced form with A12 = 1 = A21. While if A22 = 3 then A12A21 = 2
and there are no integers with this property that also satisfy A12 + A21 6 A11.
Hence the set of positive definite reduced bilinear forms with determinant D = 3 is{( 1 0

0 3

)
,

(
1 1
0 3

)
,

(
1 0
1 3

)
,

(
1 −1
2 1

)
,

(
1 2
−1 1

)
,

(
1 1
−1 2

)
,
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(
1 −1
1 2

)
,

(
2 1
1 2

)}
.

Therefore Cl+ (3) = 8 = 2 · 3 + 2.

Example 2.4.41.
We want to find all positive definite reduced bilinear forms of determinant D = 4.

From above we see 0 < A11 6
√

4·4
3
< 3, 0 < A22 6 min{4, A11

4
+ D

A11
, and |A12|,

|A21| 6
√

4·4
3
< 3. Thus A11 = 1 or A11 = 2.

Case 1: A11 = 1.
Then A22 ∈ Z ∩ [1, 4] and for each value of A22 we examine A12A21 = 1 · A22 − D.
Using the bounds for |A12| and |A21| we get the following reduced bilinear forms(

1 0
0 4

)
,

(
1 1
−1 3

)
,

(
1 −1
1 3

)
,

(
1 2
−1 2

)
,

(
1 −1
2 2

)
,

(
1 0
1 4

)
,

(
1 1
0 4

)
.

Case 2: A11 = 2
Then it follows A22 = 2 and we have the following reduced bilinear forms:(

2 0
0 2

)
,

(
2 0
1 2

)
,

(
2 1
0 2

)
,

(
2 2
0 2

)
,

(
2 0
2 2

)
.

Now we have considered all possible values for A11 and A22 with their associated
values for A12 and A21 and therefore we have found all positive definite reduced
bilinear forms with determinant D = 4. Since every proper equivalence class contains
a unique reduced bilinear form and every bilinear form is properly equivalent to a
unique reduced bilinear form, we deduce Cl+ (4) = 12 = 2D + 4.

Example 2.4.42.
We want to find all positive definite reduced bilinear forms of determinant D = 6.

From above we see 0 < A11 6
√

4·6
3

=
√

8 < 3, 0 < A22 6 min{6, A11

4
+ D

A11
} and

|A12|,|A21| 6
√

4·6
3
< 3. Thus A11 = 1 or A11 = 2.

Case 1: A11 = 1.
Then A22 ∈ Z ∩ [1, 6] and for each value of A22 we examine A12A21 = 1 · A22 − D.
Using the bounds for |A12| and |A21| we get the following reduced bilinear forms for
A22 ∈ {2, 4, 5}(

1 2
−2 2

)
,

(
1 −2
2 2

)
,

(
1 2
−1 4

)
,

(
1 −1
2 4

)
,

(
1 1
−1 5

)
,

(
1 −1
1 5

)
.

Lastly when A22 = 6 we require at least one of A12, A21 to equal zero. Thus we get
the following three reduced bilinear forms(

1 0
0 6

)
,

(
1 0
1 6

)
,

(
1 1
0 6

)
.
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Case 2: A11 = 2
Then it follows A22 is either 2 or 3. When A22 = 2 we get the following reduced
bilinear forms (

2 2
−1 2

)
,

(
2 −1
2 2

)
.

While when A22 = 3 we require at least one of A12, A21 to be zero and therefore we
get(

2 0
0 3

)
,

(
2 0
1 3

)
,

(
2 0
−1 3

)
,

(
2 0
2 3

)
,

(
2 1
0 3

)
,

(
2 −1
0 3

)
,

(
2 2
0 3

)
.

Now we have considered all possible values for A11 and A22 with their associated
values for A12 and A21 and therefore we have found all positive definite reduced
bilinear forms with determinant D = 6. Since every proper equivalence class contains
a unique reduced bilinear form and every bilinear form is properly equivalent to a
unique reduced bilinear form, we deduce Cl+ (6) = 18 = 2D + 6.

Notes on Section 2.4

In chapter 9 of his paper ([Kr1897, p. 452]), Kronecker introduces bilinear forms by
stating them in general as Ax1y1 + Bx1y2 − Cx2y1 + Dx2y2. For ease of exposition,
we will avoid this, instead choosing to write A11x1y1 + A12x1y2 + A21x2y1 + A22x2y2
or even (A11, A12, A21, A22) in shorthand.

2.5 Automorphs of Bilinear Forms

In this subsection we turn our considerations to understanding when a proper equiv-
alence class of a bilinear form contains exactly six complete equivalence classes. In
order to do this we will develop the theory of bilinear automorphs by following the
approach found in [NZM1991, p. 173] and [Fl1989, p. 125] for binary quadratic forms.

We will first investigate the existence of proper and improper automorphs of positive
definite reduced bilinear forms. By reduced we will mean the definition given in
Definition 2.4.14.

Let B be a reduced bilinear form with matrix representation A =

(
A11 A12

A21 A22

)
. Let

M =

(
α β
γ δ

)
.

Definition 2.5.1.
Let A be a bilinear form. A matrix M ∈ GL2(Z) is called an automorph of A if
M tAM = A where A is the matrix representation of A. We refine the notion to
that of an improper automorph if M ∈ GL2(Z)\SL2(Z), a proper automorph
if M ∈ SL2(Z) and a complete automorph if M ∈ kerσ.
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Notation 2.5.2.
Let A be a bilinear form. We shall write Aut(A) to denote the set of all automorphs
of A, Aut+(A) to denote the set of all proper automorphs of A, and Aut+c (A) to
denote the set of all complete automorphs of A. We let |Aut(A)|, |Aut+(A)| and
|Aut+c (A)| denote their respective cardinalities.

The following lemma will be useful when investigating the automorphism groups.

Lemma 2.5.3.
Let G1, G2 be groups, H1 6 G1 and τ : G1 → G2 be a group homomorphism. Then
H1 ∩ ker τ E H1.

Proof.

Consider the homomorphism τ
∣∣∣
H1

: H1 → G2. Then ker τ
∣∣∣
H1

= H1 ∩ ker τ .

Lemma 2.5.4.
Let A be a bilinear form. Then Aut(A) is a subgroup of GL2(Z) and Aut+(A) is a
normal subgroup of Aut(A). Lastly, Aut+c (A) is a normal subgroup of Aut(A).

Proof.
Observe that ±I ∈ Aut+c (A) ⊆ Aut+(A) ⊆ Aut(A). Now suppose that B,C ∈
Aut(A), then B−1 ∈ Aut(A) since BtAB = A implies that A = (B−1)tAB−1. It
follows that BC−1 ∈ Aut(A) since

(BC−1)tA(BC−1) = (C−1)tBtABC−1

= (C−1)tAC−1

= A.

Hence Aut(A) is a subgroup of GL2(Z).

Now observe that Aut+(A) = Aut(A)∩SL2(Z) and Aut+c (A) = Aut(A)∩kerσ. Since
the intersection of two subgroups is again a subgroup, we have Aut+(A) is a subgroup
of Aut(A) and Aut+c (A) is a subgroup of Aut(A).

Next, consider the homomorphisms det and σ (from Lemma 2.3.2 with n = 2). Then
the restrictions:
det
∣∣∣
Aut(A)

: Aut(A) −→ {±1} given by M 7→ det(M), and

σ
∣∣∣
Aut(A)

: Aut(A) −→ ({±1},GL2(Z/2Z)),

along with Lemma 2.5.3 yield the result.

We observed in the proof of Lemma 2.5.4 that |Aut+c (A)| > 2 for all A. This is
because ±I ∈ Aut+c (A).

Lemma 2.5.5.
Let A and B be equivalent bilinear forms. The automorphs of A are in one-to-one
correspondence with the matrices that transform A to B.
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Proof.
Let T (A,B) = {M ∈ GL2(Z)|M tAM = B}. Since A and B are equivalent bilinear
forms it follows T (A,B) is non-empty. We now fix an M ∈ T (A,B) and consider the
map λ : Aut(A)→ T (A,B) given by λ(K) = KM .
We show λ is a bijection and hence there is a one-to-one correspondence between the
automorphs of A and matrices that transform A into B.
(1) KM ∈ T (A,B) since (KM)tA(KM) = M t(KtAK)M = M tAM = B.
(2) Surjectivity: Choose M ′ ∈ T (A,B) then M ′M−1 is an automorph of A since
(M ′M−1)tA(M ′M−1) = (M−1)tBM−1 = A and M−1 ∈ T (B,A).
Then λ(M ′M−1) = M ′ and so the map is surjective.
(3) Injectivity: Suppose that KM = K ′M for some K,K ′ ∈ Aut(A). Since M is
invertible, we must have K = K ′, i.e. λ is injective.
Further, if A and B are properly equivalent, then we replace T (A,B) with
T +(A,B) = {M ∈ SL2(Z)|M tAM = B} and replace Aut(A) with Aut+(A). The
same proof then yields a bijection between Aut+(A) and T +(A,B).
Similarly, if A and B are completely equivalent, one can replace T (A,B) with
T +
c (A,B) = {M ∈ kerσ|M tAM = B} and replace Aut(A) with Aut+c (A). The same

proof then yields a bijection between Aut+c (A) and T +
c (A,B).

It remains to show |Aut(A)| is a finite group for any bilinear form A. The next three
lemmas provide a stepping stone in this direction.

Lemma 2.5.6.
Let A and B be equivalent bilinear forms, then Aut(A) ∼= Aut(B).

Proof.
Let M ∈ GL2(Z) be such that M tAM = B. Define τ : Aut(A) → Aut(B) by
τ(K) = M−1KM . We show that τ is a group isomorphism.
Firstly, observe that τ(K) ∈ Aut(B) since (M−1KM)tB(M−1KM) = M tKtAKM =
B. To show surjectivity, let M ′ ∈ Aut(B) and so (M ′)tBM ′ = B. Also, observe
that M is invertible and MM ′M−1 ∈ Aut(A) since (MM ′M−1)tA(MM ′M−1) =
(M−1)tM ′tBM ′M−1 = (M−1)tBM−1 = A.
Then τ(MM ′M−1) = M−1(MM ′M−1)M = M ′ and so τ is surjective.
For injectivity suppose K,L ∈ Aut(A) and M−1KM = M−1LM . Since M and M−1

are invertible, it follows that K = L and so τ is injective.
Lastly, τ is a homomorphism since for K,L ∈ Aut(A) we have τ(KL) = M−1KLM =
(M−1KM)(M−1LM) = τ(K)τ(L). Hence τ is an isomorphism of groups and so
Aut(A) is isomorphic to Aut(B).

Lemma 2.5.7.
Let A and B be properly equivalent bilinear forms.
Define τ+ : Aut+(A) → Aut+(B) by τ+(K) = M−1KM where M ∈ SL2(Z) is such
that M tAM = B. That is, τ+ is the restriction of the domain of τ to Aut+(A). We
show τ+ is a group isomorphism.

Proof.
From above, restricting the domain of τ to Aut+(A) still maps into Aut(B). Since
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M ∈ SL2(Z) and Aut+(B) = Aut(B) ∩ SL2(Z) it follows that the map is actually
into Aut+(B). The result then follows as in the proof of Lemma 2.5.6. Hence τ+ is a
group isomorphism and so Aut+(A) is isomorphic to Aut+(B).

Corollary 2.5.8.
Let A and B be completely equivalent bilinear forms. Then the map
τ+c : Aut+c (A) → Aut+c (B) given by τ+c (K) = M−1KM , where M ∈ kerσ satisfies
M tAM = B, is an isomorphism.

Proof.
We restrict the domain of τ to Aut+c (A). This still maps into Aut(B) and we ob-
serve Aut+c (B) = Aut(B) ∩ kerσ. Since M ∈ kerσ it follows that τ+c maps into
Aut+c (B). The result then follows as in the proof of Lemma 2.5.6. Hence τ+c is a
group isomorphism and so Aut+c (A) is isomorphic to Aut+c (B).

We now show the three automorphism groups are finite by directly calculating the
improper and proper automorphs of a reduced bilinear form. Lemmas 2.5.6 and 2.5.7
then show the automorphism groups are finite for any bilinear form.

We first investigate whether any improper automorphs exist.
Improper Automorphs:
Assume det(M) = −1 and that M tAM = A. Using Observation 2.4.5 (I), we get the
following system of equations

(α + δ)A11 − γ (A12 − A21) = 0 (2.6)

βA11 − 2αA12 − γA22 = 0 (2.7)

βA11 + 2δA21 − γA22 = 0 (2.8)

(α + δ)A22 + β (A12 − A21) = 0 (2.9)

αδ − βγ = −1. (2.10)

Case I: α + δ = 0
We first suppose α + δ = 0, then δ = −α. This implies −1 = −α2 − βγ, i.e.
α2 + βγ = 1. Then Equations 2.6 and 2.9 imply either A12 − A21 = 0 or β = γ = 0.

Case I.a: β = γ = 0
If β = γ = 0 then we have α = ±1 and δ = ∓1. Further, Equations 2.7 and 2.8

imply A12 = A21 = 0. Thus we have M = ±
(

1 0
0 −1

)
is an improper automorph

for B =

(
A11 0
0 A22

)
.

Case I.b: A12 − A21 = 0, β = 0 and γ 6= 0
Now assume A12−A21 = 0 so A12 = A21. Observe that Equation 2.7 is now the same
as Equation 2.8 since δ = −α. Suppose β = 0 and γ 6= 0, else we are in the above
case. Then α = ±1 and δ = ∓1, and γ is not yet determined.
Equation 2.7 implies 2αA12 = −γA22 and so 2 |α| |A12| = |γ|A22. But A12 = A21 and
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|α| = 1 implies 2 |α| |A12| = |A12 + A21|. Further since γ 6= 0 and A22 > 0, we see that
A12 6= 0. So we have |A12 + A21| = |γ|A22 and since B is reduced, |A12 + A21| 6 A22,
which yields |γ| = 1.
We see that if γ = −α then A12 +A21 = A22, so Definition 2.4.14 implies A12 +A21 =

A11 = A22. Thus M = ±
(

1 0
−1 −1

)
is an improper automorph to

B =

(
2A12 A12

A12 2A12

)
.

Now let γ = α, this implies A12 + A21 = −A22 and since B is reduced this is clearly
impossible.

Case I.c: A12 − A21 = 0, β = 0 and γ = 0
Next we suppose A12 − A21 = 0 with β 6= 0 and γ = 0. Then −1 = −α2, so α = ±1
and δ = ∓1. Again Equations 2.7 and 2.8 are identical and yield 2αA12 = βA11.
Thus |A12 + A21| = |β|A11. Since B is reduced we have |β| = 1, and if β = −α we
have A12 + A21 = −A11, a contradiction. Hence β = α.

Thus M = ±
(

1 1
0 −1

)
is an improper automorph to B =

(
2A12 A12

A12 A22

)
.

Case I.d: A12 − A21 = 0, β 6= 0 and γ 6= 0
To finish the case where α + δ = 0 we suppose A12 − A21 = 0, β 6= 0, and γ 6= 0.
Observe −1 = −α2 − βγ implies 1− α2 = βγ. Hence α 6= ±1 as βγ 6= 0.

If α = δ = 0 then Equation 2.7 implies A11 = A22 and M = ±
(

0 1
1 0

)
is an

improper automorph to B =

(
A11 A12

A12 A11

)
. Since B is reduced we require

0 6 2A12 6 A11.
So suppose |α| > 1. This implies βγ < 0 and since β and γ are integers it follows
|β − γ| > 2. Since A11 > 0 we have

0 < 4A2
11 6 (β − γ)2A2

11 6 β2A2
11 − 2βγA11A22 + γ2A2

22 = (βA11 − γA22)
2 . (2.11)

Now Equation 2.7 becomes βA11 − γA22 = 2αA12 and so

(βA11 − γA22)
2 = 4α2A2

12

= 4 (1− βγ)A2
12 via det(M)

6 (1− βγ)A2
11 as A12 + A21 = 2A12 and |A12 + A21| 6 A11.

We note that we have a strict inequality if A12 = 0.
Hence by Equation 2.11 we have (1− βγ)A2

11 > (β − γ)2A2
11. Dividing by A2

11 6= 0
yields (β − γ)2 6 1− βγ.
Expanding this gives β2 − βγ + γ2 6 1. Yet βγ < 0 implies the left hand side is at
least 3, a contradiction. Hence |α| > 1 cannot occur and the case when α + δ = 0 is
complete.

Case II: α + δ 6= 0
Now suppose α + δ 6= 0. If β = 0 then Equation 2.9 implies (α + δ)A22 = 0, a
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contradiction. If γ = 0 then Equation 2.6 implies (α + δ)A11 = 0, a contradiction.
Thus βγ 6= 0.
Similarly observe that Equations 2.6 and 2.9 give the same contradictions if A12 −
A21 = 0. Hence A12 − A21 6= 0.

Using this, Equations 2.6 and 2.9 respectively imply γ =
(α + δ)A11

A12 − A21

6= 0 and β =

− (α + δ)A22

A12 − A21

6= 0. As a consequence of this and 0 < A11A22 it follows that βγ < 0.

Using the determinant equation, it follows also that αδ = −1 + βγ < 0.
Next, Equation 2.7 implies βA11 − γA22 = 2αA12 and Equation 2.8 implies βA11 −
γA22 = −2δA21. These yield the following:

(βA11 − γA22)
2 = −4αδA12A21

= 4 (1− βγ)A12A21 via det(M)

= 2 (1− βγ) (2A12A21)

< 2 (1− βγ)A2
11.

This strict inequality is justified by the following reasoning.
Consider 0 6 (βA11 − γA22)

2 = −4αδA12A21, note αδ < 0 implies A12A21 > 0. Then
A12 − A21 6= 0 implies at least one of A12, A21 is not zero.
Hence 0 6 2A12A21 < A2

12 + 2A12A21 + A2
21 = (A12 + A21)

2 6 A2
11 as B is reduced.

Next recall that β and γ are integers, and so βγ < 0 implies |β − γ| > 2. So we have
the following inequality:

0 < 4A2
11 6 (β − γ)2A2

11

6 β2A2
11 − 2βγA11A22 + γ2A2

22 since βγ < 0 and A2
11 6 A11A22 6 A2

22

= (βA11 − γA22)
2 .

Thus we have (β − γ)2A2
11 < 2 (1− βγ)A2

11. Since A2
11 > 0, we may divide by it to

get β2 − 2βγ + γ2 < 2 − 2βγ, which implies β2 + γ2 < 2. Therefore at least one of
β, γ must equal zero, a contradiction. So there are no improper automorphs when
α + δ 6= 0.

Now we investigate the proper automorphs.
Proper Automorphs:
Assume det(M) = 1 and that M tAM = A. Using Observation 2.4.5 (I) we get the
following system of equations:

(α− δ)A11 + γ (A12 + A21) = 0 (2.12)

βA11 + γA22 = 0 (2.13)

(α− δ)A22 − β (A12 + A21) = 0 (2.14)

αδ − βγ = 1. (2.15)

Case I.a: α− δ = 0 and γ = 0
We first suppose α−δ = 0, i.e. α = δ. Then Equation 2.12 implies γ (A12 + A21) = 0,
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so either γ = 0 or A12+A21 = 0. Assume γ = 0, then Equation 2.13 implies βA11 = 0,
A11 > 0 then says β = 0. Using the determinant equation we see α = ±1. This gives
M = ±I2.

Case I.b: α− δ = 0, γ 6= 0 and A12 + A21 = 0
Assume γ 6= 0, then A12 + A21 = 0. This leaves Equation 2.13 where clearly β 6= 0
else γA22 = 0, a contradiction. Therefore we have A11 = − γ

β
A22 and since we started

with a reduced form we have 0 < − γ
β
6 1 as A11A22 > 0. In particular observe β and

γ have opposing signs, so β 6= γ. Using Equation 2.15 we have βγ = α2 − 1.
If α = 0 then βγ = −1, which implies β = ±1 and γ = ∓1. Further, Equation 2.13

then requires A11 = A22. Therefore M = ±
(

0 1
−1 0

)
is a proper automorph to

B =

(
A11 A12

−A12 A11

)
.

Note that α 6= ±1 else at least one of β, γ is zero, which is a contradiction. So now
assume |α| > 1, it follows that α2− 1 = βγ > 3, so β and γ must have the same sign.
This contradicts our earlier result that they have opposite signs as neither β or γ are
zero.
This completes the case when α− δ = 0.

Case II: α− δ 6= 0
Next suppose α − δ 6= 0. Observe that Equation 2.13 continues to imply if β = 0
then γ = 0 and vice versa. This yields M = ±I2 again. So assume β 6= 0 and
γ 6= 0. Equation 2.13 again implies A11 = − γ

β
A22, with γ and β having opposite signs

because 0 < A11A22. Note that by the reduced criteria we have 0 < − γ
β
6 1. Also

observe that A12 + A21 6= 0 else Equation 2.12 implies α− δ = 0, a contradiction.
Case II.a: α− δ 6= 0 and α = 0
First suppose α = 0, then 1 = −βγ implies β = ±1 and γ = ∓1. Then Equa-
tion 2.13 yields A11 = A22. Now γ (A12 + A21) 6= 0 and β (A12 + A21) 6= 0 imply
δA11 = γ (A12 + A21) 6= 0 and δA22 = −β (A12 + A21) 6= 0. Hence δ 6= 0.
Equation 2.12 implies δ2A2

11 = (A12 + A21)
2, and B reduced implies (A12 + A21)

2 6
A2

11, so we have (A12 + A21)
2 6 A2

11 6 δ2A2
11 = (A12 + A21)

2. Hence δ = ±1.
If δ = −γ then we have −γA11 = γ (A12 + A21) and so −A11 = A12 +A21, which con-
tradicts B being reduced. Hence δ = γ = ±1 = −β and A12+A21 = A11 = A22. Thus

M = ±
(

0 −1
1 1

)
is a proper automorph to B =

(
A11 A12

A21 A11

)
, where A21 6= −A12

and A12 + A21 = A11 = A22.

Case II.b: α− δ 6= 0, α 6= 0 and δ = 0
Now suppose α 6= 0 and δ = 0. Then again we have 1 = −βγ, which implies
β = ±1 and γ = ∓1. Equation 2.13 then yields A11 = A22. Further, Equation
2.12 implies α2A2

11 = γ2 (A12 + A21)
2 = (A12 + A21)

2. Now B being reduced implies
(A12 + A21)

2 6 A2
11, so again we have (A12 + A21)

2 6 A2
11 6 α2A2

11 = (A12 + A21)
2.

Thus α = ±1. Suppose α = γ, then Equation 2.12 implies γA11 = −γ (A12 + A21),
i.e. −A11 = A12 + A21, contradicting B being reduced.
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So α = −γ and A12 +A21 = A11 = A22. Then we have M = ±
(

1 1
−1 0

)
is a proper

automorph to B =

(
A11 A12

A21 A11

)
, where A21 6= −A12, A12 + A21 = A11 = A22.

Case II.c: α− δ 6= 0, α 6= 0 and δ 6= 0
Lastly suppose α 6= 0 and δ 6= 0. By the determinant we have αδ = 1 + βγ and
βγ < 0 imply αδ < 0. Thus since α and δ are integers it follows that |α− δ| > 2.
Next, Equations 2.12 and 2.14 imply (α− δ) = −γ (A12 + A21) and
(α− δ) = β (A12 + A21). Multiplying these together yields the following:

(α + δ)2 = −βγ (A12 + A21)
2

= (1− αδ) (A12 + A21) by the determinant

6 (1− αδ)A11A22 by reducedness.

We also have 0 < A11A22 and |α− δ| > 2, which imply 0 < 4A11A22 6 (α− δ)2A11A22.
Hence using the above result we have 0 < (α− δ)2 6 1−αδ. This yields α2−αδ+δ2 6
1 and we recall that αδ < 0, thus the left hand side is at least 3 as α 6= 0, δ 6= 0. This
is a contradiction, so no proper automorph exists in this case.

Summary 2.5.9.
We summarize the automorphs of bilinear forms in the following tables:

Improper Automorphs:

Name Automorph Corresponding bilinear forms Case(s) Order

N1 ±
(

1 0
0 −1

) (
A11 0

0 A22

)
I.a 2 (2)

N2 ±
(

1 0
−1 −1

) (
2A12 A12

A12 2A12

)
, A12 6= 0 I.b 2 (2)

N3 ±
(

1 1
0 −1

) (
2A12 A12

A12 A22

)
, 0 < 2A12 6 A22 I.c 2 (2)

N4 ±
(

0 1
1 0

) (
A11 A12

A12 A11

)
, 0 6 2A12 6 A11 I.d 2 (2)

Table 2.1: Improper Automorphs of a Positive Definite Reduced Bilinear Form
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Proper Automorphs:

Name Automorph Corresponding bilinear forms Case(s) Order

M1 ±
(

1 0
0 1

)
Any bilinear form I.a 1 (2)

M2 ±
(

0 1
−1 0

) (
A11 A12

−A12 A11

)
I.b 4 (4)

M3 ±
(

0 −1
1 1

) (
A12 + A21 A12

A21 A12 + A21

)
, II.a 6 (3)

M4 ±
(

1 1
−1 0

)
A21 6= −A12 II.b 6 (3)

Table 2.2: Proper Automorphs of a Positive Definite Reduced Bilinear Form

Notes:

• It is useful to recall that in Case II. of the improper automorphs and in Case
II.c. of the proper automorphs no such automorphs exist.

• The name given to an automorph refers to the positive version. We will preface
the name with -, i.e. −M2, when referring to the negative of an automorph.

• In the Order column a number in () refers to the order of the negative of the
given automorph.

Observation 2.5.10.
We note that if A is a symmetric bilinear form and we consider A(v,v) then we
have a binary quadratic form and the above results become precisely the well-known
results from the automorph theory of binary quadratic forms.

Corollary 2.5.11.
Let A be a positive definite bilinear form then Aut+c (A) = {±I2} ∼= Z2.

Proof.
From Lemma 2.4.24 we know A is properly equivalent to a unique reduced bilinear
form B. By Lemma 2.5.7 properly equivalent bilinear forms have isomorphic proper
automorph groups, thus A ∼= B. By Summary 2.5.9 we know B has exactly two
complete automorphs, ±I2 and thus Aut+c (B) = {±I2}. Since Aut+c (B) is a subgroup
of Aut+(B) and group isomorphisms preserve subgroup structure, it follows that
Aut+c (A) = {±I2} ∼= Z2.

Notation 2.5.12.
We shall refer to the automorphs ±I as the trivial automorphs.

Observation 2.5.13.
It is straightforward to verify each of the improper automorphs satisfies N2 = I.
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Lemma 2.5.14.
Let A be a reduced bilinear form. If none of the following conditions are satisfied then
Aut(A) = Aut+(A) = Aut+c (A) = {±I} ∼= Z2:

• A11 6 A22 and A12 = A21 = 0

• A11 = 2A12 = 2A21 and 0 < A11 6 A22

• A11 = A22, A12 = A21 and 0 < 2A12 < A11

• A11 = A22 and A21 = −A12

• A11 = A22 = A12 + A21 and A21 6= −A12.

Proof.
This follows immediately from Summary 2.5.9.

We now describe the group structure of the automorphism groups when a positive def-
inite reduced bilinear form has an non-trivial automorphism. The following notation
is provided for clarity.

Notation 2.5.15.
Let Dn denote the dihedral group that acts on the set of n vertices of a regular n-gon.
Recall the dihedral group has 2n elements and representation
Dn = 〈a, b | an = e, b2 = e, bab−1 = a−1〉.

Lemma 2.5.16.
Let A be a positive definite reduced bilinear form satisfying one of the five conditions
stated in Lemma 2.5.14. Then A lies in one of the following seven cases:

1. A =

(
A11 0
0 A22

)
, 0 < A11 < A22, Aut(A) ∼= Z2 × Z2 and Aut+(A) ∼= Z2.

2. A =

(
A11 0
0 A11

)
, 0 < A11, Aut(A) ∼= D4 and Aut+(A) ∼= Z4.

3. A =

(
2A12 A12

A12 2A12

)
, 0 < A12, Aut(A) ∼= D6 and Aut+(A) ∼= Z6.

4. A =

(
2A12 A12

A12 A22

)
, 0 < 2A12 < A22, Aut(A) ∼= Z2 × Z2 and Aut+(A) ∼= Z2.

5. A =

(
A11 A12

A12 A11

)
, A11 6= 2A12, A12 6= 0, Aut(A) ∼= Z2 × Z2 and

Aut+(A) ∼= Z2.

6. A =

(
A11 A12

−A12 A11

)
, A12 6= 0, Aut(A) ∼= Aut+(A) ∼= Z4.

7. A =

(
A12 + A21 A12

A21 A12 + A21

)
, A21 6= |A12|, Aut(A) ∼= Aut+(A) ∼= Z6.
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Proof.
We consider each of the above cases in turn.

1. From Summary 2.5.9 the automorphs of A are ±I2 and ±N1. Thus |Aut(A)| =
4. With the exception of I2 these all have order 2 and hence Aut(A) ∼= Z2×Z2.
Since there are no non-trivial proper automorphs ofA it follows that Aut+(A) =
Aut+c (A) ∼= Z2.

2. From Summary 2.5.9 the automorphs of A are ±I2, ±N1, ±N4 and ±M2. Thus
|Aut(A)| = 8. We observe |M2| = 4, |N1| = 2 and N1M2N

−1
1 = M−1

2 . Hence we
have a group of order 8 satisfying the relations for D4. Therefore Aut(A) ∼= D4.
Similarly, we observe the proper automorphs of A are ±I2 and ±M2. Since
|M2| = 4 it follows immediately that Aut+(A) ∼= Z4.

3. From Summary 2.5.9 the automorphs of A are ±I2, ±N2, ±N3, ±N4, ±M3

and ±M4. Thus |Aut(A)| = 12. Next, observe |M3| = 6, |N4| = 2 and
N4M3N

−1
4 = M−1

3 . Hence we have a group of order 12 satisfying the relations
for D6. Therefore Aut(A) ∼= D6.
Similarly, we observe the proper automorphs of A are ±I2, ±M3 and ±M4.
Since |M3| = |M4| = 6 it follows that Aut+(A) ∼= Z6.

4. From Summary 2.5.9 the automorphs of A are ±I2 and ±N3. Thus |Aut(A)| =
4. With the exception of I2 these all have order 2 and hence Aut(A) ∼= Z2×Z2.
Since there are no non-trivial proper automorphs ofA it follows that Aut+(A) =
Aut+c (A) ∼= Z2.

5. From Summary 2.5.9 the automorphs of A are ±I2 and ±N4. Thus |Aut(A)| =
4. With the exception of I2 these all have order 2 and hence Aut(A) ∼= Z2×Z2.
Since there are no non-trivial proper automorphs ofA it follows that Aut+(A) =
Aut+c (A) ∼= Z2.

6. From Summary 2.5.9 the automorphs of A are ±I − 2 and ±M2.
Thus |Aut(A)| = 4. Since |M2| = 4 and A has no improper automorphs it
follows that Aut(A) = Aut+(A) ∼= Z4.

7. From Summary 2.5.9 the automorphs of A are ±I2, ±M3 and ±M4. Thus
|Aut(A)| = 6. Since |M3| = |M4| = 6 and A has no improper automorphs, we
see Aut(A) ∼= Aut+(A) ∼= Z6.

Observation 2.5.17.
Assume A and B are positive definite bilinear forms with det(A) = det(B). By
Lemma 2.4.24 A and B are properly equivalent to unique reduced bilinear forms P
and Q respectively. Hence if P 6= Q then A cannot be properly equivalent to B.

Lemma 2.5.18.
Let A and B be properly equivalent positive definite bilinear forms. Let P and Q
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respectively transform A and B to the unique reduced bilinear form C. Then A and
B are completely equivalent if and only if σ (PV Q−1) = (1, I2) for some V ∈ Aut(C).

Proof.
(⇒) Assume A ∼c B then there exists a matrix M ∈ kerσ such that M tAM = B.
Let V = P−1MQ, then:

V tCV =
(
P−1MQ

)t
CP−1MQ

= QtM t(P−1)tCP−1MQ

= QtM tAMQ as P tAP = C

= QtBQ as M tAM = B

= C.

Hence V ∈ Aut(C) and (1, I2) = σ(M) = σ (PV Q−1).
(⇐) Assume (1, I2) = σ (PV Q−1) for some V ∈ Aut(C). Let M = PV Q−1, it follows
that σ(M) = σ (PV Q−1) = (1, I2), thus M ∈ kerσ. Then,

M tAM =
(
PV Q−1

)t
A
(
PV Q−1

)
=
(
Q−1

)t
V tP tAPV

(
Q−1

)
=
(
Q−1

)t
V tCV

(
Q−1

)
=
(
Q−1

)t
C
(
Q−1

)
= B.

Hence A and B are completely equivalent.

Corollary 2.5.19.
Using the notation found in Lemma 2.5.18 if C has no non-trivial automorphs then
σ(P ) = σ(Q).

Proof.
Assume C has no non-trivial automorphs, that is, by Corollary 2.5.11 Aut(C) =
Aut+c (C) = ±I2. This implies V = ±I2. Consequently if A and B are properly
equivalent then the reverse direction of Lemma 2.5.18 implies (1, I2) = σ(PQ−1).
Lemma 2.3.2 reminds us the map σ is a group homomorphism and hence σ(P ) =
σ(Q).

Theorem 2.5.20.
Let A be a reduced bilinear form. Then the equivalence class of A has exactly one
proper equivalence class if and only if there exists an improper automorph of A.

Proof.
Since our transformation matrices lie in GL2(Z) it follows that the equivalence class
of A contains at most two distinct proper equivalence classes as the determinant of
the transformation is 1 or −1.
(⇒) Consider the bilinear form B with matrix representation KtAK where K ∈
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GL2(Z)\SL2(Z), that is, det(K) = −1. Assume A is properly equivalent to B, then
there exists L ∈ SL2(Z) such that Lt (KtAK)L = A. Thus KL ∈ Aut(A) and
det(KL) = det(K) det(L) = −1. Hence KL is an improper automorph of A.
(⇐) Conversely, assume L is an improper automorph of A. Let K ∈ GL2(Z)\SL2(Z),
so det(K) = −1. Then (LK)tA(LK) = KtAK. Further, det(LK) = det(L) det(K) =
(−1)(−1) = 1 and so A is properly equivalent to the bilinear form B with matrix
representation KtAK. Hence the equivalence class of A contains exactly one proper
equivalence class.

Having determined which reduced bilinear forms have non-trivial automorphs, our
goal now is to calculate the number of complete equivalence classes within a proper
equivalence class for a given reduced bilinear form. It is useful to recall that an equiv-
alence class can contain at most two proper equivalence classes as the determinant of
the transformation matrix is either 1 or −1. Further, recall that each proper equiv-
alence class may contain at most six distinct complete equivalence classes. This is a
consequence of the map σ. The following observation shall prove useful.

Observation 2.5.21.

We observe that the matrices

(
2a a+ b

a− b a

)
and

(
2a b− a

− (a+ b) a

)
are com-

pletely equivalent via P =

(
1 0
−2 1

)
∈ kerσ.

Further, the matrices

(
a b− a

− (a+ b) 2a

)
and

(
a a+ b

a− b 2a

)
are completely

equivalent via Q =

(
1 2
0 1

)
∈ kerσ.

Lemma 2.5.22.
Let A = (A11, A12, A21, A22) be a reduced bilinear form that does not satisfy any of
the conditions for a proper or improper automorphism to exist (see Summary 2.5.9).
Then the equivalence class of B contains two proper equivalence classes, each of which
contains six complete equivalence classes.

Proof.
Since A does not have any improper automorphs, Theorem 2.5.20 implies there are
exactly two proper equivalence classes within the equivalence class ofA. Then Lemma
2.5.18 and Corollary 2.5.19 imply any pair of bilinear forms, chosen with distinct
transformation matrices under the map σ, cannot be completely equivalent. Hence
each of the proper equivalence classes contains six complete equivalence classes.

We now examine what happens when a reduced bilinear form has non-trivial auto-
morphs. From Summary 2.5.9 there are six cases to consider. We first develop a
couple of small results to smooth our path.

Definition 2.5.23.
From Lemma 2.3.2 we know |GL2(Z) : ker σ| = 12 and thus we may choose a set of
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representatives for the transformation matrices used to generate the complete equiv-
alence classes for a given bilinear form. We will follow Kronecker’s lead and let

S =

{(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 1
−1 0

)
,

(
−1 1

0 −1

)
,

(
0 −1
1 1

)
,

(
1 0
−1 1

)}
.

(2.16)

Similarly we may generate a further 6 representatives for the transformation matrices

via T = S

(
0 1
1 0

)
.

Observe there are 12 distinct matrices in S ∪ T and each maps to a distinct element
under σ. Further, all matrices in the set S lie in SL2(Z) whilst those in the set T lie
in GL2(Z)\SL2(Z).

Lemma 2.5.24.
Let A ∈ GL2(Z), then there exists a unique B ∈ S ∪ T such that A = KB where
K ∈ kerσ.

Proof.
Since σ is a surjective homomorphism there exists B ∈ S ∪ T such that σ(B) =
σ(A). Now we express A as A = KB where K = AB−1. Recalling the map σ is a
homomorphism then yields

σ(A) = σ(KB)

= σ(K)σ(B)

= σ(K)σ(A)

and therefore σ(K) is the identity element. Hence K ∈ kerσ.
Since the determinant of A is either 1 or −1 it follows that B is either in S or in T
respectively. Further, within the set S or within the set T the elements are distinct
mod 2. Thus B is in fact unique.

Observation 2.5.25.
Lemma 2.5.24 provides a way to quickly determine whether bilinear forms from two
seemingly distinct complete equivalence classes actually belong to the same complete
equivalence class. By Theorem 2.4.24, if we start with an arbitrary bilinear form we
may reduce it to a reduced bilinear form via the matrix transformation A = KB,
for some K ∈ kerσ and B ∈ SL2(Z). Therefore we may start with a reduced bilin-
ear form and generate 6 seemingly distinct complete equivalence classes within its
proper equivalence class by using the matrix transformations found in S. Let A be
the matrix representation of the reduced bilinear form and let Si, Sj ∈ S, i 6= j. If
the complete equivalence class represented by the bilinear form StiASi is completely
equivalent to the complete equivalence class represented by the bilinear form StjASj
then there exists a matrix K ∈ kerσ such that StjASj = KtStiASiK. Rearranging

this yields A = (SiKS
−1
j )tA(SiKS

−1
j ) and thus SiKS

−1
j is an automorph of the re-

duced bilinear form. In fact, since Si, Sj ∈ S and K ∈ kerσ, SiKS
−1
j is a proper
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automorph.
Now applying the map σ yields σ

(
SiKS

−1
j

)
= σ(Si)σ(S−1j ) as K ∈ kerσ. This

must then be the same as applying σ to the proper automorph. Consequently, since
complete equivalence is an equivalence relation, we see that we may generate the
seemingly distinct complete equivalence classes via the matrices in S and compare
σ(Si)σ(S−1j ) to σ applied to each proper automorph of the reduced bilinear form. If
these do not agree then the two complete equivalence classes are indeed distinct.
It is particularly important to note that complete equivalence being an equivalence
relation is vital here. For certain reduced bilinear forms it is possible for StiASi to
generate the same representative as say StkASk (i 6= k). Clearly those two complete
equivalence classes are the same one. Complete equivalence being an equivalence re-
lation permits us not to worry about whether we chose the correct Si when comparing
under σ with a seemingly distinct bilinear form computed via Sj. The transitivity
property of an equivalence relation prevents us from having StkASk being completely
equivalent to StjASj while StiASi is not completely equivalent to StjASj. This greatly
reduces the computations required to determine the number of complete equivalence
classes within the proper equivalence class of a reduced bilinear form that has a proper
automorph.
Furthermore, note that we avoided i = j and so SiKS

−1
j is a non-trivial proper

automorph.

Lemma 2.5.26.
If a reduced bilinear form has no improper automorphs then the two proper equiva-
lence classes within its equivalence class each contain the same number of complete
equivalence classes.

Proof.
By Theorem 2.5.20 and Lemma 2.5.22 it is sufficient for us to consider only those
families of reduced bilinear forms which have non-trivial proper automorphs but no
improper automorphs. From Summary 2.5.9 this leaves two families for us to inves-
tigate.

Let M =

(
0 1
1 0

)
∈ GL2(Z)\SL2(Z).

Case I:

(
A11 A12

−A12 A11

)
Applying the matrix transformation M yields the bilinear form

(
A11 −A12

A12 A11

)
.

Since our initial bilinear form was reduced it is easy to verify that this transformed
bilinear form is also reduced. Further, this new bilinear form is of the same family
as the initial bilinear form and therefore has no improper automorphs. Since every
proper equivalence class contains a unique reduced bilinear form, we deduce that in
Case I the two proper equivalence classes have the same cardinalities with respect to
the number of complete equivalence classes they contain.

Case II:

(
A12 + A21 A12

A21 A12 + A21

)
, A21 6= −A12

Applying the matrix transformation M yields the bilinear form
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(
A12 + A21 A21

A12 A12 + A21

)
. Since our initial bilinear form was reduced it is straight-

forward to check this transformed bilinear form is also reduced. Further, it is clear
that it is in the same family of reduced bilinear forms as our original reduced bilinear
form. Hence since our original and transformed bilinear forms are improperly equiv-
alent, it follows that both of the proper equivalence classes within the equivalence
class contain the same number of complete equivalence classes.

We are now ready to determine the number of complete equivalence classes within the
proper equivalence class for each of the reduced bilinear forms in our six special cases.

Case 1:

Consider the reduced bilinear form

(
A11 A12

−A12 A11

)
, A11 > 0. The only non-trivial

automorph of this bilinear form is L =

(
0 1
−1 0

)
∈ SL2(Z).

Using the matrix transformation representatives found in the set S we compute a set
of possibly distinct representatives for the complete equivalence classes as follows:{(

A11 A12

−A12 A11

)
,

(
2A11 A11 + A12

A11 − A12 A11

)
,

(
A11 A12 + A11

A11 − A12 2A11

)}
.

Using Observation 2.5.25 we see the cardinality of this set is 3 since

S2S
−1
3 ≡

(
1 1
0 1

)
mod 2 6= L mod 2, S2S

−1
5 ≡

(
1 0
1 1

)
mod 2 6= L mod 2 and

S3S
−1
5 ≡

(
0 1
1 1

)
mod 2 6= L mod 2.

Hence the proper equivalence class contains three complete equivalence classes.
Case 2:

Consider the reduced bilinear form

(
A12 + A21 A12

A21 A12 + A21

)
, where A12 6= A21 and

A12 + A21 6= 0.
Using the matrix transformation representatives found in the set S we get a set of
possibly distinct representatives for the complete equivalence classes as follows:{(

A12 + A21 A12

A21 A12 + A21

)
,

(
A12 + A21 −A21

−A12 A12 + A21

)}
.

Using Observation 2.5.25 we see the cardinality of this set is 2 since

S2S
−1
3 ≡

(
1 1
0 1

)
mod 2 6≡

(
0 1
1 1

)
︸ ︷︷ ︸
±M3 mod 2

or

(
1 1
1 0

)
︸ ︷︷ ︸
±M4 mod 2

. Hence the proper equivalence

class contains two complete equivalence classes.
Case 3:

Consider the reduced bilinear form

(
2A12 A12

A12 2A12

)
, where A12 > 0.
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Using the matrix transformation representatives from the set S we get the following
set of possibly distinct representatives for the complete equivalence classes:{(

2A12 A12

A12 2A12

)
,

(
2A12 −A12

−A12 2A12

)}
.

Applying Observation 2.5.25 we see the cardinality of this set is 2 since

S2S
−1
3 ≡

(
1 1
0 1

)
mod 2 6≡

(
1 0
1 1

)
︸ ︷︷ ︸
±N2 mod 2

. Thus the proper equivalence class contains

two complete equivalence classes.

Case 4:

Consider the reduced bilinear form

(
A11 0

0 A22

)
, where 0 < A11 < A22.

We note that this type of reduced bilinear form has no non-trivial proper automorphs.
Consequently the proper equivalence class must contain exactly six distinct complete
equivalence classes.

Case 5:

Consider the reduced bilinear form

(
A11 A12

A12 A11

)
, where 0 < A11, A12 6= 0 and

A11 6= 2A12.
We note that this type of reduced bilinear form has no non-trivial proper automorphs.
Consequently the proper equivalence class must contain exactly six distinct complete
equivalence classes.

Case 6:

Consider the reduced bilinear form

(
2A12 A12

A12 A22

)
, where 0 < 2A12 < A22.

We note that this type of reduced bilinear form has no non-trivial proper automorphs.
Consequently the proper equivalence class must contain exactly six distinct complete
equivalence classes.

Summary 2.5.27.
See Table 2.3 at the end of this section.

From this work we get the following corollary.

Corollary 2.5.28.
The complete class number for bilinear forms with determinant D is odd if and only
if D is a square.

Proof.
Let D ∈ Z>0.
(⇒) Assume Clc (D) is odd. By Summary 2.5.27 we know that either proper equiva-
lence classes come in pairs with each containing the same number of complete equiv-
alence classes, or if there is only one proper equivalence class within an equivalence
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class then that proper equivalence class contains an even number of complete equiva-
lence classes unless we have the reduced bilinear form found in the second row of the

table. Thus we must have an odd number of reduced forms of the type

(
A11 0

0 A11

)
.

Further, since we are dealing with positive definite reduced bilinear forms there can
only be one such reduced form in this family as this type of reduced form must satisfy
A2

11 = D. Consequently D is a square.
(⇐) Assume D is a square. Then since we are dealing with positive definite reduced
bilinear forms there is one and only one reduced form of the type found in the second
row of Summary 2.5.27. Since all other proper equivalence classes occur in pairs or
contain an even number of complete equivalence classes, it follows that Clc (D) is
odd.

Type of Reduced Form

Number of proper
equivalence classes
within an equivalence
class

Number of complete
equivalence classes
within a proper
equivalence class(

A11 A12

−A12 A11

)
2 3

A11 > 0, A12 6= 0(
A11 0

0 A11

)
1 3

A11 > 0(
A12 + A21 A12

A21 A12 + A21

)
2 2

A12 + A21 6= 0, A12 6= A21(
2A12 A12

A12 2A12

)
1 2

A12 > 0(
A11 0

0 A22

)
1 6

0 < A11 < A22(
A11 A12

A12 A11

)
1 6

0 < A11, A12, A11 6= 2A12(
2A12 A12

A12 A22

)
1 6

0 < 2A12 < A22

Otherwise 2 6

Table 2.3: Relationships between the cardinalities of equivalence, proper equivalence
and complete equivalence classes for reduced bilinear forms.
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Notes on Section 2.5

In his paper, Kronecker does not explicitly calculate the number of complete equiva-
lence classes contained within a proper equivalence class for bilinear forms. He gives
an argument in his fifth chapter for binary quadratic forms.

Copyright c© Jonathan A. Constable, 2016.
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Chapter 3 Kronecker Reduced Bilinear Forms

“Never, never, never give up.”
- Sir Winston Churchill

In this chapter we develop the idea of a Kronecker reduced bilinear form and explore
its connection to the complete class number.

3.1 Kronecker’s concept of a reduced bilinear form

In this subsection we introduce the idea of a Kronecker reduced bilinear form. We
prove some elementary results relating to this concept before proving a key theorem
- that the complete class number may be enumerated via Kronecker reduced bilinear
forms.

Definition 3.1.1.

Let A =

(
A11 A12

A21 A22

)
be a bilinear form. We will call A Kronecker reduced if it

satisfies the following conditions:

• |A12+A21

2
| 6 |A11| and |A12+A21

2
| 6 |A22|, but where equality cannot hold simul-

taneously, and

• A11A22 > 0.

Observation 3.1.2.
The requirement that we cannot have simultaneous equality in the conditions for
a Kronecker reduced bilinear form ensures we are only considering definite bilinear
forms. If we had simultaneous equality then we get 4A11A22−(A12+A21)

2 = 0, which
contradicts Corollary 2.4.19.

Lemma 3.1.3.
If A is a definite reduced bilinear form then A is Kronecker reduced.

Proof.

Let

(
A11 A12

A21 A22

)
be the matrix representation of the definite reduced bilinear form

A. Since A is definite it follows that 0 < A11A22 and thus A is not skew-symmetric
and satisfies the second condition found in Definition 3.1.1.
By Lemma 2.4.18 we know |A11| is the minimal non-zero integer represented by A.
Thus we have

∣∣A12+A21

2

∣∣ 6 |A12 + A21| 6 |A11| 6 |A22|.
However, the definition of a Kronecker reduced bilinear form requires

∣∣A12+A21

2

∣∣ 6
|A11| and

∣∣A12+A21

2

∣∣ 6 |A22| where equality cannot hold simultaneously. If |A11| =
|A22| then by Definition 2.4.14 we have 0 6 A12 + A21 6 |A11|. So we can have
simultaneous equality if and only if A12 +A21 = 0, in which case A11 = A22 = 0 also,
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contradicting 0 < A11A22.
Hence every definite reduced bilinear form is Kronecker reduced.

Theorem 3.1.4.
Every Kronecker reduced bilinear form satisfying 0 < A11 is positive definite.

Proof.
Assume that A is a Kronecker reduced bilinear form satisfying 0 < A11. Since
0 < A11A22, it follows that 0 < A22 also. Kronecker reduced also implies |A12 + A21| 6
2A11 and |A12 + A21| 6 2A22, and we cannot have equality simultaneously. Thus we
see (A12 + A21)

2 < 4A11A22. Corollary 2.4.19 then implies A is positive definite.

Corollary 3.1.5.
Every Kronecker reduced bilinear form satisfying 0 < A11 is properly equivalent to a
unique reduced bilinear form.

Proof.
By Theorem 3.1.4, a Kronecker reduced bilinear form satisfying 0 < A11 is positive
definite. By Theorem 2.4.24 every such form is properly equivalent to a unique
reduced bilinear form.

Lemma 3.1.6.
Every positive definite Kronecker reduced bilinear form, A, satisfies det(A) > 0.

Proof.
By Corollary 3.1.5 A is properly equivalent to a unique reduced bilinear form, B. By
Lemma 2.4.16 we have det(B) > 0. Finally, by Lemma 2.3.1 we know the determinant
is an invariant under equivalence and hence det(A) > 0.

Lemma 3.1.7.
Let D ∈ Z>0 and define KD,< to be the set of Kronecker reduced bilinear forms
which, satisfy A11 < 0 and have determinant D. Similarly, define KD,> be the set
of Kronecker reduced bilinear forms which, satisfy A11 > 0 and have determinant D.
Define the map τ : KD,< −→ KD,> by τ (A11, A12, A21, A22) = (−A11, A12, A21,−A22).
Then τ is a bijection.

Proof.
The second condition in Definition 3.1.1, 0 < A11A22, implies the outer coefficients
have the same sign and are non-zero. Thus any Kronecker reduced form satisfies
either A11 < 0 or A11 > 0.
The map τ is well-defined since for any A = (A11, A12, A21, A22) ∈ KD,< we have
A11, A22 < 0, thus −A11,−A22 > 0. Also det τ(A) = (−A11) · (−A22) − A12A21 =
A11A22 − A12A21 = D.
Lastly, we have 1

2
|A12 + A21| 6 A11 = | − A11| and 1

2
|A12 + A21| 6 A22 = | − A22|,

and equality cannot hold simultaneously as A is Kronecker reduced.
Injectivity is straightforward to show by equating coefficients.
Lastly, the map τ is surjective. Let B = (B11, B12, B21, B22) ∈ KD,> and consider
A = (−B11, B12, B21,−B22). Since B11, B22 > 0, it follows that −B11,−B22 < 0. A
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quick calculation checks detA = detB and again we see 1
2
|B12 +B21| 6 |−B11| = B11

and 1
2
|B12 +B21| 6 |−B22| = B22. Finally, we observe τ(A) = (B11, B12, B21, B22).

Thus the map τ is surjective and hence a bijection.

Hence from this point onwards we will restrict ourselves to only considering positive
definite (Kronecker reduced) bilinear forms with integer coefficients.

We now prove the set KD,> is finite for any D ∈ Z>0. We will do this via a series of
lemmas showing there are finitely many choices for each of A11, |A12|, |A21| and A22.

Lemma 3.1.8.
Let A be a Kronecker reduced bilinear form with 0 < A11 and without loss of generality
assume A11 6 A22. Then |A12 + A21| < 2A22.

Proof.
If not then |A12+A21| = 2A22. Thus we have |A12+A21| 6 2A11 6 2A22 = |A12+A21|
and so equality holds throughout. This contradicts equality holding at most once in
Definition 3.1.1.

Lemma 3.1.9.
A11 6 D and |A12 + A21| 6 2D.

Proof.

Recall xy 6
(
x+y
2

)2
for all real numbers x, y. By assumption there exists n ∈ Z>0

such that A11 + n = A22. If n > 1 then we have

D = A11A22 − A12A21

> A11(A11 + n)−
(
A12 + A21

2

)2

= A2
11 + nA11 −

(
A12 + A21

2

)2

> nA11

> A11.

Then since |A12 + A21| 6 2A11 it follows that |A12 + A21| 6 2D.

Lemma 3.1.10.
|A12 − A21| < 2

√
D.

Proof.
Lemma 3.1.8 implies
(A12 − A21)

2 = (A12 + A21)
2 − 4A12A21 < (2A11)(2A22)− 4A12A21 = 4D.

We observe Lemma 3.1.10 gives an easier proof that positive definite Kronecker re-
duced bilinear forms satisfy D > 0.

Lemma 3.1.11.
A12A21 6 A2

11 6 D2.
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Proof.

Recall xy 6
(
x+y
2

)2
for all real numbers x and y. Then we have

4A12A21 6 (A12 + A21)
2

6 4A2
11

6 4D2 (by Lemma 3.1.9).

Lemma 3.1.12.
A22 6 A11 + D

A11
6 D + 1.

Proof.
We have

A11A22 = A12A21 +D

6 A2
11 +D (by Lemma 3.1.11).

Hence A22 6 A11 + D
A11

. Further, by Lemma 3.1.9 we have 0 < A11 6 D, which

implies 1 < D
A11

. Therefore A22 6 A11 + D
A11
6 D + 1.

Our next lemma is provided as an aide-memoir.

Lemma 3.1.13.
Let a, b ∈ R be such that ab > 0, then |a+ b| = |a|+ |b|.

Proof.
We have

(|a+ b|)2 = (a+ b)2

= a2 + 2ab+ b2

= |a|2 + 2|a||b|+ |b|2

= (|a|+ |b|)2.

Hence ||a+ b|| = ||a|+ |b|| and thus |a+ b| = |a|+ |b|.

Lemma 3.1.14.
|A12| 6 D and |A21| 6 D.

Proof.
First assume A12A21 < 0 and thus neither of A12, A21 are zero. This gives

D = A11A22 − A12A21

= A11A22 + |A12A21|
> |A12A21|

>

{
|A12|
|A21|.
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Now assume A12A21 > 0, we will show |A12| 6 D. Assume |A12| = D + a for some
integer a > 0. From Lemma 3.1.11 we know 0 6 A12A21 = |A12||A21| 6 D2 and thus
0 6 (D+a)|A21| 6 D2. This implies 0 6 |A21| 6 D2

D+a
< D2

D
= D. Hence |A21| = D−b

for some integer b such that 0 < b 6 D. Next, since 0 6 A12A21 = |A12||A21|,
Lemma 3.1.13 implies |A12 + A21| = |A12|+ |A21|. Then using Lemma 3.1.9 we have
2D + (a − b) = |A12| + |A21| = |A12 + A21| 6 2D and hence a − b 6 0. This yields
0 < a 6 b 6 D.
Applying Lemma 3.1.8 then gives 2D+ (a− b) = |A12|+ |A21| = |A12 +A21| < 2A22.
Therefore we have two cases to consider.
Case 1: a ≡ b mod 2
Then 2D + a − b + 2 6 2A22 and being Kronecker reduced implies 2D + a − b =
|A12 + A21| 6 2A11.
Thus 4A11A22 > (2D + (a− b)) (2D + (a− b) + 2).
Case 2: a 6≡ b mod 2
Then 2D + a− b + 1 6 2A22. Further, 2D + a− b < 2A11 as 2D + a− b ≡ 1 mod 2
so we have 2D + a− b+ 1 6 2A11. This then gives 4A11A22 > (2D + a− b+ 1)2.
Using the property that (x + 1)2 > (x + 2)x for all real numbers x, we see in either
case we have

4A11A22 > (2D + (a− b) + 2)(2D + (a− b)).

Finally, we have

4D = 4A11A22 − 4A12A21

> (2D + (a− b) + 2)(2D + (a− b))− 4(D + a)(D − b)
= (2D + (a− b))2 + 2(2D + (a− b)) + 4(D2 + (a− b)D − ab)
= (a− b)2 + 4D + 2(a− b) + 4ab

= 4D + (a− b+ 1)2 + 4ab− 1

> 4D as a, b are positive non-zero integers.

This contradicts |A12| > D and hence |A12| 6 D. It remains to show |A21| 6 D
simultaneously.
Write |A12| = D−d where 0 6 d 6 D and in a similar manner we assume |A21| = D+c
for some integer c > 0. Since 0 6 A12A21 it follows that 2D+ c− d = |A12|+ |A21| =
|A12 + A21| 6 2D and hence c− d 6 0. Therefore we have 0 < c 6 d 6 D.
Applying Lemma 3.1.8 gives 2D + c − d = |A12 + A21| < 2A22 and so we have two
cases to consider.
Case 1: c ≡ d mod 2
Then 2D+ c− d+ 2 6 2A22 and being Kronecker reduced yields 2D+ c− d 6 2A11.
Therefore we have 4A11A22 > (2D + c− d+ 2)(2D + c− d).
Case 2: c 6≡ d mod 2
Then 2D + c − d + 1 6 2A22 and 2D + c − d < 2D + c − d + 1 6 2A11. Thus
4A11A22 > (2D + c− d+ 1)2.
Consequently, in either case we have

4A11A22 > (2D + c− d+ 2)(2D + c− d).
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Repeating the above argument for the determinant D then yields a contradiction.
Therefore we must simultaneously have |A12| 6 D and |A21| 6 D.

Theorem 3.1.15.
The set KD,> is finite.

Proof.
Fix D ∈ Z>0 and assume 0 < A11 6 A22. Then Lemma 3.1.9 shows A11 6 D while
Lemma 3.1.12 shows A22 6 D + 1. Lastly, Lemma 3.1.14 has shown under these
conditions that |A12| 6 D and |A21| 6 D. Therefore there are only finitely many
choices for the entries of the matrix representation of a positive definite Kronecker
reduced bilinear form. Hence there are only finitely many positive definite Kronecker
reduced bilinear forms satisfying A11 6 A22. By the symmetry of the initial condition
for being a positive definite Kronecker reduced bilinear form it follows that there are
only finitely many such forms satisfying A22 < A11. Hence the set KD,> is finite.

Theorem 3.1.16.
Let A be a positive definite bilinear form, then the complete equivalence class of A
contains at least one Kronecker reduced bilinear form.

Proof. Let A =

(
A11 A12

A21 A22

)
be the matrix representation of A. If A is Kronecker

reduced then we are done, so suppose this is not the case.
It follows either |A12 + A21| > 2A11 or |A12 + A21| > 2A22 or both. Consider the
transformation matrix U(β) from Definition 2.4.15 and suppose A11 > A22. Applying
this transformation yields

M tAM =

(
A11 βA11 + A12

βA11 + A21 β2A11 + β(A12 + A21) + A22

)
=

(
B11 B12

B21 B22

)
.

Then we have

B22 = β2A11 + β(A12 + A21) + A22

> β2A11 + β(A12 + A21) +
A12 + A21

2
as |A12 + A21| 6 2A22

= β2A11 +
A12 + A21

2
(2β + 1).

Now we observe if A12 + A21 > 0 then letting β = 2 yields B22 > 4A11 > A11 = B11.
Similarly, if A12 + A21 < 0 then letting β = −2 yields B22 > 4A11 + 3

2
|A12 + A21| >

A11 = B11. In each case we have U(β) ∈ kerσ and thus we may assume without loss
of generality that our initial positive definite bilinear form satisfies A11 6 A22.
If |A12 + A21| > 2A11 then let Q be the unique non-zero integer such that −2A11 <
A12 + A21 + 4QA11 6 2A11. Then applying U(2Q) yields a positive definite bilinear
form B that satisfies |B12 +B21| = |A12 +A21 + 4QA11| 6 2A11 = 2B11 < |A12 +A21|.
If this is Kronecker reduced then we are done.
If it is not then we must have |B12 + B21| > 2B22 because GL2(Z) transformations
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preserve positive definite forms (Corollary 2.4.21) and Observation 3.1.2 shows if we
have simultaneous equality then 4B11B22 − (B12 + B21)

2 = 0, contradicting B being
positive definite.
We now apply L(2K) where K is the unique non-zero integer such that −2B22 <
B12 + B21 + 4KB22 6 2B22. This yields a positive definite bilinear form C where
|C12 + C21| 6 B22 = C22 < |B12 + B21|. If this is not Kronecker reduced then we
continue this process, alternating between U(2Q) and L(2K) transformations.
This yields a strictly decreasing sequence, |A12+A21| > |B12+B21| > |C12+C21| > . . .
and hence this process either terminates at a Kronecker reduced form or we end up
with b12 + b21 = 0. Since b11 > 0 and b22 > 0 it follows that this form is Kronecker
reduced. Hence we must terminate with a Kronecker reduced bilinear form.
Now observe each of our transformation matrices lie in kerσ and therefore we have
shown the complete equivalence class of a positive definite bilinear form A contains
at least one Kronecker reduced bilinear form.

We now investigate when the complete equivalence class of a positive definite bilinear
form A contains exactly one Kronecker reduced bilinear form.
We first prove a lemma that will help us eliminate certain cases that arise.

Lemma 3.1.17.
Let αδ − βγ = 1, α, β, γ, δ ∈ Z and assume α > 0, β 6= 0 and γ 6= 0. If γ > 0 then
βδ > 0 and if γ < 0 then βδ < 0.

Proof.
First let γ > 0 then if δ > 0 we have αδ > 0 and then αδ − βγ = 1 implies
0 < βγ < αδ. Since γ > 0, β > 0 follows and hence βδ > 0. Similarly, if δ < 0 then
αδ < 0 and βγ = αδ− 1 < 0. Since γ > 0 it follows that β < 0 and so βδ > 0. Hence
when γ > 0 we have βδ > 0.
Now assume γ < 0 then if δ > 0 we have αδ > 0 and αδ−βγ = 1 implies βγ > 0 else
αδ − βγ > 2. Therefore β < 0 as γ < 0 and thus β < 0, δ > 0 implies βδ < 0. So
now suppose δ < 0, then we have αδ < 0 and βγ = αδ − 1 < 0. Then γ < 0 implies
β > 0, combined with δ < 0 we get βδ < 0.
Consequently when γ < 0 we have βδ < 0.

Now let A be a positive definite Kronecker reduced bilinear form with matrix repre-

sentation

(
A11 A12

A21 A22

)
. Then one of the following three cases hold:

i. |A12 + A21| < 2A11 = 2A22

ii. |A12 + A21| 6 2A11 < 2A22

iii. |A12 + A21| 6 2A22 < 2A11.

Let M =

(
α β
γ δ

)
∈ kerσ and assume the resulting form, M tAM , under this

transformation is also Kronecker reduced.

M tAM =

(
α2A11 + αγ(A12 + A21) + γ2A22 αβA11 + αδA12 + βγA21 + δγA22

αβA11 + αδA21 + βγA12 + δγA22 β2A11 + βδ(A12 + A21) + δ2A22

)
.
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Since M tAM is Kronecker reduced, it also satisfies one of the three cases above. So
we have

|2αβA11 + (αδ + βγ)(A12 + A21) + 2δγA22| 6 2
(
α2A11 + αγ(A12 + A21) + γ2A22

)
|2αβA11 + (αδ + βγ)(A12 + A21) + 2δγA22| 6 2

(
β2A11 + βδ(A12 + A21) + δ2A22

)
.

This gives rise to the following four inequalities:

2αβA11 + (αδ + βγ)(A12 + A21) + 2δγA22 6 2α2A11 + 2αγ(A12 + A21) + 2γ2A22

−2α2A11 − 2αγ(A12 + A21)− 2γ2A22 6 2αβA11 + (αδ + βγ)(A12 + A21) + 2δγA22

2αβA11 + (αδ + βγ)(A12 + A21) + 2δγA22 6 2β2A11 + 2βδ(A12 + A21) + 2δ2A22

−2β2A11 − 2βδ(A12 + A21)− 2δ2A22 6 2αβA11 + (αδ + βγ)(A12 + A21) + 2δγA22.

Recall being a positive definite Kronecker reduced bilinear form means equality may
occur precisely once in the above four inequalities.

Rearranging these inequalities we get:

2α(α− β)A11 + (A12 + A21)(2αγ − αδ − βγ) + 2γ(γ − δ) > 0

2α(α + β)A11 + (A12 + A21)(αδ + βγ + 2αγ) + 2γ(γ + δ) > 0

2β(β − α)A11 + (A12 + A21)(2βδ − αδ − βγ) + 2δ(δ − γ) > 0

2β(β + α)A11 + (A12 + A21)(2βδ + αδ + βγ) + 2δ(γ + δ) > 0.

Now observe 2αγ−αδ−βγ = α(γ− δ)+γ(α−β). Using this and three other similar
identities permits us to rewrite the above inequalities as:

2α(α− β)A11 + α(γ − δ)(A12 + A21) + γ(α− β)(A12 + A21) + 2γ(γ − δ)A22 > 0
(3.1)

2α(α + β)A11 + α(γ + δ)(A12 + A21) + γ(α + β)(A12 + A21) + 2γ(γ + δ)A22 > 0
(3.2)

2β(β − α)A11 + β(δ − γ)(A12 + A21) + δ(β − α)(A12 + A21) + 2δ(δ − γ)A22 > 0
(3.3)

2β(β + α)A11 + β(δ + γ)(A12 + A21) + δ(β + α)(A12 + A21) + 2δ(δ + γ)A22 > 0.
(3.4)

Recall applying the transformation −I2 ∈ kerσ results in initial bilinear form remain-

ing the same. However, it changes M from

(
α β
γ δ

)
to

(
−α −β
−γ −δ

)
. Therefore

without loss of generality we may assume M satisfies α > 0. Note that this does not
change α ≡ δ ≡ 1 mod 2 and β ≡ γ ≡ 0 mod 2.

We first deal with two special cases:
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Special Case 1: γ = 0
Here αδ − βγ = 1 becomes αδ = 1 and we have α > 0 yields α = δ = 1. Then our
four inequalities become

2(1− β)A11 − (A12 + A21) > 0

2(1 + β)A11 + (A12 + A21) > 0

2β(β − 1)A11 + β(A12 + A21) + (β − 1)(A12 + A21) + 2A22 > 0

2β(β + 1) + β(A12 + A21) + (β + 1)(A12 + A21) + 2A22 > 0.

Using the conditions for being Kronecker reduced the first inequality yields:

2(1− β)A11 > A12 + A21 > −2A11

⇒ 2− 2β > −2

⇒ 4 > 2β

⇒ β 6 2.

Similarly the second inequality yields:

2(1 + β)A11 > −(A12 + A21) > −2A11

⇒ 2 + 2β > −2

⇒ 2β > −4

⇒ β > −2.

Hence β ∈ [−2, 2] ∩ Z and β ≡ 0 mod 2 then implies β ∈ {−2, 0, 2}. Further,
note β = 0 corresponds to M = I2. Thus we first suppose β = −2. Then the
first and second inequalities yield −2(1 + β)A11 6 A12 + A21 6 2(1 − β). That is,
2A11 6 A12 + A21 6 6A11. However, since our form is Kronecker reduced this can
only happen if A12 + A21 = 2A11.
Substituting β = −2 and A12 + A21 = 2A11 into the remaining inequalities gives:

12A11 − 2(A12 + A21)− 3(A12 + A21) + 2A22 > 0

⇒ 6(A12 + A21)− 5(A12 + A21) + 2A22 > 0

⇒ 2A22 > −(A12 + A21) and

4A11 − 2(A12 + A21)− (A12 + A21) + 2A22 > 0

⇒ 2(A12 + A21)− 3(A12 + A21) + 2A22 > 0

⇒ (A12 + A21) 6 2A22.

Thus |A12 + A21| 6 2A22 and so the form is Kronecker reduced.
Now suppose β = 2. Then the first and second inequalities yield −6A11 6 A12+A21 6
−2A11. However, since our form is Kronecker reduced this can only occur if we have
A12 + A21 = −2A11. Substituting β = 2 and A12 + A21 = −2A11 into the remaining
inequalities gives:

4A11 + 2(A12 + A21) + (A12 + A21) + 2A22 > 0
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⇒ −2(A12 + A21 + 3(A12 + A21) + 2A22 > 0

⇒ −2A22 6 (A12 + A21) and

12A11 + 2(A12 + A21) + 3(A12 + A21) + 2A22 > 0

⇒ −6(A12 + A21) + 5(A12 + A21) + 2A22 > 0

⇒ (A12 + A21) 6 2A22.

Thus |A12 + A21| 6 2A22 and we have a Kronecker reduced form.
Hence we see if A12 + A21 = 2A11 > 0 then the Kronecker reduced bilinear form(

A12+A21

2
A12

A21 A22

)
is completely equivalent to the Kronecker reduced bilinear form(

A12+A21

2
−A21

−A12 A22

)
via M =

(
1 −2
0 1

)
∈ kerσ.

Similarly if A12 + A21 = −2A11 < 0 then the Kronecker reduced bilinear form(
− (A12+A21)

2
A12

A21 A22

)
is completely equivalent to the Kronecker reduced bilinear form(

− (A12+A21)
2

−A21

−A12 A22

)
via M =

(
1 2
0 1

)
∈ kerσ.

This completes our first special case.

Special Case 2: β = 0
Here αδ − βγ = 1 becomes αδ = 1 and α > 0 implies α = δ = 1. Then our four
inequalities become:

2A11 + (γ − 1)(A12 + A21) + γ(A12 + A21) + 2γ(γ − 1)A22 > 0

2A11 + (γ + 1)(A12 + A21) + γ(A12 + A21) + 2γ(γ + 1)A22 > 0

−(A12 + A21) + 2(1− γ)A22 > 0

(A12 + A21) + 2(1 + γ)A22 > 0.

Using the conditions for being Kronecker reduced the third inequality yields:

2(1− γ)A22 > A12 + A21 > −2A22

⇒ 2− 2γ > −2

⇒ 4 > 2γ

⇒ 2 > γ.

Similarly the fourth inequality yields:

2(1 + γ)A22 > −(A12 + A21) > −2A22

⇒ 2 + 2γ > −2

⇒ 2γ > −4

⇒ γ > −2.

Hence we have γ ∈ [−2, 2] ∩ Z and γ ≡ 0 mod 2 implies γ ∈ {−2, 0, 2}. Note when
γ = 0 then M = I2, a trivial automorph.
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Thus we first suppose γ = −2. Then the third and fourth inequalities yield 2A22 6
A12 + A21 6 6A22, which can only occur if 2A22 = A12 + A21. Substituting 2A22 =
A12 + A21 and γ = −2 into the first and second inequalities then gives:

2A11 − 3(A12 + A21)− 2(A12 + A21) + 12A22 > 0

⇒ 2A11 − 5(A12 + A21) + 6(A12 + A21) > 0

⇒ 2A11 > −(A12 + A21) and

2A11 − (A12 + A21)− 2(A12 + A21) + 4A22 > 0

⇒ 2A11 − 3(A12 + A21) + 2(A12 + A21) > 0

⇒ 2A11 > A12 + A21.

Hence we have |A12 + A21| 6 2A11 and so the form is Kronecker reduced.
Now suppose γ = 2. Then the third and fourth inequalities yield−6A22 6 A12+A21 6
−2A22, which can only happen if A12 + A21 = −2A22. Substituting this and γ = 2
into the first and second inequalities yields:

2A11 + (A12 + A21) + 2(A12 + A21) + 4A22 > 0

⇒ 2A11 + 3(A12 + A21)− 2(A12 + A21) > 0

⇒ 2A11 > −(A12 + A21) and

2A11 + 3(A12 + A21) + 2(A12 + A21) + 12A22 > 0

⇒ 2A11 + 5(A12 + A21)− 6(A12 + A21) > 0

⇒ 2A11 > A12 + A21.

Hence we have |A12 + A21| 6 2A11 and thus the form is Kronecker reduced.
Therefore we see if A12 + A21 = 2A22 > 0 then the Kronecker reduced form(
A11 A12

A21
A12+A21

2

)
is completely equivalent to the Kronecker reduced form(

A11 −A21

−A12
A12+A21

2

)
via M =

(
1 0
−2 1

)
∈ kerσ.

Similarly ifA12+A21 = −2A22 < 0 then the Kronecker reduced form

(
A11 A12

A21
A12+A21

2

)
is completely equivalent to the Kronecker reduced form

(
A11 −A21

−A12 − (A12+A21)
2

)
via

M =

(
1 0
2 1

)
∈ kerσ.

This completes our second special case.

We now assume αδ − βγ = 1, α > 0, β 6= 0, γ 6= 0, α, β, γ, δ ∈ Z, α ≡ δ ≡ 1 mod 2
and β ≡ γ ≡ 0 mod 2. These conditions will be referred to as our base assumptions.
We will produce a contradiction to the four inequalities given in 3.1 - 3.4. This will
show in these circumstances there is no non-trivial mapping in kerσ of a Kronecker
reduced bilinear form to another Kronecker reduced bilinear form.

To do this we will examine all of the possibilities for β, γ and δ.
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1. β > 0, γ > 0 and δ > 0

2. β > 0, γ > 0 and δ < 0

3. β > 0, γ < 0 and δ > 0

4. β > 0, γ < 0 and δ < 0

5. β < 0, γ > 0 and δ > 0

6. β < 0, γ > 0 and δ < 0

7. β < 0, γ < 0 and δ > 0

8. β < 0, γ < 0 and δ < 0.

Using Lemma 3.1.17 we can immediately see cases 2 and 5 cannot occur as γ > 0 yet
βδ < 0. Similarly cases 3 and 8 cannot occur as γ < 0 yet βδ > 0. This leaves four
cases to consider. We first prove two lemmas that will aid our investigation.
It is important to remember our base assumptions imply the following: α − β 6= 0,
α− γ 6= 0, γ − δ 6= 0 and β − δ 6= 0.

Lemma 3.1.18.
Under our base assumptions and assuming γ > 0 it follows that (α− β)(γ − δ) > 0.

Proof.
Note δ ≡ 1 mod 2 implies β 6= 0 and δ 6= 0. From Lemma 3.1.17 we have βδ > 0
so we have two cases to consider. First suppose β < 0 and δ < 0 then we have
β < 0 < α and δ < 0 < γ. These imply α − β > 0 and γ − δ > 0 and our result
follows immediately.
Thus suppose β > 0 and δ > 0. Observe if 0 < β < α and 0 < δ < γ then our result
follows. Similarly if 0 < α < β and 0 < γ < δ then our result follows. Next, note that
if 0 < α < β and 0 < δ < γ then we have αδ < βγ which, contradicts αδ − βγ = 1.
Lastly we consider 0 < β < α and 0 < γ < δ, then we have α − β > 0 and β > 0
implies β > 2 and thus α > 1, giving 0 < β 6 α − 1. Likewise this case gives γ > 2
and so δ > 1, thus 0 < γ 6 δ − 1. Then we have:

1 = αδ − βγ > αδ − (α− 1)(δ − 1)

= αδ − αδ + α + δ − 1

= α + δ − 1

> 5 as α > 3, δ > 3.

Hence this last case cannot occur and so under our base assumptions and γ > 0 we
have (α− β)(γ − δ) > 0.

Lemma 3.1.19.
Under our base assumptions and assuming γ < 0 it follows that (β − α)(γ − δ) > 0.
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Proof.
By Lemma 3.1.17 we know βδ < 0 thus again we have two cases to consider. First
suppose β < 0 and δ > 0. Then we have:

(β − α)(γ − δ) = βγ − αγ − βδ + αδ

= |βγ|+ |αγ|+ |βδ|+ αδ

> 4 > 0.

Now suppose β > 0 and δ < 0. Observe if 0 < α < β and δ < γ < 0 then
(β − α)(γ − δ) > 0. Similarly, if 0 < β < α and γ < δ < 0 then (β − α)(γ − δ) > 0.
Next, if 0 < β < α and δ < γ < 0 then we have αδ < βγ < 0, contradicting
αδ − βγ = 1. Lastly,if 0 < α < β and γ < δ < 0 then we have γ + 1 6 δ < 0 as
γ 6 −2. Likewise we have 0 < α 6 β − 1 as β > 2. Thus (β − 1)(γ + 1) 6 αδ < 0.
This gives:

1 = αδ − βγ > (β − 1)(γ + 1)− βγ
= βγ − γ + β − 1− βγ
= β − γ − 1

> 3 as γ 6 −2, β > 2.

Hence this last case cannot occur and so under our base assumptions and assuming
γ < 0 it follows that (β − α)(γ − δ) > 0.

We now examine each of the four remaining cases found under our base assumptions.

Case 1: We have α > 0, β > 0, γ > 0 and δ > 0. We split into two subcases, α−β > 0
and α− β < 0.
Case 1a: 0 < β < α
Then Lemma 3.1.18 implies 0 < δ < γ. We first prove a lemma that will help
substantially.

Lemma 3.1.20.
Under the assumptions of Case 1a we have (β − δ)(β − α + γ − δ) 6 0.

Proof.
Recall β 6≡ δ mod 2 and α 6≡ γ mod 2. We split into two cases.
First suppose β−δ > 0, then βδ and this implies δ 6 β−1. Assume β−α+γ−δ > 0,
then β − δ > α − γ. Next, assume α − γ < 0, then α < γ and thus α 6 γ − 1. This
yields:

1 = αδ − βγ 6 (γ − 1)(β − 1)− βγ
= βγ − β − γ + 1− βγ
= 1− β − γ
6 −3 as β > 2, γ > 2.
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This is a contradiction and thus we have 0 < α − γ < β − δ. Further, note that
δ(α−γ) > 0 and γ(β−δ) > 0. Now observe 1 = αδ−βγ = δ(α−γ)−γ(β−δ) and thus
1+γ(β−δ) = δ(α−γ). Therefore we have 1+γ(β−δ) = δ(α−γ) < δ(β−δ) < γ(β−δ).
This is a contradiction, thus we must have β − α + γ − δ 6 0. Recalling β − δ > 0
then yields the result in this case.
Now suppose β − δ < 0. This gives δ > β + 1. Assume β − α + γ − δ < 0, which
implies β− δ < α− γ. Next, assume α− γ > 0, then α > γ which implies α > γ + 1.
This yields:

1 = αδ − βγ > (γ + 1)(β + 1)− βγ
= βγ + β + γ + 1− βγ
= β + γ + 1

> 5.

This is a contradiction so β− δ < α− γ < 0. Thus |α− γ| < |β− δ| and we also have
1 = δ(α − γ)− γ(β − δ), which implies 1 + γ(β − δ) = δ(α − γ). Therefore we have
|δ(α− γ)| = |1 + γ(β − δ)| and so |δ(α− γ)| = |γ(β − δ)| − 1. Thus

|γ(β − δ)| − 1 = |δ(α− γ)|
< |γ(α− γ)|
< |γ(β − δ)|.

This is a contradiction because it implies two consecutive integers are separated by
at least two. Therefore β−α+ γ− δ > 0. Recalling β− δ < 0 then yields the result.
Hence in both subcases we have (β − δ)(β − α + γ − δ) 6 0.

Now under the assumptions of Case 1a we have β − α < 0 and δ − γ < 0. Therefore
β(β − α) < 0 and δ(δ − γ) < 0 as δ > 0 and β > 0. Let Aii = min{A11, A22} > 0.
Note at β(δ − γ) < 0 and δ(β − α) < 0. Consequently 3.3 we have

0 6 2 β(β − α)︸ ︷︷ ︸
<0

A11 + β(δ − γ)(A12 + A21) + δ(β − α)(A12 + A21) + 2 δ(δ − γ)︸ ︷︷ ︸
<0

A22

6 2

β(β − α) + δ(δ − γ)︸ ︷︷ ︸
<0

Aii + (A12 + A21)

β(δ − γ) + δ(β − α)︸ ︷︷ ︸
<0

 .

We see if A12 + A21 > 0 then the right hand side is negative as each summand is
negative. This is a contradiction.
So we assume A12 + A21 < 0. Then inequality 3.3 becomes

0 6 2 (β(β − α) + δ(δ − γ))Aii + |A12 + A21| (β(γ − δ) + δ(α− β))

6 2 (β(β − α) + δ(δ − γ))Aii + 2Aii (β(γ − δ) + δ(α− β)) as |A12 + A21| 6 2Aii

= 2Aii (β(β − α) + δ(δ − γ) + β(γ − δ) + δ(α− β))

= 2Aii (β − δ) (β − α + γ − δ) .
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Due to our form being Kronecker reduced, we note that equality cannot hold through-
out. Therefore we have 0 < 2Aii(β − δ)(β − α + γ − δ). Yet, by Lemma 3.1.20 we
have (β − δ)(β − α + γ − δ) 6 0, a contradiction.
This completes Case 1a.

Case 1b: 0 < α < β
Then Lemma 3.1.19 implies 0 < γ < δ. We first prove a lemma to help us out.

Lemma 3.1.21.
Under the assumptions of Case 1b we have (α− γ)(β − α + γ − δ) > 0.

Proof.
We split into two cases. First suppose 0 < α < γ and notice that we must have
0 < β < δ in order to avoid contradicting 1 = αδ − βγ. Suppose β − α + γ − δ > 0
which, implies 0 < δ−β < γ−α. Also, note that 1 = αδ−βγ = α(δ−β)−β(γ−α)
and therefore α(δ−β) = 1 +β(γ−α). Observe α(δ−β) > 0 and β(γ−α) > 0. This
then yields

0 < 1 + β(γ − α) = α(δ − β)

< β(δ − β)

< β(γ − α),

which is a contradiction. Therefore we must have β − α + γ − δ 6 0. Recalling
α− γ < 0 yields the result in this case.
Now suppose 0 < γ < α and so α− γ > 0. Note that α > γ + 1 and γ > 2. Assume
0 < β < δ, then we have δ > β + 1 and β > 2. This gives

1 = αδ − βγ > (γ + 1)(β + 1)− βγ
= βγ + γ + β + 1− βγ
= β + γ + 1

> 5,

which is a contradiction. Thus we have 0 < δ < β. Now assume β − α + γ − δ < 0,
this rearranges to β − α < δ − γ. Note that 1 = αδ − βγ = β(δ − γ)− δ(β − α) and
using this gives

0 < δ(β − α) < β(β − α) < β(δ − γ) = 1 + δ(β − α).

This is a contradiction because it implies two consecutive integers are separated by a
difference of at least two. Therefore we have β−α+γ−δ > 0 and recalling α−γ > 0
then yields (α− γ)(β − α + γ − δ) > 0.
Hence we always have (α− γ)(β − α + γ − δ) > 0.

Now under the assumptions of Case 1b we have α − β < 0 and γ − δ < 0. It
follows that α(α − β < 0, γ(γ − δ) < 0, α(γ − δ) and γ(α − β) < 0. As before, let
Aii = min{A11, A22} > 0. Then inequality 3.1 yields

0 6 2α(α− β)︸ ︷︷ ︸
<0

A11 + α(γ − δ)︸ ︷︷ ︸
<0

(A12 + A21) + γ(α− β)︸ ︷︷ ︸
<0

(A12 + A21) + 2γ(γ − δ)︸ ︷︷ ︸
<0

A22.
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We immediately see we have a contradiction if A12+A21 > 0. So assume A12+A21 < 0.
Then the inequality becomes

0 6 2α(α− β)A11 + |A12 + A21||α(γ − δ) + γ(α− β)|+ 2γ(γ − δ)A22

6 2Aii (α(α− β) + γ(γ − δ)) + |A12 + A21||α(γ − δ) + γ(α− β)|
6 2Aii (α(α− β) + γ(γ − δ)) + 2Aii|α(γ − δ) + γ(α− β)|.

Since our form is Kronecker reduced we note equality cannot hold throughout the
above inequality. Thus we have

0 < 2Aii (α(α− β) + γ(γ − δ) + |α(γ − δ) + γ(α− β)|) . (3.5)

Since α + γ > 0, β − α > 0 and δ − γ > 0 due to our setup in Case 1b, we have
(α + γ)(β − α + δ − γ) > 0. This gives

0 < (α + γ)(β − α + δ − γ)

= (δ − γ)(γ + α) + (β − α)(γ + α)

= (α(δ − γ) + γ(β − α)) + (α(β − α) + γ(δ − γ)) .

From this we get

α(γ − δ) + γ(α− β) < α(β − α) + γ(δ − γ). (3.6)

By Lemma 3.1.21 we have (α− γ)(β − α + γ − δ) > 0. This yields
0 6 (β − α)(α− γ) + (γ − α)(δ − γ) and therefore we get

α(δ − γ) + γ(β − α) 6 α(β − α) + γ(δ − γ). (3.7)

Using α(δ−γ) +γ(β−α) = − (α(γ − δ) + γ(α− β)) we see that inequalities 3.6 and
3.7 combine to give

|α(γ − δ) + γ(α− β)| 6 α(β − α) + γ(δ − γ).

Hence we have α(α − β) + γ(γ − δ) + |α(γ − δ) + γ(α− β)| 6 0. This contradicts
inequality 3.5 and therefore this case cannot occur.

This completes Case 1 and we have shown this case cannot arise.

Case 4: We have α > 0, β > 0, γ < 0 and δ < 0. We split into two subcases, α−β > 0
and α− β < 0.
Case 4a: 0 < β < α
In this subcase, Lemma 3.1.19 implies δ < γ < 0. We now prove a lemma to assist
us with this subcase.

Lemma 3.1.22.
Under the assumptions of Case 4a we have (β + δ)(β − α + δ − γ) 6 0.
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Proof.
We split into two cases. First suppose β + δ > 0 and recall β 6≡ δ mod 2 as well
as α 6≡ γ mod 2. Since α > 0 we have α(β + δ) > 0 and thus 1 = αδ − βγ =
α(β + δ) − β(α + γ), which yields 0 < α(β + δ) = 1 + β(α + γ). Since β > 2 and
α + γ 6= 0 α + γ > 0 follows immediately.
Assume β − α + δ − γ > 0, then we have β + δ > α + γ > 0. Therefore we have

0 < β(α + γ) < α(α + γ) < α(β + δ) = 1 + β(α + γ),

which is a contradiction. Thus we have β−α+ δ− γ 6 0. Recalling β + δ > 0 yields
the result in this subcase.
Now suppose β + δ < 0, then α(β + δ) < 0. We assume β − α + δ − γ < 0. Next,
we have 1 = α(β + δ)− β(α + γ) implies 1 + β(α + γ) = α(β + δ) < 0 and therefore
β(α + γ) < 0. Since β > 0 it follows that α + γ < 0. Thus from the conditions of
Case 4a (γ < δ < 0 < β < α) we get β + δ < α + γ < 0 and hence |α + γ| < |β + δ|.
Then we have |1+β(α+γ)| = |α(β+δ)| and so |α(β+δ)| = |β(α+γ)|−1. Therefore
we get

|β(α + γ)| < α|α + γ| < α|β + δ| = |α(β + δ)| = |β(α + γ)| − 1,

which is a contradiction. Thus we must have β − α+ δ − γ > 0. Recalling β + δ < 0
yields the result in this case. Hence we always have (β + δ)(β − α + δ − γ) 6 0.

Now under the assumptions of Case 4a we have β−α < 0 and δ−γ > 0, which imply
β(β − α) < 0 and δ(δ − γ) < 0. Let Aii = min{A11, A22} > 0 and note β(δ − γ) > 0
and δ(β − α) > 0. Then inequality 3.3 becomes

0 6 2β(β − α)︸ ︷︷ ︸
<0

A11 + β(δ − γ)︸ ︷︷ ︸
>0

(A12 + A21) + δ(β − α)︸ ︷︷ ︸
>0

(A12 + A21) + 2 δ(δ − γ)︸ ︷︷ ︸
<0

A22

6 2β(β − α)Aii + (A12 + A21)(β(δ − γ) + δ(β − α)) + 2δ(δ − γ)Aii

6 2β(β − α)Aii + 2Aii(β(δ − γ) + δ(β − α)) + 2δ(δ − γ)Aii as |A12 + A21| 6 2Aii

= 2Aii (β(β − α) + β(δ − γ) + δ(β − α) + δ(δ − γ))

= 2Aii(β + δ)(β − α + δ − γ).

We note the condition for being Kronecker reduced implies we cannot have equality
throughout. Therefore we have 0 < 2Aii(β+ δ)(β−α+ δ− γ). However, Aii > 0 and
Lemma 3.1.22 yields (β + δ)(β − α + δ − γ) 6 0 and thus we have a contradiction.
So Case 4a cannot arise.

Case 4b: 0 < α < β
Then Lemma 3.1.19 implies δ < γ < 0. We first prove a lemma to streamline this
subcase.

Lemma 3.1.23.
Under the assumptions of Case 4b we have (α + γ)(α− β + γ − δ) 6 0.
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Proof.
Observe 1 = αδ − βγ = δ(α + γ)− γ(β + δ). We split into two cases. First suppose
α + γ > 0, then 1 = αδ + β(−γ) < αδ + αβ = α(β + δ). Since α > 0 it follows that
β + δ > 0. Note also that δ(α+ γ) < 0 and γ(β + δ) < 0. Assume α− β + γ − δ > 0,
then we have α+γ > β+ δ > 0. Next, 1 = δ(α+γ)−γ(β+ δ) implies 1 +γ(β+ δ) =
δ(α + γ) < 0. Therefore we get:

0 < |δ(α + γ)| = |1 + γ(β + δ)|
= |γ(β + δ)| − 1

< |γ|(α + γ)

< |δ|(α + γ),

which is a contradiction. Therefore we have α−β+γ− δ 6 0 and recalling α+γ > 0
yields our result in this case.
Now suppose α + γ < 0. Then δ < 0 implies δ(α + γ) > 0. Using γ(β + δ) =
δ(α + γ) − 1 > 0 and γ < 0 we see that β + δ < 0 as β 6≡ δ mod 2. Assume
α − β + γ − δ < 0, then we have α + γ < β + δ < 0. Using this along with
0 < γ(β + δ) = δ(α + γ)− 1 gives:

0 < |γ(β + δ)|
< |δ||β + δ|
< |δ||α + γ|
= |γ||β + δ|+ 1 as 0 < γ(β + δ).

This is a contradiction as it implies consecutive integers are separated by at least
two. Therefore we must have α− β + γ − δ > 0. Recalling α + γ < 0 then gives our
result.
Hence we always have (α + γ)(α− β + γ − δ) 6 0.

Now under the assumptions of Case 4b we have α(α−β) < 0, γ(γ−δ) < 0, α(γ−δ) > 0
and γ(α− β) > 0. Let Aii = min{A11, A22} > 0, then inequality 3.1 becomes:

0 6 2α(α− β)︸ ︷︷ ︸
<0

A11 + α(γ − δ)︸ ︷︷ ︸
>0

(A12 + A21) + γ(α− β)︸ ︷︷ ︸
>0

(A12 + A21) + 2 γ(γ − δ)︸ ︷︷ ︸
<0

A22

6 2(α(α− β) + γ(γ − δ))Aii + (α(γ − δ) + γ(α− β))(A12 + A21)

6 2(α(α− β) + γ(γ − δ))Aii + 2(α(γ − δ) + γ(α− β))Aii as |A12 + A21| 6 2Aii

= 2Aii(α + γ)(α− β + γ − δ).

Observe the conditions for being Kronecker reduced imply equality cannot hold
throughout. Therefore we have 0 < 2Aii(α + γ)(α − β + γ − δ). Using Aii > 0
and recalling Lemma 3.1.23 implies (α+ γ)(α− β + γ − δ) 6 0 gives a contradiction
and thus Case 4b cannot occur.
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This completes Case 4, showing that it cannot arise.

Case 6: We have α > 0, β < 0, γ > 0 and δ < 0. We split into two subcases, α+β > 0
and α + β < 0.
Case 6a: α + β > 0
Observe that if 0 < γ < −δ = |δ| then we have

1 = αδ − βγ = |β|γ − α|δ|
< αγ − α|δ|
< αγ − αγ = 0,

which is a contradiction. Therefore we have 0 < −δ < γ, i.e. γ + δ > 0. We now
prove a lemma to streamline this case.

Lemma 3.1.24.
Under the assumptions of Case 6a we have (β − δ)(α + β − δ − γ) 6 0.

Proof.
We split into two subcases: β − δ > 0 and β − δ < 0 as β 6≡ δ mod 2.
First suppose β−δ > 0. Next, assume α+β−δ−γ > 0. It follows that β−δ > γ−α.
We observe if γ − α < 0 then we get the following contradiction

1 = αδ − βγ = |β|γ − α|δ| < |β|γ − α|β| < |β|α− |β|α = 0.

Therefore we have 0 < γ−α < β−δ. Now observe 1 = αδ−βγ = (α−γ)δ−(β−δ)γ.
This yields δ(α− γ) = 1 + (β − δ)γ. Then we see:

1 + (α− γ)δ = 1 + (γ − α)|δ|
< 1 + (γ − α)γ as |δ| < γ in Case 6a

< 1 + (β − δ)γ
= (α− γ)δ.

This is clearly a contradiction. Therefore we require α+β−δ−γ 6 0. Hence recalling
β + δ > 0 yields the result in this case.
Now suppose β − δ < 0, since β < 0, δ < 0 this yields 0 < |δ| < |β|. Assume
α + β − δ − γ < 0, that is β − δ < γ − α. If we suppose 0 < γ − α then we obtain

1 = αδ − βγ = |β|γ − α|δ| < |δ|γ − α|δ| < |δ|α− |δ|α = 0.

This again is a contradiction and thus we have β − δ < γ − α < 0 as α 6≡ γ mod 2.
Next, we see 1 = (α− γ)δ − (β − δ)γ gives

(α− γ)δ = 1 + (β − δ)γ
< 1 + (γ − α)γ

< 1 + (γ − α)|δ| as in Case 6a |δ| < γ

= 1 + (α− γ)δ.
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This is a contradiction because it implies two consecutive integers are separated by
at least two. Therefore we have α + β − δ − γ > 0. Recalling β − δ < 0 yields the
result.
Hence under the assumptions of Case 6a we have (β − δ)(α + β − δ − γ) 6 0.

Now under the assumptions of Case 6a we have β(α+β) < 0, δ(α+β) < 0, δ(δ+γ) < 0
and β(δ + γ) < 0. Using inequality 3.4 we immediately see if A12 + A21 > 0 then we
have a contradiction. Hence we suppose A12 +A21 < 0. Let Aii = min{A11, A22} > 0,
then inequality 3.4 becomes:

0 6 2β(α + β)A11 + (β(δ + γ) + δ(α + β)︸ ︷︷ ︸
<0

(A12 + A21)︸ ︷︷ ︸
<0

+2δ(δ + γ)A22

6 2 (β(α + β) + δ(δ + γ))Aii + |β(δ + γ) + δ(α + β)| |A12 + A21|
6 2Aii (β(α + β) + δ(δ + γ) + |β(δ + γ) + δ(α + β)|) .

Observe the conditions for being Kronecker reduced imply equality cannot hold
throughout. Thus we have 0 < 2Aii (β(α + β) + δ(δ + γ) + |β(δ + γ) + δ(α + β)|).
This rearranges to give 0 < 2Aii(β − δ)(α + β − δ − γ). Lemma 3.1.24 implies
(β−δ)(α+β−δ−γ) 6 0 and since Aii > 0 we see there is a contradiction. Therefore
Case 6a cannot arise.

Case 6b: α + β < 0
Observe that if 0 < |δ| = −δ < γ then we have

1 = αδ − βγ
= |β|γ − α|δ|
> |β|γ − αγ
= (|β| − α) γ

> 0.

This is because α + β < 0 implies 0 < α < −β = |β|, thus |β| − α and γ are both
positive non-zero integers. Since no integer exists in (0, 1) it follows that 0 < γ <
−δ = |δ| as γ 6≡ δ mod 2. Hence δ + γ < 0. We now prove a lemma to streamline
this case.

Lemma 3.1.25.
Under the assumptions of Case 6b we have (α− γ)(α + β − γ − δ) 6 0.

Proof.
We split into two cases, α− γ > 0 and α− γ < 0 since α 6≡ γ mod 2.
First suppose α − γ > 0, that is 0 < γ < α. Next, assume α + β − γ − δ > 0, then
α− γ > δ − β. We observe if δ − β > 0, i.e. 0 < |δ| < |β|, then we get the following
contradiction:

1 = αδ − βγ = |β|γ − α|δ|
> |β|α− α|δ|
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= α(|β| − |δ|)
> 0.

This is because α and |β| − |δ| are positive integers and there is no integer in the
interval (0, 1). Thus we have δ − β < 0 < α − γ. From this we have 1 = αδ − βγ =
(α − γ)δ − (β − δ)γ, which implies (α− γ)δ︸ ︷︷ ︸

<0

= 1 + γ(β − δ)︸ ︷︷ ︸
>0

. This is a contradiction

and thus α + β − γ − δ 6 0. Recalling α− γ > 0 then gives the result in this case.
Now suppose α− γ < 0. Assume α+ β− γ− δ < 0, then we have α− γ < δ− β. We
observe if δ − β < 0 then we get the following contradiction:

1 = αδ − βγ = |β|γ − α|δ|
> |β|γ − α|β|
= |β|(γ − α)

> 0.

This is because |β| and γ − α are positive integers and there is no integer in the
interval (0, 1). Thus we have α − γ < 0 < δ − β. Using this we see 1 = αδ − βγ =
(α − γ)δ − (β − δ)γ implies (α− γ)δ︸ ︷︷ ︸

>0

= 1 + (β − δ)γ︸ ︷︷ ︸
<0

< 1. Since we are dealing with

integers this is a contradiction. Therefore we must have α+ β− γ− δ > 0. Recalling
α− γ < 0 gives the result in this case.
Hence we see that under the assumptions of Case 6b we always have (α− γ)(α+β−
γ − δ) 6 0.

Now under the assumptions of Case 6b we have α(α+β) < 0, α(γ+δ) < 0, γ(α+β) <
0 and γ(γ+ δ) < 0. Using inequality 3.2 we immediately see if A12 +A21 > 0 then we
have a contradiction. Hence we suppose A12 +A21 < 0 and let Aii = min{A11, A22} >
0. Then inequality 3.2 becomes:

0 6 2α(α + β)A11 − (α(γ + δ) + γ(α + β)) |A12 + A21|+ 2γ(γ + δ)A22

6 2 (α(α + β) + γ(γ + δ))Aii − (α(γ + δ) + γ(α + β)) |A12 + A21|
6 2 (α(α + β) + γ(γ + δ))Aii − 2Aii (α(γ + δ) + γ(α + β))

= 2Aii(α− γ)(α + β − γ − δ).

Since we are dealing with Kronecker reduced bilinear forms, we cannot have equality
throughout. Hence we have

0 < 2Aii(α− γ)(α + β − γ − δ).

Lemma 3.1.25 implies (α− γ)(α+ β− γ− δ) 6 0 and since Aii > 0 it follows that we
have a contradiction. Therefore Case 6b cannot arise.

Case 7: We have α > 0, β < 0, γ < 0 and δ > 0. We split into two subcases: α+β > 0
and α + β < 0 as α 6≡ β mod 2.
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Case 7a: α + β > 0
Observe if δ + γ > 0 then we have the following contradiction:

1 = αδ − βγ = αδ − |β||γ|
> |β|δ − |β||γ| as α > −β = |β| > 0

= |β|(δ + γ)

> 0.

Thus α + β > 0 implies δ + γ < 0. We now prove a lemma to help streamline this
case.

Lemma 3.1.26.
Under the assumptions of Case 7a we have (β + δ)(α + β + γ + δ) 6 0.

Proof.
We split into two cases: β + δ > 0 and β + δ < 0 as β 6≡ δ mod 2.
First suppose β + δ > 0, thus 0 < |β| = −β < δ and so 1 − β 6 δ. Next, assume
α + β + γ + δ > 0, then we have −(α + γ) < β + δ. If we assume α + γ > 0 then
α > −γ = |γ| and we get the following contradiction:

1 = αδ − βγ > (1− γ)(1− β)− βγ
= 1− γ − β + βγ − βγ
= 1− γ − β
> 5 as γ 6 −2 and β 6 −2.

Therefore we must have α+ γ < 0 and thus 0 < −(α+ γ) < β + δ. That is |α+ γ| <
|β+δ|. Further we have 1 = αδ−βγ = (α+γ)δ−γ(β+δ) so 1+γ(δ+β) = (α+γ)δ < 0.
Therefore we have |γ(β+δ)|−1 = |1+γ(β+δ)| = |δ(α+γ)|. Then recalling δ+γ < 0,
that is, 0 < δ < |γ| yields:

|γ(β + δ)| − 1 = |δ(α + γ)| < |γ||α + γ| < |γ||β + δ|.

This is a contradiction because it implies two consecutive integers are separated by
more than two integers. Therefore we must have α + β + γ + δ 6 0 and recalling
β + δ > 0 gives the result in this case.
Now suppose β + δ < 0 and so 0 < δ < −β = |β|. Therefore δ 6 −1 − β. Further
assume α + β + γ + δ < 0, which implies β + δ < −(α + γ). If we assume α + γ < 0
then we get the following contradiction:

1 = αδ − βγ 6 (−1− β)(−1− γ)− βγ
= (1 + β)(1 + γ)− βγ
= 1 + β + γ

6 −3 as β 6 −2 and γ 6 −2.
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Therefore α + γ > 0 and we have β + δ < −(α + γ) < 0. Hence |α + γ| < |β + δ|.
Recall δ+ γ < 0 yields 0 < δ < |γ| and observe γ(β+ δ) > 0 and δ(α+ γ) > 0. Next,
1 = αδ − βγ = (α + γ)δ − γ(β + δ) gives (α + γ)δ = 1 + γ(β + δ). Hence we get

1 + γ(β + δ) = (α + γ)δ

= |(α + γ)δ|
< |α + γ||γ|
< |β + δ||γ|
= |γ(β + δ)|
= γ(β + δ).

This is a contradiction and therefore we must have α + β + γ + δ > 0. Recalling
β + δ < 0 then yields the result in this case.
Hence under the assumptions of Case 7a we always have (β+δ)(α+β+γ+δ) 6 0.

Now observe under the assumptions of Case 7a we have β(α + β) < 0, δ(δ + γ) < 0,
β(δ + γ) > 0 and δ(α + β) > 0. We let Aii = min{A11, A22} and consider inequality
3.4. This yields:

0 6 2β(α + β)A11 + β(δ + γ)(A12 + A21) + δ(α + β)(A12 + A21) + 2δ(δ + γ)A22

6 2Aii(β(α + β) + δ(δ + γ)) + (A12 + A21)(β(δ + γ) + δ(α + β)) as subtracting less

6 2Aii(β(α + β) + δ(δ + γ)) + 2Aii(β(δ + γ) + δ(α + β)) as |A12 + A21 6 2Aii

= 2Aii(β + δ)(α + β + γ + δ).

We observe that since our bilinear forms are Kronecker reduced we cannot have
equality holding throughout. Thus

0 < 2Aii(β + δ)(α + β + γ + δ).

Since Aii > 0 and Lemma 3.1.26 yields (β + δ)(α+ β + γ + δ) 6 0, we have a contra-
diction. Hence Case 7a cannot arise.

Case 7b: α + β < 0
Observe that if δ + γ < 0 then we get the following contradiction:

1 = αδ − βγ
= αδ − |β||γ|
< α|γ| − |β||γ|
= |γ|(α + β)

< 0.

Hence in Case 7b we have δ + γ > 0. We now prove a lemma to help streamline our
proof.

Lemma 3.1.27.
Under the assumptions of Case 7b we have (α + γ)(α + β + γ + δ) 6 0.
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Proof.
We split into two subcases: α + γ > 0 and α + γ < 0 as α 6≡ γ mod 2. First suppose
α + γ > 0 and so 0 < |γ| = −γ < α, which implies −1 − γ 6 α as γ 6 −2. Next
assume α + β + γ + δ > 0, then we have α + γ > −(β + δ). If we suppose β + δ > 0
then we get the following contradiction:

1 = αδ − βγ 6 (−1− β)(−1− γ)− βγ
= (1 + β)(1 + γ)− βγ
= 1 + β + γ

6 −3 as β 6 −2 and γ 6 −2.

Therefore we have β+δ < 0 and so 0 < −(β+δ) < α+γ, which yields |β+δ| < |α+γ|.
Now we write 1 = αδ−βγ = (α+γ)δ−γ(δ+β), which gives 0 < (α+γ)δ = 1+γ(δ+β).
Recall δ + γ > 0 implies 0 < |γ| < δ. Then we have

γ(δ + β) = |γ(δ + β)| < |δ(δ + β)| < |δ(α + γ)| = 1 + γ(δ + β).

This is a contradiction as we have two consecutive integers separated by at least two
integers. Therefore in this case we must have α+β+γ+δ 6 0 and recalling α+γ > 0
yields the result here.
Now suppose α+γ < 0 so 0 < α < |γ|. Further assume α+β+γ+δ < 0, which gives
α + γ < −(β + δ). If we suppose β + δ < 0 then we get the following contradiction:

1 = αδ − βγ 6 (−1− β)(−1− γ)− βγ = 1 + β + γ 6 −3.

Therefore we have β + δ > 0 and thus α + γ < −(β + δ) < 0. This yields |β + δ| <
|α + γ|. Then we have 1 = αδ − βγ = (α + γ)δ − (δ + β)γ which rearranges to
1 + γ(δ + β) = (α + γ)δ < 0. This gives |(α + γ)δ| = |1 + γ(δ + β)| = |γ(δ + β)| − 1
and thus:

|γ(δ + β)| < |δ(δ + β)| < |δ(α + γ)| = |γ(δ + β)| − 1.

This is clearly a contradiction and so we must have α + β + γ + δ > 0. Recalling
α + δ < 0 yields the result in this case.
Hence under the assumptions of Case 7b we always have (α+γ)(α+β+γ+δ) 6 0.

Now under the assumptions of Case 7b we have α(α+β) < 0, γ(δ+γ) < 0, α(δ+γ) > 0
and γ(α + β) > 0. Again, let Aii = min{A11, A22} and consider inequality 3.2. This
gives

0 6 2α(α + β)A11 + α(δ + γ)(A12 + A21) + γ(α + β)(A12 + A21) + 2γ(γ + δ)A22

6 2 ((α + β)α + γ(δ + γ))Aii + (α(δ + γ) + γ(α + β)) (A12 + A21)

6 2 (α(α + β) + γ(δ + γ))Aii + 2Aii (α(δ + γ) + γ(α + β)) as |A12 + A21 6 2Aii

= 2Aii(α + γ)(α + β + γ + δ).

Since we are dealing with Kronecker reduced forms we cannot have equality holding
throughout. Therefore we have

0 < 2Aii(α + γ)(α + β + γ + δ).
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Lemma 3.1.27 implies (α+ γ)(α+ β + γ + δ) 6 0 and we have Aii > 0. This gives a
contradiction and hence Case 7b cannot arise.

This completes our investigation of the eight cases and thus we have proved the
following theorem.

Theorem 3.1.28.
The complete equivalence class of a bilinear form contains exactly one Kronecker
reduced bilinear form unless the Kronecker reduced bilinear form satisfies either |A12+
A21| = 2A11 or |A12 + A21| = 2A22, in which case it contains exactly two Kronecker
reduced bilinear forms.

Our goal now is prove a result that Kronecker stated but did not prove in his paper.
Kronecker’s result is given in the following theorem.

Theorem 3.1.29.
Let D ∈ Z>0 then Clc (D) = |B0|+ |B1| where

B0 = {(A11, A12, A21, A22) |A11A22 − A12A21 = D, 0 <
1

2
(A12 + A21) 6 A11,

0 <
1

2
(A12 + A21) 6 A22, equality holds at most once}

and

B1 = {(A11, A12, A21, A22) |A11A22 − A12A21 = D, 0 6
1

2
(A12 + A21) < A11,

0 6
1

2
(A12 + A21) < A22}.

Observation 3.1.30.
The following provides a sketch of the proof of Theorem 3.1.29. It is intended to serve
as a guide while working through the proof and to indicate how the sets B0 and B1

were probably chosen by Kronecker.
From Theorem 3.1.28 we know that with only one exception there is exactly one
Kronecker reduced bilinear form within any complete equivalence class of positive
definite bilinear forms. This exception is when the Kronecker reduced bilinear form
satisfies |A12+A21| = 2A11 or |A12+A21| = 2A22 in which case there are two Kronecker
reduced bilinear forms in the complete equivalence class.
In the conditions for being Kronecker reduced we note that when both inequalities
are strict and A12 + A21 6= 0, the absolute value requirement means there are two
Kronecker reduced forms to be counted simply by multiplying each of A12 and A21

by -1. Thus the intersection of the sets B0 and B1 accounts for all of these Kronecker
reduced forms exactly once.
Now we consider those Kronecker reduced bilinear forms where equality holds exactly
once. We know that the Kronecker reduced bilinear forms (A11, A12, A21, A22) and
(A11,−A12,−A21, A22) are distinct (as A12 +A21 6= 0) and contained within the same
complete equivalence class in this situation. Therefore it is sufficient to count only
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those Kronecker forms for which 0 < A12 + A21 (= 2A11 or 2A22. These are counted
exactly once by the equality condition found in the set B0.
Lastly, we consider those Kronecker reduced bilinear forms which satisfy 0 = A12 +
A21. In this situation there is exactly one Kronecker reduced bilinear form in the
complete equivalence class and so changing the sign of A12 and A21 results in a new
complete equivalence class. Therefore we do not double count when we count these
forms by introducing the conditions 0 6 A12 +A21 < 2A11 and 0 6 A12 +A21 < 2A22

in the set B1.
Consequently, by using the sets B0 and B1 we have consistently counted all of the
complete equivalence classes of positive definite binary bilinear forms exactly once.

Before we prove this theorem we need the following lemma.

Lemma 3.1.31.
Let
V+ = {A = (A11, A12, A21, A22)| det(A) = D, 0 < A12 + A21 < 2 min{A11, A22}} and
V− = {A = (A11, A12, A21, A22)| det(A) = D,−2 min{A11, A22} < A12 + A21 < 0}.
Then the map

ν : V− −→ V+

(A11, A12, A21, A22) 7−→ (A11,−A12,−A21, A22) = (a11, a12, a21, a22)

is a bijection and thus |V−| = |V+|.

Proof.
Observe the sets V+ and V− are subsets of KD,>, the set of complete equivalence
classes of positive definite bilinear forms of determinant D ∈ Z>0. In Theorem 3.1.15
we proved KD,> is finite and thus so are V+ and V−. We fix D ∈ Z>0.
Well-defined: Observe

det(ν(A11, A12, A21, A22)) = A11A22 − (−A12)(−A21)

= det(A11, A12, A21, A22)

= D.

We also have a12 + a21 = −A12 − A21 = −(A12 + A21) and since −2 min{A11, A22} <
A12 + A21 < 0 this implies 0 < a12 + a21 < 2 min{A11, A22}. Hence ν is well-defined.
Injectivity: This is straightforward to verify directly.
Surjectivity: Let B = (B11, B12, B21, B22) ∈ V+ and consider
C = (B11,−B12,−B21, B22). This lies in V− since det(C) = B11B22−(−B12)(−B21) =
D and −2 min{B11, B22} < −(B12 +B21) < 0 since B ∈ V+.
Noting ν(B11,−B12,−B21, B22) = (B11, B12, B21, B22) yields surjectivity.
Hence the map ν is a bijection between finite sets and we have |V−| = |V+|.

We now prove Theorem 3.1.29.

Proof.
Let D ∈ Z>0 and consider the set of all positive definite Kronecker reduced bilinear
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forms of determinant D. From Theorem 3.1.16 we know every complete equiva-
lence class of a positive definite bilinear form of determinant D contains at least
one Kronecker reduced bilinear form. Therefore using Theorem 3.1.15 we know
Clc (D) 6 |KD,>| < ∞. Next, from our work in Section 3.1 we know there is ex-
actly one Kronecker reduced bilinear form in a complete equivalence class if and only
if that Kronecker reduced bilinear form does not satisfy either |A12 +A21| = 2A11 or
|A12 + A21| = 2A22.
We partition the set of complete equivalence classes of positive definite bilinear forms
of determinant D into the four (finite) disjoint sets, V+, V− (from Lemma 3.1.31), V0
and V=, where
V0 = {(A11, A12, A21, A22) | det(A) = D, 0 = A12 + A21, 0 < A11, 0 < A22} and
V= = {(A11, A12, A21, A22) | det(A) = D, 2A11 = |A12 + A21| or 2A22 = |A12 + A21|}.
Observe that the set B1 is precisely the union of V+ and V0, each of which contain
Kronecker reduced forms that have their own unique complete equivalence classes.
Now let A = (A11, A12, A21, A22) be a Kronecker reduced bilinear form satisfying
exactly one of 2A11 = |A12 + A21| or 2A22 = |A12 + A21|, that is A ∈ V=. In
Section 3.1 we demonstrated the complete equivalence class of such a Kronecker
reduced form contains exactly one other Kronecker reduced form, namely A′− =
(A11,−A12,−A21, A22). Therefore we may choose our representative for this com-
plete equivalence class to satisfy 0 < A12 + A21 = 2A11 or 0 < A12 + A21 = 2A22

respectively. It is straightforward to see that each of these equivalence classes are
counted by equality within the conditions of the set B0. We now examine B0\V=.
Applying Lemma 3.1.31 we see that |B0\V=| = |V−|.
Hence we have Clc (D) = |V+|+ |V−|+ |V0|+ |V=| = |B0|+ |B1|.

Notes on Section 3.1

In his paper [Kr1897] Kronecker does not explicitly demonstrate that there are finitely
many Kronecker reduced forms. It could be argued this is implicit under the assump-
tion that the reader at the time is familiar with the finiteness of the set of properly
equivalent bilinear forms of a fixed determinant. Kronecker also lacks a proof that
the complete class number, Clc (D) is counted by the complete equivalence classes
Kronecker reduced forms.

3.2 Investigating the Complete Class Number

We now commence a detailed investigation into the structure of the sets B0 and B1.

Observation 3.2.1.
One of the conditions for the set B0 is that at least of the inequalities must be strict.
Therefore we may observe any form in B0 satisfies

A12 + A21 =
1

2
(A12 + A21) +

1

2
(A12 + A21)

< A11 + A22.

74



This rearranges to give A11 −A12 −A21 +A22 > 0 and thus we use this inequality to
replace the cumbersome expression “no simultaneous equality” found in B0 .
We also note this condition clearly holds for any form in the set B1.

The following illustration provides a detailed overview of our investigation into the
structure of the sets B0 and B1.

B0 B1

ME0 =
B0\M

NE1 =
B1\N

= E0 ∩ Γ+H0 = E1 ∩ Γ+H1

H0 H1

J0

{
J1

{
I0

{
I1

{I0,=

I0,>

I0,<

I1,=

I1,>

I1,<

J0,= J1,=

J0,< J1,<

J0,> J1,>

Development of Clc (D)

Clc (D) = |B0|+ |B1|

Clc (D) = m+ n+
|E0|+ |E1|

Clc (D) = m+ n+
2 (|H0|+ |H1|)

Clc (D) = m+ n+

2(P +Q−R− S)

Clc (D) = m+ n+

2


P0 + P1 + P2+
Q0 +Q1 +Q2−
R0 −R1 −R2−
S0 − S1 − S2


Thus Clc (D) = m+ n+ 2 (P0 +Q0 −R0 − S0 + 2 (P1 + P2 −R1 − S1))

Figure 3.1: Outline of the initial sets used to count Clc (D).
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I0,>
θ

J0,>
+∼=

∼= +
θ′

J1,>
I1,>

Clc (D) = m+ n+
2 (P0 +Q0 −R0 − S0) +
4(K + L)

Figure 3.2: Continuation of Figure 3.1 showing the relationships P1 = R1 + K and
P2 = S1 + L.

We continue to follow in the outline of Kronecker’s footsteps by considering subsets
of B0 and B1 that satisfy A11 = A12 − A21 + A22.

Definition 3.2.2.
Let M ⊆ B0 and N ⊆ B1 be defined in the following manner:

M = {(A11, A12, A21, A22) | det(A) = D, 0 <
(A12 + A21)

2
6 min{A11, A22},

A11 − A12 − A21 + A22 > 0, A11 = A12 − A21 + A22 } ,

N = { (A11, A12, A21, A22) | det(A) = D, 0 6
A12 + A21

2
< min{A11, A22},

A11 − A12 − A21 + A22 > 0, A11 = A12 − A21 + A22 } .

We let m = |M | and n = |N |.
For convenience we will let E0 = B0\M and E1 = B1\N .

It is important to note that m = 0 or n = 0 may arise for certain determinants.

Using our notation we then have

Clc (D)−m− n =
∣∣E0
∣∣+
∣∣E1
∣∣ .

We now make a more general observation.

Lemma 3.2.3.
Let Γ+ = {(A11, A12, A21, A22) | det = D,A22 − A21 > A11 − A12} and
Γ− = {(A11, A12, A21, A22) | det = D,A22 − A21 < A11 − A12}.
Define

γ : Γ+ −→ Γ−

(A11, A12, A21, A22) 7−→ (A22, A21, A12, A11) = (a11, a12, a21, a22).

Then γ is a bijection.

Proof.
Firstly, det (γ (A11, A12, A21, A22)) = A22 · A11 − A21 · A12 = A11A22 − A12A21 = D.
Next, observe (A11, A12, A21, A22) satisfies A22−A21 > A11−A12 and thus a22−a21 =
A11 − A12 < A22 − A21 = a11 − a12. Hence γ (A11, A12, A21, A22) ∈ Γ−.
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Injectivity: This is straightforward to verify directly.
Surjectivity: Let (A11, A12, A21, A22) ∈ Γ− be arbitrary. Let B = (A22, A21, A12, A11).
Then detB = A11A22−A12A21 = D and we have a22−a21 = A11−A12 > A22−A21 =
a11 − a12, thus B ∈ Γ+.
Lastly, γ (B) = (A11, A12, A21, A22), so γ is surjective.
Hence γ is a bijection.

Applying Lemma 3.2.3 in the restricted context of the subsets E0 and E1, we see it
is sufficient to consider only those forms in Γ+∩E0 and Γ+∩E1. This is because the
sets M and N took care of when A22 − A21 = A11 − A12. Consequently, we have

Clc (D)−m− n = 2
(∣∣Γ+ ∩ E0

∣∣+
∣∣Γ+ ∩ E1

∣∣) .
Next, recall from Observation 3.2.1 that bilinear forms in the sets B0 and B1 satisfy
A22 − A21 > A12 − A11. Further, since we have now restricted to subsets of Γ+, we
also have A22 − A21 > A11 − A12 and therefore we may replace these two conditions
with |A11 − A12| < A22 − A21.
This yields

Clc (D)−m− n = 2
(∣∣H0

∣∣+
∣∣H1

∣∣) , where

H0 = { (A11, A12, A21, A22) | det(A) = D, 0 <
(A12 + A21)

2
6 min{A11, A22},

|A11 − A12| < A22 − A21 } ,

H1 = { (A11, A12, A21, A22) | det(A) = D, 0 6
(A12 + A21)

2
< min{A11, A22},

|A11 − A12| < A22 − A21 } .

Observe there is a certain symmetry in the sets H0 and H1 due to min{A11, A22}. We
now re-express this symmetry by formulating each as a difference of two new sets.

Let

I0 = { (A11, A12, A21, A22) | det(A) = D, 0 <
(A12 + A21)

2
6 A11,

|A11 − A12| < A22 − A21 } (3.8)

J0 = { (A11, A12, A21, A22) | det(A) = D, 0 <
(A12 + A21)

2
6 A11,

|A11 − A12| < A22 − A21, A22 <
A12 + A21

2
} . (3.9)

Then H0 = I0\J0.

Let

I1 = { (A11, A12, A21, A22) | det(A) = D, 0 6
(A12 + A21)

2
< A11,
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|A11 − A12| < A22 − A21 } , (3.10)

J1 = { (A11, A12, A21, A22) | det(A) = D, 0 6
(A12 + A21)

2
< A11,

A22 6
(A12 + A21)

2
, |A11 − A12| < A22 − A21 } . (3.11)

Then H1 = I1\J1.

Observation 3.2.4. It is important to note that defining the sets H0 and H1 as
differences of sets means we are no longer only considering positive definite forms.
In particular, A22 < 0 is now permissible in each of I0, J0, I1 and J1. It is only
through their respective differences that we recover positive definiteness. Further, we
no longer know whether these sets are finite.

In order to be consistent with Kronecker’s notation we adopt the following convention.

Notation 3.2.5.
Let |I0| = P , |J0| = R, |I1| = Q and |J1| = S.

This gives rise to
Clc (D)−m− n = 2 (P +Q−R− S) . (3.12)

We now prove a lemma that justifies a small simplification in the conditions found in
J0.

Lemma 3.2.6.
We may simplify the set J0 as follows:

J0 = { (A11, A12, A21, A22) | det(A) = D, 0 <
1

2
(A12 + A21) < A11,

A22 <
1

2
(A12 + A21) , |A11 − A12| < A22 − A21 } . (3.13)

That is, in J0 we cannot have A11 = 1
2

(A12 + A21).

Proof.
Assume 2A11 = A12 + A21, then from the definition of J0 we have
2A22 < A12 + A21 = 2A11, so A22 < A11 (?). We have two cases:
Case I: A11 > A12

This implies A22 −A21 > |A11 − A12| = A11 −A12. This gives A22 −A11 > A21 −A12

and in conjunction with (?) we get

0 > A22 − A11

> A21 − A12

= A12 + A21 − 2A12

= 2 (A11 − A12)︸ ︷︷ ︸
>0

.
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Clearly, we have a contradiction.
Case II: A11 < A12

This implies A22 − A21 > |A11 − A12| = A12 − A11.
This yields A22 +A11 > A12 +A21 = 2A11 and hence A22 > A11. This contradicts (?).
Hence bilinear forms in J0 cannot satisfy A11 = 1

2
(A12 + A21) and so we have

J0 = { (A11, A12, A21, A22) | det(A) = D, 0 <
1

2
(A12 + A21) < A11,

A22 <
1

2
(A12 + A21) , |A11 − A12| < A22 − A21 } .

Notes on Section 3.2

A key ambiguity of Kronecker’s paper occurs in section 9 [Kr1897, p. 454]. In section
9 Kronecker introduces the class number for bilinear forms. Firstly it is implicit that
he is referring to the complete class number as opposed to the proper class number.
Secondly he does not make it clear whether his class number refers to definite bilin-
ear forms or positive definite bilinear forms. On page 454, where he says the class
number is twice the cardinalities of the sets B and B′, Kronecker is referring to both
positive and negative definite bilinear forms. In our work, we focus solely on positive
definite bilinear forms and so our results shall differ from Kronecker’s by a factor of 2.

One should also note that Kronecker does not provide a proof as to why the sets
B0 and B′ provide a method for counting the complete class number. This result is
only stated on [Kr1897, p. 455]. For notational clarity we replace Kronecker’s fraktur
scripts, B0 and B′, with B0 and B1 respectively.

We have further deviated from the notation used by Kronecker in the following man-
ner.
To avoid confusion with the determinant D and the sets labelled D0 and D1 ([Kr1897,
p. 456]), we will use E0 and E1 respectively.
Similarly, to avoid confusion with his class numbers F and F, and his sets E0 and E′,
we will use H0 and H1 (see [Kr1897, p. 456]).
Continuing in this vein, on p. 457 Kronecker expresses E0 as the set difference of E1

and E3. We will instead write I0 for E1 and J0 for E3. Thus in our notation we have
H0 = I0\J0. Similarly Kronecker expresses E1 as the set difference of E2 and E4. We
will instead write I1 for E2 and J1 for E4. Hence in our notation we have H1 = I1\J1.

Note that our result found in Theorem 3.3.14 continues to differ from Kronecker’s
([Kr1897, p. 459]) by a factor of 2. This is still due to our focus on positive definite
bilinear forms.

3.3 Introducing Clc (D).

In this section we introduce a refinement, Clc (D), of the class number Clc (D).
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Notation 3.3.1.
Let (A11, A12, A21, A22) be a bilinear form. For brevity, we may refer to A11 and A22

as the “outer coefficients”, and A12 and A21 as the “middle coefficients” or “inner
coefficients”.

We now single out two subsets of the set of complete equivalence classes of bilinear
forms.

Definition 3.3.2.
Let Clc (D) be the cardinality of the subset of complete equivalence classes of bilinear
forms satisfying the following two conditions:

1. At least one of A11 and A22 is odd, and

2. A12 − A21 ≡ 0 mod 2.

Definition 3.3.3.
Let Cl′c (D) be the cardinality of the subset of complete equivalence classes of bilinear
forms satisfying the following two conditions:

1. Exactly one of A11 and A22 is odd (that is, A11 + A22 ≡ 1 mod 2), and

2. A12 − A21 ≡ 0 mod 2.

Observation 3.3.4.
Definitions 3.3.2 and 3.3.3 are well defined on complete equivalence classes because
any two completely equivalent bilinear forms must be congruent to each other modulo
2 (see Lemma 2.4.7). Consequently modulo two they must have the same sum of their
outer coefficients, and the same sum of their inner coefficients.

Observation 3.3.5.
Observe any bilinear form which is counted in Cl′c (D) is also counted in Clc (D).
However, if a bilinear form has both outer coefficients odd then it is counted in
Clc (D) but not in Cl′c (D).
Hence Cl′c (D) 6 Clc (D) 6 Clc (D).

Theorem 3.3.6.
Let A be a bilinear form with matrix representation A, let M ∈ GL2(Z) and B =
M tAM . Then A11 ≡ A22 ≡ A12 − A21 ≡ 0 mod 2 if and only if B11 ≡ B22 ≡
B12 −B21 ≡ 0 mod 2.

Proof.
(⇒) Assume A11 ≡ A22 ≡ A12 − A21 ≡ 0 mod 2.
From Lemma 2.4.6 we have B12+B21 ≡ B12−B21 ≡ A12−A21 ≡ A12+A21 ≡ 0 mod 2.
Applying Observation 2.4.5 (I) with M ∈ GL2(Z) yields

B11 = α2A11 + αγ(A12 + A21) + γ2A22 ≡ 0 mod 2 and

B22 = β2A11 + βδ(A12 + A21) + δ2A22 ≡ 0 mod 2.

(⇐) Since M ∈ GL2(Z) it is invertible. Write A = (M−1)
t
BM−1 and apply (⇒).
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Corollary 3.3.7.

There is no Kronecker reduced form,

(
A11 A12

A21 A22

)
satisfying A12 − A21 ≡ 0 mod 2

and at least one of A11, A22 odd, that is properly equivalent to the reduced form(
a12 + a21 a12
a21 a12 + a21

)
, where a12 + a21 > 0.

Proof.
Recall Kronecker reduced forms are positive definite and every positive definite form is

properly equivalent to a unique reduced form. Let A =

(
A11 A12

A21 A22

)
be a Kronecker

reduced form with A12 − A21 ≡ 0 mod 2 and at least one of its outer coefficients

odd. Assume B = M tAM =

(
a12 + a21 a12
a21 a12 + a21

)
where a12 + a21 > 0 and

M ∈ SL2 (Z).
Then Lemma 2.4.6 implies the reduced form satisfies a12 + a21 ≡ a12− a21 ≡ 0 mod 2
and thus a11 ≡ a22 ≡ 0 mod 2. Next, the matrix M−1 transforms the reduced form
back to the Kronecker reduced form A. However, Theorem 3.3.6 implies A11 ≡ A22 ≡
0 mod 2, contradicting at least one of A11, A22 is odd.
Hence there does not exist a Kronecker reduced form with A12 −A21 ≡ 0 mod 2 and
at least one of its outer coefficients odd which is properly equivalent to the reduced

form

(
a12 + a21 a12
a21 a12 + a21

)
, where a12 + a21 > 0.

Lemma 3.3.8.

Let M =

(
α β
γ δ

)
∈ GL2 (Z). Then at least one and at most two of α, β, γ and δ

are even. Further, if two of them are even then either α and δ are both even, or β
and γ are both even.

Proof.
Since M ∈ GL2(Z), det(M) = ±1. Working mod. 2 shows we cannot have zero,
three or four zeroes mod2 without making det(M) = 0. Hence at least one and at
most two of the entries in M are even integers. Further, det(M) = ±1 requires no
row or column to consist solely of zeros mod. 2. Therefore if exactly two entries in
M are even they are either α and δ, or β and γ.

Lemma 3.3.9.
Let A be a bilinear form satisfying A12−A21 ≡ 0 mod 2. Consider the bilinear form B
which results from applying an SL2 (Z) transformation. Then B11 +B22 is congruent
to either A11 + A22, A11 or A22 mod 2.

Proof.
Let M ∈ SL2(Z). By Lemma 3.3.8 we know M has at least one and at most two
zeros modulo 2. Further, we cannot have two zeros (modulo 2) in the same row or
column. By Observation 2.4.5 (I) we have

B11 +B22 = (α2 + β2)A11 + (αδ + βγ) (A12 + A21) + (γ2 + δ2)A22
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≡ (α2 + β2)A11 + (γ2 + δ2)A22 mod 2.

If M has two even entries then it is clear B11 + B22 ≡ A11 + A22 mod 2. While if M
has precisely one even entry then either B11 +B22 ≡ A11 or B11 +B22 ≡ A22.

For a given reduced bilinear form we now consider the structure of the complete
equivalence classes in its proper equivalence class with respect to Clc (D) and Cl′c (D).
We will continue to use the representatives found in Equation 2.16 to describe the
transformation matrices used to generate the complete equivalence classes.

Lemma 3.3.10.
Let A be a bilinear form with matrix representation A. Assume the proper equivalence
class of A contains six distinct representatives for the complete equivalence classes
of A and let A ∼+ B. If B satisfies B11 ≡ B22 ≡ B12 − B21 ≡ 0 mod 2 then all six
complete equivalence classes satisfy a11+a22 ≡ 0 mod 2. While if B12−B21 ≡ 0 mod 2
and at least one of B11, B22 is odd then only two of the complete equivalence classes
have forms satisfying a11 + a22 ≡ 0 mod 2.

Proof.
Let B satisfy B12 − B21 ≡ 0 mod 2, then any bilinear form properly equivalent to B
also has this property. From Lemma 3.3.9 we know any bilinear form that is properly
equivalent to B satisfies a11 + a22 is congruent to either B11 +B22, B11 or B22 mod 2.
Now recall completely equivalent bilinear forms have the same entries mod 2 in their
matrix representations. Thus using Observation 2.4.5 (I) along with each of the 6
complete equivalence class representatives found in S, we see exactly two complete
equivalence classes yield bilinear forms satisfying a11 + a22 ≡ B11 mod 2, two more
satisfy a11 + a22 ≡ B22 mod 2, while the remaining two satisfy a11 + a22 ≡ B11 +
B22 mod 2.
The only way for all of these to be 0 mod 2 is if B11 ≡ B22 ≡ 0 mod 2. We now
observe if exactly one of B11, B22 is odd then only one of B11, B22 and B11 + B22 is
even. Whilst if both B11 and B22 are odd then only B11 +B22 is even.
Hence either all six complete equivalence classes of bilinear forms within the proper
equivalence class satisfy a11 + a22 ≡ 0 mod 2 (when B11 ≡ B22 ≡ 0 mod 2); otherwise
only two complete equivalence classes within the proper equivalence class have this
property.

Our next lemma and theorem prove a key result due to Kronecker.

Lemma 3.3.11.
Consider the subset of positive definite Kronecker reduced bilinear forms A satisfying
the following two conditions:

1. At least one of their outer coefficients is odd, and

2. A12 − A21 ≡ 0 mod 2.

Then within the proper equivalence class of such a bilinear form, there is a 2:1 ratio
of the number of complete equivalence classes with the property A11 +A22 ≡ 1 mod 2
to those with the property A11 + A22 ≡ 0 mod 2.
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Proof.
Consider the set of Kronecker reduced bilinear forms with the properties as given in
the statement of the lemma. Recall every Kronecker reduced bilinear form is properly
equivalent to a unique reduced bilinear form. Consequently, Lemma 2.4.6 implies this
reduced bilinear form also satisfies a12 − a21 ≡ 0 mod 2. Further, Theorem 3.3.6 im-
plies the reduced form must have at least one of its outer coefficients odd because the
Kronecker reduced form has at least one odd outer coefficient. Further still, Theorem
3.3.6 implies all bilinear forms within the proper equivalence class have this property.
If the proper equivalence class of the reduced bilinear form contains 6 distinct rep-
resentatives for the complete equivalence classes, then Lemma 3.3.10 implies that
exactly two of the six complete equivalence classes have forms satisfying A11 +A22 ≡
0 mod 2. This is because our reduced form does not satisfy A11 ≡ A22 ≡ 0 mod 2.
Consequently in this case we have a 2:1 ratio of complete equivalence classes with the
property A11 + A22 ≡ 1 mod 2 to those that have A11 + A22 ≡ 0 mod 2.
We now deal with the situation when the proper equivalence class of the reduced bi-
linear form contains less than 6 distinct complete equivalence classes. This means the
reduced form has a proper automorph. Therefore we must consider reduced bilinear
forms of the types found in the first four rows of Summary 2.5.27.
Observe that the form in the fourth row is a special case of the form in the third
row, where A21 = A21. By Corollary 3.3.7 we know there is no Kronecker reduced
form with at least one odd outer coefficient odd, and the sum of its inner coefficients

even that reduces to

(
a12 + a21 a12

a21 a12 + a21

)
. Hence the third and fourth types of

reduced bilinear form cannot arise when we reduce our Kronecker reduced bilinear
form. We investigate rows one and two separately.

Consider the bilinear form

(
A11 A12

−A12 A11

)
, where A11 ≡ 1 mod 2. Then the set of

complete equivalence classes within its proper equivalence class is given by{(
A11 A12

−A12 A11

)
,

(
2A11 A11 + A12

A11 − A12 A11

)
,

(
A11 A11 + A12

A11 − A12 2A11

)}
.

It is easy to visually verify all of these complete equivalence classes contain bilinear
forms satisfying a12 − a21 ≡ 0 mod 2 and it is straightforward to check that only the
first form satisfies a11 + a22 ≡ 0 mod 2. Hence we have a 2:1 ratio.

Now consider the bilinear form

(
A11 0

0 A11

)
, where A11 ≡ 1 mod 2. Then the set

of complete equivalence classes within its proper equivalence class is given by{(
A11 0

0 A11

)
,

(
2A11 A11

A11 A11

)
,

(
A11 A11

A11 2A11

)}
.

It is clear all of these complete equivalence classes contain bilinear forms satisfying
a12 − a21 ≡ 0 mod 2 and straightforward to verify only the first form satisfies a11 +
a22 ≡ 0 mod 2. Hence we have a 2:1 ratio.
Thus we always have a 2:1 ratio of complete equivalence classes where a11 + a22 ≡
1 mod 2 to those where a11 + a22 ≡ 0 mod 2 within the proper equivalence class of
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any Kronecker reduced bilinear form that satisfies A12 − A21 ≡ 0 mod 2 and has at
least one odd outer coefficient.

Theorem 3.3.12.
Let D ∈ Z>0 then 3Cl′c (D) = 2Clc (D).

Proof.
Recall that the set of complete equivalence classes of bilinear forms that are counted
by Cl′c (D) are contained within the set of complete equivalence classes of bilinear
forms counted by Clc (D). Also recall the bilinear forms in a complete equivalence
class that are counted by Cl′c (D) all have the property A11 + A22 ≡ 1 mod 2. Then
Lemma 3.3.11 shows that within a proper equivalence class of a Kronecker reduced
form which has at least one odd outer coefficient and the sum of its inner coefficients
even, we have a 2:1 ratio of complete equivalence classes that satisfy A11 + A22 ≡
1 mod 2 to those satisfying A11 +A22 ≡ 0 mod 2. Hence Cl′c (D) = 2

3
Clc (D) and thus

3Cl′c (D) = 2Clc (D).

We now extend the ideas developed in Section 3.2.

Definition 3.3.13.
Let Θi = {A ∈ Θi | A11 + A22 ≡ 1 mod 2, A12 + A21 ≡ 0 mod 2} for Θ ∈ {I, J} and
i ∈ {0, 1}.
Let P =

∣∣I0∣∣, R =
∣∣J0∣∣, Q =

∣∣I1∣∣ and S =
∣∣J1∣∣.

Theorem 3.3.14.
Let D ∈ Z then Clc (D) = 3

(
P +Q−R− S

)
.

Proof.
We are considering subsets of the sets B0 and B1 from Section 3.2. Recall bilinear
forms in the subsets M and N satisfy A11 = A12 − A21 + A22. Since our bilinear
forms satisfy A12 − A21 ≡ 0 mod 2 it follows that A11 ≡ A22 mod 2 for the subset of
our bilinear forms contained in the sets M and N . This yields A11 +A22 ≡ 0 mod 2,
which cannot be. Hence M and N are the empty set when considering only those
bilinear forms whose sum of their inner coefficients is even and sum of their outer
coefficients is odd.
Therefore, in the same manner as we constructed Clc (D), we have

Cl′c (D) = 2
(
P +Q−R− S

)
.

Applying Theorem 3.3.12 then yields

Clc (D) =
3

2
Cl′c (D)

= 3
(
P +Q−R− S

)
.

This is because the map γ found in Lemma 3.2.3 preserves A12 − A21.

The following diagram (Figure 3.3) provides a good reference point for understanding
the Clc (D) class number.
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B0 B1

ME0 NE1

= E0 ∩ Γ+H0 = E1 ∩ Γ+H1

H0 H1

J0

{
J1

{
I0

{
I1

{I0,=

I0,>

I0,<

I1,=

I1,>

I1,<

J0,= J1,=

J0,< J1,<

J0,> J1,>

Development of Clc (D)

Cl′c(D) = |B0|+ |B1|

Cl′c(D) = 2
(
|H0|+ |H1|

)

Cl′c(D) = 2(P +Q−R− S)

Clc (D) =
3

2
Cl′c(D)

=
3

2
· 2
(
P −R+Q− S

)
= 3

(
P −R+Q− S

)
Clc (D) = 3(P0 +Q0)−

3(R0 + S0)+

6(P1 −R1)+

6(Q1 − S1)

1

12 2

These sets are empty.

These sets are removed
but not necessarily empty.

Hence Clc (D) = 3
(
P0 +Q0 −R0 − S0

)
.

Figure 3.3: Outline of the sets used to count Clc (D). Circled numbers and shaded
regions indicate the same cardinalities.

Notes on Section 3.3

Since Kronecker chose to write his bilinear forms as (A,B,−C,D), he uses the
condition B + C ≡ 0 mod 2. Whereas, since we denote our bilinear forms by
(A11, A12, A21, A22), we will write A12 − A21 ≡ 0 mod 2 for ease of comparison to
Kronecker’s original text.
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3.4 Towards Establishing the Finiteness of P , Q, R and S.

In this section we begin to establish the finiteness of P , Q, R, S, P , Q, R and S.
We will used Kronecker’s outline but take a more direct approach wherever possible.
However, we will provide Kronecker’s insight in the notes at the end of each section.
We continue to let D ∈ Z>0 denote the determinant of the bilinear forms under con-
sideration.

We first define some partitions of the sets I0, J0, I1 and J1 (see Equations 3.8, 3.10,
3.11 and 3.13 for details).

Definition 3.4.1.
We partition the sets I0 and I1 as follows:

I0 = I0,= ∪ I0,> ∪ I0,< and I1 = I1,= ∪ I1,> ∪ I1,<, where

I0,= =
{
A ∈ I0

∣∣A11 = A12

}
=
{
A
∣∣ det(A) = D,−A11 < A21 6 A11, 0 < A22 − A21

}
,

I0,> =

{
A
∣∣∣ det(A) = D, 0 <

A12 + A21

2
6 A11, A22 − A21 > |A11 − A12| , A11 > A12

}
,

I0,< =

{
A
∣∣∣ det(A) = D, 0 <

A12 + A21

2
6 A11, A22 − A21 > |A11 − A12| , A11 < A12

}
and

I1,= =
{
A ∈ I1

∣∣A11 = A12

}
=
{
A
∣∣ det(A) = D,−A11 6 A21 < A11, 0 < A22 − A21

}
,

I1,> =

{
A
∣∣∣ det(A) = D, 0 6

A12 + A21

2
< A11, A22 − A21 > |A11 − A12| , A11 > A12

}
.

I1,< =

{
A
∣∣∣ det(A) = D, 0 6

A12 + A21

2
< A11, A22 − A21 > |A11 − A12| , A11 < A12

}
.

Lastly, as per Kronecker, we define P0 = |I0,=|, P1 = |I0,>|, P2 = |I0,<|, Q0 = |I1,=|,
Q1 = |I1,>| and Q2 = |I1,<|.

Definition 3.4.2.
We partition the sets J0 and J1 as follows:

J0 = J0,= ∪ J0,> ∪ J0,< and J1 = J1,= ∪ J1,> ∪ J1,<, where

J0,= =
{
A ∈ J0

∣∣A22 = 0
}

=

{
A
∣∣ det(A) = −A12A21 = D, 0 <

A12 + A21

2
< A11, A21 < − |A11 − A12|

}
,

J0,> =

{
A
∣∣∣ det(A) = D, 0 < A22 <

A12 + A21

2
6 A11, A22 − A21 > |A11 − A12|

}
,
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J0,< =

{
A
∣∣∣ det(A) = D,A22 < 0 <

A12 + A21

2
6 A11, A22 − A21 > |A11 − A12|

}
and

J1,= =
{
A ∈ J1

∣∣A22 = 0
}

=

{
A
∣∣∣ det(A) = −A12A21 = D, 0 6

A12 + A21

2
< A11, A21 < − |A11 − A12|

}
,

J1,> =

{
A
∣∣∣ det(A) = D, 0 < A22 6

A12 + A21

2
< A11, A22 − A21 > |A11 − A12|

}
,

J1,< =

{
A
∣∣∣ det(A) = D,A22 < 0 6

A12 + A21

2
< A11, A22 − A21 > |A11 − A12|

}
.

Again, as per Kronecker, we define R0 = |J0,=|, R1 = |J0,>|, R2 = |J0,<|, S0 = |J1,=|,
S1 = |J1,>| and S2 = |J1,<|.

Observation 3.4.3.
By construction we have Θi,j∩Θi,k = ∅ for Θ ∈ {I, J}, i ∈ {0, 1} and j, k ∈ {=, >,<},
j 6= k.
Hence |I0| = P = P0 + P1 + P2, |I1| = Q = Q0 + Q1 + Q2, |J0| = R = R0 + R1 + R2

and |J1| = S = S0 + S1 + S2.

We now make a useful observation about the structure of D in these sets.

Observation 3.4.4.
In I0,= and I1,= we have A11 = A12, which yields D = A11 (A22 − A21).
In J0,= and J1,= we have A22 = 0, which yields D = −A12A21.
In what follows it is straightforward to verify the identities by expanding the right
hand side and collecting terms to arrive at A11A22 − A12A21.
In I0,> and I1,> we have A11 > A12, i.e. A11 − A12 > 0 and we may write

D = (A11 − A12)
2 + (A12 + A21) (A11 − A12) + A11 (−A11 + A12 − A21 + A22) .

Also, in I0,< and I1,< we have A11 < A12, i.e. A12 − A11 > 0 and we may write

D = (A12 − A11)
2 + (2A11 − A12 − A21) (A12 − A11) + A11 (A11 − A12 − A21 + A22) .

Similarly in J0,> and J1,> we have A22 > 0 and we may write

D = (A22 − A21)
2 + (A12 + A21 − 2A22) (A22 − A21) + A22 (A11 − A12 − A21 + A22) .

Also, in J0,< and J1,< we have A22 < 0 and we may write

D = (A22 − A21)
2 + (A12 + A21) (A22 − A21) + (−A22) (−A11 + A12 − A21 + A22) .

The key observation to make is that D is either a product of two integers, or
D = α2 + αδ + βγ for some integers α, β, γ, δ, where α > 0.

We also observe that these determinant results hold regardless of whether we impose
the additional conditions A12 + A21 ≡ 0 mod 2 and A11 + A22 ≡ 1 mod 2.
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Our goal now is to establish that P , Q, R, S, P , Q, R and S are finite.

Lemma 3.4.5.
Let X1 = {(α, β, γ, δ) | α2 + αδ + βγ = D,α > 0, γ > 0, 0 < δ 6 2β} and define the
map

φ : X1 −→ I0,>

(α, β, γ, δ) 7−→ (β, β − α, α− β + δ, 2α− β + γ + δ) = (A11, A12, A21, A22) .

Then φ is a well-defined bijection.

Proof.
Well-defined: Observe

det(A) = β (2α− β + γ + δ)− (β − α) (α− β + δ)

= 2αβ − β2 + βγ + βδ −
(
αβ − α2 − β2 + αβ + βδ − αδ

)
= α2 + αδ + βγ

= D.

Now note that A11 = β and A12+A21

2
= δ

2
. Since forms in X1 satisfy 0 < δ 6 2β, we

immediately get 0 < A12+A21

2
6 A11.

Next, α > 0, β > 0 and A12 = β − α, therefore A11 = β > β − α = A12.
Next, we have

A22 − A21 = 2α− β + γ + δ − (α− β + δ)

= α + γ

> α since in X1 we have γ > 0

= A11 − A12

= |A11 − A12| as A11 > A12 by above.

Hence φ is well-defined and maps into I0,>.

Injectivity: Suppose φ (α, β, γ, δ) = φ
(
α̂, β̂, γ̂, δ̂

)
. Then

(β, β − α, α− β + δ, 2α− β + γ + δ) =
(
β̂, β̂ − α̂, α̂− β̂ + δ̂, 2α̂− β̂ + γ̂ + δ̂

)
.

Equating the entries from left to right yields β = β̂, α = α̂, δ = δ̂ and γ = γ̂.
Therefore φ is injective.
Surjectivity: Let (A11, A12, A21, A22) ∈ I0,> be arbitrary.
Consider f = (A11 − A12, A11,−A11 + A12 − A21 + A22, A12 + A21) = (α, β, γ, δ), we
will show f ∈ X1 and φ(f) = (A11, A12, A21, A22).
We have f satisfies

α2 + αδ + βγ = (A11 − A12)
2 + (A11 − A12) (A12 + A21)

+ A11 (−A11 + A12 − A21 + A22)

88



= A11A22 − A12A21

= D.

Also, A11 > A12 implies A11−A12 > 0, i.e. α > 0. It also implies A22−A21 > A11−A12

which rearranges to γ = −A11 + A12 − A21 + A22 > 0. Lastly, 0 < A12+A21

2
6 A11

implies δ = A12 +A21 > 0 and 2β = 2A11 6 A12 +A21 = δ. Hence 0 < δ 6 2β. Thus
f ∈ X1.
Finally it is straightforward to check that φ(f) = (A11, A12, A21, A22).
Hence φ is surjective and thus a bijection.

Corollary 3.4.6.
The cardinality of X1 is finite and |X1| = |I0,>| = P1.

Proof.
In the definition of X1 in Lemma 3.4.5 we see that α, β, γ and δ are all strictly
positive and satisfy D = α2 +αδ+βγ. Consequently there can only be finitely many
choices for α, β, γ and δ. Thus |X1| is finite.
Definition 3.4.1 in conjunction with Lemma 3.4.5 yields |X1| = |I0,>| = P1.

Lemma 3.4.7.
Let X2 = {(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < α, 0 < γ, 0 6 δ < 2β} and define the
map

ψ : X2 −→ I0,<

(α, β, γ, δ) 7−→ (β, α + β, β − α− δ, γ + β − δ) = (A11, A12, A21, A22) .

Then ψ is a well-defined bijection.

Proof.
Well-defined: Observe

det(A) = β (γ + β − δ)− (α + β) (β − α− δ)
= α2 + αδ + βγ

= D.

Next, notice that 0 6 δ < 2β implies 0 < 2β−δ
2

= (α+β)+(β−α−δ)
2

= A12+A21

2
. Also since

0 6 δ we have A12+A21

2
= 2β−δ

2
= β − δ

2
6 β = A11. Thus 0 < A12+A21

2
6 A11.

Now observe A11 = β < β+α as 0 < α, hence A11−A12 < 0. Using this, it is enough
to show that A22 − A21 > A12 − A11. We have

A22 − A21 = γ + β − δ − (β − α− δ)
= γ + α

> α as 0 < γ

= (α + β)− β
= A12 − A11.
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Hence ψ is well-defined and maps into I0,<.

Injectivity: Suppose ψ (α, β, γ, δ) = ψ
(
α̂, β̂, γ̂, δ̂

)
, then

(β, α + β, β − α− δ, γ + β − δ) =
(
β̂, α̂ + β̂, β̂ − α̂− δ̂, γ̂ + β̂ − δ̂

)
. Equating the en-

tries yields (α, β, γ, δ) =
(
α̂, β̂, γ̂, δ̂

)
and so ψ is injective.

Surjectivity: Let (A11, A12, A21, A22) ∈ I0,< be arbitrary.
Let f = (A12 − A11, A11, A11 − A12 − A21 + A22, 2A11 − A12 − A21) = (α, β, γ, δ), we
will show f ∈ X2 and ψ(f) = (A11, A12, A21, A22).
By Observation 3.4.4 f satisfies α2 + αδ + βγ = D. Next we have A11 < A12

implies 0 < A12 − A11 = α. This also implies A22 − A21 > A12 − A11, which
rearranges to γ = A11 − A12 − A21 + A22 > 0. Now 0 < A12+A21

2
6 A11 yields

2β = 2A11 > 2A11 − (A12 + A21) = δ > 0. Thus 0 6 δ < 2β and hence f ∈ X2.
Lastly, it is straightforward to verify that ψ(f) = (A11, A12, A21, A22).
Thus ψ is a surjection and hence is a bijection.

Corollary 3.4.8.
The cardinality of the set I0,< is finite and equal to |X2|.

Proof.
An element in the set X2 has α, β and γ all strictly positive. Also δ is non-negative.
Consequently there are only finitely many values of α, β, γ and δ that satisfy D =
α2+αδ+βγ for a fixed positive integer D. Definition 3.4.1 in conjunction with Lemma
3.4.7 shows we have a bijection between X2 and I0,< and thus |X2| = |I0,<| = P2.

Corollary 3.4.9.
The cardinality of the set I0\I0,= is finite with P1 + P2 = |X1|+ |X2|.

Proof.
By construction we have I0\I0,= = I0,>∪I0,<. Corollaries 3.4.6 and 3.4.8 demonstrate
this set is in fact finite with cardinality |X1|+ |X2| = |I0\I0,=| = P1 + P2.

Lemma 3.4.10.
The map

π : I0\I0,= −→ I1\I1,=
(A11, A12, A21, A22) 7−→ (A11, 2A11 − A12,−A21, A22 − 2A21) = (a11, a12, a21, a22)

is a well-defined bijection.

Proof.
Well-defined: We have

det(a) = a11a22 − a12a21
= A11(A22 − 2A21)− (2A11 − A12)(−A21)

= A11A22 − 2A11A21 − (−2A11A21 + A12A21)

= A11A22 − A12A21
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= det(A).

Next we have a12+a21
2

= 2A11−A12−A21

2
= A11 − A12+A21

2
> 0. Further, a11 − a12+a21

2
=

A11 −
(
A11 − A12+A21

2

)
= A12+A21

2
> 0. Thus 0 6 a12+a21

2
< a11.

Continuing in this vein we have

a22 − a21 = A22 − 2A21 + A21

= A22 − A21

> |A11 − A12|
= |A12 − A11|
= |A11 − (2A11 − A12)|
= |a11 − a12| .

Lastly, suppose a11 = a12 then we have A11 = a11 = a12 = 2A11−A12 and this implies
A11 = A12, a contradiction.
Hence the map π is well-defined.
Injectivity: This follows immediately by equating coefficients.
Surjectivity: Let (a11, a12, a21, a22) ∈ I1\I1,= and let f = (a11, 2a11 − a12,−a21, a22 −
2a21) = (A11, A12, A21, A22), we will show this lies in I0\I0,= and
π(f) = (a11, a12, a21, a22). We have

det(f) = (a11)(a22 − 2a21)− (2a11 − a12)(−a21)
= a11a22 − a12a21
= det(a).

Next, we have A12+A21

2
= 2a11−a12−a21

2
= a11 − a12+a21

2
> 0 and A11 − A12+A21

2
=

a11 −
(
a11 − a12+a21

2

)
= a12+a21

2
> 0. Thus 0 < A12+A21

2
6 A11. The remaining two

properties, A22 − A21 > |A11 − A12| and A11 6= A12, are derived in exactly the same
manner as in the proof that π is well-defined. Hence π is a surjection and therefore
a bijection.

Corollary 3.4.11.
The set I1\I1,= is finite with cardinality Q1 +Q2 = |X1|+ |X2|.

Proof.
From Lemma 3.4.10 we have a bijection between the sets I0\I0,= and I1\I1,=. Apply-
ing Corollary 3.4.9 then yields |X1|+ |X2| = |I0\I0,=| = |I1\I1,=| = Q1 +Q2.

Corollary 3.4.12.
In Kronecker’s notation we have P1 + P2 = Q1 +Q2.

Proof.
We have P1 + P2 = |X1|+ |X2| = Q1 +Q2.

We now perform a similar analysis on the sets J0 and J1. The following lemma will
help us to be more concise than using the method Kronecker alluded to.
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Lemma 3.4.13.
Let S be an arbitrary, non-empty set and let ρ : S −→ S be such that ρ2 = id. Then
ρ is a bijection.

Proof.
Injectivity: Suppose ρ(s) = ρ(t). Then ρ2(s) = ρ2(t). However, ρ2(s) = id(s) = s and
ρ2(t) = t. Thus s = t.
Surjectivity: Let s ∈ S be arbitrary, then ρ2(s) = ρ(ρ(s)) = s. Thus ρ maps ρ(s)
onto s. Since s ∈ S was arbitrary, and ρ(s) ∈ S, the map ρ is surjective.
Hence ρ is a bijection.

Lemma 3.4.14.
The map

ρ : J0 −→ J0

(A11, A12, A21, A22) 7−→ (2A12 − A11, A12, A21 − 2A22,−A22) = (a11, a12, a21, a22)

is a well-defined involution.

Proof.
Recall J0 = {A | det(A) = D, 0 < A12+A21

2
6 A11, A22 < A12+A21

2
, A22 − A21 >

|A11−A12|}. We first show ρ is well-defined. Let (A11, A12, A21, A22) ∈ J0 be arbitrary,
then we have

det(a) = a11a22 − a12a21
= (2A12 − A11)(−A22)− (A12)(A21 − 2A22)

= A11A22 − 2A12A22 + 2A12A22 − A12A21

= det(A).

Next, a12+a21
2

= A12+A21−2A22

2
= A12+A21

2
− A22 > 0. Further,

a11 = 2A12 − A11

> 2A12 − (A22 − A21 + A12) as A11 > 0 and A11 − A12 < A22 − A21

= A12 + A21 − A22

>
A12 + A21

2
− A22 as 0 <

A12 + A21

2

=
a12 + a21

2
.

Thus we have 0 < a12+a21
2

< a11. Next, 0 < A12+A21

2
also implies a22 = −A22 <

−A22 + A12+A21

2
= a12+a21

2
. Lastly we have

|a11 − a12| = |2A12 − A11 − A12|
= |A12 − A11|
< A22 − A21

= −A22 − (A21 − 2A22)
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= a22 − a21.

Hence the map ρ is well-defined.
Finally, we have

ρ2(A11, A12, A21, A22) = ρ(2A12 − A11, A12, A21 − 2A22,−A22)

= (2A12 − [2A12 − A11], A12, A21 − 2A22 − 2(−A22),−(−A22))

= (A11, A12, A21, A22).

Therefore by Lemma 3.4.13 the map ρ is a bijection and hence an involution.

Corollary 3.4.15.
The cardinalities of the sets J0,> and J0,< are identical. Thus R1 = R2.

Proof.
We use the involution ρ from Lemma 3.4.14. Recall we may write J0 = J0,=∪J0,>∪J0,<
and observe ρ(J0,=) ⊆ J0,= because elements in J0,= satisfy A22 = 0. We also have
ρ(J0,>) ⊆ J0,< and ρ(J0,<) ⊆ J0,> as the map ρ changes the sign of the (non-zero)
A22 entry.
Hence R1 = |J0,>| = |J0,<| = R2.

We now develop a new set to prove the above cardinality is in fact finite. This new
set will later be used to explicitly count the elements in J0,> and J0,<.

Lemma 3.4.16.
Let Y1 = {(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < β, 0 < δ, 0 < γ < 2α} and define the
map

ι : Y1 −→ J0,>

(α, β, γ, δ) 7−→ (γ + δ + β, δ + β + α, β − α, β) = (A11, A12, A21, A22) .

Then ι is a well-defined bijection.

Proof.
Well-defined: Observe

det(A) = (γ + δ + β) (β)− (δ + β + α) (β − α)

= α2 + αδ + βγ

= D.

We also have A22 = β > 0 and

A12 + A21

2
=
δ + β + α + β − α

2

=
2β + δ

2

= β +
δ

2

93



> β as δ > 0.

Further, we have A11 = γ + δ + β > β + δ
2

as γ, δ > 0. Consequently, we have
0 < A22 <

A12+A21

2
< A11.

Next, observe 2α > γ implies α > γ − α. Also, γ > 0 implies α > α− γ. Combining
these together yields A22 − A21 = β − (β − α) = α > |γ − α| = |A11 − A12|.
Hence ι is well defined and maps into J0,>.

Injectivity: Suppose ι (α, β, γ, δ) = ι
(
α̂, β̂, γ̂, δ̂

)
and thus

(γ + δ + β, δ + β + α, β − α, β) =
(
γ̂ + δ̂ + β̂, δ̂ + β̂ + α̂, β̂ − α̂, β̂

)
.

Equating the entries yields injectivity.
Surjectivity: Let (A11, A12, A21, A22) ∈ J0,> be arbitrary.
Let f = (A22 − A21, A22, A11 − A12 − A21 + A22, A12 + A21 − 2A22) = (α, β, γ, δ), we
will show this lies in Y1. First, by Observation 3.4.4 we have α2 + αδ + βγ = D.
Next, β = A22 > 0 and further A22 <

A12+A21

2
implies δ

2
= A12+A21

2
− A22 > 0; hence

δ > 0. We also see A22 − A21 > |A11 − A12| implies A22 − A21 > A12 − A11, that is
γ = A11 − A12 − A21 + A22 > 0. Lastly,

2α = (A22 − A21) + (A22 − A21)

> A22 − A21 + |A11 − A12|
> A22 − A21 + A11 − A12

= γ.

Thus we have 0 < γ < 2α.
Hence f lies in Y1. It is straightforward to show that ι(f) = (A11, A12, A21, A22).
Thus ι is surjective and hence a bijection.

Corollary 3.4.17.
The set Y1 is finite and |Y1| = |J0,>| = R1.

Proof.
By the definition of Y1 in Lemma 3.4.16, all of α, β, γ and δ are strictly positive and
must satisfy D = α2 + αδ + βγ. Consequently there can be at most finitely many
such (α, β, γ, δ). By Lemma 3.4.16 we have |Y1| = |J0,>| = R1.

We are able to repeat this construction for the set J1 and do so below. We will use
the map ρ from Lemma 3.4.14, re-purposing it to the set J1.

Lemma 3.4.18.
The map

ρ : J1 −→ J1

(A11, A12, A21, A22) 7−→ (2A12 − A11, A12, A21 − 2A22,−A22) = (a11, a12, a21, a22)

is a well-defined involution.
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Proof.
First, we show the map is well-defined. Let (A11, A12, A21, A22) ∈ J1 be arbitrary.
We inherit the properties det(a) = det(A), |a11 − a12| < a22 − a21 and a12+a21

2
< a11

from the proof of Lemma 3.4.14. Next, A12+A21

2
< A11 yields a12+a21

2
= A12+A21−2A22

2
=

A12+A21

2
−A22 > 0. Lastly, 0 6 A12+A21

2
implies a22 = −A22 6 −A22+

A12+A21

2
= a12+a21

2
.

Hence ρ is well-defined.
Finally, as in the proof of Lemma 3.4.14, we have ρ2 = id. Therefore by Lemma
3.4.13 the map ρ is a bijection and hence an involution.

Lemma 3.4.19.
Let Y2 = {(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < β, 0 6 δ, 0 < γ < 2α} and define the
map

Γ : Y2 −→ J1,>

(α, β, γ, δ) 7−→ (γ + δ + β, β + δ + α, β − α, β) = (A11, A12, A21, A22) .

The Γ is a well-defined bijection.

Proof.
Well-defined: Observe

det(A) = (γ + δ + β) β − (β + δ + α) (β − α)

= α2 + αδ + βγ

= D.

Next we see A22 = β > 0 and A12 + A21 = 2β + δ. Using 0 6 δ with this we see
0 < A22 = β 6 β + δ

2
= A12+A21

2
. We also have

A11 = γ + δ + β

> δ + β as γ > 0

>
δ

2
+ β as 0 6 δ

=
A12 + A21

2
.

Therefore 0 < A22 6
A12+A21

2
< A11.

Lastly, observe 2α > γ implies α > γ−α, and γ > 0 implies α−γ < α. Consequently
we have A22 − A21 = α > |γ − α| = |A11 − A12|.
Hence Γ is well-defined and maps into J1,>.

Injectivity: Suppose Γ (α, β, γ, δ) = Γ
(
α̂, β̂, γ̂, δ̂

)
, thus

(γ + δ + β, β + δ + α, β − α, β) =
(
γ̂ + δ̂ + β̂, β̂ + δ̂ + α̂, β̂ − α̂, β̂

)
.

Equating the entries yields injectivity.
Surjectivity: Let (A11, A12, A21, A22) ∈ J1,> be arbitrary.
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Letf = (A22 − A21, A22, A11 − A12 − A21 + A22, A12 + A21 − 2A22) = (α, β, γ, δ), we
will show this lies in Y2.
Observation 3.4.4 shows that f satisfies α2 + αδ + βγ = D. Next, A22 − A21 >
|A11 − A12| implies α = A22 − A21 > 0. Further, this inequality also implies γ =
A11 − A12 − A21 + A22 > 0. Notice β = A22 > 0 and A22 6

A12+A21

2
implies A12 +

A21 − 2A22 > 0, that is δ > 0. Lastly, by way of A22 − A21 > |A11 − A12|, we have
2α = 2A22 − 2A21 > A22 − A21 + (A11 − A12) = γ and therefore 0 < γ < 2α. Hence
it follows that f ∈ Y2.
Finally, it is straightforward to see Γ (f) = (A11, A12, A21, A22).
Consequently Γ is surjective and thus a bijection.

Corollary 3.4.20.
The set Y2 is finite and has the same cardinality as the set J1,>. Thus |Y2| = |J1,>| =
S1.

Proof.
By the definition of Y2 in Lemma 3.4.19, α, β, and γ are strictly positive, whilst δ must
be non-negative. Further, all must satisfy D = α2 +αδ+βγ. Consequently there can
be at most finitely many (α, β, γ, δ). By Lemma 3.4.19 we have |Y2| = |J1,>| = S1.

We now apply the knowledge found in the section to simplify our expression for the
complete class number as found in Equation 3.12. We have

Clc (D)−m− n = 2 (P +Q−R− S)

= 2 (P0 + P1 + P2 +Q0 +Q1 +Q2 −R0 −R1 −R2 − S0 − S1 − S2)

= 2 (P0 +Q0 −R0 − S0 + 2 (P1 + P2 −R1 − S1)) . (3.14)

Notes on Section 3.4

In his paper, Kronecker has opted to state his results without proof. However, he does
indicate the general structure of the sets X1, X2, Y1 and Y2 on page [Kr1897, p. 461].
Kronecker’s approach is also longer than ours as he indicates he knew P1 = Q2 and
P2 = Q1. It is straightforward but tedious to show this is true by verifying the
following two lemmas:

Lemma 3.4.21.
The map φ̂ given by

φ̂ : X2 −→ I1,>

(α, β, γ, δ) 7−→ (β, β − α, α− β + δ, 2α− β + γ + δ) = (A11, A12, A21, A22)

is a well-defined bijection.

This yields P2 = Q1.

Lemma 3.4.22.
The map ψ̂ given by

ψ̂ : X1 −→ I1,<
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(α, β, γ, δ) 7−→ (β, α + β, β − α− δ, γ + β − δ) = (A11, A12, A21, A22)

is a well-defined bijection.

This yields P1 = Q2.

Further, since Kronecker stated his results rather giving a series of proofs, it appears
he proved R1 = R2 and S1 = S2 by constructing pairs of bijections as opposed to
using an involution. For completeness one may verify this by checking the following
two lemmas:

Lemma 3.4.23.
The map ι̂ given by

ι̂ : Y1 −→ J0,<

(α, β, γ, δ) 7−→ (2α + β − γ + δ, δ + β + α,−β − α,−β) = (A11, A12, A21, A22)

is a well-defined bijection.

This yields R2 = |Y1| = R1.

Lemma 3.4.24.
The map Γ̂ given by

Γ̂ : Y2 −→ J1,<

(α, β, γ, δ) 7−→ (2α + β − γ + δ, α + β + δ,−β − α,−β) = (A11, A12, A21, A22)

is a well-defined bijection.

This yields S2 = |Y2| = S1.

We should also note our proof has yielded P1 + P2 = Q1 + Q2 and therefore we
derived Equation 3.14. Whereas in his paper [Kr1897, p. 461], Kronecker states
P +Q−R− S = P0 +Q0 −R0 − S0 + 2(P1 +Q1 −R1 − S1) instead.

3.5 Towards Establishing the Finiteness of P , Q, R and S

We continue in the manner of Section 3.4; this time our goal is working towards
showing P , Q, R and S are finite. Recall that adding a bar to our notation means
we are including the conditions A11 + A22 ≡ 1 mod 2 and A12 − A21 ≡ 0 mod 2.

Definition 3.5.1.
Extend Definition 3.3.13 in the same manner as we did for Definitions 3.4.1 and 3.4.2
as follows:
Θi,j = {A ∈ Θi,j | A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 2}, where Θ ∈ {I, J},
i ∈ {0, 1} and j ∈ {=, <,>}.
We extend the notation developed in Definitions 3.4.1 and 3.4.2 by placing a bar over
the previous notation. For example, P1 =

∣∣I0,>∣∣.
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Observation 3.5.2.
It is important to observe that the sets in Definition 3.5.1 are mutually disjoint.
Therefore |Θi,j| = |Θi,=| + |Θi,>| + |Θi,<|, where Θ ∈ {I, J}, i ∈ {0, 1} and j ∈ {=
, >,<}. Further, since Θi,j ⊆ Θi,j, where it is known Θi,j is finite then it follows
immediately that Θi,j is also finite.

Lemma 3.5.3.
The restriction of the map π found in Lemma 3.4.10 to the subset I0\I0,= gives a
well-defined bijection to the set I1\I1,=. Hence we have P1 + P2 = Q1 +Q2.

Proof.
To show the restriction map is well-defined we will prove a11 + a22 ≡ 1 mod 2 and
a12−a21 ≡ 0 mod 2. We have a11 +a22 = A11 +A22−2A21 ≡ 1 mod 2 and a12−a21 =
2A11 − A12 − A21 ≡ 0 mod 2. Thus the restriction map is well-defined.
Injectivity is inherited, so it remains to show surjectivity.
For an arbitrary (a11, a12, a21, a22) ∈ I1\I1,= we know from the proof of Lemma 3.4.10
that the element f = (a11, 2a11 − a12,−a21, a22 − 2a21) = (A11, A12, A21, A22) will be
sufficient if we can show A11 + A22 ≡ 1 mod 2 and A12 − A21 ≡ 0 mod 2. We have
A11 +A22 = a11 + a22 − 2a21 ≡ 1 mod 2 and A12 −A21 = 2a11 − a12 − a21 ≡ 0 mod 2.
Hence the restriction map is surjective and thus a bijection. It immediately follows
that P1 + P2 = Q1 +Q2.

Since our eventual goal is to enumerate these sets, we now give restrictions of the sets
X1 and X2 and establish bijections to them.

Lemma 3.5.4.
Let X1 = {(α, β, γ, δ) ∈ X1 | γ ≡ 1 mod 2, δ ≡ 0 mod 2}. Then the restriction of the
map φ found in Lemma 3.4.5 to the subset X1 gives a well-defined bijection to the set
I0,>. Consequently, |X1| = P1.

Proof.
Since the map φ is a bijection from X1 to I0,>, it is sufficient to show A11 + A22 ≡
1 mod 2 and A12 − A21 ≡ 0 mod 2. We have

A11 + A22 = β + 2α− β + γ + δ

≡ γ + δ mod 2

≡ 1 mod 2, and

A12 − A21 = β − α− α + β − δ
≡ δ mod 2

≡ 0 mod 2.

Therefore the restriction map is well-defined. We note that injectivity is inherited
and so it remains to prove surjectivity.
It is sufficient to show f = (A11 − A12, A11,−A11 + A12 − A21 + A22, A12 + A21) =
(α, β, γ, δ) satisfies γ ≡ 1 mod 2 and δ ≡ 0 mod 2. We have

γ = −A11 + A12 − A21 + A22
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≡ (A11 + A22) mod 2 + (A12 − A21) mod 2

≡ 1 + 0 = 1 mod 2, and we have

δ = A12 + A21

≡ A12 − A21 mod 2

≡ 0 mod 2.

Hence the restriction map is surjective and thus a bijection. Therefore |X1| = P1.

Lemma 3.5.5.
Let X2 = {(α, β, γ, δ) ∈ X2 | γ ≡ 1 mod 2, δ ≡ 0 mod 2}. Then the restriction of the
map ψ found in Lemma 3.4.7 to the subset X2 gives a well-defined bijection to the set
I0,<. Consequently, |X2| = P2.

Proof.
Since the map ψ is a bijection from X2 to I0,<, it is sufficient to show A11 + A22 ≡
1 mod 2 and A12 − A21 ≡ 0 mod 2. We have

A11 + A22 = β + γ + β − δ
≡ γ + δ mod 2

≡ 1 mod 2 and

A12 − A21 = α + β − β + α + δ

≡ δ mod 2

≡ 0 mod 2.

Therefore the restriction map is well-defined. We note again that injectivity is inher-
ited and so it remains to prove surjectivity. It is sufficient to show
f = (A12 − A11, A11, A11 − A12 − A21 + A22, 2A11 − A12 − A21) = (α, β, γ, δ) satisfies
γ ≡ 1 mod 2 and δ ≡ 0 mod 2. We have

γ = A11 − A12 − A21 + A22

≡ (A11 + A22) mod 2 + (A12 − A21) mod 2

≡ 1 mod 2, and

δ = 2A11 − A12 − A21

≡ A12 − A21 mod 2

≡ 0 mod 2.

Hence the restriction map is surjective and thus is a bijection. Therefore we have
|X2| = P2.

We now perform a similar analysis for R1, R2, S1 and S2.

Lemma 3.5.6.
The restriction of the map ρ found in Lemma 3.4.14 to the subset J0 gives a well-
defined involution to the set J0. Further, we have R1 = R2.
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Proof.
Since the map ρ in Lemma 3.4.14 is a bijection, it is sufficient to show a11 + a22 ≡
1 mod 2 and a12 − a21 ≡ 0 mod 2 in order to show the map is well-defined. We have

a11 + a22 = 2A12 − A11 − A22

≡ A11 + A22 mod 2

≡ 1 mod 2 and

a12 − a21 = A12 − A21 + 2A22

≡ A12 − A21 mod 2

≡ 0 mod 2.

Therefore the restriction map is well-defined. Since we inherit ρ2 = id it follows that
the restriction map is a involution on the set J0.
We now observe that ρ(J0,=) ⊆ J0,=, ρ(J0,>) ⊆ J0,< and ρ(J0,<) ⊆ J0,> for the same
reasons as given in the proof of Corollary 3.4.15. Therefore we get R1 = |J0,>| =
|J0,<| = R2.

Again, since we will be interested in enumerating these sets, we provide a bijection
below to a subset of Y1 that will help us to do so.

Lemma 3.5.7.
Let Y1 = {(α, β, γ, δ) ∈ Y1 | γ ≡ 1 mod 2, δ ≡ 0 mod 2}. Then the restriction of the
map ι, found in Lemma 3.4.16, to the subset Y1 gives a well-defined bijection to the
set J0,>. Consequently, R1 = |J0,>| = |Y1|.

Proof.
Since the map ι is a bijection, in order to show the restriction map is well-defined, it
is sufficient to show a11 + a22 ≡ 1 mod 2 and a12 − a21 ≡ 0 mod 2. We have

a11 + a22 = γ + δ + β + β

≡ γ + δ mod 2

≡ 1 mod 2, and

a12 + a21 = δ + β + α + β − α
≡ δ mod 2

≡ 0 mod 2.

Hence the restriction map is well-defined. We inherit injectivity and so it remains to
show surjectivity.
It is enough to show f = (A22 − A21, A22, A11 − A12 − A21 + A22, A12 + A21 − 2A22) =
(α, β, γ, δ) satisfies γ ≡ 1 mod 2 and δ ≡ 0 mod 2. We have

γ = A11 − A12 − A21 + A22

≡ (A11 + A22) mod 2 + (A12 − A21) mod 2

≡ 1 mod 2, and
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δ = A12 + A21 − 2A22

≡ A12 − A21 mod 2

≡ 0 mod 2.

Thus the restriction map is a surjective and therefore a bijection. It follows immedi-
ately that R1 = |J0,>| = |Y1|.

In a similar manner we have

Lemma 3.5.8.
The restriction of the map ρ (found in Lemma 3.4.18) to the subset J1 gives a well-
defined involution on the set J1. Further, we have S1 = S2.

Proof.
Since the map ρ in Lemma 3.4.18 is a bijection, in order to show the restriction map
is well-defined it is sufficient to show a11 + a22 ≡ 1 mod 2 and a12 − a21 ≡ 0 mod 2.
We have

a11 + a22 = γ + δ + β + β

≡ γ + δ mod 2

≡ 1 mod 2, and

a12 − a21 = β + δ + α− β + α

≡ δ mod 2

≡ 0 mod 2.

Therefore the restriction map is well-defined. Since we inherit ρ2 = id it follows that
the restriction map is an involutionon the set J1.
We now observe that ρ(J1,=) ⊆ J1,=, ρ(J1,>) ⊆ J1,< and ρ(J1,<) ⊆ J1,> for the same
reasons as given in the proof of Corollary 3.4.20. Therefore we get S1 = |J1,>| =
|J1,<| = S2.

We now provide a bijection to a subset of Y2 in order to be able to enumerate this
set.

Lemma 3.5.9.
Let Y2 = {(α, β, γ, δ) ∈ Y2 | γ ≡ 1 mod 2, δ ≡ 0 mod 2}. Then the restriction of the
map Γ (found in Lemma 3.4.19) to the subset Y2 gives a well-defined bijection to the
set J1,>. Consequently we have S1 = |Y2|.

Proof.
Since the map Γ is a bijection, it is sufficient to show a11 + a22 ≡ 1 mod 2 and
a12 − a21 ≡ 0 mod 2 to see the restriction map is well-defined. We have

a11 + a22 = γ + δ + β + β

≡ γ + δ mod 2

≡ 1 mod 2, and
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a12 − a21 = β + δ + α− β + α

≡ δ mod 2

≡ 0 mod 2.

Therefore the restriction map is well-defined. We inherit injectivity and therefore it
remains to show surjectivity.
It is enough to show f = (A22 − A21, A22, A11 − A12 − A21 + A22, A12 + A21 − 2A22) =
(α, β, γ, δ) satisfies γ ≡ 1 mod 2 and δ ≡ 0 mod 2. We have

γ = A11 − A12 − A21 + A22

≡ (A11 + A22) mod 2 + (A12 − A21) mod 2

≡ 1 mod 2, and

δ = A12 + A21 − 2A22

≡ A12 − A21 mod 2

≡ 0 mod 2.

Therefore the restriction map is a surjection and thus a bijection. It immediately
follows that S1 = |J1,>| = |Y2|.

We now use the results developed in this section to provide a simplification to the
class number as derived in Theorem 3.3.14.

Lemma 3.5.10.
Let D ∈ Z>0, then Clc (D) = 3

(
P0 +Q0 −R0 − S0 + 2

(
P1 + P2 −R1 − S1

))
.

Proof.
From Theorem 3.3.14 we have Clc (D) = 3(P + Q − R − S). Applying the results
found in this section we get

Clc (D) = 3(P +Q−R− S)

= 3
(
P0 + P1 + P2 +Q0 +Q1 +Q2 −R0 −R1 −R2 − S0 − S1 − S2

)
= 3

(
P0 +Q0 −R0 − S0 + 2

(
P1 + P2 −R1 − S1

))
.

Notes on Section 3.5

We continue to observe that Kronecker only states his results instead of proving them.
From his exposition it is highly likely that he continued to construct the necessary
bijections as opposed to using an involution.

When comparing with Kronecker’s original text, it is important to note that he stated
Q2 = P1 and P2 = Q1. These results are straightforward to determine by verifying
the following two corollaries:
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Corollary 3.5.11.
The restriction of the map φ̂ (see Lemma 3.4.21) to the set X2 ⊆ X2, given by

φ̂|X2
: X2 −→ I1,> ⊆ I1,> ,

is a well-defined bijection and hence Q2 = P1.

Corollary 3.5.12.
The restriction of the map ψ̂ (see Lemma 3.4.22) to the set X1 ⊆ X1, given by

ψ̂|X1
: X1 −→ I1,< ⊆ I1,< ,

is a well-defined bijection and hence P2 = Q1.

Therefore, Kronecker’s result is the same as our Lemma 3.5.10, but not stated in this
form in his paper. Kronecker proceeds to perform several more manipulations of the
sets before stating an updated expression for Clc (D) (see [Kr1897, p. 464]).

For completeness we give but do not prove the following two further corollaries. The
proofs follow in the natural manner.

Corollary 3.5.13.
The restriction of the map ι̂ (see Lemma 3.4.23) to the set Y1 ⊆ Y1, given by

ι̂|Y1 : Y1 −→ J0,< ,

is a well-defined bijection and hence R2 =
∣∣Y1∣∣.

Corollary 3.5.14.
The restriction of the map Γ̂ (see Lemma 3.4.24) to the set Y2 ⊆ Y2, given by

Γ̂|Y2 : Y2 −→ J1,< ,

is a well-defined bijection and hence S2 =
∣∣Y2∣∣.

3.6 The Relationships between P1 and R1, and also between P2 and S1

In this section we explore the connections between P1 and R1, as well as between P2

and S2. We encourage the reader to consult the notes at the end of the section for
the details relating our results to those of Kronecker.

Definition 3.6.1.
Fix D ∈ Z>0. From Lemma 3.4.5 we have the following definition for the set X1,

X1 =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < α, 0 < γ, 0 < δ 6 2β
}
.

From Lemma 3.4.16 we have the following definition for the set Y1,

Y1 =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < β, 0 < δ, 0 < γ < 2α
}
.
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Then

X1 ∩ Y1 =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < γ < 2α, 0 < δ 6 2β
}
.

Now define the set Θ by

Θ =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < 2α 6 γ, 0 < δ 6 2β, γ ≡ 0 mod 2α
}
.

Let K denote the cardinality of the set Θ.

Observation 3.6.2.
Recall from Corollaries 3.4.6 and 3.4.17 that P1 = |X1| and R1 = |Y1| are finite. In a
similar manner we see that |Θ| is finite.
Notice that Θ ∩ (X1 ∩ Y1) = ∅. This is because forms in Θ must satisfy the extra
condition of γ ≡ 0 mod 2α, while forms in X1 ∩ Y1 satisfy 0 < γ < 2α. Since Θ ⊆ X1

it follows that Θ ⊆ X1\ (X1 ∩ Y1).

We now give a description of the sets X1\ (X1 ∩ Y1) and Y1\ (X1 ∩ Y1).

X1\ (X1 ∩ Y1) =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < δ 6 2β, 0 < 2α 6 γ
}
, (3.15)

Y1\ (X1 ∩ Y1) =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < γ < 2α, 0 < 2β < δ
}
. (3.16)

Observation 3.6.3.
By Observation 3.6.2 we have Θ ⊆ X1\ (X1 ∩ Y1), we now use Θ to partition the set
X1 as follows:

X1\ (X1 ∩ Y1) = Θ ∪ (X1\ ((X1 ∩ Y1) ∪Θ)) .

For clarity we have:

X1\ ((X1 ∩ Y1) ∪Θ) = { (α, β, γ, δ) | α2 + αδ + βγ = D, 0 < 2α 6 γ, 0 < δ 6 2β,

γ 6≡ 0 mod 2α } .

Our goal is to construct a bijection W : Y1\ (X1 ∩ Y1) −→ X1\ ((X1 ∩ Y1) ∪Θ).

Lemma 3.6.4.
Fix D ∈ Z>0. For any integer m and arbitrary 4 − tuple (α, β, γ, δ) with D =
α2 + αδ + βγ, the map ωm given by

ωm (α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ)

= (α′, β′, γ′, δ′)

satisfies D′ = α′2 + α′δ′ + β′δ′ = D.

Proof.
We have

D′ = α′
2

+ α′δ′ + β′γ′

= α2 + α (δ + 2mβ) + β (γ − 2mα)

= α2 + αδ + βγ

= D.
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Lemma 3.6.5.
Assume 0 < γ < 2α. Then for any integer m, we have

ωm (α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ)

= (α′, β′, γ′, δ′)

satisfies γ′ 6≡ 0 mod 2α′.

Proof.
We have γ′ = γ − 2mα and α′ = α. Hence γ′ ≡ γ mod 2α. But 0 < γ < 2α implies
γ 6≡ 0 mod 2α. Therefore γ′ 6≡ 0 mod 2α′.

We now explore the set Y1\ (X1 ∩ Y1).

Lemma 3.6.6.
For any form (α, β, γ, δ) ∈ Y1\ (X1 ∩ Y1) there is a unique integer m such that

ωm (α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ) = (α′, β′, γ′, δ′)

satisfies 0 < δ′ 6 2β′ and 0 < 2α′ 6 γ′.

Proof.
Consider (α′, β′, γ′, δ′) as defined in Lemma 3.6.6. Clearly we have 0 < α = α′ and 0 <
β = β′. Now in order to have 0 < δ′ 6 2β′ we require − δ

2β
< m 6 1− δ

2β
. Similarly,

in order to have 2α′ 6 γ′ we require m 6 γ
2α
− 1. Observe that in Y1\ (X1 ∩ Y1)

we have γ < 2α and so γ
2α
− 1 < 0. Furthermore, since α, γ > 0 it follows that

−1 < γ
2α
− 1. We also have 0 < 2β < δ in Y1\ (X1 ∩ Y1) and so 1 − δ

2β
< 0. Thus

we require − δ
2β

< m 6 min
{

1− δ
2β
, γ
2α
− 1
}
< 0. Clearly, if 1 − δ

2β
6 −1 then

there is a unique integer m ∈
(
− δ

2β
, 1− δ

2β

]
. Now suppose that −1 < 1 − δ

2β
< 0,

this yields −2 < − δ
2β
< −1 and thus m = −1 is the unique integer in the interval(

− δ
2β
,min

{
1− δ

2β
, γ
2α
− 1
}]

.

Corollary 3.6.7.

The set Y1\ (X1 ∩ Y1) =
⋃

m∈Z<0

Bm is a finite disjoint union, where

Bm =

{
(α, β, γ, δ) ∈ Y1\ (X1 ∩ Y1)

∣∣∣m ∈ (− δ

2β
, 1− δ

2β

]}
.

Proof.
By Lemma 3.6.6 for each (α, β, γ, δ) ∈ Y1\ (X1 ∩ Y1) there exists a unique integer

m < 0 such that m ∈
(
− δ

2β
, 1− δ

2β

]
. We partition Y1\ (X1 ∩ Y1) into a disjoint

union of the sets Bm =
{

(α, β, γ, δ) ∈ Y1\ (X1 ∩ Y1) | m ∈
(
− δ

2β
, 1− δ

2β

]}
. Clearly

Bm ∩Bn = ∅ if n 6= m. Further, by Corollary 3.4.17 Y1 is a finite set. Thus

Y1\ (X1 ∩ Y1) =
⋃

m∈Z<0

Bm

is a finite disjoint union.
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We now examine the set X1\ (X1 ∩ Y1) in an analogous manner.

Lemma 3.6.8.
Let (α′, β′, γ′, δ′) be a form in X1\ (X1 ∩ Y1) such that γ′ 6≡ 0 mod 2α′. Then there is a
unique integer n such that τ (α′, β′, γ′, δ′) = (α′, β′, γ′ + 2nα′, δ′ − 2nβ′) = (α, β, γ, δ)
satisfies 0 < γ < 2α and 0 < 2β < δ.

Proof.
Clearly we have 0 < α′ = α and 0 < β′ = β. In order to have 0 < γ < 2α we require
− γ′

2α′
< n < 1− γ′

2α′
. Similarly, in order to have δ < 2β we need n < δ′

2β′
− 1.

Now observe that 0 < δ′ 6 2β′ implies δ′

2β′
− 1 > 0. Also note that 0 < 2α′ 6 γ′

implies γ′

2α′
> 1, however since we have stipulated γ′ 6≡ 0 mod 2α′ it follows that γ′

2α′

is not an integer. Thus 1 − γ′

2α′
< 0. Hence we see that there is a unique integer

n ∈
(
− γ′

2α′
, 1− γ′

2α′

)
.

Corollary 3.6.9.

The set X1\ (X1 ∩ Y1) = Θ ∪
⋃

n∈Z<0

Cn is a finite disjoint union, where

Cn =

{
(α′, β′, γ′, δ′) ∈ X1\ (X1 ∩ Y1) | n ∈

(
− γ′

2α′
, 1− γ′

2α′

)
, γ′ 6≡ 0 mod 2α′

}
.

Proof.
By Observation 3.6.3 we have Θ ⊆ X1\ (X1 ∩ Y1). By Lemma 3.6.8 for any form in

X1\ ((X1 ∩ Y1) ∪Θ) there exists a unique integer n such that n ∈
(
− γ′

2α′
, 1− γ′

2α′

)
,

so we may partition according to n. Hence X1\ (X1 ∩ Y1) = Θ ∪
⋃
n∈Z<0

Cn. This
is a disjoint union since Θ ∩

⋃
Cn = ∅ as γ′ cannot simultaneously be congruent to

0 modulo 2α′ and also not congruent to 0 modulo 2α′. Lastly, it is a finite disjoint
union since in Corollary 3.4.6 we showed X1 is a finite set.

Lemma 3.6.10.
The map

ωm : Bm −→ Cm

ωm (α, β, γ, δ) 7−→ (α, β, γ − 2mα, δ + 2mβ) = (α′, β′, γ′, δ′)

is well-defined and is a bijection.

Proof.
Well-defined: By Lemma 3.6.4 we know that ωm preserves the quantity α2 + αδ +
βγ = D. By Lemma 3.6.5 we know ωm (α, β, γ, δ) satisfies γ′ 6≡ 0 mod 2α′, thus
(α′, β′, γ′, δ′) 6∈ Θ. We shall show (α′, β′, γ′, δ′) lies in X1\ (X1 ∩ Y1). We clearly have
α′ = α > 0 and β′ = β > 0, further by Lemma 3.6.6 we know m was chosen so
that (α′, β′, γ′, δ′) satisfies 0 < δ′ 6 2β′ and 0 < 2α′ 6 γ′. Hence ωm maps into
X1\ ((X1 ∩ Y1) ∪Θ).
In Corollary 3.6.9 we showed X1\ ((X1 ∩ Y1) ∪Θ) =

⋃
n∈Z<0

Cn. Suppose there exist
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(α, β, γ, δ),
(
α̂, β̂, γ̂, δ̂

)
∈ Bm such that ωm (α, β, γ, δ) ∈ Cn1 and ωm

(
α̂, β̂, γ̂, δ̂

)
∈

Cn2 for some n1, n2 ∈ Z<0. Then Lemma 3.6.8 implies n1, n2 ∈
(
− γ′

2α′
, 1− γ′

2α′

)
and

since this interval contains a unique integer it follows that n1 = n2.

Next, in Cn we know n ∈
(
− γ′

2α′
, 1− γ′

2α′

)
, this yields m − γ

2α
< n 6 m + 1 − γ

2α
.

However, in Bm we have 0 < γ < 2α, that is 0 < γ
2α
< 1, it follows from this that

m is the unique integer in the interval
(
m− γ

2α
,m+ 1− γ

2α

)
. Consequently we have

n = m as n is an integer.
Hence we have shown ωm : Bm −→ Cm.

Injectivity: Suppose ωm (α, β, γ, δ) = ωm

(
α̂, β̂, γ̂, δ̂

)
.

Then we have (α, β, γ − 2mα, δ + 2mβ) =
(
α̂, β̂, γ̂ − 2mα̂, δ̂ + 2mβ̂

)
. By equating

the entries it follows that α = α̂, β = β̂, γ = γ̂ and δ = δ̂. Hence ωm is injective.
Surjectivity: Let (α′, β′, γ′, δ′) ∈ Cm be arbitrary.
Consider (α, β, γ, δ) = (α′, β′, γ′ + 2mα′, δ′ − 2mβ′). We will show that this lies in
Bm. Observe α2+αδ+βγ = α′2+α′ (δ′ − 2mβ′)+β′ (γ′ + 2mα′) = α′2+α′δ′+β′γ′ =
D. By Lemma 3.6.8 we know this satisfies 0 < γ < 2α and 0 < 2β < δ due to
how we partitioned using m. Thus the form lies in Y1\ (X1 ∩ Y1). Next, observe
δ
2β

= δ′−2mβ′
2β′

= γ′

2β′
− m. Thus by Lemma 3.6.6 we have there exists a unique

integer p ∈
(
− δ

2β
, 1− δ

2β

]
. This becomes p ∈

(
m− δ′

2β′
,m+ 1− δ′

2β′

]
. Recalling that

0 < δ′

2β′
< 1 we have m is the unique integer in this interval and it follows that p = m.

Consequently (α, β, γ, δ) lies in Bm. Lastly, we observe

ωm (α, β, γ, δ) = ωm (α′, β′, γ′ + 2mα′, δ′ − 2mβ′)

= (α′, β′, γ′ + 2mα′ − 2mα′, δ′ − 2mβ′ + 2mβ′)

= (α′, β′, γ′, δ′) .

Hence ωm is a surjection and thus a bijection.

Theorem 3.6.11.
The map

W : Y1\ (X1 ∩ Y1) −→ X1\ ((X1 ∩ Y1) ∪Θ)

(α, β, γ, δ) 7−→ ωm (α, β, γ, δ) ,

where m is uniquely determined by (α, β, γ, δ), is a bijection.

Proof.
Corollary 3.6.7 shows that Y1\ (X1 ∩ Y1) is a finite disjoint union thus m is uniquely
determined by (α, β, γ, δ). Corollary 3.6.9 shows that X1\ ((X1 ∩ Y1) ∪Θ) is a finite
disjoint union. By Lemma 3.6.10 the map ωm : Bm → Cm is a bijection and the

disjoint unions imply ωm (α, β, γ, δ) 6= ωm̂

(
α̂, β̂, γ̂, δ̂

)
, thus W is injective. Since each

ωm is a bijection and X1\ ((X1 ∩ Y1) ∪Θ) is a disjoint union it follows that W is
surjective.
Hence W is a bijection.
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Corollary 3.6.12.
We have P1 = K +R1, where K is the cardinality of the set

Θ =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < 2α 6 γ, 0 < δ 6 2β, γ ≡ 0 mod 2α
}
.

Proof.
Recall that P1 = |I0,>|, K = |Θ| and R1 = |J0,>|. Apply Theorem 3.6.11 to observe

P1 = |X1 ∩ Y1|+ |Θ|+ |X1\ ((X1 ∩ Y1) ∪Θ)|
= |X1 ∩ Y1|+ |Θ|+ |Y1\ (X1 ∩ Y1)| (by Theorem 3.6.11)

= |Θ|+ |Y1|
= K +R1.

We now perform a similar investigation to determine the relationship between P2 and
S1.

Definition 3.6.13.
Fix D ∈ Z>0. Recall from Definitions 3.4.7 and 3.4.19 that the sets X2 and Y2 are
defined by:

X2 =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < α, 0 < γ, 0 6 δ < 2β
}

and

Y2 =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < β, 0 6 δ, 0 < γ < 2α
}
.

Let Θ′ =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < α, 0 < γ, 0 6 δ < 2β, γ 6≡ 0 mod 2α
}
.

Let L denote the cardinality of the set Θ′.

Observation 3.6.14.
Recall from Corollaries 3.4.8 and 3.4.20 that X2 and Y2 are finite sets. Observe
Θ′ ⊆ X2 and thus is also a finite set.
Note that X2 ∩ Y2 = {(α, β, γ, δ) | α2 + αδ + βγ = D, 0 6 δ < 2β, 0 < γ < 2α} and
hence Θ′ ∩ (X2 ∩ Y1) = ∅.

We now give a description of the sets X2\ (X2 ∩ Y2) and Y2\ (X2 ∩ Y2):

X2\ (X2 ∩ Y2) =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < 2β 6 δ, 0 < γ < 2α
}
, (3.17)

Y2\ (X2 ∩ Y2) =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 6 δ < 2β, 0 < 2α 6 γ
}
. (3.18)

Observation 3.6.15.
We now use the set Θ′ to partition X2\ (X2 ∩ Y2) as

X2\ (X2 ∩ Y2) = Θ′ ∪ (X2\ ((X2 ∩ Y2) ∪Θ′)) .

For clarity we have

X2\ ((X2 ∩ Y2) ∪Θ′) = { (α, β, γ, δ) | α2 + αδ + βγ = D, 0 6 δ < 2β, 0 < 2α 6 γ,
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γ 6≡ 0 mod 2α } .

Our goal is to construct a bijection W ′ : Y2\ (X2 ∩ Y2) −→ X2\ ((X2 ∩ Y2) ∪Θ′).

We will use the map ωm redefined to the appropriate sets. As such it is important to
note that Lemmas 3.6.4 and 3.6.5 still hold true.

We begin by examining the set Y2\ (X2 ∩ Y2).

Lemma 3.6.16.
For any form (α, β, γ, δ) ∈ Y2\ (X2 ∩ Y2) there exists a unique integer m such that

ωm (α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ) = (α′, β′, γ′, δ′)

satisfies 0 6 δ′ < 2β′ and 0 < 2α′ 6 γ′.

Proof.
Recall that forms in Y2\ (X2 ∩ Y2) satisfy 0 < 2β 6 δ and 0 < γ < 2α. Clearly we
have α′ = α > 0 and β′ = β > 0. In order to have 2α′ 6 γ′ we required m 6 γ

2α
− 1.

Notice that 0 γ
2α
< 1 implies m < 0. Next, in order to have 0 6 δ′ < 2β′ we require

− δ
2β
6 m < 1− δ

2β
. Thus we have − δ

2β
6 m < min

{
1− δ

2β
, γ
2α
− 1
}

. We observe that

0 < γ
2α
< 1 and 1 6 δ

2β
imply 1− δ

2β
< 0 and −1 < γ

2α
− 1. Hence if 1− δ

2β
6 γ

2α
− 1

then clearly there is a unique integer m ∈
[
− δ

2β
, 1− δ

2β

)
. So suppose γ

2α
−1 < 1− δ

2β
,

then −1 < min
{

1− δ
2β
, γ
2α
− 1
}

. Further, −1 < 1− δ
2β

implies − δ
2β
< −1 so we see

that m = −1 is the unique integer such that − δ
2β
6 m < min

{
1− δ

2β
, γ
2α
− 1
}

.

Corollary 3.6.17.

The set Y2\ (X2 ∩ Y2) =
⋃

m∈Z<0

Bm
′ is a finite disjoint union, where

Bm
′ =

{
(α, β, γ, δ) ∈ Y2\ (X2 ∩ Y2)

∣∣∣− δ

2β
6 m < 1− δ

2β

}
.

Proof.
By Lemma 3.6.16 for each (α, β, γ, δ) ∈ Y2\ (X2 ∩ Y2) there exists a unique integer

m ∈
[
− δ

2β
, 1− δ

2β

)
. We use this to partition into a union of sets Bm

′. This is a

disjoint union due to the uniqueness of m. By Corollary 3.4.20 we know the set Y2 is
finite and hence it follows that Y2\ (X2 ∩ Y2) is finite.

We now examine X2\ (X2 ∩ Y2) in a similar manner.

Lemma 3.6.18.
For any form (α′, β′, γ′, δ′) ∈ X2\ (X2 ∩ Y2) such that γ′ 6≡ 0 mod 2α′, there exists a
unique integer n such that τ (α′, β′, γ′, δ′) = (α′, β′, γ′ + 2nα′, δ′ − 2nβ′) = (α, β, γ, δ)
satisfies 0 < 2β 6 δ and 0 < γ < 2α.
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Proof.
Recall that (α′, β′, γ′, δ′) satifies 0 6 δ′ < 2β′ and 0 < 2α′ 6 γ′ so we clearly have
β = β′ > 0. Now note that in order to have 2β 6 δ we require n 6 δ′

2β′
− 1.

Similarly, in order to have 0 < γ < 2α we need − γ′

2α′
< n < 1 − γ′

2α′
. Hence

we have − γ′

2α′
< n 6 min

{
1− γ′

2α′
, δ′

2β′
− 1
}

. Observe that 0 6 δ′

2β′
< 1 implies

−1 6 δ′

2β′
− 1 < 0 and also observe 1 6 γ′

2α′
implies 1− γ′

2α′
6 0.

Consequently if 1 − γ′

2α′
6 −1 then since γ′ 6≡ 0 mod 2α′, 1 − γ′

2α′
cannot equal −1

and it follows that there is a unique integer n in the interval
(
− γ′

2α′
, 1− γ′

2α′

)
. Now

suppose that −1 < min
{

1− γ′

2α′
, δ′

2β′
− 1
}

. In particular we see that − γ′

2α′
< −1 and

hence n = −1 is the unique integer that works.

Corollary 3.6.19.

The set X2\ ((X2 ∩ Y2) ∪Θ′) =
⋃

n∈Z<0

Cn
′ is a finite disjoint union, where

Cn
′ =

{
(α′, β′, γ′, δ′) ∈ X2\ ((X2 ∩ Y2) ∪Θ′)

∣∣∣− γ′

2α′
< n < 1− γ′

2α′

}
.

Proof.
By Corollary 3.4.8 and Observation 3.6.14 X2 and Θ′ are finite sets, thus the set
X2\ ((X2 ∩ Y2) ∪Θ′) is finite.
We use Lemma 3.6.18 to partition the set into a disjoint union according to the unique
integer n.

Lemma 3.6.20.
The map

ωm
′ : Bm

′ −→ Cm
′

ωm
′ (α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ)

is a well-defined bijection.

Proof.
By Lemma 3.6.4 we observe ω′m preserves D. By Lemma 3.6.5 we know ω′m (α, β, γ, δ)
satisfies γ′ 6≡ 0 mod 2α′ and thus ω′m (α, β, γ, δ) 6∈ Θ′. By Lemma 3.6.16 we know
ω′m (α, β, γ, δ) satisfies 0 6 δ′ < 2β′ and 0 < 2α′ 6 γ′. So we see that ω′m (α, β, γ, δ) ∈
X2\ ((X2 ∩ Y2) ∪Θ′).

Now suppose there exist (α, β, γ, δ),
(
α̂, β̂, γ̂, δ̂

)
∈ B′m such that ω′m (α, β, γ, δ) ∈ C ′n1

and ω′m

(
α̂, β̂, γ̂, δ̂

)
∈ C ′n2

for some integers n1 and n2. Then n1, n2 ∈
(
− γ′

2α′
, 1− γ′

2α′

)
.

This contains a unique integer and hence n1 = n2. Therefore ω′m : B′m −→ C ′n.
Now in C ′n we know − γ′

2α′
< n < 1 − γ′

2α′
and this rearranges to yield m − γ

2α
< n <

m + 1 − γ
2α

. Since 0 < γ
2α

< 1 it follows that n = m. Hence ω′m : B′m −→ C ′m is
well-defined.
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Injectivity: This follows immediately by assuming ω′m (α, β, γ, δ) = ω′m

(
α̂, β̂, γ̂, δ̂

)
and equating the entries.
Surjectivity: Let (α′, β′, γ′, δ′) ∈ C ′m be arbitrary. Consider
f = (α′, β′, γ′ + 2mα′, δ′ − 2mβ′) = (α, β, γ, δ). We will show this lies in B′m.
We have α2 +αδ+βγ = α′2 +α′ (δ′ − 2mβ′) +β′ (γ′ + 2mα′) = α′2 +α′δ′+β′γ′ = D.
By Lemma 3.6.18 we know it satisfies 0 < 2β 6 δ and 0 < γ < 2α and thus it lies
in X2\ (X2 ∩ Y2). Now notice that δ

2β
= δ′

2β′
−m and by Lemma 3.6.16 there exists

a unique integer p ∈
[
− δ

2β
, 1− δ

2β

)
, that is m − δ′

2β′
6 p < m + 1 − δ′

2β′
. Further,

0 6 δ′

2β′
< 1 implies m is the unique integer in the interval

[
m− δ′

2β′
, 1− δ′

2β′

)
and

hence p = m. Therefore (α, β, γ, δ) ∈ B′m. It is straightforward to verify ωm
′(f) =

(α′, β′, γ′, δ′). Thus ω′m is surjective and hence a bijection.

Theorem 3.6.21.
The map

W ′ : Y2\ (X2 ∩ Y2) −→ X2\ ((X2 ∩ Y2) ∪Θ′) given by

W ′ (α, β, γ, δ) 7−→ ω′m (α, β, γ, δ) ,

where (α, β, γ, δ) uniquely determines m, is a bijection.

Proof.
Corollary 3.6.17 shows we may write Y2\ (X2 ∩ Y2) as a finite disjoint union of sets
B′m. By Lemma 3.6.20 the map ω′m : B′m −→ C ′m is a bijection for each m. Corollary
3.6.19 shows that X2\ ((X2 ∩ Y2) ∪Θ′) is a finite disjoint union of the sets C ′m. The

disjoint union implies ω′m (α, β, γ, δ) 6= ωm̂
′
(
α̂, β̂, γ̂, δ̂

)
and thus W ′ is injective.

Since each ω′m is a bijection and X2\ ((X2 ∩ Y2) ∪Θ′) is a disjoint union of the sets
C ′m, it follows that W ′ is surjective.
Hence W ′ is a bijection.

Corollary 3.6.22.
P2 = L+ S1.

Proof.
Recall P2 = |X2|, L = |Θ′| and S1 = |Y2|. Using Theorem 3.6.21 we have

P2 = |X2|
= |X2 ∩ Y2|+ |Θ′|+ |X2\ ((X2 ∩ Y2) ∪Θ′)|
= |X2 ∩ Y2|+ |Θ′|+ |Y2\ (X2 ∩ Y2)| by Theorem 3.6.21

= |Y2|+ |Θ′|
= S1 + L.
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Notes on Section 3.6

The statement of our results in this section differ slightly from those of Kronecker.
Kronecker states the following two results without proof: P1 = K + R1 and Q1 =
L + S1. This is due to our proof of P1 + P2 = Q1 + Q2 = |X1| + |X2|, whereas
Kronecker implied he went further when he stated P2 = Q1 and Q2 = P1.

3.7 The Relationships between P1 and R1, and also between P2 and S1

Having derived the relations P1 = K + R1 and Q1 = L + S1 in Section 3.6 we begin
this section by investigating whether similar results hold for the quantities P1, P2, R1

and S1. Throughout this section we assume D ∈ Z>0 and is fixed.

Theorem 3.7.1.
P1 = R1.

Proof.
We will show that the restriction map,

W
∣∣∣
Y1\(X1∩Y1)

: Y1\
(
X1 ∩ Y1

)
−→ X1\

(
X1 ∩ Y1

)
is well-defined and is a bijection.

Recall X1 ⊆ X1 and Y1 ⊆ Y1 and consider the set Y1\
(
X1 ∩ Y1

)
⊆ Y1\ (X1 ∩ Y1).

Applying Theorem 3.6.11 we see

W
(
Y1\

(
X1 ∩ Y1

))
⊆ X1\ ((X1 ∩ Y1) ∪Θ) .

Since the map W is defined in terms of the maps ωm we first show that for any
integer m the map ωm satisfies γ′ ≡ γ mod 2 and δ′ ≡ δ mod 2. This follows easily
as γ′ = γ − 2mα ≡ γ mod 2 and δ′ = δ+ 2mβ ≡ δ mod 2. Hence the restriction map
maps into X1. Further, we have ((X1 ∩ Y1) ∪Θ)∩X1 = X1∩Y1. This follows because
any element in Θ satisfies γ ≡ 0 mod 2α and thus γ ≡ 0 mod 2, so Θ ∩X1 = ∅.
Hence we see that the restriction map maps into X1\

(
X1 ∩ Y1

)
.

Note that injectivity is inherited from W and so it remains to show surjectivity.
Let (α′, β′, γ′, δ′) ∈ X1\

(
X1 ∩ Y1

)
. By Theorem 3.6.11 and Lemma 3.6.10 this lies in

some set Cm and under the inverse of the map ωm maps back to a unique (α, β, γ, δ) ∈
Bm. But ωm preserves “γ” and “δ” mod. 2 and hence γ ≡ 1 mod 2 and δ ≡ 0 mod 2.
Thus (α, β, γ, δ) lies in Bm ∩ Y1\

(
X1 ∩ Y1

)
. Hence the restriction map is surjective

and so it is a bijection.
It follows then that ∣∣X1

∣∣ =
∣∣X1 ∩ Y1

∣∣+
∣∣X1\

(
X1 ∩ Y1

)∣∣
=

∣∣X1 ∩ Y1
∣∣+
∣∣Y1\ (X1 ∩ Y1

)∣∣
=

∣∣Y1∣∣ .
So we have P1 =

∣∣X1

∣∣ =
∣∣Y1∣∣ = R1.

Theorem 3.7.2.
P2 = S1.
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Proof.
We will show that the restriction map,

W ′
∣∣∣
Y2\(X2∩Y2)

: Y2\
(
X2 ∩ Y2

)
−→ X2\

(
X2 ∩ Y2

)
is well-defined and is a bijection.

Recall X2 ⊆ X2 and Y2 ⊆ Y2 and consider the set Y2\
(
X2 ∩ Y2

)
⊆ Y2\ (X2 ∩ Y2).

Applying Theorem 3.6.21 we see

W ′ (Y2\ (X2 ∩ Y2
))
⊆ X2\ ((X2 ∩ Y2) ∪Θ′) .

Since the map W ′ is defined in terms of the maps ω′m, we note that as in the proof
of Theorem 3.7.1 we have γ′ ≡ γ mod 2 and δ′ ≡ δ mod 2. Hence the restriction
map maps into X2. Further, we have ((X2 ∩ Y2) ∪Θ′) ∩X2 = X2 ∩ Y2. This follows
because any element in Θ′ satisfies γ ≡ 0 mod 2α and so γ ≡ 0 mod 2. Therefore
Θ′ ∩X2 = ∅.
Hence we see that the restriction map maps into X2\

(
X2 ∩ Y2

)
.

Note that injectivity is inherited directly from the map W ′ and so it remains to show
surjectivity.
Let (α′, β′, γ′, δ′) ∈ X2\

(
X2 ∩ Y2

)
be arbitrary. By Theorem 3.6.21 and Lemma 3.6.20

this lies in some set C ′m and under the inverse of the map ω′m, maps back to a unique
(α, β, γ, δ) in B′m. But ω′m preserves “γ” and “δ” mod. 2 and so γ ≡ 1 mod 2 and
δ ≡ 0 mod 2. Thus (α, β, γ, δ) lies in B′m ∩ Y2\

(
X2 ∩ Y2

)
. Hence the restriction map

is surjective and so it is a bijection. It then follows that∣∣X2

∣∣ =
∣∣X2 ∩ Y2

∣∣+
∣∣X2\

(
X2 ∩ Y2

)∣∣
=

∣∣X2 ∩ Y2
∣∣+
∣∣Y2\ (X2 ∩ Y2

)∣∣
=

∣∣Y2∣∣ .
So we have P2 =

∣∣X2

∣∣ =
∣∣Y2∣∣ = S1.

We now use the results developed in Sections 3.6 and 3.7 to simplify our class number
equations.

Applying P1 = K +R1 and P2 = L+ S1 in Equation 3.14 we get

Clc (D) = m+ n+ 2 (P0 +Q0 −R0 − S0 + 2 (P1 + P2 −R1 − S1))

= m+ n+ 2 (P0 +Q0 −R0 − S0 + 2 (K +R1 + L− S1 −R1 − S1))

= m+ n+ 2 ([2K + P0 −R0] + [2L+Q0 − S0]) . (3.19)

Similarly, applying P1 = R1 and P2 = S1 into the equation found in Lemma 3.5.10
we get

Clc (D) = 3
(
P0 +Q0 −R0 − S0 + 2

(
P1 + P2 −R1 − S1

))
= 3

(
P0 +Q0 −R0 − S0

)
. (3.20)

Copyright c© Jonathan A. Constable, 2016.
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Chapter 4 Enumerating Our Sets Via Divisors of D

“It’s not enough that we do our best; sometimes we have to do what’s
required.”
- Sir Winston Churchill

In this chapter we develop ways of expressing the cardinalities K, L, P0, Q0, R0 and
S0 in terms of divisors of the determinant D ∈ Z>0.

4.1 Using Divisors of D to count K + L.

In this section we will use divisors of the determinant D to derive an expression for
value of K + L.

We begin by recalling the definitions of the sets Θ and Θ′ from Lemmas 3.6.1 and
3.6.13.

Θ =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < α, 0 < γ, 0 < δ 6 2β, γ ≡ 0 mod 2α
}
,

Θ′ =
{

(α, β, γ, δ) | α2 + αδ + βγ = D, 0 < α, 0 < γ, 0 6 δ < 2β, γ ≡ 0 mod 2α
}
.

In both Θ and Θ′ we have γ ≡ 0 mod 2α and 0 < γ. Therefore we may write γ = 2mα
for some m ∈ Z>0 as 0 < α. We now define two more sets, let

Θ1 = {(∂, d,m, β) | ∂d = D, 0 < ∂ < d, 2mβ < d− ∂ 6 2 (m+ 1) β, m, β ∈ N>0} ,
Θ′1 = {(∂, d,m, β) | ∂d = D, 0 < ∂ < d, 2mβ 6 d− ∂ < 2 (m+ 1) β, m, β ∈ N>0} .

Lemma 4.1.1.
The map

τ : Θ −→ Θ1

(α, β, γ, δ) 7−→ (∂, d,m, β) ,

where γ = 2mα, is a well-defined bijection. From this it follows that |Θ1| = |Θ| = K.

Proof.
Well-defined: For each (α, β, γ, δ) ∈ Θ there exists a unique m ∈ N>0 such that
γ = 2mα. Then 0 < α and 0 < δ 6 2β implies 0 < ∂ = α < α+δ 6 α+δ+2mβ = d.
Now notice that d − ∂ − 2mβ = δ, thus 0 < δ 6 2β implies 0 < d − ∂ − 2mβ 6 2β
and so 2mβ < d− ∂ 6 2 (m+ 1) β. Hence τ maps into Θ1.
Injectivity: Suppose τ (α, β, γ, δ) = τ (α′, β′, γ′, δ′), then
(α, α + δ + 2mβ,m, β) = (α′, α′ + δ′ + 2m′β′,m′, β′). Equating the entries yields α =
α′, β = β′, m = m′ and δ = δ′. Therefore τ is injective.
Surjectivity: Let g = (∂, d,m, β) ∈ Θ1 be arbitrary.
Consider f = (∂, β, 2m∂, d− ∂ − 2mβ) = (α, β, γ, δ), we will show this lies in Θ and
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τ(f) = g. We have 0 < ∂ = α and γ = 2m∂ as ∂ > 0 and m ∈ N>0. Further,
γ ≡ 0 mod 2α. Next, 2mβ < d − ∂ 6 2 (m+ 1) β implies 0 < d − ∂ − 2mβ 6
2 (m+ 1) β − 2mβ = 2β. Therefore 0 < δ 6 2β. Finally we have

α2 + αδ + βγ = ∂2 + ∂ (d− ∂ − 2mβ) + 2m∂β

= ∂d

= D.

Hence f lies in Θ and we note that γ = 2m∂ = 2mα. Then we see
τ(f) = (∂, ∂ + (d− ∂ − 2mβ) + 2mβ,m, β) = (∂, d,m, β). Therefore τ is surjective
and hence τ is a bijection.
It follows that |Θ1| = |Θ| = K.

Lemma 4.1.2.
The map

τ ′ : Θ′ −→ Θ′1
(α, β, γ, δ) 7−→ (α, α + δ + 2mβ,m, β) = (∂, d,m, β) ,

where γ = 2mα, is a well-defined bijection.
It follows that |Θ′1| = |Θ′| = L.

Proof.
Well-defined: For each (α, β, γ, δ) ∈ Θ′ there exists a unique m ∈ N>0 such that
γ = 2mα. Then 0 < α implies ∂ = α > 0, further 0 6 δ, 2β then implies 0 < ∂ =
α 6 α+ δ < α+ δ+ 2mβ = d as m ∈ N>0 and β > 0. Next observe δ = d− ∂− 2mβ
and so 0 6 δ < 2β yields 0 6 d− ∂ − 2mβ < 2β. Hence 2mβ 6 d− ∂ < 2 (m+ 1) β.
It follows that τ ′ maps into Θ′1.
Injectivity: Suppose τ ′ (α, β, γ, δ) = τ ′ (α′, β′, γ′, δ′), then we have
(α, α + δ + 2mβ,m, β) = (α′, α′ + δ′ + 2m′β′,m′, β′). Equating the entries yields τ ′

is injective.
Surjectivity: Let g = (∂, d,mβ) ∈ Θ′1 be arbitrary.
Consider f = (∂, β, 2m∂, d− ∂ − 2mβ) = (α, β, γ, δ), we will show this lies in Θ′

and τ ′(f) = g. We have α = ∂ > 0 and γ = 2m∂ > 0 as m ∈ N>0. Further it is
clear that γ ≡ 0 mod 2α. Next the inequality 2mβ 6 d − ∂ < 2 (m+ 1) β implies
0 6 d− ∂ − 2mβ < 2β, that is, 0 6 δ < 2β. Lastly observe

α2 + αδ + βγ = ∂2 + ∂ (d− ∂ − 2mβ) + 2m∂β

= ∂d

= D.

Hence f lies in Θ′. We note that f satisfies γ = 2m∂ = 2mα.
Then τ ′(f) = (∂, ∂ + d− ∂ − 2mβ,m, β) = (∂, d,m, β). Therefore τ ′ is surjective
and thus τ ′ is a bijection.
It follows that |Θ′1| = |Θ′| = L.

We now place conditions on β in the sets Θ1 and Θ′1.
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Lemma 4.1.3.
Let (∂, d,m, β) ∈ Θ1. If d − ∂ ≡ 1 mod 2. then we have 1 6 β 6 1

2
(d− ∂ − 1).

Otherwise we have 1 6 β 6 1
2

(d− ∂)− 1.

Proof.
Any form (∂, d,m, β) ∈ Θ1 must satisfy 2mβ < d−∂ 6 2 (m+ 1) β. First we assume
d − ∂ is odd, then it follows that 2β + 1 6 2mβ + 1 6 d − ∂. In turn this implies
2β 6 d− ∂ − 1, that is β 6 1

2
(d− ∂ − 1).

Now assume d−∂ is even, then it follows that 2mβ+2 6 d−∂ thus m ∈ N>0 implies
2β + 2 6 2mβ + 2 6 d− ∂. Hence 2β 6 d− ∂ − 2 and so β 6 1

2
(d− ∂)− 1.

Lemma 4.1.4.
Let (∂, d,m, β) ∈ Θ′1, then 1 6 β 6 1

2
(d− ∂ − 1) if d − ∂ ≡ 1 mod 2. Otherwise,

1 6 β 6 1
2

(d− ∂).

Proof.
Any form (∂, d,m, β) ∈ Θ′1 must satisfy 2mβ 6 d−∂ < 2 (m+ 1) β. First we assume
d− ∂ is odd, then it follows that 2β + 1 6 2mβ + 1 6 d− ∂, thus β 6 1

2
(d− ∂ − 1).

Now assume d− ∂ is even. Then 2β 6 2mβ 6 d− ∂, which yields β 6 1
2

(d− ∂).

Lemma 4.1.5.
Consider the set Θ1. If d− ∂ ≡ 1 mod 2 then β ∈ Z ∩

[
1, 1

2
(d− ∂ − 1)

]
. Otherwise,

β ∈ Z ∩
[
1, 1

2
(d− ∂)− 1

]
. Further, β may take any one of these values.

Proof.
Recall forms in Θ1 satisfy 0 < ∂ < d and 2mβ < d − ∂ 6 2 (m+ 1) β. Observe for
any integer β > 0 we have ⋃

m∈N>0

(2mβ, 2 (m+ 1) β] = R>2β,

where this is clearly a disjoint union.
Since 0 < d − ∂ it follows that there exists a unique m ∈ N>0 such that d − ∂ ∈
(2mβ, 2 (m+ 1) β], unless d−∂ 6 2β. However, Lemma 4.1.3 shows β 6 1

2
(d− ∂ − 1)

if d − ∂ ≡ 1 mod 2 or β 6 1
2

(d− ∂) − 1 if d − ∂ ≡ 0 mod 2. Hence 2β < 2β + 1 6
d − ∂ in the first case, while in the second case 2β < 2β + 2 6 d − ∂. Thus such
a unique m always exists for any d, ∂ and β, where 0 < ∂ < d, ∂d = D and
either β ∈ Z ∩

[
1, 1

2
(d− ∂ − 1)

]
if d − ∂ ≡ 1 mod 2 or β ∈ Z ∩

[
1, 1

2
(d− ∂)− 1

]
if

d− ∂ ≡ 0 mod 2.

Corollary 4.1.6.

K = |Θ1| =
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

(
1

2
(d− ∂)− 1

)
.
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Proof.
By Lemma 4.1.1 we have K = |Θ| = |Θ1|. By Lemma 4.1.5 we know that for a fixed
pair d, ∂ where 0 < ∂ < d and ∂d = D, there exists a unique m ∈ N>0 for each β.
Thus for fixed ∂, d we may split the elements in Θ1 with those fixed ∂ and d values
according to whether d − ∂ ≡ 1 mod 2 or not. Lemma 4.1.5 implies for each fixed
pair ∂, d with d− ∂ ≡ 1 mod 2 there are 1

2
(d− ∂ − 1) forms in Θ1 and for each fixed

pair ∂, d with d − ∂ ≡ 0 mod 2 there are 1
2

(d− ∂) − 1 forms in Θ1. Summing over
all ∂, d such that 0 < ∂ < d and ∂d = D then yields:

K =
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

(
1

2
(d− ∂)− 1

)
.

Lemma 4.1.7.
Consider the set Θ′1. If d − ∂ ≡ 1 mod 2 then β ∈ Z ∩

[
1, 1

2
(d− ∂ − 1)

]
. Otherwise

β ∈ Z ∩
[
1, 1

2
(d− ∂)

]
. Further, β may take any one of these values.

Proof.
Recall that forms in Θ′1 satisfy 0 < ∂ < d and 2mβ 6 d− ∂ < 2 (m+ 1) β. Observe
that for any integer β > 0 we have⋃

m∈N>0

[2mβ, 2 (m+ 1) β) = R>2β.

Since 0 < d − ∂ it follows that there exists a unique m ∈ N>0 such that d − ∂ ∈
[2mβ, 2 (m+ 1) β) unless d − ∂ < 2β. However, Lemma 4.1.4 shows regardless of
whether d − ∂ is odd or even, that 2β 6 d − ∂. Hence such a unique m ∈ N>0

always exists for any d, ∂ and β, where 0 < ∂ < d, ∂d = D and either β ∈ Z ∩[
1, 1

2
(d− ∂ − 1)

]
if d− ∂ ≡ 1 mod 2 or β ∈ Z∩

[
1, 1

2
(d− ∂)

]
if d− ∂ ≡ 0 mod 2.

Corollary 4.1.8.

L = |Θ′1| =
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

1

2
(d− ∂) .

Proof.
By Lemma 4.1.2 we have L = |Θ′| = |Θ′1|. By Lemma 4.1.7 we know that for a fixed
pair ∂, d where 0 < ∂ < d and ∂d = D, there exists a unique m ∈ N>0 for each
β. Thus for fixed ∂, d we may split the elements in Θ′1 with those ∂ and d values
according to whether d − ∂ ≡ 1 mod 2 or not. Lemma 4.1.7 implies that for each
fixed pair d, ∂ with d− ∂ ≡ 1 mod 2 there are 1

2
(d− ∂ − 1) forms in Θ′1 and for each

fixed pair d, ∂ with d− ∂ ≡ 0 mod 2 there are 1
2

(d− ∂) forms in Θ′1. Summing over
all d, ∂ such that 0 < ∂ < d and ∂d = D then yields:

L =
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

1

2
(d− ∂) .
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Theorem 4.1.9.
K + L =

∑
∂d=D
0<∂<d

(d− ∂ − 1).

Proof.
Note that 1

2
(d− ∂) =

(
1
2

(d− ∂)− 1
)

+ 1. Applying Corollaries 4.1.6 and 4.1.8 we
see:

K + L =
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

(
1

2
(d− ∂)− 1

)
+

∑
0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

1

2
(d− ∂)

=
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

(
1

2
(d− ∂)− 1

)
+

∑
0<∂<d
∂d=D

d−∂≡1 mod 2

1

2
(d− ∂ − 1) +

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

(
1

2
(d− ∂)− 1

)
+

∑
0<∂<d
∂d=D

d−∂≡0 mod 2

1

=
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

(d− ∂ − 1) +
∑

0<∂<d
∂d=D

d−∂≡0 mod 2

((d− ∂)− 2) +
∑

0<∂<d
∂d=D

d−∂≡0 mod 2

1

=
∑

0<∂<d
∂d=D

d−∂≡1 mod 2

(d− ∂ − 1) +
∑

0<∂<d
∂d=D

d−∂≡0 mod 2

(d− ∂ − 1)

=
∑

0<∂<d
∂d=D

(d− ∂ − 1) .

4.2 Using divisors of D to count m+ n

In this section we will use divisors of D to derive an expression for the value m+ n.
We continue to let D ∈ Z>0 represent the determinant of the bilinear forms.

Recall from Definition 3.2.2 that we are interested in the quantities m and n, which
are the respective cardinalities of the following two sets:

M =

{
(A11, A12, A21, A22)

∣∣A11A22 − A12A21 = D, 0 <
A12 + A21

2
6 A11,
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0 <
A12 + A21

2
6 A22, A11 − A12 − A21 + A22 > 0, A11 = A12 − A21 + A22

}
,

N =

{
(A11, A12, A21, A22)

∣∣A11A22 − A12A21 = D, 0 6
A12 + A21

2
< A11,

0 6
A12 + A21

2
< A22, A11 − A12 − A21 + A22 > 0, A11 = A12 − A21 + A22

}
.

Observation 4.2.1.
Any bilinear form in M or N satisfies A11 = A12 − A21 + A22. Rewriting this as
A22 = A11 − A12 + A21 and substituting into the expression for D yields

D = A11A22 − A12A21

= A11 (A11 − A12 + A21)− A12A21

= A2
11 − A11A12 + A11A21 − A12A21

= (A11 − A12) (A11 + A21) .

Lemma 4.2.2.
Any bilinear form in the set M ∪N satisfies A11 − A12 > 0 and A11 + A21 > 0.

Proof.
Bilinear forms in the set M ∪ N satisfy A22 = A11 − A12 − A21 and A11 − A12 −
A21 + A22 > 0 (see Observation 3.2.1). Substituting the former into the latter yields
2(A11 − A12) > 0. Applying Observation 4.2.1 and recalling D ∈ Z>0 then yields
A11 + A21 > 0.

Lemma 4.2.3.
Let

ZM =

{
(∂, d, A11)

∣∣∂d = D, 0 < ∂ < d,
d− ∂

2
6 A11 6

1

2
d +

3

2
∂

}
.

Then the map

τ : M −→ ZM

(A11, A12, A21, A22) 7−→ (A11 − A12, A11 + A21, A11) = (∂, d, A11)

is a well-defined bijection. It follows that m = |M | = |ZM |.

Proof.
Well-defined: By Observation 4.2.1 we have D = (A11 − A12) (A11 + A21) = ∂d. By
Lemma 4.2.2 we know 0 < A11−A12 = ∂ and 0 < A11+A21 = d. Thus 0 < A11−A12 =
∂ < A11 − A12 + A12 + A21 = d as 0 < 1

2
(A12 + A21). Hence0 < ∂ < d. Further,

observe 0 < 1
2

(d− ∂) = 1
2

((A11 + A21)− (A11 − A12)) = 1
2

(A12 + A21) 6 A11.
Next, recall A11−A12+A21 = A22 > 1

2
(A12 + A21). Rearranging this for A11 produces:

1

2
d +

3

2
∂ =

1

2
(A11 + A21) +

3

2
(A11 − A12)

= A11 + A11 +
1

2
A21 −

3

2
A12
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> A11 +

(
A12 − A21 +

1

2
(A12 + A21)

)
+

1

2
A21 −

3

2
A12

= A11.

Hence we have 1
2

(d− ∂) 6 A11 6 1
2
d + 3

2
∂ and so τ maps into ZM .

Injectivity: Suppose τ (A11, A12, A21, A22) = τ (A′11, A
′
12, A

′
21, A

′
22), then we have

(A11 − A12, A11 + A21, A11) = (A′11 − A′12, A′11 + A′21, A
′
11). Equating the entries from

right to left yields A11 = A′11, A12 = A′12 and A21 = A′21. Then using A11A22 −
A12A21 = D = A′11A

′
22 − A′12A′21 yields A22 = A′22 and so τ is injective.

Surjectivity: Let g = (∂, d, A11) ∈ ZM be arbitrary and consider
f = (A11, A11 − ∂, d− A11, ∂ + d− A11) = (a11, a12, a21, a22), we will show this lies in
M and τ(f) = g. We observe A11 6= 0 in Zm1 since 0 < ∂ < d implies 0 < d− ∂ and
we have 1

2
(d− ∂) 6 A11. Then we have

a11a22 − a12a21 = A11 (∂ + d− A11)− (A11 − ∂) (d− A11)

= ∂A11 + dA11 − A2
11 −

(
dA11 − ∂d + ∂A11 − A2

11

)
= ∂d.

Next, we have 0 < 1
2

(d− ∂) = 1
2

(A11 − ∂ + d− A11) = 1
2

(a12 + a21) 6 A11 = a11.
Further, A11 6 1

2
d+3

2
∂ rearranges toA11 6 ∂+d−1

2
(d− ∂), which implies 1

2
(d− ∂) 6

∂ + d + A11 = ∂ + d + a11 = a22. Thus 0 < 1
2

(A12 + A21) = 1
2

(d− ∂) 6 A22. Next,
we have

a12 − a21 + a22 = A11 − ∂ − (d− A11) + (∂ + d− A11)

= A11

= a11.

Hence a11 = a12−a21+a22. Lastly we see that a11−a12−a21+a22 = A11−(A11 − ∂)−
(d− A11) + (∂ + d− A11) = 2∂ > 0.
Thus we see f lies inM . Now observe τ(f) = (A11 − [A11 − ∂], A11 + [d− A11], A11) =
(∂, d, A11). So we see that τ is surjective and hence a bijection. Therefore it follows
that m = |M | = |ZM |.

Lemma 4.2.4.
Let

ZN =

{
(∂, d, A11)

∣∣∂d = D, 0 < ∂ 6 d,
d− ∂

2
< A11 <

1

2
d +

3

2
∂

}
.

Then the map

τ ′ : N −→ ZN by

(A11, A12, A21, A22) 7−→ (A11 − A12, A11 + A21, A11) = (∂, d, A11)

is a well-defined bijection. It follows that n = |N | = |ZN |.

Proof.
By Observation 4.2.1 we know ∂d = (A11 − A12) (A11 + A21) = D. By Lemma 4.2.2
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we know 0 < A11 − A12 = ∂ and 0 < A11 + A21 = d. Thus 0 < A11 − A12 = ∂ 6
A11−A12 +A12 +A21 = d since 0 6 1

2
(A12 + A21). Thus 0 < ∂ 6 d. Next, note that

1
2

(d− ∂) = 1
2

(A12 + A21) < A11 and also

1

2
d +

3

2
∂ =

1

2
(A11 + A21) +

3

2
(A11 − A12)

= 2A11 +
1

2
(A12 + A21)− 2A12

= A11 + A11 +
1

2
(A12 + A21)− 2A12

> A11 +
1

2
(A12 + A21) +

1

2
(A12 + A21)− 2A12

= A11 + 2

(
A11 − A12︸ ︷︷ ︸> 0

)
> A11.

Hence we see 1
2

(d− ∂) < A11 <
1
2
d + 3

2
∂ and thus τ ′ maps into ZN .

Injectivity: Suppose τ ′ (A11, A12, A21, A22) = τ ′ (A′11, A
′
12, A

′
21, A

′
22). Then we have

(A11 − A12, A11 + A21, A11) = (A′11 − A′12, A′11 + A′21, A
′
11). Equating the entries from

right to left and then using A11A22−A12A21 = D = A′11A
′
22−A′12A′21 yields injectivity.

Surjectivity: Let g = (∂, d, A11) ∈ ZN be arbitrary and consider the form
f = (A11, A11 − ∂, d− A11, d + ∂ − A11) = (a11, a12, a21, a22). We will show f lies in
N and τ ′(f) = g.
In the same manner as in the proof of Lemma 4.2.3 we have

a11a22 − a12a21 = A11 (d + ∂ − A11)− (A11 − ∂) (d− A11)

= ∂d

= D.

Next, ∂ 6 d implies 0 6 1
2

(d− ∂) = 1
2

(a12 + a21). Further, 1
2

(d− ∂) < A11 = a11
and so 0 6 1

2
(a12 + a21) < a11.

Next, A11 <
1
2
d+ 3

2
∂ = d+∂− 1

2
(d− ∂), which implies 1

2
(d− ∂) < d+∂−A11 = a22.

Hence we have 0 6 1
2

(a12 + a21) < a22. Then in the same manner as in the proof of
Lemma 4.2.3 it follows that a12 − a21 + a22 = a11 and a11 − a12 − a21 + a22 = 2∂ > 0.
Thus we see f lies in ZN . Now observe
τ ′(f) = (A11 − [A11 − ∂], A11 + [d− A11], A11) = (∂, d, A11). So we see that τ ′ is
surjective and hence a bijection. Therefore it follows that n = |N | = |ZN |.

We now prove a lemma and a couple of corollaries to make it easier for us to determine
the cardinalities of the sets ZM and ZN .

Lemma 4.2.5.
Let a, b ∈ R\Z, a 6 b then there are bb− ac integers in [a, b].

Proof.
Let a, b,∈ R\Z, a 6 b. Let t be the unique integer such that 0 < a + t < 1 and
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consider the translated interval [a+ t, b+ t]. We recall that translating an interval
by an integer quantity does not change the number of integers in it. Next, b+t = n+ε
for some 0 < ε < 1 and it is clear that the interval [a + t, b + t] contains n integers.
Then we have n = b(b+ t)− (a+ t)c = bb− ac.

Corollary 4.2.6.
There are bb− ac integers in the interval (a, b), where a, b,∈ R\Z, a 6 b.

Proof.
This follows immediately from Lemma 4.2.5 as we have narrowed our interval by
0 < ε < 1.

Corollary 4.2.7.
If the a, b in Lemma 4.2.5 are integers then there are b−a+ 1 integers in the interval
[a, b].

Proof.
Translate the interval so that the left end point is at 0. Then it is clear that the interval
contains n non-zero integers, plus 0 and thus contains a total of n+1 integers. By the
translation we have b−a = n and thus there are b−a+ 1 integers in the interval.

Lemma 4.2.8.

m =
∑
∂d=D
0<∂<d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂<d

d−∂≡0 mod 2

(2∂ + 1) .

Proof.
From Lemma 4.2.3 we know m = |ZM |. Fix ∂, d so that 0 < ∂ < d and ∂d =
D. We first assume that d − ∂ is odd. Then the relations on the set ZM imply
1
2

(d− ∂) < A11 <
1
2
d + 3

2
∂. This is because d− ∂ is odd and therefore so is d + 3∂.

Consequently, 1
2

(d− ∂) and 1
2
d + 3

2
∂ cannot be integers. Applying Corollary 4.2.6

we see A11 ∈ Z ∩
(
1
2

(d− ∂) , 1
2
d + 3

2
∂
)

and this interval contains 2∂ integers. Hence
there are 2∂ possible values of A11 for each fixed pair (∂, d).
Now assume d − ∂ is even. It follows that 1

2
(d− ∂) and 1

2
d + 3

2
∂ are both non-zero

integers as 0 < ∂ < d. Note that A11 ∈ Z ∩
[
1
2

(d− ∂) , 1
2
d + 3

2
∂
]
. Thus applying

Corollary 4.2.7 we see that there are 2∂ + 1 possible values for A11 given a fixed pair
(∂, d).
Combining these results together yields

m =
∑
∂d=D
0<∂<d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂<d

d−∂≡0 mod 2

(2∂ + 1) .
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Lemma 4.2.9.

n =
∑
∂d=D
0<∂6d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂6d

d−∂≡0 mod 2

(2∂ − 1) .

Proof.
From Lemma 4.2.4 we know n = |ZN |. Fix ∂ and d so that 0 < ∂ 6 d and ∂d = D.
We first assume that d − ∂ is odd. Then 1

2
(d− ∂) and 1

2
d + 3

2
∂ cannot be integers.

Applying Corollary 4.2.6 we see that A11 ∈ Z∩
(
1
2

(d− ∂) , 1
2
d + 3

2
∂
)

and this interval
contains 2∂ integers. Hence there are 2∂ possible values for A11 given a fixed pair
(∂, d) with d− ∂ ≡ 1 mod 2.
Now assume d− ∂ is even. Observe that A11 ∈ Z ∩

(
1
2

(d− ∂) , 1
2
d + 3

2
∂
)

and that(
1
2

(d− ∂) , 1
2
d + 3

2
∂
)
⊂
[
1
2

(d− ∂) , 1
2
d + 3

2
∂
]
. By Corollary 4.2.7

[
1
2

(d− ∂) , 1
2
d + 3

2
∂
]

contains 2∂+ 1 integers and since we must exclude only the two end points it follows
that given a fixed pair (∂, d) satisfying d − ∂ ≡ 0 mod 2, there are 2∂ − 1 possible
values for A11.
Combining these results yields:

n =
∑
∂d=D
0<∂6d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂6d

d−∂≡0 mod 2

(2∂ − 1) .

Theorem 4.2.10.

Let ω =

{
−1 + 2

√
D if D = k2 for some k ∈ Z>0

0 otherwise
, then

m+ n = ω + 4
∑
∂d=D
0<∂<d

∂.

Proof.
By Lemmas 4.2.8 and 4.2.9 we have

m+ n =
∑
∂d=D
0<∂<d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂<d

d−∂≡0 mod 2

(2∂ + 1) +
∑
∂d=D
0<∂6d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂6d

d−∂≡0 mod 2

(2∂ − 1)

=
∑
∂d=D
0<∂<d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂<d

d−∂≡0 mod 2

(2∂ + 1) +
∑
∂d=D
0<∂<d

d−∂≡1 mod 2

2∂+

∑
∂d=D
0<∂<d

d−∂≡0 mod 2

(2∂ − 1) +
∑
∂d=D
0<∂=d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂=d

d−∂≡0 mod 2

(2∂ − 1)

= 2
∑
∂d=D
0<∂=d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂<d

d−∂≡0 mod 2

(2∂ + 1 + 2∂ − 1) +

123



∑
∂d=D
0<∂=d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂=d

d−∂≡0 mod 2

(2∂ − 1)

=
∑
∂d=D
0<∂<d

4∂ +
∑
∂d=D
0<∂=d

d−∂≡1 mod 2

2∂ +
∑
∂d=D
0<∂=d

d−∂≡0 mod 2

(2∂ − 1) .

First observe that if D is not a perfect square, i.e. D 6= k2 for some k ∈ Z>0 then we
cannot have ∂ = d =

√
D = k. Thus the last two sums are zero in this case.

Secondly we observe if d = ∂ =
√
D then d − ∂ ≡ 1 mod 2 is a contradiction.

Consequently the second summation is always equal to zero.
Thus in the case where D = k2 for some k ∈ Z>0 we have the first and third sums
remain. Further, the third sum is just 2∂ − 1 = −1 + 2

√
D.

Hence we have
m+ n = ω + 4

∑
∂d=D
0<∂<d

∂,

where ω =

{
−1 + 2

√
D if D = k2 for some k ∈ Z>0

0 otherwise.

4.3 Determining values for P0, Q0, R0 and S0.

In this section we determine the values of P0, Q0, R0 and S0. We continue to let
D ∈ Z>0 be the determinant of our bilinear forms.

Definition 4.3.1.
Let σ (n) =

∑
d|n

d, be the sum of all positive (integer) divisors of n. Observe this

includes d = 1 and d = n.

Recall the sets I0,= and I1,= from Definition 3.4.1:

I0,= = {(A11, A11, A21, A22) |A11 (A22 − A21) = D,−A11 < A21 6 A11, 0 < A22 − A21} ,
I1,= = {(A11, A11, A21, A22) |A11 (A22 − A21) = D,−A11 6 A21 < A11, 0 < A22 − A21} .

Definition 4.3.2.
Let U = {(∂, d) | ∂d = D, ∂, d ∈ Z>0}.

Lemma 4.3.3.
The map τ : I0,= −→ U , given by τ (A11, A11, A21, A22) = (A11, A22 − A21) = (∂, d)
is a surjection. Further, each element (∂, d) ∈ U is mapped to under τ exactly 2∂
times.

Proof.
Well-defined: In the set I0,= we have 0 < A22 − A21, D = A11(A22 − A21) > 0 and
these are integers. Therefore it follows that ∂ = A11 ∈ Z>0 and d = A22−A21 ∈ Z>0.
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Lastly, ∂d = A11(A22 − A21) = D and so τ maps into the set U .
Surjectivity: Let (∂, d) ∈ U be arbitrary and consider
f = (∂, ∂, 0, d) = (A11, A11, A21, A22). We will show this always exists and lies in I0,=.
We have A11 = ∂ > 0 and A22 − A21 = d − 0 = d > 0. Further, A11 (A22 − A21) =
∂d = D and −∂ = −A11 < 0 < A11 = ∂, hence f lies in I0,=. Lastly, τ (∂, ∂, 0, d) =
(∂, d− 0) = (∂, d). Thus we see τ is surjective.
We now observe τ is not injective. This follows because A11 > 1, so both 0 and 1 lie
in (−A11, A11] always. Consequently we see that (∂, ∂, 0, d) and (∂, ∂, 1, d + 1) both
lie in I0,= and map under τ to (∂, d). Therefore we will partition the set U according
to ∂. For a fixed ∂ ∈ N>0 such that D = ∂d, we consider the pre-image of (∂, d)
under τ in F1,=. This is the set of all forms in F1,= that have the same A11 term,
which equals ∂. Then for each integer A21 such that −∂ = −A11 < A21 6 A11 = ∂
we see that there is a unique value of A22 such that 0 < A22−A21 and A22−A21 = d
where D = ∂d. By Corollary 4.2.7 the interval (−∂, ∂] contains 2∂ integers, so we
see that for a fixed value of ∂ there are 2∂ forms in I0,= that map under τ to (∂, d).
Hence τ is a 2∂-to-one surjection.

Corollary 4.3.4.
P0 = 2σ(D).

Proof.
By Lemma 4.3.3 we know that for a fixed ∂ ∈ Z>0 there are 2∂ elements in I0,=
mapping under τ to (∂, d). Further, if two elements in I0,= have distinct A11 values
then they cannot map under τ to the same (∂, d). Consequently we see

P0 =
∑

∂
∂d=D

2∂

= 2
∑

∂

∂|D

∂

= 2σ(D).

Lemma 4.3.5.
The map τ̂ : I1,= −→ U , given by τ̂ (A11, A11, A21, A22) = (A11, A22 − A21) = (∂, d)
is a surjection. Further, each element in (∂, d) ∈ U is mapped to exactly 2∂ times
under τ̂ .

Proof.
We observe that the only difference between the sets I0,= and I1,= is the location
of the equality condition within the inequality −A11 < A21 < A11. In the first set
it is on the second inequality, while in the second set it is on the first inequality.
Consequently the same proof applied to I1,= yields the desired result.

Corollary 4.3.6.
Q0 = 2σ(D).
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Proof.
By Lemma 4.3.5, for a fixed ∂ ∈ Z>0 there are 2∂ elements in I1,= that map under τ̂
to (∂, d). Further, if two elements in I1,= have distinct A11 values then they cannot
map under τ̂ to the same (∂, d). Consequently we see

Q0 =
∑

∂
∂d=D

2∂

= 2
∑

∂

∂|D

∂

= 2σ(D).

Corollary 4.3.7.
P0 +Q0 = 4σ(D).

Proof.
By Corollaries 4.3.4 and 4.3.6 we have P0 +Q0 = 2σ(D) + 2σ(D) = 4σ(D).

We now will investigate the values of R0 and S0. Recall R0 = |J0,=| and S0 = |J1,=|,
where

J0,= = {(A11, A12, A21, 0)
∣∣ det = D = −A12A21, 0 <

A12 + A21

2
< A11,

A21 < − |A11 − A12|},

J1,= = {(A11, A12, A21, 0)
∣∣ det = D = −A12A21, 0 6

A12 + A21

2
< A11,

A21 < − |A11 − A12|}.

Our next lemma provides a simplification of these two sets.

Lemma 4.3.8.
The sets J0,= and J1,= may be simplified as follows:

J0,= = {(A11, A12, A21, 0) | det = D = −A12A21, 0 < A12 + A21 < A11,

A21 < − |A11 − A12| } ,
J1,= = {(A11, A12, A21, 0) | det = D = −A12A21, 0 6 A12 + A21 < A11,

A21 < − |A11 − A12| } .

Proof.
In both J0,= and J1,= we have A21 < 0 and A12 > 0, therefore we may write −A21 =
|A21|. Also, elements in J0,= or J1,= satisfy A21 < − |A11 − A12|. This yields −|A21| <
A11−A12 < |A21| which, is the same as A12 +A21 < A11 < A12−A21. Combining this
result with 0 < (6)A12 + A21 < 2A11 yields the simplification 0 < A12 + A21 < A11.
This gives rise to the statements of J0,= and J1,= as given in the lemma.

126



We now define two very similar sets that we will use to enumerate the sets J0,= and
J1,=.

Definition 4.3.9.

U1 = {(∂, d, A11) | ∂d = D, 0 < ∂ < d, ∂, d ∈ Z>0, d− ∂ + 1 6 A11 6 d + ∂ − 1} and

U2 = {(∂, d, A11) | ∂d = D, 0 < ∂ 6 d, ∂, d ∈ Z>0, d− ∂ + 1 6 A11 6 d + ∂ − 1} .

Lemma 4.3.10.
The map

ν : J0,= −→ U1

(A11, A12, A21, A22) 7−→ (−A21, A12, A11) = (∂, d, A11)

is a well-defined bijection.

Proof.
Well-defined: Observe ∂d = (−A21) · A12 = −A12A21 = D and that ∂ = −A21,
d = A12 and A11 are all strictly positive integers. Also, 0 < A12 + A21 < A11 implies
0 < d− ∂ < A11 and so 0 < ∂ < d. Next, A21 < − |A11 − A12| implies ∂ > |A11 − d|.
Hence −∂ < A11 − d < ∂, i.e. d− ∂ < A11 < d + ∂. Since A11, ∂ and d are integers
it follows that d− ∂ + 1 6 A11 6 d + ∂ − 1. Thus ν is well-defined.
Injectivity: This follows naturally.
Surjectivity: Let (∂, d, A11) ∈ U1 be arbitrary. Consider
(A11, d,−∂, 0) = (a11, a12, a21, 0) = g. Then det(g) = A11 · 0 − (d)(−∂) = ∂d = D.
Note that A12 + A21 = d − ∂ > 0 as 0 < ∂ < d. Further, d − ∂ + 1 6 A11 implies
A12 + A21 = d − ∂ < A11. Lastly, we have d − ∂ + 1 6 A11 6 d + ∂ − 1 implies
−∂ < A11 − d < ∂ and thus |A11 − d| < ∂ = −A21. Therefore A21 < − |A11 − A12|
and thus g ∈ J0,=. We note that ν(g) = (−a21, a12, a11) = (∂, d, A11).
Hence ν is surjective and therefore ν is a bijection.

Corollary 4.3.11.

R0 =
∑
∂∈Z>0
0<∂<d
∂d=D

(2∂ − 1) .

Proof.
By Lemma 4.3.10 we have R0 = |U1|. By the construction of U1 we can pick any pair
(∂, d) such that 0 < ∂ < d and ∂d = D, and then 1 < d−∂+1 6 A11 6 d+∂−1 implies
there is at least one value for A11. So for each such pair ∂, d there is always at least one
(∂, d, A11) ∈ U1. Further, by Corollary 4.2.7 there are (d+∂−1)−(d−∂+1)+1 = 2∂−1
choices for A11 given a pair ∂, d.

Hence we have R0 = |U1| =
∑

∂
0<∂<d
∂d=D

(2∂ − 1).
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Lemma 4.3.12.
The map

ν̂ : J1,= −→ U2

(A11, A12, A21, 0) 7−→ (−A21, A12, A11, 0) = (∂, d, A11)

is a well-defined bijection.

Proof.
Well-defined: Observe ∂d = (−A21) · A12 = −A12A21 = D and that ∂ = −A21,
d = A12 and A11 are all strictly positive integers. Also, 0 6 A12 + A21 < A11

implies 0 6 d − ∂ < A11, thus 0 < ∂ 6 d. Next, A21 < − |A12 + A21| implies
−∂ < A11 − d < ∂. This yields d − ∂ < A11 < d + ∂ and since A11 is an integer we
have d− ∂ + 1 6 A11 6 d + ∂ − 1. Hence ν̂ maps into U2 and so is well-defined.
Injectivity: This follows naturally.
Surjectivity: Let (∂, d, A11) ∈ U2 be arbitrary. Then consider g = (A11, d,−∂, 0) =
(a11, a12, a21, 0). We have det(g) = A11 · 0 − (d)(−∂) = ∂d = D. Next, 0 < ∂ 6 d
implies 0 6 d− ∂ so 0 6 a12 + a21. Further, d− ∂ + 1 6 A11 − d 6 d + ∂ − 1 implies
d − ∂ < A11 < d + ∂ and so |A11 − d| < ∂. Using a21 = −∂, a12 = d and a11 = A11

yields a21 < − |a11 − a12|. Thus g lies in J1,=. We note that ν̂(g) = (−a21, a12, a11) =
(∂, d, A11).
Hence ν̂ is surjective and therefore is a bijection.

Corollary 4.3.13.

Let ω =

{
−1 + 2

√
D D = k2 for some k ∈ Z>0

0 otherwise
, as found in the proof of Theorem

4.2.10. Then

S0 = ω +
∑

∂
0<∂6d

∂d=D

(2∂ − 1) .

Proof.
By Lemma 4.3.12 we have S0 = |U2|. By the construction of U2 we can pick any pair
(∂, d) such that ∂d = D and 0 < ∂ 6 D, and then 1 6 d− ∂ + 1 6 A11 6 d + ∂ − 1
implies there is at least one value of A11 for each such pair. By Corollary 4.2.7 we
see that there are 2∂ − 1 possible choices for A11 for each pair (∂, d).

Hence we have S0 = |U2| =
∑
∂∈Z>0
0<∂6d

∂d=D

(2∂ − 1).

Applying our definition for ω we get

S0 = ω +
∑
∂∈Z>0
0<∂<d
∂d=D

(2∂ − 1) .
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4.4 A Formula for the Complete Class Number of Bilinear Forms with
Determinant D

In this section we finish our derivation of Kronecker’s formula for the complete class
number of positive definite bilinear forms with determinant D.

Recall from earlier ω =

{
−1 + 2

√
D if D = k2

0 otherwise
and σ(D) =

∑
d|D

d.

Definition 4.4.1.
Let ∂, d ∈ Z>0 be such that ∂d = D. Then we define Ψ(D) =

∑
0<∂<d
∂d=D

(d− ∂).

Lemma 4.4.2.

Let D ∈ Z>0, then 2
∑

0<∂<d
∂d=D

∂ =

{
σ(D)−Ψ(D)−

√
D if D = k2

σ(D)−Ψ(D) otherwise.

Proof.
Let D ∈ Z>0, we split the proof into two cases, when D is a perfect square, and
otherwise.
First suppose D is a perfect square, then we have

σ(D)−Ψ(D)−
√
D =

∑
d|D

d−
∑

0<∂<d
∂d=D

(d− ∂)−
√
D

=
∑
√
D<d

∂d=D

d +
∑
d<
√
D

∂d=D

d +
√
D −

∑
0<∂<d
∂d=D

d +
∑

0<∂<d
∂d=D

∂ −
√
D

= 2
∑

0<∂<d
∂d=D

∂.

Now suppose D is not a perfect square, then we never have ∂ = d =
√
D. So we have

σ(D)−Ψ(D) =
∑
d|D

d−
∑

0<∂<d
∂d=D

(d− ∂)

=
∑

0<d<
√
D

d|D

d +
∑

0<∂<
√
D

∂|D

∂

= 2
∑

0<∂<d
∂d=D

∂.

Theorem 4.4.3.
Let D ∈ Z>0, then

Clc (D) =

{
6Ψ(D) + 6σ(D) + 1 if D = k2

6Ψ(D) + 6σ(D) otherwise.
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Proof.
From Equation 3.19 we have

Clc (D) = M +N + 2 (2 (K + L) + P0 +Q0 −R0 − S0)

= ω + 4
∑
∂d=D
0<∂<d

∂ + 2 (2 (K + L) + P0 +Q0 −R0 − S0) by Theorem 4.2.10

= ω + 4
∑
∂d=D
0<∂<d

∂ + 2

2
∑
∂d=D
0<∂<d

(d− ∂ − 1)

︸ ︷︷ ︸
Theorem 4.1.9

+

2

 4σ(D)︸ ︷︷ ︸
Corollary 4.3.7

−
∑
∂d=D
0<∂<d

(2∂ − 1)

︸ ︷︷ ︸
Corollary 4.3.11

−

ω +
∑
∂d=D
0<∂<d

(2∂ − 1)


︸ ︷︷ ︸

Corollary 4.3.13


= ω − 2ω + 4

∑
∂d=D
0<∂<d

∂ + 2

2

 ∑
∂d=D
0<∂<d

[(d− ∂ − 1)− (2∂ − 1)]

+ 4σ(D)


= −ω + 4

∑
∂d=D
0<∂<d

∂ + 4
∑
∂d=D
0<∂<d

(d− 3∂) + 8σ(D)

= −ω + 4
∑
∂d=D
0<∂<d

∂ + 4
∑
∂d=D
0<∂<d

(d− ∂)− 4
∑
∂d=D
0<∂<d

2∂ + 8σ(D)

= −ω + 4
∑
∂d=D
0<∂<d

(d− ∂)− 4
∑
∂d=D
0<∂<d

∂ + 8σ(D)

= −ω + 4Ψ(D)− 2

({
σ(D)−Ψ(D)−

√
D

σ(D)−Ψ(D)

)
+ 8σ(D) by Lemma 4.4.2

=

{
1− 2

√
D + 6Ψ(D) + 6σ(D) + 2

√
D if D = k2

6Ψ(D) + 6σ(D) otherwise.

=

{
6Ψ(D) + 6σ(D) + 1 if D = k2

6Ψ(D) + 6σ(D) otherwise

4.5 An Application of the Complete Class Number Formula

In this section we develop a series of applications of the complete class number for-
mula, Theorem 4.4.3. We first prove a lower bound on the number of proper equiv-
alence classes of positive definite bilinear forms of determinant D ∈ Z>0. Then we

130



derive a formula for the proper class number for positive definite bilinear forms of
determinant D ∈ Z>0 and examine a consequence of this. At the end we prove three
theorems which strengthen our lower bound based upon the primality and congruence
modulo 12 of the determinant.

We first develop a couple of well-known lemmas and a theorem that will be needed
to prove our results in this section.

Lemma 4.5.1.
Let p be a prime such that p > 3. Then −3 is a square modp if and only if p = 3 or
p ≡ 1 mod 3.

Proof.
(⇒) First suppose p = 3, then m2 ≡ −3 mod p is equivalent to m2 ≡ 0 mod 3 and
it is straightforward to see m = 0 is one such solution. Now assume p ≡ 1 mod 3,
then since the multiplicative group of Z/pZ is a cyclic group of order p − 1, there

exists an element a of multiplicative order p− 1. Let b = a
p−1
3 , then b 6≡ 1 mod p yet

b3 ≡ 1 mod 3. Since b3 − 1 = (b− 1)(b2 + b+ 1) it follows that b2 + b+ 1 ≡ 0 mod p.
Now observe (2b + 1)2 + 3 = 4b2 + 4b + 4 = 4(b2 + b + 1) ≡ 0 mod p and thus
(2b+ 1)2 ≡ −3 mod p. That is, −3 is a square modp.
(⇐) Assume m2 ≡ −3 mod p. If m is even then observe p − m is odd (as p is a
prime and not 2) and satisfies (p − m)2 = p2 − 2mp + m2 ≡ −3 mod p. Therefore
without loss of generality we may assume m is odd. Write m = 2l + 1 and first deal
with l = 1. Then 32 ≡ −3 mod p, so p|12 and since p > 2 it follows that p = 3.
Now assume l > 1 as l = 0 corresponds to p = 2. We have (2l + 1)2 + 3 ≡ 0 mod p
and thus 4l2 + 4l + 4 ≡ 0 mod p. This implies 4(l2 + l + 1) ≡ 0 mod p, consequently
l2 + l+ 1 ≡ 0 mod p. However, l3− 1 = (l− 1)(l2 + l+ 1) and thus l3− 1 ≡ 0 mod p.
Since l 6= 1, |l| = 3 follows immediately. Hence we have an element l of order 3, and
this forms a subgroup within a group of order p − 1. Therefore 3|(p − 1) and thus
p ≡ 1 mod 3.

Theorem 4.5.2.
Let p be a prime. Then p = x2 + xy + y2 for some integers x, y if and only if p = 3
or p ≡ 1 mod 3.

Proof.
(⇒) Suppose p is a prime and p = x2 + xy + y2 for some integers x and y. Recall
t2 ≡ 0, 1 mod 3, with 0 occurring if and only if 3 | t. Since p is prime, it follows that
at least one of x, y is not divisible by 3. Therefore without loss of generality we have
x2 ≡ 1 mod 3. We immediately see if 3 | y then p ≡ 1 mod 3. Thus we now suppose
3 - y and hence y2 ≡ 1 mod 3. It follows that xy ≡ 1 mod 3 or xy ≡ 2 mod 3. In
the first instance we have p ≡ 0 mod 3 however, p is prime and hence p = 3. In the
second instance it is straightforward to verify p ≡ 1 mod 3.
(⇐) Suppose p is a prime such that p ≡ 1 mod 3. By Lemma 4.5.1 there exists an
integer m such that m2 ≡ −3 mod p. We may assume m is odd as we may replace m
with p−m if needed. Writing m2+3 = pn we see 4 | pn as m is odd. Since p is prime,
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it follows that 4 | n and we let n = 4r. Thus m2 + 3 = 4pr. Consider the binary
quadratic form, px2 +mxy + ry2, which has discriminant m2 − 4pr = −3 (Note this
is the usual definition of the discriminant - not the one due to Kronecker). Since the
proper class number is 1 for binary quadratic forms with discriminant −3, it follows
that x2 + xy + y2 and px2 + mxy + ry2 represent the same integers. In particular,
there exist integers x and y such that p = x2 + xy + y2.

We now develop our first application of Kronecker’s formula for the complete class
number.

Lemma 4.5.3.
The proper class number satisfies Clc (D) 6 6Cl+ (D), with equality if and only if
there are no proper automorphs for any bilinear form of determinant D.

Proof.
By Lemma 2.5.22 and Lemma 2.5.26 we know if there are no proper automorphs of a
bilinear form, then its proper equivalence class contains exactly six complete equiv-
alence classes. From Summary 2.5.27 if at least one proper automorph exists then
there are less than six complete equivalence classes within the proper equivalence
class.
Hence Clc (D) 6 6Cl+ (D).
We now prove when equality holds.
(⇒). Assume Clc (D) = 6Cl+ (D), then every proper equivalence class must contain
exactly six complete equivalence classes. Lemma 2.5.22 and Summary 2.5.27 then
imply no proper automorphs exist for any bilinear form with determinant D.
(⇐) Assume there are no bilinear forms of determinant D that have a proper auto-
morph. Then Lemma 2.5.22 and Summary 2.5.27 imply every proper equivalence class
contains exactly six complete equivalence classes. Therefore Clc (D) = 6Cl+ (D).

Lemma 4.5.4.
Let D > 1 then the complete class number satisfies 12D 6 Clc (D), with equality if
and only if D is prime.
When D = 1 we have Clc (D) = 7.

Proof.
Firstly, let D = 1, then Clc (D) = 6Ψ(D) + 6σ(D) + 1 = 7. Now assume D > 1 and
apply Theorem 4.4.3 as follows:

Clc (D) =

{
6Ψ(D) + 6σ(D) + 1 if D = k2

6Ψ(D) + 6σ(D) otherwise

> 6Ψ(D) + 6σ(D)

= 6
∑
∂d=D
0<∂<d

(d− ∂) + 6
∑
d|D

d

= 6
∑
∂d=D
0<∂<d

(d− ∂) + 6
∑
d|D

0<d<
√
D

d + 6
∑
d|D√
D<d

d + 6
∑
d|D

d=
√
D

d
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> 6
∑
∂d=D
0<∂<d

(d− ∂) + 6
∑
d|D

0<d<
√
D

d + 6
∑
d|D√
D<d

d

= 6
∑
∂d=D
0<∂<d

2d

> 12D as d = D is always included in the summation.

We now examine when equality holds.
(⇒) Suppose Clc (D) = 12D, then equality holds throughout above. This means D

cannot be a perfect square. It also implies 6
∑
∂d=D
0<∂<d

2d = 12D and so the only divisor

we may sum over is d = D itself. Therefore D is prime.
(⇐) Suppose D is prime, it is straightforward to check equality holds throughout our
application of Theorem 4.4.3, thus Clc (D) = 12D.

Corollary 4.5.5.
The proper class number satisfies Cl+ (D) > 2D.

Proof.
Applying Lemmas 4.5.3 and 4.5.4 we get 12D 6 Clc (D) 6 6Cl+ (D). Hence 2D 6
Cl+ (D).

Theorem 4.5.6.
The proper class number satisfies Cl+ (D) = 2D if and only if D is a prime and
D ≡ 11 mod 12.

Proof.
From Corollary 4.5.5 we have Cl+ (D) > 2D.
(⇒) Assume Cl+ (D) = 2D, then equality must hold throughout the proof of Corol-
lary 4.5.5. Thus Lemma 4.5.4 yields D is prime and Lemma 4.5.3 implies there are no
proper automorphs for any bilinear form with determinant D. Therefore D must be a
prime such that D does not fall into one of the first four rows of Summary 2.3. Thus
D is a prime and cannot be written as either D = A2

11, D = 3A2
11, D = A2

11 +A2
12, or

D = (A12 + A21)
2 − A12A21 = A2

12 + A12A21 + A2
21.

Clearly, D being prime and D = A2
11 or D = 3A2

11 is an impossibility except when
D = 3. Further, a prime p may be expressed as a sum of two integer squares if and
only if p ≡ 1 mod 4 (“Fermat’s Theorem on Sums of Two Squares”, see [Za1990]).
Therefore we must have D = 2, D = 3 or D ≡ 3 mod 4.
Next, Theorem 4.5.2 implies a prime D such that D = A2

12 + A12A21 + A2
21 occurs

if and only if D = 3 or D ≡ 1 mod 3. However, the only way to write D = 3 as
D = A2

12 + A12A21 + A2
21 is using A12 = A21 = 1. This breaks the condition found

in row three of Summary 2.3 for a proper automorph to exist. Therefore D = 3 is a
special case to be checked; from Example 2.4.40 we see Cl+ (3) = 8 = 2 ·D+ 2. Thus
we must have D ≡ 2 mod 3. Using this along with D = 2 or D ≡ 3 mod 4 implies
D = 2 or D ≡ 11 mod 12. Example 2.4.39 shows Cl+ (2) = 5 = 2 ·D + 1 and hence
we must have D ≡ 11 mod 12.
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(⇐) Assume D is a prime number such that D ≡ 11 mod 12. Then any reduced
bilinear form with this determinant, cannot fall into one of the first four rows of
Summary 2.3. This is because the first row requires D ≡ 1 mod 4 or D = 2, the third
requires D ≡ 1 mod 3 or D = 3, and the second and fourth imply D is not prime.
Therefore there are no proper automorphs and thus every proper equivalence class
contains exactly six complete equivalence classes. Hence Clc (D) = 6Cl+ (D). Since
D is prime, Lemma 4.5.4 yields 12D = Clc (D) and thus we have Cl+ (D) = 2D.

We now develop a couple of well-known results in order to easily explore the proper
class number via Theorem 4.4.3.

Theorem 4.5.7 (Ireland & Rosen Proposition 17.6.1).
Let n be a positive integer, then the number of integral solutions (x, y), x > 0, y > 0

to the equation x2 + y2 = n is
∑
d|n

χ(d), where χ(d) =


1 if d ≡ 1 mod 4
0 if d ≡ 0 mod 2
−1 if d ≡ 3 mod 4.

Proof.
See Theorem A.1.9 or Ireland & Rosen pages 279-280, [IR1990].

Corollary 4.5.8.
The number of integral solutions (x, y), x > 0, y ∈ Z to the equation x2 + y2 = n is
given by 

2
(∑
d|n

χ(d)
)
− 1 if n is a perfect square

2
∑
d|n

χ(d) otherwise.

Proof.
First suppose n is not a perfect square, thus 6= x2 + 02 so y 6= 0. Let (x, y) be a
solution to n = x2 + y2 with x > 0, y > 0. Then the map (x, y) 7→ (x,−y) is a
bijection between this set and the set of solutions where x > 0 and y < 0. Hence
when n is not a perfect square, we apply Theorem 4.5.7 to get the number of integral

solutions is 2
∑
d|n

χ(d).

Now suppose n is a perfect square. Observe the only solution for which y = 0 is the
solution (

√
n, 0) as we are restricting to x > 0. Therefore, all other solutions have

y 6= 0 and we may apply the same argument as in the case where n is not a perfect
square. Under this counting argument we will have counted (

√
n, 0) twice and so we

get the number of integral solutions is just 2
(∑
d|n

χ(d)
)
− 1.

We now show χ is a multiplicative function.

Lemma 4.5.9.
Let m,n ∈ Z then χ(mn) = χ(m)χ(n).
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Proof.
Let m,n ∈ Z and consider the integral function χ as defined in Theorem 4.5.7. Clearly
if 2|mn then 2|m or 2|n (or both). Consequently χ(mn) = 0 = χ(m)χ(n).
Now suppose mn ≡ 1 mod 4. Then it follows m ≡ n mod 4 and thus χ(m) = χ(n).
Hence χ(mn) = 1 = χ(m)χ(n).
Lastly, if mn ≡ 3 mod 4 then 2 - m, 2 - n and m 6≡ n mod 4. Hence χ(m) 6= χ(n)
and thus χ(mn) = −1 = χ(m)χ(n).
Hence it follows that χ is a multiplicative function.

Our next result is a rephrasing of LeVeque’s Theorem 1-6. Note that LeVeque uses
proper to mean gcd(x, y) = 1.

Theorem 4.5.10 (LeVeque Theorem 1-6).
Let ω(f) be the number of automorphs [proper and improper] of f = ax2+bxy+cy2, an
integral positive form of discriminant ∆ = b2−4ac. Let n be a positive integer. Then
the number of proper representations of n by f is ω(f) times the number of forms
g that are equivalent to f . In particular, if there is only one class of discriminant
∆, the number of proper representations is ω(f) times the number of solutions to the
congruence m2 ≡ −∆ mod 4n, 0 6 m < 2n.

Proof.
See LeVeque pages 20-21, [LeV1956].

We now introduce a definition and prove a theorem that is directly derived from
LeVeque’s result above.

Definition 4.5.11.

Let N ∈ Z>0 and write N = 2a · 3b ·

(
r∏
i=1

peii

)(
s∏
j=1

q
fj
j

)
, where pi, qj are primes such

that pi ≡ 1 mod 3, qj ≡ 2 mod 3.
We define the quantity nN as follows:

nN =

{
2r if a = 0, 0 6 b 6 1, s = 0
0 otherwise.

We present a quick proof that nN is a multiplicative function.

Lemma 4.5.12.
The function nN as defined in Theorem 4.5.13 is a multiplicative function.

Proof.
First observe n1 = 20 = 1. Now let a, b ∈ N be such that gcd(a, b) = 1. Then if 2 | a
or 2 | b we get nab = 0 = na · nb. Also, if 9 | a or 9 | b then 9 | ab and we have
nab = 0 = na ·nb. Further, due to gcd(a, b) = 1 we cannot have 9 | ab where 3 | a and
3 | b. Now note if pj is a prime such that pj ≡ 2 mod 3 and it divides either a or b,
then pj | ab and we have nab = 0 = na · nb.
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Lastly, suppose gcd(a, b) = 1 and a, b are products of primes satisfying pi ≡ 1 mod 3.
Then ab = p

ea1
a1 · · · p

eak
ak p

eb1
b1
· · · pebnbn and we have

nab = 2ea1+···+eak+eb1+···+ebn

= 2ea1+···+eak · 2eb1+···+ebn
= na · nb.

Hence nN is a multiplicative function.

Theorem 4.5.13.
Let D ∈ Z>0 and assume D = x2 + xy + y2 for some x, y ∈ Z, (x, y) 6= (0, 0). Then
the number of representations of D in this manner is given by∑

N= D
a2

a>0,a2|D

6nN ,

where nN is defined in Definition 4.5.11.

Proof.
Let D be as above and (x, y) 6= (0, 0) such that D = x2+xy+y2. Let gcd(x, y) = a >
1, then x = as and y = at where gcd(s, t) = 1. Thus D = (as)2 + (as)(at) + (at)2 =
a2 (s2 + st+ t2) and consequently (s, t) is a proper representation of D

a2
.

Theorem 4.5.10 informs us that the number of proper representations of a positive
integer N as N = s2+st+t2 is six times the number of solutions to m2 ≡ −3 mod 4N ,
0 6 m < 2N . This is because the binary quadratic form x2 + xy+ y2 has six distinct
automorphs, discriminant b2 − 4ac = −3, and thus proper class number 1 (see Table
B2, [Fl1989, p.194]). Let nN be the number of such solutions. Then the number of
representations (proper and improper) of D as x2 + xy + y2 is given by∑

N= D
a2

a2|D

6nN .

Thus we now let N = D
a2

for some divisor a > 1 such that a2 | D and turn our
attention to calculating nN . Observe that N may or may not be square free depending
on its prime factorisation. Also, note N = 1 is possible when D is a perfect square.
Therefore we consider the equation m2 ≡ −3 mod 4N and for the moment we will
ignore the condition 0 6 m < 2N .
Write 4N = 2e2+2 · 3e3 ·

∏k
i=1 p

ei
i , where pi is a prime such that pi > 3, ei > 0, and

e2, e3 are non-negative. By the Chinese Remainder Theorem there is at least one
solution to m2 ≡ −3 mod 4N if and only if there is at least one solution to each of

m2 ≡ −3 mod 2e2+2

m2 ≡ −3 mod 3e3

m2 ≡ −3 mod pe11
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...

m2 ≡ −3 mod pekk .

We first consider m2 ≡ −3 mod 2e2+2 by examining m2 ≡ −3 mod 2. This has a single
solution, namely m = 1, 0 6 m < 2. Now we utilise Hensel’s Lemma with f(x) = x2+
3 and p = 2. We have f(1) = 12 +3 = 4 ≡ 0 mod 2 and f ′(1) = 2 ·1 ≡ 0 mod 2. Thus
m = 1 is not a simple root. We now consider m2 ≡ −3 mod 4, 0 6 m < 4 and observe
both m = 1 and m = 3 work. That is, f(1) = 4 ≡ 0 mod 4 and f(3) = 12 ≡ 0 mod 4,
and further we have f ′(1) = 2 ≡ 0 mod 2 and f ′(3) = 6 ≡ 0 mod 2. Therefore we
attempt to lift these two solutions to mod8. Consider m2 ≡ −3 mod 8, 0 6 m < 8.
We have f(1) = f(5) = f(3) = f(7) ≡ 4 mod 8 6≡ 0 mod 8 and therefore we cannot
lift to a solution mod8. Consequently the equation m2 ≡ −3 mod 2e2+2 will only
have solutions when e2 = 0. When e2 = 0 there are precisely two solutions, namely
m = 1 and m = 3. From this it follows that in order for there to be a solution to our
system, we require 2 - N . Therefore gcd(4, N) = 1.
Hence, by the Chinese Remainder Theorem it is sufficient to consider the number
of solutions to m2 ≡ −3 mod N and then multiply our answer by 2 when 2 - N .
Otherwise there are no solutions to the system.
Since we deduced 2 - N we now consider p = 3. Then the equation m2 ≡ −3 mod 3e3

has a solution if e1 = 1 (only m = 0 works), and vacuously has a solution (the empty
solution) if e3 = 0. We now apply Hensel’s Lemma to attempt to lift our solutions
to mod9. We have f(0) = 3 ≡ 3 mod 9 6≡ 0 mod 9 and so we cannot lift our only
solution. Hence the equation m2 ≡ −3 mod 3e3 has a solution if and only if e3 = 0
or e3 = 1 and thus 9 - N .
Finally, let pi be a prime such that pi > 3 and consider m2 ≡ −3 mod peii . Since
pi > 3, Lemma 4.5.1 implies the equation m2 ≡ −3 mod pi has a solution if and only
if pi ≡ 1 mod 3. Hence we require each pi that divides N to satisfy pi ≡ 1 mod 3 in
order for a solution to our system to exist. Let m be such that m2 ≡ −3 mod pi,
0 6 m < pi and apply Hensel’s Lemma with f(x) = x2 + 3. We have f(m) =
m2+3 ≡ 0 mod pi and m 6= 0 else we have −3 ≡ 0 mod pi, contradicting pi > 3. Thus
f ′(m) = 2 ·m ≡ (2 mod pi)(m mod pi) 6≡ 0 mod pi as 2 6≡ 0 mod pi and 0 < m < p.
Thus by Hensel’s Lemma we will have a solution to m2 ≡ −3 mod peii for any ei > 0.
However, we note pi − m is also a solution to m2 ≡ −3 mod pi. Applying Hensel’s
Lemma we have f ′(pi −m) = 2pi − 2m ≡ −2m mod pi 6≡ 0 mod pi as we observed
already 2m 6≡ 0 mod pi. Hence this solution is also lifted to solutions for m2 ≡
−3 mod peii . Therefore we will have 2 solutions to m2 ≡ −3 mod peii whenever p1 ≡
1 mod 3.
Consequently we have 2#pi≡1 mod 3 solutions to m2 ≡ −3 mod N if and only if N has
no prime divisors pi ≡ 2 mod 3, 2 - N and 9 - N . Otherwise there are no solutions.
We now reinstate the condition 0 6 m < 2N and note that all solutions m we have
found so far satisfy 0 6 m < N . Observe that we may obtain another solution by
adding N to m since (N + m)2 = N2 + 2Nm + m2 ≡ −3 mod N . Further, this
new solution satisfies N 6 N +m < 2N by construction. Therefore each solution m
such that 0 6 m < N produces another solution k in the range N 6 k < 2N . By
the reverse logic, any solution k such that k2 ≡ −3 mod N where N 6 k < 2N can
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produce a solution m where 0 6 m < N . Therefore there are 2 · 2#pi≡1 mod 3 solutions
to m2 ≡ −3 mod N , 0 6 m < 2N .
Finally we use the Chinese Remainder Theorem to consider the number of solutions
to m2 ≡ −3 mod 4N where 0 6 m < 2N . This equation immediately implies m
must be odd. Therefore since we deduced 2 - N in order for solutions to exist to
m2 ≡ −3 mod N , we see that the solutions to m2 ≡ −3 mod 4N are precisely the
odd solutions to m2 ≡ −3 mod N . Since 2 - N and m is odd, it follows that only one
of m, N + m is odd and therefore exactly half of the solutions to m2 ≡ −3 mod N ,
0 6 m < 2N are solutions to m2 ≡ −3 mod 4N , 0 6 m < 2N .
Hence the number of solutions to m2 ≡ −3 mod 4N , 0 6 m < 2N is given by nN
where nN is as defined in Definition 4.5.11.
This completes the proof.

Our goal now is to determine a formula for the proper class number for positive
definite bilinear forms of determinant D > 0. We let D ∈ Z>0 and assume we know
the prime factorisation for D. Then we can use Theorem 4.4.3 to compute Clc (D)
directly. However, we also know every proper equivalence class contains a unique
reduced positive definite bilinear form and that the proper equivalence class of such
a bilinear form contains exactly six complete equivalence classes unless the reduced
bilinear form has a non-trivial proper automorph. Thus we let u1, u2, u3 and u4
denote the number of reduced bilinear forms with automorphs in rows 1 through 4 of
Summary 2.3 for a given determinant D. Then we have

Clc (D) = 6 [Cl+ (D)− u1 − u2 − u3 − u4] + 3(u1 + u2) + 2(u3 + u4).

This is because only bilinear forms in rows 1 through 4 do not have 6 complete
equivalence classes within their proper equivalence class, and every proper equivalence
class contains a unique reduced bilinear form. Thus we multiply Cl+ (D) by 6 and
subtract multiples of 6 for those reduced bilinear forms having a non-trivial proper
automorph. Lastly, we add on the correct number of complete equivalence classes
within the respective proper equivalence class, based upon our results in Summary
2.3.
Rearranging this equation then yields

6Cl+ (D) = Clc (D) + 3(u1 + u2) + 4(u3 + u4). (4.1)

We now demonstrate how to count the quantities u1 + u2 and u3 + u4.

Lemma 4.5.14.
The number of positive definite reduced bilinear forms of determinant D > 0 having
a non-trivial proper automorph in either row 1 or row 2 of Summary 2.3 is given by

u1 + u2 =


2
(∑
d|D

χ(d)
)
− 1 if D = k2

2
∑
d|D

χ(d) if D 6= k2.
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Proof.
We need to investigate those positive definite reduced bilinear forms which look like(

x y
−y x

)
where x > 0. When y 6= 0 we have a row 1 bilinear form and when

y = 0 we have a row 2 bilinear form. Observe that there cannot be a bilinear form
which lies in both row 1 and row 2. Further, the determinant of these bilinear forms
is D = x2 + y2 where y = 0 is permitted. By Corollary 4.5.8 we get our result.

The next two lemmas will yield useful results about the quantity u1 + u2.

Lemma 4.5.15.
Let D > 0 be an integer and χ be defined as in Theorem 4.5.7. Then

∑
d|D

χ(d) > 0.

Proof.
It is straightforward to observe χ is a (completely) multiplicative function on the
integers. Consequently it follows that g(n) =

∑
d|n χ(d) is a multiplicative function

as well.
Let D ∈ Z>0 and write D = 2e0p

e1
1 · · · p

ek
k where e0 > 0 and ei > 1. Then

∑
d|D

χ(d) =

∑
d|2e0

χ(d)

∑
d|pe11

χ(d)

 · · ·
∑
d|pekk

χ(d)

 . (4.2)

We observe∑
d|2e0

χ(d) = 1 as only d = 1 is not divisible by 2

∑
d|peii

χ(d) =


ei + 1 if pi ≡ 1 mod 4 as all divisors are 1 mod 4
1 if pi ≡ 3 mod 4 and ei ≡ 0 mod 2
0 if pi ≡ 3 mod 4 and ei ≡ 1 mod 2.

Hence we see
∑

d|D χ(D) > 0.

Lemma 4.5.16.
Let D > 0 be an integer and χ be defined as in Theorem 4.5.7. Then

∑
d|D

χ(d) is odd

if and only if D is a perfect square or two times a perfect square.

Proof.
From Lemma 4.5.15 we may write D = 2e0p

e1
1 · · · p

ek
k and thus

∑
d|D

χ(d) =

∑
d|2e0

χ(d)

∑
d|pe11

χ(d)

 · · ·
∑
d|pekk

χ(d).

 .

Then clearly we cannot have any odd powers of primes congruent to 3 mod 4 else the
sum is zero. Similarly, we require all primes pi ≡ 1 mod 4 to satisfy ei+ 1 ≡ 1 mod 2.
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Thus ei ≡ 0 mod 2. Thus we cannot have any odd powers of primes congruent to
1 mod 4.
Consequently D = k2 or D = 2k2 as powers of 2 make no difference to the summation.

We now investigate the quantity u3 + u4 in a similar manner.

Lemma 4.5.17.
The number of positive definite reduced bilinear forms of determinant D > 0 having
a non-trivial proper automorph in either row 3 or row 4 of Summary 2.3 is given by

u3 + u4 =



( ∑
N= D

a2

a>0

3nN
)
− 1 if D = k2

∑
N= D

a2

a>0

3nN if D 6= k2.

Proof.
We need to investigate those positive definite reduced bilinear forms that look like(
x+ y x
y x+ y

)
where x + y > 0. When x = y we have a row 4 automorph,

otherwise we have a row 3 automorph. Observe these bilinear forms have determinant

D = (x + y)2 − xy = x2 + xy + y2. By Theorem 4.5.13 there are
∑
N= D

a2

a>0

6nN ways to

do this with (x, y) 6= (0, 0). Therefore if x+ y 6= 0, that is D 6= k2, then exactly half
of the solutions satisfy x + y > 0 while the remainder satisfy x + y < 0. Therefore

u3 + u4 =
∑
N= D

a2

a>0

3nN if D is not a perfect square.

Thus we now assume D is a perfect square and consequently we have the non-trivial
solutions (x,−x) and (−x, x). These are counted by our summation and are the only
pairs (x, y) that satisfy x + y = 0. However, we want only positive definite bilinear
forms, so we must subtract two before applying the same argument as in the D 6= k2

case. Hence when D is a perfect square we have u3 + u4 = 3
( ∑

N= D
a2

a>0

3nN
)
− 1.

We can now derive a formula for the proper class number for reduced positive definite
bilinear forms with determinant D.

Theorem 4.5.18.
Let D > 0 be an integer. Then the number of proper equivalence classes of positive
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definite bilinear forms with determinant D is given by

Cl+ (D) =



Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN if D 6= k2

Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN
)
− 1 if D = k2.

Proof.
We use Equation 4.1 and apply Lemmas 4.5.14 and 4.5.17 to get:

6Cl+ (D) = 6Cl+ (D) = Clc (D) + 3(u1 + u2) + 4(u3 + u4).

=



6Ψ(D) + 6σ(D) + 3 · 2
∑
d|D

χ(d) + 4 · 3
∑
N= D

a2

a>0

nN if D 6= k2

6Ψ(D) + 6σ(D) + 1+

3 ·
(
2
(∑
d|D

χ(d)
)
− 1
)

+ 4
(
3
( ∑

N= D
a2

a>0

nN
)
− 1
)

if D = k2

=



6Ψ(D) + 6σ(D) + 6
∑
d|D

χ(d) + 6 · 2
∑
N= D

a2

a>0

nN if D 6= k2

6Ψ(D) + 6σ(D) + 6
∑
d|D

χ(d) + 6 · 2
( ∑

N= D
a2

a>0

nN
)
− 6 if D = k2.

Consequently,

Cl+ (D) =



Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN if D 6= k2

Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN
)
− 1 if D = k2.

Corollary 4.5.19.
The proper class number for positive definite bilinear forms of determinant D, Cl+ (D),
is odd if and only if D = 2k2 or D = q2 where k, q ∈ Z, q ≡ 1 mod 2.

Proof.
We split into two cases depending on whether or not D is a perfect square.
Case 1: D 6= k2. Then Theorem 4.5.18 yields

Cl+ (D) = Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN
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= 2
∑
∂d=D
0<∂<d

d +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN .

Thus Cl+ (D) ≡ 1 mod 2 if and only if
∑

d|D χ(D) ≡ 1 mod 2. Applying Lemma

4.5.16 and recalling D 6= k2, this is if and only if D = 2k2.
Case 2: D = k2. Then Theorem 4.5.18 yields

Cl+ (D) = Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN

)
− 1

= 2
∑
∂d=D
0<∂<d

d +
√
D +

∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN

)
− 1.

Since D = k2 by Lemma 4.5.16 we know
∑

d|D χ(d) ≡ 1 mod 2 and thus Cl+ (D) ≡
1 mod 2 if and only if

√
D − 1 ≡ 0 mod 2. Yet this is if and only if

√
D ≡ 1 mod 2

and hence D = q2 for some q ∈ Z such that q ≡ 1 mod 2.

Theorem 4.5.20.
Let D be an odd square then Cl+ (D) = 2D + L where L ≡ 1 mod 4.

Proof.
Let D = q2 where q ∈ Z>0, q ≡ 1 mod 2. By Lemma 4.5.19 we know Cl+ (D) is odd
and thus L ≡ 1 or 3 mod 4. We examine the formula for Cl+ (D) given in Theorem
4.5.18.
Observe Ψ(D) ≡ 0 mod 4 since D ≡ 1 mod 4 implies ∂ ≡ d mod 4 and so (d− ∂) ≡
0 mod 4. Now write D =

∏k
i=1 p

ei
i

∏m
j=1 q

fj
j where pi ≡ 1 mod 4 and qj ≡ 3 mod 4.

Note each ei and fj is even because D is a square. We also note σ is a multiplicative
function and thus

σ(D) =
n∏
i=1

σ (peii )
m∏
j=1

σ
(
q
fj
j

)
.

Observe σ (peii ) ≡ ei + 1 mod 4 since peii ≡ 1 mod 4. Similarly, σ
(
q
fj
j

)
= 1 because

we have an alternating sequence of 1’s and −1’s, starting and finishing with 1. Hence

σ(D) ≡
n∏
i=1

(ei + 1) mod 4

=
∑
d|D

χ(d) mod 4.

This follows from Equation 4.2 found in Lemma 4.5.15.
Further, since D = q2, by Lemma 4.5.16 we have

∑
d|D χ(d) ≡ 1 mod 2 and thus

σ(D) +
∑

d|D χ(d) ≡ 2 mod 4.
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Now consider the term 2
∑
N= D

a2

a>0

nN . By the definition of nN (see Definition 4.5.11)

we know nN is either 0 or a power of 2 unless N = 1 or N = 3. Consequently

2
∑
N= D

a2

a>0

nN ≡ 0 mod 4 unless we have N = 1 or N = 3. In order to have N = 1 this

means D is a square which we certainly have; while in order to have N = 3 this means

D = 3t2, which cannot happen as D = q2. Therefore we deduce 2
∑
N= D

a2

a>0

nN ≡ 2 mod 4.

Hence we deduce Cl+ (D) ≡ 2 + 2− 1 = 3 mod 4, where it is important to recall the
−1 comes from D being square.
Since D ≡ 1 mod 4 and we are writing Cl+ (D) = 2D + L, it follows that 2D + L ≡
3 mod 4 and therefore L ≡ 1 mod 4.

Having demonstrated Cl+ (D) > 2D for all D ∈ Z>0, and derived a formula to
compute the proper class number in terms of divisors of the determinant it is natu-
ral to ask what the next lower bounds are. We first investigate when Cl+ (D) =
2D + 1, 2D + 3, 2D + 5 and 2D + 7, and then prove three theorems to address
Cl+ (D) = 2D + 2, 2D + 4 and 2D + 6. Observe the special cases of D = 1 and
D = 2 have already been dealt with separately via Examples 2.4.38 and 2.4.39. In
these two cases we have shown Cl+ (1) = 3 = 2D + 1 and Cl+ (2) = 5 = 2D + 1.

To streamline the proofs we will use Lemmas 4.5.14 and 4.5.17 to give a description
for the number of non-trivial proper automorphs in the case where D = p2, p a prime.

Lemma 4.5.21.
Let D = p2 where p is prime. Consider the set of positive definite reduced bilinear
forms with determinant D = p2, then number of such bilinear forms having a non-
trivial proper automorph is:

u1 + u2 + u3 + u4 =


3 if p = 2, 3 or p ≡ 11 mod 12
7 if p ≡ 5 mod 12
9 if p ≡ 7 mod 12
13 if p ≡ 1 mod 12.

Further,

3(u1 + u2) + 4(u3 + u4) =


11 if p = 2, 3 or p ≡ 11 mod 12
23 if p ≡ 5 mod 12
35 if p ≡ 7 mod 12
47 if p ≡ 1 mod 12.

Proof.
The number of reduced bilinear forms with non-trivial proper automorphs is given
by u1 + u2 + u3 + u4, see Equation 4.1. We consider the primes mod12 and apply
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Lemmas 4.5.14 and 4.5.17.
Observe

χ(1) + χ(p) + χ(p2) =

{
3 if p ≡ 1 mod 4
1 if p ≡ 3 mod 4 or p = 2.

Case 1: p = 2, then u1 + u2 + u3 + u4 = 2(χ(1) +χ(2) +χ(4))− 1 + 3(0 + 20)− 1 = 3.
Case 2: p = 3, then u1 + u2 + u3 + u4 = 2 · 1− 1 + 3(0 + 20)− 1 = 3.
Case 3: p ≡ 11 mod 12, then p ≡ 3 mod 4 and p ≡ 2 mod 3.
Hence u1 + u2 + u3 + u4 = 2 · 1− 1 + 3(0 + 20)− 1 = 3.
Case 4: p ≡ 5 mod 12, then p ≡ 1 mod 4 and p ≡ 2 mod 3.
Hence u1 + u2 + u3 + u4 = 2 · 3− 1 + 3(0 + 20)− 1 = 7.
Case 5: p ≡ 7 mod 12, then p ≡ 3 mod 4 and p ≡ 1 mod 3.
Hence u1 + u2 + u3 + u4 = 2 · 1− 1 + 3(21 + 20)− 1 = 9.
Case 6: p ≡ 1 mod 12, then p ≡ 1 mod 4 and p ≡ 1 mod 3.
Hence u1 + u2 + u3 + u4 = 2 · 3− 1 + 3(21 + 20)− 1 = 13.
This covers all possibilities for p being prime and hence we have our result.
Applying the same reasoning yields

3(u1 + u2) + 4(u3 + u4) =


11 if p = 2, 3 or p ≡ 11 mod 12
23 if p ≡ 5 mod 12
35 if p ≡ 7 mod 12
47 if p ≡ 1 mod 12.

Theorem 4.5.22.
Assume D = 2k2 and Cl+ (D) = 2D + L for some k, L ∈ Z>0, k > 1. Then k 6 L

4
.

Further, if k = 1 (D = 2) then Cl+ (D) = 2D + 1.

Proof.
First note by Corollary 4.5.19 that we must have L ≡ 1 mod 2
Now let D = 2k2, k > 1 then by Theorem 4.5.18 we have

Cl+ (D) = 2D + 2
∑

0<∂<d<D
∂d=D

d +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN . (4.3)

Observe N = 2k2

a2
and so 2 | N always. Hence 2

∑
N= D

a2

a>0

nN = 0. We also know
∑
d|D

χ(d) >

0, 2k | D, and in particular D > 2k >
√

2k =
√
D as k > 1. Thus 2

∑
0<∂<d<D

∂d

d > 2k.

Hence we have 2D + L = Cl+ (D) > 2D + 2(2k) and so L > 4k. That is, 1 < k 6 L
4
.

Whereas if k = 1 (i.e., D = 2) then the first sum in 4.3 is empty and so Cl+ (D) =
2D +

∑
d|2 χ(d) = 2D + 1.
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Corollary 4.5.23.
Let D = 2k2 then Cl+ (D) = 2D+ 1 only when D = 2 and Cl+ (D) = 2D+L cannot
occur for L ∈ {3, 5, 7}.

Proof.
From Theorem 4.5.22 we know when k = 1, D = 2 and Cl+ (D) = 2D + 1. Then
observe for L ∈ {1, 3, 5, 7} we have k 6 L

4
< 2. Thus we cannot have D = 2k2 and

Cl+ (D) = 2D + L for L ∈ {3, 5, 7}.

Theorem 4.5.24.
Let D = q2, q ∈ Z>0, q ≡ 1 mod 2 then there are no values of q such that Cl+ (q2) =
2D+ 3 or 2D+ 7. Further, only q = 1 yields Cl+ (q2) = 2D+ 1 and only q = 3 yields
Cl+ (q2) = 2D + 5.

Proof.
First observe from Theorem 4.5.18 that Cl+ (1) = 3 = 2D + 1. Now let D > 1 and
apply the theorem to get

2D + L = Cl+ (D) = 2D +
∑

0<∂<d<D
∂d=D

+
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN + q − 1. (4.4)

We note that each of the summations is greater than or equal to 0.
We now examine q − 1. For L = 1 we see q − 1 > L for q > 2 and therefore only
q = 1 is possible since q is odd. Thus only q = 1 satisfies Cl+ (q2) = 2D + 1.
For L = 3 we see q − 1 > 3 for q > 4. Thus q = 1 or q = 3; however q 6= 1 by above
so we consider q = 3. This is the same as D = 9 and applying Theorem 4.5.18 yields
Cl+ (9) = 2D + 5. Hence no such q exists so that Cl+ (q2) = 2D + 5.
For L = 5 we see q − 1 > 5 for q > 6. Thus q = 1, q = 3 or q = 5. By above
we know q 6= 1 and q = 3 works. Applying Theorem 4.5.18 with q = 5 yields
Cl+ (52) = 59 = 2D + 9.
Lastly, for L = 7 we see q − 1 > 7 for q > 8. Thus q = 1, q = 3, q = 5 or
q = 7. By above we know only q = 7 is a possibility. Applying Theorem 4.5.18 yields
Cl+ (49) = 111 = 2D + 13. Hence no such q exists.

Corollary 4.5.25.
We have

Cl+ (D) = 2D + 1⇔ D = 1 or D = 2

Cl+ (D) 6= 2D + 3

Cl+ (D) = 2D + 5⇔ D = 9

Cl+ (D) 6= 2D + 7.

Proof.
By Corollary 4.5.19 we have Cl+ (D) is odd if and only if either D = 2k2 or D = q2,
q ≡ 1 mod 2. Applying Corollary 4.5.23 and Theorem 4.5.24 then gives the result.
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Theorem 4.5.26.
Let D > 2 be an integer. Then Cl+ (D) = 2D + 2 if and only if D is a prime such
that D = 3 or D ≡ 5 mod 12.

Proof.
(⇐) Firstly, if D = 3 then Example 2.4.40 shows Cl+ (3) = 8 = 2 ·3+2. Thus assume
D is a prime such thatD ≡ 5 mod 12. We now examine Summary 2.3 for the existence
of reduced bilinear forms with non-trivial proper automorphs. Since D is prime, we
cannot have the second or fourth row. Since D ≡ 5 mod 12 implies D ≡ 2 mod 3
we cannot have the third row (see Theorem 4.5.2). Therefore if we have such an
automorph, it comes from the first row. Therefore we may write D = a2 + b2 where
a > 0, b 6= 0 and a, b ∈ Z. By Lemma 4.5.8 there are four ways to do this because
D ≡ 5 mod 12 implies D ≡ 1 mod 4 and so χ(1) = χ(D) = 1. Hence there four
positive definite reduced bilinear forms with non-trivial (row 1) proper automorphs,
each of which will contain three complete equivalence classes within their respective
proper equivalence class. Therefore we have

Clc (D) = 6[Cl+ (D)− 4] + 4 · 3
= 6Cl+ (D)− 12.

By Lemma 4.5.4, D prime implies 12D = Clc (D) and so 12D = 6Cl+ (D)−12. Hence
Cl+ (D) = 2D + 2.

(⇒) Assume Cl+ (D) = 2D + 2, then 6Cl+ (D) − 12 = 12D. First suppose D is not
a perfect square. Then by Lemma 4.5.4 we have Clc (D) > 12D with equality if and

only if D is prime. Therefore if D is not prime then we have Clc (D) = 12
∑
∂d=D
0<∂<d

d >

12D + 12
√
D as there must exist a divisor x of D such that

√
D < x < D. Thus we

have
6Cl+ (D)− 12 = 12D < 12D + 12

√
D < Clc (D) 6 6Cl+ (D) .

However, this is a contradiction because D not prime implies D > 3 and thus
12
√
D > 12. Therefore the interval [6Cl+ (D) − 12, 6Cl+ (D)] contains the subin-

terval [12D,Clc (D)], which had width at least 13. Therefore D is either a prime or
a perfect square.
Now assume D = k2, then if D = (pq)2 for some p, q ∈ Z>1, p 6= q, applying Lemma

4.5.4 we see Clc (D) = 12
∑
∂d=D
0<∂<d

d + 6
√
D + 1 > 12D + 12

√
D + 6

√
D + 1. This is

because without loss of generality we may assume p < q and we have
√
D < pq2 < D,

pq2 | D. This implies

6Cl+ (D)− 12 = 12D < 12D + 18
√
D + 1 < Clc (D) 6 6Cl+ (D) ,

which is clearly a contradiction as D > 2. Therefore if D is a perfect square then
D = p2, where p is a prime. In this situation Lemma 4.5.4 implies Kronecker’s
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complete class number formula is Clc (D) = 12D + 6
√
D + 1 and we apply Lemma

4.5.21 to this result. Thus

6Cl+ (D)− 12 = 12D

< 12D + 6
√
D + 1

= Clc (D)

= 6Cl+ (D)− 3(u1 + u2)− 4(u3 + u4) 6 6Cl+ (D)− 11.

Observe we have an immediate contradiction when the last inequality is strict. That
is we have a contradiction unless p = 2, 3 or p ≡ 11 mod 12. However, if p = 2, p = 3
or p ≡ 11 mod 12 then 12D + 6

√
D + 1 > 12D + 6 · 2 + 1 = 12D + 13, giving a

contradiction. Thus D 6= p2 and consequently D is a prime.
By Theorem 4.5.6 we know D 6≡ 11 mod 12 since Cl+ (D) = 2D + 2 6= 2D. Further,
D > 2 implies either D = 3, D ≡ 5 mod 12, or D ≡ 1 mod 3. From Example
2.4.40 we know Cl+ (3) = 2 · 3 + 2. Thus we may assume D > 3. Now assume
D ≡ 1 mod 3. Then u3 + u4 > 0 and we calculate its value via Lemma 4.5.17.
We have u3 + u4 = 6

∑
N= D

a2

a>0

nN = 6(nD + n1) = 6(21 + 20) = 18. Thus we get

6Cl+ (D) − 12 = 12D = Clc (D) = 6Cl+ (D) − 3(u1 + u2) − 18 which is clearly a
contradiction as u1 + u2 > 0. Therefore D > 3 and prime implies D ≡ 2 mod 3 and
so either D ≡ 5 mod 12 or D ≡ 11 mod 12. Yet we have ruled out D ≡ 11 mod 12
and so it follows that D ≡ 5 mod 12.

Theorem 4.5.27.
Let D be an integer such that D > 2. Then Cl+ (D) = 2D + 4 if and only if D = 4
or D is a prime such that D ≡ 7 mod 12.

Proof.
(⇐) Firstly, if D = 4 the Example 2.4.41 shows Cl+ (4) = 12 = 2 · 4 + 4. Thus
assume D is a prime such that D ≡ 7 mod 12 and thus D ≡ 3 mod 4. We exam-
ine Summary 2.3 for the existence of reduced bilinear forms with non-trivial proper
automorphs. Since D is prime, we cannot have the second or fourth row. Since
D ≡ 3 mod 4, Corollary 4.5.8 implies there are no row 1 automorphs and so only
row 3 remains. By Theorem 4.5.13 there are 6nD ways to do this, and we have
nD = 1 because D is a prime such that D ≡ 3 mod 4. Hence since D is prime we
have 12D = Clc (()D) = 6[Cl+ (D)−6]+6·2 = 6Cl+ (D)−24. Thus Cl+ (D) = 2D+4.

(⇒) Assume Cl+ (D) = 2D + 4 which, implies 6Cl+ (D) − 24 = 12D. First suppose

D is not a perfect square or a prime. Then we have Clc (D) = 12
∑
∂d=D
0<∂<d

d > 12D +

12
√
D > 12D + 24 since D > 2 and not a perfect square or prime implies D > 5.

Thus Clc (D) > 12D + 25 and we get

6Cl+ (D)− 24 = 12D < 12D + 25 6 Clc (D) 6 6Cl+ (D) .
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This is a contradiction because it implies the interval [6Cl+ (D)− 24, 6Cl+ (D)] con-
tains the subinterval [12D, 12D + 25]. Therefore either D is a prime or a perfect
square.
Suppose D is a perfect square, then if D = (pq)2 where without loss of generality

1 < p 6 q, we have Clc (D) = 12
∑
∂d=D
0<∂<d

d + 6
√
D + 1 > 12D + 12

√
D + 6

√
D + 1 >

12D + 37. This is because there exists at least one integer x such that x | D and√
D < x < D, and we use the fact D > 4 as D is a perfect square. Thus we have the

following contradiction

6Cl+ (D)− 24 = 12D < 12D + 37 6 Clc (D) 6 6Cl+ (D) .

Therefore if D is a perfect square then D = p2 where p is a prime. By Equation 4.1
we have Clc (D) = 6Cl+ (D)− 3(u1 + u2)− 4(u3 + u4) and thus we have

6Cl+ (D)−24 = 12D < 12D+6
√
D+1 = Clc (D) = 6Cl+ (D)−3(u1+u2)−4(u3+u4).

By Lemma 4.5.21 we have a contradiction unless 3(u1 + u2) + 4(u3 + u4) = 11 or 23.
Further, 3(u1+u2)+4(u3+u4) = 23 then p ≡ 7 mod 12 and thus D > 49. This implies
the interval [6Cl+ (D)− 24, 6Cl+ (D)− 23] contains the subinterval [12D, 12D + 43],
which is a contradiction. So we have 6Cl+ (D) − 24 = 12D < 12D + 6

√
D + 1 =

Clc (D) = 6Cl+ (D)− 11 and in the same vein, this is a contradiction unless D = 4.
Therefore if D is a perfect square then D = 4. In Example 2.4.41 we show directly
Cl+ (4) = 12 = 2 · 4 + 4.
Thus we now are left with the case when D is a prime. By Theorems 4.5.6 and
4.5.26 we know that D must satisfy either D ≡ 7 mod 12 or D ≡ 1 mod 12. Suppose
D ≡ 1 mod 12, then D ≡ 1 mod 4 and D ≡ 1 mod 3. Applying Lemmas 4.5.14 and
4.5.17 we see 3(u1 +u2)+4(u3 +u4) = 3(2(χ(1)+χ(D)))+4(3nD) = 3 ·4+12 ·2 = 36.
Therefore we have the following contradiction:

6Cl+ (D)−24 = 12D = Clc (D) = 6Cl+ (D)−3(u1+u2)−4(u3+u4) = 6Cl+ (D)−36.

Hence D is a prime such that D ≡ 7 mod 12.
Thus we have show if Cl+ (D) = 2 · D + 4 then either D = 4 or D is a prime such
that D ≡ 7 mod 12.

Theorem 4.5.28.
Let D be an integer such that D > 2. Then Cl+ (D) = 2D + 6 if and only if D = 6
or D is a prime such that D ≡ 1 mod 12.

Proof.
(⇐) Firstly, if D = 6 then Example 2.4.42 demonstrates Cl+ (6) = 18 = 2·6+6. Thus
now suppose D is a prime such that D ≡ 1 mod 12. By Lemma 4.5.4 this implies
12D = Clc (D). We now consider the existence of non-trivial proper automorphs.
Since D ≡ 1 mod 4 and D ≡ 1 mod 3 we have both row 1 and row3 automorphs. By
Equation 4.1, Lemma 4.5.14 and Lemma 4.5.17 we have

12D = Clc (D) = 6Cl+ (D)− 3(u1 + u2)− 4(u3 + u4) = 6Cl+ (D)− 36.
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Hence Cl+ (D) = 2D + 6.

(⇒) Let Cl+ (D) = 2D + 6, which implies 12D = 6Cl+ (D) − 36. First assume D

is neither a perfect square nor a prime. Then Clc (D) = 12
∑
∂d=D
0<∂<d

d > 12D + 12
√
D.

Since D is not a perfect square nor a prime, it follows that either D = 6 or D > 8.
The case D = 6 is examined in Example 2.4.42, where we have Cl+ (6) = 18 = 2·6+6.
So we now suppose D > 8. In fact, if D > 8 then we have 6Cl+ (D) − 36 = 12D <
12D+12

√
D 6 Clc (D) 6 6Cl+ (D), which is a contraction as 12D+12

√
D > 12D+37

as we assume D is not a perfect square. Thus we consider D = 8 carefully by itself.
We have Clc (8) > 12D + 12

√
8 > 12D + 33 and since 12 | Clc (8) it follows that

12D + 36 6 Clc (8). By applying Lemmas 4.5.14 and 4.5.17 to Equation 4.1 we have
Clc (8) = 6Cl+ (8) − 3 · 2 − 4 · 0 = 6Cl+ (8) − 6. Therefore we get the following
contradiction:

6Cl+ (8)− 36 = 12D < 12D + 36 6 Clc (8) = 6Cl+ (8)− 6.

Therefore if D is not a perfect square or prime then only D = 6 satisfies Cl+ (D) =
2D + 6.
Now suppose D is a perfect square ,then if D = (pq)2 where 1 < p 6 q we have
Clc (D) > 12D+12

√
D+6

√
D+1 as there is a divisor x of D such that

√
D < x < D.

Further, D is at least 16 and so we get the following contradiction:

6Cl+ (D)− 36 = 12D < 12D + 73 6 Clc (D) 6 6Cl+ (D) .

Therefore if D is a perfect square then D = p2 where p is a prime. Then we have
6Cl+ (D)−36 = 12D < 12D+6

√
D+1 = Clc (D) = 6Cl+ (D)−3(u1+u2)−4(u3+u4).

Applying Lemma 4.5.21 we see we have an immediate contradiction if p > 5. Further,
we note that p = 2 (D = 4) has already been considered, thus only p = 3 (D = 9)
remains. Applying Lemmas 4.5.14 and 4.5.17 along with Theorem 4.5.18 when D = 9
yields Cl+ (9) = 23 = 2 · 9 + 5 6= 2D + 6. Thus D cannot be a perfect square and
consequently is a prime.
Since D is a prime and we have already considered D = 2, 3 along with when D ≡
5, 7, 11 mod 12, it immediately follows that D is a prime such that D ≡ 1 mod 12.

We now give an observation which demonstrates the utility of being able to calculate
the complete class number via an independent method.

Observation 4.5.29.
Let D = pq where p < q are primes. Then D is not a perfect square. Apply Theorem
4.4.3 to get

Clc (D) = 6Ψ(D) + 6σ(D)

= 6
∑
∂d=D
0<∂<d

(d− ∂) + 6
∑
d|D

d
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= 12
∑
∂d=D
0<∂<d

d.

However, we know D = pq and so the divisors of D are 1, p, q, pq. Therefore
Clc (D) = 12pq + 12q = 12D + 12q. Hence if we know the complete class number for
D, or have the time to calculate it via the computation of all positive definite reduced
bilinear forms with determinant D, then we may recover q and thus p. That is, we
have a method for factorising D in the case where D = pq, p < q primes.

Remark 4.5.30.
Currently we have three independent ways to compute Clc (D) for any given positive
integer D. The first method is to use Kronecker’s formula found in Theorem 4.4.3.
This method is efficient but relies upon knowing the factors of D. The second method
is to compute the set of reduced bilinear forms with determinant D and then use our
knowledge of non-trivial proper automorphs to recount the complete class number.
This is currently a finite but lengthy process involving the bounds for A11, A12, A21

and A22 found in Lemmas 2.4.27 to 2.4.32.
Our third method comes from enumerating the sets B0 and B1 found in Theorem
3.1.29. It remains to calculate new bounds for A11, A12, A21 and A22 in this situation.
Thus it may be more efficient to compute Clc (D) using the third method than second.

Having proven Cl+ (D) > 2D it is somewhat reasonable to investigate when Cl+ (D) =
3D. This problem turns out to be trickier than hoped for, as the following two results
demonstrate.

Lemma 4.5.31.
Assume D = 1, D = 4 or D = 2p where p is a prime such that p ≡ 3 mod 4, then
Cl+ (D) = 3D.

Proof.
For D = 1 and D = 4 we calculated Cl+ (1) = 3 and Cl+ (4) = 12 respectively
in Examples 2.4.38 and 2.4.41. So assume D = 2p where p is a prime such that
p ≡ 3 mod 4. Applying Theorem 4.5.18 we get

Cl+ (D) = Cl+ (2p)

= Ψ(2p) + σ(2p) +
∑
d|2p

χ(d) + 2
∑
N=

2p

a2

a>0

nN

= (2p− 1) + (p− 2) + 1 + 2 + p+ 2p+ χ(1) + χ(2) + χ(p) + χ(2p)︸ ︷︷ ︸
=0 as p≡3 mod 4

+2n2p

= 6p− 3 + 3 + 2n2p

= 6p as 2 | 2p
= 3(2p)

= 3D.
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Attempting the converse however is much more difficult. It requires careful consider-
ation of several cases. The following lemma is a partial result for the converse.

Lemma 4.5.32.
Assume D is a positive integer such that Cl+ (D) = 3D. Then either D = 1, D = 4,
or D = 2p where p is a prime such that p ≡ 3 mod 4, or perhaps, D = k2 where k is
an odd composite integer.

Proof.
First suppose D 6= k2, D 6= 2k2 for some integer k. By Lemma 4.5.16 we know∑
d|D

χ(d) is even and we have

3D = Cl+ (D) = Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN

= 2
∑
∂d=D
0<∂<d

d +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN .

Thus it follows the right hand side of the above is even. Hence D must be even.
Then D = 2q for some integer q and we have D, q are divisors of D such that D,

q >
√
D. Thus 2

∑
∂d=D
0<∂<d

d > 2(D + q) = 2(D +
D

2
) = 3D.

Consequently, in order to avoid a contradiction (as the left hand side is 3D), we

must have equality throughout. This is because 2
∑
N= D

a2

a>0

nN > 0 and we have shown in

Lemma 4.5.15 that
∑
d|D

χ(d) > 0. Hence q must be a prime, else we would have more

terms in 2
∑
∂d=D
0<∂<d

d.

Since q is prime and we must have χ(1) + χ(2) + χ(q) + χ(2q) =
∑
d|D

χ(d) = 0, it

follows that χ(q) = −1 and thus q ≡ 3 mod 4. It is then straightforward to check

2
∑
N= D

a2

a>0

nN = 2n2q = 0 as 2 | 2q.

Therefore if D 6= k2, D 6= 2k2 and Cl+ (D) = 3D then D = 2p where p is a prime
such that p ≡ 3 mod 4.

Now suppose D = 2k2 for some integer k. By Lemma 4.5.16 it follows that
∑
d|D

χ(d)

is odd and we have

3D = Cl+ (D) = 2
∑
∂d=D
0<∂<d

d +
∑
d|D

χ(d) + 2
∑
N= D

a2

a>0

nN .
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Observe since D = 2k2, the left hand side is even, whilst
∑
d|D

χ(d) being odd makes

the right hand side odd. This is a contradiction. Hence D 6= 2k2.
Lastly suppose D = k2. We already know by direct calculation that Cl+ (1) = 3 and

Cl+ (4) = 12. Therefore we will assume k > 3. Lemma 4.5.16 implies
∑
d|D

χ(d) is odd

and applying Theorem 4.5.18 we get

3D = Cl+ (D) = Ψ(D) + σ(D) +
∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN

)
− 1

= 2
∑
∂d+d

0<∂<d

d +
√
D +

∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN

)
− 1.

We split into two cases according to whether k is odd or even.
Case 1: k is even.
Write k = 2j and thus D = 4j2. Observe both D and D

2
= 2j2 are divisors of D

that are larger than
√
D and hence we have 2

∑
∂d=D
0<∂<d

d > 2(D +
D

2
) = 3D. Therefore

we have a contradiction because
√
D − 1 1 (since D = k2, k > 2),

∑
d|D

χ(d) > 0 and

2
∑
N= D

a2

a>0

nN > 0.

Thus k must be odd.
Case 2: k is odd.

Suppose further that k is a prime. Then it follows that 2
∑
∂d=D
0<∂<d

d = 2D. Thus we wish

to show D 6=
√
D +

∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN

)
− 1. We examine the two summations

separately. We have ∑
d|D

χ(d) = χ(1) + χ(k) + χ(k2)

=

{
3 if k ≡ 1 mod 4
1 if k ≡ 3 mod 4.

Similarly we have

2
∑
N= D

a2

a>0

nN = 2(nk2 + n1)

=


2 if k = 3 as n9 = 0
2 if k ≡ 2 mod 3
6 if k ≡ 1 mod 3.
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Combining these two results together yields

√
D +

∑
d|D

χ(d) + 2
( ∑

N= D
a2

a>0

nN

)
− 1 =


5 if k = 3
k + 4 if k ≡ 5 mod 12
k + 8 if k ≡ 1 mod 12
k + 2 if k ≡ 11 mod 12
k + 6 if k ≡ 7 mod 12.

In each case, setting it equal to D = k2 and solving the resulting quadratic never
yields an integer value greater than or equal to 3 for k. Hence we deduce if D = k2

and Cl+ (D) = 3D then either D = 1, D = 4, or perhaps D = k2 where k is an odd
composite integer.

Observation 4.5.33.
At this stage in time I am unable to rule out the case D = k2 where k is an odd
composite integer. This is despite numerical evidence suggesting that this case should
not arise. This case is particularly difficult to prove because one can find values for
k where Cl+ (k2) > 3k2, but also find (many) values for k where Cl+ (k2) < 3k2. In
general, the more distinct prime factors k has, the more likely it is that Cl+ (k2) > 3k2.

Notes on Section 4.5

This section is not found in [Kr1897] or [We1974].

4.6 Determining values for P0, Q0, R0 and S0

We now return our attention to determining values for P0, Q0, R0 and S0. We will
do this in an analogous way to that of Section 4.3.
Recall the sets I0,= and I1,= from Definition 3.5.1:

I0,= = {(A11, A11, A21, A22) | det(A) = D,−A11 < A21 6 A11,

A11 + A22 ≡ 1 mod 2, A11 + A21 ≡ 0 mod 2} ,
I1,= = {(A11, A11, A21, A22) | det(A) = D,−A11 6 A21 < A11,

A11 + A22 ≡ 1 mod 2, A11 + A21 ≡ 0 mod 2} .

Further, remember P0 = |I0,=| and Q0 = |I1,=|.

Lemma 4.6.1.
Any bilinear form in the set I0,= satisfies A11 ≡ D mod 2 and A22 − A21 ≡ 1 mod 2.

Proof.
In I0,= we have A11 + A22 ≡ 1 mod 2 and A11 + A21 ≡ 0 mod 2. Adding these
together yields A22 − A21 ≡ A22 + A21 ≡ 1 mod 2. Now D = A11 (A22 − A21) and
A22 − A21 ≡ 1 mod 2 imply if D is odd then A11 ≡ 1 mod 2, and if D is even then
A11 ≡ 0 mod 2. Consequently we have A11 ≡ D mod 2.
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Lemma 4.6.2.
Let V = {(s, t, A21) | s, t ∈ Z>0, st = D, t ≡ 1 mod 2, s ≡ A21 mod 2,−s < A21 6 s}.
Then the map

χ : I0,= −→ V

(A11, A11, A21, A22) 7−→ (A11, A22 − A21, A21)

is a well-defined bijection.

Proof.
Well-defined: We have st = A11 (A22 − A21) = D and since D > 0 and 0 < A22 −A21

it follows that s, t ∈ Z>0. By Lemma 4.6.1 we have t = A22 − A21 ≡ 1 mod 2. Also
s = A11 ≡ A21 mod 2 because in I0,= we have A11 + A21 ≡ 0 mod 2. Lastly, we have
−s = −A11 < A21 6 A11 = s. Therefore χ is well-defined.
Injectivity: This is straightforward to verify.
Surjectivity: Let (s, t, A21) ∈ V be arbitrary and consider
g = (s, s, A21, t+A21) = (A11, A11, A21, A22). Then det(g) = s(t+A21)− sA21 = st =
D. Next, −A11 = −s < A21 6 s = A11 and t ∈ Z>0 implies t = A22 − A21 > 0. Now
A11 + A22 = s+ t+ A21 ≡ t mod 2 as s ≡ A21 mod 2, however t ≡ 1 mod 2 and thus
A11 + A22 ≡ 1 mod 2. Lastly, A11 + A21 = s + A21 ≡ 0 mod 2 as s ≡ A21 mod 2.
Hence g ∈ I0,=. Finally we note χ(g) = (s, t+ A21 − A21, A21) = (s, t, A21).
Thus χ is a surjection and hence a bijection.

Theorem 4.6.3.

P0 =
∑
t|D
t odd

D

t
.

Proof.
By Lemma we have P0 =

∣∣I0,=∣∣ = |V |. We calculate |V |. Since t is odd, pick any
pair of divisors s, t of D where t is odd. By Corollary 4.2.7 we have (−s, s] contains
(2s+1)−1 = 2s integers and then the condition A21 ≡ s mod 2 implies there are only
s possible choices for A21. Since s 6= 0, we can find s forms (s, t, A21) for any s, t ∈ Z>0

where st = D and t is odd. Noting s = D
t

then yields P0 = |V | =
∑
t|D
todd

D

t
.

Lemma 4.6.4.

Q0 = P0 =
∑
t|D
todd

D

t
.

Proof.
Let Z = I0,= ∩ I1,= and consider

I0,=\Z = {(A11, A11, A21, A22) | det(A) = D,A21 = A11, A11 + A22 mod 2,

0 < A22 − A21 } ,
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I1,=\Z = {(A11, A11, A21, A22) | det(A) = D,A21 = −A11, A11 + A22 mod 2,

0 < A22 − A21} .

We note that in both of these sets we automatically have A11+A21 ≡ 0 mod 2. Define
the map

χ̂ : I0,=\Z −→ I1,=\Z
(A11, A11, A21, A22) 7−→ (A11, A11,−A21, A22 − 2A21) = (a11, a11, a21, a22).

We now show that χ̂ is well-defined and is a bijection.
Well-defined: We have det(a11, a11, a21, a22) = A11(A22−2A21)−A11(−A11) = A11(A22−
A21) = D. Next, a21 = −A21 = −A11 = −a11 as A21 = −A11 in F1,=\Z. Fur-
ther, a11 + a22 = A22 − 2A21 + A11 ≡ A11 + A22 ≡ 1 mod 2. Lastly, a22 − a21 =
A22 − 2A21 − (−A21) = A22 − A21 > 0. Hence χ̂ is well-defined.
Injectivity: This is straightforward to verify.

Surjectivity: Let (a11, a11, a21, a22) ∈ I1,=\Z be arbitrary and consider
g = (a11, a11,−a21, a22−2a21) = (A11, A11, A21, A22). Then det(g) = a11(a22−2a21)−
a11(−a21) = a11(a22 − a21) = D. Further, A21 = −a21 = −(−a11) = a11 = A11,
A11+A22 = a11+a22−2a21 ≡ a11+a22 ≡ 1 mod 2, andA22−A21 = a22−2a21−(−a21) =
a22 − a21 > 0. Thus χ̂ is surjective and hence a bijection.

From this and Theorem 4.6.3 it follows that Q0 = P0 =
∑
t|D
todd

D

t
.

Definition 4.6.5.
Let σodd(D) =

∑
d|D

d odd

d.

Lemma 4.6.6.
Let D ∈ Z>0 and let m be the largest odd divisor of D. Then D = 2km and we have

P0 = 2kσodd(D).

Proof.
Let D ∈ Z>0 and m be the largest odd divisor of D. Using D = 2km, Definition 4.6.5
and Lemma 4.6.3 we have

P0 =
∑
t|D
t odd

D

t

=
∑
t|D

t odd

2km

t

= 2k
∑
t|D
t odd

m

t
as t - 2k
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= 2k
∑
d|D

d odd

d as m and t are odd implies m
t

is odd

= 2kσodd(D).

We now derive an expression for R0.

Lemma 4.6.7.
Let

V = {(s, t, A11) | s, t ∈ Z>0, st = D, s > t, s− t+ 1 6 A11 6 s+ t− 1, s ≡ t mod 2,

A11 ≡ 1 mod 2} .

Then the map

γ : J0,= −→ V

(A11, A12, A21, 0) 7−→ (A12,−A21, A11)

is a well-defined bijection.

Proof.
Well-defined: We have A21 < 0 in J0,= and 0 < D = −A12A21 = st implies
s = A12 ∈ Z>0 and t = −A21 ∈ Z>0. Next, we note A21 < 0 < A12 and
0 < 1

2
(A12 + A21) implies s = A12 > −A21 = t. Also, s = A12 ≡ −A21 = t mod 2

since A12+A21 ≡ 0 mod 2 in J0,=. Since A22 = 0 we automatically get A11 ≡ 1 mod 2.
Combining these results yields s− t ≡ s + t ≡ 0 mod 2. Lastly, A21 < − |A11 − A12|
implies A12 +A21 < A11 < A12−A21 (remember A21 < 0) and so s− t < A11 < s+ t.
However, A11 is odd and s± t are even and so we have s− t + 1 6 A11 6 s + t− 1.
Hence γ is well-defined.
Injectivity: This is straightforward to verify.
Surjectivity: Let (s, t, A11) ∈ V be arbitrary and consider g = (A11, s,−t, 0) =

(a11, a12, a21, 0). Then det(g) = A11 · 0 − s(−t) = st = D. Further, 1
2

(a12 + a21) =
1
2
(s− t) > 0 as s > t. We also have 1

2
(a12 + a21) = 1

2
(s− t) < s− t+ 1 6 A11 = a11.

Thus 0 < 1
2

(a12 + a21) 6 a11. Next, s−t+1 6 A11 6 s+t−1 implies s−t < A11 < s+t,
which in turn yields −t < A11 − s < t. Hence |A11 − s| < t. Using t = −a21 and
s = a12 then gives a21 < − |a11 − a12|.
Lastly, observe a11 = A11 ≡ 1 mod 2 and a12 + a21 = s− t ≡ 0 mod 2. Thus g ∈ J0,=.
Finally, we have γ(g) = (s,−(−t), A11) = (s, t, A11).
Hence γ is surjective and thus a bijection.

Corollary 4.6.8.

R0 =
∑
st=D
s>t

s≡1 mod 2

t.
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Proof.
By Lemma 4.6.7 we have R0 = |V |. Pick any pair of divisors, s, t of D such that s > t
and s ≡ t mod 2. The conditions on the set V then imply A11 ∈ [s− t+ 1, s+ t− 1].
Since s > t and s− t+ 1 is odd, it follows that s− t+ 1 > 0. Further, by Corollary
4.2.7 there are 2t − 1 integers in this interval, of which t of them are odd because
both s− t+ 1 and s+ t− 1 are odd.
Thus we have R0 = |V | =

∑
st=D
s>t

s≡t mod 2

t.

In our next few results we will be required to take special care with the case when
the determinant is a perfect square.

Lemma 4.6.9.
Let D ∈ Z>0 then

S0 =

{
R0 +

√
D if D is a perfect square

R0 otherwise.

Proof.
Let D ∈ Z>0 and recall R0 = |J0,=| and S0 = |J1,=|, where

J0,= = {(A11, A12, A21, 0) | det(A) = D, 0 <
1

2
(A12 + A21) 6 A11,

A21 < − |A11 − A12| , A11 ≡ 1 mod 2, A12 + A21 ≡ 0 mod 2} ,

J1,= = {(A11, A12, A21, 0) | det(A) = D, 0 6
1

2
(A12 + A21) < A11,

A21 < − |A11 − A12| , A11 ≡ 1 mod 2, A12 + A21 ≡ 0 mod 2} .

Let Z = J0,= ∩ J1,=, then

J0,=\Z = {(A11, A12, A21, 0) | det(A) = D,A12 + A21 = 2A11, A21 < − |A11 − A12| ,
A11 ≡ 1 mod 2} ,

J1,=\Z = {(A11, A12, A21, 0) | det(A) = D, 0 = A12 + A21, A21 < − |A11 − A12| ,
A11 ≡ 1 mod 2} .

We note the condition A12 + A21 ≡ 0 mod 2 is automatically fulfilled in the sets
J0,=\Z and J1,=\Z and so is omitted from the description.
Observe both J0,=\Z and J1,=\Z contain the relation A21 < − |A11 − A12|, which
implies A12 + A21 < A11 < A12 + |A21| . Consequently J0,=\Z = ∅ since the set
J0,=\Z requires 2A11 = A12 + A21 < A11.
Let (A11, A12, A21, 0) ∈ J1,=\Z, this satisfies 0 = A12 + A21 and thus A21 = −A12.
This yields D = det(A) = −A12A21 = A2

12 and hence if D is not a perfect square then
J1,=\Z = ∅ and thus R0 = |Z| = S0.
We now assume D is a perfect square, it is still true that J1,=\Z = ∅ but we will show
J1,=\Z 6= ∅. Let (A11, A12, A21, 0) ∈ J1,=\Z be arbitrary, then by above D = A2

12.
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Since A12 > 0 it follows that A12 =
√
D and A21 = −

√
D. Then A21 < − |A11 − A12|

implies A12 + A21 < A11 < A12 + |A21| and so 0 < A11 < 2
√
D. There are 2

√
D − 1

integers in the interval
[
1, 2
√
D − 1

]
and since 1 and 2

√
D − 1 are odd, it follows

that precisely
√
D of them are odd.

Therefore there are
√
D choices for A11 and consequently

∣∣J1,=\Z∣∣ =
√
D.

Hence

S0 =
∣∣J1,=∣∣

=
∣∣J1,=\Z∣∣+ |Z|

=
∣∣J1,=\Z∣∣+

∣∣J0,=\Z∣∣︸ ︷︷ ︸
=0

+ |Z|

=
∣∣J1,=\Z∣∣+

∣∣J0,=∣∣
=
√
D +R0.

Hence we have our result, S0 =

{
R0 +

√
D if D = k2

R0 otherwise
.

Lemma 4.6.10.
Let D ∈ Z>0 and assume D ≡ 2 mod 4, then R0 = S0 = 0.

Proof.
Since D ≡ 2 mod 4, the prime factorisation of D contains a single power of 2. Thus
D cannot be a perfect square and so Lemma 4.6.9 yields S0 = R0. Further, since D
contains a single power of 2, there are no divisors s, t of D such that st = D and
s ≡ t ≡ 1 mod 2. Thus at least one of s, t is divisible by 2. However, D ≡ 2 mod 4
implies that we cannot have 2 | s and 2 | t.
Hence s 6≡ t mod 2 and thus S0 = R0 =

∑
0<t<s
st=D

s≡t mod 2

t = 0.

Lemma 4.6.11. Let D ∈ Z>0 be such that D ≡ 1 mod 2. Then

R0 =

{
1
2

(
σ(D)−Ψ(D)−

√
D
)

if D = k2

1
2

(σ(D)−Ψ(D)) otherwise
and

S0 =

{
1
2

(
σ(D)−Ψ(D) +

√
D
)

if D = k2

1
2

(σ(D)−Ψ(D)) otherwise.

Proof.
Let D ∈ Z>0 and D ≡ 1 mod 2. First suppose that D is not a perfect square, then

Lemma 4.4.2 yields 2
∑

0<∂<d
∂d=D

∂ = σ(D)−Ψ(D). Since D is odd it follows that ∂ and d

are always odd and so ∂ ≡ d mod 2. Since D is not a perfect square we cannot have
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∂ = d =
√
D. By Lemmas 4.6.8 and 4.6.9 we have

S0 = R0 =
∑

0<∂<d
∂d=D

∂≡d mod 2

∂ =
1

2

2
∑

0<∂<d
∂d=D

∂

 =
1

2
(σ(D)−Ψ(D)) .

Now suppose D is a perfect square, then Lemma 4.4.2 yields 2
∑

0<∂<d
∂d=D

∂ = σ(D) −

Ψ(D)−
√
D. It is still true that ∂ ≡ d ≡ 1 mod 2. Lemmas 4.6.8 and 4.6.9 then yield

R0 =
∑

0<∂<d
∂d=D

∂ =
1

2

2
∑

0<∂<d
∂d=D

∂≡d mod 2

∂

 =
1

2

(
σ(D)−Ψ(D)−

√
D
)

and

S0 = R0 +
√
D = 1

2

(
σ(D)−Ψ(D)−

√
D
)

+
√
D = 1

2

(
σ(D)−Ψ(D) +

√
D
)
.

Lemma 4.6.12.
Let D ∈ Z>0 be such that D ≡ 0 mod 4. Then

R0 =

{
σ
(
D
4

)
−Ψ

(
D
4

)
−
√

D
4

if D = k2

σ
(
D
4

)
−Ψ

(
D
4

)
otherwise

S0 =

{
σ
(
D
4

)
−Ψ

(
D
4

)
+
√

D
4

if D = k2

σ
(
D
4

)
−Ψ

(
D
4

)
otherwise

.

Proof.
Let D ∈ Z>0 be such that D ≡ 0 mod 4, we first assume that D is not a perfect

square. Then R0 =
∑
0<t<s
st=D

s≡t mod 2

t implies 2 | s and 2 | t as otherwise s 6≡ t mod 2.

We note that D ≡ 0 mod 4 implies there is no pair of divisors S, t of D such that
s ≡ t ≡ 1 mod 2. Now let (s, t) be a pair of divisors of D and write s = 2ŝ and t = 2t̂.
It follows that D = 4ŝt̂ and so ŝ, t̂ are divisors of D

4
. Then Lemmas 4.4.2, 4.6.8 and

4.6.9 yield

S0 = R0 =
∑

0<2t̂<2ŝ

4ŝt̂=D

2ŝ≡2t̂ mod 2

2t̂ = 2
∑
0<t̂<ŝ

ŝt̂=D
4

t̂ = σ

(
D

4

)
−Ψ

(
D

4

)
.

Now assume D is a perfect square, we note that D ≡ 0 mod 4 implies D
4

is also a
perfect square. We also note that the requirement s ≡ t mod 2 for any pair of divisors
we consider, means 2 | s and 2 | t. Again, we write s = 2ŝ and t = 2t̂. Then Lemmas
4.4.2, 4.6.8 and 4.6.9 yield

R0 =
∑

0<2t̂<2ŝ

4ŝt̂=D

2ŝ≡2t̂ mod 2

2t̂ = 2
∑
0<t̂<ŝ

ŝt̂=D
4

t̂ = σ

(
D

4

)
−Ψ

(
D

4

)
−
√
D

4
.
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Further, we have

S0 = R0 +
√
D = σ

(
D

4

)
−Ψ

(
D

4

)
−
√
D

4
+
√
D = σ

(
D

4

)
−Ψ

(
D

4

)
+

√
D

4
.

4.7 A Formula for the Single Bar Complete Class Number for Bilinear
Forms

In this section we utilise our expressions for P0, Q0, R0 and S0 to develop a formula
for Clc (D). We remind the reader that D is a fixed positive integer corresponding to
the determinant of the bilinear form.

Lemma 4.7.1.
Let D ∈ Z>0 be such that D ≡ 1 mod 2.
Then 2σodd(D)− σ(D) + Ψ(D) = σ(D) + Ψ(D).

Proof.
Recall from Definition 4.6.5 the definition of σodd. Note that D ≡ 1 mod 2 implies
every divisor d of D satisfies d ≡ 1 mod 2. Thus when D is odd we have 2σodd(D) =
2σ(D).
Hence 2σodd(D)− σ(D) + Ψ(D) = σ(D) + Ψ(D).

Lemma 4.7.2.
Let D ∈ Z>0 be such that D ≡ 0 mod 2. Then D = 2k · m where k > 1 and
m ≡ 1 mod 2 and we have σodd

(
D
2q

)
= σ

(
D
2k

)
for 0 6 q 6 k.

Proof.
D ≡ 0 mod 2 implies D = 2k ·m where k > 1 and m ≡ 1 mod . We note for 0 6 q 6 k
the set of odd divisors of D

2q
is precisely the set of odd divisors of m = D

2k
. By

Definition 4.6.5 this means σodd
(
D
2q

)
= σ

(
D
2k

)
for 0 6 q 6 k.

Lemma 4.7.3.
Let D ∈ Z>0 be such that D ≡ 0 mod 4. Then writing D = 2k ·m where m ≡ 1 mod 2
yields 2k+1σodd(D) = 4σodd

(
D
4

)
+ 4σ

(
D
4

)
.

Proof.
First recall σ(D) is a multiplicative arithmetic function. That is, for D = a · b where
gcd(a, b) = 1 we have σ(D) = σ(a) · σ(b).
Writing D = 2k ·m where m ≡ 1 mod 2 and consequently k > 2 yields

σ

(
D

4

)
= σ

(
2k−2 ·m

)
= σ

(
2k−2

)
· σ(m) m ≡ 1 mod 2

= σ(m)
k−2∑
q=0

2q
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=
(
2k−1 − 1

)
σ(m).

We note σodd(m) = σodd
(
D
4

)
= σodd (D) and further σ(m) = σodd(m) since m ≡

1 mod 2. Therefore

4σodd

(
D

4

)
+ 4σ

(
D

4

)
= 4σ(m) + 4

(
2k−1 − 1

)
σ(m)

= 4 · 2k−1σ(m)

= 2k+1σ(m)

= 2k+1σodd (D) .

We now state and prove the key theorem of Kronecker’s section 18, see [Kr1897,
p. 476].

Theorem 4.7.4.
Let D ∈ Z>0, then

1

3
Clc (D) =


σ(D) + Ψ(D) if D ≡ 1 mod 2
4σ
(
D
2

)
if D ≡ 2 mod 4

4σodd
(
D
4

)
+ 2σ

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 0 mod 4.

Proof.
From Section 3.7, Equation 3.20 we have Clc (D) = 3

(
P0 +Q0 −R0 − S0

)
.

We will split this proof into two cases, when D is a perfect square and otherwise.
First assume that D is not a perfect square.
Using our results from Section 4.6 plus Lemmas 4.7.1, 4.7.2 and 4.7.3 we have

1

3
Clc (D) =


2P0 − 2R0 if D ≡ 1 mod 2
2P0 if D ≡ 2 mod 4
2P0 − 2R0 if D ≡ 0 mod 4

=


2 · 20σodd(D)− 2 · 1

2
(σ(D)−Ψ(D)) if D ≡ 1 mod 2

2 · 2σodd(D) if D ≡ 2 mod 4
2 · 2kσodd(D)− 2

(
σ
(
D
4

)
+ Ψ

(
D
4

))
if D ≡ 0 mod 4

=


4σodd(D)− σ(D) + Ψ(D) if D ≡ 1 mod 2
4σodd(D) if D ≡ 2 mod 4
2k+1σodd(D)− 2σ

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 0 mod 4

=


σ(D) + Ψ(D) if D ≡ 1 mod 2
4σ
(
D
2

)
if D ≡ 2 mod 4

4σodd
(
D
4

)
+ 2σ

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 0 mod 4.

We now suppose that D is a perfect square. Note D being a perfect square means we
cannot have D ≡ 2, 3 mod 4. Recall when D ≡ 1 mod 2 we have σodd(D) = σ(D) and
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also note that in the proof of Lemma 4.7.3 we made no assumptions as to whether D
was a perfect square or not. Thus we get

1

3
Clc (D) =

{
2P0 −R0 − S0 if D ≡ 1 mod 2
2P0 −R0 − S0 if D ≡ 0 mod 4

=

 2 · 20σodd(D)− 1
2

(
σ(D)−Ψ(d)−

√
D
)
− 1

2

(
σ(D)−Ψ(D) +

√
D
)

2 · 2kσodd(D)−
(
σ
(
D
4

)
−Ψ

(
D
4

)
−
√

D
4

)
−
(
σ
(
D
4

)
−Ψ

(
D
4

)
+
√

D
4

)
=

{
2σodd (D)− σ(D) + Ψ(D) if D ≡ 1 mod 2
2k+1σodd(D)− 2σ

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 0 mod 4

=

{
σ(D) + Ψ(D) if D ≡ 1 mod 2
4σodd

(
D
4

)
+ 2σ

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 0 mod 4.

It is quite remarkable the results are the same regardless of whether D is a perfect
square or not.

Notes on Section 4.7

The following lemma is given in Kronecker but is not used in our work.

Lemma 4.7.5.
Let D ∈ Z>0 be such that D ≡ 0 mod 4. Write D = 2k ·m where m ≡ 1 mod 2 and
consequently k > 2. Then σ

(
2k−2 ·m

)
=
(
2k−1 − 1

)
σodd (m).

Proof.
We first note m ≡ 1 mod 2 implies σ(m) = σodd(m). Therefore

(
2k−1 − 1

)
σ(m) =(

2k−1 − 1
)
σodd(m).

We have σ(2k−2 ·m) =
∑

d|2k−2·m

d. Any divisor d of 2k−2 ·m may be written as 2q · t

where t ≡ 1 mod 2, t | m and 0 6 q 6 k − 2. Further, for every such q and any
divisor t of m we get 2q · t is a divisor of 2k−2 ·m. Let d1, d2, . . . , dr be the divisors of
m. From this it follows∑

d|2k−2·m

d = d1 + 2d1 + 22d1 + . . .+ 2k−2d1 + . . .+ 2k−2dr

= d1

k−2∑
q=0

2q + . . .+ dr

k−2∑
q=0

2q

= (d1 + . . .+ dr)
k−2∑
q=0

2q

= σ(m)
k−2∑
q=0

2q
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=
(
2k−1 − 1

)
σ(m)

=
(
2k−1 − 1

)
σodd(m).

In Lemma 4.7.3 we note Kronecker stated it as 2k+1σodd(D) = 4σodd(D) + 4σ
(
D
4

)
.

This is not an error of his part, but a reflection of the fact that σodd (D) = σodd
(
D
4

)
.

Theorem 4.7.4 differs by a factor of two when compared with Kronecker’s original
work. This is still due to Kronecker considering definite bilinear forms.

4.8 Introducing Clc (D).

We now turn our attention to introducing one further refinement of the complete class
number for positive definite bilinear forms. As before, D ∈ Z>0 is the determinant of
our bilinear forms.
We single out the following two subsets of the set of complete equivalence classes of
bilinear forms.

Definition 4.8.1.
Let Clc (D) be the cardinality of the subset of complete equivalence classes of bilinear
forms satisfying the following two conditions:

1. At least one of A11 and A22 is odd, and

2. A12 − A21 ≡ 0 mod 4.

Definition 4.8.2.
Let Cl′′c (D) be the cardinality of the subset of complete equivalence classes of bilinear
forms satisfying the following two conditions:

1. Exactly one of A11 and A22 is odd (that is, A11 + A22 ≡ 1 mod 2), and

2. A12 − A21 ≡ 0 mod 4.

Observation 4.8.3.
Definitions 4.8.1 and 4.8.2 are well defined on complete equivalence classes because
any two completely equivalent bilinear forms must be congruent to each other modulo
2 (see Lemma 2.4.7). Consequently modulo two they must have the same sum of their
outer coefficients. Further, by Lemma 2.4.6 we know A12 − A21 is invariant under
proper equivalence, it is invariant under complete equivalence and thus all forms
within a complete equivalence class satisfy A12 − A21 ≡ 0 mod 4.

Observation 4.8.4.
Observe any bilinear form which is counted in Cl′′c (D) is also counted in Clc (D).

However, if a bilinear form has both outer coefficients odd then it is counted in Clc (D)
but not in Cl′′c (D). Further, any form satisfying A12 − A21 ≡ 0 mod 4 automatically
satisfies A12 − A21 ≡ 0 mod 2 but not vice versa.

Hence Cl′′c (D) 6 Clc (D) 6 Clc (D) 6 Clc (D).
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Our first goal is to deduce the following result: Clc (D) = 3(P +Q−R− S).
To do so, we will give a similar argument to that of Section 3.3, where we proved
Clc (D) = 3(P +Q−R− S).

We begin with the following theorem.

Theorem 4.8.5.
Let A be a bilinear form with matrix representation A, M ∈ SL2 (Z) and B = M tAM .
Then A11 ≡ A22 ≡ 0 mod 2 and A12 − A21 ≡ 0 mod 4 if and only if B11 ≡ B22 ≡
0 mod 2 and B12 −B21 ≡ 0 mod 4.

Proof.
(⇒) Assume A11 ≡ A22 ≡ 0 mod 2 and A12 − A21 ≡ 0 mod 4. From Lemma 2.4.6
we have B12 − B21 = A12 − A21 ≡ 0 mod 4 as M ∈ SL2 (Z). Further, note that
A12 +A21 ≡ 0 mod 2 and B12 +B21 ≡ 0 mod 2. Applying Observation 2.4.5 (I) with
M ∈ SL2(Z) yields

B11 = α2A11 + αγ(A12 + A21) + γ2A22 ≡ 0 mod 2 and

B22 = β2A11 + βδ(A12 + A21) + δ2A22 ≡ 0 mod 2.

(⇐) Since M ∈ GL2(Z) it is invertible. Write A = (M−1)
t
BM−1 and apply (⇒).

Corollary 4.8.6.

There is no Kronecker reduced form,

(
A11 A12

A21 A22

)
satisfying A12 − A21 ≡ 0 mod 4

and at least one of A11, A22 odd, that is properly equivalent to the reduced form(
a12 + a21 a12
a21 a12 + a21

)
, where a12 + a21 > 0.

Proof.
Recall Kronecker reduced forms are positive definite and every positive definite form

is properly equivalent to a unique reduced form. Let A =

(
A11 A12

A21 A22

)
be a Kro-

necker reduced form with A12 − A21 ≡ 0 mod 4 and at least one of its outer coeffi-

cients odd. Assume B = M tAM =

(
a12 + a21 a12
a21 a12 + a21

)
where a12 +a21 > 0 and

M ∈ SL2 (Z).
Then Lemma 2.4.6 implies the reduced form satisfies a12−a21 = A12−A21 ≡ 0 mod 4
and so a12 + a21 ≡ 0 mod 2, thus a11 ≡ a22 ≡ 0 mod 2. Next, the matrix M−1 trans-
forms the reduced form back to the Kronecker reduced form A. However, Theorem
4.8.5 implies A11 ≡ A22 ≡ 0 mod 2, contradicting at least one of A11, A22 is odd.
Hence there does not exist a Kronecker reduced form with A12 −A21 ≡ 4 mod 2 and
at least one of its outer coefficients odd which is properly equivalent to the reduced

form

(
a12 + a21 a12
a21 a12 + a21

)
, where a12 + a21 > 0.

For a given reduced bilinear form we now consider the structure of the complete

equivalence classes in its proper equivalence class with respect to Clc (D) and Cl′′c (D).
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We will continue to use the representatives found in Equation 2.16 to describe the
transformation matrices used to generate the complete equivalence classes.

Lemma 4.8.7.
Let A be a bilinear form with matrix representation A. Assume the proper equivalence
class of A contains six distinct representatives for the complete equivalence classes of
A and let A ∼+ B. If B satisfies B11 ≡ B22 ≡ 0 mod 2 and B12−B21 ≡ 0 mod 4 then
all six complete equivalence classes satisfy a11 + a22 ≡ 0 mod 2. While if B12−B21 ≡
0 mod 4 and at least one of B11, B22 is odd then only two of the complete equivalence
classes have forms satisfying a11 + a22 ≡ 0 mod 2.

Proof.
Let B satisfy B12 − B21 ≡ 0 mod 4, then any bilinear form properly equivalent to
B also has this property. We apply Lemma 3.3.9 as B12 − B21 ≡ 0 mod 4 implies
B12−B21 ≡ 0 mod 2. Thus we know any bilinear form that is properly equivalent to
B satisfies a11 + a22 is congruent to either B11 +B22, B11 or B22 mod 2.
Now recall completely equivalent bilinear forms have the same entries mod2 in their
matrix representations. Thus using Observation 2.4.5 (I) along with each of the 6
complete equivalence class representatives found in S, we see exactly two complete
equivalence classes yield bilinear forms satisfying a11 + a22 ≡ B11 mod 2, two more
satisfy a11 + a22 ≡ B22 mod 2, while the remaining two satisfy a11 + a22 ≡ B11 +
B22 mod 2.
The only way for all of these to be 0 mod 2 is if B11 ≡ B22 ≡ 0 mod 2. We now
observe if exactly one of B11, B22 is odd then only one of B11, B22 and B11 + B22 is
even. Whilst if both B11 and B22 are odd then only B11 +B22 is even.
Hence either all six complete equivalence classes of bilinear forms within the proper
equivalence class satisfy a11 + a22 ≡ 0 mod 2 (when B11 ≡ B22 ≡ 0 mod 2); otherwise
only two complete equivalence classes within the proper equivalence class have this
property.

Our next lemma and theorem prove a key result implied by Kronecker.

Lemma 4.8.8.
Consider the subset of positive definite Kronecker reduced bilinear forms A satisfying
the following two conditions:

1. At least one of their outer coefficients is odd, and

2. A12 − A21 ≡ 0 mod 4.

Then within the proper equivalence class of such a bilinear form, there is a 2:1 ratio
of the number of complete equivalence classes with the property A11 +A22 ≡ 1 mod 2
to those with the property A11 + A22 ≡ 0 mod 2.

Proof.
Consider the set of Kronecker reduced bilinear forms with the properties as given in
the statement of the lemma. Recall every Kronecker reduced bilinear form is properly
equivalent to a unique reduced bilinear form. Consequently, Lemma 2.4.6 implies this
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reduced bilinear form also satisfies a12 − a21 ≡ 0 mod 4. Further, Theorem 4.8.5 im-
plies the reduced form must have at least one of its outer coefficients odd because the
Kronecker reduced form has at least one odd outer coefficient. Further still, Theorem
4.8.5 implies all bilinear forms within the proper equivalence class have this property.
If the proper equivalence class of the reduced bilinear form contains 6 distinct repre-
sentatives for the complete equivalence classes, then Lemma 4.8.7 implies that exactly
two of the six complete equivalence classes have forms satisfying A11+A22 ≡ 0 mod 2.
This is because our reduced form does not satisfy A11 ≡ A22 ≡ 0 mod 2. Conse-
quently in this case we have a 2:1 ratio of complete equivalence classes with the
property A11 + A22 ≡ 1 mod 2 to those that have A11 + A22 ≡ 0 mod 2.
We now deal with the situation when the proper equivalence class of the reduced bi-
linear form contains less than 6 distinct complete equivalence classes. This means the
reduced form has a proper automorph. Therefore we must consider reduced bilinear
forms of the types found in the first four rows of Summary 2.5.27.
Observe that the form in the fourth row is a special case of the form in the third
row, where A21 = A21. By Corollary 4.8.6 we know there is no Kronecker reduced
form with at least one odd outer coefficient odd, and the sum of its inner coefficients

even that reduces to

(
a12 + a21 a12

a21 a12 + a21

)
. Hence the third and fourth types of

reduced bilinear form cannot arise when we reduce our Kronecker reduced bilinear
form. We investigate rows one and two separately.
Suppose our Kronecker reduced bilinear form is properly equivalent to the reduced

bilinear form

(
A11 A12

−A12 A11

)
, where A11 ≡ 1 mod 2. Then the set of complete equiv-

alence classes within its proper equivalence class is given by{(
A11 A12

−A12 A11

)
,

(
2A11 A11 + A12

A11 − A12 A11

)
,

(
A11 A11 + A12

A11 − A12 2A11

)}
.

Since we began with a Kronecker reduced bilinear form that satisfies A12 − A21 ≡
0 mod 4 and this is invariant under SL2 (Z), we know all of the above three forms
must satisfy a12 − a21 ≡ 0 mod 4. It is straightforward to check that only the first
form satisfies a11 + a22 ≡ 0 mod 2 and hence we have a 2:1 ratio.
Now suppose our Kronecker reduced bilinear form is properly equivalent to the re-

duced bilinear form

(
A11 0

0 A11

)
, where A11 ≡ 1 mod 2. Then the set of complete

equivalence classes within its proper equivalence class is given by{(
A11 0

0 A11

)
,

(
2A11 A11

A11 A11

)
,

(
A11 A11

A11 2A11

)}
.

It is clear all of these complete equivalence classes contain bilinear forms satisfying
a12 − a21 ≡ 0 mod 4 and straightforward to verify only the first form satisfies a11 +
a22 ≡ 0 mod 2. Hence we have a 2:1 ratio.
Thus we always have a 2:1 ratio of complete equivalence classes where a11 + a22 ≡
1 mod 2 to those where a11 + a22 ≡ 0 mod 2 within the proper equivalence class of

166



any Kronecker reduced bilinear form that satisfies A12 − A21 ≡ 0 mod 4 and has at
least one odd outer coefficient.

Theorem 4.8.9.
Let D ∈ Z>0 then 3Cl′′c (D) = 2Clc (D).

Proof.
The set of complete equivalence classes of bilinear forms that are counted by Cl′′c (D)
are contained within the set of complete equivalence classes of bilinear forms counted

by Clc (D). Also recall the bilinear forms in a complete equivalence class that are
counted by Cl′′c (D) all have the property A11 + A22 ≡ 1 mod 2. Then Lemma 4.8.8
shows that within a proper equivalence class of a Kronecker reduced form which has
at least one odd outer coefficient and A12 − A21 ≡ 0 mod 4, we have a 2:1 ratio of
complete equivalence classes that satisfy A11 + A22 ≡ 1 mod 2 to those satisfying

A11 + A22 ≡ 0 mod 2. Hence Cl′′c (D) = 2
3
Clc (D) and thus 3Cl′′c (D) = 2Clc (D).

We now extend the ideas developed in Section 3.3.

Definition 4.8.10.
We define four subsets, Θi ⊆ Θi where Θ ∈ {I, J} and i ∈ {0, 1}, by strengthening
the condition A12 − A21 ≡ 0 mod 2 to A12 − A21 ≡ 0 mod 4.
We then partition our new sets further using =, >,< in accordance with Definitions
3.4.1, 3.4.2 and 3.5.1. We use the following notation for the cardinalities of these sets:

P =
∣∣∣I0∣∣∣, Q =

∣∣∣I1∣∣∣, R =
∣∣∣J0

∣∣∣ and S =
∣∣∣J1

∣∣∣.
It is important to note we are still retaining the condition A11 +A22 ≡ 1 mod 2. Also

since Θi ⊆ Θi, it follows immediately that these new sets are finite.

Theorem 4.8.11.
Let D ∈ Z then Clc (D) = 3

(
P +Q−R− S

)
.

Proof.
We are considering subsets of the sets B0 and B1 from Section 3.2. Since the sets M
and N were in fact the empty set when we considered Clc (D), they are in fact still
empty. Therefore, in the same manner as we constructed Clc (D), we have

Cl′′c (D) = 2
(
P +Q−R− S

)
.

(One should recall the map γ found in Lemma 3.2.3 preserves the quantity A12−A21.)
Applying Theorem 4.8.9 then yields

Clc (D) =
3

2
Cl′′c (D)

= 3
(
P +Q−R− S

)
.
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Our next goal is to derive an expression for 1
3
Clc (D) = P +Q−R− S.

We will give a detailed proof of the result P + Q − R − S = P0 + Q0 − R0 − S0.
Readers wishing to omit the technical details may skip ahead to Section 4.9.
The following summary will be a key reference point for this subsection.

Summary 4.8.12.
Throughout, det = D will be used to denote A11A22 − A12A21 = D.

I0,> = { (A11,A12, A21, A22)
∣∣ det = D,A11 > A12, 0 <

1

2
(A12 + A21) 6 A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

I0,< = { (A11,A12, A21, A22)
∣∣ det = D,A11 < A12, 0 <

1

2
(A12 + A21) 6 A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

I1,> = { (A11,A12, A21, A22)
∣∣ det = D,A11 > A12, 0 6

1

2
(A12 + A21) < A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

I1,< = { (A11,A12, A21, A22)
∣∣ det = D,A11 < A12, 0 6

1

2
(A12 + A21) < A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

J0,> = { (A11,A12, A21, A22)
∣∣ det = D, 0 < A22 <

1

2
(A12 + A21) < A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

J0,< = { (A11,A12, A21, A22)
∣∣ det = D,A22 < 0 <

1

2
(A12 + A21) < A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

J1,> = { (A11,A12, A21, A22)
∣∣ det = D, 0 < A22 6

1

2
(A12 + A21) < A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

J1,< = { (A11,A12, A21, A22)
∣∣ det = D,A22 < 0 6

1

2
(A12 + A21) < A11,

|A11 − A12| < A22 − A21, A11 + A22 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4}

Observation 4.8.13.
Readers may recall from Section 3.5 the manner in which we proved results such as
P1 +P2 = Q1 +Q2 (Lemma 3.5.3). Unfortunately, restricting these maps further fails
to yield any bijections and so a different approach is required. The restriction maps
of the maps W and W ′ (see Theorems 3.7.1 and 3.7.2) will be further restricted after
we have laid the groundwork.

The following lemma will prove useful along the way.

Lemma 4.8.14.
Assume A12 − A21 ≡ 0 mod 4 then 2A12 ≡ 2A21 ≡ A12 + A21 ≡ 0, 2 mod 4.
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Proof.
Note that A12 − A21 ≡ 0 mod 4 implies A12 + A21 ≡ 0 mod 2 and thus A12 + A21 ≡
0 or 2 mod 4. If A12 + A21 ≡ 0 mod 4 then it is straightforward to see that A12

and A21 are both even. Consequently 4 | 2A12, 4 | 2A21 and 4 | (A12 + A21). If
A12 +A21 ≡ 2 mod 4 then it is straightforward to see that both A12 and A21 are odd.
Consequently 2A12 ≡ 2A21 ≡ (A12 + A21) ≡ 2 mod 4.

Consider the set I0,> and partition it into I0,> = I0,>,e ∪ I0,<,o, where

I0,>,e =
{
A ∈ I0,>|A11 ≡ 0 mod 2

}
and

I0,<,o =
{
A ∈ I0,>|A11 ≡ 1 mod 2

}
.

Recall the set X1 and its associated map φ
∣∣∣
X1

from Lemma 3.5.4. Now consider the

subsets X1,e, X1,o ⊆ X1, where

X1,e =
{

(α, β, γ, δ) ∈ X1 | β ≡ 0 mod 2, 2α ≡ δ mod 4
}

and

X1,o =
{

(α, β, γ, δ) ∈ X1 | β ≡ 1 mod 2, 2α 6≡ δ mod 4
}
.

Lemma 4.8.15.
The restriction map φ

∣∣∣
X1,e

: X1,e −→ I0,>,e is a bijection.

Proof.
Well-defined: It is enough to show A12−A21 ≡ 0 mod 4 and A11 ≡ 0 mod 2. We have
A12−A21 = (β−α)− (α−β+δ) = 2(β−α)−δ ≡ 2α−δ ≡ 0 mod 4 as 2β ≡ 0 mod 4
and 2α ≡ δ mod 4. Also, A11 = β ≡ 0 mod 2 and so the restriction is well-defined.
Injectivity: Inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I0,>,e be arbitrary and let

g = (A11 − A12, A11,−A11 + A12 − A21 + A22, A12 + A21). Then g ∈ X1 and satisfies
β = A11 ≡ 0 mod 2 and 2α− δ = 2A11 − 2A12 − (A12 +A21) ≡ 2A11 + 2A12 − (A12 +
A21) ≡ 0 mod 4 due to Lemma 4.8.14 and A11 ≡ 0 mod 2.

Finally observe φ
∣∣∣
X1,e

(g) = f . Thus the restriction map is surjective and hence we

have the desired bijection.

Lemma 4.8.16.
The restriction map, φ

∣∣∣
X1,o

: X1,o −→ I0,>,o is a bijection.

Proof.
Well-defined: It is enough to show A12 − A21 ≡ 0 mod 4 and A11 ≡ 1 mod 2. We
have A12 − A21 = 2(β − α) − δ ≡ 0 mod 4 as β ≡ 1 mod 2 and then if α ≡ 1 mod 2
we have δ ≡ 0 mod 4, whilst if α ≡ 0 mod 2 then δ ≡ 2 mod 4. We also have
A11 = β ≡ 1 mod 2.
Injectivity: This is inherited.
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Surjectivity: Let f = (A11, A12, A21, A22) ∈ I0,>,o be arbitrary and g be the same as

in the proof of Lemma 4.8.15. Then g ∈ X1 and satisfies β = A11 ≡ 1 mod 2 and by
Lemma 4.8.14 we have 2α−δ = 2A11−2A12−(A12+A21) ≡ 2A11+2A12−(A12+A21) ≡
2 mod 4 as A11 ≡ 1 mod 2. Thus 2α 6≡ δ mod 4.

Finally note that φ
∣∣∣
X1,o

(g) = f . Thus the restriction map is surjective and hence we

have the desired bijection.

Corollary 4.8.17.

P1 =
∣∣∣X1,e

∣∣∣+
∣∣∣X1,o

∣∣∣. �

Next, consider the set I0,< ⊆ I0,< ⊆ I0,<, expressing it as a disjoint union of I0,<,e

and I0,<,o, where

I0,<,e =
{
A ∈ I0,<

∣∣∣A11 ≡ 0 mod 2
}

and

I0,<,o =
{
A ∈ I0,<

∣∣∣A11 ≡ 1 mod 2
}
.

Recall from Lemma 3.4.7 the set X2 and the map ψ : X2 −→ I0,<. Further, recall
the set X2 ⊆ X2 as defined in Lemma 3.5.5.

Thus we consider the subsets X2,e, X2,o ⊆ X2 ⊆ X2, where

X2,e =
{

(α, β, γ, δ) ∈ X2 | β ≡ 0 mod 2, 2α ≡ δ mod 4
}

and

X2,o =
{

(α, β, γ, δ) ∈ X2 | β ≡ 1 mod 2, 2α ≡ δ mod 4
}

.

The following observation will help streamline a couple of forthcoming proofs.

Observation 4.8.18.
Under the assumption 2α ≡ δ mod 4, δ is even and so δ ≡ −δ mod 4.
Hence 2α + δ ≡ 2α− δ ≡ 0 mod 4.

Note Observation 4.8.18 shows 2α ≡ δ mod 4 is the same as 2α ≡ −δ mod 4 when
δ ≡ 0 mod 2.

Lemma 4.8.19.
The restriction map, ψ

∣∣∣
X2,e

: X2,e −→ I0,<,e is a bijection.

Proof.
Well-defined: It is enough to show A11 ≡ 0 mod 2 and A12−A21 ≡ 0 mod 4. We have
A11 = β ≡ 0 mod 2, and by Observation 4.8.18 A12 − A21 = α + β − (β − α − δ) =
2α + δ ≡ 0 mod 4.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I0,<,e be arbitrary and consider g =
(A12 −A11, A11, A11 −A12 −A21 +A22, 2A11 −A12 −A21). Then g ∈ X2 and satisfies
β = A11 ≡ 0 mod 2 and by Lemma 4.8.14 2α−δ = 2A12−2A11−(2A11−A12−A21) ≡
2A12 + (A12 + A21) ≡ 0 mod 4.
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Finally, note ψ
∣∣∣
X2,e

(g) = f , so the restriction map is surjective and hence is a bijection.

Lemma 4.8.20.
The restriction map, ψ

∣∣∣
X2,o

: X2,o −→ I0,<,o is a bijection.

Proof.
Well-defined: It is sufficient to show A11 ≡ 1 mod 2 and A12 − A21 ≡ 0 mod 4. We
have A11 = β ≡ 1 mod 2 and A12 − A21 = 2α + δ ≡ 0 mod 4 by Observation 4.8.18.
Injectivity: Inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I0,<,o be arbitrary and let g be the same
as in Lemma 4.8.19. The g ∈ X2 and satisfies β = A11 ≡ 1 mod 2 as well as
δ − 2α = (2A11 −A12 −A21)− 2(A12 −A11) = 4A11 − (A12 +A21)− 2A12 ≡ 0 mod 4
by Lemma 4.8.14.

Lastly, ψ
∣∣∣
X2,o

(g) = f , so the restriction map surjective and thus is a bijection.

Corollary 4.8.21.

P2 =
∣∣∣X2,e

∣∣∣+
∣∣∣X2,o

∣∣∣. �

Next, consider the set I1,> ⊆ I1,>, partitioning it into the sets I1,>,e and I1,>,o, where

I1,>,e =
{
A ∈ I1,> | A11 ≡ 0 mod 2

}
and

I1,>,o =
{
A ∈ I1,> | A11 ≡ 1 mod 2

}
.

Then recall the map φ̂
∣∣
X2

from Corollary 3.5.11 and consider the following subsets of

X2, namely X2,e (from Lemma 4.8.19) and

X ′2,o =
{

(α, β, γ, δ) ∈ X2 | β ≡ 1 mod 2, 2α 6≡ δ mod 4
}

.

Lemma 4.8.22.
The restriction map, φ̂

∣∣
X2,e

: X2,e −→ I1,>,e is a bijection.

Proof.
Well-defined: It is enough to show A11 ≡ 0 mod 2 and A12−A21 ≡ 0 mod 4. We have
A11 = β ≡ 0 mod 2 and A12−A21 = (β−α)− (α−β+ δ) = 2(β−α)− δ ≡ 2α− δ ≡
0 mod 4 as β ≡ 0 mod 2.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I1,>,e be arbitrary and let

g = (A11 − A12, A11,−A11 + A12 − A21 + A22, A12 + A21). Then g ∈ X2 and satisfies
β = A11 ≡ 0 mod 2 and 2α− δ = 2A11−2A12− (A12 +A21) ≡ −2A12− (A12 +A21) ≡
0 mod 4 by using Lemma 4.8.14 and A11 ≡ 0 mod 2.

Lastly we note φ̂
∣∣∣
X2,e

(g) = f , so the restriction map is surjective and hence is a

bijection.

171



Lemma 4.8.23.
The restriction map, φ̂

∣∣∣
X′2,o

: X ′2,o −→ I1,>,o is a bijection.

Proof.
Well-defined: It is enough to show A11 ≡ 1 mod 2 and A12−A21 ≡ 0 mod 4. We have
A11 = β ≡ 1 mod 2 and A12 −A21 = 2(β − α)− δ ≡ 0 mod 4. The last result follows
from δ ≡ 0 mod 2 in X2 and 2α− δ ≡ 2 mod 4 since 2α 6≡ δ mod 4.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I1,>,o be arbitrary and consider g as in

the proof of Lemma 4.8.22. Then g ∈ X2 and satisfies β = A11 ≡ 1 mod 2 as well
as 2α − δ = 2A11 − 2A12 − (A12 + A21) ≡ 2A11 ≡ 2 mod 4 by Lemma 4.8.14. Thus
2α 6≡ δ mod 4.

Lastly, we observe φ̂
∣∣∣
X′2,o

(g) = f , so the restriction map is surjective and hence is a

bijection.

Corollary 4.8.24.

Q1 =
∣∣∣I1,>∣∣∣ =

∣∣∣I1,>,e∣∣∣+
∣∣∣I1,>,o∣∣∣ =

∣∣∣X2,e

∣∣∣+
∣∣∣X ′2,o∣∣∣. �

Next, consider the set I1,< ⊆ I1,<, partitioning it into the sets I1,<,e and I1,<,o, where

I1,<,e =
{
A ∈ I1,< | A11 ≡ 0 mod 2

}
and

I1,<,o =
{
A ∈ I1,< | A11 ≡ 1 mod 2

}
.

Recall the map ψ̂ from Corollary 3.5.12 and the set X1 from Lemma 3.5.4.

Thus we consider the subsets X1,e, X ′1,o ⊆ X1 where X1,e is the same as in Lemma

4.8.15 and X ′1,o =
{

(α, β, γ, δ) ∈ X1 | β ≡ 1 mod 2, 2α ≡ δ mod 4
}

.

Lemma 4.8.25.
The restriction map, ψ̂

∣∣
X1,e

: X1,e −→ I1,<,e is a bijection.

Proof.
Well-defined: It is enough to show A11 ≡ 0 mod 2 and A12−A21 ≡ 0 mod 4. We have
A11 = β ≡ 0 mod 2,then using β ≡ 0 mod 2 and applying Observation 4.8.18 we have
A12−A21 = (α+β)− (β−α− δ) = 2α+ δ ≡ 2α− δ ≡ 0 mod 4. Thus the restriction
map is well-defined.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I1,<,e be arbitrary and let

g = (A12 − A11, A11, A11 − A12 − A21 + A22, 2A11 − A12 − A21). Then g ∈ X1 and it
satisfies β = A11 ≡ 0 mod 2 as well as 2α − δ = 2A12 − 2A11 − 2A11 + A12 + A21 ≡
2A12 + (A12 +A21) ≡ 0 mod 4 by Lemma 4.8.14. Lastly, we observe ψ̂

∣∣∣
X1,e

(g) = f , so

the restriction map is surjective and hence is a bijection.
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Lemma 4.8.26.
The restriction map ψ̂

∣∣
X′1,o

: X ′1,o −→ I1,<,o is a bijection.

Proof.
Well-defined: It is enough to show A11 ≡ 1 mod 2 and A12−A21 ≡ 0 mod 4. We have
A11 = β ≡ 1 mod 2 and A12−A21 = (α+β)−(β−α−δ) = 2α+δ ≡ 2α−δ ≡ 0 mod 4
by Observation 4.8.18 and 2α ≡ δ mod 4.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ I1,<,o be arbitrary and consider g as given

in the proof of Lemma 4.8.25. Then g ∈ X1 and satisfies β = A11 ≡ 1 mod 2 as well
as 2α−δ = 2A12−2A11−2A11+A12+A21 ≡ 2A12+(A12+A21) ≡ 0 mod 4 by Lemma
4.8.14. Therefore the restriction map is a surjection and hence is a bijection.

Corollary 4.8.27.

Q2 =
∣∣∣I1,<∣∣∣ =

∣∣∣I1,<,e∣∣∣+
∣∣∣I1,<,o∣∣∣ =

∣∣∣X1,e

∣∣∣+
∣∣∣X ′1,o∣∣∣. �

Now consider the set J0,>, partitioning it into and disjoint union of the sets J0,>,e and

J0,>,o, where

J0,>,e =
{
A ∈ J0,> | A22 ≡ 0 mod 2

}
and

J0,>,o =
{
A ∈ J0,> | A22 ≡ 1 mod 2

}
.

Recall the map ι
∣∣
Y1

from Lemma 3.5.7 and consider the subsets Y1,e,Y1,o ⊆ Y1 where,

Y1,e = {(α, β, γ, δ) | β ≡ 0 mod 2, 2α ≡ δ mod 4} and

Y1,o = {(α, β, γ, δ) | β ≡ 1 mod 2, 2α ≡ δ mod 4}.

Lemma 4.8.28.
The restriction of the map ι

∣∣
Y1

to the set Y1,e, given by ι
∣∣
Y1,e

: Y1,e −→ J0,>,e ⊆ J0,>
is a bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 0 mod 2 and A12 − A21 ≡ 0 mod 4. We
have A22 = β ≡ 0 mod 2 and by applying Observation 4.8.18 we see A12 − A21 =
(α + β + δ)− (β − α) ≡ 2α + δ ≡ 0 mod 4.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J0,>,e and let

g = (A22 − A21, A22, A11 − A12 − A21 + A22, A12 + A21 − 2A22). Then g ∈ Y1 and it
satisfies β = A22 ≡ 0 mod 2 and also 2α− δ = (2A22 − 2A21)− (A12 +A21 − 2A22) ≡
−2A21 − (A12 + A21) ≡ 0 mod 4 by Observation 4.8.18.
It is straightforward to verify ι

∣∣
Y1,e

(g) = f , thus the restriction map is a surjection

and hence is a bijection.
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Lemma 4.8.29.
The restriction of the map ι

∣∣
Y1

to the set Y1,o, given by ι
∣∣
Y1,o

: Y1,o −→ J0,>,o ⊆ J0,>
is a bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 1 mod 2 and A12 − A21 ≡ 0 mod 4. We
have A22 = β ≡ 1 mod 2 and further, A12 − A21 = 2α + δ ≡ 0 mod 4 by Observation
4.8.18.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J0,>,o be arbitrary and g be the same as

in the proof of Lemma 4.8.28. Then g ∈ Y1 and it satisfies β = A22 ≡ 1 mod 2 and
also 2α − δ = 2A22 − 2A21 − (A12 + A21 − 2A22) = 4A22 − 2A21 − (A12 + A21) ≡
−2A21 − (A12 + A21) ≡ 0 mod 4 by Lemma 4.8.14.
Lastly, we note that ι

∣∣
Y1,o

(g) = f and so the restriction map is surjective and hence

is a bijection.

Corollary 4.8.30.

R1 =
∣∣∣J0,>∣∣∣ =

∣∣∣J0,>,e∣∣∣+
∣∣∣J0,>,o∣∣∣ =

∣∣∣Y1,e∣∣∣+
∣∣∣Y1,o∣∣∣. �

Now consider J0,< , partitioning it into a disjoint union of the sets J0,<,e and J0,<,o,
where

J0,<,e =
{
A ∈ J0,< | A22 ≡ 0 mod 2

}
and

J0,<,o =
{
A ∈ J0,< | A22 ≡ 1 mod 2

}
.

Recall the map ι̂
∣∣
Y1

from Corollary 3.5.13 and consider the following subsets of Y1,

namely Y1,e (from Lemma 4.8.28) and Y ′1,o = {(α, β, γ, δ) | β ≡ 1 mod 2, 2α 6≡ δ mod 4}.

Lemma 4.8.31.
The restriction map ι̂

∣∣
Y1,e

: Y1,e −→ J0,<,e is a bijection.

Proof.
Well-defined: It is sufficient to show A22 ≡ 0 mod 2 and A12 − A21 ≡ 0 mod 4. We
have A22 = −β ≡ 0 mod 2 and by Observation 4.8.18 we have A12 − A21 = (α + β +
δ)− (−β − α) = 2(β + α) + δ ≡ 2α + δ ≡ 0 mod 4.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J0,<,e be arbitrary and let

g = (A22 − A21,−A22,−A11 + A12 − A21 + A22, A12 + A21). Then g ∈ Y1 and it
satisfies β = −A22 ≡ 0 mod 2 as well as 2α − δ = 2A22 − 2A21 − (A12 + A21) ≡
−2A21 − (A12 + A21) ≡ 0 mod 4 by Lemma 4.8.14.
Lastly it is straightforward to note ι̂

∣∣
Y1,e

(g) = f , so the restriction is surjective and

thus is a bijection.
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Lemma 4.8.32.
The restriction map ι̂

∣∣
Y1,o′

: Y ′1,o −→ J0,<,o is a bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 1 mod 2 and A12−A21 ≡ 0 mod 4. We have
A22 = −β ≡ 1 mod 2. Further, A12 − A21 = 2(β + α) + δ ≡ 0 mod 4 since in Y1 we
have δ ≡ 0 mod 2 and we also have 2α 6≡ δ mod 4. Using Observation 4.8.18 then
gives the result.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J0,<,o be arbitrary and consider g as in

the proof of Lemma 4.8.31. Then g ∈ Y1 and satisfies β = −A22 ≡ 1 mod 2. Further,
by Lemma 4.8.14 we have 2α − δ = 2A22 − 2A21 − (A12 + A21) ≡ 2A22 ≡ 2 mod 4,
thus 2α 6≡ δ mod 4.
Lastly it is straightforward to check ι̂

∣∣
Y ′1<o

(g) = f , so the restriction map is surjective

and hence is a bijection.

Corollary 4.8.33.

R2 =
∣∣∣J0,<∣∣∣ =

∣∣∣J0,<,e∣∣∣+
∣∣∣J0,<,o∣∣∣ =

∣∣∣Y1,e∣∣∣+
∣∣∣Y ′1,o∣∣∣. �

Now consider J1,> , partitioning it into a disjoint union of the sets J1,>,e and J1,>,o ,
where

J1,>,e =
{
A ∈ J1,> | A22 ≡ 0 mod 2

}
J1,>,o =

{
A ∈ J1,> | A22 ≡ 1 mod 2

}
.

Recall the map Γ
∣∣
Y2

from Lemma 3.5.9 and consider the subsets Y2,e, Y2,o ⊆ Y2, where

Y2,e =
{

(α, β, γ, δ) ∈ Y2 | β ≡ 0 mod 2, 2α ≡ δ mod 4
}

and

Y2,o =
{

(α, β, γ, δ) ∈ Y2 | β ≡ 1 mod 2, 2α ≡ δ mod 4
}
.

Lemma 4.8.34.
The restriction of the map Γ

∣∣
Y2

to the subset Y2,e given by Γ
∣∣
Y2,e

: Y2,e −→ J1,>,e ⊆ J1,>
is a bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 0 mod 2 and A12−A21 ≡ 0 mod 4. We have
A22 = β ≡ 0 mod 2 and A12−A21 = (α+β+δ)−(β−α) = 2α+δ ≡ 2α−δ ≡ 0 mod 4
by Observation 4.8.18.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J1,>,e be arbitrary and let

g = (A22 − A21, A22, A11 − A12 − A21 + A22, A12 + A21 − 2A22). Then g ∈ Y2 and it
satisfies β = A22 ≡ 0 mod 2 as well as 2α− δ = 2A22 − 2A21 − (A12 +A21) + 2A22 ≡
−2A21 − (A12 + A21) ≡ 0 mod 4 by Lemma 4.8.14.
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Lastly, it is straightforward to verify Γ
∣∣
Y2,e

(g) = f and thus the restriction map is

surjective. It follows that the restriction map is a bijection.

Lemma 4.8.35.
The restriction of the map Γ

∣∣
Y2

to the subset Y2,o , given by Γ
∣∣
Y2,o

: Y2,o −→ J1,>,o, is

a well-defined bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 1 mod 2 and A12−A21 ≡ 0 mod 4. We have
A22 = β ≡ 1 mod 2 and A12 − A21 = 2α + δ ≡ 2α − δ ≡ 0 mod 4 by Observation
4.8.18.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J1,>,o be arbitrary and consider g as in

the proof of Lemma 4.8.34. Then g ∈ Y2 and it satisfies β = A22 ≡ 1 mod 2 as well
as 2α− δ = 2A22− 2A21− (A12 +A21) + 2A22 ≡ −2A21− (A12 +A21) ≡ 0 mod 4 due
to Lemma 4.8.14.
Lastly, it is straightforward to see Γ

∣∣
Y2,o

(g) = f and thus the restriction map is

surjective. Therefore the restriction map is a bijection.

Corollary 4.8.36.

S1 =
∣∣∣J1,>∣∣∣ =

∣∣∣J1,>,e∣∣∣+
∣∣∣J1,>,o∣∣∣ =

∣∣∣Y2,e∣∣∣+
∣∣∣Y2,o∣∣∣. �

Lastly, consider the set J1,<, partitioning it into a disjoint union of the subsets J1,<,e

and J1,<,o, where

J1,<,e =
{
A ∈ J1,< | A22 ≡ 0 mod 2

}
and

J1,<,o =
{
A ∈ J1,< | A22 ≡ 1 mod 2

}
.

Now recall the map Γ̂ from Corollary 3.5.14 and consider the following subsets of Y2,

Y2,e (from Lemma 4.8.34) and Y ′2,o = {(α, β, γ, δ) | β ≡ 1 mod 2, 2α 6≡ δ mod 4}.

Lemma 4.8.37.
The restriction of the map Γ̂ to the subset Y2,e , given by Γ̂

∣∣
Y2,e

: Y2,e −→ J1,<,e ⊆ J1,<
is a well-defined bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 0 mod 2 and A12−A21 ≡ 0 mod 4. We have
A22 = −β ≡ 0 mod 4 and A12 − A21 = (α + β + δ) − (−β − α) = 2(β + α) + δ ≡
2α + δ ≡ 0 mod 4 by Observation 4.8.18.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J1,<,e be arbitrary and let

g = (A22 − A21,−A22,−A11 + A12 − A21 + A22, A12 + A21). Then g ∈ Y2 and it
satisfies β = −A22 ≡ 0 mod 2 as well as 2α − δ = 2A22 − 2A21 − (A12 + A21) ≡
−2A21 − (A12 + A21) ≡ 0 mod 4 by Observation 4.8.18.
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Lastly, it is straightforward to check that Γ̂
∣∣
Y2,e

(g) = f and so the restriction map is

surjective and thus is a bijection.

Lemma 4.8.38.
The restriction of the map Γ̂ to the subset Y ′2,o , given by Γ̂

∣∣
Y ′2,o

: Y ′2,o −→ J1,<,o is a

well-defined bijection.

Proof.
Well-defined: It is enough to show A22 ≡ 1 mod 2 and A12−A21 ≡ 0 mod 4. We have
A22 = −β ≡ 1 mod 2 and A12 − A21 = 2(β + α) + δ ≡ 2β + 2α − δ ≡ 0 mod 4 by
Observation 4.8.18.
Injectivity: This is inherited.

Surjectivity: Let f = (A11, A12, A21, A22) ∈ J1,<,o be arbitrary and let g be the same

as in the proof of Lemma 4.8.37. Then g ∈ Y2 and it satisfies β = −A22 ≡ 1 mod 2
as well as A12 − A21 = 2A22 − 2A21 − (A12 + A21) ≡ 2A22 ≡ 2 mod 4 by the use of
Lemma 4.8.14.
Lastly it is straightforward to show Γ̂

∣∣
Y ′2,o

(g) = f , so the restriction map is surjective

and thus is a bijection.

Corollary 4.8.39.

S2 =
∣∣∣J1,<∣∣∣ =

∣∣∣J1,<,e∣∣∣+
∣∣∣J1,<,o∣∣∣ =

∣∣∣Y2,e∣∣∣+
∣∣∣Y ′2,o∣∣∣. �

Summary 4.8.40.
By using Corollaries 4.8.17, 4.8.21, 4.8.24, 4.8.27, 4.8.30, 4.8.33, 4.8.36 and 4.8.39 we
are able to deduce:

P1 + P2 +Q1 +Q2 −R1 −R2 − S1 − S2 =
∣∣∣X1,e

∣∣∣+
∣∣∣X1,o

∣∣∣+
∣∣∣X2,e

∣∣∣+
∣∣∣X2,o

∣∣∣+∣∣∣X2,e

∣∣∣+
∣∣∣X ′2,o∣∣∣+

∣∣∣X1,e

∣∣∣+
∣∣∣X ′1,o∣∣∣−∣∣∣Y1,e∣∣∣− ∣∣∣Y1,o∣∣∣− ∣∣∣Y1,e∣∣∣− ∣∣∣Y ′1,o∣∣∣−∣∣∣Y2,e∣∣∣− ∣∣∣Y2,o∣∣∣− ∣∣∣Y2,e∣∣∣− ∣∣∣Y ′2,o∣∣∣

= 2
∣∣∣X1,e

∣∣∣+ 2
∣∣∣X2,e

∣∣∣+
∣∣∣X1,o

∣∣∣+
∣∣∣X ′1,o∣∣∣+∣∣∣X2,o

∣∣∣+
∣∣∣X ′2,o∣∣∣− 2

∣∣∣Y1,e∣∣∣− 2
∣∣∣Y2,e∣∣∣−∣∣∣Y1,o∣∣∣− ∣∣∣Y ′1,o∣∣∣− ∣∣∣Y2,o∣∣∣− ∣∣∣Y ′2,o∣∣∣ .

Lemma 4.8.41.
There is a bijection between the sets X1,e and Y1,e. Thus

∣∣∣X1,e

∣∣∣ =
∣∣∣Y1,e∣∣∣.

Proof.

First note that X1,e ⊆ X1, Y1,e ⊆ Y1 and that these are finite sets. Clearly we have

X1,e∩Y1,e ⊆ X1∩Y1. Thus we recall the restriction map found in Theorem 3.7.1 and
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show that W
∣∣
Y1,e\(X1,e∩Y1,e)

: Y1,e\(X1,e ∩ Y1,e) −→ X1,e\(X1,e ∩ Y1,e) is a bijection.

Recall W (α, β, γ, δ) = ωm(α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ) = (α′, β′, γ′, δ′).
Well-defined: It is sufficient to show β′ ≡ 0 mod 2 and 2α′ ≡ δ′ mod 4. We have
β′ = β ≡ 0 mod 2 and also 2α′ − δ′ = 2α − δ − 2mβ ≡ 2mβ ≡ 0 mod 4 since
2α ≡ δ mod 4 and β ≡ 0 mod 2. Therefore the restriction map is well-defined.
Injectivity: This is inherited from the previous restriction of the map W in Theorem
3.7.1.
Surjectivity: Let (α′, β′, γ′, δ′) ∈ X1,e\(X1,e ∩ Y1,e) be arbitrary and let (α, β, γ, δ) =
(α′, β′, γ′ + 2mα′, δ′ − 2mβ′). It is enough to show β ≡ 0 mod 2 and 2α ≡ δ mod 4.
This is because of the proof of surjectivity in Theorem 3.7.1.
We have β = β′ ≡ 0 mod 2 and also 2α − δ = 2α′ − δ′ + 2mβ′ ≡ 0 mod 4 due to
β′ ≡ 0 mod 2.
Hence the restriction map is surjective and therefore is a bijection.

Thus it follows that
∣∣∣X1,e

∣∣∣ =
∣∣∣Y1,e∣∣∣.

Lemma 4.8.42.
There is a bijection between the sets X2,e and Y2,e. Thus

∣∣∣X2,e

∣∣∣ =
∣∣∣Y2,e∣∣∣.

Proof.

First note that X2,e ⊆ X2, Y2,e ⊆ Y2 and these are finite sets. Clearly we have

X2,e ∩ Y2,e ⊆ X2 ∩ Y2. Hence we recall the restriction map W ′ from Theorem 3.7.2

and show that W ′
∣∣
Y2,e\(X2,e∩Y2,e)

: Y2,e\(X2,e∩Y2,e) −→ X2,e\(X2,e∩Y2,e) is a bijection.

Recall W ′(α, β, γ, δ) = ω′m(α, β, γ, δ) = (α, β, γ − 2mα, δ + 2mβ) = (α′, β′, γ′, δ′).
Well-defined: It is sufficient to show β′ ≡ 0 mod 2 and 2α′ ≡ δ′ mod 4. We have
β′ = β ≡ 0 mod 2 and 2α′ − δ′ = 2α − δ − 2mβ ≡ 0 mod 4 since 2α ≡ δ mod 4 and
β ≡ 0 mod 2. Thus the restriction map is well-defined.
Injectivity: This is inherited from the prior restriction of the map W ′ in Theorem
3.7.2.
Surjectivity: Let (α′, β′, γ′, δ′) ∈ X2,e\(X2,e ∩ Y2,e) be arbitrary and consider
(α, β, γ, δ) = (α′, β′, γ′ + 2mα′, δ′ − 2mβ′). It is sufficient to show β ≡ 0 mod 2 and
2α ≡ δ mod 4. We have β = β′ ≡ 0 mod 2 and 2α − δ = 2α′ − δ + 2mβ′ ≡ 0 mod 4
since 2α′ ≡ δ′ mod 4 and β′ ≡ 0 mod 2.
Hence the restriction map is surjective and therefore is a bijection.

Thus it follows that
∣∣∣X2,e

∣∣∣ =
∣∣∣Y2,e∣∣∣.

Lemma 4.8.43.
There is a bijection between the sets U and V , where U = Y1,o ∪ Y ′1,o and V =

X1,o ∪X ′1,o. Consequently
∣∣∣Y1,o∣∣∣+

∣∣∣Y ′1,o∣∣∣ =
∣∣∣X1,o

∣∣∣+
∣∣∣X ′1,o∣∣∣.

Proof.

First note that Y1,o, Y ′1,o ⊆ Y1 and X1,o, X ′1,o ⊆ X1, so these are finite subsets and thus

U and V are finite sets. Note that by construction Y1,o∩Y ′1,o = ∅ and X1,o∩X ′1,o = ∅.
Lastly, observe U ∩ V ⊆ X1 ∩ Y1.
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Now we further restrict the restriction of the map W found in Theorem 3.7.1 to the
subset U\(U∩V ). We will show that this maps to V \(U∩V ) and is in fact a bijection.
To show that this restriction is well-defined it is sufficient to show β′ ≡ 1 mod 2 due to
the proof of Theorem 3.7.1. We have β′ = β ≡ 1 mod 2 and therefore the restriction
is well-defined.
Note that injectivity is inherited and so it remains to show surjectivity. Again, it is
sufficient to consider (α, β, γ, δ) from the surjectivity part of the proof of Theorem
3.7.1 and show β ≡ 1 mod 2. We have β = β′ ≡ 1 mod 2 and hence the restriction
map is surjective.
It follows that this restriction map gives a bijection between U\(U∩V ) and V \(U∩V ).

Using this bijection and the finiteness of the sets we have
∣∣∣Y1,o∣∣∣ +

∣∣∣Y ′1,o∣∣∣ =
∣∣∣X1,o

∣∣∣ +∣∣∣X ′1,o∣∣∣.
Lemma 4.8.44.
There is a bijection between the sets U ′ and V ′, where U ′ = Y2,o ∪ Y ′2,o and V ′ =

X2,o ∪X ′2,o. Consequently
∣∣∣Y2,o∣∣∣+

∣∣∣Y ′2,o∣∣∣ =
∣∣∣X2,o

∣∣∣+
∣∣∣X ′2,o∣∣∣.

Proof.

First note that Y2,o, Y ′2,o ⊆ Y2 and X2,o, X ′2,o ⊆ X2, so these are finite subsets and thus

U ′ and V ′ are finite sets. Note that by construction Y2,o∩Y ′2,o = ∅ and X2,o∩X ′2,o = ∅.
Lastly, observe U ′ ∩ V ′ ⊆ X2 ∩ Y2.
Now we further restrict the restriction of the map W ′ found in Theorem 3.7.2 to the
subset U ′\(U ′ ∩ V ′). We will show that this maps to V ′\(U ′ ∩ V ′) and is in fact a
bijection.
To show that this restriction is well-defined it is sufficient to show β′ ≡ 1 mod 2
due to the proof of Theorem 3.7.2. We have β′ = β ≡ 1 mod 2 and therefore the
restriction is well-defined.
Note that injectivity is inherited and so it remains to show surjectivity. Again, it is
sufficient to consider (α, β, γ, δ) from the surjectivity part of the proof of Theorem
3.7.2 and show β ≡ 1 mod 2. We have β = β′ ≡ 1 mod 2 and hence the restriction
map is surjective.
It follows that this restriction map gives a bijection between U ′\(U ′∩V ′) and V ′\(U ′∩
V ′). Using this bijection and the finiteness of the sets we have

∣∣∣Y2,o∣∣∣ +
∣∣∣Y ′2,o∣∣∣ =∣∣∣X2,o

∣∣∣+
∣∣∣X ′2,o∣∣∣.

Summary 4.8.45.
We now use Lemmas 4.8.41, 4.8.42, 4.8.43 and 4.8.44 along with Summary 4.8.40 to
deduce

P +Q−R− S = P0 +Q0 −R0 − S0.

Thus we have shown

1

3
Clc (D) = P +Q−R− S
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= P0 +Q0 −R0 − S0. (4.5)

4.9 Determining the values of P0, Q0, R0 and S0.

In this section we establish bijections that will permit us to determine the values for

P0, Q0, R0 and S0 in terms of divisors of D.

Lemma 4.9.1.
Let

Z1 = {(∂, d, A21) | ∂d = D, ∂, d ∈ Z>0, d ≡ 1 mod 2,−∂ < A21 6 ∂, ∂ ≡ A21 mod 4} .

Then the map

j : I0,= −→ Z1

(A11, A12, A21, A22) 7−→ (A11, A22 − A21, A21) = (∂, d, A21)

is a bijection.

Proof.
Well-defined: We have ∂d = A11(A22 − A21) = D and since A11 > 0 it follows that
A22 − A21 > 0, therefore d, ∂ ∈ Z>0.
Observe A11 +A22 ≡ 1 mod 2 and A11−A21 = A12−A21 ≡ 0 mod 4 imply d = A22−
A21 ≡ 1 mod 2 as well as ∂ − A21 = A11 − A21 ≡ 0 mod 4. Next, −A11 < A21 6 A11

implies −∂ < A21 6 ∂ and so the map j is well-defined.
Injectivity: This is straightforward to verify.
Surjectivity: Let (∂, d, A21) ∈ Z1 be arbitrary and
consider (∂, ∂, A21, d + A21) = (a11, a12, a21, a22). Then it satisfies
det(a11, a12, a21, a22) = ∂(d +A21−A21) = ∂d = D and we note a11 = ∂ = a12. Next,
−∂ < A21 6 ∂ implies −a11 < a21 6 a11. We also have a11 + a22 = ∂+ d +A21 ≡ d ≡
1 mod 2 since ∂−A21 ≡ 0 mod 4. Lastly we have a12− a21 = ∂−A21 ≡ 0 mod 4 and

therefore (a11, a12, a21, a22) ∈ I0,=.
It is straightforward to verify j(a11, a12, a21, a22) = (∂, d, A21), thus the map j is
surjective and hence is a bijection.

Corollary 4.9.2.

P0 =
∑
∂d=D
d odd

[(
∂

2
+

1

4

)
− (−1)∂

4

]
.

Proof.

By Lemma 4.9.1 we know
∣∣∣I0,=∣∣∣ = P0 = |Z1|. It remains to count the set Z1.

Fix D ∈ Z>0 and let d be any positive odd divisor of D. This always exists as we
may take d = 1. Let ∂ be the unique positive integer such that ∂d = D.
Then A21 is such that −∂ < A21 6 ∂ and ∂ − A21 ≡ 0 mod 4. Observe that the
interval (−∂, ∂] contains precisely 2∂ integers of which ∂ are even. We split into two
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cases.
Case I: ∂ ≡ 0 mod 2
Then (−∂, ∂] contains ∂

2
integers that are congruent to i mod 4 for i ∈ {0, 1, 2, 3}.

Now ∂−A21 ≡ 0 mod 4 gives A21 ≡ ∂ mod 4 and since ∂ is fixed it follows that there
is only one choice for i. Since we may take A21 = ∂ it follows that give (∂, d) where
∂ ≡ 0 mod 2, d ≡ 1 mod 2 and ∂d = D then there are exactly ∂

2
choices for A21.

Case II: ∂ ≡ 1 mod 2
Again, note that there are 2∂ integers in the interval (−∂, ∂] and also 2∂ ≡ 2 mod 4.
In particular, write 2∂ = 4

(
∂−1
2

)
+ 2 and thus there are at least ∂−1

2
choices for A21,

with the possibility of one more.
Next, we have ∂ −A21 ≡ 0 mod 4, i.e. A21 ≡ ∂ mod 4 and so A21 6= −∂ + 1. Observe
∂ − 4

(
∂−1
2

)
= −∂ + 2 ∈ (−∂, ∂]. Thus there are ∂−1

2
+ 1 = ∂+1

2
possible choices for

A21.
Notice that the difference between these two cases is 1

2
, this permits us to condense

the result as follows:(
∂

2
+

1

4

)
− (−1)∂

4
=

{
∂
2

if ∂ ≡ 0 mod 2
∂+1
2

if ∂ ≡ 1 mod 2.

Now we are free to sum over all positive odd divisors d of D. This gives

P0 =
∑
∂d=D
d odd

[(
∂

2
+

1

4

)
− (−1)∂

4

]
.

Lemma 4.9.3.
Let

Z3 = { (∂, d, A21) | ∂d = D, ∂, d ∈ Z>0, d ≡ 1 mod 2, ∂−A21 ≡ 0 mod 4,

− ∂ 6 A21 < ∂ } .

Then the map

j : I1,= −→ Z3

(A11, A12, A21, A22) 7−→ (∂, d, A21)

is a well-defined bijection.

Proof.
Well-defined: We have ∂d = A11(A22 − A21) = D, further D,A11 > 0 implies A22 −
A21 > 0 and so ∂, d ∈ Z>0. Next, A11+A22 ≡ 1 mod 2 and A12−A21 ≡ 0 mod 4 imply
d = A22 − A21 ≡ 1 mod 2 and ∂ − A21 = A11 − A21 = A12 − A21 ≡ 0 mod 4. Lastly
we have −A11 6 A21 < A11 yields −∂ 6 A21 < A11 and so the map is well-defined.
Injectivity: This is straightforward to verify.
Surjectivity: Let (∂, d, A21) ∈ Z3 be arbitrary and consider (∂, ∂, A21, d + A21) =
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(a11, a12, a21, a22).
Then it satisfies det(a11, a12, a21, a22) = ∂(d + A21 − A21) = ∂d = D, a11 = ∂ ∈
Z>0 and d, A21 ∈ Z>0 implies a11 + a22 = ∂ + d − A21 ≡ ∂ mod 4 ≡ 1 mod 2.
Lastly we have a12 − a21 = ∂ − A21 ≡ 0 mod 4 and it is straightforward to verify
that j(a11, a12, a21, a22) = (∂, d, A21). Hence the map is surjective and thus is a
bijection.

Corollary 4.9.4.

Q0 =
∑
∂d=D
d odd

[(
∂

2
− 1

4

)
+

(−1)∂

4

]
.

Proof.

By Lemma 4.9.3 we know Q0 =
∣∣∣I1,=∣∣∣ = |Z3|. It remains to count the set Z3. Fix

D ∈ Z>0 and let d be any positive odd divisor of D. This always exists as we may
take d = 1. Let ∂ be the unique positive integer such that ∂d = D. Then A21 satisfies
−∂ 6 A21 < ∂ and ∂ −A21 ≡ 0 mod 4, that is, A21 ≡ ∂ mod 4. We note that [−∂, ∂)
contains exactly 2∂ integers of which ∂ are even. We split into cases.
Case I: ∂ ≡ 0 mod 2
Then ∂

2
is an integer and thus each class of integers modulo 4 within the interval

[−∂, ∂) contains exactly ∂
2

integers. Since A21 ≡ ∂ mod 4 we have ∂
2

choices for A21.
Case II: ∂ ≡ 1 mod 2
In this case we have 2∂ ≡ 2 mod 4 and we may write 2∂ = 4

(
∂−1
2

)
+ 2. Thus there

are at least ∂−1
2

choices for A21 with the potential for there to be one more. Now
A21 ≡ ∂ mod 4 implies A21 6= −∂ and we note that A21 6= ∂ since ∂ 6∈ [−∂, ∂).
Therefore since ∂ − 4

(
∂−1
2

)
= −∂ + 2 we see A21 ∈ [−∂ + 2, ∂ − 4] and this interval

contains precisely ∂−1
2

congruent to ∂ mod 4.
Combining these results, we may write the number of choices for A21 as follows:(

∂

2
− 1

4

)
+

(−1)∂

4
.

Now we are free to sum over all positive odd divisors of D. This gives

Q0 =
∑
∂d=D
d odd

[(
∂

2
− 1

4

)
+

(−1)∂

4

]
.

Lemma 4.9.5.
P0 +Q0 = 2kσodd(D), where D = 2km, m ≡ 1 mod 2.

Proof.

P0 +Q0 =
∑
∂d=D
d odd

[(
∂

2
+

1

4

)
− (−1)∂

4

]
+
∑
∂d=D
d odd

[(
∂

2
− 1

4

)
+

(−1)∂

4

]
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=
∑
∂d=D
d odd

∂.

Now if D is odd we have k = 0 and
∑
∂d=D
d odd

∂ = σodd(D) = 2kσodd(D).

So suppose D is even, i.e. D = 2km for some k > 1 and m ≡ 1 mod 2. Then
∂ = D

d
= 2km

d
and d | m. Therefore we have∑

∂d=D
d odd

∂ =
∑
d|m

d odd

2k
m

d

= 2kσodd(m)

= 2kσodd(D).

Hence P0 +Q0 = 2kσodd(D), where D = 2km, m ≡ 1 mod 2.

Next we investigate the cardinalities of the sets J0,= and J1,=. Recall from Lemma
4.3.8 we have

J0,= = {(A11, A12, A21, 0) | det(A) = D, 0 < A12 + A21 < A11, A21 < − |A11 − A12|}
J1,= = {(A11, A12, A21, 0) | det(A) = D, 0 6 A12 + A21 < A11, A21 < − |A11 − A12|} .

Note that J0,= ⊆ J0,= and J1,= ⊆ J1,=.

From Lemma 4.6.7 recall the bijection γ : J0,= −→ V . We give a restriction of this
map.

Lemma 4.9.6.
The following restriction of the map γ from Lemma 4.6.7 is a bijection.

γ|
J0,=

: J0,= −→ V , where V = {(s, t, A11) ∈ V | s+ t ≡ 0 mod 4}.

Proof.

Observe J0,= ⊆ J0,= and V ⊆ V . Therefore it is enough to show s+ t ≡ 0 mod 4 for
well-definedness. We have s+ t = A12 + (−A21) ≡ 0 mod 4.
We note injectivity is inherited and so it remains to show surjectivity. Let (s, t, A11) ∈
V be arbitrary and consider g = (A11, s,−t, 0) = (a11, a12, a21, a22). By Lemma
4.6.7 we know g lies in J0,= and so it is enough to show a12 − a21 = s − (−t) =
s+ t ≡ 0 mod 4. Hence the restriction is surjective and it is straightforward to verify
γ|
J0,=

(g) = (s, t, A11). Therefore we have a bijection.

Corollary 4.9.7.

R0 =
∣∣∣J0,=∣∣∣ =

∣∣∣V ∣∣∣.
We now recall S0 =

∣∣∣J1,=∣∣∣ and examine the similarities between the sets J0,= and

J1,=.
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Lemma 4.9.8.

S0 =

{
R0 +

√
D if D = 4k2

R0 otherwise.

Proof.
Let

Z = J1,= ∩ J0,=
= {(A11, A12, A21, 0) | det(A) = D, 0 < A12 + A21 < A11, A21 < − |A11 − A12| ,

A11 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4} .

It is then clear that J0,=\Z = ∅ and

J1,=\Z = {(A11, A12, A21, 0) | det(A) = D, 0 = A12 + A21 < A11, A21 < − |A11 − A12| ,
A11 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4} .

It follows that S0 = R0 +
∣∣∣V̂ ∣∣∣, where

V̂ = {(A11, A12, A21, 0) | − A12A21 = D, 0 = A12 + A21 < A11, A21 < − |A11 − A12| ,
A11 ≡ 1 mod 2, A12 − A21 ≡ 0 mod 4} .

We note A12 +A21 = 0 implies A21 = −A12 and so 2A12 = A12 −A21 ≡ 0 mod 4 and
hence both A12 and A21 must be even. Further, A21 = −A12 implies D = A2

12 and so

we have S0 = R0 unless D = 4k2 for some integer k.

Now suppose D = 4k2, then in the set V̂ we have D = −A12A21 = A2
12 = 4k2 as A12 ≡

0 mod 2. Using A21 = −A21 and A21 < − |A11 − A12| yields −A12 < A11−A12 < A12

and so 0 < A11 < 2A12. Therefore we have A11 ∈ [1, 2A12− 1] as A11 ≡ 1 mod 2, and
this interval contains (2A12−1)−1+1 = 2A12−1 integers, of which A12 =

√
D are odd.

Therefore when D = 4k2 for some integer k we have S0 = R0 +
√
D.

Hence S0 =

{
R0 +

√
D if D = 4k2

R0 otherwise.

Our goal now is to derive an expression for R0 + S0. We will do this via a series of

four lemmas. Note that by Corollary 4.9.7 we have
∣∣∣J0,=∣∣∣ =

∣∣∣V ∣∣∣ and therefore V is a

finite set since J0,= ⊆ J0,=, which is finite.

Lemma 4.9.9.
Let D ≡ 1 mod 4 then R0 = S0 = 0.

Proof.

Let D ≡ 1 mod 4, then in the definition of the set V we have D = st and s + t ≡
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0 mod 4. Using D = st we see that either s ≡ t ≡ 1 mod 4 or s ≡ t ≡ 3 mod 4 and in

either case we have s+ t ≡ 2 mod 4. This is a contradiction and so R0 = 0. Applying

Lemma 4.9.8 we get S0 = R0 as D ≡ 1 mod 4 implies D 6= 4k2.

Lemma 4.9.10.
If D ≡ 2 mod 4 then R0 = S0 = 0.

Proof.

Let D ≡ 2 mod 4, from the definition of the set V we have D = st and precisely
one of s, t must be odd. It follows that s + t 6≡ 0 mod 4, a contradiction. Since

D ≡ 2 mod 4 implies D 6= 4k2, applying Lemma 4.9.8 yields R0 = S0 = 0.

Lemma 4.9.11.
If D ≡ 3 mod 4 then R0 = S0 = 1

2
(σ(D)−Ψ(D)).

Proof.
Let D ≡ 3 mod 4, then in particular D 6= 4k2. We have D = st ≡ 3 mod 4 implies
s and t are both odd as well as s ≡ −t mod 4. Thus s + t ≡ 0 mod 4 as desired. So
we may pick any pair of divisors s, t of D with s > t. Then there are t choices for
A11 ∈ [s− t+ 1, s+ t− 1] because there are 2t− 1 integers in this interval and both
s− t+ 1 and s+ t− 1 are odd due to s+ t ≡ 0 mod 4.

Applying Lemmas 4.4.2 and 4.9.8 we have S0 = R0 =
∣∣∣V ∣∣∣ =

∑
D=st
s>t

t =
1

2
(σ(D)−Ψ(D)).

We now examine the case when D ≡ 0 mod 4. Regardless of whether D is a perfect
square or not, we must satisfy both st ≡ 0 mod 4 and s+ t ≡ 0 mod 4. Thus both s
and t must be even, and further we require s ≡ t ≡ 2 mod 4 or s ≡ t ≡ 0 mod 4. The
first implies D ≡ 4 mod 8 while the latter implies D ≡ 0 mod 16. This motivates
us to break down the D ≡ 0 mod 4 case into three subcases: D ≡ 4 mod 8, D ≡
8 mod 16 and D ≡ 0 mod 16.

Lemma 4.9.12.
If D ≡ 8 mod 16 then R0 = S0 = 0.

Proof.
Let D ≡ 8 mod 16, then 23 | D but 24 - D. Thus D is not a perfect square;

consequently Lemma 4.9.8 implies S0 = R0. Further, since R0 =
∣∣∣V ∣∣∣ and elements

of V satisfy either s ≡ t ≡ 2 mod 4 or s ≡ t ≡ 0 mod 4, it is clear that D = st ≡
8 mod 16 is impossible.

Thus V = ∅ and hence R0 = S0 = 0.

Lemma 4.9.13.
Assume D ≡ 4 mod 8 and write D = 4n where n ≡ 1 mod 2. Then

R0 =

{
σ(n)−Ψ(n)−

√
n if n = k2

σ(n)−Ψ(n) otherwise
and S0 =

{
σ(n)−Ψ(n) +

√
n if n = k2

σ(n)−Ψ(n) otherwise.
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Proof.

Let D = 4n, n ≡ 1 mod 2. From the definition of D and the set V we have s ≡ t ≡
2 mod 4 because 16 - D. If D > 4 then there always exists a pair (s, t) with 0 < t < s
as we may take (ŝ, t̂) to be any pair of divisors of D

4
> 1 such that 0 < t̂ < ŝ and then

let s = 2ŝ, t = 2t̂. Hence in this situation, given a pair (s, t) we count the choices for
A11. We note A11 ∈ [s − t + 1, s + t − 1] and since 2 | (s ± t) it follows that of the
2t− 1 integers in this interval, precisely t of them are odd. Thus there are t choices
for A11.
Hence when D ≡ 4 mod 8, D > 4 we have

R0 =
∣∣∣V ∣∣∣ =

∑
D=st
0<t<s

s≡t≡2 mod 4

t

= 2
∑
D=4ŝt̂

0<t̂<ŝ

ŝ≡t̂≡1 mod 2

t̂

= 2
∑
D=4ŝt̂

0<t̂<ŝ

t̂ as D ≡ 4 mod 8 implies no even ŝ, t̂ exist

=

{
σ
(
D
4

)
−Ψ

(
D
4

)
−
√

D
4

if D = 4k2

σ
(
D
4

)
−Ψ

(
D
4

)
otherwise

by Lemma 4.4.2

=

{
σ(n)−Ψ(n)−

√
n if n = k2

σ(n)−Ψ(n) otherwise.

In the case where D = 4 we have s ≡ t ≡ 2 mod 4 implies s = t = 2 and this

contradicts t < s. Consequently V = ∅ and it is elementary to verify σ(1)− Ψ(1)−√
1 = 0, thus the above formula holds for all D ≡ 4 mod 8. Applying Lemma 4.9.8

we get

S0 =

{
σ(n)−Ψ(n)−

√
n+
√
D if D = 4k2

σ(n)−Ψ(n) otherwise

=

{
σ(n)−Ψ(n) +

√
n if n = k2

σ(n)−Ψ(n) otherwise.

Lemma 4.9.14.

Assume D = 4n ≡ 0 mod 16, then R0 = 2

{
σ
(
n
4

)
−Ψ

(
n
4

)
−
√

n
4

if n = 4k2

σ
(
n
4

)
−Ψ

(
n
4

)
otherwise

and

S0 = 2

{
σ
(
n
4

)
−Ψ

(
n
4

)
+
√

n
4

if n = 4k2

σ
(
n
4

)
−Ψ

(
n
4

)
otherwise.

Proof.

Let D = 4n ≡ 0 mod 16, note that 4 | n. From the definition of the set V we have
s and t satisfy either s ≡ t ≡ 2 mod 4 or s ≡ t ≡ 0 mod 4. From D ≡ 0 mod 16 it
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follows we may only have s ≡ t ≡ 0 mod 16. Since 16 | D, for D > 16 we may find a
pair (s, t) such that D = st and 0 < t < s by letting s = 4ŝ, t = 4t̂ where 0 < t̂ < ŝ
and 1 < D

16
= ŝt̂.

Hence in this situation, given a pair (s, t) we count the possibilities for A11. As in
the proof of Lemma 4.9.13 there are t choices for A11.
Hence when D = 4n ≡ 0 mod 16, D > 16 we have

R0 =
∣∣∣V ∣∣∣ =

∑
D=st
0<t<s

s≡t≡0 mod 4

t

= 2 · 2
∑

D=16ŝt̂

0<t̂<ŝ

t̂

= 2

{
σ
(
D
16

)
−Ψ

(
D
16

)
−
√

D
16

if D = 16k2

σ
(
D
16

)
−Ψ

(
D
16

)
otherwise

by Lemma 4.4.2

= 2

{
σ
(
n
4

)
−Ψ

(
n
4

)
−
√

n
4

if n = 4k̂2

σ
(
n
4

)
−Ψ

(
n
4

)
otherwise.

In the case where D = 16 we have s ≡ t ≡ 0 mod 4 implies s = t = 4, contradicting

t < s. Therefore we have V = ∅ and it is straightforward to verify σ(1)−Ψ(1)−
√

1 =
0. Thus the above formula holds for all D ≡ 0 mod 16. Applying Lemma 4.9.8 we
have

S0 = 2

{
σ
(
n
4

)
−Ψ

(
n
4

)
−
√

n
4

+
√
D if D = 16k2

σ
(
n
4

)
−Ψ

(
n
4

)
otherwise

= 2

{
σ
(
n
4

)
−Ψ

(
n
4

)
+
√

n
4

if n = 4k̂2

σ
(
n
4

)
−Ψ

(
n
4

)
otherwise.

Corollary 4.9.15.

R0 + S0 =



0 if D ≡ 1 mod 4
0 if D ≡ 2 mod 4
σ(D)−Ψ(D) if D ≡ 3 mod 4
2 (σ(n)−Ψ(n)) if D = 4n ≡ 4 mod 8
0 if D = 4n ≡ 8 mod 16
4
(
σ
(
n
4

)
−Ψ

(
n
4

))
if D = 4n ≡ 0 mod 16.

Proof.
This follows from carefully combining the results found in Lemmas 4.9.9, 4.9.10,
4.9.11, 4.9.13, 4.9.12 and 4.9.14.

These results agree exactly with those of Kronecker, found in [Kr1897, p. 480].
We now prove a lemma stated but not proved in Kronecker’s section 19.
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Lemma 4.9.16 (Kronecker).
Let D = 4n = 2km where m ≡ 1 mod 2 and k > 4.
Then 2kσodd(m) = 8σodd(m) + 8σ

(
2k−4m

)
.

Proof.

8σodd(m) + 8σ
(
2k−4m

)
= 8

∑
d|m
d odd

d+ 8
∑

d|2k−4m

d

= 8
∑
d|m
dodd

d+ 8
∑
d|m
d odd

d+ 8
∑
d=2d̂

d̂|m

d+ 8
∑
d=4d̂

d̂|m

d+ · · ·+ 8
∑

d=2k−4d̂

d̂|m

d

= 16
∑
d|m
dodd

d+ 16σodd(m)
(
1 + 2 + · · · 2k−5

)
= 16σodd(m) + 24σodd(m) ·

(
2k−4 − 1

2− 1

)
= 16σodd(m) + 2kσodd(m)− 16σodd(m)

= 2kσodd(m).

4.10 A Formula for Clc (D)

In this section we draw upon our results from Section 4.9 to derive a formula for

computing Clc (D) in terms of the divisors of D. We continue to let D ∈ Z>0 and
write D = 2km where k > 0 and m ≡ 1 mod 2.
We begin our derivation with Equation 4.5.

1

3
Clc (D) = P0 +Q0 −R0 − S0

=
∑
d odd
∂d=D

∂ −



0 if D ≡ 1 mod 4
0 if D ≡ 2 mod 4
σ(D)−Ψ(D) if D ≡ 3 mod 4
2σ
(
D
4

)
− 2Ψ

(
D
4

)
if D ≡ 4 mod 8

0 if D ≡ 8 mod 16
4
(
σ
(
D
16

)
−Ψ

(
D
16

))
if D ≡ 0 mod 16

= 2kσodd(D)−



0 if D ≡ 1 mod 4
0 if D ≡ 2 mod 4
σ(D)−Ψ(D) if D ≡ 3 mod 4
22σodd

(
D
4

)
− 2σodd

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 4 mod 8

8σodd(m) if D ≡ 8 mod 16
24σodd

(
D
16

)
− 4σ

(
D
16

)
+ 4Ψ

(
D
16

)
if D ≡ 0 mod 16
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=



σodd(D) if D ≡ 1 mod 4
2σodd(D) if D ≡ 2 mod 4
σodd(D)− (σ(D)−Ψ(D)) if D ≡ 3 mod 4
2σodd

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 4 mod 8

8σodd(m) if D ≡ 8 mod 16
16σodd

(
D
16

)
− 4σ

(
D
16

)
+ 4Ψ

(
D
16

)
if D ≡ 0 mod 16.

Applying Lemma 4.9.16, we see 24σodd
(
D
16

)
= 8σodd

(
D
16

)
+ 8σ

(
D
16

)
. Thus we get

1

3
Clc (D) =



σodd(m) if D ≡ 1 mod 4
2σodd(m) if D ≡ 2 mod 4
Ψ(m) if D ≡ 3 mod 4
2σodd

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 4 mod 8

8σodd(m) if D ≡ 8 mod 16
8σodd

(
D
16

)
+ 4σ

(
D
16

)
+ 4Ψ

(
D
16

)
if D ≡ 0 mod 16.

(4.6)

Observe we continue to differ from Kronecker’s result by a factor of 2. This is still
due to the fact the we are only considering positive definite bilinear forms. We also
see our result matches (1), (2), (3), (4), (5) and (6) of Kronecker’s paper ([Kr1897,
p. 480]).

Copyright c© Jonathan A. Constable, 2016.
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Chapter 5 A Connection between Bilinear Forms and Binary Quadratic
Forms

“Now this is not the end. It is not even the beginning of the end. But it
is, perhaps, the end of the beginning.”
- Sir Winston Churchill

In this chapter we develop a connection between the class number for positive definite
bilinear forms and the class number for positive definite binary quadratic forms.

5.1 Developing the Connection with Binary Quadratic Forms

A significant milestone in Kronecker’s paper [Kr1897] is the development of his for-
mula for Clc (D) in terms of the divisors of D. However, a more important result
is his connection between Clc (D) and summing over certain complete equivale nce
classes of positive definite binary quadratic forms. We shall develop this notion in
this section.

Throughout this chapter (unless explicitly stated otherwise) we will assume any bi-
nary quadratic forms given are positive definite and are of the form f = ax2 + 2bxy+
cy2 where a, b and c are integers. Thus we will refer to the determinant of such a
binary quadratic form by det(f) = ac− b2.

It will be useful for the reader to remind themselves of the definition of an associated
binary quadratic form (see Definition 2.4.8).

We first give a slightly stronger version of Lemma 2.4.25.

Lemma 5.1.1.
Let A be a bilinear form, then A is positive definite if and only if AA is a positive
definite binary quadratic form.

Proof.

Let A have matrix representation A =

(
A11 A12

A21 A22

)
and by definition AA = A11x

2+

(A12 + A21)xy + A22y
2 is its associated binary quadratic form.

(⇒). Suppose A is a positive definite bilinear form. By Corollary 2.4.19 this implies
A11 > 0 and 4A11A22 − (A12 + A21)

2 > 0. By Lemma 2.4.11 we wish to show
AA = ax2 + rxy + cy2 satisfies a > 0 and 4 det(AA) > 0.
By definition we have AA = A11x

2 + (A12 + A21)xy + A22y
2. Thus we clearly have

a = A11 > 0. Further, 4 det(AA) = 4A11A22 − (A12 + A21)
2 > 0. Therefore AA is a

positive definite binary quadratic form.
(⇐) Suppose AA is a positive definite binary quadratic form. Then it follows that
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A11 > 0 and 0 < 4 det(AA) = 4A11A22− (A12 +A21)
2. Therefore by Corollary 2.4.19,

A is a positive definite bilinear form.

We also note Kronecker considered only those binary quadratic forms having an
even xy coefficient. This is because when working with the definition of complete
equivalence we would like the entries to be integers. Our next series of lemmas
indicate how we may determine the number of complete equivalence classes for binary
quadratic forms with odd xy coefficient.

Lemma 5.1.2.
Let f = ax2+rxy+cy2 be a positive definite binary quadratic form where r ≡ 1 mod 2.
Then every binary quadratic form in the complete equivalence class of f has the
property that its xy coefficient is odd.

Proof.

Let Af =

(
a r

2
r
2

c

)
be the matrix representation of f . Let M =

(
α β
γ δ

)
∈ kerσ

then using Observation 2.4.5 we have

M tAfM = (α2a+ αγr + cγ2)x2 + (2αβa+ (αδ + βγ)r + 2γδc)xy+

(β2a+ βδr + δ2c)y2.

Since M ∈ kerσ we have αδ ≡ 1 mod 2 and βγ ≡ 0 mod 2. Using this along with
r ≡ 1 mod 2 it follows that the xy coefficient of M tAfM is always odd.
Hence if a positive definite binary quadratic form ax2 + rxy + cy2 has r ≡ 1 mod 2
then all forms in its complete equivalence class have this property.

Lemma 5.1.3.
Let f = ax2 + 2bxy + cy2 be a positive definite binary quadratic form with matrix

representation Af =

(
a b
b c

)
and let M =

(
α β
γ δ

)
∈ kerσ. If at least one of a,

c is odd then at least one of the outer coefficients of M tAfM is odd.

Proof.
First observe that if a and c are both odd then since α and δ are odd, Observation
2.4.5 shows that a′ and c′ are both odd.
Without loss of generality we may assume a is odd and c is even. Then since M
satisfies α ≡ δ ≡ 1 mod 2 and β ≡ γ ≡ 0 mod 2 it follows that a′ = α2a+ 2αγb+ γ2c
is odd. Thus M tAfM has at least one odd outer coefficient.

We now introduce some of Kronecker’s notation (see [Kr1897, p. 445]).

Definition 5.1.4.
Let n > 0 be an integer and define the following:
Let 6G(n) be the number of complete equivalence classes of positive definite binary
quadratic forms, ax2 + 2bxy + cy2, with determinant ac− b2 = n.
Let 6F(n) be the number of complete equivalence classes of positive definite binary
quadratic forms, ax2 + 2bxy + cy2, with determinant ac− b2 = n and where at least
one of the outer coefficients (a and/or c) is odd.
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The above definition provides the motivation for Lemma 5.1.3, where we proved the
property of having at least one odd outer coefficient is preserved within a complete
equivalence class.

Lemma 5.1.5.
Let n ∈ Z>0 be such that n ≡ 3 mod 4 and consider the following sets of positive
definite binary quadratic forms.
Let Qn = {[f ]c | f = ax2 + rxy + cy2, n = 4 det(f) = 4ac− r2} and
Rn = {[g]c | g = Ax2 +Bxy + Cy2, A ≡ C ≡ 0 mod 2, B ≡ 2 mod 4, 4n = 4 det(g)}.

Define the map π : Qn −→ Rn by π ([f ]c) = [AfP ]c, where P =

(
2 0
0 2

)
.

Then the map π is a bijection.

Proof.
Well-defined: Since n ≡ 3 mod 4 and 4 det(f) = 4ac− r2, we must have r ≡ 1 mod 2.
By Lemma 5.1.2 we know if f = ax2 + rxy + cy2 has r ≡ 1 mod 2 then every binary
quadratic form in the complete equivalence class of f has this property. Next, since
the determinant is invariant under SL2(Z) we note that 4 det(f) is also an invariant.

Now observe AfP =

(
a r

2
r
2

c

)(
2 0
0 2

)
=

(
2a r
r 2c

)
, which yields the binary

quadratic form 2ax2 + 2rxy+ 2cy2 = Ax2 +Bxy+Cy2. It is then clear that A = 2a,
C = 2c and A ≡ C ≡ 0 mod 2. We also see B = 2r ≡ 2 mod 4 as r ≡ 1 mod 2.
Lastly, 4 det(g) = 4(AC − (B

2
)2) = 4((2a)(2c)− (r)2) = 4(4ac− r2) = 4n. It remains

to check our map is independent of our choice of representative from within the
complete equivalence class. Suppose f ∼c f̂ , then there exists M ∈ kerσ such that
M tAfM = Af̂ . Then we have

π
(

[f̂ ]c

)
=
[
Af̂P

]
c

=
[
M tAfMP

]
c

=
[
M tAfPM

]
c

as P and M commute

= [AfP ]c as M ∈ kerσ

= π ([f ]c) .

Hence π is well-defined.
Injectivity: Suppose π ([f ]c) = π

(
[f̂ ]c

)
, then [AfP ]c =

[
Af̂P

]
c
. Therefore there

exists a matrix M ∈ kerσ such that M tAfPM = Af̂P . Since the matrices P and
M commute we have M tAfMP = Af̂P and it follows that M tAfM = Af̂ . That is

[f ]c =
[
f̂
]
c

and therefore π is injective.

Surjectivity: Let [g]c ∈ Rn be arbitrary and consider
[
g
2

]
c
. We note the binary

quadratic form g
2

is well-defined by the following logic. We have A ≡ C ≡ 0 mod 2,
B ≡ 2 mod 4 implies r = B

2
≡ 1 mod 2 and thus a = A

2
, b = B

2
and c = C

2
are

integers. We also have 4 det(g
2
) = 4

((
A
2

) (
C
2

)
−
(
B
2

)2)
= (AC −B2) = det(g) = n.
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Thus
[
g
2

]
c
∈ Qn.

Now observe π
([

g
2

]
c

)
=
[
A g

2
P
]
c

= [Ag]c = [g]c. So π is surjective and hence is a

bijection.

We now give a nearly identical result, this time for when n ≡ 0 mod 4.

Lemma 5.1.6.
Let n ∈ Z>0 be such that n ≡ 0 mod 4 and consider the following sets of positive
definite binary quadratic forms.
Let Qn = {[f ]c | f = ax2 + rxy + cy2, n = 4 det(f) = 4ac− r2} and
R′n = {[g]c | g = Ax2 +Bxy + Cy2, A ≡ C ≡ 0 mod 2, B ≡ 0 mod 4, 4n = 4 det(g)}.

Define the map π : Qn −→ R′n by π ([f ]c) = [AfP ]c, where P =

(
2 0
0 2

)
.

Then the map π is a bijection.

Proof.
Well-defined: Since n ≡ 0 mod 4 and 4 det(f) = 4ac− r2, we must have r ≡ 0 mod 2.
By the complement of Lemma 5.1.2 we know if f = ax2 + rxy+ cy2 has r ≡ 0 mod 2
then every binary quadratic form in the complete equivalence class of f has this
property. Next, since the determinant is invariant under SL2(Z) we note that 4 det(f)

is also an invariant. Now observe AfP =

(
a r

2
r
2

c

)(
2 0
0 2

)
=

(
2a r
r 2c

)
, which

yields the binary quadratic form 2ax2 + 2rxy + 2cy2 = Ax2 + Bxy + Cy2. It is then
clear that A = 2a, C = 2c and A ≡ C ≡ 0 mod 2. We also see B = 2r ≡ 0 mod 4 as
r ≡ 0 mod 2. Lastly, 4 det(g) = 4(AC−(B

2
)2) = 4((2a)(2c)−(r)2) = 4(4ac−r2) = 4n.

It remains to check our map is independent of our choice of representative from within
the complete equivalence class. Suppose f ∼c f̂ , then there exists M ∈ kerσ such
that M tAfM = Af̂ . Then we have

π
(

[f̂ ]c

)
=
[
Af̂P

]
c

=
[
M tAfMP

]
c

=
[
M tAfPM

]
c

as P and M commute

= [AfP ]c as M ∈ kerσ

= π ([f ]c) .

Hence π is well-defined.
Injectivity: This is analogous to the proof of injectivity in Lemma 5.1.5.

Surjectivity: Let [g]c ∈ R′n be arbitrary and consider
[
g
2

]
c
. We note the binary

quadratic form g
2

is well-defined by the following logic. We have A ≡ C ≡ 0 mod 2,
B ≡ 0 mod 4 implies r = B

2
≡ 0 mod 2 and thus a = A

2
, b = B

2
and c = C

2
are

integers. We also have 4 det(g
2
) = 4

((
A
2

) (
C
2

)
−
(
B
2

)2)
= (AC −B2) = det(g) = n.

Thus
[
g
2

]
c
∈ Qn.

Now observe π
([

g
2

]
c

)
=
[
A g

2
P
]
c

= [Ag]c = [g]c. So π is surjective and hence is a

bijection.
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We are now in a position to prove two of Kronecker’s statements about the structure
of the complete equivalence classes of binary quadratic forms. We begin by proving
his third claim on page 444 of [Kr1897].

Lemma 5.1.7.
Let n > 0 be a positive integer and consider the set of binary quadratic forms f =
ax2 + 2bxy + cy2 with det(f) = n > 0. Then we have G(4n) = F(4n) + G(n).

Proof.
Recall from Definition 5.1.4 that 6G(n) is the number of complete equivalence classes
of positive definite binary quadratic forms with determinant n, and that 6F(n) is the
number of complete equivalence classes of positive definite binary quadratic forms
with determinant n and where all forms have at least one odd outer coefficient.
Therefore 6G(4n)− 6F(4n) is the number of complete equivalence classes of positive
definite binary quadratic forms with determinant 4n and where both outer coefficients
are even.
By Lemma 5.1.6 we know there is a bijection between the set of complete equivalence
classes of binary quadratic forms with determinant n and the set of complete equiv-
alence classes of binary quadratic forms with determinant 4n and the property that
both outer coefficients are even. Since we are dealing with finite sets, it follows that
6G(4n)− 6F(4n) = 6G(n). Dividing by 6 then yields Kronecker’s result.

We now prove his fourth claim ([Kr1897, p. 444]).

Lemma 5.1.8.
Let n > 0 be an integer such that n ≡ 1 or 2 mod 4 and consider the set of binary
quadratic forms f = ax2 + 2bxy + cy2 with det(f) = n. Then we have G(n) = F(n).

Proof.
By Lemma 5.1.3 if a binary quadratic form within a GL2(Z)-equivalence class has at
least one odd outer coefficient, then every binary quadratic form within this equiva-
lence class has this property.
Let n ≡ 1 or 2 mod 4 and ac − b2 = n. Assume a ≡ c ≡ 0 mod 2 then we have
n ≡ −b2 mod 4. This implies n ≡ 0 or 3 mod 4, a contradiction. Hence when
n ≡ 1 or 2 mod 4, every binary quadratic form has at least one odd outer coeffi-
cient and thus 6G(n) = 6F(n) and we have Kronecker’s result.

Observation 5.1.9.
It is important to note that 6G(n) and 6F(n) are integers, this is not necessarily true
for G(n) and F(n).

Our next lemma is particularly important because it establishes the connection be-
tween complete equivalence classes of associated binary quadratic forms with the
complete equivalence classes of binary quadratic forms in general.

Lemma 5.1.10.
Let τD,h be the set of positive definite bilinear forms with determinant D > 0 and h =
A12−A21 ≡ 0 mod 2. Then the set of complete equivalence classes of associated binary
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quadratic forms developed from the set τD,h is finite and has the same cardinality as
the set of complete equivalence classes of binary quadratic forms with determinant

D −
(
h
2

)2
.

Proof.
To begin note that there are finitely many bilinear forms with determinant D and by
Lemma 2.4.6 h is invariant under SL2(Z). Therefore there are finitely many associ-
ated binary quadratic forms. In a similar manner to bilinear forms we see there are
a finite number of positive definite binary quadratic forms f = ax2 + 2bxy+ cy2 with
determinant D − (h

2
)2.

Next, by Lemma 2.4.19 the bilinear forms in τD,h satisfy 4A11A22 − (A12 +A21)
2 > 0

and thus 4D − (A12 − A21)
2 > 0. Therefore we get 4d − h2 > 0 which yields

−2
√
D < h < 2

√
D. Consequently D − (h

2
)2 is a positive integer.

Now observe the associated binary quadratic forms satisfy det(AA) = A11A22 −(
A12+A21

2

)2
= D −

(
h
2

)2
, which is an integer as h ≡ 0 mod 2. Further, every as-

sociated binary quadratic form with this determinant is a binary quadratic form
with the same determinant. Therefore if we have AA 6∼c AB then we cannot have
[AA]c = [AB]c without a contradiction. Thus the cardinality of the set of complete

equivalence classes of binary quadratic forms with determinant D −
(
h
2

)2
is greater

than or equal to the cardinality of the set of complete equivalence classes of associated
binary quadratic forms with this determinant.
Lastly, we will show that every complete equivalence class of positive definite binary
quadratic forms contains an associated binary quadratic form that comes from a bi-
linear form with determinant D and satisfies h ≡ 0 mod 2.
Let f = ax2 + 2bxy + cy2 be an arbitrary positive definite binary quadratic form

with determinant D −
(
h
2

)2
, thus ac − b2 = D −

(
h
2

)2
. In particular this means

D = ac − b2 +
(
h
2

)2
. Now consider the bilinear form A with matrix representation

A =

(
a b+ h

2

b− h
2

c

)
. Since h ≡ 0 mod 2 we note both b+ h

2
and b− h

2
are integers.

This bilinear form has determinant ac −
(
b+ h

2

) (
b− h

2

)
= ac − b2 +

(
h
2

)2
= D and

satisfies h′ = (b + h
2
) − (b − h

2
) = h ≡ 0 mod 2. Finally we see AA = f . Thus every

binary quadratic form with determinant D−
(
h
2

)2
is the associated binary quadratic

form for some bilinear form with determinant D and fixed value of h ≡ 0 mod 2.
Therefore we must have equality between the cardinalities of the two sets.

We now begin to establish the connection between bilinear forms and binary quadratic
forms with the following lemma.

Lemma 5.1.11.
Let A and B be positive definite bilinear forms satisfying det(A) = det(B), A12−A21 ≡
B12 −B21 ≡ 0 mod 2 and AA ∼c AB. Then A ∼c B or A ∼c Bt.

Proof.
Since A12 − A21 ≡ B12 − B21 ≡ 0 mod 2 it follows that AA and AB are of the form
ax2 + 2bxy + cy2. Therefore we may talk about complete equivalence between these
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binary quadratic forms because their matrix representations have integer entries.
Therefore there exists a matrix M ∈ kerσ such that M tAAM = AB. We apply
Observation 2.4.5 to get

AB = M tAAM

= [α2A11 + αγ(A12 + A21) + γ2A22]x
2+

[2αβA11 + (αδ + βγ)(A12 + A21) + 2γδA22]xy+

[β2A11 + βδ(A12 + A21) + δ2A22]y
2.

Equating coefficients yields

B11 = α2A11 + αγ(A12 + A21) + γ2A22

B12 +B21 = 2αβA11 + (αδ + βγ)(A12 + A21) + 2γδA22

B22 = β2A11 + βδ(A12 + A21) + δ2A22.

Next we calculate M tAM directly by applying Observation 2.4.5.

M tAM =

(
α2A11 + αγ(A12 + A21) + γ2A22 αβA11 + βγA21 + αδA12 + γδA22

αβA11 + αδA21 + βγA12 + δγA22 β2A11 + βδ(A12 + A21) + δ2A22

)
=

(
B11 X1

X2 B22

)
,

where X1 = αβA11+βγA21+αδA12+γδA22 and X2 = αβA11+αδA21+βγA12+δγA22.
We observe X1 + X2 = B12 + B21 and B11B22 − B12B21 = det(B) = det(A) =
det(M tAM) = B11B22−X1X2. Consequently X1X2 = B12B21. Solving this system of
equations yields two solutions, namely (X1, X2) = (B12, B21) or (X1, X2) = (B21, B12).
Thus we get A ∼c B or A ∼c Bt.

Theorem 5.1.12.
Let A and B be positive definite bilinear forms such that det(A) = det(B) and A12−
A21 ≡ B12 −B21 ≡ 0 mod 2. Then A ∼c B if and only if AA ∼c AB and A12 −A21 =
B12 −B21.

Proof.
(⇒) Suppose A ∼c B then Lemma 2.4.12 implies AA ∼c AB because complete equiv-
alence implies proper equivalence.
(⇐) Suppose AA ∼c AB and A12 − A21 = B12 − B21. Then there exists a matrix
M ∈ kerσ such that M tAAM = AB. Since A12 − A21 ≡ 0 mod 2 we apply Lemma
5.1.11 to see either A ∼c B or A ∼c Bt via the matrix M . By Lemma 2.4.6 we know
complete equivalence preserves A12 − A21. Therefore if A12 − A21 6= 0 then we have
A ∼c B because Bt satisfies a12 − a21 = B21 − B12 = −(B12 − B21). Now suppose
A12−A21 = 0, then we have B12−B21 = 0 and thus B12 = B21. This implies B = Bt
and therefore we have A ∼c B.

We now present a lemma that determines the relationship between complete equiva-
lence classes of positive definite bilinear forms where A12 −A21 ≡ 1 mod 2 and those
where A12 − A21 ≡ 0 mod 2.
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Lemma 5.1.13.
Fix D ∈ Z>0 and define XD = {[A]c | det(A) = D,A12 − A21 ≡ 1 mod 2} as well as
YD = {[B]c | det(B) = 4D,B11 ≡ B22 ≡ 0 mod 2, B12 −B21 ≡ 2 mod 4}.
Define τ : XD −→ YD by [A]c 7−→ [2A]c.
Then τ is a bijection.

Proof.
Well-defined: We first show [2B]c ∈ YD. We have det(2I2A) = det(2I2) det(A) =
4 det(A) = 4D. Also 2B11 ≡ 2B22 ≡ 0 mod 2. Lastly, 2(B12 − B21) ≡ 2 mod 4 as
B12 −B21 ≡ 1 mod 2. Thus τ maps into RD.
Now we show that τ respects complete equivalence classes. Assume B ∼c B′, then
there exists M ∈ kerσ such that M tBM = B′. Using this we have M t(2I2B)M =(

2 0
0 2

)
M tBM = 2B′. Thus 2B ∼c 2B′ and hence τ is well-defined.

Injectivity: Suppose τ ([B]c) = τ ([B′]c), then there exists an M ∈ kerσ such that

M t(2B)M = 2B′. It follows that

(
2 0
0 2

)
B′ =

(
2 0
0 2

)
M tBM = M t(2B)M and

so M tBM = B′. Therefore [B]c = [B′]c.
Surjectivity: Let [B]c ∈ YD be arbitrary and consider

[B
2

]
c
. The following observations

show that B
2

is well-defined. Since B11 ≡ B22 ≡ 0 mod 2 and it follows that B11

2
, B22

2
∈

Z>0. Next, 4 | det(B) = 4D and since B11 ≡ B22 ≡ 0 mod 2 it follows that 4 | B12B21.
Using B12 − B21 ≡ 2 mod 4 we have either B12 ≡ 0 mod 4 and B21 ≡ 2 mod 4, or
vice versa. Therefore B12

2
, B21

2
∈ Z and we clearly have B12 − B21 = 2k where k ≡

1 mod 2 and thus B12−B21

2
≡ 1 mod 2. Lastly, det

(
B
2

)
=
(
B11

2

) (
B22

2

)
−
(
B12

2

) (
B21

2

)
=

1
4

(B11B22 −B12B21) = 1
4
(4D) = D. Hence

[B
2

]
c
∈ XD. We observe τ

([B
2

]
c

)
= [B]c

and hence τ is a surjection and so is a bijection.

We now derive Kronecker’s result for the complete class number of positive determi-
nant bilinear forms of determinant D > 0 in terms of summations of certain complete
equivalence classes of binary quadratic forms.

Theorem 5.1.14.
Let D > 0 be an integer. Then Clc (D) = 6

∑
−2
√
D<h<2

√
D

[
G(4D − h2)− F(4D − h2)

]
.

Proof.
Fix an integer D > 0 and consider the set of all complete equivalence classes of
positive definite bilinear forms with determinant D. This set has cardinality Clc (D).
By Lemma 2.4.19 any such bilinear form satisfies 4A11A22 − (A12 + A21)

2 > 0 and
this rearranges to give 4D− h2 > 0, where h = A12−A21. By Lemma 2.4.6 we know
this quantity is preserved within a proper equivalence class, so in particular within a
complete equivalence class. Further, this rearranges to give −2

√
D < h < 2

√
D.

We first partition the set of all complete equivalence classes of positive definite bilinear
forms with determinant D according to whether h = A12 − A21 ≡ 0 mod 2 or not.
By Lemma 5.1.13 there is a one-to-one correspondence between the set of complete
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equivalence classes of bilinear forms with determinant D that satisfy A12 − A21 ≡
1 mod 2, and the set YD. Here

YD = {[B]c | det(B) = 4D,B11 ≡ B22 ≡ 0 mod 2, B12 −B21 ≡ 2 mod 4} .

Therefore we have Clc (D) = Clc,e (D) + |YD|, where
Clc,e (D) = | {[A]c | det(A) = D,A12 − A21 ≡ 0 mod 2} |.
Now partition each of these sets according to their value of h, where −2

√
D < h <

2
√
D. This gives

Clc (D) =
∑

−2
√
D<h<2

√
D

h≡0 mod 2

|τD,h|+
∑

−2
√
D<h<2

√
D

h≡1 mod 2

|YD,h|,

where YD,h = {[A]C | det(A) = 4D, a11 ≡ a22 ≡ 0 mod 2, 2h = a12 − a21 ≡ 2 mod 4}.
This is because all forms (a11, a12, a21, a22) ∈ YD,h are positive definite and so satisfy
4a11a22 − (a12 + a21)

2 > 0. By construction we have aij = 2Aij for 1 6 i, j 6 2
and thus we get 4(2A11)(2A22) − (2A12 + 2A21)

2 > 0. Hence 4(4D − h2) > 0 where
h = A12 − A21 ≡ 1 mod 2 and thus −2

√
D < h < 2

√
D.

Next, by Theorem 5.1.12 when h = A12 − A21 ≡ 0 mod 2 there is a one-to-one
correspondence between complete equivalence classes of binary quadratic forms with
determinant D, and the complete equivalence classes of associated binary quadratic

forms with determinant A11A22−
(
A12+A21

2

)2
= D−

(
h
2

)2
. Further, by Lemma 5.1.10 we

know there is a one-to-one correspondence between the complete equivalence classes

of associated binary quadratic forms with determinant D −
(
h
2

)2
and the complete

equivalence classes of binary quadratic forms with determinant D −
(
h
2

)2
.

Lastly, by the contrapositive of Lemma 5.1.3 and using the invariance of A12−A21 we
see that the property of having both outer coefficients even and A12−A21 ≡ 0 mod 2 is
preserved within a complete equivalence class of a binary quadratic form having these
properties. Therefore, applying Theorem 5.1.12 to the complete equivalence classes in
the set YD,h yields a one-to-one correspondence with the binary quadratic forms with
determinant 4D− (h)2 having the property that both outer coefficients are even. To
see why the binary quadratic forms have determinant 4D− h2, recall a bilinear form
(a11, a12, a21, a22) ∈ YD,h has a11 = 2A11, a22 = 2A22 and a12 − a21 = 2(A12 − A21).
Thus its associated binary quadratic form has the following determinant

det(a) = a11a22 −
(
a12 + a21

2

)2

= a11a22 − a12a21 −
(
a12 − a21

2

)2

= 4(A11A22 − A12A21)−
(

2(A12 − A21)

2

)2

= 4D − h2.

We now apply Kronecker’s notation to our result. In particular, note that the set of
complete equivalence classes of binary quadratic forms with both outer coefficients
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even and determinant n is counted by 6G(n)− 6F(n). Using this we have

Clc (D) =
∑

−2
√
D<h<2

√
D

h≡0 mod 2

6G

(
D −

(
h

2

)2
)

+
∑

−2
√
D<h<2

√
D

h≡1 mod 2

[
6G
(
4D − h2

)
− 6F

(
4D − h2

)]
.

Further, we apply Lemma 5.1.7 in order to observe 6G
(
D −

(
h
2

)2)
= 6G(4D−h2)−

6F(4D − h2). Using this we get

Clc (D) = 6
∑

−2
√
D<h<2

√
D

[
G(4D − h2)− F(4D − h2)

]
.

We now turn our attention to deriving a similar expression for Clc (D). Thus we are
now interested in the complete equivalence classes of positive definite bilinear forms
with determinant D, B12 + B21 ≡ 0 mod 2 and where at least one of B11 and B22 is
odd.

In particular this means h = A12 − A21 is even and thus Clc (D) =
∑

−2
√
D<h<2

√
D

h≡0 mod 2

|τD,h|.

Next, as in the proof of Theorem 5.1.14 we have a one-to-one correspondence be-
tween the complete equivalence classes of associated binary forms with determinant

D−
(
h
2

)2
and the complete equivalence classes of binary quadratic forms with deter-

minant D−
(
h
2

)2
in general. Further, the property that at least one outer coefficient

is odd and A12 + A21 ≡ 0 mod 2 is preserved in both cases.

Hence we have

Clc (D) =
∑

−2
√
D<h<2

√
D

h≡0 mod 2

6F

(
D −

(
h

2

)2
)

=
∑

−
√
D<ĥ<

√
D

6F
(
D − ĥ2

)
.

Lastly, we wish to determine a similar expression for Clc (D). Thus we are interested
in the complete equivalence classes of positive definite bilinear forms with determinant
D, B12 − B21 ≡ 0 mod 4, and where at least one of B11, B22 is odd. Recalling
h = A12 − A21 is invariant within a complete equivalence class, and following the
proof of Theorem 5.1.14 we see

Clc (D) =
∑
4|h

−2
√
D<h<2

√
D

|τD,h,o|
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= 6
∑
4|h

−2
√
D<h<2

√
D

F

(
D −

(
h

2

)2
)

= 6
∑
2|ĥ

−
√
D<ĥ<

√
D

F
(
D − ĥ2

)

= 6
∑

−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
.

Summary 5.1.15.
The following summarises the results of this subsection so far:

Clc (D) = 6
∑

−2
√
D<h<2

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
(5.1)

Clc (D) = 6
∑

−
√
D<ĥ<

√
D

F
(
D − ĥ2

)
(5.2)

Clc (D) = 6
∑

−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
. (5.3)

It is important to note that h, ĥ and 2h̃ are integer valued.

We now make connections between the results found in Summary 5.1.15 and those of
Sections 4.4 and 4.7.

First we make a seemingly unmotivated definition. Motivation for this will be appar-
ent in the proof of Lemma 5.1.17.

Definition 5.1.16.
Recall the arithmetic functions F and G were defined for n ∈ Z>0. We extend this
definition to n ∈ Z>0 by defining G(0) = −1

6
and F(0) = 0.

Lemma 5.1.17.
Let D ∈ Z>0 be arbitrary. Then

σ(D) + Ψ(D) =
∑

−2
√
D6h62

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
.

Proof.
From Theorem 4.4.3 we have

Clc (D) =

{
6σ(D) + 6Ψ(D) + 1 if D = k2

6σ(D) + 6Ψ(D) otherwise

= 6

{
σ(D) + Ψ(D) + 1

6
if D = k2

σ(D) + Ψ(D) otherwise.
(5.4)
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Next, because h is an integer by construction, we have

6
∑

−2
√
D<h<2

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
=


6

∑
−2
√
D6h62

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
− 6(G(0)− F(0)) if D = k2

6
∑

−2
√
D6h62

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
otherwise.

(5.5)

We now equate Equations 5.4 and 5.5 in each of our two cases. When D = k2 we
have

σ(D) + Ψ(D) +
1

6
=

∑
−2
√
D6h62

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
− (G(0)− F(0)),

whilst when D 6= k2 we have

σ(D) + Ψ(D) =
∑

−2
√
D6h62

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
.

This motivates G(0) = −1
6

and F(0) = 0 as found in Definition 5.1.16.
From this we get

σ(D) + Ψ(D) =
∑

−2
√
D6h62

√
D

(
G
(
4D − h2

)
− F

(
4D − h2

))
,

which is exactly what Kronecker claimed.

We now proceed to derive similar results using an argument based upon our results
for Clc (D).

Lemma 5.1.18.
Let D ∈ Z>0. Then

1

2
(σ(D) + Ψ(D)) =

∑
−
√
D<ĥ<

√
D

F
(
D − ĥ2

)
if D ≡ 1 mod 2 (5.6)

2σ

(
D

2

)
=

∑
−
√
D<ĥ<

√
D

F
(
D − ĥ2

)
if D ≡ 2 mod 4 (5.7)

2σodd

(
D

4

)
+ σ

(
D

4

)
+ Ψ

(
D

4

)
=

∑
−
√
D<ĥ<

√
D

F
(
D − ĥ2

)
if D ≡ 0 mod 4. (5.8)

Proof.
From Theorem 4.7.4 we have

1

3
Clc (D) =


σ(D) + Ψ(D) if D ≡ 1 mod 2
4σ
(
D
2

)
if D ≡ 2 mod 4

4σodd
(
D
4

)
+ 2σ

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 0 mod 4.
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From Summary 5.1.15 we have Clc (D) = 6
∑

−
√
D<ĥ<

√
D

F
(
D − ĥ2

)
.

Equating these yields

∑
−
√
D<ĥ<

√
D

F
(
D − ĥ2

)
=


1
2

(σ(D) + Ψ(D)) if D ≡ 1 mod 2
2σ
(
D
2

)
if D ≡ 2 mod 4

2σodd
(
D
4

)
+ σ

(
D
4

)
+ Ψ

(
D
4

)
if D ≡ 0 mod 4.

Lastly, we derive similar results by using our knowledge of Clc (D).

Lemma 5.1.19.
Let D ∈ Z>0, then:∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
=

1

2
σodd(D) if D ≡ 1 mod 4

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
= σodd(D) if D ≡ 2 mod 4

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
=

1

2
Ψ(D) if D ≡ 3 mod 4

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
= σodd

(
D

4

)
+ Ψ

(
D

4

)
if D ≡ 4 mod 8

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
= 4σ

(
D

8

)
if D ≡ 8 mod 16

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
= 4σodd

(
D

16

)
+ 2σ

(
D

16

)
+ 2Ψ

(
D

16

)
if D ≡ 0 mod 16.

Proof.
From Section 4.10 we have

1

3
Clc (D) =



σodd(D) if D ≡ 1 mod 4
2σodd(D) if D ≡ 2 mod 4
Ψ(D) if D ≡ 3 mod 4
2σodd

(
D
4

)
+ 2Ψ

(
D
4

)
if D ≡ 4 mod 8

8σ
(
D
8

)
if D ≡ 8 mod 16

8σodd
(
D
16

)
+ 4σ

(
D
16

)
+ 4Ψ

(
D
16

)
if D ≡ 0 mod 16.

Now in order to show we indeed recover Kronecker’s results, we shall write D in the
following ways:

D =


m if D ≡ 1 mod 2
2m if D ≡ 2 mod 4
4n = 2km if D ≡ 0 mod 4.
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In the last case we refine this to D = 16q when D ≡ 0 mod 16. Note that in each
case m is odd.
We present the derivations below as follows - the top equation is in our notation,
while the lower equation is in Kronecker’s notation.

Equating with Clc (D) = 6
∑

−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
yields:

• If D ≡ 1 mod 4

1

2
σodd(D) =

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
1

2
σodd(m) =

∑
−
√
m<2h̃<

√
m

F
(
m− 4h̃2

)
(5.9)

• If D ≡ 2 mod 4

σodd(D) =
∑

−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
σodd(2m) =

∑
−
√
2m<2h̃<

√
2m

F
(

2m− 4h̃2
)

(5.10)

• If D ≡ 3 mod 4

1

2
Ψ(D) =

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
1

2
Ψ(m) =

∑
−
√
m<2h̃<

√
m

F
(
m− 4h̃2

)
(5.11)

• If D ≡ 4 mod 8

σodd

(
D

4

)
+ Ψ

(
D

4

)
=

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
σ(m) + Ψ(m) =

∑
−
√
m<h̃<

√
m

F
(

4m− 4h̃2
)

(5.12)

• If D ≡ 8 mod 16

4σ

(
D

8

)
=

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
4σ(m) =

∑
−
√
2m<h̃<

√
2m

F
(

8m− 4h̃2
)

(5.13)
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• If D ≡ 0 mod 16

4σodd

(
D

16

)
+ 2σ

(
D

16

)
+ 2Ψ

(
D

16

)
=

∑
−
√
D<2h̃<

√
D

F
(
D − 4h̃2

)
4σodd(q) + 2σ(q) + 2Ψ(q) =

∑
−2√q<h̃<2

√
q

F
(

16q − 4h̃2
)
. (5.14)

This completes our derivation of Kronecker’s equations (R), (R′), (R′′) and (R′′′) on
[Kr1897, p. 482].

Theorem 5.1.20.
Let n ∈ Z>0, then F(4n) = 2F(n).

Proof.
Recall from Definition 5.1.16 that F(0) = 0 and therefore 0 = F(4 · 0) = 2 · F(0).
Thus we now let n ∈ Z>0.
Let n ≡ 1 mod 2 then using Equations 5.6 and 5.12 we have∑

−
√
n<h<

√
n

F
(
4
[
n− h2

])
= σ(n) + Ψ(n)

= 2
∑

−
√
n<h<

√
n

F
(
n− h2

)
. (5.15)

Similarly, when 2m = n ≡ 2 mod 4, using Equations 5.7 and 5.13we have∑
−
√
2m<h<

√
2m

F
(
4
[
2m− h2

])
= 4σ(m)

= 2
∑

−
√
2m<h<

√
2m

F
(
2m− h2

)
. (5.16)

Lastly, letting n ≡ 0 mod 4 and using Equations 5.8 and 5.14 yields∑
−2
√
n<h<2

√
n

F
(
4
[
4n− h2

])
= 4σodd(n) + 2σ(n) + 2Ψ(n)

= 2
∑

−2
√
n<h<2

√
n

F
(
4n− h2

)
. (5.17)

We now induct on n.
Base Cases:
n = 1: From Equation 5.15 we have∑

−1<h<1

F
(
4[1− h2]

)
= 2

∑
−1<h<1

F
(
1− h2

)
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and therefore F(4 · 1) = 2F(1).
n = 2: From Equation 5.16 we have∑

−
√
2<h<

√
2

F
(
4
[
2− h2

])
= 2

∑
−
√
2<h<

√
2

F
(
2− h2

)
.

Expanding gives F(4 · 1) + F(4 · 2) + F(4 · 1) = 2F(1) + 2F(2) + 2F(1).
Using our n = 1 base case then yields F(4 · 2) = 2F(2).
n = 3: From Equation 5.15 we have∑

−
√
3<h<

√
3

F
(
4
(
3− h2

))
= 2

∑
−
√
3<h<

√
3

F
(
3− h2

)
.

Expanding gives F(4 · 2) + F(4 · 3) + F(4 · 2) = 2F(2) + 2F(3) + 2F(2).
Using our n = 2 base case then yields F(4 · 3) = 2F(3).
n = 4: From Equation 5.17 we have∑

−2<h<2

F
(
4
[
4− h2

])
= 2

∑
−2<h<2

F
(
4− h2

)
.

Expanding gives F(4 · 3) + F(4 · 4) + F(4 · 3) = 2F(3) + 2F(4) + 2F(3).
Using our n = 3 base case then yields F(4 · 4) = 2F(4).
Thus we have shown F(4n) = 2F(n) for n 6 4.
Inductive Hypothesis: Suppose F(4n) = 2F(n) for n 6 4k, k ∈ Z>0.
n = 4k + 1: Applying Equation 5.15 gives∑

−
√
4k+1<h<

√
4k+1

F
(
4
[
4k + 1− h2

])
= 2

∑
−
√
4k+1<h<

√
4k+1

F
(
4k + 1− h2

)
.

We rewrite both sides by moving the h = 0 term out of the sum. This expresses the
right hand side as:

F(4[4k + 1]) +
∑

|h|<
√

4k+1

h6=0

F
(
4
[
4k + 1− h2

])
= 2F(4k + 1) + 2

∑
|h|<

√
4k+1

h6=0

F(4k + 1− h2).

Since 4k+1−h2 6 4k for h ∈
(
−
√

4k + 1,
√

4k + 1
)
\ {0}, we may apply our inductive

hypothesis. This gives F (4 [4k + 1]) = 2F (4k + 1).
n = 4k + 2: Applying Equation 5.16 gives∑

−
√
4k+2<h<

√
4k+2

F
(
4
[
4k + 2− h2

])
= 2

∑
−
√
4k+2<h<

√
4k+2

F
(
4k + 2− h2

)
.

Rewriting both sides by moving the h = 0 and h = ±1 terms out of the summation
gives

F (4 [4k + 2]) +2F (4 [4k + 1]) +
∑

−
√
4k+2<h<

√
4k+2

h6=0,±1

F
(
4
[
4k + 2− h2

])
=
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2F (4k + 2) + 4F (4k + 1) + 2
∑

−
√
4k+2<h<

√
4k+2

h6=0,±1

F
(
4k + 2− h2

)
.

Since 4k+2−h2 6 4k for h ∈
(
−
√

4k + 2,
√

4k + 2
)
\ {0,±1} we apply our inductive

hypothesis along with the n = 4k + 1 case. This yields F (4 [4k + 2]) = 2F (4k + 2).
n=4k+3: Applying Equation 5.15 gives∑

−
√
4k+3<h<

√
4k+3

F
(
4
[
4k + 3− h2

])
= 2

∑
−
√
4k+3<h<

√
4k+3

F
(
4k + 3− h2

)
.

Rewriting both sides by moving the h = 0 and h = ±1 terms out of the summation
gives

2F (4 [4k + 2]) +F (4 [4k + 3]) +
∑

−
√
4k+3<h<

√
4k+3

h6=0,±1

F
(
4
[
4k + 3− h2

])
=

4F(4k + 2) + 2F(4k + 3) + 2
∑

−
√
4k+3<h<

√
4k+3

h6=0,±1

F
(
4k + 3− h2

)
.

Since 4k+3−h2 6 4k for h ∈
(
−
√

4k + 3,
√

4k + 3
)
\ {0,±1} we apply our inductive

hypothesis along with the n = 4k + 2 case. This yields F (4 [4k + 3]) = 2F (4k + 3).
n = 4(k + 1): Applying Equation 5.17 gives∑

−
√
k+1<h<

√
k+1

F
(
4
[
4(k + 1)− h2

])
= 2

∑
−
√
k+1<h<

√
k+1

F
(
4 [k + 1]− h2

)
.

Rewriting both sides by moving the h = 0 and h = ±1 terms out of the summation
yields

2F (4[4k + 3]) +F (4[4k + 4]) +
∑

−
√
k+1<h<

√
k+1

h6=0,±1

F
(
4
[
4(k + 1)− h2

])
=

4F (4k + 3) + 2F (4k + 4) + 2
∑

−
√
k+1<h<

√
k+1

h6=0,±1

F
(
4k + 4− h2

)
.

Since 4k + 4 − h2 6 4k for h ∈
(
−
√

4k + 4,
√

4k + 4
)
\ {0,±1} we may apply our

inductive hypothesis along with the case n = 4k + 3. This yields F (4 [4k + 4]) =
2F (4k + 4).
Hence we have shown if F (4n) = 2F (n) for n 6 4k then F (4q) = 2F (q) for 4k+ 1 6
q 6 4k + 4. Therefore by induction on n ∈ Z>0 we have F (4n) = 2F (n) for all
n ∈ Z>0.

Notes on Section 5.1

We observe the result found in Theorem 5.1.14 differs from Kronecker’s claim found
at the beginning of Section 21, [Kr1897, p. 481]. The difference is a factor of two and
is due to Kronecker implicitly considering definite rather than positive definite forms.
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Observation 5.1.21.
The results found in Lemma 5.1.18 match Kronecker’s ([Kr1897, p. 482]) exactly. To
see this, write D = m when D ≡ 1 mod 2, D = 2m when D ≡ 2 mod 4, and D = 4n
when D ≡ 0 mod 4. Then Equations 5.6, 5.7 and 5.8 become:

1

2
(σ(m) + Ψ(m)) =

∑
−2
√
m<ĥ<2

√
m

F
(
m− ĥ2

)
2σ(m) =

∑
−
√
2m<ĥ<

√
2m

F
(

2m− ĥ2
)

2σodd(n) + σ(n) + Ψ(n) =
∑

−2
√
n<ĥ<2

√
n

F
(

4n− ĥ2
)
.

These are (in reverse order) the results given by Kronecker in [Kr1897, p. 482].

Observation 5.1.22.
If by some other method we determine F (4n) = 2F (n) for n ∈ N>0 then it is
straightforward to recover Equations 5.12, 5.13 and 5.14. This is done by using
F (4n) = 2F (n) in each of Equations 5.6, 5.7 and 5.8.

We also note that Kronecker’s results found on page 444 of [Kr1897] are stated without
proof. Kronecker opts to defer the proofs to his earlier paper [Kr1860]. In his earlier
paper the details of the proofs are somewhat vague and appear to use non-arithmetic
techniques. Consequently we will develop new purely arithmetic proofs in order to
fill in the gaps.

5.2 An Arithmetical Deduction for Binary Quadratic Forms with n =
ac− b2 ≡ 3 mod 4.

In this section we will give an arithmetic derivation of Kronecker’s formula 3G(n) =(
5− (−1)

n−3
4

)
F(n) when n ≡ 3 mod 4.

Lemma 5.2.1.
Let n ∈ Z>0 then the set Ωn = {(a, b, c) | ac− b2 = n,−min{a, c} < b 6 min{a, c}}
contains a unique representative for each complete equivalence class of binary quadratic
forms ax2 + 2bxy + cy2 with determinant ac− b2 = n.

Proof.
We first prove the existence of such a binary quadratic form within the complete
equivalence class of an arbitrary binary quadratic form with determinant n = ac−b2.
We fix a complete equivalence class [f ]c where f = ax2 = 2bxy + cy2. If f sat-
isfies −min{a, c} < b 6 min{a, c} then we are done. Thus we suppose f does
not satisfy this. Then we must have either b = −min{a, c} or |b| > min{a, c}.

If b = −min{a, c} then we apply the transformation

(
1 2
0 1

)
if a 6 c or apply
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(
1 0
2 1

)
if a > c. It is straightforward to use Observation 2.4.5 to verify these trans-

formations take f to

(
a a
a c

)
or

(
a c
c c

)
. It is then clear that each of these forms

satisfy −min{a, c} < b 6 min{a, c}. Hence we may now assume |b| > min{a, c}.
We may further assume a 6 c as if this is not the case then applying the trans-

formation

(
1 2
0 1

)
if b > 0 or

(
1 −2
0 1

)
if b < 0 yields a completely equivalent

binary quadratic form with a 6 c. We note b 6= 0 as this would imply we satisfy our
criterion.
Thus our goal is to reduce the value of b below a. Observe applying the transforma-

tion

(
1 2
0 1

)k
yields the form

(
a 2ka+ b

2ka+ b 4k2a+ 4kb+ c

)
=

(
a′ b′

b′ c′

)
. We may

choose k ∈ Z so that −a < 2ka+ b 6 a. It then remains to show −c′ < b′ 6 c′ also.
If this is already the case then we are done. So suppose it is not the case, thus we
have either b′ = −c′ or we have c′ < |b′| 6 a′. In the first instance we may apply

the transformation

(
1 0
2 1

)
to get the form

(
a′ c′

c′ c′

)
which satisfies our criterion.

Thus we may assume we are in the latter case.

In this case we observe applying the transformation

(
1 0
2 1

)q
yields the binary

quadratic form

(
a′ + 4qb′ + 4q2c′ b′ + 2qc′

b′ + 2qc′ c′

)
=

(
a′′ b′′

b′′ c′′

)
. We may choose q ∈ Z

so that −c′ < b′ + 2qc′ 6 c′.
If we have −a′′ < b′′ 6 a′′ then we are done. Similarly if b′′ = −a′′ we are done after

applying the transformation

(
1 2
0 1

)
. If this is not the case then we may repeat

this two step process again.
This yields a sequence of integers b, b′, b′′ where |b| > |b′| > |b′′| > . . .. Thus either
the process terminates at the desired form or b = 0 eventually. However, b = 0 results
in a form that automatically satisfies our criterion.
Hence every complete equivalence class of binary quadratic forms with determinant
ac− b2 = n contains at least one form f that satisfies −min{a, c} < b 6 min{a, c}.
We now prove uniqueness. Suppose there exists a complete equivalence class [f ]c con-
taining two binary quadratic forms f , g that satisfy our criterion. We observe that
the matrix representations of these binary quadratic forms may instead be viewed as
the matrix representations of symmetric bilinear forms. Since kerσ does not change
according to whether we are considering binary quadratic or bilinear forms, we apply
Theorem 3.1.28 to see we must have f = g unless |2b| = 2a or |2b| = 2c. From the
proof of Theorem 3.1.28 (special cases 1 and 2) we see when |2b| = 2a or |2b| = 2c

then we must have f =

(
a −a
−a c

)
and g =

(
a a
a c

)
or f =

(
a −c
−c c

)
and

g =

(
a c
c c

)
respectively unless f = g. Observe these are matrices that can repre-

sent binary quadratic forms and that by the criterion −min{a, c} < b 6 min{a, c}
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only one of these forms is possible in each case. Therefore we must have f = g always.
Hence every complete equivalence class of binary quadratic forms with determinant
n = ac − b2 contains a unique binary quadratic form satisfying −min{a, c} < b 6
min{a, c}.

Our goal now is to prove the first part of Kronecker’s claim. We will state the theorem
first and then give a series of lemmas that will prove it.

Theorem 5.2.2.
Let n ∈ Z>0 be such that n ≡ 3 mod 8. Then 3G(n) = 4F(n).

In order to prove Theorem 5.2.2 we will use the set Ωn from Lemma 5.2.1. We shall
partition this set into a union of three disjoint sets. Until explicitly stated otherwise,
we will assume n ∈ Z satisfies n ≡ 3 mod 8.

Definition 5.2.3.
Let O,E,W ⊆ Ωn be defined as follows:

O = {(a, b, c)|a ≡ c ≡ 1 mod 2}
E = {(a, b, c)|a ≡ c ≡ 0 mod 2}
W = {(a, b, c)|a 6≡ c mod 2} .

Observation 5.2.4.
Since the complete equivalence class number is finite we have |O|, |E| and |W | <∞.
Now observe the binary quadratic form (1, 0, n) ∈ O. This is because n ≡ 3 mod 8
and it is clear that the determinant is n and the form satisfies −min{a, c, } < b 6
min{a, c}.
Now observe the binary quadratic form (2, 1, n+1

2
) ∈ E. This is because n ≡ 3 mod 8

implies 2 | n + 1 and n+1
2
≡ 0 mod 2. It is straightforward to check the determinant

is n and that it satisfies −min{a, c} < b 6 min{a, c}. Thus this form lies in E.
Similarly, we observe (1, 1, n+ 1) ∈ W . Letting a = b = 1 implies n = ac− b2 = c− 1
and so c = n + 1. Since n ≡ 3 mod 8 it follows that c is even. Again it is straight-
forward to check the determinant is n and that this form satisfies −min{a, c} < b 6
min{a, c}.
Hence the sets O, E and W are always non-empty when n ≡ 3 mod 8.

Lemma 5.2.5.
The map

π1 : W −→ W

(a, b, c) 7−→ (c, b, a)

is a well-defined involution with no fixed points.

Proof.
Well-defined: Let π1(a, b, c) = (c, b, a) = (a′, b′, c′) then since a 6≡ c mod 2, a′ 6≡
c′ mod 2 follows. Clearly the determinant is preserved and since (a, b, c) satisfies
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−min{a, c} < b 6 min{a, c} it follows that (a′, b′, c′) satisfies −min{a′, c′} < b′ 6
min{a′, c′}. Thus the map π1 is well-defined.
Injectivity: Suppose π1(a, b, c) = π1(â, b̂, ĉ) then we have (c, b, a) = (ĉ, b̂, â) and the
map is injective.
Surjectivity: Let (a, b, c) ∈ W be arbitrary and consider (c, b, a). Then we have
π1(c, b, a) = (a, b, c) and by identical reasoning to that found in the well-defined part
of the proof, that (c, b, a) ∈ W .
Hence the map π1 is surjective and hence an involution on the set W .
We observe the map π1 will have a fixed point (a, b, c) = (c, b, a), that is if a = c.
However in the set W we have a 6≡ c mod 2 so this cannot arise. Therefore π1 has no
fixed points.

Lemma 5.2.6.
The map π1 found in Lemma 5.2.5 partitions the set W into a disjoint union of Ŵ
and Ŵ c where

Ŵ = {w ∈ W |a ≡ 1 mod 2, c ≡ 0 mod 2}.

Proof.
Let Ŵ = {w ∈ W |a ≡ 1 mod 2, c ≡ 0 mod 2} ⊆ W . Then we have π1(Ŵ ) ⊆ Ŵ c

because π1((a, b, c)) = (c, b, a) = (a′, b′, c′) satisfies a′ = c ≡ 0 mod 2, c′ = a ≡
1 mod 2. Similarly we observe π1(Ŵ

c) ⊆ Ŵ by the same logic. Since π1 is a bijection
we have W = Ŵ ∪ Ŵ c and |Ŵ | = |Ŵ c| as clearly this is a disjoint union.

We now prove three quick lemmas to aid the proof of our next map.

Lemma 5.2.7.
Let n ∈ Z>0 satisfy n ≡ 3 mod 8 and let (a, b, c) be such that ac − b2 = n and
a ≡ c ≡ 1 mod 2. Then a+ c ≡ 4 mod 8 if and only if 4 | b, while a+ c ≡ 0 mod 8 if
and only if 2 | b but 4 - b.

Proof.
Recall b2 ≡ 0, 1, 4 mod 8 with b2 ≡ 1 mod 8 if and only if b ≡ 1 mod 2. Thus
n = ac − b2 ≡ 3 mod 8 implies ac ≡ 3, 4, 7 mod 8. Since a ≡ c ≡ 1 mod 2 it follows
that ac 6≡ 4 mod 8.
Next, observe ac = (8k + i)(8l + j) ≡ ij mod 8 and so if i = j then ac ≡ 1 mod 8.
Thus we must have i 6= j and both i and j are odd.
We now prove our first claim: a+ c ≡ 4 mod 8 if and only if 4 | b.
(⇒) Assume a + c ≡ 4 mod 8 then (a + c) = (8k + i) + (8l + j) ≡ i + j mod 8 and
thus (i, j) ∈ {(1, 3), (3, 1), (5, 7), (7, 5)}. Hence we see ac ≡ 3 mod 8 and therefore
ac− b2 = n ≡ 3 mod 8 implies b2 ≡ 0 mod 8, that is, 4 | b.
(⇐) Assume 4 | b then ac − b2 = n ≡ 3 mod 8 implies ac ≡ 3 mod 8. Since ac ≡
ij mod 8 we have (i, j) ∈ {(1, 3), (3, 1), (5, 7), (7, 5)} and it is straightforward to verify
a+ c ≡ 4 mod 8.
We now prove our second claim: a+ c ≡ 0 mod 8 if and only if 2 | b but 4 - b.
(⇒) Assume a + c ≡ 0 mod 8 then (a + c) = (8k + i) + (8l + j) ≡ i + j mod 8 and
thus (i, j) ∈ {(1, 7), (7, 1), (3, 5), (5, 3)}. Hence we see ac ≡ 7 mod 8 and therefore
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ac− b2 = n ≡ 3 mod 8 implies b2 ≡ 4 mod 8. Hence 2 | b but 4 - b.
(⇐) Assume 2 | b but 4 - b then ac − b2 ≡ 3 mod 8 implies ac ≡ 7 mod 8 and
thus (i, j) ∈ {(1, 7), (7, 1), (3, 5), (5, 3)}. It is then straightforward to verify a + c ≡
0 mod 8.

Lemma 5.2.8.
Let n ≡ 3 mod 4 then within the sets O and E we cannot have equality in the condition
−min{a, c} < b 6 min{a, c}. That is, we have |b| < min{a, c}.

Proof.
First consider the set O, where we have a ≡ c ≡ 1 mod 2. Then n ≡ 3 mod 4 implies
b ≡ 0 mod 2 and thus a 6= b as well as c 6= b. Since we already have −min{a, c} <
b 6 min{a, c} it follows that we have |b| < min{a, c}.
Now consider the set E, where we have a ≡ c ≡ 0 mod 2. Then n ≡ 3 mod 4 implies
b2 ≡ 1 mod 4 and thus b ≡ 1 mod 2. Again this implies a 6= b and c 6= b and therefore
we have |b| < min{a, c}.

Lemma 5.2.9.
Let n ≡ 3 mod 8 and (a, b, c) be such that ac − b2 = n with a ≡ c ≡ 0 mod 2. Then
a ≡ c ≡ 2 mod 4 and b ≡ 1 mod 2.

Proof.
We have a ≡ c ≡ 0 mod 2 implies ac ≡ 0 or 4 mod 8. Then ac − b2 ≡ 3 mod 8
implies b2 ≡ 1 or 5 mod 8. However, b2 ≡ 5 mod 8 is impossible and so we must
have ac ≡ 4 mod 8 and b2 ≡ 1 mod 8. This then implies a ≡ c ≡ 2 mod 4 and
b ≡ 1 mod 2.

Lemma 5.2.10.
The map

π2 : O −→ E

(a, b, c) 7−→
(
a− 2b+ c

2
,
c− a

2
,
a+ 2b+ c

2

)
is a well-defined bijection.

Proof.
Well-defined: By Lemma 5.2.7 we have a+c ≡ 0 mod 4 and b ≡ 0 mod 2. From this is
follows that a−2b+c

2
= 4k−2b

2
≡ 0 mod 2. Further, c−a

2
= (2k+1)−(2m+1)

2
= k−m ∈ Z and

a+2b+c
2
≡ 0 mod 2. We also note one can verify a′c′−b′2 =

(
a−2b+c

2

) (
a+2b+c

2

)
−
(
c−a
2

)
=

ac− b2 = n and so π2 preserves the determinant.
Now let π2(a, b, c) =

(
a−2b+c

2
, c−a

2
, a+2b+c

2

)
= (a′, b′, c′). We first show a′ and c′ > 0.

We have a′ = a−2b+c
2

and since a, c > 0 and −min{a, c} < b 6 min{a, c} it follows
that a− 2b + c > 0. For it to equal 0 we must have a = b = c and thus ac− b2 = 0,
contradicting n ≡ 3 mod 8. Thus a′ > 0. A similar argument immediately yields
c′ > 0.
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Applying Lemma 5.2.8 we have −min{a, c} < b < min{a, c} which gives the following
four chains of inequalities:

−a < b⇒ −2a < 2b ⇒ c− 2a < c+ 2b⇒ c− a < a+ 2b+ c

−c < b⇒ −2c < 2b ⇒ a− 2c < a+ 2b⇒ a− c < a+ 2b+ c

b < a⇒ 2b < 2a ⇒ 2b− c < 2a− c⇒ −a+ 2b− c < a− c
b < c⇒ 2b < 2c ⇒ 2b− a < 2c− a⇒ −a+ 2b− c < c− a.

The first two inequalities combine to yield −(a + 2b + c) < c − a < a + 2b + c and
thus −2c′ < 2b′ < 2c′.
The second pair of inequalities combine to yield −(a − 2b + c) < c − a < a − 2b + c
and thus −2a′ < 2b′ < 2a′.
From these we deduce −min{a′, c′} < b′ < min{a′, c′}. Hence we see the map π2 is
well-defined.
Injectivity: Suppose π2((a, b, c)) = π2((â, b̂, ĉ)) then we have

(
a−2b+c

2
, c−a

2
, a+2b+c

2

)
=(

â−2b̂+ĉ
2

, ĉ−â
2
, â+2b̂+ĉ

2

)
. Equating entry-wise we get a−2b+c = â−2b̂+ ĉ, c−a = ĉ− â

and a + 2b + c = â + 2b̂ + ĉ. Rearranging the second equation to get â = ĉ − c + a
and substituting this into each of the first and third equations yields

c = ĉ+ (b− b̂)
c = ĉ+ (b̂− b).

Taking the difference of these gives 0 = 2(b − b̂) and thus b = b̂. Using this both
the first and third equations become a+ c = â+ ĉ. Combining with the second then
yields a = â and c = ĉ. Hence the map π2 is injective.
Surjectivity: Let (a, b, c) ∈ E be arbitrary and let

(
a−2b+c

2
, c−a

2
, a+2b+c

2

)
= (a′, b′, c′).

We first show this lies in the set O. By Lemma 5.2.9 we have a ≡ c ≡ 2 mod 4 and
b ≡ 1 mod 2. Therefore

a− 2b+ c

2
=

(4k + 2)− 2b+ (4l + 2)

2
= 2k + 1− b+ 2k + 1

= 2(k + l + 1)− b
≡ b mod 2

≡ 1 mod 2.

In an analogous manner we see a+2b+c
2
≡ 1 mod 2. Lastly, c−a

2
∈ Z as c−a ≡ 0 mod 4

by Lemma 5.2.9. Thus
(
a−2b+c

2
, c−a

2
, a+2b+c

2

)
∈ O.

We now see π2
((

a−2b+c
2

, c−a
2
, a+2b+c

2

))
has

(a−2b+c
2 )−2( c−a

2 )+(a+2b+c
2 )

2
= a for its first

entry,
(a+2b+c

2 )−(a−2b+c
2 )

2
= b for its second entry, and

(a−2b+c
2 )+2( c−a

2 )+(a+2b+c
2 )

2
= c

for its last entry. Thus π2
((

a−2b+c
2

, c−a
2
, a+2b+c

2

))
= (a, b, c) We note the condition

−min{a′, c′} < b′ 6 min{a′, c′} can be verified directly in the same manner as in the
well-defined part of this proof. Hence the map π2 is surjective and thus is a bijection.
An immediate consequence of this is |E| = |O|.
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We now partition the sets Ŵ and O as follows:

O = Ob ∪Ob
c, where Ob = {(a, b, c) ∈ O | b = 0}

Ŵ = Ŵb ∪ Ŵ c
b , where Ŵ c

b = {(a, b, c) ∈ Ŵ | a = b}.

Observation 5.2.11.
We observe the sets Ob and Oc

b are disjoint, as are the sets Ŵb and Ŵ c
b . Next, note

that (1, 0, n) ∈ Ob as n ≡ 3 mod 8 and (1, 1, n + 1) ∈ Ŵb. It is important to note
that the sets Oc

b and Ŵ c
b may in fact be empty such as when n = 3. Thus in Lemma

5.2.18 it is possible to have a vacuous bijection.

Lemma 5.2.12.
The map

π3 : Ŵb −→ Ob

(a, a, c) 7−→ (a, 0, c− a)

is a well-defined bijection.

Proof.
Well-defined: Let (a, a, c) ∈ Ŵb be arbitrary and so a ≡ 1 mod 2 and c ≡ 0 mod 2.
Then π3(a, a, c) = (a, 0, c − a) = (a′, b′, c′) satisfies a′c′ − b′2 = a(c − a) − 02 =
ac − a2 = det(a, a, c) = n. Next we have a′ ≡ c′ ≡ 1 mod 2 because a ≡ 1 mod 2
and thus c′ = c − a ≡ 1 mod 2. Now observe a′ = a > 0 and observe c′ = c − a > 0
since we have a > 0 and our forms satisfy −min{a, c} < b 6 min{a, c}, hence b = a
implies a < c (Note a 6= c else n = 0). Since b′ = 0 we automatically satisfy
−min{a′, c′} < b 6 min{a′, c′} and so we deduce π3(a, a, c) ⊆ Ob.
Injectivity: Suppose π3(a, a, c) = π3(â, â, ĉ) then we have (a, 0, c − a) = (â, 0, ĉ − â).
Hence a = â, c = ĉ and therefore the map π3 is injective.
Surjectivity: Let (a, b, c) ∈ Ob be arbitrary and consider (a, a, c+ a) = (a′, b′, c′). We

will show this lies in Ŵb. Since (a, b, c) ∈ Ob we have b = 0 and thus n = ac−b2 = ac.
We observe det(a, a, c+a) = a(c+a)−a2 = ac+a2−a2 = ac = n. Next, (a, b, c) ∈ Ob

implies a ≡ c ≡ 1 mod 2 and therefore a′ = a ≡ 1 mod 2 and c′ = c + a ≡ 0 mod 2.
Further we have a′ = b′ and it remains to show −min{a′, c′} < b′ 6 min{a′, c′}.
We see c′ = c + a > a = a′ as c > 0 by positive definiteness. Then since 0 < a′ = b′

we immediately have the above criterion. Thus (a, a, c+ a) ∈ Ŵb.
Lastly we see π3(a, a, c + a) = (a, 0, c + a − a) = (a, 0, c) = (a, b, c). Hence the map
π3 is surjective and therefore is a bijection.
As a consequence we have |Ŵb| = |Ob|.

Our next result is a brief lemma to aid our next map.

Lemma 5.2.13.
Binary quadratic forms in the set Ŵ c

b satisfy b ≡ 1 mod 2 and −min{a, c} < b <
min{a, c}.
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Proof.
Every binary quadratic form in the set Ŵ c

b satisfies a ≡ 1 mod 2, c ≡ 0 mod 2 and
a 6= b. Thus ac ≡ 0 mod 2 and consequently in order to have ac− b2 = n ≡ 3 mod 8
we must have b ≡ 1 mod 2.
Then −min{a, c} < b 6 min{a, c} implies either −a < b < a if a 6 c as b 6= a, or
−c < b < c if c < a as b ≡ mod2 while c ≡ 0 mod 2.
Hence we have −min{a, c} < b < min{a, c}.

Lemma 5.2.14.
The map

π5 : Ŵ c
b −→ Ŵ c

b

(a, b, c) 7−→ (a,−b, c) = (a′, b′, c′)

is a well-defined involution with no fixed points.

Proof.
Well-defined: Clearly this map preserves the determinant and satisfies a′ > 0, c′ > 0.
By Lemma 5.2.8 we have −min{a, c} < b < min{a, c} and hence we get
−min{a′, c′} < b′ < min{a′, c′}. It is evident from this that b′ 6= a′, and lastly we
have a′ = a ≡ 1 mod 2 as well as c′ = c ≡ 0 mod 2. Thus π5(a, b, c) ⊆ Ŵ c

b .
Injectivity: This is straightforward to verify.

Surjectivity: Let (a, b, c) ∈ Ŵ c
b be arbitrary and consider (a′, b′, c′) = (a,−b, c). This

lies in Ŵ c
b since it has determinant n, a′ = a ≡ 1 mod 2, c′ = c ≡ 0 mod 2 and by

Lemma 5.2.8 satisfies −min{a′, c′} < b′ < min{a′, c′} and thus b′ 6= a′. Lastly we
note π5(a

′, b′, c′) = (a,−(−b), c) = (a, b, c) and hence the map π5 is a surjection and
thus an involution.
Now suppose π5(a, b, c) = (a, b, c) then we have (a,−b, c) = (a, b, c) and it is clear this
requires b = 0. However, by Lemma 5.2.13 we have b ≡ 1 mod 2 and thus b = 0 is
impossible.
Hence the map π5 has no fixed points.

Corollary 5.2.15.
The set Ŵ c

b may be written as the disjoint union of the sets Ŵ c
b+ and Ŵ c

b−, where

Ŵ c
b+ =

{
(a, b, c) ∈ Ŵ c

b | b > 0
}

Ŵ c
b− =

{
(a, b, c) ∈ Ŵ c

b | b < 0
}
.

Thus |Ŵ c
b | = 2|Ŵ c

b−|.

Proof.
With the above definition of the sets Ŵ c

b+ and Ŵ c
b− it is clear that they are disjoint

sets and every element of Ŵ c
b lies in one or the other. Thus Ŵ c

b = Ŵ c
b+∪Ŵ c

b−. Lemma

5.2.14 then provides a bijection such that π5(Ŵ
c
b+) ⊆ Ŵ c

b− and π5(Ŵ
c
b−) ⊆ Ŵ c

b+.

Consequently we have |Ŵ c
b | = |Ŵ c

b+|+ |Ŵ c
b−| = 2|Ŵ c

b−|.
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Lemma 5.2.16.
The map

π6 : Oc
b −→ Oc

b

(a, b, c) 7−→ (a,−b, c) = (a′, b′, c′)

is a well-defined involution with no fixed points.

Proof.
Well-defined: Binary quadratic forms in the set Oc

b satisfy a ≡ c ≡ 1 mod 2, b 6= 0
as well as (by Lemma 5.2.8) −min{a, c} < b < min{a, c}. We observe a′c′ − b′2 =
ac− (−b)2 = ac− b2 = n and b′ = −b 6= 0, a′ = a ≡ 1 mod 2 and c′ = c ≡ 1 mod 2.
Since we have −min{a, c} < b < min{a, c} we immediately get −min{a′, c′} < b′ <
min{a′, c′}. Hence (a′, b′, c′) ∈ Oc

b and the map π6 is well-defined.
Injectivity: This is straightforward to verify.
Surjectivity: Let (a, b, c) ∈ Oc

b and consider (a,−b, c), by the same argument as used to
prove π6 is well-defined, we have (a,−b, c) ∈ Oc

b. Lastly, π6(a,−b, c) = (a,−(−b), c) =
(a, b, c) and thus π6 is surjective and hence is a bijection.
Now suppose π6(a, b, c) = (a, b, c), which implies (a, b, c) = (a,−b, c) and thus b = 0.
However, in Oc

b we have b 6= 0 and therefore we deduce the map π6 has no fixed
points.

Corollary 5.2.17.
The set Oc

b may be written as the disjoint union of the sets Oc
b+ and Oc

b−, where

Øc
b+ = {(a, b, c) ∈ Oc

b | b > 0}
Øc
b− = {(a, b, c) ∈ Oc

b | b < 0} .

Thus |Oc
b| = 2|Oc

b+|.

Proof.
With the above definition of the sets Oc

b+ and Oc
b− it is clear that they are disjoint

sets and every element of Oc
b lies in one or the other. Thus Oc

b = Oc
b+ ∪Oc

b−. Lemma
5.2.16 then provides a bijection such that π6(O

c
b+) ⊆ Oc

b− and π6(O
c
b−) ⊆ Oc

b+.
Consequently we have |Oc

b| = |0cb+|+ |Oc
b−| = 2|Oc

b+|.

Lemma 5.2.18.
The map

π4 : Ŵ c
b− −→ Oc

b+

(a, b, c) 7−→ (a, a+ b, a+ 2b+ c) = (a′, b′, c′)

is a well-defined bijection.

Proof.
Well-defined: We observe the map π4 preserves the determinant because

a′c′ − b′2 = a(a+ 2b+ c)− (a+ b)2
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= a2 + 2ab+ ac− a2 − 2ab− b2

= ac− b2

= n.

Since a, b, c ∈ Z we have a′, b′, c′ ∈ Z. Further, a′ > 0 and c′ > 0 because Ŵ c
b− ⊆ Ŵ c

b ,
which satisfies −min{a, c} < b < min{a, c} (see Lemma 5.2.13). We also have
a ≡ 1 mod 2 and c ≡ 0 mod 2 in Ŵ c

b−, thus a + 2b + c ≡ a ≡ 1 mod 2. Therefore
a′ ≡ c′ ≡ 1 mod 2.
Now since b < 0 in Ŵ c

b− and using −min{a, c} < b < min{a, c} we see −a < a+b < a
(i.e. −a′ < b′ < a′)and −c < b < c. The latter inequality implies b+ c > 0 and so we
get a + b < (a + b) + (b + c) = a + 2b + c. Further, the minimality criterion implies
−2a − c < 3b and so we get −a − 2b − c < a + b. Combining these results yields
−(a+ 2b+ c) < a+ b < a+ 2b+ c and so we deduce −min{a′, c′} < b′ < min{a′, c′}.
Hence the map π4 is well-defined.
Injectivity: Suppose π4(a, b, c) = π4(â, b̂, ĉ) then we have (a, a + b, a + 2b + c) =

(â, â+ b̂, â+ 2b̂+ ĉ) and it is clear this map is injective.
Surjectivity: Let (a, b, c) ∈ Oc

b+ be arbitrary and consider (a, b − a, a − 2b + c) =
(a′, b′, c′). We have a ≡ c ≡ 1 mod 2, b ≡ 0 mod 2 (Lemma 5.2.7) and b > 0 in the
set Oc

b+.
Therefore we get a′ = a ≡ 1 mod 2 and c′ = a− 2b + c ≡ a + c ≡ 0 mod 2. Further,
b < min{a, c} implies b′ = b− a < 0 and b′ 6= a′ = a. Next,

a′c′ − b′2 = a(a− 2b+ c)− (b− a)2

= a2 − 2ab+ ac− b2 + 2ab− a2

= ac− b2

= n.

Lastly, we must show −min{a′, c′} < b′ 6 min{a′, c′}. Since b > 0 and a > 0 it
follows that −a < b − a < b < a and thus −a′ < b′ < a′. Next, b < min{a, c}
implies 3b < 2a + c and so b − a < a − 2b + c. It also implies b < c and thus
b− a < c− a. This then yields 2b− a < c− a+ b and so −a+ 2b− c < b− a or rather
−(a− 2b+ c) < b− a.
Combining these results yields −c′ < b′ < c′ and so we have −min{a′, c′} < b′ <
min{a′, c′}. Hence (a′, b′, c′) ∈ Ŵ c

b−. Lastly, observe π4(a
′, b′, c′) = (a, a+ (b− a), a+

2(b− a) + (a− 2b+ c)) = (a, b, c). Therefore the map π4 is surjective and hence is a
bijection.
An immediate consequence of this map is |Oc

b+| = |Ŵ c
b−|.

We are now in a position to prove Theorem 5.2.2.

Proof of Theorem 5.2.2.
For convenience we shall let |E| = K. Then by Lemma 5.2.10 we have |O| = K.
Next, by Lemma 5.2.12 we have |Ŵb| = |Ob| and by Lemmas 5.2.14, 5.2.16 and 5.2.18
we have |Ŵ c

b | = 2|Ŵ c
b−| = 2|Oc

b+| = |Oc
b|. Using this we get |Ŵ | = |Ŵb| + |Ŵ c

b | =
|Ob|+ |Oc

b| = |O| = K.
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By Lemma 5.2.6 we have |W | = |Ŵ |+ |Ŵ c| = 2K.
Now by Definition 5.1.4 we have 6G(n) = |O| + |E| + |W | = 4K and 6F(n) =
|O| + |W | = 3K. From this we deduce 6G(n) = 4

3
· 6F(n) and hence 3G(n) = 4F(n)

as desired.

Our goal now is to prove the second part of Kronecker’s claim. Before we begin we
prove two lemmas which will aid the proof.

Lemma 5.2.19.
Let n ∈ Z>0 be such that n ≡ 7 mod 8. Let (a, b, c) be such that ac − b2 = n and
a ≡ c ≡ 1 mod 2 then either a + c ≡ 4 mod 8 and b ≡ 2 mod 4, or a + c ≡ 0 mod 8
and b ≡ 0 mod 4.

Proof.
Observe a ≡ c ≡ 1 mod 2 and n ≡ 7 mod 8 implies b ≡ 0 mod 2. Let a = 8k + i and
c = 8m+ j (0 6 i, j 6 7, i ≡ j ≡ 1 mod 2) and observe ac ≡ ij mod 8. Consequently
i 6= j as otherwise we have n ≡ i2 − b2 mod 8. This contradicts n ≡ 7 mod 8.
Now if b ≡ 2 mod 4 then n = ac − b2 ≡ 7 mod 8 implies ac ≡ 3 mod 8 and thus
(i, j) ∈ {(1, 3), (3, 1), (5, 7), (7, 5)}. Whereas if b ≡ 0 mod 4 then n = ac − b2 ≡
7 mod 8 implies ac ≡ 7 mod 8 and thus (i, j) ∈ {(1, 7), (7, 1), (3, 5), (5, 3)}.
In the first case we have a+ c ≡ 4 mod 8 and b ≡ 2 mod 4. While in the second case
we have a+ c ≡ 0 mod 8 and b ≡ 0 mod 4.

Lemma 5.2.20.
Let n = ac− b2 be a positive integer such that n ≡ 7 mod 8 and let a ≡ c ≡ 0 mod 4.
Then a±2b+c

2
≡ 1 mod 2.

Proof.
It is sufficient to show a ± 2b + c ≡ 2 mod 4. We have a ≡ c ≡ 0 mod 4 and
so a ± 2b + c ≡ ±2b mod 4. Since n ≡ 7 mod 8, b ≡ 1 mod 2 follows and thus
±2b ≡ 2 mod 4. Hence a±2b+c

2
≡ 1 mod 2.

We may now state the theorem first before deducing a sequence of lemmas which
provide the proof.

Theorem 5.2.21.
Let n ∈ Z>0 be such that n ≡ 7 mod 8. Then 3G(n) = 6F(n).

As in the proof of the 3 mod 8 case we shall begin with the set Ωn, where n ∈ Z>0

satisfies n ≡ 7 mod 8. By Lemma 5.2.1 we know this set contains a unique represen-
tative for every complete equivalence class of binary quadratic forms ax2 +2bxy+ cy2

with determinant n = ac− b2. That is, |Ωn| = 6G(n).

We partition Ωn into three disjoint sets, O, E and W where

O = {(a, b, c) ∈ Ωn | a ≡ c ≡ 1 mod 2}
E = {(a, b, c) ∈ Ωn | a ≡ c ≡ 0 mod 2}
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W = {(a, b, c) ∈ Ωn | a 6≡ c mod 2} .

Recall 6G(n) = |W |+ |E|+ |O| and 6F(n) = |W |+ |O|.

The following illustration gives an excellent overview of our proof.

W E O

Ŵ c ⊆ W

Ŵ ⊆ W

Dc ⊆ Ec
4 ⊆ E

D ⊆ Ec
4 ⊆ E

E4 ⊆ E

Ŵb ⊆ Ŵ Ŵ c
b ⊆ Ŵ D̂ ⊆ D D̂c ⊆ D

Rc ⊆ Ŵb Ic ⊆ Ŵ c
b

R ⊆ Ŵb I ⊆ Ŵ c
b

D̂b ⊆ D̂

D̂c
b ⊆ D̂

I< ⊆ I I> ⊆ I S ⊆ D̂c
b S

c ⊆ D̂c
b

1

1

2

2

3 3

4 4

5

5

6

6

77 88

Figure 5.1: The diagram shows |E| = |O| + |W | and thus 6G(n) = 2 (|O|+ |W |) =
2 · 6F(n).

We begin by partitioning the set E into a disjoint union of the sets E4 and Ec
4, where

E4 = {(a, b, c) ∈ E | a ≡ c ≡ 0 mod 4} .

Lemma 5.2.22.
The map

φ1 : O −→ E4

(a, b, c) 7−→
(
a+ 2b+ c

2
,
c− a

2
,
a− 2b+ c

2

)
is a well-defined bijection.
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Proof.
Well-defined: From the set O we have a ≡ c ≡ 1 mod 2 and b ≡ 0 mod 2. By
Lemma 5.2.19 we have a′ = a+2b+c

2
≡ 0 mod 4 and c′ = a−2b+c

2
≡ 0 mod 4 as a + c ≡

±2b mod 8. By Lemma 5.2.8 we have −min{a, c} < b < min{a, c} and this implies
a′ > 0 and c′ > 0. We now verify the determinant

a′c′ − b′2 =
1

4

(
a+ 2b+ c

2

)(
a− 2b+ c

2

)
− 1

4
(c− a)2

=
1

4

[
4ac− 4b2

]
= ac− b2

= n.

Next, c− a ≡ 0 mod 2 and thus b′ ∈ Z. Lastly we have −min{a, c} < b < min{a, c}
implies

b < c⇒ 2b < 2c⇒ 2b− c < c ⇒ −a+ 2b− c < c− a
b < a⇒ 2b < 2a⇒ 2b− a < a ⇒ −a+ 2b− c < a− c,

−c < b⇒ −2c < 2b⇒ a− c < a+ 2b+ c

−a < b⇒ −2a < 2b⇒ c− a < a+ 2b+ c.

The first pair yield −c′ < b′ < c′, while the second pair yields −a′ < b′ < a′. Therefore
we have −min{a′, c′} < b′ < min{a′, c′} and consequently the map φ1 is well-defined.
Injectivity: Suppose φ1((a, b, c)) = φ1((â, b̂, ĉ)) then we have

(
a+2b+c

2
, c−a

2
, a−2b+c

2

)
=(

â+2b̂+ĉ
2

, ĉ−â
2
, â−2b̂+ĉ

2

)
. Equating entry-wise we get a+2b+c = â+2b̂+ ĉ, c−a = ĉ− â

and a − 2b + c = â − 2b̂ + ĉ. Rearranging the second equation to get â = ĉ − c + a
and substituting this into each of the first and third equations yields

c = ĉ+ (b− b̂)
c = ĉ+ (b̂− b).

Taking the difference of these gives 0 = 2(b − b̂) and thus b = b̂. Using this both
the first and third equations become a+ c = â+ ĉ. Combining with the second then
yields a = â and c = ĉ. Hence the map φ1 is injective.
Surjectivity: Let (a, b, c) ∈ E4 be arbitrary and consider

(
a−2b+c

2
, c−a

2
, a+2b+c

2

)
=

(a′, b′, c′). We first show this lies in the set O. By Lemma 5.2.20 we have a′ ≡ c′ ≡
1 mod 2. Next, c−a

2
∈ Z as c − a ≡ 0 mod 4 by Lemma 5.2.9. We note the preser-

vation of the determinant and proof of the condition −min{a′, c′} < b′ 6 min{a′, c′}
proceed in an identical manner to that found in the well-defined part of this proof.
Thus

(
a+2b+c

2
, c−a

2
, a−2b+c

2

)
∈ O.

We now see φ1

((
a−2b+c

2
, c−a

2
, a+2b+c

2

))
has

(a−2b+c
2 )−2( c−a

2 )+(a+2b+c
2 )

2
= a for its first en-

try,
(a+2b+c

2 )−(a−2b+c
2 )

2
= b for its second entry, and

(a−2b+c
2 )+2( c−a

2 )+(a+2b+c
2 )

2
= c for its
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last entry. Thus φ1

((
a−2b+c

2
, c−a

2
, a+2b+c

2

))
= (a, b, c) We note the condition can be

verified directly in the same manner as in the well-defined part of this proof. Hence
the map φ1 is surjective and thus is a bijection.
An immediate consequence of this is |E4| = |O|.

We now consider the set Ec
4 and progressively partition it using the following lemmas.

Lemma 5.2.23.
The map

φ2 : Ec
4 −→ Ec

4

(a, b, c) 7−→ (c, b, a)

is a well-defined involution with no fixed points.

Proof.
Well-defined: The set Ec

4 contains forms (a, b, c) such that a ≡ c ≡ 0 mod 2 and
where we do not have a ≡ c ≡ 0 mod 4. Since ac − b2 = n ≡ 7 mod 8 then implies
b ≡ 1 mod 2, it follows that exactly one of a, c is 0 mod 4, while the other is 2 mod 4.
Consequently permuting the a and c entries does not affect this property. Next we
note Ec

4 is non-empty since n ≡ 7 mod 8 implies 4 | (n+1) and therefore (4, 1, n+1
4

) ∈
Ec

4.
Lastly, it is clear the determinant and −min{a, c} < b < min{a, c} properties are
preserved (strict inequalities by Lemma 5.2.8), thus φ2 is a well-defined map into the
set Ec

4.
We now observe φ2

2(a, b, c) = (a, b, c) and so by Lemma 3.4.13 the map φ2 is a bijection.
Finally, the map φ2 has no fixed points because this would imply b = 0, which is
impossible when n ≡ 7 mod 8.

Corollary 5.2.24.
The set Ec

4 may be written as the disjoint union of the sets D and Dc where

D = {(a, b, c) ∈ Ec
4 | a ≡ 0 mod 4, c ≡ 2 mod 4}

and |D| = |Dc|.

Proof.
By the proof of Lemma 5.2.23 we know all forms (a, b, c) ∈ Ec

4 satisfy either a ≡ 0 mod
4 and c ≡ 2 mod 4 or a ≡ 2 mod 4 and c ≡ 0 mod 4, and no form can simultaneously
satisfy both conditions. By Lemma 5.2.23, φ2 is a bijection which, permutes the
outer coefficients. Thus φ2(D) ⊆ Dc and φ2(D

c) ⊆ D. Hence Ec
4 = D ∪ Dc and

|D| = |Dc|.

Lemma 5.2.25.
The set D may be written as a disjoint union of the sets D̂ and D̂c, where

D̂ = {(a, b, c) ∈ D | b > 0}

and |D̂| = |D̂c|.
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Proof. Observe b 6= 0 in the set D because a ≡ 0 mod 4 and c ≡ 2 mod 4. Since
D ⊆ E, Lemma 5.2.8 implies |b| < min{a, c}. Therefore for any form (a, b, c) ∈ D
the form (a,−b, c) is distinct and also in D. Thus D = D̂ ∪ D̂c and |D̂| = |D̂c|.

Lemma 5.2.26.
The set D̂ may be expressed as a disjoint union of the sets D̂b and D̂c

b where

D̂b = {(a, b, c) ∈ D̂ | c = 2b}.

Proof.
Forms in the set D̂ satisfy b > 0 and a ≡ c ≡ 0 mod 2. Further, since D̂ ⊆ D ⊆ Ec

4,
we know a ≡ 0 mod 4, c ≡ 2 mod 4 and b ≡ 1 mod 2. This implies we have either
c = 2b or c 6= 2b, but more importantly, we know a 6= 2b.

Lemma 5.2.27.
The map

φ3 : D̂c
b −→ D̂c

b

(a, b, c) 7−→ (a− 2b+ c, c− b, c) = (a′, b′, c′)

is a well-defined involution with no fixed points.

Proof.
Well-defined: Recall forms in the set D̂c

b satisfy c 6= 2b, c 6= 2b b > 0, a ≡ 0 mod 4,
c ≡ 2 mod 4 and −min{a, c} < b < min{a, c} as D̂c

b ⊆ E. Therefore we see b′ =
c− b > 0, a′ = a− 2b+ c = (a− b︸ ︷︷ ︸

>0

) + (c− b︸︷︷︸
>0

) > 0 and c′ = c > 0. Next, we note

a′c′ − b′2 = (a− 2b+ c)c− (c− b)2

= ac− 2bc+ c2 − c2 − 2bc− b2

= ac− b2

= n,

thus the map φ3 preserves the determinant.
Now we note c 6= 2b implies 2c 6= 2b+ c and thus 2b′ = 2(c− b) 6= c = c′. Further, we
have a′ = a− 2b+ c ≡ 0 mod 4 because a ≡ 0 mod 4, 2b ≡ 2 mod 4 and c ≡ 2 mod 4.
Lastly it is clear that c′ = c ≡ 2 mod 4 and thus it remains to show our minimality
condition.
We have b′ = c− b > 0 and so we trivially have −min{a′, c′} < b′. Also, since b > 0
we get b′ = c− b < c = c′. Lastly, a′ = a− 2b+ c = (a− b︸ ︷︷ ︸

>0

) + (c− b) > c− b = b′ and

therefore we have −min{a′, c′} < b′ < min{a′, c′}.
Finally, we observe φ2

3(a, b, c) = (a− 2b+ c− 2[c− b] + c, c− [c− b], c) = (a, b, c) and
hence by Lemma 3.4.13 we see the map φ3 is an involution on the set D̂c

b.
We now observe the map φ3 has no fixed points as this would imply c − b = b and
thus c = 2b. This is a contradiction as D̂c

b ∩ D̂b = ∅.
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Corollary 5.2.28.
The set D̂c

b may be partitioned into a disjoint union of the sets S and Sc, where

S = {(a, b, c) ∈ D̂c
b | 2b < c}

Sc = {(a, b, c) ∈ D̂c
b | 2b > c}.

Further, we have |S| = |Sc|.

Proof.
From the proof of Lemma 5.2.27 we recall forms in D̂c

b satisfy 2b 6= c. Therefore
we may partition the set D̂c

b according to whether 2b < c or 2b > c, and we have
D̂c
b = S ∪ Sc is a disjoint union. Let (a, b, c) ∈ S and apply the map φ3 from Lemma

5.2.27. We get φ3(a, b, c) = (a− 2b+ c, c− b, c) satisfies 2b′ = 2c− 2b = c+ (c− 2b︸ ︷︷ ︸
>0

) >

c = c′ and thus φ3(S) ⊆ Sc. Similarly, let (a, b, c) ∈ Sc then φ3(a, b, c) satisfies
2b′ = 2(c− b) = c+ (c− 2b︸ ︷︷ ︸

<0

) < c = c′ and so φ3(S
c) ⊆ S.

Hence we have |S| = |Sc|.

We now turn our attention to partitioning the set W .

Lemma 5.2.29.
The map

φ4 : W −→ W

(a, b, c) 7−→ (c, b, a)

is a well-defined involution with no fixed points.

Proof.
Well-defined: Forms in the set W satisfy either a ≡ 1 mod 2 and c ≡ 0 mod 8 or
vice versa. This is because n = ac − b2 ≡ 7 mod 8, a ≡ 1 mod 2 and c ≡ 0 mod 2
combined with b2 ≡ 0, 1, 4 mod 8 implies the even outer coefficient must be divisible
by 8 and b ≡ 1 mod 2. Observe permuting the outer coefficients does not change this
property. Next, note the set W is non-empty because (1, 1, n + 1) ∈ W . Lastly, it
is clear the determinant and −min{a, c} < b 6 min{a, c} properties are preserved.
Thus φ4 is a well-defined map into W .
Note that φ2

4(a, b, c) = (a, b, c) and so Lemma 3.4.13 implies the map φ4 is a bijection.
Finally, φ4 has no fixed points as this would imply a ≡ c mod 2, a contradiction to
the construction of the set W .

Corollary 5.2.30.
The set W may be partitioned into a disjoint union of the sets Ŵ and Ŵ c, where

Ŵ = {(a, b, c) ∈ W | a ≡ 1 mod 2, c ≡ 0 mod 8}.

Further, |Ŵ | = |Ŵ c|.
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Proof.
From the proof of Lemma 5.2.29 we know either a ≡ 1 mod 2 and c ≡ 0 mod 8 or
vice versa. Partitioning according to the disjoint sets Ŵ and Ŵ c we see the map φ4

satisfies φ4(Ŵ ) ⊆ Ŵ c and φ4(Ŵ
c) ⊆ Ŵ . Thus W = Ŵ ∪ Ŵ c and |Ŵ | = |Ŵ c|.

Lemma 5.2.31.
The set Ŵ may be expressed as a disjoint union of the sets Ŵb and Ŵ c

b where

Ŵb = {(a, b, c) ∈ Ŵ | a = b},
Ŵ c
b = {(a, b, c) ∈ Ŵ | a 6= b}.

Proof.
Since forms in the set Ŵ satisfy a ≡ b ≡ 1 mod 2 and c ≡ 0 mod 8 it follows that
a = b can occur. Clearly the sets Ŵb and Ŵ c

b are disjoint and form a partition of
Ŵ .

Lemma 5.2.32.
The map

φ5 : Ŵb −→ Ŵb

(a, a, c) 7−→ (c− a, c− a, c)

is a well-defined involution with no fixed points.

Proof.
We note the set Ŵb is non-empty because it contains the form (1, 1, n+ 1) as n+ 1 ≡
0 mod 8.
Well-defined: Since c ≡ 0 mod 8 and a ≡ 1 mod 2, it follows that a′ = b′ ≡ 1 mod 2.
Next, we have

a′c′ − b′2 = (c− a)c− (c− a)2

= c2 − ac− c2 + 2ac− a2

= ac− b2 as a = b.

We also note c′ = c ≡ 0 mod 8 and n = ac− b2 = a(c− a), thus c > a else n < 0. It
remains to show our minimality condition. Observe 0 < a′ = b′ and so it is sufficient
to show a′ < c′, that is c − a < c, but this follows immediately as otherwise n < 0.
Hence the map φ5 maps into the set Ŵb.
We now observe φ2

5(a, b, c) = φ5(c−a, c−a, c) = (c− (c−a), c− (c−a), c) = (a, a, c).
Thus by Lemma 3.4.13 the map φ5 is an involution on the set Ŵb. Further, there
are no fixed points because this would imply c − a = a, thus c = 2a. This is a
contradiction because c ≡ 0 mod 8 and 2a ≡ 2 mod 4.

Corollary 5.2.33.
The set Ŵb may be expressed as the disjoint union of the sets R and Rc where

R = {(a, b, c) ∈ Ŵb | 2b < c}
Rc = {(a, b, c) ∈ Ŵb | c < 2b}.

Further, we have |R| = |Rc|.
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Proof.
Observe in the set Ŵb we cannot have c = 2b as a = b ≡ 1 mod 2 and c ≡ 0 mod 8.
Therefore we get Ŵb = R ∪ Rc. Further, applying Lemma 5.2.32 we see φ5(R) ⊆ Rc

because if 2a = 2b < c then 2b′ = 2(c − a) = c + (c − 2a) > c = c′. Similarly,
φ4(R

c) ⊆ R because if c < 2b = 2a then 2b′ = 2(c− a) = c + (c− 2a) < c. Thus we
have |R| = |Rc|.

We now develop our second key map for the proof of the 7 mod 8 case.

Lemma 5.2.34.
The map

φ6 : R −→ D̂b

(a, b, c) 7−→ (
c

2
, b, 2a) = (a′, b′, c′)

is a well-defined bijection.

Proof.
Well-defined: Recall forms (a, b, c) ∈ R satisfy a = b ≡ 1 mod 2, c ≡ 0 mod 8
and 2b < c. From this it follows that a′ = c

2
≡ 0 mod 4, b′ = b = a > 0, and

c′ = 2a ≡ 2 mod 4. It is also clear that a′, b′, c′ > 0 and that the determinant is pre-
served under φ6. We also see c′ = 2a = 2 · b = 2b′. It remains to show we satisfy our
minimality condition. Since we have −min{a, c} < b 6 min{a, c} we see immediately
that −c′ < b′ < c′. We also have 2a = 2b < c implies a < c

2
and thus −a < b 6 a

then implies −a′ < b′ < a′. Hence we satisfy −min{a′, c′} < b′ 6 min{a′, c′}.
Injectivity: This is straightforward to verify directly.

Surjectivity: Let (a, b, c) ∈ D̂b be arbitrary and consider the form ( c
2
, b, 2a) = (a′, b′, c′).

We will show this lies in the set R. We recall forms in D̂b satisfy c = 2b, b > 0,
b ≡ 1 mod 2, a ≡ 0 mod 4 and c ≡ 2 mod 4. We immediate verify a′c′ − b′2 =
ac − b2 = n. Next, it is clear that a′, b′ and c′ > 0. Further, a′ = c

2
= 2b

2
= b

and thus a′ = b′ ≡ 1 mod 2. Since a ≡ 0 mod 4, it follows that c′ = 2a ≡ 0 mod 8.
It remains to show 2b′ < c′ and −min{a′, c′} < b′ 6 min{a′, c′}. The first of these
follows immediately due to −a < b < a (D̂b ⊆ E) as this yields 2b′ = 2b < 2a = c′. It
also implies it is sufficient to show −a′ < b′ 6 a′. However, we observe a′ = c

2
= b = b′

and thus this is immediately satisfied. Thus (a′, b′, c′) ∈ R. It is then straightforward
to check that φ6(

c
2
, b, 2a) = (a, b, c) and therefore the map φ6 is surjective and hence

is a bijection.

Lemma 5.2.35.
The map

φ7 : Ŵ c
b −→ Ŵ c

b

(a, b, c) 7−→ (a,−b, c) = (a′, b′, c′)

is a well-defined involution with no fixed points. As a consequence the set Ŵ c
b may be

expressed as a disjoint union of the sets I and Ic where,

I = {(a, b, c) ∈ Ŵ c
b | b > 0},
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Ic = {(a, b, c) ∈ Ŵ c
b | b < 0}.

Further, |I| = |Ic|.

Proof.
Well-defined: It is sufficient to show a′ 6= b′ as only the sign of b has changed and
clearly the determinant is preserved. Since forms in Ŵ c

b satisfy −min{a, c} < b 6
min{a, c} and a 6= b, we deduce −a < b < a and thus −a < −b < a. Hence a′ 6= b′.
Therefore the map φ7 maps into the set W c

b . Further, this map has no fixed points
because forms in the set Ŵ c

b satisfy a ≡ b ≡ 1 mod 2 and c ≡ 0 mod 8. Thus b 6= 0
and there are no fixed points.
Lastly, we observe φ2

7(a, b, c) = (a, b, c) and thus by Lemma 3.4.13 we see see the map
φ7 is an involution with no fixed points.
As a consequence we may partition Ŵ c

b into I ∪ Ic and we observe φ7(I) ⊆ Ic as well
as φ7(I

c) ⊆ I because the map φ7 changes the sign on the b term. Since φ7 has no
fixed points, we deduce |I| = |Ic|.

Lemma 5.2.36.
The map

φ8 : I −→ I

(a, b, c) 7−→ (a− 2b+ c, c− b, c) = (a′, b′, c′)

is a well-defined involution with no fixed points.

Proof.
Well-defined: Recall forms in the set I satisfy b > 0, a 6= b, a ≡ 1 mod 2 and
c ≡ 0 mod 8. These forms also satisfy −min{a, c} < b 6 min{a, c}. If c = b then
n = ac − b2 = c(a − c) ≡ 0 mod 8 which is a contradiction. Hence we deduce
b′ = c − b > 0 and thus a′ = a − 2b + c > 0. Clearly, we have c′ = c > 0. Next,
observe

a′c′ − b′2 = (a− 2b+ c)c− (c− b)2

= ac− 2bc+ c2 − c2 + 2bc− b2

= ac− b2

= n

thus the determinant is preserved under the map φ8.
We also note a′ = a − 2b + c = (a− b︸ ︷︷ ︸

>0

) + (c − b) 6= c − b = b′ because I ⊆ Ŵ c
b

whose forms satisfy a 6= b. Further, a′ = a − 2b + c ≡ 1 mod 2 since a ≡ 1 mod 2,
2b ≡ 0 mod 2 and c ≡ 0 mod 8. We trivially have c′ = c ≡ 0 mod 8. Thus it now
remains to show our minimality condition.
We have b′ = c − b > 0 and thus −min{a′, c′} < b′ is straightforward. Also, since
b > 0, we have b′ < c′. Lastly, a 6= b and −min{a, c} < b 6 min{a, c} imply
a′ = a− 2b + c = (a− b︸ ︷︷ ︸

>0

) + (c− b) > c− b = b′. Hence we have −min{a′, c′} < b′ <
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min{a′, c′}. Therefore φ8 maps into the set I.
We now observe φ2

8(a, b, c) = (a− 2b+ c− 2[c− b] + c, c− [c− b], c) = (a, b, c) and so
by Lemma 3.4.13 we see the map φ8 gives an involution on the set I.
Finally, we note the map φ8 has no fixed points because this would imply b = c− b,
that is 2b = c. This is a contradiction because a ≡ 1 mod 2 and c ≡ 0 mod 8 along
with n ≡ 7 mod 8 imply b ≡ 1 mod 2 and hence 2b ≡ 2 mod 4 6≡ c ≡ 0 mod 8.

Corollary 5.2.37.
The set I may be partitioned into a disjoint union of the sets I< and I>, where

I< = {(a, b, c) ∈ I | 2b < c},
I> = {(a, b, c) ∈ I | 2b > c}

and they satisfy |I<| = |I>|.

Proof.
From the proof of Lemma 5.2.36 we know forms in the set I do not satisfy 2b = c.
Therefore we may partition the set I according to whether 2b < c or 2b > c and
then I = I< ∪ I> is a disjoint union. Now let (a, b, c) ∈ I< and apply the map
φ8 from Lemma 5.2.36. We get φ8(a, b, c) = (a − 2b + c, c − b, c), which satisfies
2b′ = 2c − 2b = c + (c− 2b︸ ︷︷ ︸

>0

) > c = c′. Thus φ8(I<) ⊆ I>. Similarly, let (a, b, c) ∈ I>

then we have φ8(a, b, c) satisfies 2b′ = 2c − 2b = c + (c− b︸︷︷︸
<0

) < c = c′ and thus

φ8(I>) ⊆ I<.
Hence we have |I<| = |I>|.

The following lemma provides the final map needed to prove the 7 mod 8 result.

Lemma 5.2.38.
The map

φ9 : I< −→ S

(a, b, c) 7−→
( c

2
, b, 2a

)
= (a′, b′, c′)

is a well-defined bijection and consequently |I<| = |S|.

Proof.
Well-defined: It is straightforward to verify the map φ9 preserves the determinant and
satisfies a′, b′ and c′ > 0. Next, we have c′ = 2a 6= 2b = 2b′ because I< ⊆ I ⊆ Ŵ c

b ,
where a 6= b. Further, I< ⊆ Ŵ implies a′ = c

2
≡ 0 mod 4 and c′ = 2a ≡ 2 mod 4

because a ≡ 1 mod 2 and c ≡ 0 mod 8. We also have 2b′ = 2b < 2a = c′ because
forms in I< satisfy −min{a, c} < b 6 min{a, c} and a 6= b. It remains to show our
minimality criterion holds. Since forms in I< satisfy b > 0 and also −a < b < a it
follows that −min{a′, c′} < b′. We also immediately get b < a < 2a = c′. Further,
since forms in I< satisfy 2b < c it follows that b′ = b < c

2
= a′ and thus we have

−min{a′, c′} < b′ < min{a′, c′}. Hence (a′, b′, c′) ∈ S.
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Injectivity: This is straightforward to verify.
Surjectivity: Let (a, b, c) ∈ S be arbitrary and consider (a′, b′, c′) = ( c

2
, b, 2a), we will

show this lies in I<. It is clear determinant is preserved and that a′, b′ and c′ > 0
as S ⊆ D̂. Next, forms in S satisfy a ≡ 0 mod 4 and c ≡ 2 mod 4 and so we have
a′ = c

2
≡ 1 mod 2 and c′ = 2a ≡ 0 mod 8. Further observe a′ = c

2
6= 2b

2
= b = b′

as forms in S satisfy c 6= 2b. We also have 2b′ = 2b < 2a = c′ as S ⊆ E implies
the minimality criterion has strict inequalities (Lemma 5.2.8). It remains to show
(a′, b′, c′) satisfies the minimality criterion.
We have b′ = b > 0 and so we automatically get −min{a′, c′} < b′. Next, forms in S
satisfy 2b < c and thus b′ = b < c

2
= a′. Further, forms in S satisfy b < a (as S ⊆ E)

and thus we have b′ = b < a < 2a = c′. Hence we have −min{a′, c′} < b′ < min{a′, c′}
and therefore (a′, b′, c′) ∈ I<.
Since φ9(a

′, b′, c′) = (a, b, c), we see the map φ9 is surjective and therefore is a bijection.
An immediate consequence is then |I<| = |S|.

We now prove Theorem 5.2.21.

Proof of Theorem 5.2.21.
Let n be a positive integer such that n ≡ 7 mod 8. Recall from Definition 5.1.4 that
6G(n) = |O|+ |E|+ |W | and 6F(n) = |O|+ |W |. Since our theorem is 3G(n) = 6F(n)
it is sufficient to show |E| = |O|+ |W |.
We have

|E| = |E4|+ |Ec
4|

= |O|+ |Ec
4| by Lemma 5.2.22

= |O|+ 2|D| by Corollary 5.2.24

= |O|+ 4|D̂| by Lemma 5.2.25

= |O|+ 4|D̂b|+ 4|D̂c
b| by Lemma 5.2.26

= |O|+ 4|D̂b|+ 8|S| by Corollary 5.2.28

= |O|+ 4|D̂b|+ 8|I<| by Lemma 5.2.38

= |O|+ 4|D̂b|+ 4|I| by Corollary 5.2.37

= |O|+ 4|D̂b|+ 2|Ŵ c
b | by Lemma 5.2.35

= |O|+ 4|R|+ 2|Ŵ c
b | by Lemma 5.2.34

= |O|+ 2|Ŵb|+ 2|Ŵ c
b | by Corollary 5.2.33

= |O|+ 2|Ŵ | by Lemma 5.2.31

= |O|+ |W | by Corollary 5.2.29.

Hence we have 6G(n) = |O| + |E| + |W | = |O| + |O| + |W | + |W | = 2(|O| + |W |) =
2 · 6F(n) and consequently upon division by 2 we get Kronecker’s result, 3G(n) =
6F(n).

Corollary 5.2.39.

Let n be a positive integer such that n ≡ 3 mod 4, then 3G(n) =
(

5− (−1)
n−3
4

)
F(n).
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Proof.
Let n be a positive integer such that n ≡ 3 mod 4. From Theorems 5.2.2 and 5.2.21
we have 3G(n) = 4F(n) when n ≡ 3 mod 8 and 3G(n) = 6F(n) when n ≡ 7 mod 8.

Observe when n = 8k+3 we have 5−(−1)
n−3
4 = 5−(−1)

8k
4 = 5−(−1)2k = 5−1 = 4,

and when n = 8k+7 we have 5− (−1)
n−3
4 = 5− (−1)

8k+4
4 = 5− (−1)2k+1 = 5+1 = 6.

Hence we have

3G(n) =

{
4F(n) n ≡ 3 mod 8
6F(n) n ≡ 7 mod 8

=

{
5− (−1)

n−3
4 n ≡ 3 mod 8

5− (−1)
n−3
4 n ≡ 7 mod 8

=
(

5− (−1)
n−3
4

)
F(n).

5.3 Representations of an Integer as a Sum of Three Squares

In this section we derive Kronecker’s expression for the number of representations of
a positive integer as a sum of three squares.

Let n ∈ Z>0, from Lemma 5.1.17 we have∑
−2
√
n6h62

√
n

(
G
(
4n− h2

)
− F

(
4n− h2

))
= σ(n) + Ψ(n).

Also, using D = 4n in Equation 5.8 we have∑
−2
√
n6h62

√
n

F
(
4n− h2

)
= 2σodd(n) + σ(n) + Ψ(n).

It is important to note we have used F(0) = 0 to extend this summation to include
equality without changing the equation.

Subtracting the first equation above from the latter then yields∑
−2
√
n6h62

√
n

(
2F
(
4n− h2

)
−G

(
4n− h2

))
= 2σodd(n). (5.18)

Definition 5.3.1.
For n ∈ Z>0 define E(n) = 2F(n)−G(n).

Using our newly defined function, Equation 5.18 may be rewritten as:∑
−2
√
n6h62

√
n

E
(
4n− h2

)
= 2σodd(n). (5.19)
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We now prove some properties of E(n). It is useful to recall for all n ∈ Z>0 the
following hold true.

F(4n) = 2F(n), see Theorem 5.1.20,

G(4n) = F(4n) + G(n), see Lemma 5.1.7,

G(n) = F(n) when n ≡ 1, 2 mod 4, see Lemma 5.1.8,

3G(n) =
(

5− (−1)
n−3
4

)
F(n) when n ≡ 3 mod 4, see Corollary 5.2.39.

Lemma 5.3.2.
For all n ∈ Z>0 we have E (4n) = E (n).

Proof.
First note E (4 · 0) = E(0) = 2F(0)−G(0) = −

(
−1

6

)
= 1

6
.

Now let n ∈ Z>0, then we have

E (4n) = 2F(4n)−G(4n)

= 2F(4n)− (F(4n) + G(n)) by Lemma 5.1.7

= F(4n)−G(n)

= 2F(n)−G(n) by Theorem 5.1.20

= E(n).

Lemma 5.3.3.
Let n ∈ Z>0 satisfy n ≡ 1 or 2 mod 4, then we have E(n) = F(n).

Proof.
Let n ≡ 1 or 2 mod 4 then we have

E(n) = 2F(n)−G(n)

= 2F(n)− F(n) by Lemma 5.1.8

= F(n).

Lemma 5.3.4.

Let n ∈ Z>0 satisfy n ≡ 3 mod 8 then we have E(n) =
2

3
F(n).

Proof.
Let n ∈ Z>0 satisfy n ≡ 3 mod 8 then we have

E(n) = 2F(n)−G(n) and so

3E(n) = 6F(n)− 3G(n)

= 6F(n)− 4F(n) by Theorem 5.2.2

= 2F(n).

Hence E(n) =
2

3
F(n) when n ≡ 3 mod 8.
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Lemma 5.3.5.
Let n ∈ Z>0 satisfy n ≡ 7 mod 8 then we have E(n) = 0.

Proof.
Let n ∈ Z>0 satisfy n ≡ 7 mod 8 then we have

E(n) = 2F(n)−G(n) and so

3E(n) = 6F(n)− 3G(n)

= 6F(n)− 6F(n) by Theorem 5.2.21

= 0.

Hence E(n) = 0 when n ≡ 7 mod 8.

Summary 5.3.6.
Combining Lemmas 5.3.3, 5.3.4 and 5.3.5 we get

E(n) =


F(n) if n ≡ 1, 2 mod 4
2
3
F(n) if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.

Our goal now is to split up the summation in Equation 5.19. The following observa-
tions will help.

Observation 5.3.7.
Note

∑
−
√
n6h6

√
n

E
(
n− h2

)
=

∑
−
√
n6h6

√
n

E
(
4n− 4h2

)
for all n ∈ Z>0.

Observation 5.3.8.
If n ∈ Z>0 is even then 4n− k2 ≡ 7 mod 8 for all odd integers k. From Lemma 5.3.5

it follows that
∑
k odd

−2
√
n<k<2

√
n

E
(
4n− k2

)
= 0.

Note equality holds in the summation index without changing the result. This is
because k is odd and thus we never take k = ±2

√
n.

Observation 5.3.9.
If n ∈ Z>0 is odd then 4n ≡ 4 mod 8 and 4n − k2 ≡ 3 mod 8 for all odd integers k.

Applying Lemma 5.3.4 yields
∑
k odd

−2
√
n62
√
n

E
(
4n− k2

)
=

∑
k odd

−2
√
n6k62

√
n

2

3
F
(
4n− k2

)
.

Now consider Equation 5.19. We split the left hand side into two summations, one
for when h is odd and the other for when h is even.

2σodd =
∑

−2
√
n6h62

√
n

E
(
4n− h2

)
=

∑
h even

−2
√
n6h62

√
n

E
(
4n− h2

)
+

∑
h odd

−2
√
n6h62

√
n

E
(
4n− h2

)
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=
∑

−
√
n6h̃6

√
n

E
(

4n− 4h̃2
)

+
∑
h odd

−2
√
n6h62

√
n

E
(
4n− h2

)
. (5.20)

If n is even then the second summation in Equation 5.20 is 0 by Observation 5.3.8.
Therefore Equation 5.20 becomes

2σodd =
∑

−
√
n6h̃6

√
n

E
(

4
[
n− h̃2

])
=

∑
−
√
n6h̃6

√
n

E
(
n− h̃2

)
. (5.21)

Whereas if n is odd then the second summation in Equation 5.20 may be replaced

with
∑

−2
√
n6h62

√
n

2

3
F
(
4n− h2

)
. Therefore when n is odd we get

2σodd =
∑

−
√
n6h̃6

√
n

E
(
4
[
n− h2

])
+

∑
h odd

−2
√
n6h62

√
n

2

3
F
(
4n− h2

)
=

∑
−
√
n6h̃6

√
n

E
(
n− h̃2

)
+

∑
h odd

−2
√
n6h62

√
n

2

3
F
(
4n− h2

)
.

This rearranges to give∑
−
√
n6h̃6

√
n

E
(
n− h̃2

)
= 2σodd −

∑
h odd

−2
√
n6h62

√
n

2

3
F
(
4n− h2

)
. (5.22)

These two results match those of Kronecker’s, found at the top of page 484, [Kr1897].

Our aim now is to derive a unified expression for
∑

−
√
n6h̃6

√
n

E
(
n− h̃2

)
.

Lemma 5.3.10.
Let n be a positive integer. Then

∑
h odd

−2
√
n6h62

√
n

F
(
4n− h2

)
= 2σodd.

Proof.
We have∑

h odd

−2
√
n6h62

√
n

F
(
4n− h2

)
=

∑
−2
√
n6h62

√
n

F
(
4n− h2

)
−

∑
h even

−2
√
n6h62

√
n

F
(
4n− h2

)
=

∑
−2
√
n6h62

√
n

F
(
4n− h2

)
−

∑
−
√
n6h̃6

√
n

F
(

4
[
n− h̃2

])
Theorem 5.1.20

=
∑

−2
√
n6h62

√
n

F
(
4n− h2

)
− 2

∑
−
√
n6h̃6

√
n

F
(
n− h̃2

)
.
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Applying Equations 5.6 and 5.8 we get∑
h odd

−2
√
n6h62

√
n

F
(
4n− h2

)
= (2σodd(n) + σ(n) + Ψ(n))− 2

(
1

2
[σ(n) + Ψ(n)]

)

= 2σodd(n). (5.23)

Lemma 5.3.11.
Let n be a positive integer then∑

−
√
n6h̃6

√
n

E
(
n− h̃2

)
=

{
2σodd(n) if n ≡ 0 mod 2
2
3
σodd(n) if n ≡ 1 mod 2.

Proof.
Let n be a positive integer. From Equations 5.21 and 5.22 we have

∑
−
√
n6h̃6

√
n

E
(
n− h̃2

)
=


2σodd if n ≡ 0 mod 2

2σodd −
∑
h odd

−2
√
n6h62

√
n

2

3
F
(
4n− h2

)
if n ≡ 1 mod 2

=

{
2σodd if n ≡ 0 mod 2
2σodd − 2

3
· 2σodd if n ≡ 1 mod 2, by Lemma 5.3.10

=

{
2σodd(n) if n ≡ 0 mod 2
2
3
σodd(n) if n ≡ 1 mod 2.

The following theorem repackages the above result in a tidy manner and gives the
pivotal result for Kronecker to determine the number of representations of a positive
integer as a sum of three squares.

Theorem 5.3.12.
Let n be a positive non-zero integer. Then

12
∑

−
√
n6h6

√
n

E
(
n− h2

)
= 8 (2 + (−1)n)σodd(n).

Proof.
Let n be a positive non-zero integer. Using the result found in Lemma 5.3.11 and
multiplying by 3 yields

3
∑

−
√
n6h6

√
n

E
(
n− h2

)
=

{
2 · 3σodd(n) if n ≡ 0 mod 2
2 · 1σodd(n) if n ≡ 1 mod 2.
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Now observe 1 = 2 + (−1)1 and 3 = 2 + (−1)2, thus we have

2 + (−1)n =

{
3 if n ≡ 0 mod 2
1 if n ≡ 1 mod 2.

Applying this and multiplying the result by 4 then gives

12
∑

−
√
n6h6

√
n

E
(
n− h2

)
= 4 · 2 (2 + (−1)n)σodd(n)

= 8 (2 + (−1)n)σodd(n).

Corollary 5.3.13.
From Appendix A.2 Corollary A.2.19, the right hand side of Theorem 5.3.12 is r4(n).
That is, the number of ways to represent a positive integer n as a sum of four squares.
Consequently, we have 12

∑
−
√
n6h6

√
n E (n− h2) is the number of ways to write n as

a sum of four squares.

Theorem 5.3.14.
Let n be a positive non-zero integer and let h satisfy −

√
n 6 h 6

√
n. Then

12E (n− h2) is the number of ways to represent the positive non-zero integer n− h2
as a sum of three squares.

Proof.
Fix n ∈ Z>0 and h ∈ Z such that −

√
n 6 h 6

√
n. Define the following three sets

χn =
{

(d1, d2, d3, d4) | d21 + d22 + d23 + d24 = n, di ∈ Z, i ∈ {1, 2, 3, 4}
}

χh =
{

(d1, d2, d3, h) | d21 + d22 + d23 + h2 = n, di ∈ Z, i ∈ {1, 2, 3}
}
⊆ χn

χ2,h =
{

(r1, r2, r3) | r21 + r22 + r23 = n− h2, ri ∈ Z, i ∈ {1, 2, 3}
}
.

We will show the map

J : χh −→ χ2,h

(d1, d2, d3, h) 7−→ (d1, d2, d3)

is a well-defined bijection.
Well-defined:
It is sufficient to show r21 + r22 + r23 = d21 + d22 + d23 = d21 + d22 + d23 + h2 − h2 = n− h2.
Injectivity: This is straightforward to verify.
Surjectivity: Let (r1, r2, r3) ∈ χ2,h be arbitrary and consider (r1, r2, r3, h). This sat-
isfies r21 + r22 + r23 + h2 = n − h2 + h2 = n and clearly each element lies in Z thus
(r1, r2, r3, h) ∈ χh. Since J (r1, r2, r3, h) = (r1, r2, r3) we have a bijection.
Consequently we have a one-to-one correspondence between representations of n−h2
as a sum of three squares and representations of n as a sum of four squares, where
the last term to be squared is h.
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Observe that in the set χn the largest any di may be is
√
n and this may only occur

when all other dj are zero. Using this we may write as the following disjoint union

χn =
⋃

−
√
n6h6

√
n

χh.

This is because χh1 ∩ χh2 = ∅ unless h1 = h2.

Thus r4(n) =
∑

−
√
n6h6

√
n

|χh|. Applying the bijection given by the map J to the right

hand side yields r4(n) =
∑

−
√
n6h6

√
n

|χ2,h|.

Combining this with Theorem 5.3.12 yields∑
−
√
n6h6

√
n

12E(n− h2) =
∑

−
√
n6h6

√
n

|χ2,h| .

Since |χ2,h| is the number of representations of the positive non-zero integer n − h2
as a sum of three squares, this implies 12E (n− h2) is the number of representations
of n− h2 as a sum of three squares.

The last observation Kronecker makes in his section 22 connects sums of three squares
to sums of three triangle numbers. The following lemma makes this connection.

Lemma 5.3.15.
Every positive integer n may be written as a sum of three triangle numbers if and
only if every number of the form 8n+ 3 is a sum of three squares.

Proof.

Recall a positive integer ∇ is called a triangle number if ∇ =
m∑
i=1

i for some positive

integer m.
Let n ∈ Z>0 and suppose n = ∇1 + ∇2 + ∇3, where ∇i is a triangle number for
i ∈ {1, 2, 3}. Then we have

n = ∇1 +∇2 +∇3

=

N1∑
i=1

i+

N2∑
i=1

i+

N3∑
i=1

i

=
N1 (N1 + 1)

2
+
N2 (N2 + 1)

2
+
N3 (N3 + 1)

2

=
1

2

(
N2

1 +N2
2 +N2

3 +N1 +N2 +N3

)
.

Using this it follows that

8n+ 3 = 8

(
1

2

[
N2

1 +N2
2 +N2

3 +N1 +N2 +N3

])
+ 3
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= 4N2
1 + 4N2

2 + 4N2
3 + 4N1 + 1 + 4N2 + 1 + 4N3 + 1

= (2N1 + 1)2 + (2N2 + 1)2 + (2N3 + 1)2 .

Thus 8n + 3 is a sum of three squares. Reversing this argument yields the converse
statement.

Finally, we prove a small observation due to Kronecker about the number of repre-
sentations of a positive integer n as a sum of three triangle numbers.

Lemma 5.3.16.
The number of ways a positive integer n may be expressed as a sum of three triangle
numbers is F (8n+ 3).

Proof.
From Lemma 5.3.15 we know a positive integer n maybe expressed as a sum of three
triangle numbers if and only if 8n + 3 may be written as a sum of three squares.
Since the squares mod 8 are 0, 1, 4 we must have three odd squares. From this it
follows that none of the squares are 0. Consequently, given a 3-tuple (a, b, c) such
that 8n+ 3 = a2 + b2 + c2, there are 23 = 8 ways to generate another distinct 3-tuple
with the same property by choosing where to place negative signs. Of these eight,
only one will have the property that a, b and c are all positive.
Since A(8n + 3) = 12E(8n + 3) is the number of representations of 8n + 3 as a sum
of three squares, we may apply Lemma 5.3.4 to get 12E(8n + 3) = 122

3
F(8n + 3) =

8F(8n+ 3).
From the definition of a triangle number, the number of terms in the summation must
be positive and so in the proof of Lemma 5.3.15 for the reverse direction we must
consider N1, N2 and N3 to be all positive. By our above remark, there is only one
way for this out of a possible eight.
Therefore we have the number of ways to write n as a sum of three triangle numbers
is 1

8
· 12E(8n+ 3) = F(8n+ 3).

Notes on Section 5.3

Observation 5.3.17.
In order to have consistency between Kronecker’s paper [Kr1897] and Weil’s paper
[We1974] we make the following remark. Observe the number of representations of a
positive integer n as a sum of three squares is denoted by A(n) in Kronecker’s work;
whereas Weil uses R3(n), which we have written as r3(n) in order to avoid confusion
with the next section.

5.4 Deriving Gauss’ Theorem

In this section we prove the connection between Kronecker’s sums of three squares
work and the following classical result due to Gauss.
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Theorem 5.4.1 (Gauss’ Theorem).
Let R3(n) denote the number of primitive solutions to the equation x2 +y2 +z2 = n.
Let h(−n) be the number of proper equivalence classes of primitive binary quadratic
forms Ax2 +Bxy + Cy2 where

B2 − 4AC =

{
−4n if n ≡ 1, 2, 5 or 6 mod 8.
−n if n ≡ 3 mod 8.

Let δn = 1 except for δ1 = 1
2

and δ3 = 1
3
. Then

R3(n) =

{
12δnh(−4n) if n ≡ 1, 2, 5 or 6 mod 8
24δnh(−n) if n ≡ 3 mod 8.

The statement of Gauss’ Theorem and a small treatment of it may be found in Gross-
wald, [Gr1985, p. 51]. We shall derive a new proof of Theorem 5.4.1 by utilising our
knowledge of Kronecker.

Our proof requires a series of intermediate results and so we begin by examining the
effect of requiring our binary quadratic forms to be primitive.

Lemma 5.4.2.

Let A be a bilinear form with matrix representation A =

(
A11 A12

A21 A22

)
that satisfies

gcd(A11, A12, A21, A22 = 1 and let M ∈ GL2(Z). Then every bilinear form B in the
equivalence class of A satisfies gcd(B11, B12, B21, B22) = 1.

Proof.

Let B = M tAM =

(
B11 B12

B21 B22

)
and d = gcd(B11, B12, B21, B22).

Then B =

(
d 0
0 d

)(
B′11 B′12
B′21 B′22

)
.

Consequently we have

A = (M−1)tM tAMM−1

= (M−1)tBM−1

= (M−1)t
(
d 0
0 d

)(
B′11 B′12
B′21 B′22

)
M−1

=

(
d 0
0 d

)
(M−1)tB′M−1.

That is, each element of A is divisible by d. However, gcd(A11, A12, A21, A22) = 1 and
thus we deduce d = 1.
Since M ∈ GL2(Z) it follows that every bilinear form which is equivalent to the
primitive bilinear form A is primitive.

Corollary 5.4.3.
If the equivalence class of a binary quadratic form Ax2 + Bxy + Cy2 contains a
primitive form (gcd(A,B,C) = 1) then every binary quadratic form in the equivalence
class is primitive.
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Proof.
We may view the binary quadratic form Ax2 +Bxy + Cy2 as the bilinear form with
A11 = A, A12 = A21 = B

2
and A22 = C. Thus gcd(A,B,C) = 1 is the same

as gcd(A11, A12, A21, A22) = gcd(A11, A12, A22) = 1. Lemma 5.4.2 then yields the
result.

Lemma 5.4.4.
Let n be a positive non-zero integer then

r3(n) =



2 ·
n∑

d=1

d2|n

6Fp

( n
d2

)
if n ≡ 1, 2 mod 4

4
3
·

n∑
d=1

d2|n

6Fp

( n
d2

)
if n ≡ 3 mod 8

0 if n ≡ 7 mod 8,

where 6Fp(k) is the number of complete equivalence classes of positive definite binary
quadratic forms ax2 + 2bxy + cy2 satisfying ac− b2 = k, gcd(a, b, c) = 1 and at least
one of a, c is odd.

Proof.
From Theorem 5.3.14 12E(n) is the number of representations (primitive and imprim-
itive) of the integer n as a sum of three integer squares. Thus r3(n) = 12E(n). By
Definition 5.3.1 and Lemma 5.3.2 we have E(n) = 2F(n) − G(n) and E(4n) = E(n)
for all positive integers n.
Further, by Summary 5.3.6 we have

E(n) =


F(n) if n ≡ 1, 2 mod 4
2
3
F(n) if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.

Consequently we have

12E(n) =


12F(n) if n ≡ 1, 2 mod 4
8F(n) if n ≡ 3 mod 8
0 if n ≡ 7 mod 8

=


2 · 6F(n) if n ≡ 1, 2 mod 4
4
3
· 6F(n) if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.
(5.24)

Recall in Kronecker’s notation 6F(n) is the number of complete equivalence classes
of positive definite binary quadratic forms with ac − b2 = n and at least one of a, c
is odd. There is no mention of primitivity and thus we now express this quantity as
a sum over primitive sets.
Let V {[(a, b, c)]c | ac− b2 = n, at least one of a, c is odd}, thus |V | = 6F(n). By
Lemma 5.2.1 the set Ωn = {(a, b, c) | ac− b2 = n,−min{a, c} < b 6 min{a, c}} con-
tains a unique representative for every complete equivalence class of binary quadratic
forms with ac − b2 = n. We recall (see Observation 2.4.5 the property “at least
one of a, c is odd” is invariant under transformation by M ∈ kerσ, hence we have
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|V | = 6F(n) = |Ω̂n|, where Ω̂n = {(a, b, c) ∈ Ωn | at least one of a, c is odd}.
We now partition Ω̂n into a finite disjoint union of the sets Ω̂d

n, where

Ω̂d
n =

{
(a, b, c) ∈ Ω̂ | gcd(a, b, c) = d

}
.

We note d 6= 2k for any k ∈ Z because at least one of a, c is odd. Next we define the
set Ldn as follows:

Ldn = {(x, y, z) | xz − y2 =
n

d2
,−min{x, z} < y 6min{x, z}, gcd(x, y, z) = 1,

at least one of x, z is odd}.

Now we show the following map η is a well-defined bijection.

η : Ω̂d
n −→ Ldn

(a, b, c) 7−→
(
a

d
,
b

d
,
c

d

)
= (x, y, z).

Well-defined: We have d = gcd(a, b, c) and so (x, y, z) ∈ Z3. Next, n = ac − b2 =

d2
(
a
d
· c
d
−
(
b
d

)2)
= d2(xz − y2) thus xz − y2 = n

d2
. Now suppose x ≡ z ≡ 0 mod 2,

then a = dx and c = dz are both even, a contradiction and thus at least one of x, z
is odd. Clearly we also have gcd(x, y, z) = 1. Lastly, we observe −min{a, c} < b 6
min{a, c} is equivalent to −min{dx, dz} < dy 6 min{dx, dz} and so since d > 0 it
follows that −min{x, z} < y 6 min{x, z}. Hence the map η is well-defined.
Injectivity: This is straightforward to verify.
Surjectivity: We repeat the argument given in the well-defined section, but this time
in the opposite direction.
Hence the map η is a bijection.

Thus using Lemma 5.2.1 we have shown 6F(n) = |V | = |Ω̂n| =
n∑

d=1

d2|n

6Fp

( n
d2

)
,

where 6Fp(k) is the number of complete equivalence classes of positive definite binary
quadratic forms ax2 + 2bxy + cy2 such that ac− b2 = q, gcd(a, b, c) = 1 and at least
one of a, c is odd.
Substituting this result into Equation 5.24 then yields

r3(n) =



2 ·
n∑

d=1

d2|n

6Fp

( n
d2

)
if n ≡ 1, 2 mod 4

4
3
·

n∑
d=1

d2|n

6Fp

( n
d2

)
if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.

We now establish a similar result for the relationship between r3(n) and R3(n).
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Lemma 5.4.5.
Let n be a positive integer then

r3(n) =
n∑

d=1

d2|n

R3

( n
d2

)
.

Proof.
Let An = {(x1, x2, x3) | x21 + x22 + x23 = n, gcd(x1, x2, x3) > 1}. Thus |An| = r3(n).
We partition the set An into a disjoint union of the sets
And = {(x1, x2, x3) | x21 + x22 + x23 = n, gcd(x1, x2, x3) = d}, so An =

⋃n
d=1A

n
d . We note

And = ∅ if d2 - n.

Consequently we have r3(n) = |An| =
n∑

d=1

d2|n

|And |.

Now let Bn
d =

{
(y1, y2, y3) | y21 + y22 + y23 = n

d2
, gcd(y1, y2, y3) = 1

}
. It is straightfor-

ward to verify the map η : And −→ Bn
d given by (x1, x2, x3) 7−→

(
x1
d
, x2
d
, x3
d

)
is a

well-defined bijection. The proof is very similar to that found in the proof of Lemma
5.4.4.
We observe |Bn

d | is the number of primitive solutions to the equation y21 +y22 +y23 = n
d2

and hence |Bn
d | = R3

(
n
d2

)
.

Thus we deduce r3(n) = |An| =
n∑

d=1

d2|n

|And | =
n∑

d=1

d2|n

|Bn
d | =

n∑
d=1

d2|n

R3

( n
d2

)
.

Lemma 5.4.6.
Let n and d be positive integers such that d2 | n. If n ≡ 1, 2 mod 4 then n

d2
≡

1, 2 mod 4 respectively. Further, if n ≡ 3 mod 4 then n
d2
≡ n mod 8.

Proof.
First suppose n ≡ 1 or 2 mod 4. Since d2 ≡ 0, 1 mod 4 depending on whether d is
even or odd, we cannot have d ≡ 0 mod 2 else n = n̂d2 ≡ 0 mod 4. Thus n̂ ≡ n̂d2 =
n ≡ 1, 2 mod 4 respectively.
Now suppose n ≡ 3 mod 4 and write

n =
∏

peii
∏

q
fj
j

∏
sgkk
∏

thll , where

pi, qj, sk, tl are primes such that pi ≡ 1 mod 8, qj ≡ 3 mod 8, sk ≡ 5 mod 8 and
tl ≡ 7 mod 8. Observe any divisor d such that d2 | n is necessarily odd and that
dividing by d2 results in decreasing each of the ei, fj, gk and hl by a multiple of 2.
Consequently, writing

n

d2
=
∏

p
e′i
i

∏
q
f ′j
j

∏
s
g′k
k

∏
t
h′l
l

we observe ei+fj+gk+hl ≡ e′i+f
′
j+g

′
k+h′l and thus n

d2
≡ n mod 8 when n ≡ 3 mod 4.

This is because d ≡ 1 mod 2 implies d2 ≡ 1 mod 8.
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Lemma 5.4.7.

Let n be a positive integer then R3(n) =


2 · 6Fp(n) if n ≡ 1, 2 mod 4
4
3
· 6Fp(n) if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.

Proof.
Combining the results of Lemmas 5.4.4 and 5.4.5 yields

n∑
d=1

d2|n

R3

( n
d2

)
=



2 ·
n∑

d=1

d2|n

6Fp

( n
d2

)
if n ≡ 1, 2 mod 4

4
3
·

n∑
d=1

d2|n

6Fp

( n
d2

)
if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.

By Lemma 5.4.6 we know dividing by d2 leaves us in the same category. Hence we
apply an inductive argument. The base case is when n is square free. In this case the
summations consist of a single term and we clearly get our result.
Now suppose our claim holds for all numbers less than K. We consider each of the
cases in turn and note that dividing by a square (if possible) gives a number smaller
than K. Thus expanding both summations and applying the inductive hypothesis
leads to cancellation of all terms except the term on each side corresponding to d = 1.

Hence we deduce R3(n) =


2 · 6Fp(n) if n ≡ 1, 2 mod 4
4
3
· 6Fp(n) if n ≡ 3 mod 8

0 if n ≡ 7 mod 8.
Hence by induction we have our result.

In order to prove Theorem 5.4.1 it will be necessary to consider three cases. The
following observation explains why.

Observation 5.4.8.
Recall 6Fp(n) is the number of complete equivalence classes of primitive binary
quadratic forms ax2 + 2bxy + cy2 with gcd(a, b, c) = 1, ac − b2 = n and at least
one of a, c is odd. Using the fact that these binary quadratic forms may be viewed
as bilinear forms, and applying our bilinear automorph results found in Table 2.3, we
know the only reduced binary quadratic forms with non-trivial proper automorphs are
(a, 0, a) and (2b, b, 2b). Since these are imprimitive for a 6= 1 (n = 1)and b 6= 1 (n = 3)
respectively, we conclude for n 6= 1, 3 there are no non-trivial proper automorphs and
thus 6 | 6Fp(n). Therefore it is sufficient to consider the proper equivalence classes of
reduced binary quadratic forms when n 6= 1, 3. Thus we have three cases to consider,
namely: n = 1, n ≡ 1, 2 mod 4 (n 6= 1), and n ≡ 3 mod 8. The last case will require
careful consideration when n = 3.

Lemma 5.4.9.
Let n = 1, then 2Fp(n) = h(−4).
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Proof.
We know 6Fp(1) is the number of complete equivalence classes of primitive binary
quadratic forms ax2 + 2bxy+ cy2 = 1 with ac− b2 = 1. To count these we look at the
reduced forms, of which there is precisely one, namely (1, 0, 1). By our automorph
theory the proper equivalence class of this form contains exactly 3 complete equiva-
lence classes, all of which have at least one odd outer coefficient and are primitive.
Hence 6Fp(1) = 3.
Thus 2Fp(1) = 1 and this is the number of primitive proper equivalence classes of
such binary quadratic forms. However, (1, 0, 1) may also be thought of as the form
Ax2 + Bxy + Cy2 where A = C = 1 and B = 0. This satisfies B2 − 4AC = −4 and
gcd(A,B,C) = 1, thus we deduce 2Fp(1) 6 h(−4).
Now suppose we have a form Ax2+Bxy+Cy2 where gcd(A,B,C) = 1 andB2−4AC =
−4. Then we must have 2 | B which implies 1 = AC − b2, where 2B = b. Fur-
ther, it is clear if d = gcd(A, b, C) then d | A, d | 2b and d | C. Since 2b = B,
d | gcd(A,B,C) = 1 follows. Hence the our form Ax2 +Bxy+Cy2 is also of the form
ax2 + 2bxy + cy2 with gcd(a, b, c) = 1 and ac− b2 = 1. Since every binary quadratic
form is properly equivalent to a unique reduced binary quadratic form of the same
determinant, we deduce h(−4) 6 2Fp(1).
Hence 2Fp(1) = h(−4).

Corollary 5.4.10.
We have R3(1) = 6h(−4).

Proof.
Combining Lemmas 5.4.7 and 5.4.9 we get

R3(1) = 2 · 6Fp(1)

= 2 · 3 · 2Fp(1)

= 6h(−4).

Lemma 5.4.11.
Let n be a positive integer strictly greater than 1 that satisfies n ≡ 1 or 2 mod 4.
Then Fp(n) = h(−4n).

Proof.
Let n be a positive integer strictly greater than 1 that satisfies n ≡ 1 or 2 mod 4.
Recall 6Fp(n) is the number of complete equivalence classes of binary quadratic forms
ax2 + 2bxy + cy2 where ac − b2 = n, gcd(a, b, c) = 1 and at least one of a, c is odd.
From our theory of automorphs, the only such binary quadratic forms with a non-
trivial proper automorph are (a, 0, a) and (2b, b, 2b) and since n ≡ 1, 2 mod 4, n 6= 1
it follows these cases do not arise when we consider 6Fp(n). Hence every proper
equivalence class contains exactly 6 complete equivalence classes and therefore Fp(n)
is the number of proper equivalence classes of binary quadratic forms ax2+2bxy+cy2

where ac− b2 = n, gcd(a, b, c) = 1 and at least one of a, c is odd.

241



Now observe we may view these binary quadratic forms as Ax2+Bxy+Cy2 where A =
a, B = 2b and C = c. Since at least one of a, c is odd it follows that gcd(A,B,C) =
gcd(a, 2b, c) = gcd(a, b, c) = 1. Further, note that B2 − 4AC = 4b2 − 4ac = −4(ac−
b2) = −4n. Thus we deduce Fp(n) 6 h(−4n).
Now let Ax2+Bxy+Cy2 be a reduced binary quadratic form such that gcd(A,B,C) =
1 and B2−4AC = −4n. Thus it is necessarily true that B ≡ 0 mod 2 and hence every
such form may be expressed as ax2 + 2bxy + cy2 by letting a = A, b = B

2
and c = C.

We note 4(ac − b2) = 4
(
AC −

(
B
2

)2)
= 4n and so ac − b2 = n. Thus every such

reduced form is in fact a reduced form counted by Fp(n). Hence h(−4n) 6 Fp(n).
Therefore we have Fp(n) = h(−4n) when n ≡ 1 or 2 mod 4, n 6= 1.

Corollary 5.4.12.
Let n be a positive integer such that n ≡ 1 or 2 mod 4, n 6= 1.
Then R3(n) = 12h(−4n).

Proof.
Let n be a positive integer such that n ≡ 1 or 2 mod 4, n 6= 1. By combining Lemmas
5.4.7 and 5.4.12 we deduce

R3(n) = 2 · 6Fp(n)

= 2 · 6h(−4n)

= 12h(−4n).

We now develop some results which will permit us to deal with the n ≡ 3 mod 8 case.

Lemma 5.4.13.
Let n be a positive integer such that n ≡ 3 mod 8 and define the sets Hn and Kn as
follows:

Hn =
{

[(A,B,C)]+ | B2 − 4AC = −n, gcd(A,B,C) = 1
}

Kn =
{

[(a, b, c)]+ | ac− b2 = n, gcd(a, b, c) = 1, a ≡ c ≡ 0 mod 2
}
.

Then the map

ζ : Hn −→ Kn

(A,B,C) 7−→ (2A,B, 2C) = (a, b, c)

is a well-defined bijection.
Note: Binary quadratic forms in Hn are of the form Ax2 + Bxy + Cy2 [shorthand
(A,B,C)], while those in Kn are of the form ax2 + 2bxy + cy2 [shorthand (a, b, c)].

Proof.
First note the setsHn andKn are well-defined. This is because primitivity is preserved
under equivalence and the property of having at least one outer coefficient odd is
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preserved under proper equivalence.
Well-defined: Clearly we have a = 2A ≡ 2C = c ≡ 0 mod 2. Next, we see ac − b2 =
(2A)(2C) − B2 = 4AC − B2 = n. Now let d = gcd(a, b, c), then d|2A, d|2C and
d|B. Since 4AC − B2 ≡ 3 mod 8 it follows that A ≡ B ≡ C ≡ 1 mod 2 and thus
d ≡ 1 mod 2. Hence d|A and d|C and therefore d| gcd(A,B,C) = 1, so d = 1.
Lastly, we show the map ζ respects proper equivalence classes. Suppose f, g ∈ Hn,
f ∼+ g and they have matrix representations A and B respectively. Then there exists
a matrix M ∈ SL2(Z) such that M tAM = B. Then

ζ(g) = B′ = 2I2B

= 2I2M
tAM

= M t(2I2A)M

= M tA′M = M tζ(f)M.

Thus ζ(f) ∼+ ζ(g) and hence the map ζ respects proper equivalence classes.
Injectivity:
Suppose ζ([(A,B,C)]+) = ζ([(A′, B′, C ′)]+) then [(2A,B, 2C)]+ = [(2A′, B′, 2C ′)]+.
Thus there exists M ∈ SL2(Z) such that(

2A′ B′

B′ 2C ′

)
= M t

(
2A B
B 2C

)
M

= M t2I2

(
A B

2
B
2

C

)
M

= 2I2M
t

(
A B

2
B
2

C

)
M.

Since

(
2A′B′

B′ 2C ′

)
= 2I2

(
A′ B′

2
B′

2
C ′

)
and 2I2 is invertible, it follows that

[(A,B,C)]+ = [(A′, B′, C ′)]+.
Surjectivity: Let [(a, b, c)]+ ∈ Kn and consider [(A,B,C)]+ = [(a

2
, b, c

2
)]+, we will show

this lies in the set Hn. Since [(a, b, c)]+ ∈ Kn we have a ≡ c ≡ 0 mod 2 and thus
[(A,B,C)]+ has integer entries. Since we are dealing with positive definite forms we
recall A and C are still positive. Next, ac − b2 ≡ 3 mod 8 implies c ≡ a ≡ 2 mod 4
and b ≡ 1 mod 2 thus A ≡ C ≡ B ≡ 1 mod 2. Further, we have B2 − 4AC =
−
(
4
(
a
2

) (
c
2

)
− b2

)
= −n. Now let d = gcd(A,B,C) then in particular d|B = b and

so d ≡ 1 mod 2. then d|A = a
2
, d|C = c

2
with d ≡ 1 mod 2 implies d|a and d|c, thus

d| gcd(a, b, c) = 1. Hence d = 1.
Lastly, we observe the same argument as given in the well-defined part of the proof
works for showing proper equivalence classes are respected. The caveat being we use
1
2
I2 instead of 2I2.

Thus the map ζ is surjective and hence is a well-defined bijection.

Corollary 5.4.14.
Let n ≡ 3 mod 8 then

h(−n) =

{
3Gp(n)− 3Fp(n) if n = 3
Gp(n)− Fp(n) otherwise.
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Proof.
Let n be a positive integer such that n ≡ 3 mod 8. From Lemma 5.4.13 we have
h(−n) = |Hn| and |Kn| is the number of proper equivalence classes of primitive
binary quadratic forms ax2 + 2bxy + cy2 such that ac− b2 = n and a ≡ c ≡ 0 mod 2.
From our automorph theory (see Table 2.3) we see when n 6= 3 there are no primitive
reduced binary quadratic forms with a non-trivial proper automorph. Thus every
proper equivalence class must contain exactly 6 complete equivalence classes. Thus
6|6Gp(n) and therefore Gp(n) is the number of proper equivalence classes of primitive
binary quadratic forms ax2 + 2bxy + cy2. Further, since the property of having at
least one of a, c odd is preserved under GL2(Z) it follows that |Kn| = Gp(n)−Fp(n).
Now assume n = 3 then the reduced form (2, 1, 2) ∈ Kn and it is primitive. This has
2 complete equivalence classes within its proper equivalence class. The only other
reduced form with ac − b2 = 3 is (1, 0, 3) which is clearly primitive, satisfied a ≡
c ≡ 1 mod 2 and has no non-trivial proper automorphs. Thus we deduce 6Gp(n) = 8
and 6Fp(n) = 6, therefore 3Gp(n) = 4 and 3Fp(n) = 3. Consequently |Kn| = 1 =
3Gp(n)− 3Fp(n) when n = 3.
Since Lemma 5.4.13 shows the map ζ is a bijection between the sets Hn and Kn when
n ≡ 3 mod 8, our claim follows immediately.

Note: Lemma 5.4.13 is essentially the same as Lemma 5.1.5 but with the added
condition that primitivity is required in both Qn and Rn.

Lemma 5.4.15.
Let n be a positive integer such that n ≡ 3 mod 8 then 3Gp(n) = 4Fp(n).

Proof.
From Theorem 5.2.2 we have 3G(n) = 4F(n) for all positive integers n such that
n ≡ 3 mod 8. We split the proof into two cases, namely when n is square-free and
otherwise.
Case I: n is square-free, that is n 6= kq2 for some q 6= ±1.
Let ax2 + 2bxy + cy2 be an arbitrary binary quadratic form satisfying ac − b2 = n
and let d = gcd(a, b, c). Then n = d2(âĉ − b̂2). Since n is square-free it follows that
d = 1 and hence our initial form is primitive.
Therefore when n ≡ 3 mod 8 and n is square-free we have 3Gp(n) = 3G(n) = 4F(n) =
4Fp(n).
Case II: n = kq2.
Observe n ≡ 3 mod 8 implies q ≡ 1 mod 2 and k ≡ 3 mod 8. From our theory of
automorphs (see Table 2.3) the only non-trivial proper automorphs are (a, 0, a) and
(2b, b, 2b). Since a2 6≡ 3 mod 8 the former cannot occur, whilst the latter may only
arise when k = 3. Consequently, when k 6= 3 we know every proper equivalence
class contains exactly six complete equivalence classes and thus 6|G(n) and 6|F(n).
Now suppose k = 3 then the only proper equivalence class with a non-trivial proper
automorph is that of (2q, q, 2q) and it contains two complete equivalence classes. All
of the remaining proper equivalence classes contain 6 complete equivalence classes.
Thus 6 - 6G(n). However, 2|6G(n) is 2 = gcd(2, 6). Also, since (2q, q, 2q) clearly has
both outer coefficients even, we see that 6|F(n).
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From this we deduce 2|6G(n) and 6|6F(n) whenever n = kq2 ≡ 3 mod 8. We now
finish our claim by inducting on the number of (positive) divisors of q.
Base case: q is prime.
Then we have

3G(kq2) = 3Gp(kq
2) + 3Gp(k)

= 3Gp(kq
2) + 4Fp(k).

Here the last line follows from Case I because k is square free.
Similarly, we have 4F(kq2) = 4Fp(kq

2) + 4Fp(k). Applying Theorem 5.2.2 then yields
3Gp(kq

2) = 4Fp(kq
2) and our base case is complete.

Inductive Hypothesis:
Let n = kq2 have M distinct divisors of q and assume 3Gp(kd

2) = 4Fp(kd
2) for all

divisors d q.
Now suppose n = kq2 is such that q has M + 1 distinct divisors.
Then kq2

d2
has less than or equal to M distinct divisors provided d 6= 1.

Thus we have

3G(kq2) = 3Gp(kq
2) +

∑
d|q
d6=1

3Gp

(
kq2

d2

)

= 3G(kq2) +
∑
d|q
d6=1

4Fp

(
kq2

d2

)
by our inductive hypothesis.

Similarly, we have 4F(kq2) = 4Fp(kq
2) +

∑
d|q
d6=1

4Fp

(
kq2

d2

)
.

Then applying Theorem 5.2.2 we get 3Gp(kq
2) = 4Fp(kq

2).
Hence by induction on the number of divisors of q we have 3Gp(kq

2) = 4Fp(kq
2),

where n = kq2 ≡ 3 mod 8.
Consequently, combining the results of Cases I and II we have 3Gp(n) = 4Fp(n) when
n ≡ 3 mod 8.

Corollary 5.4.16.
Let n be a positive integer such that n ≡ 3 mod 8, then

3h(−n) =

{
3Fp(n) if n = 3
Fp(n) otherwise.

Proof.
Let n be a positive integer such that n ≡ 3 mod 8 then we have

3h(−n) =

{
9Gp(n)− 9Fp(n) if n = 3
3Gp(n)− 3Fp(n) otherwise

by Corollary 5.4.14

=

{
12Fp(n)− 9Fp(n) if n = 3
4Fp(n)− 3Fp(n) otherwise

by Lemma 5.4.15
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=

{
3Fp(n) if n = 3
Fp(n) otherwise.

Corollary 5.4.17.
Let n be a positive integer such that n ≡ 3 mod 8, then

R3(n) =

{
8h(−n) if n = 3
24h(−n) otherwise.

Proof.
Let n ≡ 3 mod 8 and apply Lemma 5.4.7 and Corollary 5.4.16 to get:

R3(n) =
4

3
· 6Fp(n)

=

{
4
3
· 2 · 3Fp(n) if n = 3

4
3
· 6 · Fp(n) otherwise

=

{
4
3
· 2 · 3h(−n) if n = 3

4
3
· 6 · 3h(−n) otherwise

=

{
8h(−n) if n = 3
24h(−n) otherwise.

We now provide the proof of Gauss’ Theorem (Theorem 5.4.1).

Proof. Let n be a positive integer such that 4 - n, then applying Lemma 5.4.7 in
conjunction with Corollaries 5.4.10, 5.4.12 and 5.4.17 yields:

R3(n) =


6h(−4 · n) if n = 1
12h(−4 · n) if n ≡ 1, 2 mod 4, n 6= 1
8h(−n) if n = 3
24h(−n) if n ≡ 3 mod 8, n 6= 3
0 if n ≡ 7 mod 8.

Letting δn = 1 for all positive integers n except for n = 1, 3, where δ1 = 1
2

and δ3 = 1
3

then yields

R3(n) =


12 · δ1h(−4 · n) if n = 1
12δnh(−4 · n) if n ≡ 1, 2 mod 4, n 6= 1
24 · δ3h(−n) if n = 3
24δnh(−n) if n ≡ 3 mod 8, n 6= 3
0 if n ≡ 7 mod 8.

=

{
12δnh(−4n) if n ≡ 1, 2, 5 or 6 mod 8
24δnh(−n) if n ≡ 3 mod 8.
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It remains for completeness to discuss the situation when n ≡ 7 mod 8 or 4 | n.

Lemma 5.4.18.
Let n be a positive integer such that 4 | n. Then there are no primitive representations
of n as a sum of three squares, that is, R3(n) = 0.

Proof.
Let n be a positive integer such that 4 | n and write n as a sum of three squares.
Thus x2 + y2 + z2 = n ≡ 0 mod 4.
Since the squares mod4 are 0, 1, it is straightforward to verify that we must have
x2 ≡ y2 ≡ z2 ≡ 0 mod 4. Consequently, we have x ≡ y ≡ z ≡ 0 mod 2 and thus
gcd(x, y, z) > 1 so the representation cannot be primitive.
Hence R3(n) = 0 when 4|n.

Corollary 5.4.19.
Let n and k be positive integers such that 4k | n but 4k+1 - n. Then r3(n) = r3

(
n
4k

)
.

Proof.
Let n and k be as above and let x2 + y2 + z2 = n

4k
. Then (2kx)2 + (2ky)2 + (2kz)2 = n

is a representation of n as a sum of three integer squares. Thus r3(n) > r3
(
n
4k

)
.

Now let a2 + b2 + c2 = n ≡ 0 mod 4k. In particular, 4 | n and so by Lemma 5.4.18 we

know 2|a, 2|b and 2|c. Thus
(
a
2

)2
+
(
b
2

)2
+
(
c
2

)2
= n

4
is a representation of the positive

integer n
4

as a sum of three integer squares. Repeating this process a total of k times
yields(
a
2k

)2
+
(
b
2k

)2
+
(
c
2k

)2
= n

4k
and thus r3

(
n
4k

)
> r3(n).

Hence r3(n) = r3
(
n
4k

)
.

Lemma 5.4.20.
Let n be a positive integer such that n ≡ 7 mod 8. Then r3(n) = R3(n) = 0.

Proof.
Since the squares mod8 are 0, 1, 4, it is straightforward to verify that x2 + y2 + z2 ≡
0, 1, 2, 3, 4, 5or6 mod 8.
Thus there are no representations of n as a sum of three squares and thus r3(n) =
R3(n) = 0.

An interesting lemma follows immediately from Gauss’ Theorem (5.4.1)

Lemma 5.4.21.
Let n be a positive integer such that 4 - n and n 6≡ 7 mod 8. Then R3(n) > 1.

Proof.
Let n be as stated and observe the proper class number, h(−n), satisfies h(−n) > 1.
This is because the binary quadratic form x2 + ny2 always exists. Then applying
Gauss’ Theorem (5.4.1) immediately yields R3(n) > 1.
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In other words for any positive integer n such that 4 - n and n 6≡ 7 mod 8, there is
always a way to write n = x2 + y2 + z2 where gcd(x, y, z) = 1.
We note that our results do not present a way for finding this representation though.
Our next lemma is a stepping stone result to deriving another well-known result due
to Gauss.

Lemma 5.4.22.
Let n > 3 be a positive integer such that n ≡ 3 mod 8. Then Fp(n) = h(−4n).

Proof.
Let n be as above and consider the set counted by Fp(n). This set consists of a unique
representative for every proper equivalence class of primitive (gcd(a, b, c) = 1) binary
quadratic forms ax2 + 2bxy+ cy2 where n = ac− b2. We may choose to view these as
primitive binary quadratic forms Ax2+Bxy+Cy2 with 4AC−B2 = 4n. This is done
by letting A = a, B = 2b and C = c. Thus 4AC−B2 = 4ac−(2b)2 = 4(ac−b2) = 4n.
Since gcd(a, b, c) = 1 it is clear that gcd(A,B,C) = 1. Thus |Fp(n)| 6 h(−4n).
Now let (A,B,C) be any primitive binary quadratic form that is counted by h(−4n).
We will show its proper equivalence class is in fact counted by Fp(n). We have
4AC − B2 = 4n and thus B2 = 4(AC − n), implying 2 | B. We write B = 2b and
thus we have the binary quadratic form Ax2 + 2bxy + Cy2. This satisfies ac − b2 =

AC −
(
B
2

)2
= 1

4
(4AC − B2) = 1

4
4n = n. Thus the proper equivalence class of this

binary quadratic form is a candidate to be counted by Fp(n). To do so, it remains to
show at least one of A, C is odd and gcd(A, b, C) = 1.
We know gcd(A,B,C) = 1 and B = 2b, thus gcd(A, 2b, C) = 1 and so at least one
of A, C must be odd. Further, let d = gcd(A, b, C) then d | gcd(A, 2b, C) = 1 and
therefore d = 1.
Hence the proper equivalence class of the binary quadratic form Ax2 +Bxy+Cy2 is
counted by Fp(n) and so h(−4n) 6 Fp(n).
Consequently we have Fp(n) = h(−4n).

The following corollary is mentioned in a paragraph at the bottom of page 42 in
[Gr1985] as being known to Gauss.

Corollary 5.4.23.
Let n be a positive integer such that n ≡ 3 mod 8. Then h(−4n) = h(−n) if n = 3,
otherwise h(−4n) = 3h(−n).

Proof.
We first deal with the case n = 3. It is straightforward to verify the only primitive
reduced binary quadratic form which satisfies b2− 4ac = −3 is the form x2 +xy+ y2.
Thus h(−3) = 1.
Similarly, we may verify the only primitive reduced binary quadratic form satisfying
b2 − 4ac = −12 is the form x2 + 3y2. Thus h(−12) = 1 = h(−3).
Now let n > 3 be such that n ≡ 3 mod 8. By Lemma 5.4.22 we have Fp(n) = h(−4n)
and by Corollary 5.4.16 we have Fp(n) = 3h(−n). Hence h(−4n) = 3h(−n) when
n > 3, n ≡ 3 mod 8.
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Notes on Section 5.4

In his book, [Gr1985], Grosswald leaves the reader an exercise (problem 6, [Gr1985,
p. 65]) to show Gauss’ Theorem may be stated as R3(n) = 24F(n) − 12G(n), and
thus prove Kronecker’s result. It is clear Grosswald was aware of Kronecker’s work,
however he failed to note Kronecker did not require primitivity in his work. Whereas
Grosswald requires primitivity in his book. This is why we introduced the subscripts
Fp and Gp before deriving the connection between Gauss’ Theorem and Kronecker’s
result.
Further, one should note Grosswald cites Kronecker’s earlier paper [Kr1860], which
contained an error that was later stated correctly in [Kr1897]. This error claimed
3G(n) = 4F(n) if n ≡ 3 mod 8, except if n = 3(2m + 1)2 when 3G(n) = 4F(n) + 2.
The correct statement of the result is given in Theorem 5.2.2. Consequently, the hint
Grosswald gives the reader is incorrect.

Lastly, one should note Grosswald acknowledged the level of difficulty required to
prove some of Kronecker’s stated relationships. It is unclear whether Grosswald
supplied any proofs himself.

Copyright c© Jonathan A. Constable, 2016.
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Appendices

Here we present several appendices that provide a connection between Kronecker’s
method for determining the number of representations of an integer as a sum of three
squares (see [Kr1897]), and the method given by Weil for the same problem in the
3 mod 8 case (see [We1974]).

A.1 Ireland & Rosen Representations as Sums of Two Squares

In this appendix we give a method to calculate the number of representations of a
positive integer as a sum of two squares. This argument is an expanded version of
the exposition given in Chapter 17, §6 [IR1990, p. 278-280].

We begin with an important definition, which shall be repeatedly used within Ap-
pendices A.1, A.2, A.3, A.4 and A.5. The notation introduced here is due to Weil
[We1974, p. 216]

Definition A.1.1.
Let i ∈ {2, 3, 4}, m ∈ Z>0 and consider the equation:

x21 + x22 + . . .+ x2i = m, (A.1)

where xh ∈ Z>0, xh ≡ 1 mod 2 and 1 6 h 6 i.
Define Ni(m) to be the number of solutions (x1, x2, . . . , xi) to this equation under
these assumptions.

Observation A.1.2.
Clearly, Ni(m) = 0 if m = 0. Recall that any odd integer k satisfies k2 ≡ 1 mod 8.
Thus we require m ≡ i mod 8 also for a solution to exist.

Definition A.1.3.
Define ri(m) to be the number of solutions to the equation m = x21 + · · ·+ x2i , where
m ∈ Z>0, xh ∈ Z for 1 6 h 6 i.

Definition A.1.4.
An arithmetic function is a real or complex valued function that is defined on the
positive integers.

Definition A.1.5.

The formal Dirichlet series is defined as
∞∑
n=1

an
ns

, where s > 1. This is an example of

an arithmetic function.

Definition A.1.6.
Let f and g be arithmetic functions. Define their Dirichlet product (or Dirichlet

convolution) to be
∑
d|n

f(d)g
(n
d

)
.
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Definition A.1.7.

Define χ(n) =


1, if n ≡ 1 mod 4
−1, if n ≡ 3 mod 4

0, if n ≡ 0 mod 2.

Definition A.1.8.

Define the zeta function as ζ(s) =
∏
p

1

1− 1
ps

=
∞∑
n=1

1

ns
.

Theorem A.1.9.
Let m ∈ Z>0. The number of integral solutions (x1, x2) to the equation x21 + x22 = m

such that x1 > 0, x2 > 0, is given by
∑
d|m

χ(d).

The proof presented here appears in Ireland & Rosen, [IR1990, p. 279].

Proof.
Consider the ring of Gaussian integers, Z[i]. Since the units of this ring are ±1,±i,
each non-zero α ∈ Z[i] has a unique associate x + iy, x > 0, y > 0. Recalling that
Z[i] is a principal ideal domain and we have a norm N(x+ iy) = x2 +y2, implies that
the number of solutions is the number of ideals (α) where N(α) = m.
Denote this number by am
Lastly, recall that every such α may be decomposed into a product of irreducibles,
which are given by 1 + i, π and q. Here π satisfies N(π) = p ≡ 1 mod 4, p prime, and
q is any rational prime congruent to 3 modulo 4. Now we use the formal Dirichlet

series defined by {am} to get
∞∑
m=1

am
ms

=
∏
(γ)

(
1

1− 1
N(γ)s

)
.

Here the product is over all unassociated irreducibles in Z[i].
This product may then be expressed in terms of three products, one for each type of
irreducible in Z[i]. Since N(1 + i) = 2 and N(π) = N(π̄) = p, we get the right hand
side equals (

1

1− 1
2s

) ∏
p≡1 mod 4

(
1

1− 1
ps

)2 ∏
q≡3 mod 4

(
1

1− 1
q2s

)
.

Now notice 1− 1
q2s

= (1− 1
qs

)(1+ 1
qs

). Then applying the definition of the zeta function

(Definition A.1.8), we see the right hand side equals:

ζ(s)
∏

p≡1 mod 4

(
1

1− 1
ps

) ∏
q≡3 mod 4

(
1

1 + 1
qs

)
.

Applying Definition A.1.7 to this yields:

ζ(s)
∏
p

1

1− χ(p)
ps

.
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Since χ is multiplicative, it follows that this may be rewritten as

ζ(s)
∞∑
m=1

χ(m)

ms
.

Hence we have
∞∑
m=1

am
ms

=

(
∞∑
m=1

1

ms

)(
∞∑
m=1

χ(m)

ms

)
.

Thus to complete the proof we need to calculate the coefficient of 1
ms on the right

hand side. Since each of the sums in the product is an arithmetic function, we may
apply Dirichlet convolution (see Definition A.1.6) with f(m) = 1

ms and g(m) = χ(m)
ms

to get
∞∑
m=1

am
ms

=
∞∑
m=1

∑
d|m

χ
(
m
d

)
ms

.

Hence am =
∑
d|m

χ
(m
d

)
=
∑
d|m

χ(d) which completes the proof.

Corollary A.1.10.
The number of solutions (x1, x2) ∈ Z× Z to x21 + x22 = m is given by

r2(m) = 4
∑
d|m

χ(d).

Proof.
Observe each term in Equation (A.1) is squared and we may partition (Z× Z) \(0, 0)
into a disjoint union of the following four sets:

{(x1, x2) : x1 > 0, x2 > 0},
{(x1, x2) : x1 6 0, x2 > 0},
{(x1, x2) : x1 < 0, x2 6 0},
{(x1, x2) : x1 > 0, x2 < 0}.

Hence by the symmetry between x1 and x2 the result follows from Theorem A.1.9.

Corollary A.1.11. Let m be a positive odd integer. The number of integral solutions

(x1, x2), x1 > 0, x2 > 0 to x21 + x22 = 2m is
∑
d|m

χ(d).

Proof.
Since m is odd, 2m ≡ 2 mod 4 which, implies that x2 cannot equal zero. By Theorem

A.1.9, the number of solutions is given by
∑
d|2m

χ(d). However, the divisors of 2m are

the divisors d̂ of m and 2d̂. Since χ(2d̂) = 0, it follows that the number of integral

solutions is given by
∑
d|m

χ(d).
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We now show that it is sufficient to know N2(m) in order to know r2(m) for all values
of m.

Observation A.1.12.
Recall any odd number when squared is congruent to 1 mod. 8. Also, any even
number when squared is congruent to either 0 or 4 mod. 8. It follows that any sum
of 2 squares is necessarily congruent to one of 0, 1, 2, 4 or 5 mod. 8.

To prove our claim, we will need the following two lemmas.

Lemma A.1.13.
Let k ∈ Z>0 then r2(k) = r2(4k).

Proof.
Assume k = x2 + y2, then 4k = 4(x2 + y2) = (2x)2 + (2y)2. Define the map

φ : {solutions to x2 + y2 = k} −→ {solutions to x2 + y2 = 4k}
(x, y) 7−→ (2x, 2y).

We will show φ is a bijection. Assume φ(x, y) = φ(u, v), then (2x, 2y) = (2u, 2v).
Hence x = u and y = v, so φ is injective.
Let (x̂, ŷ) be a solution to x2 + y2 = 4k for some k ∈ Z>0. Then the left hand side is

divisible by four and so we have
(
x̂
2

)2
+
(
ŷ
2

)2
= k. Letting x̂ = 2x̄ and ŷ = 2ȳ. That

is, x̄2 + ȳ2 = k, x̄, ȳ ∈ Z>0. Hence φ is a surjection and thus a bijection.
Thus r2(k) = r2(4k).

Lemma A.1.14.
Let k ∈ Z>0 then r2(4k + 1) = r2(8k + 2).

Proof.
Suppose that 4k+1 = x2+y2, then 8k+2 = 2(4k+1) = 2(x2+y2) = (x+y)2+(x−y)2.
Define the map

π : A = {solutions to x2 + y2 = 4k + 1} −→ {solutions to x2 + y2 = 8k + 2}
(x, y) 7−→ (x+ y, x− y).

We shall show this is a bijection.
Suppose π(x, y) = φ(u, v), then (x+y, x−y) = (u+v, u−v). Thus x+y = u+v and
x − y = u − v. Adding these two equations yields 2x = 2u, i.e. x = u. Subtracting
them yields 2y = 2v, i.e. y = v. Hence π is injective.
Next, assume x2 + y2 = 8k + 2. Consider the equations x̂ + ŷ = x and x̂ − ŷ = y,
where x̂, ŷ ∈ Z. Then 2x̂ = x+y and 2ŷ = x−y, it follows that x̂ = x+y

2
and ŷ = x−y

2
.

Therefore we have:

x̂2 + ŷ2 =

(
x+ y

2

)2

+

(
x− y

2

)2

253



=
1

4
2(x2 + y2)

=
1

2
(8k + 2)

= 4k + 1.

Therefore (x̂, ŷ) ∈ A is such that π(x̂, ŷ) = (x, y). Thus, π is a surjection and hence
π is a bijection.
Thus, r2(4k + 1) = r2(8k + 2).

Lemma A.1.15.
Let m ∈ Z>0, then r2(m) is completely determined once we know N2(m).

Proof.
Let m ∈ Z>0 be arbitrary. By Lemma A.1.13 we may divide m by 4 as many times
as possible without changing the result. Hence we may assume m is not divisible by
4. Now consider m mod 8. By Observation A.1.12 it follows that r2(m) = 0 if m
is congruent to 3, 6 or 7 modulo 8. Further, observe that m cannot be congruent
to 0 or 4 modulo 8 as we assumed m is not divisible by 4. Hence we may apply
Lemma A.1.14 and Corollary A.1.10 to see that r2(m) is completely determined by
N2(m).

Lemma A.1.16.
If m ∈ Z>0 and m ≡ 2 mod 4 then N2(m) =

∑
a|m

2

χ(a).

Proof.
Observe m ≡ 2 mod 4 implies that x22 > 0. Recalling Definition A.1 and using

Theorem A.1.9 we have N2(m) =
∑
d|m

χ(d). Now write m = 2d̂ since m is divisible by

two.
Thus, N2(m) =

∑
d|2d̂

χ(d) =
∑
d|d̂

χ(d), as χ(2d) = 0 for all d.

But this is equivalent to N2(m) =
∑
a|m

2

χ(a).

Observation A.1.17.
In Observation A.1.2 we deduced m ≡ i mod 8 in order for Ni(m) > 0. However,
in Lemma A.1.16 we assume m ≡ 2 mod 4. This does not give a contradiction for
the following reason. If m ≡ 2 mod 4 and m 6≡ 2 mod 8, then m ≡ 6 mod 8. Thus
m = 2m̂ = 2(4k + 3) for some k ∈ Z>0. Hence m̂ is odd and so all divisors of m̂ are
odd. Recall that if l|m̂ and l ≡ 3 mod 4 then the complementary divisor to l is of
the form 4p + 1. Consequently for every divisor l of m

2
such that l ≡ 3 mod 4 there

exists a unique divisor q of m
2

such that q ≡ 1 mod 4. Since χ(l) = −1 and χ(q) = 1,

we see that
∑
a|m

2

χ(a) = 0 when m ≡ 6 mod 8.
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Lemma A.1.18.
If n ≡ 1 mod 2 then χ(n) = (−1)

n−1
2 .

Proof.
Since n ≡ 1 mod 2, n−1

2
is an integer.

If n ≡ 1 mod 4 then n−1
2
≡ 0 mod 2 and so χ(n) = 1 = (−1)

n−1
2 .

If n ≡ 3 mod 4 then n−1
2
≡ 1 mod 2 and so χ(n) = −1 = (−1)

n−1
2 .

The following lemma will prove useful later on.

Lemma A.1.19. χ(n)χ(n′) = (−1)
n−n′

2 whenever n ≡ n′ ≡ 1 mod 2, n > 0, n′ > 0.

Proof.
Let n > 0, n′ > 0 and n ≡ n′ ≡ 1 mod 2. Applying Lemma A.1.18 gives:

χ(n)χ(n′) = (−1)
n−1
2

+n′−1
2

= (−1)
n+n′−2

2

= (−1)
n+n′

2
−1

= (−1)
n−n′

2
+1−1 as n−n′

2
6≡ n+n′

2
as they differ by n′ which is odd

= (−1)
n−n′

2 .

A.2 Ireland & Rosen Representations as Sums of Four Squares

In this appendix we give an argument for determining the number of representations
of an integer as a sum of four squares. This argument is based upon [IR1990, p. 282-
284] and exercises 16-22 [IR1990, p. 295-296].

The reader will find it useful to recall Lemma 3.4.13 before proceeding.

Proposition A.2.1.
Let n be a positive integer such that n ≡ 4 mod 8. The number of integral solutions
(x, y, z, w), x, y, z, w > 0 and all odd, to the equation n = x2 + y2 + z2 + w2 is∑

d|n
d odd
d>0

d.

An immediate corollary of this is the following:

Corollary A.2.2.
Let n be a positive integer, n ≡ 4 mod 8. The number of integral solutions (x, y, z, w),
x, y, z, w ∈ Z and all odd, to the equation x2 + y2 + z2 + w2 = n is given by

16
∑
d|n

d.
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Proof.
Since each of x, y, z, w is odd, we may get a new distinct solution by changing the
sign of each coordinate independently. Thus there are 24 solutions obtainable from a
single solution (x, y, z, w).

Hence there are 16
∑
d|n

d solutions in this case.

In order to prove Proposition A.2.1 we will need several lemmas.

Observation A.2.3.
Using Definition A.1.1, observe N4(n) denotes the number of integral solutions to the
problem given in Proposition A.2.1.

Lemma A.2.4.
Let n be a positive integer such that n ≡ 4 mod 8. Write n = 2m and observe m ≡
2 mod 4. Then N4(n) is the number of solutions (x, y, z, w, u, v), where x, y, z, w, u, v
are all odd and positive, to the system of Diophantine equations:

x2 + y2 = 2u

z2 + w2 = 2v

u+ v = m

Proof.
Let n ≡ 4 mod 8 and write n = 2m where m ≡ 2 mod 4.

Let S =

{
(x, y, z, w)

∣∣∣∣∣ x2 + y2 + z2 + w2 = n, x, y, z, w ≡ 1 mod 2
x, y, z, w ∈ Z>0

}
and

T =

{
(x, y, z, w, u, v)

∣∣∣∣∣ x2 + y2 = 2u, z2 + w2 = 2v, u+ v = m
x, y, z, w ∈ Z>0, x ≡ y ≡ z ≡ w ≡ u ≡ v ≡ 1 mod 2

}
.

By definition we have N4(n) = |S|. We will show the following map, φ, is a bijection.
Define

φ : S −→ T

(x, y, z, w) 7−→ (x, y, z, w,
x2 + y2

2
,
z2 + w2

2
) = (x, y, z, w, u, v).

Well-defined: It is sufficient to show u+ v = m and x2 + y2 = 2u. Let (x, y, z, w) ∈ S
then we have n = x2 + y2 + z2 +w2 = 2u+ 2v = 2(u+ v) and so u+ v = m. Further,
x ≡ y ≡ 1 mod 2 implies x2 ≡ y2 ≡ 1 mod 4 and thus x2 + y2 ≡ 2 mod 4. Thus
u = x2+y2

2
≡ 1 mod 2. A similar calculation shows v ≡ 1 mod 2. Hence the map φ is

well-defined.
Injectivity: Assume φ(x, y, z, w) = φ(a, b, c, d) then we have
(x, y, z, w, u, v) = (a, b, c, d, û, v̂). From this we have x = a, y = b, z = c and w = d,
as well as 2u = x2 + y2 = a2 + b2 = 2û, 2v = z2 + w2 = c2 + d2 = 2v̂, thus u = û and
v = v̂. Therefore the map φ is injective.
Surjectivity: Let (x, y, z, w, u, v) ∈ T be arbitrary, then x2 + y2 + z2 +w2 = 2u+ 2v =
2(u+ v) = 2m = n and the remaining properties are straightforward to verify. Hence
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(x, y, z, w) lies in S and maps onto (x, y, z, w, u, v). So φ is a bijection and we have
the desired result.

Lemma A.2.5.
N4(n) =

∑
χ(de) =

∑
(−1)

de−1
2 , where the sum is over all solutions (d, e, s, t) (all

positive odd integers) such that m = ds+ et.

Proof.
By the previous lemma we will look at counting over all u + v = m, u, v odd. Note
that m ≡ 2 mod 4 implies both u and v are odd. By Corollary A.1.11, we have the
number of solutions to x2 + y2 = 2u (x, y both odd and positive) is equal to the
number of solutions to x2 + y2 = u. A similar statement holds for z2 + w2 = 2v.

By Lemma A.1.9 the equation x2 + y2 = u has
∑
d|u

χ(d) solutions and likewise there

are
∑
e|v

χ(e) solutions to z2 + w2 = v.

Further these solution pairs are independent, so by fixing a solution to x2 + y2 = u,
we get a new solution to the problem posed in Proposition A.2.1 each time as we run
through all the solutions to z2 + w2 = v.

So in total there are χ(d1)

∑
e|v

χ(e)

+χ(d2)

∑
e|v

χ(e)

+ · · ·+χ(dn)

∑
e|v

χ(e)

,

where d1, · · · , dn are all the divisors of u.

Hence we have
(∑

e|v χ(e)
)(∑

d|u χ(d)
)

solutions to the problem for fixed u and v.

We may rewrite this product of summations as
∑
d|u
e|v

χ(d)χ(e).

Thus we see that

N4(n) =
∑
u,v

u+ v = m


∑
d|u
e|v

χ(d)χ(e)

 . (A.2)

Since d | u and e | v we may write u = ds, and v = et. Further because each associ-
ated divisor to d and e is unique, it follows that there is a one-to-one correspondence
between (d, e, t, s), d, e, t, s positive and odd, ds+ et = m and the terms in Equation
(A.2).

Since χ is multiplicative, it follows that N4(n) =
∑
u,v

u+ v = m


∑
d|u
e|v

χ(de)

 =
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∑
χ(de), where the last sum is over d, e, t, s positive and odd such that ds+ et = m.

This proves the first equality.
Since d ≡ e ≡ 1 mod 2 we have de ≡ 1 mod 2 and so we apply Lemma A.1.18to see
χ(de) = (−1)

de−1
2 . This supplies the second equality.

We now consider
∑
χ(de), where the sum is over all (d, e, t, s) positive and odd. First

focus on the terms where d = e, so m = d(s+ t) and therefore d is necessarily an odd
divisor of m. Now consider s+ t = m

d
∈ Z>0. If we run through s from 1 to m

d
then t

is uniquely determined in each case. Note that m
d

is even and so either both s and t
are both odd or both even. Hence there are m

2d
pairs (s, t) that satisfy s + t = m

d
, s,

t positive and odd. Each such solution contributes 1 as χ(d2) = 1 because d is odd.
Thus we get m

2d
solutions for each positive odd divisor d of m.

Hence there are
∑

d|m
m
2d

solutions in total. Recall that m ≡ 2 mod 4 and write

m = 2q, where q ≡ 1 mod 2. Then since d is odd, d|m implies d|q and so q = dr for
some r ∈ N.
So our sum becomes

∑
d|m

2q
2d

=
∑

d|m r, where m = 2dr. But it is then clear this is

equivalent to
∑

d|m d.

The proof of Proposition A.2.1 will be complete once we show
∑
χ(de) = 0 for

(d, e, t, s) positive, odd and d 6= e. We observe we may pair (d, e, t, s) with (e, d, s, t)
to see that it is sufficient to show

∑
χ(de) = 0 for d > e.

Lemma A.2.6.
Consider the set

J = {(d, e, t, s) ∈ Z4
>0 |m = ds+ et, d ≡ e ≡ t ≡ s ≡ 1 mod 2,m ≡ 2 mod 4}

and define the map

φ : J −→ J

(d, e, t, s) 7−→ (e, d, s, t).

Then the map φ is a bijection.

Proof.
The map φ is well-defined since we re-ordered the pairs (d, e) and (s, t) in a manner
which preserves et + ds = m. Observe that φ2(d, e, t, s) = φ(e, d, s, t) = (d, e, t, s).
Hence by Observation 3.4.13 the map φ is a bijection.

Next, we partition the set J into the following disjoint union: J = J0∪J+∪J−, where

J0 = {(d, e, t, s) | (d, e, t, s) ∈ J and d = e}
J+ = {(d, e, t, s) | (d, e, t, s) ∈ J and d > e}
J− = {(d, e, t, s) | (d, e, t, s) ∈ J and d < e}.
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Lemma A.2.7.
The map φ from Lemma A.2.6 is such that φ(J+) ⊆ J− and φ(J−) ⊆ J+. As a
consequence we have |J+| = |J−|.

Proof.
Let (d, e, t, s) ∈ J+ be arbitrary and observe φ(d, e, t, s) = (e, d, s, t) ∈ J−. This is
because (d, e, t, s) ∈ J+ implies d > e. Thus φ(J+) ⊆ J−.
Next, let (x, y, z, w) ∈ J− and therefore x < y. Then we see φ(x, y, z, w) = (y, x, w, z),
thus φ(J−) ⊆ J+.
Since the map φ is a bijection, it follows that |J+| = |(J−)|.

Next, define An =

(
n+ 1 n+ 2

n n+ 1

)
, n ∈ Z>0. Note det(An) = 1 for all n, so An is

invertible. Then define (d′, e′, t′, s′) byAn

(
t
s

)
=

(
d′

e′

)
=

(
t(n+ 1) + s(n+ 2)
nt+ s(n+ 1)

)
and A−1n

(
d
e

)
=

(
t′

s′

)
=

(
d(n+ 1)− e(n+ 2)
−dn+ e(n+ 1)

)
. It is then straightforward to

check An

(
t d
s −e

)
=

(
d′ t′

e′ −s′
)

.

Since det(An) = 1 we see that ds+et = d′s′+e′t′ and so An gives a map ψn : Z4 → Z4

that preserves m.

Observe that d′, e′, t′ and s′ are all odd since one of {n, n+1} and one of {n+1, n+2}
will always be odd. Also, d′ > 0 and e′ > 0 as t, s > 0.

Also observe

d′ = t(n+ 1) + s(n+ 2) = [tn+ s(n+ 1)]︸ ︷︷ ︸
e′

+ (s+ t)︸ ︷︷ ︸
>0

> e′ (A.3)

Lemma A.2.8.
Given (d, e, t, s) ∈ J+ there is a unique n ∈ Z>0 such that ψn(d, e, t, s) ∈ J+.

Proof.
By the above comments we know that d′, e′, t′ and s′ are all odd and d′ > 0, e′ > 0.
So we want to have t′ > 0 and s′ > 0. For t′ > 0 we require d(n + 1)− e(n + 2) > 0
which, rearranges to n > e

d−e − 1. Similarly, for s′ > 0 we require −dn+ e(n+ 1) > 0
which, rearranges to n < e

d−e .
Combining these two conditions yields e

d−e − 1 < n < e
d−e . Note that d− e is positive

and even, e > 0 and is odd, thus e
d−e /∈ Z. Hence we see there is a unique n ∈ Z>0

that satisfies this condition.
Hence there exists a unique n ∈ Z>0 such that ψn(d, e, t, s) ∈ J+.

We may quantify the map ψn : Z4 −→ Z4 in the following manner.
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Observation A.2.9.

Define the block matrix representation of ψn by Ān =

(
0 An
A−1n 0

)
. Then

Ān


d
e
t
s

 =


0 0 n+ 1 n+ 2
0 0 n n+ 1

n+ 1 −n− 2 0 0
−n n+ 1 0 0




d
e
t
s



=


(n+ 1)t+ (n+ 2)s
nt+ (n+ 1)s

(n+ 1)d− (n+ 2)e
−nd+ (n+ 1)



=


d′

e′

t′

s′

 .

We see that

(
0 An
A−1n 0

)(
0 An
A−1n 0

)
=

(
AnA

−1
n 0

0 A−1n An

)
=

(
I2 0
0 I2

)
.

Hence ψ2
n = id and by Lemma 3.4.13 the map ψn is a bijection.

Now define Φ : J+ → J+ by Φ(d, e, t, s) = ψn(d, e, t, s).

Lemma A.2.10.
The map

Φ : J+ −→ J+

(d, e, t, s) 7−→ ψn(d, e, t, s)

is a well-defined bijection.

Proof.
First note this map is well-defined since each (d, e, t, s) has a unique An associated to
it by Lemma A.2.8. We show that Φ2 is the identity map.
Let (d, e, t, s) ∈ J+ be arbitrary. Then

φ2(d, e, t, s) = φ(ψn(d, e, t, s))

= ψ2
n(d, e, t, s)

= (d, e, t, s) as ψ2 = id

Hence φ2 = id so by Lemma 3.4.13 φ is a bijection.

Lemma A.2.11.
Assume m is a positive integer such that m ≡ 2 mod 4, m = ds + et where d, e, t, s
are all positive odd integers. Then d−e

2
is odd if and only if s+t

2
is even.
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Proof.
Observe m = ds+et ≡ 2 mod 4, thus ds+1+et+1 ≡ 0 mod 4. Factoring then yields
(d−1)(s−1) + (e−1)(t−1) + s+d+ e+ t ≡ 0 mod 4. Since d, s, e and t are all odd,
we see that 4|(d−1)(s−1) and 4|(e−1)(t−1). Consequently s+d+e+ t ≡ 0 mod 4.
Recalling that e odd implies 2e ≡ 2 mod 4. Thus, s + d + e + t − 2e ≡ −2 mod 4.
Hence d− e+ s+ t ≡ 2 mod 4. Dividing by 2 yields d−e

2
+ s+t

2
is odd.

The proof is then complete since this means precisely one of d−e
2

, s+t
2

must be odd
and the other even.

We now finish the proof of Proposition A.2.1 by showing
∑
J+

χ(de) = 0.

Proof.
From Equation A.3 we have d′ − e′ = s + t. From Lemma A.2.5 we know χ(de) =

(−1)
d−e
2 . Recalling that m ≡ 2 mod 4 and applying Lemma A.2.11 gives d−e

2
is even

if and only if s+t
2

is odd. Thus:

χ(de) = (−1)
d−e
2 = (−1)(−1)

s+t
2 = (−1)(−1)

d′−e′
2 = −χ(d′e′).

Hence M =
∑
S

χ(de) = −
∑
S

χ(d′e′) = −M . Therefore M = 0 and the proof is

complete.

We now determine r4(m) for arbitrary m ∈ Z>0 by following exercises (16)-(22) in
[IR1990, p. 295] although we will use notation that is consistent with that found in
[We1974].

Lemma A.2.12.
Let n ∈ Z>0 be arbitrary. Then r4(2n) = r4(4n).

Proof.
Let n be a positive non-zero integer and consider the sets

T4n ={(x1, x2, x3, x4)|x21 + x22 + x23 + x24 = 4n} and

T2n ={(x1, x2, x3, x4)|x21 + x22 + x23 + x24 = 2n}.

We will show the map

φ : T4n −→ T2n

(x1, x2, x3, x4) 7−→
(
x1 + x2

2
,
x1 − x2

2
,
x3 + x4

2
,
x3 − x4

2

)
is a well-defined bijection.
Well-defined: We have x21+x22+x23+x24 = 4n, thus the left hand side is divisible by four.
Recall the squares mod4 are either 0 or 1, so it follows that either all xi ≡ 1 mod 2
or all xi ≡ 0 mod 2. In both situations, xi+xj and xi−xj (i, j ∈ {1, 2, 3, 4}) are even,
thus φ produces integer values. Further, (x1+x2

2
)2 + (x1−x2

2
)2 + (x3+x4

2
)2 + (x3−x4

2
)2 =
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(x21+x
2
2+x

2
3+x

2
4)

2
= 2n. Hence φ is well-defined.

Injectivity: Suppose φ(x1, x2, x3, x4) = φ(x̂1, x̂2, x̂3, x̂4). Then we have x1+x2
2

= x̂1+x̂2
2

,

thus x1 + x2 = x̂1 + x̂2. Also x1−x2
2

= x̂1−x̂2
2

and so x1 − x2 = x̂1 − x̂2. Adding these
two results yields x1 = x̂1, while subtracting yields x2 = x̂2.
In a similar manner we see that x3 = x̂3 and x4 = x̂4. Thus φ is injective.
Surjectivity: Let x̂1

2 + x̂2
2 + x̂3

2 + x̂4
2 = 2n. Take x1 = x̂1 + x̂2, x2 = x̂1 − x̂2,

x3 = x̂3 + x̂4 and x4 = x̂3 − x̂4. Then

x21 + x22 + x23 + x24 = (x̂1 + x̂2)
2 + (x̂1 − x̂2)2 + (x̂3 + x̂4)

2 + (x̂3 − x̂4)2

= 2(2n)

= 4n.

It is then straightforward to see φ(x1, x2, x3, x4) = (x̂1, x̂2, x̂3, x̂4), thus φ is surjective.
Hence φ is a bijection and so r4(2n) = r4(4n) for any n ∈ Z>0.

Lemma A.2.13.

Let n ∈ Z>0 be odd. Then 16

∑
d|n

d

+ r4(n) = r4(4n).

Proof.
Observe n ≡ 1 mod 2 implies 4n ≡ 4 mod 8. Thus x21+x22+x23+x24 ≡ 4 mod 8 implies
that either all xi are odd or they are all even. We will show the map

φ : {(x1, x2, x3, x4) |
4∑
i=1

x2i = n} → {(x1, x2, x3, x4) |
4∑
i=1

x2i = 4n, xi ≡ 0 mod 2}

(x1, x2, x3, x4) 7→ (2x1, 2x2, 2x3, 2x4)

is a well-defined bijection.
Observe φ is well-defined because 2xi is always even and

∑
(2xi)

2 = 4
∑
x2i = 4n.

Now suppose that φ(x1, x2, x3, x4) = φ(y1, y2, y3, y4). Then (2x1, 2x2, 2x3, 2x4) =
(2y1, 2y2, 2y3, 2y4) and so xi = yi for i ∈ {1, 2, 3, 4}. Thus φ is injective.
Lastly let (x1, x2, x3, x4) be such that

∑4
i=1 x

2
i = 4n, xi all even. Then (x1

2
, x2

2
, x3

2
, x4

2
)

is well defined and satisfies
∑(

xi
2

)2
= n. Thus φ(x1

2
, x2

2
, x3

2
, x4

2
) = (x1, x2, x3, x4). So

φ is surjective and hence the map φ is a bijection.
From this claim it follows that r4(n) = |{(x1, x2, x3, x4) |

∑
x2i = 4n, xi ≡ 0 mod 2}|.

By Corollary A.2.2 we have

r4(4n) = 16

∑
d|4n

d

+ {number of solutions for which xi ≡ 0 mod 2∀i}.

Thus, r4(4n) = 16

∑
d|4n

d

+ r4(n).

Now observe the positive odd divisors of 4n are exactly the positive odd divisors of
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n, hence we get our result.

r4(4n) = 16

∑
d|n

d

+ r4(n).

Lemma A.2.14.
Let n be an odd integer and |S| be the number of solutions to x21 + x22 + x23 + x24 = 2n
with x1 ≡ x2 ≡ 1 mod 2 and x3 ≡ x4 ≡ 0 mod 2. Then |S| = 1

6
r4(2n).

Proof.
Observe n is odd and so 2n ≡ 2 mod 4. The squares modulo 4 are 0 and 1 so we
have exactly two of the xi are odd and the other two are both even in any solution
in r4(2n).

There are

(
4
2

)
= 6 ways to select two of the xi to be congruent to 1 mod2. This

determines all of the xi as the others must be congruent to 0 mod2.
Hence |S| = 1

6
r4(2n).

Lemma A.2.15.
If n ≡ 1 mod 4 and |S| is as in Lemma A.2.14 then |S| = 1

2
r4(n). Further it follows

that r4(2n) = 3r4(n).

Proof.
Since n ≡ 1 mod 4, x21 + x22 + x23 + x24 = n must have exactly one xi ≡ 1 mod 2, while
the rest are congruent to 0 modulo 2. So we may partition the set with cardinality
r4(n) into four disjoint sets: R1

4(n), R2
4(n), R3

4(n) and R4
4(n), where the superscript i

denotes that xi is odd.
It follows that there is a one-to-one correspondence between elements of Ri

4(n) and
Rj

4(n) (i, j ∈ {1, 2, 3, 4}) via interchanging the xi with xj. Hence |Ri
4(n)| = |Rj

4(n)|
for all i, j as above.
Without loss of generality, consider half of r4(n) via the set R1

4(n)∪R2
4(n). This has

cardinality r4(n)
2

.
We will show the following map is a well-defined bijection. Define

φ : { (x1, x2, x3, x4)|
4∑
i=1

x2i = n, x1 or x2 ≡ 1 mod 2, all other xi ≡ 0 mod 2 } → S

(x1, x2, x3, x4) 7→ (x1 + x2, x1 − x2, x3 + x4, x3 − x4).

Well-defined: The map φ is well-defined since x1±x2 ≡ 1 mod 2. This is because only
one of x1, x2 may be congruent to 1 modulo 2 at anytime. Further x3±x4 ≡ 0 mod 2
always.
Injectivity: Suppose φ(x1, x2, x3, x4) = φ(y1, y2, y3, y4). Then the equations x1 + x2 =
y1 + y2 and x1 − x2 = y1 − y2 add to give 2x1 = 2y1 and subtract to give 2x2 = 2y2.
Similarly, the equations x3 + x4 = y3 + y4 and x3 − x4 = y3 − y4 give 2x3 = 2y3 and
2x4 = 2y4. Hence φ is injective.
Surjectivity: Let (x̂1, x̂2, x̂3, x̂4) ∈ S. Then define x1 = x̂1+x̂2

2
, x2 = x̂1−x̂2

2
, x3 = x̂3+x̂4

2
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and x4 = x̂3−x̂4
2

.
This is well-defined since x̂1, x̂2 are both odd, so their sum and difference is divisible
by 2. Further the difference between their sum and difference is x̂2 which, is odd, so
either x1 or x2 but not both must be odd. Similarly, x̂3, x̂4 are both even, so their
sum and difference is divisible by 2. Further the difference between their sum and
difference is x̂4, which, is even. Hence x3 and x4 are both odd or both even.

Now observe x21 + x22 + x23 + x24 = 1
4

(
2x̂1

2 + 2x̂2
2 + 2x̂3

2 + 2x̂4
2
)

= 2(2n)
4

= n, thus we
see that since exactly one of the xi must be odd and we know exactly one of x1, x2
is already odd, we get x3 ≡ x4 ≡ 0 mod 2.
Thus the map φ is surjective. Hence φ is a bijection and we have |S| = r4(n)

2
.

By Lemma A.2.14 we know for n odd, |S| = 1
6
r4(2n) and so 1

2
r4(n) = 1

6
r4(2n). Thus

3r4(n) = r4(2n).

Lemma A.2.16.
If n ≡ 3 mod 4 then r4(2n) = 3r4(n).

Proof.
Assume n ≡ 3 mod 4, then

∑4
i=1 x

2
i = n implies there is exactly one even xi and all

of the rest are odd. We partition the set with cardinality r4(n) in a similar manner
to that found in Lemma A.2.15, Ri

4(n) has solutions for which, the ith entry is even.
It follows that there is a one-to-one correspondence between the elements of Ri

4(n)
and Rj

4(n) and so these sets have the same cardinality.

Without loss of generality consider R1
4(n) ∪R2

4(n) which, has cardinality r4(n)
2

.

Define the map

ψ : { (x1, x2, x3, x4) |
∑

x2i = n, x1 or x2 ≡ 0 mod 2, all other xi ≡ 1 mod 2 } → S

(x1, x2, x3, x4) 7−→ (x1 + x2, x1 − x2, x3 + x4, x3 − x4).

We will show this a well-defined bijection.
The map ψ is well-defined as only one of x1, x2 may be odd, so x1 ± x2 ≡ 1 mod 2,
x3± x4 ≡ 0 mod 2 as both x3 and x4 are odd. Observe that (x1 + x2)

2 + (x1− x2)2 +
(x3 + x4)

2 + (x3 − x4)2 = 2
∑
x2i = 2n.

Next, the proof that ψ is injective is identical to that of the map φ found in Lemma
A.2.15.
We now show the map ψ is surjective. Let (x̂1, x̂2, x̂3, x̂4) ∈ S be arbitrary. Let
x1 = x̂1+x̂2

2
, x2 = x̂1−x̂2

2
, x3 = x̂3+x̂4

2
and x4 = x̂3−x̂4

2
. Then x̂1 ± x̂2 ≡ 0 mod 2 and

x̂3± x̂4 ≡ 0 mod 2, so x1, x2, x3, x4 ∈ Z. Further, x1 and x2 differ by x̂2 which is odd,
so exactly one of x1, x2 is odd and the other is even. Also, x3 and x4 differ by x̂4 which,
is even and so x3 and x4 are both odd or both even. However,

∑
x2i = n ≡ 3 mod 4

implies that there may only be one xi even and we know that exactly one of x1, x2 is
already even. Hence both x3 and x4 must be odd.
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Hence ψ(x1, x2, x3, x4) = (x̂1, x̂2, x̂3, x̂4) and ψ is surjective. Thus the map ψ is a
bijection.

Hence |S| = r4(n)
2

. It follows in the same manner as Lemma A.2.15 that 3r4(n) =
r4(2n).

Lemma A.2.17.
If n is odd then r4(n) = 8

∑
d|n

d and r4(2n) = 24
∑
d|n

d.

Proof.
Since n is odd, by Lemmas A.2.15, A.2.16 and A.2.13 we have

3r4(n) = r4(2n) = r4(4n) = 16

∑
d|n

d

+ r4(n).

Thus, 2r4(n) = 16
∑
d|n

d and hence r4(n) = 8
∑
d|n

d if n is odd.

Lemma A.2.18.
If n is even, n = 2sm, s > 1 and m odd, then r4(n) = 24

∑
d|m d.

Proof.
We apply Lemma A.2.12 repeatedly to reduce to the case where n̂ = 2m, m odd.
Then applying Lemma A.2.17 yields r4(2m) = 24

∑
d|m d.

Corollary A.2.19.
Let n be a positive integer, then the number of representations of n as a sum of four
squares is given by

r4(n) = 8 (2 + (−1)n)σodd(n).

Proof.
Let n be a positive integer and write n = 2sm where m ≡ 1 mod 2 and s is the greatest
non-negative integer such that 2s divides n but 2s+1 does not divide n. Recall from
Definition 4.6.5 the meaning of σodd(n). We recall if n ≡ 1 mod 2 then s = 0 and
σ(n) = σodd(n) = σodd(m) = σ(m); whilst if n ≡ 0 mod 2 then σ(n) 6= σodd(n) =
σodd(m) = σ(m).
Combining the results of Lemmas A.2.17 and A.2.18 we get

r4(n) =

{
24
∑

d|m d n ≡ 0 mod 2

8
∑

d|m d n ≡ 1 mod 2

=

{
24σodd(n) n ≡ 0 mod 2
8σodd(n) n ≡ 1 mod 2.

Observing (2 + (−1)n) =

{
3 if n ≡ 0 mod 2
1 if n ≡ 1 mod 2

and factoring out an 8 then yields

r4(n) = 8 (2 + (−1)n)σodd(n).
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Observation A.2.20.
Lemmas A.2.12 through A.2.18 prove Weil’s claim that r4(m) is known for all m > 0
once you know N4(m).

A.3 Weil’s First Four Squares Proof

In this appendix we give in detail Andrë Weil’s first proof for N4(m) which, by Ob-
servation A.2.20, is sufficient to calculate the number of representations of a positive
integer as a sum of four squares. A concise version is found in [We1974, p. 217].

Lemma A.3.1.
Let m be a positive integer such that m ≡ 4 mod 8. Then N4(m) =

∑
m=r+s

N2(r)N2(s),

r ≡ s ≡ 2 mod 4, r > 0, s > 0.

Proof.
In the definition of N4(m), all xi are odd, therefore if we let r = x21+x

2
2 and s = x23+x

2
4,

we see that r ≡ s ≡ 2 mod 4. This is because all odd numbers when squared are
equivalent to 1 modulo 4. Note that r and s are necessarily in N by the definition of
N4(m).
Further if we run through all such r, then s is automatically defined, so we get the
number of all solutions by

N4(m) =
∑
r,s

r+s=m

N2(r)N2(s).

This is because each solution to x21 + x22 = r is independent of the solution to x23 +
x24.

Lemma A.3.2.
N4(m) =

∑
(−1)

a−c
2 , where m = 2ab+2cd, a ≡ b ≡ c ≡ d ≡ 1 mod 2 and a, b, c, d > 0.

Proof.
We apply the result found in Lemma A.3.1 and get:

N4(m) =
∑

N2(r)N2(s) by Lemma A.3.1

=
∑

r+s=m

∑
a| r

2

χ(a)

∑
c| s

2

χ(c)

 by Lemma A.1.16

=
∑

r+s=m

χ(a1)
∑
c| s

2

χ(c) + · · ·+ χ(an)
∑
c| s

2

χ(c)


=
∑

r+s=m

∑
c| s

2

χ(a1)χ(c) + · · ·+
∑
c| s

2

χ(an)χ(c)
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=
∑

r+s=m

∑
c| s

2

(−1)
a1−c

2 + · · ·+
∑
c| s

2

(−1)
an−c

2

 by Lemma A.1.19

=
∑

r+s=m

[∑
(−1)

a−c
2

]
=
∑

(−1)
a−c
2 .

Note that in the second to last equality, the inner sum is over all a| r
2

and all c| s
2

where r and s are fixed. In the last line, the sum is over all r, s such that r+ s = m,
r ≡ s ≡ 2 mod 4 and all a, c such that a| r

2
and c| s

2
.

By denoting the complementary divisors of a and c by b and d respectively, we see
that m = 2ab+ 2cd. Since 2ab ≡ 2 mod 4 it follows that a ≡ b ≡ 1 mod 2. Similarly,
we obtain c ≡ d ≡ 1 mod 2.

Now we may define a change of variables as follows:
Let x = a+c

2
, y = a−c

2
, z = b+d

2
and t = d−b

2
. This is a well-defined change of variables

because a ≡ b ≡ c ≡ d ≡ 1 mod 2. The associated change of basis matrix is given by
1
2

0 1
2

0
1
2

0 −1
2

0

0 1
2

0 1
2

0 −1
2

0 1
2

 .

This has determinant 1
4

and hence the change of variables is invertible.
It remains to determine the conditions that apply to these new variables.

Observe a ≡ c ≡ 1 mod 2 implies x 6≡ y mod 2. Similarly, b ≡ d ≡ 1 mod 2 implies
z 6≡ t mod 2.

Since a, b, c, d > 0, we have x, z > 0 and observe that |y| =

{
a−c
2

if c 6 a
c−a
2

if a < c
, hence

x > |y|. In a similar manner we see z > |t|.

Observe that m = r + s = 2(x+ y)(z − t) + 2(x− y)(z + t) = 4(xz − yt).
Since m ≡ 4 mod 8, this implies xz− yt ≡ 1 mod 2 and so x 6≡ y mod 2, z 6≡ t mod 2
implies y ≡ t mod 2 and z ≡ x mod 2. Observing that y = a−c

2
yields y ≡ t ≡

a−c
2

mod 2.

Lemma A.3.2 then says

N4(m) =
∑

(x,y,z,t)

(−1)y. (A.4)

Here the sum is over all y satisfying the above relations on x, y, z and t.

We now extend this notation to allow us to consider when y is positive, negative or
zero.
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Definition A.3.3.
Let N0 =

∑
(−1)y, N+ =

∑
(−1)y and N− =

∑
(−1)y where the summation is

restricted to the values of x, y, z, t that satisfy Equation A.4 and where y = 0, y > 0
and y < 0 respectively.

We first calculate N0.

Lemma A.3.4.
N0 =

∑
d where d > 0 is an odd divisor of m.

Proof.
Here, y = 0 and so m = 4xz, then m ≡ 4 mod 8 implies m

4
= xz. It follows that m

4

is not divisible by 2 else m would be congruent to 0 mod 8, a contradiction. Thus
x ≡ z ≡ 1 mod 2. The conditions on Equation A.4 then state t ≡ 0 mod 2.
So if d is an odd divisor of m

4
and hence an odd divisor of m it follows that there are

d solutions to the set of conditions on Equation A.4. This is because the solutions
are given by y = 0, z = d, x = m

4d
and t = t, where |t| < z = d. So there are exactly d

possible choices for t. This is because there are 2d possible choices for t but t 6≡ z = d.
Hence, we calculate N0 by summing over all such positive odd divisors of m. This
gives

N0 =
∑
d|m
d odd

d.

It is important to note that the d used to denote a positive odd divisor of m in the
above proof is different to the d used in the proof of Lemma A.3.2.
Note that in the conditions placed on x, y, z, t in Equation A.4, we may replace both
y and t by their negatives and still have a solution. This gives a bijection as we see
in the next Lemma.

Lemma A.3.5.
Let

S = {(x, y, z, t) |xz − yt ≡ 1 mod 2, x 6≡ y mod 2, z 6≡ tmod 2, x > |y|,
z > |t|, y ≡ t mod 2 }

and define the map

φ : S −→ S

(x, y, z, t) 7−→ (x,−y, z,−t).

We will show this is a bijection. Further, define S0 ⊆ S to be those (x, y, z, t) for
which y = 0, S+ ⊆ S those where y > 0 and S− ⊆ S those where y < 0. Then
|S+| = |S−| and consequently N+ = N− (see Definition A.3.3).
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Proof.
First observe xz − (−y)(−t) = xz − yt ≡ 1 mod 2. Next, −y ≡ y 6≡ x mod 2 and
−t ≡ t 6≡ z mod 2. Also, −y ≡ y ≡ t ≡ −t mod 2. Lastly, | − y| = |y| < x and
| − t| = |t| < z, hence φ maps into S.
Further, φ2(x, y, z, t) = φ(x,−y, z,−t) = (x, y, z, t), so by Lemma 3.4.13 we have a
bijection.
Note that if y = 0 then φ(x, 0, z, t) = (x, 0, z,−t) and so φ(S0) = S0. Thus let
(x, y, z, t) ∈ S be such that y > 0. Then φ(x, y, z, t) has −y < 0 and so φ(S+) ⊆ S−.
Similarly, φ(S−) = S+ and so |S+| = |S−|. Finally, recall that −1y = −1−y and
so each element of S+ contributes the same term to N+ as its image under φ in S−
contributes to N−. Hence N+ = N−.

Thus, we only need to calculate N+.

Lemma A.3.6.
N+ = 0.

Proof.
Assume y > 0 and (x, y, z, t) is a solution to the set of conditions for Equation A.4.
Then y < x implies x

y
> 1 and since x 6≡ y mod 2, either x

y
is not an integer (as the

denominator is divisible by 2 while the numerator isn’t) or it must be an even integer.
Therefore, x

y
is definitely not an odd integer and so there exists a unique u ∈ N such

that 2u− 1 < x
y
< 2u+ 1.

Next define x′ = 2uz − t, y′ = z, z′ = y and t′ = 2uy − x.
We observe that 4(x′z′ − y′t′) = 4((2uz − t)y − z(2uy − x)) = 4(xz − yt) = m.
Also, observe that x′ > 0 and so we have

x′ = 2uz − t
> z + (uz − t) as u is positive and even

> z + 2z − t
> z as |t| < z ⇒ 0 < t < 2z and so 2z − t > 0

= y′.

Multiplying both sides by −1 yields −x′ < −y′ 6 |y′| and thus |y′| < x′.

Similarly we have |t′| = |2uy − x| =
{

2uy − x if 2uy − x > 0
x− 2uy if 2uy − x < 0.

We observe that for y > 0, 2u − 1 < x
y

implies 2uy < x + y and so 2uy − x < y.

Likewise, x
y
< 2u+ 1 implies x− 2uy < y for y > 0. Hence we see that |t′| < y = z′.

Then note that 2uz ≡ 0 mod 2 and −t ≡ t mod 2. We therefore have x′ ≡ t 6≡ z ≡
y′ mod 2. Similarly, 2uy ≡ 0 mod 2 and we get t′ ≡ x 6≡ y ≡ z′ mod 2.
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By definition of z = b+d
2

, b, d > 0, we see that y′ > 0 and further because y ≡ t mod 2,
we have y ≡ t 6≡ z ≡ y′.

To summarise, (x′, y′, z′, t′) is a solution to the set of conditions placed of Equation
A.4 and y′ > 0, y′ 6≡ y mod 2.

By the remark at the beginning of this proof, given (x′, y′, z′, t′) a solution to the
conditions placed on Equation A.4, there is a unique value of u such that 2u − 1 <
x′

y′
= 2uz−t

z
= 2u− t

z
< 2u+ 1. Note that t

z
< 1 and so we recover the value of u used

in the substitution, hence we recover (x, y, z, t). So we have a bijection and thus a
permutation of the elements that contribute to N+.
Since each pairing maps an odd y to an even y′ (and vice versa), we see that each
pair of solutions contributes 0 to N+. Hence N+ = −N+ and so N+ = 0.

Recalling that N+ = N−, from this claim it follows that

N4(m) = N0 +N+ +N− = N0 =
∑
d|m
d odd

d.

This completes the proof of Proposition A.2.1. By Observation A.2.20 it follows we
can calculate r4(m) for any m > 0.

A.4 Weil’s Second Four Squares Proof

In this section we give the second of Weil’s proofs for N4(m).

Lemma A.4.1.
Let a, b and n ∈ Z>0. Let f(a, b, n) be the number of integer solutions to aX+bY = n,
where 0 < X < b, a < Y and Y 6≡ 0 mod a. Then f(a, b, n) = f(b, a, n).

Proof.
Let (X, Y ) be a solution to the problem posed in Lemma A.4.1. Then since a < Y
and Y 6≡ 0 mod a it follows that 1 < Y

a
and Y

a
is not an integer. Hence there exists a

unique u ∈ Z>0 such that u < Y
a
< u+ 1.

Now define X ′ = Y − ua and Y ′ = X + ub.
Claim: (X ′, Y ′) is a solution to bX ′ + aY ′ = n where 0 < X ′ < a, b < Y ′ and
Y ′ 6≡ 0 mod b.
We have

bX ′ + aY ′ = b(Y − ua) + a(X + ub)

= aX + bY + aub− aub
= n.

Further, u < Y
a
< u + 1 implies 0 < Y

a
− u < 1, so X′

a
= Y

a
− u satisfies 0 < X′

a
< 1

and hence 0 < X ′ < a.
Also, we know u > 1 and X > 1, hence Y ′ = X + ub > ub > b. Thus b < Y ′.
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Lastly, Y ′ = X + ub yields Y ′ − ub = X and so since 0 < X < b, b - Y ′ − ub. Thus
b - Y ′, that is, Y ′ 6≡ 0 mod b.
This completes the proof of the claim, so (X ′, Y ′) is a solution to the problem. We
note this means (X ′, Y ′) is a solution to the initial problem with the roles of a and b
interchanged.

Now observe b < Y ′, b > 0 and Y ′ 6≡ 0 mod b imply there exists a unique v ∈ Z>0

such that v < Y ′

b
< v + 1.

Then we have Y ′

b
= X

b
+ u and note that 0 < X

b
< 1 because 0 < X < b. So we have

u < Y ′

b
= X

b
+ u < u+ 1.

Thus it follows that v = u.

Hence given (X ′, Y ′) we may recover (X, Y ) uniquely via X = Y ′ − ub and Y =
X ′ + ua.

So for any solution to aX + bY = n under the conditions given in the Lemma, there
is a unique corresponding solution to bX ′+ aY ′ = n with the appropriately modified
conditions.
Hence we have a bijection between the two sets of solutions and so f(a, b, n) =
f(b, a, n).

Proposition A.4.2.
With the hypotheses of Lemma A.4.1 we have f(a, b, n) = 0 unless n > ab+a+ b and
n is a multiple of gcd(a, b).

Proof.
Assume aX + bY = n, where 0 < X < b, a < Y and Y 6≡ 0 mod a. Observe X > 1
and Y > a+ 1. Thus n > a+ b(a+ 1) = ab+ a+ b. Further, it is clear that gcd(a, b)
must divide n, i.e. n is a multiple of gcd(a, b).

We now state and prove Weil’s Lemma 2, which plays a pivotal role in his calculation
of N3(m).

Lemma A.4.3.
Let a, b ∈ Z>0, let m ∈ Z and let α, β ∈ {0, 1}. Let φ(a, b, α, β,m) denote the number
of solutions to:

aX + bY = m, |X| < b, a < Y, X ≡ α mod 2, Y ≡ β mod 2, Y 6≡ a mod 2a. (A.5)

Then φ(a, b, α, β,m) = φ(b, a, β, α,m).

Before we give the proof, we will prove the following useful proposition.

Proposition A.4.4. Let (X, Y ) be a solution to Equation A.5. Then there exists a
unique u ∈ Z>0 such that |Y − 2ua| < a.
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Proof.
Given Y ∈ Z, the division algorithm tells us there exists a unique u ∈ Z such that
Y = u · 2a+ r where −a < r 6 a. Since (X, Y ) is a solution to Equation A.5 we have
Y 6≡ a mod 2a and so it follows that r cannot equal a. Since 0 < a < Y it follows
that u ∈ Z>0. Hence we have |Y − 2ua| < a.

We now give a proof of Lemma A.4.3.

Proof of Lemma A.4.3.
Let (X, Y ) be a solution to the problem given in Lemma A.4.3. Let u be the unique
positive integer such that |Y − 2ua| < a as in Lemma A.4.4.
Apply the change of variables X ′ = Y − 2ua and Y ′ = X + 2ub.
Claim: (X ′, Y ′) is a solution to

bX ′ + aY ′ = m where

|X ′| < a, b < Y ′, X ′ ≡ β mod 2, Y ′ ≡ α mod 2 and Y ′ 6≡ b mod 2b.
(A.6)

Proof: We have

bX ′ + aY ′ = b(Y − 2ua) + a(X + 2ub)

= aX + bY − 2uab+ 2uab

= m.

Further, |X ′| = |Y − 2ua| < a by our choice of u using Lemma A.4.4. We also have

Y ′ = X + 2ub

> −b+ 2ub as |X| < b and b ∈ Z>0

= b(2u− 1)

> b as u is at least 1.

Also, X ′ = Y − 2ua ≡ Y mod 2 and we recall Y ≡ β mod 2, so X ′ ≡ β mod 2.
Similarly, Y ′ = X + 2ub ≡ X mod 2 but X ≡ α mod 2 and thus Y ′ ≡ α mod 2.
So (X ′, Y ′) is a solution to Equation A.6. This completes the proof of the claim.

Now by Lemma A.4.4 there exists a unique v ∈ Z>0 such that |Y ′ − 2vb| < b.

Claim: v = u.
Proof: We have

b > |Y ′ − 2vb|
= |X + 2ub− 2vb|
= |X + 2b(u− v)|.

Recalling that |X| < b, we see that as u − v ∈ Z, we will have |X + 2b(u − v)| > b
unless u− v = 0, that is v = u. This completes the proof of the claim.
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Now define S = {(X, Y ) | (X, Y ) satisfies Equation A.5} and
T = {(X ′, Y ′) | (X ′, Y ′) satisfies Equation A.6}.
It is straightforward to see |S| is finite because X is bounded and integer, and so the
equation aX+bY = m implies Y takes only finitely many values. A similar argument
yields |T | is finite.

Define a map f : S −→ T by f(X, Y ) = (Y − 2ua,X + 2ub) where u is the unique
positive integer such that |Y − 2ua| < a by Lemma A.4.4. By the previous part of
this proof, f is well-defined.

We now show f is injective.
Suppose f(X, Y ) = f(X̂, Ŷ ) = (X ′, Y ′) for some (X, Y ), (X̂, Ŷ ) ∈ S and (X ′, Y ′ ∈
T ). Then by Lemma A.4.4 there exist unique positive integers u, û such that |Y −
2ua| < a and |Ŷ − 2ûa| < a respectively. We get two equations, Y − 2ua = Ŷ − 2ûa

and X + 2ub = X̂ + 2ûb, which yield Y−Ŷ
2a

= u− û and X̂−X
2b

= u− û respectively.
Since (X ′, Y ′) = f(X, Y ) ∈ T there exists a unique positive integer v such that
|Y ′− 2vb| < b and applying the above claim, we see that v = u. But also, (X ′, Y ′) =
f(X̂, Ŷ ) ∈ T and so applying the claim again yields v = û.
Hence u = û and it follows that X = X̂ and Y = Ŷ . So f is injective.
Define g : T −→ S by g(X ′, Y ′) = (Y ′−2ub,X ′+ 2ua) where u is the unique positive
integer such that |Y ′−2ub| < b. It follows that g is injective because of the symmetry
between the functions f and g.

Hence we have an injection in each direction between two finite sets and so |S| = |T |
and we have a bijection between them. So we have φ(a, b, α, β,m) = |S| = |T | =
φ(b, a, β, α,m). This completes the proof of Lemma A.4.3.

Lemma A.4.5.
φ(a, b, α, β,m) = 0 unless m is a multiple of gcd(a, b) and m > a + b and m ≡
αa+ βb mod 2.

Proof.
As in the proof of Lemma A.4.1 it is clear that m must be a multiple of gcd(a, b).
Recall that both a and b are positive integers.
We know a < Y , so a + 1 6 Y . Also |X| < b, so X > −b + 1, thus the smallest X
can be is −b+ 1. So

aX + bY > aX + b(a+ 1)

> a(−b+ 1) + ab+ b

= a+ b.

Lastly, we see m = aX + bY ≡ aα + bβ mod 2 because X ≡ α mod 2 and Y ≡
β mod 2.

Lemma A.4.6.
Y 6≡ a mod 2a follows naturally if Y ≡ β mod 2 and a 6≡ β mod 2.
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Proof.
Assume Y > a > 0, Y ≡ β mod 2 and a 6≡ β mod 2.
Then Y > a > 0 implies Y = a + k for some k ∈ Z>0. Working modulo 2 gives
a + k ≡ β mod 2 and a 6≡ β mod 2 implies k ≡ 1 mod 2. Thus Y = a + 2q + 1 for
some q ∈ Z>0 and so Y − a is odd, so 2a - (Y − a), that is Y 6≡ a mod 2a.

We now give Weil’s second proof of Proposition A.2.1. We begin part way through
his first proof, having already determined N0 and wishing to calculate N+. From
Equation A.4 we have

m

4
= xz − yt, |y| < x, |t| < z, y 6≡ x mod 2, t 6≡ z mod 2, m ≡ 4 mod 8 (A.7)

We will show N+ = 0. From the above we have N+ =
∑

(−1)y where the sum is over
all x, y, z and t satisfying Equation A.7 and y, z ∈ Z>0.

We see Equation A.7 implies y 6≡ z mod 2 due to the comment following Lemma A.3.2.

Next, identify aX + bY = m with the equation y(−t) + z(x) = m
4

. That is, for the
quadtuple (a, b,X, Y ) take (y, z,−t, x).

Now we may apply Lemma A.4.3 for fixed y and z values. We can do this because for
N+ we have y > 0 and z > 0 by assumption. We also have |y| < x implies y < x as
y > 0. Further, |−t| = |t| < z and −t ≡ t ≡ y ≡ ȳ mod 2 and x ≡ z ≡ z̄ mod 2. Note
that ȳ ≡ t 6≡ z ≡ x ≡ z̄ mod 2 and so by Lemma A.4.6 it follows that x 6≡ y mod 2y.

Applying Lemma A.4.3 gives φ(y, z, ȳ, z̄, m
4

) solutions for each pair (y, z) ∈ Z>0×Z>0

where y 6≡ z mod 2. We denote this condition by (?).

So we get

N+ =
∑
(y,z)

(−1)yφ(y, z, ȳ, z̄,
m

4
). (A.8)

Here the sum is over all (y, z) satisfying (?) and we note that we have removed the
dependence of the sum on x and t.

Claim A.4.7.
The summation in Equation A.8 is a finite sum.

Proof.
Recall Lemma A.4.5 says φ(y, z, ȳ, z̄, m

4
) = 0 for y+z > m

4
. Since y and z are integers,

there are only finitely many such y, z so that y + z < m
4

. Hence the summation is a
finite sum.

Now let S = {(y, z, ȳ, z̄, m
4

) | y 6≡ z mod 2 y, z ∈ Z>0,
m
4
≡ ȳy + z̄z mod 2}.
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Define ψ : S → S by ψ(y, z, ȳ, z̄, m
4

) = (z, y, z̄, ȳ, m
4

) . The map ψ is well-defined and
such that ψ2 = id. Hence we have

N+ =
∑
(y,z)

(−1)yφ(y, z, ȳ, z̄,
m

4
)

=
∑

(−1)yφ(z, y, z̄, ȳ,
m

4
) by Lemma A.4.3

=
∑

(−1)z+1φ(z, y, z̄, ȳ,
m

4
) as y 6≡ z mod 2

= −
∑

(−1)zφ(z, y, z̄, ȳ,
m

4
)

= −N+ as ψ is a bijection.

Thus N+ = 0 and the proof is complete using the result in the first proof that
N+ = N−.

A.5 Weil’s Three Squares Proof for m ≡ 3 mod 8

In this appendix we give a detailed examination of Andrë Weil’s method for deter-
mining the number of representations of an integer m as a sum of three squares in
the special case where m ≡ 3 mod 8.

Henceforth unless explicitly stated, in this section m shall refer to a positive integer
such that m ≡ 3 mod 8.

Recall from Definition A.1.1 Weil defines N3(m) to be the number of representations
of an integer m as m = x21 + x22 + x23, where xi ≡ 1 mod 2 and xi > 0, 1 6 i 6 3.

Lemma A.5.1.
r3(m) = 8N3(m).

Proof.
Since m ≡ 3 mod 8 and for any integer we have y2 ≡ 0, 1, 4 mod 8, it follows that any
integer solution (y1, y2, y3) to m = y21 + y22 + y23 must satisfy yi ≡ 1 mod 2 (1 6 i 6 3).
Thus no yi is zero and consequently it is sufficient to find solutions for which all
yi > 0. This is denoted by N3(m) and it follows that there are 8 ways to assign signs
to (y1, y2, y3). Thus r3(m) = 8N3(m).

Hence it is sufficient for us to focus upon determining the value of N3(m).

Definition A.5.2.
Let k ∈ Z and let H(k) denote the number of solutions (a, b, c), a, b, c ∈ N to

k = 4ac− b2, b > 0, b < 2a, b < 2c, b ≡ 1 mod 2. (A.9)

Observation A.5.3.
We observe H(k) = 0 unless k > 0 and k ≡ 3 mod 4. This is because b2 < (2a)(2c) =
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4ac and l2 ≡ 1 mod 4 for any odd integer l.
We also observe if a 6 c then we have 0 < b 6 2a 6 2c. Since b ≡ 1 mod 2 it follows
that 0 < b 6 2a− 1. Consequently k = 4ac− b2 implies:

k + 1 = 4ac− b2 + 1

> 4ac− (4a2 − 4a+ 1) + 1, as b2 6 (2a− 1)2 = 4a2 − 4a+ 1

= 4ac− 4a2 + 4a

= 4a(c− a+ 1). Therefore a 6
k + 1

4
.

By the symmetry of the initial conditions, if c 6 a then we get k + 1 > 4c(a− c+ 1)
and so c 6 k+1

4
.

In each case, we see that b is bounded and we conclude that c or a respectively is
uniquely determined. So H(k) is finite.

Observation A.5.4.
Assume a 6 c and that an integer solution to k = 4ac − b2 exists. Then we may
write a 6 c = k+b2

4a
and observe that for any fixed (positive) value of a, c is largest

when b is largest. By Observation A.5.3 b is at most 2a − 1, thus c 6 k+(2a−1)2
4a

=
k+4a2−4a+1

4a
= k+1

4a
+ a− 1. This is a continuous function on the interval [1, k+1

4
] so we

may apply the extreme value theorem. Both endpoints have the same value, k+1
4

and

taking a derivative with respect to a yields − (k+1)
4a2

+ 1. This is zero in our interval

at a =
√
k+1
2

. Applying the second derivative test shows this is a local minimum.
Hence we see c 6 k+1

4
also. Similarly, if c 6 a then we see that a 6 k+1

4
. Thus any

solution (a, b, c) that contributes toH(k) must satisfy a 6 k+1
4

, b 6 min{2a−1, 2c−1},
c 6 k+1

4
. This will be useful for any algorithm for determining the number of elements

in H(k).

Observation A.5.5.
Assume k ≡ 3 mod 8, k = 4ac − b2 and b ≡ 1 mod 2. Then it follows that 4ac ≡
4 mod 8 since l2 ≡ 1 mod 8 for any odd integer l. Hence ac must be odd and so both
a and c are odd.

The crux of Weil’s paper [We1974] is the connection between N3(m) and the cardi-
nality of the set H(m) when m is a positive integer such that m ≡ 3 mod 8. We give
Weil’s theorem below and devote the remainder of this appendix to proving it.

Theorem A.5.6 (Weil).
Let m be a positive integer such that m ≡ 3 mod 8 then N3(m) = H(m).

The proof of Theorem A.5.6 requires several stages.

Lemma A.5.7.
Assume l ≡ 4 mod 8. Then N4(l) =

∑
t>0

t≡1 mod 2

N3

(
l − t2

)
.
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Proof.
Assume l ≡ 4 mod 8 and define
S = {(x, y, z, t) |x2 +y2 + z2 + t2 = l, x, y, z, t ≡ 1 mod 2, x, y, z, t > 0}. Then clearly
N4(l) = |S|.
For each odd integer t > 0, let St = {(x, y, z, t) |x2 + y2 + z2 + t2 = l} ⊆ S. If
ti 6= tj then Sti ∩ Stj = ∅ because if (x, y, z, t) ∈ Sti ∩ Stj then x2 + y2 + z2 + t2i =
l = x2 + y2 + z2 + t2j and since ti, tj > 0 it follows that ti = tj. Note that there are

finitely many non-empty sets St since t > 0 and t 6
√
l. Thus, S =

⋃
t>0
t odd

St and this

is a disjoint union by the above.
Now observe that |St| = N3(l − t2) as x2 + y2 + z2 = l − t2 and t > 0 is fixed, plus
t ≡ 1 mod 2 implies l − t2 ≡ 3 mod 8.
Hence we have

N4(l) =
∑
t>0

t≡1 mod 2

|St| =
∑
t>0

t≡1 mod 2

N3

(
l − t2

)
. (A.10)

Our next lemma is pivotal in the proof of Theorem A.5.6. We will give its statement
below and leave its proof until after we have proved Theorem A.5.6.

Lemma A.5.8.
Assume l ≡ 4 mod 8. Then N4(l) =

∑
x>0

x≡1 mod 2

H
(
l − x2

)
.

We now prove Theorem A.5.6 assuming the truth of Lemma A.5.8.

Proof of Theorem A.5.6.
Assume Lemma A.5.8 has been proved. We will use induction on m where m is a
positive integer such that m ≡ 3 mod 8.
Base Step: m = 3, so 4 = m+ 1 ≡ 4 mod 8

From Lemma A.5.7 we have N4(4) =
∑
t odd
t>0

N3

(
4− t2

)
= N3(3).

By the result in Lemma A.5.8 we also have N4(4) =
∑
x odd
x>0

H
(
4− x2

)
= H(3).

Hence N3(3) = H(3).

Inductive Step: Suppose that for some k ≡ 3 mod 8 we know N3(m) = H(m) for all
m 6 k, where m ≡ 3 mod 8. We want to show this implies N3(k + 8) = H(k + 8).
We first note that for any odd positive integer t we have k + 1− (t2 − 8) ≡ 3 mod 8
as t2 ≡ 1 mod 8. We also note that for t > 3, and odd, we have t2 − 8 > 1 and so
k + 1− (t2 − 8) 6 k + 1− 1 = k. Then applying Lemma A.5.7 yields:

N4 ((k + 8) + 1) =
∑
t odd
t>0

N3

(
(k + 8) + 1− t2

)
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= N3(k + 8) +
∑
t odd
t>1

N3

(
k + 1− (t2 − 8)

)
= N3(k + 8) +

∑
t odd
t>1

H
(
k + 1− (t2 − 8)

)
by the inductive hypothesis.

By Lemma A.5.8 we also know

N4 ((k + 8) + 1) =
∑
x odd
x>0

H
(
(k + 8) + 1− x2

)
= H(k + 8) +

∑
x odd
x>1

H
(
k + 1− (x2 − 8)

)
.

So substituting yields N3(k + 8) = H(k + 8).
Hence Theorem A.5.6 is true under the assumption that Lemma A.5.8 has been
proved.

We now proceed to prove Lemma A.5.8.

Notation A.5.9.
To simplify notation write l = 4n where n ≡ 1 mod 2.

Also, write Xn = 1
2

∑
x∈Z

x≡1 mod 2

H
(
4n− x2

)
. Notice that the terms in this summation

are symmetric with respect to x. Thus each H(k) is counted twice. Hence Xn is the
right hand side of the equation given in the statement of Lemma A.5.8.

Notation A.5.10.
We use a modified version of the notation used in [We1974, p. 220]. Let {R} denote
the set of relations that specify a system of equations that we wish to solve. {R} may
include equalities, inequalities and congruences as well as variables. We shall denote
the number of integer solutions to the system {R} by |R|.

Now fix n ∈ Z>0 and odd.
Using the notation already developed we may write

Xn =
1

2

∣∣∣∣{n = ac+
x2 − b2

4
, b > 0, b < 2a, b < 2c, b ≡ x ≡ 1 mod 2

}∣∣∣∣ .
This is because l ≡ 4 mod 8, l = 4n where n is odd, Xn = 1

2

∑
H (4n− x2) where

the sum is over all odd integers, x, and H (4n− x2) is the number of solutions to

4n − x2 = 4ac − b2, which rearranges to n = ac +
x2 − b2

4
. Now x2 − b2 ≡ 0 mod 4

since b, x ≡ 1 mod 2 implies b2, x2 ≡ 1 mod 4. The rest of the relations follow from
the previous conditions on H(l − x2).
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Next observe that b ≡ x mod 2 implies b+ x = 2y for some y ∈ Z. Similarly we may
write b− x = 2z for some z ∈ Z. Observe that x2 − b2 = (x− b)(x+ b) = −4yz, and
that b odd and b = y + z imply y 6≡ z mod 2. Thus we get

Xn =
1

2
|{n = ac− yz, y + z > 0, y + z < 2a, y + z < 2c, y 6≡ z mod 2}| .

Observe b = y + z and x = y− z imply there is a bijection between the two formula-
tions for Xn. Notice y 6≡ z mod 2 implies yz ≡ 0 mod 2. Then since n ≡ 1 mod 2 it
follows that ac ≡ 1 mod 2 and so again we see that both a and c are odd.

Notice that the conditions for calculating Xn are symmetric in a and c and also in
y and z. Since a and c are both odd, we have a ≡ c ≡ 1 mod 2. Then y 6≡ z mod 2
implies that a − y 6≡ c − z mod 2 and so a − y 6= c − z. Thus we may partition the
solution set into those solutions that satisfy a − y < c − z and those that satisfy
a− y > c− z. Further, since a and c are positive integers (see Definition A.5.2), the
conditions y + z < 2a and y + z < 2c imply y + z < a+ c and so y − a < c− z.

We define the sets S and T as follows:

S = {(a, c, y, z) |n = ac− yz, y + z > 0, y + z < 2a, y + z < 2c,

y 6≡ z mod 2, a− y < c− z}
T = {(a, c, y, z) |n = ac− yz, y + z > 0, y + z < 2a, y + z < 2c,

y 6≡ z mod 2, c− z < a− y} .

We note that elements of S and elements of T satisfy y − a < c − z, while elements
of S also satisfy a− y < c− z. Thus we may replace the condition a− y < c− z in
S by |a− y| < c− z. We denote this condition by (†).

Define τ : S −→ T by τ(a, c, y, z) = (c, a, z, y) and define σ : T −→ S by σ(a, c, y, z) =
(c, a, z, y). We now show σ ◦ τ = idS and τ ◦ σ = idT .

We note the map τ is well-defined since a−y < c−z in S and c−z is the new “a−y”
in (c, a, z, y). Thus (c, a, z, y) is a valid solution in T . Similarly, σ is well-defined since
a − y > c − z in T and c − z is the new “a − y” in (c, a, z, y). Thus (c, a, z, y) is a
valid solution in S.
Now observe σ ◦ τ(a, c, y, z) = σ(c, a, z, y) = (a, c, y, z) for any (a, c, y, z) ∈ S and
likewise τ ◦ σ(a, c, y, z) = (a, c, y, z) for any (a, c, y, z) ∈ T . It follows that σ ◦ τ = idS
and τ ◦ σ = idT . Therefore we have a bijection between S and T , and so |S| = |T |.

Hence we observe adding the condition a− y < c− z to the conditions in (Xn) leaves
only half of the solutions. Thus

Xn =
1

2
|{n = ac− yz, y + z > 0, y + z < 2a, y + z < 2c, y 6≡ z mod 2}|

= |{n = ac− yz, y + z > 0, y + z < 2a, y + z < 2c, y 6≡ z mod 2, a− y < c− z}|
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= |{n = ac− yz, y + z > 0, y + z < 2a, y + z < 2c, y 6≡ z mod 2, |a− y| < c− z}| .

The last line here is due to (†).

Now define the sets A and B by

A = {(a, c, y, z) |n = ac− yz, 0 < y + z < 2a, y + z < 2c, y 6≡ z mod 2,

|a− y| < c− z} ,
B = {(a, c, y, z) |n = ac− yz, 0 < y + z < 2a, y 6≡ z mod 2, |a− y| < c− z} .

Then A ⊆ B since (a, c, y, z) ∈ A satisfies all the relations in B plus y+ z < 2c. That
is, the set of conditions for B is less restrictive than those for A.

Next define C = B \ A, that is

C = {(a, c, y, z) | n = ac− yz, 0 < y + z < 2a, y + z > 2c,

|a− y| < c− z, y 6≡ z mod 2} .

This is because y 6≡ z mod 2 implies y+ z is not even, so y+ z 6= 2c and if y+ z < 2c
then (a, c, y, z) ∈ A.
Observe that the condition y + z < 2a in C is actually a consequence of the others.
This is due to the following reasoning. Recall that a is a positive integer because
0 < y + z < 2a. Further, c − z > |a − y| > y − a implies c − (y + z)︸ ︷︷ ︸

>0

> −a and so

c > −a, that is −c < a. But we also have c− z > y − a implies c + a > y + z > 2c,
so a > c and it follows that a > |c|. Thus y + z < 2a.

This is an important result because by going from the conditions in A to those in B,
we have removed the condition that 0 < y + z < 2c and so in B we now have the
possibility that c is negative.

Further, we note the condition y 6≡ z mod 2 in {B} implies yz is even; then n = ac−yz
implies both a and c are still odd.
Now we make the following change of variables on the set B. Let

a = a

u = a − y
v = c − z
w = −a + y − z

This change of variables has matrix representation (with respect to the above order-
ing) 

1 0 0 0
1 0 −1 0
0 1 0 −1
−1 0 1 1

 .
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This matrix has determinant 1 and so the change of variables is a bijection.
The set B is mapped bijectively onto the set D where

D =
{

(a, u, v, w) |n = u2 + av + uw, |w| < a, |u| < v, a 6≡ w mod 2
}
.

This is because n = ac − yz = a(u + v + w) − (a − u)(u + w) = u2 + av + uw and
0 < y + z < 2a becomes 0 < a + w < 2a, that is |w| < a. Similarly, c − z > |a − y|
becomes u + v + w − (u + w) > |a − (a − u)|, that is v > |u|. Lastly, y 6≡ z mod 2
becomes a− u 6≡ u+ w mod 2 thus a 6≡ w mod 2.

Note that a remained unchanged, so in D we have a ≡ 1 mod 2, then a 6≡ w mod 2
implies w ≡ 0 mod 2.

We now consider solutions to {D} for which u = 0. So n = av, |w| < a, v > 0 and
a 6≡ w mod 2. So we get at least one solution for every positive odd divisor a of n
because a ≡ 1 mod 2. Now observe that we have |w| < a and w is even, plus the value
of w has no impact on the solution when u = 0. So since there are a even numbers
w such that −a < w < a (including w = 0), we get for each positive odd divisor a of
n there are a solutions to {D} when u = 0. Thus the total number of solutions to

{D} when u = 0 is
∑
a odd

a|n

a since n ≡ 1 mod 4 implies 4n ≡ 4 mod 8.

By Proposition A.2.1 and Notation A.5.9 this is just N4(4n) = N4(m).

Now partition the set of solutions (a, u, v, w) to {D} as follows:

D0 = {(a, u, v, w) | (a, u, v, w) ∈ D and u = 0} ,
D+ = {(a, u, v, w) | (a, u, v, w) ∈ D and u > 0} ,
D− = {(a, u, v, w) | (a, u, v, w) ∈ D and u < 0} .

Clearly these sets are disjoint.

We now construct a bijection τ : D −→ D given by τ(a, u, v, w) = (a,−u, v,−w).
We see the map τ is well-defined because (a, u, v, w) satisfies n = u2 + av + uw =
(−u)2 + av + (−u)(−w), | − w| = |w| < a, | − u| = |u| < v and −w ≡ w 6≡ a mod 2.
So τ maps D to D.
Now observe τ 2(a, u, v, w) = τ(a,−u, v,−w) = (a,−(−u), v,−(−w)) = (a, u, v, w).
Thus τ 2 = id and so by Lemma 3.4.13, τ is a bijection.

Now observe if (a, 0, v, w) ∈ D0 then τ(a, 0, v, w) = (a, 0, v,−w) ∈ D0. Further, if
(a, u, v, w) ∈ D+ then τ(a, u, v, w) = (a,−u, v,−w) ∈ D− as u > 0 implies −u < 0.
Thus τ (D+) ⊆ D−. It follows similarly that τ (D−) ⊆ D+. Since τ is a bijection it
follows that |D+| = |D−|.

Now consider the subset
D+ = {(a, u, v, w)|n = u2 + av + uw, |w| < a, v > u > 0, a ≡ 1 mod 2, w ≡ 0 mod 2}
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and let Y = |D+|. Since |D+| = |D−| it follows upon recalling that the set B is in
bijection with the set D that |B| = |D0|+ 2|D+| = N4(m) + 2Y .

Our goal remains to show B is a finite set and |C| = 2Y . This will complete the
proof of Lemma A.5.8 because∑

x odd
x>0

H
(
m− x2

)
= Xn = |A| = |B| − |C| = (N4(m) + 2Y )− (2Y ) = N4(m).

Resuming our consideration of D+, we may write n − u2 = av + uw. Recalling
that n is odd, we note that if u ≡ 0 mod 2 then n − u2 ≡ 1 mod 2, uw ≡ 0 mod 2,
so we require av ≡ 1 mod 2. Noting a ≡ 1 mod 2 implies v ≡ 1 mod 2. Similarly if
u ≡ 1 mod 2 then n−u2 ≡ − mod 2, uw ≡ 0 mod 2 as w ≡ 0 mod 2. Thus we require
av ≡ 0 mod 2. But a ≡ 1 mod 2 and so v ≡ 0 mod 2. Hence we see that u 6≡ v mod 2.

We now note n−u2 = av+uw may be identified as a candidate for applying Lemma
A.4.3. This is because we may think of “a” = u, “b” = a, “X” = w and “Y ” = v.
The conditions in {D+} translate to |X| < b︸ ︷︷ ︸

|w|<a

, a < Y︸ ︷︷ ︸
u<v

, x ≡ 0 mod 2︸ ︷︷ ︸
w≡0 mod 2

, Y ≡ a+ 1 mod 2︸ ︷︷ ︸
v≡u+1 mod 2

and Y 6≡ a mod 2a︸ ︷︷ ︸
v 6≡u mod 2u

. We observe the last two conditions follow from u 6≡ v mod 2,

v ≡ u+ 1 mod 2 and an application of Lemma A.4.6.

Hence we meet all of the conditions for Lemma A.4.3 and so the number of solutions
to {D+} is

Y =
∑
(u,a)

φ(u, a, 0, u+ 1, n− u2) (A.11)

where u > 0, a > 0 and a ≡ 1 mod 2.

By the proof of Lemma A.4.3, φ(u, a, 0, u+ 1, n − u2) = 0 unless n − u2 > u + a.
Since n is fixed and both u and a are positive, it follows that for each u there are only
finitely many values for a and since n − u2 must be positive, there are only finitely
many values for u. Hence Y is finite and so |B| = N4(m) + 2Y is finite.

We now turn our considerations to the set C. As discussed earlier here, we may omit
the condition 0 < y + z < 2a so

C = {n = ac− yz, y + z > 0, y + z > 2c, |a− y| < c− z, y 6≡ z mod 2}

We apply the following change of variables:

a = u+ v + w

y = u + w

z = −u + c
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c = c.

The associated matrix representation (with respect to this ordering) is
1 1 1 0
1 0 1 0
−1 0 0 1
0 0 0 1

 .

The determinant of this matrix is −1 and so the change of variables is invertible.
Thus under this change of variables, the set C is mapped bijectively onto the set E,
where

E =
{

(u, v, w, c) |n = u2 + cv + uw, w > |c|, u > |v|, w 6≡ c mod 2
}
.

This is because n = ac− yz = (u+ v+w)c− (u+w)(c−u) = u2 + vc+uw, y+ z > 0
implies w > −c, y + z > 2c implies w > c and so w > |c|, c − z > |a − y| implies
u > |v| and y 6≡ z mod 2 implies w 6≡ c mod 2.
Now recalling that in C we showed both a and c to be odd. Since we have con-
structed a bijection between the sets C and E via our change of variables, and c has
not changed, we see c ≡ 1 mod 2 and consequently w ≡ 0 mod 2. It follows that c 6= 0.

Define τ ′ : E −→ E by τ ′(u, v, w, c) = (u,−v, w,−c). We show the map τ ′ is a
bijection.

Proof: τ ′ is well-defined since n = u2+uw+vc = u2+uw+(−v)(−c), |−c| = |c| < w,
| − v| = |v| < u and −c ≡ c 6≡ w mod 2.
Next, observe that τ ′2 = τ ′(u,−v, w,−c) = (u,−(−v), w,−(−c)) = (u, v, w, c).
Hence τ ′2 = id and so by Lemma 3.4.13, τ ′ is a bijection.

�
In a similar manner to earlier, we partition the set E according to whether c is positive
or negative :

E+ = {(u, v, w, c) | n = u2 + cv + uw,w > c > 0, u > |v|, c ≡ 1 mod 2, w ≡ 0 mod 2 }
E− = {(u, v, w, c) | n = u2 + cv + uw, c < 0, w > |c|, u > |v|,

c ≡ 1 mod 2, w ≡ 0 mod 2} .

Note for any (u, v, w, c) ∈ E+, we have τ ′(u, v, w, c) = (u,−v, w,−c) ∈ E−. This is
because−c < 0. So we have τ ′(E+) ⊆ E− and a similar argument shows τ ′(E−) ⊆ E+.
Since τ ′ is a bijection and we have shown that c 6= 0, it follows that |E+| = |E−|.
Since there exists a bijection between the sets E and C, we have |C| = |E| = 2|E+|.

Letting Y ′ = |E+|, we see that |C| = 2Y ′. Now we observe n = u2 + uw+ vc may be
rewritten as n− u2 = uw + vc and again we have a candidate for Lemma A.4.3.
We first show a result which is needed to verify we satisfy all of the conditions for
Lemma A.4.3. Recall n − u2 = cv + uw, w ≡ 0 mod 2 and c ≡ 1 mod 2. Then if
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u ≡ 0 mod 2 it follows that cv + uw ≡ 1 mod 2 and so since uw ≡ 0 mod 2 we must
have v ≡ 1 mod 2. Similarly, if u ≡ 1 mod 2 then it follows that cv + uw ≡ 0 mod 2
and so cv ≡ 0 mod 2 implies v ≡ 0 mod 2. Hence we have u 6≡ v mod 2.

Now we may think of “a” = c, “b” = u, “X” = v and “Y ” = w. Then we have
|X| < b︸ ︷︷ ︸
|v|<u

, a < Y︸ ︷︷ ︸
c<w

, X ≡ b+ 1 mod 2︸ ︷︷ ︸
v≡u+1 mod 2

, Y ≡ 0 mod 2︸ ︷︷ ︸
w≡0 mod 2

and Y 6≡ a mod 2a︸ ︷︷ ︸
w 6≡c mod 2c

. Here the last

relation follows from Lemma A.4.6 because c 6≡ w mod 2 and w ≡ 0 mod 2.

Hence we may follow Lemma A.4.3 and define the number of solutions to (E+) as

Y ′ =
∑
(c,u)

φ
(
c, u, u+ 1, 0, n− u2

)
where the sum is over all (c, u) such that c > 0, u > 0 and c ≡ 1 mod 2. This sum is
finite because there exists a bijection between the sets E and C, which is a subset of
B, which we have shown is a finite set.

Now applying the result of Lemma A.4.3, we see that

Y ′ =
∑
(c,u)

φ
(
u, c, 0, u+ 1, n− u2

)
and this is the same as Y in Equation A.11 where c plays the role of a.

Hence Y ′ = Y and so |A| = |B| − |C| = N4(l) + 2Y − 2Y = N4(l).

Thus
∑
x>0

x≡1 mod 2

H
(
l − x2

)
= N4(l). This completes the proof of Lemma A.5.8.

Hence Theorem A.5.6 is proven.

Copyright c© Jonathan A. Constable, 2016.
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