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ABSTRACT OF DISSERTATION

Iterative Methods for Computing Eigenvalues and Exponentials of Large Matrices

In this dissertation, we study iterative methods for computing eigenvalues and ex-
ponentials of large matrices. These types of computational problems arise in a large
number of applications, including mathematical models in economics, physical and
biological processes. Although numerical methods for computing eigenvalues and
matrix exponentials have been well studied in the literature, there is a lack of anal-
ysis in inexact iterative methods for eigenvalue computation and certain variants of
the Krylov subspace methods for approximating the matrix exponentials. In this
work, we proposed an inexact inverse subspace iteration method that generalizes
the inexact inverse iteration for computing multiple and clustered eigenvalues of a
generalized eigenvalue problem. Compared with other methods, the inexact inverse
subspace iteration method is generally more robust. Convergence analysis showed
that the linear convergence rate of the exact case is preserved. The second part of
the work is to present an inverse Lanczos method to approximate the product of a
matrix exponential and a vector. This is proposed to allow use of larger time step in
a time-propagation scheme for solving linear initial value problems. Error analysis is
given for the inverse Lanczos method, the standard Lanczos method as well as the
shift-and-invert Lanczos method. The analysis demonstrates different behaviors of
these variants and helps in choosing which variant to use in practice.
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Chapter 1 Introduction

We are concerned with two numerical problems for large matrices, i.e., computing

eigenvalues and exponentials of large matrices by using iterative methods. In par-

ticular, we are interested in computing the eigenvalues of a generalized eigenvalue

problems by using inexact inverse subspace iteration and computing the product of

a matrix exponential with a vector by using the Lanczos algorithm. These types

of problems arise in many scientific and engineering applications. The matrices in-

volved are often large and sparse in such applications. Iterative methods, which use

matrix-vector multiplications, are well suited for such large scale problems.

The well-known iterative methods for solving eigenvalue problems are the power

method (the inverse iteration), the subspace iteration, the Krylov subspace meth-

ods and the Jacobi-Davidson algorithm. Traditionally, if the extreme eigenvalues are

not well separated or the eigenvalues sought are in the interior of the spectrum, a

shift-and-invert transformation (a preconditioning technique) has to be used in com-

bination with these eigenvalue problem solvers. The shift-and-invert transformation

requires the solution of a shifted linear systems at each iteration. Owing to the size

of the matrices, direct solution of the shifted matrix (i.e., factorization) may not be

practical. Alternatively, iterative method (inner iterations) can be used to solve the

shift-and-invert equation, which leads to two levels of iterations, called inner-outer

iterations. The use of inner-outer iterations (or inexact iterations) has been studied

for several methods, such as the Davidson and the Lanczos algorithm [8, 20, 44, 45],

the inverse iteration [18, 28, 30], the rational Arnoldi algorithm and truncated RQ

iterations [27, 47] and the Jacobi-Davidson method [42].

One of the challenges in implementing inexact iterations is in how the accuracy

of the inner iteration affects the convergence characteristic of the outer iteration.
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Although the inner-outer iteration technique has been used successfully for several

methods [18, 35, 47], the theoretical behaviors are still not well understood for many

of them. The first part of this thesis is to study inexact inverse subspace iteration.

We develop the inexact inverse subspace iteration method which enjoys similar con-

vergence characteristics as the inexact inverse iteration [18], but can handle multiple

and clustered eigenvalues. We present convergence analysis of the inexact inverse

subspace iteration method. Our results demonstrate that inexact inverse subspace

iteration has very robust convergence characteristic and can withstand very large

errors in the inner iterations.

On the other hand, computation of matrix exponentials is a well studied subject.

A survey of earlier literature on matrix exponential computation can be found in [33].

Many numerical methods have been developed to compute the matrix exponential,

including series methods, Pade approximation, ordinary differential equation meth-

ods and matrix decomposition and splitting methods. These methods are primarily

for small dense matrices. For large matrices, Krylov subspace approximation has

been shown to be very successful in many applications. Saad [17] introduces Krylov

subspace approximation method for matrix exponentials and provides a priori and a

posterior error estimates. Several other analysis and a combination with shift-and-

invert technique have been developed, see [16, 25, 49]. The goal of the second part of

the thesis is to present a novel technique for analyzing Lanczos methods for approx-

imating matrix exponentials, which are based on recent results on decay of matrix

function of banded matrices. We also propose an inverse Lanczos algorithm, which

may be competitive in some situation. A comparative study, both theoretically and

numerically, will be carried out for several Lanczos based methods.

The remainder of this thesis is organized as follows.

Chapter 2 reviews the basic background materials which will be used in the later

chapters. In particular, section 2.1 introduces the single and multiple vector iteration
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methods; section 2.2 covers the Krylov subspace methods; section 2.3 presents the

Jacobi-Davidson method. Since GMRES method is used in solving the linear sys-

tem of both the Jacobi-Davidson method and the inexact inverse subspace iteration

method in chapter 3, we present it as a separate subsection in section 2.4. Section

2.5 introduces decay bound for matrix functions that are used in Chapter 4.

In Chapter 3, we present an inexact inverse subspace iteration method for com-

puting a few smallest eigenpairs of the generalized eigenvalue problem Ax = λBx. In

section 3.1 we first introduce the inexact inverse subspace iteration method. Section

3.2 analyzes the convergence rate of the approximate subspace generated by the inex-

act inverse subspace iteration algorithm and how the accuracy in the inner iteration

influences the convergence rate of the outer iteration. In section 3.3, we discuss the

convergence of the block of vectors computed, or the basis of the subspace generated.

With a scaling to fix the maximum entry of each column of Xk to be positive, the

convergence of the residual of the inexact inverse subspace iteration algorithm has

the same rate as the inner iteration threshold. In section 3.4, numerical examples

are given to verify the theoretical results and demonstrate competitiveness of the

method.

Chapter 4 is devoted to computing the product of a matrix exponential and a

vector by using the Lanczos methods. In section 4.1, we start out with the standard

Lanczos approximation to matrix exponentials, with a posterior and a priori error

bounds. In section 4.2, we propose inverse Lanczos approximation method to ap-

proximate e−τAv and discuss a prior and a posterior error bounds to illustrate the

key factors that influence the error. Section 4.3 is devoted to the shift-and-invert

Lanczos approximation. We also give a priori and a posterior error bounds for this

method. Numerical examples are given in section 4.4 to verify the theoretical results

and compare the performances of each of the Lanczos methods when dealing with

a general matrix. In section 4.5 we use all three Lanczos methods to compute the
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system of ordinary differential equations with a time-dependent forcing term. We

compare the performance of three Lanczos methods.

Finally, we present some concluding remarks and future work in Chapter 5.

1.0.1 Notation

Throughout this thesis, we shall use the following notations.

• Rn×m : set of all n×m matrices with entries in R. R is the set of real number

• Cn×m : set of all n × m matrices with entries in C. C is the set of complex

number

• AH : conjugate transpose of A

• AT : transpose of A

• I : identity matrix

• ej : the jth column of the identity matrix.

• A(i:j,k:l) : submatrix of A, consisting of the intersections of rows i to j and

columns k to l, and when i : j is replaced by :, it means all rows. Similar

notations apply for columns

• λmax(A) : the largest eigenvalue of matrix A

• λmin(A) : the smallest eigenvalue of matrix A

• κ(A) : spectral condition number of A

• (u, v) = vHu : inner(dot) product

• ‖A‖2 : 2-norm of matrix A

• ‖x‖2 : 2-norm of vector x

4



• ‖A‖∞ : infinity-norm of matrix A

• ‖x‖∞ : infinity-norm of vector x

• argmin y‖f(y)‖2 : the value of y at which ‖f(y)‖2 is minimized

• max {x} : the maximal element of vector x

Copyright c© Ping Zhang, 2009.
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Chapter 2 Preliminaries

In this chapter, we will present some preliminary materials that will be used in the

later chapter. Most of them can be found in standard texts, [3, 9, 39, 48]. The

outline of this chapter is as follows. In section 2.1, we introduce the classic results

on single and multiple vector iterations method for eigenvalue problem. Krylov sub-

space method is presented in section 2.2. Jacobi-Davidson method and the GMRES

method are discussed in section 2.3. Section 2.1, 2.2 and section 2.3 form theoretical

foundations for our works in chapter 3. Finally section 2.4 presents some concepts

and theoretical results on entry decay of the matrix function.

2.1 Single and multiple vector iterations

2.1.1 Power method

The power method is one of the oldest techniques for finding an eigenvalue and an

eigenvector. It generates the sequence of vectors Akv0 where v0 is some nonzero

initial vector. This sequence of vectors when normalized appropriately converges to

a dominant eigenvector, i.e., an eigenvector associated with the eigenvalue of the

largest modulus. The scaling of the iteration vectors is necessary in order to prevent

over- or underflow. The most commonly used normalization is to ensure that the

largest component of the current iterate is equal to one. The standard algorithm is

as follows:

Algorithm 1. Power Method

Given x0 as the initial guess

For i = 0, 1, 2, . . . until convergence

6



yi+1 = Axi

xi+1 = yi+1/max {yi+1}

µi+1 =
xT

i+1Axi+1

xT
i+1xi+1

;

if ‖yi+1 − µi+1xi‖ ≤ ǫ|µi+1|;

End

Remark. max {y} is a component of the vector y which has the maximum modulus.

By updating xi+1 = yi+1/max {yi+1}, yi+1 is normalized with respect to the ∞−norm.

Theorem 2.1.1. [39] Assume that there is one and only one eigenvalue λ1 of A of

largest modulus and that λ1 is semi-simple. Then either the initial vector x0 has no

component in the eigenvector corresponding to λ1 or the sequence of vectors generated

by Algorithm 1 converges to an eigenvector associated with λ1 and µi+1 converges to

λ1 linearly at the rate

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

where λ2 is the second largest eigenvalue in modulus.

This ratio

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

represents the spectral radius of the linear operator 1
λ1
A restricted

to the subspace that excludes the invariant subspace associated with the dominant

eigenvalue. It is a common situation that the eigenvalues λ1 and λ2 are very close

from one another. As a result convergence may be extremely slow.

2.1.2 Inverse iteration

The inverse iteration method is also called inverse power method. It applies the power

method to A−1 instead of A. The algorithm is as follows:

Algorithm 2. Inverse Iteration Algorithm

Given x0 the initial guess

For i = 0, 1, . . . until convergence

7



yi+1 = (A− σI)−1xi

xi+1 = yi+1/max {yi+1}

µi+1 =
xT

i+1Axi+1

xT
i+1xi+1

;

if ‖Axi+1 − µi+1xi+1‖2 ≤ ǫ|µi|. Stop the iteration.

End

The advantage of inverse iteration combined with shift over the power method

is the ability to converge to any desired eigenvalue. By choosing a shift close to

a desired eigenvalue, inverse iteration can converge very quickly. This method is

particularly effective when we have a good approximation to an eigenvalue and only

want to compute this eigenvalue and its corresponding eigenvector. However, inverse

iteration does require a factorization of the matrix A− σI, making it less attractive

when this factorization is expensive. Again, the convergence rate can be close to 1 if

the ratio of the first largest eigenvalue and the second largest eigenvalue of (A−σI)−1

in magnitude is close to 1.

2.1.3 Subspace iteration

Subspace iteration is also called orthogonal iteration or simultaneous iteration. It is

a straightforward block generalization of the power method. The QR factorization

is a normalization process that is similar to the normalization used in the power

method. This method is used to calculate p eigenvalues of A that are largest in

absolute value. The convergence rate depends on |λp+1/λp| where λp+1 is the (p+1)st

largest eigenvalue of A in modulus.

Algorithm 3. Subspace Iteration Algorithm

Given orthonormal Q0 the initial guess

8



For k = 0, 1, . . . until convergence

Vk = AQk

Vk = Qk+1Rk+1

End

Although the method is not competitive with other projections methods to be covered

in later sections, but it is very reliable; its implementation is comparatively simple and

easy to use. Moreover, combined with shift-and-invert enhancement or Chebyshev

acceleration, it may be more competitive. So it still is one of the widely used methods

in some applications such as structural engineering. For more details about subspace

iteration, please refer to [39].

2.2 Krylov Subspace Methods

Krylov subspace methods for the approximation of eigenvalues simply apply the

Rayleigh-Ritz method to a Krylov subspace and extract approximations from a sub-

space of the form

Km(A, v) = span {v, Av, A2v, . . . , Am−1v}.

In contrast to subspace iteration, the dimension of the subspace of approximates

increases by one at each step of the approximation process. Each vector u ∈ Km(A, v)

may be represented as u = p(A)v where p is a polynomial of degree less than or equal

to m − 1. Of course, the dimension of the Krylov space depends on the initial

vector v; namely, if v is an eigenvector of A, then the Krylov space Km(A, v) has

dimension one, regardless of the value of m. Furthermore, the dimension of the

Krylov subspace Km(A, v) is always less than or equal to the degree of the minimal

polynomial of v with respect to A. It should also be pointed out that the basis

{v, Av, A2v, ..., Am−1v} is never used in practice since the vectors become increasingly

9



dependent, as the sequence {Aiv}∞i=0 converges to the dominant eigenvector for most

choices of v. Instead, the Arnoldi process for non-Hermitian matrices or the Lanczos

process for Hermitian matrices is used to develop an orthonormal basis of the Krylov

subspace Km(A, v) with respect to a certain inner product. Once a suitable basis Qm

is constructed and the Rayleigh-Ritz projection Am is formed, Ritz values and Ritz

vectors must be extracted.

2.2.1 The Arnoldi Process

Arnoldi’s method is an orthogonal projection method onto Km for general non-

Hermitian matrices. The procedure was introduced in 1951 as a means of reducing a

dense matrix into Hessenberg form. Arnoldi introduced this method precisely in this

manner and he hinted that the process could give good approximations to some eigen-

values if stopped before completion. It was later discovered that this strategy lead to

a good technique for approximating eigenvalues of large sparse matrices. Given an in-

ner product, 〈·, ·〉, the Arnoldi process develops an orthonormal basis {v1, v2, . . . , vm}

of the Krylov subspace Km(A, x). Each vector vj+1, 1 ≤ j ≤ m is generated by the

following recurrence

hj+1,jvj+1 = Avj −
∑

1≤k≤j

hkjvk

where hij = 〈vi, Avj〉. Letting Hm be the square matrix with entries hij and Vm be

the matrix whose jth column is vj , we may rewrite the above equation to obtain

AVm = VmHm + hm+1,mvm+1e
H
m

where em is the mth canonical basis vector of Rm. By construction, Vm is orthogonal

with respect to the inner product 〈·, ·〉 and Hm is upper Hessenberg.

To see that the columns of Vm produced by the Arnoldi process do indeed form

a basis for Km(A, v) we proceed inductively. Clearly v1 forms a basis for K1(A, v).

Let us assume that vj 6= 0 for j : 1 ≤ j ≤ m. Suppose now that Vj = (v1, . . . , vj)

10



forms a basis for Kj(A, v), and note that vj+1 is defined as a linear combination of the

columns of Vj and the vector Avj. It is easy to see therefore that span {v1, ..., vj+1} ⊆

Kj+1(A, v).Now, since the collection {v1, ..., vj+1} is orthonormal with respect to some

inner product, then the collection is linearly independent and so it must follow that

span {v1, ..., vj+1} = Kj+1(A, v).

When hj+1,j = 0 for j : 1 ≤ j ≤ m, the Arnoldi process is said to suffer breakdown.

Encountering such a breakdown is fortuitous as it implies that the Krylov subspace is

A−invariant. Ritz values extracted from the Krylov subspace will therefore be exact

eigenvalues. Because of the explicit orthogonalization of each new Arnoldi vector

against all previous Arnoldi vectors, the Arnoldi process can be computationally

expensive. In exact arithmetic, one variant of the algorithm is as follows:

Algorithm 4. Arnoldi Algorithm

Choose a vector v1 of norm 1.

For j = 1, . . . , m compute:

hij = (Avj, vi), i = 1, 2, . . . , j,

wj = Avj −
∑j

i=1 hijvi,

hj+1,j = ‖wj‖2, if hj+1,j = 0 stop

vj+1 = wj/hj+1,j.

Compute the eigenpairs (λj, uj) of Hj , and select r Ritz pairs (λj , xj),where

xj = Vjuj, as approximations to the desired eigenpairs.

End

11



2.2.2 The Lanczos Process

The Hermitian Lanczos algorithm can be viewed as a simplification of Arnoldi’s

method for the particular case when the matrix is Hermitian. The principle of the

method is therefore the same in that it is a projection technique on a Krylov sub-

space. On the theoretical side there is also much more that can be said on the Lanczos

algorithm than there is on Arnoldi’s method due to the simplification. Specifically,

we have the following theorem.

Theorem 2.2.1. Assume that Arnoldi’s method is applied to a Hermitian matrix A.

Then the coefficients hij generated by the algorithm are real and such that

hij = 0 for 1 ≤ i < j − 1

hj,j+1 = hj+1,j j = 1, 2, . . . , m

In other words the matrix Hm obtained from the Arnoldi process is real, tridiago-

nal, and symmetric.

The standard notation used to describe the Lanczos algorithm is obtained by

setting

αj = hjj , βj = hj−1,j,

which leads to the following form of the modified Gram Schmidt variant of Arnoldi’s

method.

Algorithm 5. Lanczos Algorithm

v1 = b/‖b‖2, β1 = 0, v0 = 0

For j = 1 to k

z = Avj − βjvj−1

αj = vT
j z
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z = z − αjvj;

βj+1 = ‖z‖2

if βj = 0 quit

vj+1 = z/βj+1

Compute the eigenpairs (λj, uj) of Tj, and select r Ritz pairs (λj , xj),where

xj = Vjuj, as approximations to the desired eigenpairs.

End

Proposition 2.2.2. Denote by Vm the n×m matrix with column vectors v1, . . . , vm

and by Tm the m × m tridiagonal matrix whose nonzero entries are defined by the

algorithm. Then the following relations hold:

AVm = VmTm + βm+1,mvm+1e
T
m,

V T
mAVm = Tm

Throughout this work we will refer to the method of generating a basis of a Krylov

subspace by the name Lanczos if the basis may be generated by a short (three-term)

recurrence. Reference to the Arnoldi process will be reserved for a method relying on

a long recurrence for the generation of a basis of a Krylov subspace. An important

and rather surprising property is that the above simple algorithm guarantees, at

least in exact arithmetic, that the vectors vi, i = 1, 2, . . . , are orthogonal. In reality,

exact orthogonality of these vectors is only observed at the beginning of the process.

Ultimately, the vi’s start losing their global orthogonality very rapidly. There are

some ways to recover the orthogonality, like partial or selective orthogonalization,etc.

In fact, the process terminates after k steps, if the starting vector has components only

in the directions of eigenvector corresponding to k different eigenvalues. In the case
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of finite termination, we have reduced the matrix A to tridiagonal form with respect

to an invariant subspace, and in fact, Lanczos’s algorithm was initially viewed as a

finite reduction algorithm for A.

2.3 Jacobi-Davidson methods

2.3.1 Jacobi-Davidson method

The Jacobi-Davidson method is a Rayleigh Ritz method for solving the eigenvalue

problem of large-scale sparse matrices. It is particularly competitive for seeking inte-

rior eigenvalues. There are two stages involved in this method,i.e. subspace extraction

and subspace expansion. The subspace extraction stage applies Galerkin approach

to extract the Ritz vectors of A. And then computing the orthogonal correction to

expend the subspace. Specifically, the two-step procedure is as follows: First, the

Galerkin condition is

AVms− θVms ⊥ {v1, . . . , vm}

which leads to solving the reduce system

V T
mAVms− θs = 0,

where Vm represents the matrix with columns v1 to vm which is the orthonormal

basis for the subspace. The solution of this reduced system (θm
j , u

m
j = Vms

m
j ) are

called the Ritz values and Ritz vectors of A with respect to the subspace spanned

by the columns of Vm. These Ritz pairs are approximations for eigenpairs of A.

While different from the way in which the Krylov subspace method construct the

orthonormal basis vectors, the Jacobi-Davidson method computes the orthogonal

correction t for um
j so that

A(um
j + t) = λ(um

j + t)
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where t ⊥ um
j . If we restrict the operator A to the subspace orthogonal to um

j , we get

(I − um
j (um

j )T )(A− λI)(I − um
j (um

j )T )t = −(A− θm
j I)u

m
j .

In the above expression, λ is replaced by its approximation θm
j since the exact λ is

unknown in practical situations. Then we solve the following correction equation only

approximately

(I − um
j (um

j )T )(A− θm
j I)(I − um

j (um
j )T )t = −(A− θm

j I)u
m
j .

and take t̃m for the expansion of the subspace. Notice that rm
j ⊥ {v1, . . . , vm} and

rm
j ⊥ um

j , so the Jacobi-Davidson correction equation represents a consistent linear

system. The linear system can be solved with a preconditioner like the generalized

minimal residual(GMRES). The preconditioner is also restricted to the subspace or-

thogonal to um
j , which means that we will need to work with

P̃ = (I − um
j (um

j )T )P (I − um
j (um

j )T ),

and the linear system becomes P̃−1Ãv = z, where

Ã = (I − um
j (um

j )T )(A− θm
j I)(I − um

j (um
j )T ).

Solving the above linear system only takes a handful of more simple operations, yet

the acceleration of the algorithm is tremendous. For more details about Jacobi-

Davidson method, see the literature [3, 42, 43, 48]. In the following, we state the

Jacobi-Davidson algorithm.

Algorithm 6. Jacobi-Davidson Algorithm

Start with t = v0, starting guess

For m = 1, . . . ,

For i = 1, . . . , m− 1
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t = t− (vT
i t)vi

End

vm = t/‖t‖2, v
A
m = Avm

For i = 1, . . . , m− 1

Mi,m = vT
i v

A
m

Mm,i = vT
mv

A
i

End

Mm,m = vT
mv

A
m

Compute the largest eigenpair Ms = θs of the m by m matrix M , (‖s‖2 = 1)

u = V s with V = [v1, . . . , vm]

uA = V As with V A = [vA
1 , . . . , v

A
m]

r = uA − θu

if (‖r‖2 ≤ ǫ), λ̃ = θ, x̃ = u, then stop the iteration.

Solve t approximately from (I − uuT )(A− θI)(I − uuT )t = −r with t ⊥ u.

End

2.4 GMRES method

The generalized minimal residual method(GMRES), as an extension of minimal resid-

ual method(MINRES), is a projection method to solve nonsymmetric linear systems.

It generates a sequence of orthogonal vectors, but in the absence of symmetry this

can no longer be done with short recurrence; instead, all previously computed vec-

tors in the orthogonal sequence have to be retained. The GMRES algorithm has the
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property that this residual norm can be computed without the iterate having been

formed. Thus, the expensive action of forming the iterate can be postponed until the

residual norm is deemed small enough. In exact arithmetic, like any orthogonalizing

Krylov subspace method, the GMRES will converge in no more than n steps if no

restarts are used, where n is the size of the matrix.

Let the Arnoldi process be

AVm = VmHm + hm+1,mvm+1e
T
m = Vm+1H̄m,

where H̄ =







Hm

hm+1,me
T
m






. Any vector x in x0 +Km can be written as

x = x0 + Vmy

where y is an m-dimensional vector. Defining

J(y) = ‖b− Ax‖2 = ‖b− A(x0 + Vmy)‖2

the residual. From the Arnoldi process, we have

b− Ax = b− A(x0 + Vmy) = Vm+1(βe1 − H̄my)

where β = ‖r0‖2. Since the column vectors of Vm+1 are orthonormal, then

J(y) = ‖b−A(x0 + Vmy)‖2 = ‖βe1 − H̄my‖2.

The GMRES approximation is the unique vector of x0 +Km which minimizes J(y) =

‖b−Ax‖2. And this approximation can be obtained quite simply as xm = x0 +Vmym

where ym minimizes the function J(y) = ‖βe1 − H̄my‖2, i.e.

xm = x0 + Vmym

where ym = argmin y‖βe1 − H̄my‖2. The minimizer ym is inexpensive to compute

since it requires the solution of an (m + 1) × m least-squares problem where m is

typically small. This gives the following algorithm.

Algorithm 7. GMRES Algorithm
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Compute r0 = b− Ax0, β := ‖r0‖2, and v1 := r0/β

Set H̄m = {hij}1≤i≤m+1 ∈ R(m+1)×m. H̄m = 0.

For j=1,2,. . . , m Do:

Compute wj := Avj

For i=1,. . . , j Do:

hij := (wj , vi)

wj := wj − hijvi

EndDo

hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to the last step

vj+1 = wj/hj+1,j

EndDo

Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.

If the algorithm breaks down, the only possibilities are in the Arnoldi loop, when

v̂j+1 = 0, i.e., when hj+1,j = 0 at a given step j. In this situation, the algorithm stops

because the next Arnoldi vector can not be generated. However, in this situation, the

residual vector is zero, i.e., the algorithm will deliver the exact solution at this step.

In fact the converse is also true: If the algorithm stops at step j with b − Axj = 0,

then hj+1,j = 0.

The GMRES algorithm becomes impractical whenm is large because of the growth

of memory and computational requirements as m increases. One can use restarting

on the Arnoldi orthogonalization. A well known difficulty with the restarted GMRES

algorithm is that it can stagnate when the matrix is not positive definite. The full

GMRES algorithm is guaranteed to converge in at most n steps, but this would be
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impractical if there were many steps required for convergence. A preconditioner for

the linear system can be used to reduce the number of steps, or a better preconditioner

if one is already in use. For more information of GMRES, please refer to Saad [40].

In chapter 3, we will use the GMRES algorithm to solve the linear system equation

of the inner iteration of the inexact subspace inner-outer iteration method.

2.5 Matrix functions

In this section we consider the decay of the elements away from the diagonal of

certain function of bounded matrices. These results will be used in our error bounds of

approximation of matrix exponentials in chapter 3. Several papers already established

results on this topic [5, 7, 10, 11]. We will present results of Benzi & Golub [4].

Let Pk be the set of all polynomials with real coefficients and degree less than or

equal to k. For a continuous function F on [−1, 1], we consider approximating F by

a polynomial p ∈ Pk. The best approximation error is defined as

Ek(F ) = inf{||F − p||∞ : p ∈ Pk}

where

||F − p||∞ = max
−1≤x≤1

|F (x) − p(x)|.

Bernstein [6] investigated the asymptotic behavior of the quantity Ek(F ) for a func-

tion F analytic on a domain which contains the interval [−1, 1]. His result states that

this error decays to zero exponentially as k → ∞, and shows how to estimate the

decay rate.

If F is analytic on a simply connected region of the complex plane containing the

interval [−1, 1], there exist ellipses with foci in -1 and 1 such that F is analytic in

their interiors. Let α > 1 and β > 0 be the half axes of such an ellipse, α > β. From

the identity
√

α2 − β2 = 1
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we find that

α− β =
1

α + β

and the ellipse is completely specified once the number

χ = α + β

is known, hence we may denote it by ǫχ. Furthermore, note that β is specified once

α is, because β =
√
α2 − 1.

Theorem 2.5.1. Let the function F be analytic in the interior of the ellipse ǫχ, χ > 1,

and continuous on ǫχ. In addition, suppose F (z) is real for real z. Then

Ek(F ) ≤ 2M(χ)

χk(χ− 1)
(2.1)

where

M(χ) = max
z∈ǫχ

|F (z)|.

It is convenient to introduce now the concept of regularity ellipse of F , as in [31].

It is the ellipse ǫχ̄ where

χ̄ = χ̄(F ) = sup{χ : F is analytic in the interior of ǫχ}.

Evidently, it is important to study the behavior of the right-hand side of (2.1)

as χ varies between 1 and χ̄. In particular, we see that the decay rate may become

arbitrarily slow as χ→ 1 (from the right). On the other hand, as χ increases, so does

the rate of decay, as long as the quantity M(χ) remains bounded.

Letting

K0 =
2χM(χ)

χ− 1
, q =

1

χ
< 1,

we can rewrite the error bound (2.1) as

Ek(F ) ≤ K0q
k+1.
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Let m be a nonnegative, even integer. A symmetric matrix B = (bij) is called

m−banded if

bij = 0 when |i− j| > m

2
.

Consider matrix function F (B), which is defined if σ(B) ⊆ ǫχ̄. we have the following

exponentially decaying bound for the entries of F (B).

Theorem 2.5.2. Let F be an analytic function in the interior of the ellipse εχ, χ > 1

and continuous on εχ. Let B be symmetric, m-banded, and such that [−1, 1] is the

smallest interval containing σ(B), the spectrum of B. Let ρ = q
2
m , q =

1

χ
and

K = max {K0, ‖F (B)‖2}

with K0 = χM(χ)
χ−1

where M(χ) = maxz∈εχ
|F (z)|, Then we have

|(F (B))ij| ≤ Kρ|i−j|.

Remark. As |i − j| increases, matrix entries away from the diagonal exhibit expo-

nentially fast decay.

Copyright c© Ping Zhang, 2009.
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Chapter 3 Inexact Inverse Subspace Iteration For Generalized Eigenvalue

Problems

In this chapter, we are interested in computing a few eigenpairs of the generalized

eigenvalue problem

Ax = λBx, (3.1)

where A,B are nonsingular n × n matrices and λ ∈ C and x ∈ Cn. The eigenvalues

sought may be those in the extreme part of the spectrum or in the interior of spec-

trum near certain given point. These types of problems arise in many scientific and

engineering applications. In such applications the matrices involved are often large

and sparse.

Traditionally, shift-and-invert transformations are combined with the classic eigen-

problem solvers in order to speed up the convergence. However, due to the inefficiency

of the factorization of large and sparse matrices for solving a linear system at each

iterative step, iterative methods (inner iteration) may be employed to solve the linear

systems inexactly, which leads to inner-outer iterations. But the inner iteration pro-

duces only approximate solutions and is effectively equivalent to inexact application

of matrix operators. This may affect the convergence behavior (or convergence speed)

of the outer iteration as compared with the exact case. Related to this, a challenging

problem in implementations lies in how to choose an appropriate stopping threshold

for the iterative method (inner iteration) so that the convergence characteristic of the

outer iteration can be preserved. This is a problem that has been discussed for several

methods, such as inexact inverse iteration [26], inexact Krylov subspace method [20],

the rational Arnoldi algorithm [27], inexact Rayleigh Quotient-Type methods [41]

and the Jacobi-Davidson method [44]. These work demonstrate that the inner-outer

iteration technique may be an effective way for implementing some of these methods
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for solving the large scale eigenvalue problem.

The classical inverse iteration has been shown to be particularly robust with re-

spect to inexact application of the matrix operator (i.e. approximate solutions of

inner linear systems). In [18], it was shown that solving inner linear systems to cer-

tain low accuracy is sufficient to recover the convergence characteristic of the outer

iteration. This robust convergence characteristic makes the method attractive for the

problems where inverting A or a shifted matrix A − σB is difficult. However, the

inverse iteration can only handle one simple eigenpair at a time and has slow con-

vergence if the eigenvalue sought is clustered. The subspace iteration (again applied

with inverse or shift-and-invert) is a block generalization that can compute several

eigenvalues. By simultaneously computing several eigenvalues together, it can handle

multiple or clustered eigenvalues. Because of its simplicity, the classical subspace

iteration is still widely used in certain applications such as structure engineering.

However, its behavior under inexact matrix application is not known.

In this chapter, we develop a block generalization of the inexact inverse iteration

method, i.e., the inexact inverse subspace iteration to simultaneously compute several

eigenvalues of the generalized eigenvalue problem Ax = λBx. We present a theoretical

analysis demonstrating how the accuracy of the solutions in the inner iterations affects

the outer iteration in the inexact case. Inexact inverse subspace iteration has also

been considered in [32] which is based on different approach using so called tuned

preconditioning to deal with inexact solution. The analysis is independent of the

choice of the inner iterative solver.

The outline of the chapter is as follows. In Section 3.1, we set the notation

and introduce the inexact inverse subspace iteration algorithm. Section 3.2 analyzes

convergence of the space to the spectral space sought. In Section 3.3, we further

discuss the convergence of the basis vectors of the subspace and their implication

with respect to convergence of a residual. Finally in Section 3.4 we present numerical
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tests to illustrate the theoretical results and provide some comparison to the Jacobi-

Davidson algorithm, one of the most effective methods.

3.1 Inexact Inverse Subspace Iteration

We consider solving the generalized eigenvalue problem

Ax = λBx.

with the following standard subspace iterations. (A is typically replaced by a shifted

matrix A − σB in the shift-and-invert transformation when the eigenvalues near σ

are sought.)

Algorithm 1. Inverse Subspace Iteration:

Given orthonormal X0 ∈ Cn×p;

For k = 0, 1, 2 . . . , until convergence

Yk+1 = A−1BXk;

Yk+1 = Xk+1Rk+1. (QR-factorization)

End

Remark 1. Convergence of Algorithm 1 can be tested using the residual ‖Yk+1 −

Xk(X
H
k Yk+1)‖. For example, if ‖Yk+1 −Xk(X

H
k Yk+1)‖ ≤ ǫ, where ǫ is the threshold,

we stop the iteration.

The inverse subspace iteration above computes eigenvalues of smallest magnitude.

When the eigenvalues sought are not well separated, a shift-and-invert transforma-

tion can be used as a preconditioning technique for the spectral enhancement of these

iterative methods. On the other hand, when the eigenvalues in the interior of the
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spectrum near some point σ are sought, one can again use the shift-and-invert trans-

formation. But the use of the inverse of the matrix A (or shifted matrix A − σB)

limits problems to those of moderate size because of the factorization required. For

large scale problems, factorization of the matrix may be either impractical or inef-

ficient. Sometimes A is not even explicitly available in some applications. In these

cases, an iterative method can be used to solve the linear systems AYk+1 = BXk,

called inner iterations, while the subspace iteration itself is called outer iteration.

At each step of the outer iteration, when solving for Yk+1 in AYk+1 = BXk, Yk

can be used as an initial approximation. Then we solve

ADk = BXk −AYk (3.2)

approximately, i.e. find Dk such that

Ek := (BXk − AYk) − ADk

is smaller than some threshold, and use Dk to obtain

Yk+1 = Yk +Dk.

The main purpose of this part of the work is to analyze the convergence characteristic

of subspace iteration under inexact solves.

Here, we consider using a threshold ǫk, i.e., we shall solve (3.2) such that

‖Ek‖2 < ǫk. (3.3)

Obviously, the amount of work required to solve (3.2) is proportional to
‖BXk − AYk‖

ǫk
.

Our analysis later leads to the use of linearly decreasing ǫk, i.e., ǫk = ark for some

positive a and r. However, as we shall see, even though ǫk is decreasing, the amount

of work does not increase as ‖BXk − AYk‖ will be decreasing as well. We state the

inexact inverse subspace iteration as follows.

Algorithm 2. Inexact Inverse Subspace Iteration:
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Given orthonormal X0 ∈ C
n×p; set Y0 = 0

For k = 0, 1, . . . until convergence

Zk = BXk − AYk;

Solve ADk = Zk such that Ek = ADk − Zk satisfies (3.3);

Yk+1 = Yk +Dk;

Yk+1 = Xk+1Rk+1; (QR factorization)

For j = 1, . . . , p

[ ymax,imax ] = max( abs (Xk+1(:, j)));

Xk+1(:, j) = sign (Xk+1( imax , j))) ∗Xk+1(:, j);

Rk+1(j, :) = sign (Xk+1( imax , j)) ∗Rk+1(j, :).

End

End

Remark. We have used MATLAB notation in the above algorithm. Namely, the

max(v) function finds the maximum absolute value of v and its index. Then the

construction of Xk+1 from Xk+1 in the algorithm is to scale the columns of Xk+1 so

that its maximum entry in absolute value is positive. This will be critical to ensure

convergence of the column vectors in Xk+1 and hence ‖BXk − AYk‖. Without such

scaling, columns of Xk converges only in direction.

Remark. Throughout, we shall assume that ǫk ≤ ‖B−1‖−1
2 , which will ensure that

Yk constructed has full column rank; see Lemma 3.2.2 below. In this way, QR fac-

torization produces n× p X̄k+1 and hence Xk+1 with orthonormal columns.
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3.2 Convergence Analysis

We now discuss the convergence properties of the inexact inverse subspace algorithm.

Let λ1, λ2, . . . , λn be the eigenvalues of B−1A ordered such that

0 < |λ1| ≤ . . . ≤ |λp| < |λp+1| ≤ . . . ≤ |λn|

and v1, . . . , vn be the corresponding eigenvectors. Suppose that we are interested in

computing the p smallest eigenpairs. Throughout this work, we assume that B−1A

is diagonalizable.

Let V = [v1, . . . , vn], U = (BV )−H , then

UHA = ΛUHB, AV = BV Λ,

where

Λ =







Λ1 0

0 Λ2






, Λ1 =













λ1

. . .

λp













, and Λ2 =













λp+1

. . .

λn













.

Let U = (U1, U2), V = (V1, V2), where U1 ∈ Cn×p, U2 ∈ Cn×(n−p), V1 ∈ Cn×p, V2 ∈

Cn×(n−p), then

UH
i A = ΛiU

H
i B, AVi = BViΛi.

Consider Algorithm 2. Define X
(i)
k = UH

i BXk. Since UH
i BVj = δijI, U

H
i AVj = δijΛi,

where δij is the Kronecker symbol, then

Xk =

2
∑

i=1

ViX
(i)
k .

If X
(1)
k is invertible, we define

tk := ||X(2)
k (X

(1)
k )−1||2

Clearly, tk is a measure of the approximation of the column space of Xk to the column

space of V1. Indeed, the following proposition relates tk to other measures of subspace

approximation.
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Proposition 3.2.1. Assume that X
(1)
k is invertible and tk is defined as above. Then

tk
||V −1||2

≤ ||Xk(X
(1)
k )−1 − V1||2 ≤ ||V ||2tk (3.4)

and

sin ∠(Xk,V1) ≤ ‖V ‖2‖R−1‖2tk

where ∠(Xk,V1) is the largest canonical angle between Xk = R(Xk) and V1 = R(V1)

and V1 = WR is the QR factorization of V1.

Proof. From Xk = V1X
(1)
k + V2X

(2)
k , we have

Xk(X
(1)
k )−1 = V1 + V2X

(2)
k (X

(1)
k )−1.

Then

||Xk(X
(1)
k )−1 − V1||2 = ||V2X

(2)
k (X

(1)
k )−1||2 ≤ ||V2||2||X(2)

k (X
(1)
k )−1||2 ≤ ||V ||2tk

and

||V2X
(2)
k (X

(1)
k )−1||2 = ||V







0

X
(2)
k (X

(1)
k )−1






||2 ≥

||X(2)
k (X

(1)
k )−1||2

||V −1||2
=

tk
||V −1||2

.

(3.4) is proved.

Let X⊥
k be such that (Xk, X

⊥
k ) is an orthogonal matrix. Then the sine of the

largest canonical angle between Xk = R(Xk) and V1 = R(V1) is (see [21] for the

definition)

sin ∠(Xk,V1) = ‖(X⊥
k )HW‖2,

Then we have

sin ∠(Xk,V1) = ‖(X⊥
k )H(W −Xk(X

(1)
k )−1R−1)‖2

= ‖(X⊥
k )H(V2X

(2)
k (X

(1)
k )−1)R−1‖2

≤ ‖V ‖2‖R−1‖2tk

Next we discuss the convergence of tk and the condition of ǫk for tk to be bounded.

28



Lemma 3.2.2. For Algorithm 2, if ‖Ek‖2 < ‖B−1‖−1
2 , then Yk+1 has full column

rank.

Proof. From the algorithm, we know that AYk+1 = (BXk + Ek). Therefore

XH
k B

−1AYk+1 = I +XH
k B

−1Ek.

Since

‖XH
k B

−1Ek‖2 ≤ ‖B−1‖2‖Ek‖2 < 1,

XH
k B

−1AYk+1 is invertible. Thus Yk+1 has full rank.

From now on, we shall assume that ǫk ≤ ‖B−1‖−1
2 . Then, all Yk will have full

column rank.

Lemma 3.2.3. For Algorithm 2, if X
(1)
k is invertible, then

‖(X(1)
k )−1‖2 ≤ ‖V ‖2(1 + tk).

Proof. Recognizing that

Xk = V1X
(1)
k + V2X

(2)
k and ‖(X(1)

k )−1‖2 = ‖Xk(X
(1)
k )−1‖2,

the conclusion follows directly from the following

‖(X(1)
k )−1‖2 = ‖V1 + V2X

(2)
k (X

(1)
k )−1‖2 ≤ ‖V1‖2 + tk‖V2‖2 ≤ (1 + tk)‖V ‖2.

Lemma 3.2.4. Let ρ =
|λp|
|λp+1|

< 1 and X
(1)
k , X

(1)
k+1 be non-singular. If ‖V ‖2‖U‖2(1+

tk)ǫk < 1, then

tk+1 ≤ ρtk +
ρ‖V ‖2‖U‖2(1 + tk)

2ǫk
1 − ‖V ‖2‖U‖2(1 + tk)ǫk

Proof. From the algorithm we know that AYk+1 = BXk +Ek and Yk+1 = Xk+1Rk+1.

Since Yk+1 has full column rank, Rk+1 is invertible. Then

AXk+1 = BXkR
−1
k+1 + EkR

−1
k+1.
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Multiplying UH
i on the equation above, we have

UH
i AXk+1 = UH

i BXkR
−1
k+1 + UH

i EkR
−1
k+1.

Utilizing the definition of X
(i)
k and the relation UH

i A = ΛiU
H
i B, we have the following

two equations:

ΛiU
H
i BXk+1 = X

(i)
k R−1

k+1 + UH
i EkR

−1
k+1,

X
(i)
k+1 = Λ−1

i X
(i)
k R−1

k+1 + Λ−1
i ∆

(i)
k (3.5)

where ∆
(i)
k = UH

i EkR
−1
k+1. We therefore have

X
(2)
k+1(X

(1)
k+1)

−1

= (Λ−1
2 X

(2)
k R−1

k+1 + Λ−1
2 ∆

(2)
k )(X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k R−1

k+1(X
(1)
k+1)

−1 + Λ−1
2 ∆

(2)
k (X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k ((X

(1)
k )−1Λ1)(Λ

−1
1 X

(1)
k R−1

k+1)(X
(1)
k+1)

−1 + Λ−1
2 ∆

(2)
k (X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1(X

(1)
k+1 − Λ−1

1 ∆
(1)
k )(X

(1)
k+1)

−1 + Λ−1
2 ∆

(2)
k (X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1 − Λ−1

2 X
(2)
k (X

(1)
k )−1∆

(1)
k (X

(1)
k+1)

−1 + Λ−1
2 ∆

(2)
k (X

(1)
k+1)

−1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1 −

(

Λ−1
2 X

(2)
k (X

(1)
k )−1∆

(1)
k − Λ−1

2 ∆
(2)
k

)

(X
(1)
k+1)

−1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1

−
(

Λ−1
2 X

(2)
k (X

(1)
k )−1∆

(1)
k − Λ−1

2 ∆
(2)
k

)

(Λ−1
1 X

(1)
k R−1

k+1 + Λ−1
1 ∆

(1)
k )−1

Since ∆
(i)
k = UH

i EkR
−1
k+1 and

(Λ−1
1 X

(1)
k R−1

k+1 + Λ−1
1 ∆

(1)
k )−1 =

(

(I + ∆
(1)
k Rk+1(X

(1)
k )−1)X

(1)
k R−1

k+1

)−1

Λ1

= Rk+1(X
(1)
k )−1(I + ∆

(1)
k Rk+1(X

(1)
k )−1)−1Λ1
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Then we further simplify the expression X
(2)
k+1(X

(1)
k+1)

−1 to

X
(2)
k+1(X

(1)
k+1)

−1 = Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1

−
(

Λ−1
2 X

(2)
k (X

(1)
k )−1UH

1 EkR
−1
k+1 − Λ−1

2 UH
2 EkR

−1
k+1

)

×Rk+1(X
(1)
k )−1(I + ∆

(1)
k Rk+1(X

(1)
k )−1)−1Λ1

= Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1

−
(

Λ−1
2 X

(2)
k (X

(1)
k )−1UH

1 − Λ−1
2 UH

2

)

×Ek(X
(1)
k )−1(I + UH

1 Ek(X
(1)
k )−1)−1Λ1

Taking 2-norm of the above equation at both sides and using the condition

‖V ‖2‖U‖2(1 + tk)ǫk < 1,

we get the upper bound of tk+1.

tk+1 = ||X(2)
k+1(X

(1)
k+1)

−1||2

≤ ‖Λ−1
2 X

(2)
k (X

(1)
k )−1Λ1‖2 +

(

‖Λ−1
2 ‖2‖X(2)

k (X
(1)
k )−1‖2‖UH

1 ‖2 + ‖Λ−1
2 ‖2‖UH

2 ‖2

)

‖Ek‖2‖(X(1)
k )−1‖2‖(I + UH

1 Ek(X
(1)
k )−1)−1‖2‖Λ1‖2

≤ ρtk +
(

‖Λ−1
2 ‖2tk + ‖Λ−1

2 ‖2

)

‖U‖2‖Ek‖2

×‖(X(1)
k )−1‖2‖Λ1‖2‖(I + UH

1 Ek(X
(1)
k )−1‖2

≤ ρtk + (tk + 1)‖Λ−1
2 ‖2

‖U‖2‖Ek‖2‖(X(1)
k )−1‖2‖Λ1‖2

1 − ‖U‖2‖Ek‖2‖(X(1)
k )−1‖2

Also by Lemma 3.2.3, we know that ‖(X(1)
k )−1‖2 ≤ ‖V ‖2(1 + tk). From this, we

finally derive the bound as follows.

tk+1 ≤ ρtk +
ρ‖V ‖2‖U‖2(1 + tk)

2ǫk
1 − ‖V ‖2‖U‖2(1 + tk)ǫk

.

Lemma 3.2.5. Assume that X0 is such that X
(1)
0 is invertible. If

ǫk ≤ ǫ :=
(1 − ρ)t0

‖V ‖2‖U‖2(1 + t0)(ρ+ t0)
,

for all k, then tk ≤ t0.
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Proof. We prove tk ≤ t0 by induction. Supposing X
(1)
k is nonsingular and tk ≤ t0

is true for some k, we show that X
(1)
k+1 is nonsingular and tk+1 ≤ t0. First note that

from ǫk ≤ ǫ, we have

‖V ‖2‖U‖2(1 + tk)ǫk ≤ ‖V ‖2‖U‖2(1 + t0)ǫ =
(1 − ρ)t0
ρ+ t0

< 1.

We discuss in two cases.

Case I: If X
(1)
k+1 is nonsingular, then by Lemma 3.2.4, we have

tk+1 ≤ ρtk +
ρ‖V ‖2‖U‖2(1 + tk)

2ǫk
1 − ‖V ‖2‖U‖2(1 + tk)ǫk

≤ ρt0 +
ρ‖V ‖2‖U‖2(1 + t0)

2ǫ

1 − ‖V ‖2‖U‖2(1 + t0)ǫ

= ρt0 +

ρ(1 + t0)
(1 − ρ)t0
ρ+ t0

1 − (1 − ρ)t0
ρ+ t0

= t0

Case II: If X
(1)
k+1 is singular, then let

Ỹk+1 = Yk+1 + δV1Rk+1 + µV2







I

0






Rk+1

where Yk+1 = Xk+1Rk+1 and δ, µ > 0 are two parameters. Then we have

AỸk+1 = BXk + Ek + δAV1Rk+1 + µAV2







I

0






Rk+1 = BXk + Ẽk

where Ẽk = Ek + δAV1Rk+1 + µAV2







I

0






Rk+1. Since ‖Ek‖2 < ǫk, we have

‖Ẽk‖2 < ǫk for sufficiently small δ and µ. Let Ỹk+1 = X̃k+1R̃k+1 be the QR fac-

torization and let X̃k+1 = V1X̃
(1)
k+1+V2X̃

(2)
k+1. Then X̃k+1 satisfies the same condi-

tion that Xk+1 does and the bound on tk+1 applies to t̃k+1 := ‖X̃(2)
k+1(X̃

(1)
k+1)

−1‖2
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as well. It follows from

Ỹk+1 = Yk+1 + δV1Rk+1 + µV2







I

0






Rk+1

= [V1(X
(1)
k+1 + δI) + V2(X

(2)
k+1 + µ







I

0






)]Rk+1,

that

X̃
(1)
k+1 = (X

(1)
k+1 + δI)Rk+1R̃

−1
k+1,

and X̃
(2)
k+1 = (X

(2)
k+1 +µ







I

0






)Rk+1R̃

−1
k+1. So X̃

(1)
k+1 is nonsingular for sufficiently

small δ > 0. Then, by case I, we have

t̃k+1 = ‖X̃(2)
k+1

(

X̃
(1)
k+1

)−1

‖2 ≤ t0

for all sufficiently small δ > 0 and µ ≥ 0. However,

X̃
(2)
k+1

(

X̃
(1)
k+1

)−1

= (X
(2)
k+1 + µ







I

0






)(X

(1)
k+1 + δI)−1

is unbounded as δ → 0, because if X
(2)
k+1(X

(1)
k+1 + δI)−1 is unbounded, then t̃k+1

is unbounded by setting µ = 0; and if X
(2)
k+1(X

(1)
k+1 + δI)−1 is bounded, then t̃k+1

is unbounded by setting µ > 0. We have obtained a contradiction. Therefore

X
(1)
k+1 is nonsingular and hence tk+1 ≤ t0. The proof is complete.

We now prove our main result on convergence of tk. We are interested in the case

that ǫk is a linearly decreasing sequence.

Theorem 3.2.6. Assume that X0 is such that X
(1)
0 is invertible. Let ǫk = aγk with

γ < 1 and

a ≤ (1 − ρ)t0
‖V ‖2‖U‖2(1 + t0)(ρ+ t0)

.
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Then we have

tk ≤











ρkt0 + aC
γk − ρk

γ − ρ
, if γ 6= ρ,

ρkt0 + aCkρk−1 if γ = ρ,

where C = ‖V ‖2‖U‖2(1 + t0)(ρ+ t0).

Proof. Since

ǫk ≤ (1 − ρ)t0
‖V ‖2‖U‖2(1 + t0)(ρ+ t0)

,

we have tk ≤ t0 by Lemma 3.2.3. Then,

‖V ‖2‖U‖2(1 + tk)ǫk ≤ (1 − ρ)t0
ρ+ t0

< 1.

It follows from Lemma 3.2.4 that tk+1 ≤ ρtk + Ckǫk where

Ck :=
ρ‖V ‖2‖U‖2(1 + tk)

2

1 − ‖V ‖2‖U‖2(1 + tk)ǫk

≤ ρ‖V ‖2‖U‖2(1 + t0)
2

1 − (1 − ρ)t0
ρ+ t0

≤ ‖V ‖2‖U‖2(1 + t0)(ρ+ t0) = C.

Therefore, tk+1 ≤ ρtk + aCγk. Solving this inequality, the theorem is proved.

The conclusion of the above theorem is that the subspace spanned by Xk, R(Xk),

converges to the spectral subspace R(V1) linearly at the rate of max {ρ, γ}. The

condition on a is to ensure convergence and is clearly not a necessary condition.

An interesting fact is that there is no gain in convergence rate if we choose γ < ρ,

so we shall focus on the case γ > ρ. The following corollary gives a more precise

bound for the constant C and hence for tk at the convergence stage.

Corollary 3.2.7. Let 1 > γ > ρ and ǫk = aγk. Assume that a is chosen such that

tk → 0. Then for sufficiently large k0,

Ck0 =
ρ‖V ‖2‖U‖2(1 + tk0)

2

1 − ‖V ‖2‖U‖2(1 + tk0)ǫk0

∼ ρ‖V ‖2‖U‖2
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and lim sup
tk

aγk−1
≤ ρ(1 − ρ/γ)−1‖V ‖2‖U‖2. Furthermore, for k ≥ k0,

tk ≤ ρk−k0tk0 + aγk0Ck0

γk−k0 − ρk−k0

γ − ρ
∼ aγk−1 min {k − k0, (1 − ρ/γ)−1}ρ‖V ‖2‖U‖2

Proof. It is obvious that, limk0→∞Ck0 = ρ‖V ‖2‖U‖2. Apply the main theorem to tk

starting from k = k0, we obtain

tk ≤ ρk−k0tk0 +
γk−k0 − ρk−k0

γ − ρ
aγk0Ck0

≤ ρk−k0tk0 + γk−k0−1 min {k − k0, (1 − ρ/γ)−1}aCk0γ
k0

∼ aγk−1 min {k − k0, (1 − ρ/γ)−1}ρ‖V ‖2‖U‖2

Taking k → ∞ first and then k0 → ∞ in the first inequality, we obtain the bound for

lim sup
tk

aγk−1
.

3.3 Convergence of Basis Vectors and Asymptotic Analysis of Computa-

tional Work

In this section, we further analyze convergence of columns of Xk, or the basis of the

subspace generated. In general, the subspace iteration does not necessarily lead to

convergence of the columns of Xk. However, with the scaling we have introduced,

which fixes the maximum entry of each column to be positive, the columns do con-

verge. In the context of inexact version, this is very important because it ensures

the convergence of residual AYk −BXk to 0. Indeed, we shall show that AYk −BXk

converges to 0 at the same rate as ǫk, so that

ǫk
‖AYk −BXk‖2

stays near constant asymptotically. Thus the number of iteration (or the amount of

work) required to solve the inner system (3.2) is nearly constant.
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Below, we will use MATLAB-like notation X(i:j,k:l) to denote the submatrix of X,

consisting of the intersections of rows i to j and columns k to l, and when i : j is

replaced by :, it means all rows, similarly for columns.

First we observe that if we apply Algorithm 2 with the initial block vector X0(:,1:i)

(i.e. the first i columns of X0) with i < p, it is easy to check that Xk(:,1:i)
will be a

sequence of the block vectors generated. This is a property known as simultaneous

iterations. Let

Xk(:,1:i)
= V(:,1:i)X

(i)
k,1 + V(:,i+1:n)X

(i)
k,2. (3.6)

Suppose that the QR factorization of V1 is

V1 = WR

where we assume that W = [wij] satisfies that the largest element of each column is

unique and positive. Let ji be the index of the largest (in absolute value) element of

the ith column of W . Define

gapi = min
j 6=ji

(wjii − |wji|) , 1 ≤ i ≤ p

and

t
(i)
k = ‖X(i)

k,2(X
(i)
k,1)

−1‖2.

Using Theorem 3.2.6, under appropriate assumptions there, t
(i)
k converges to 0.

Therefore R(Xk(:,1:i)
) converges to R(V(:,1:i)). We shall further prove convergence of

each column of Xk.

Lemma 3.3.1. Let x = v + e, where x, v, e are vectors and v has a unique largest

(in absolute value) element. Suppose the largest element of v = (v1, v2, . . . , vn)H is vk

and vk > 0. Define

gap = min
j 6=k

{|vk| − |vj|}.
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If ‖e‖∞ ≤ 1

2
gap , then we have

|max (x) − max (v)| ≤ ‖e‖∞ (3.7)

and
∥

∥

∥

∥

x

max (x)
− v

max (v)

∥

∥

∥

∥

∞

≤ 2‖e‖∞
‖v‖∞

. (3.8)

Proof. Since

ej − ek ≤ 2‖e‖∞ ≤ vk − |vj | ≤ vk − vj

and

−ej − ek ≤ 2‖e‖∞ ≤ vk − |vj | ≤ vk + vj ,

then we have

|vj + ej | ≤ vk + ek, for any j.

So, max (v + e) = vk + ek, i.e. max (x) = max (v) + ek, therefore we have proved

inequality (3.7), i.e.,

|max (x) − max (v)| = |ek| ≤ ‖e‖∞.

Next, we have

x

max (x)
− v

max (v)
= (max (v) − max (x))

x

max (v)max (x)
+

e

max (v)
.

Taking the infinity-norm and using (3.7), we have

∥

∥

∥

∥

x

max (x)
− v

max (v)

∥

∥

∥

∥

∞

≤ |(max (v) − max (x))|
|max (v)|

∥

∥

∥

∥

x

max (x)

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

e

max (v)

∥

∥

∥

∥

∞

≤ ‖e‖∞
|max (v)| +

‖e‖∞
|max (v)|

=
2‖e‖∞
‖v‖∞
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Lemma 3.3.2. Given k and 1 ≤ j ≤ p, let R, gapi and X
(j)
k,1 be defined as in (3.6).

Let (X
(j)
k,1)

−1(R(1:j,1:j))
−1 = [α

(j)
lm], where α

(j)
lm is dependent on the iteration number k.

Assume that

max (t
(1)
k , t

(2)
k , . . . , t

(j)
k ) <

min {1
2
gapj, 1}

∆j
, 1 ≤ j ≤ p (3.9)

where

∆1 = ‖V(:,2:n)‖2|(R(1,1))
−1|, (3.10)

and

∆j = j‖V(:,j+1:n)‖2‖(R(1:j,1:j))
−1‖2 +

∑

1≤i≤j−1

∆i

1 − min {1

2
gapi, 1}

, 2 ≤ j ≤ p. (3.11)

then we have

‖α(j)
jj Xk(:,j)

−W(:,j)‖2 ≤ ∆j max (t
(1)
k , t

(2)
k , . . . , t

(j)
k ), 1 ≤ j ≤ p.

Proof. We will prove this statement by induction. For j = 1, we decompose

Xk(:,1)
(X

(1)
k,1)

−1(R(1,1))
−1 = W(:,1) + V(:,2:n)X

(1)
k,2(X

(1)
k,1)

−1R−1
(1,1). (3.12)

So we have

‖α(1)
11 Xk(:,1)

−W(:,1)‖2 ≤ ‖V(:,2:n)‖2|(R(1,1))
−1|t(1)k = ∆1t

(1)
k .

Suppose for some m ≤ p− 1 that

‖α(j)
jj Xk(:,j)

−W(:,j)‖2 ≤ ∆j max (t
(1)
k , t

(2)
k , . . . , t

(j)
k ), 1 ≤ j ≤ m− 1

is true, we prove that it is also true for j = m. In this case

Xk(:,1:m)
(X

(m)
k,1 )−1 = W(:,1:m)R(1:m,1:m) + V(:,m+1:n)X

(m)
k,2 (X

(m)
k,1 )−1.

or

Xk(:,1:m)
(X

(m)
k,1 )−1R−1

(1:m,1:m) = W(:,1:m) + V(:,m+1:n)X
(m)
k,2 (X

(m)
k,1 )−1R−1

(1:m,1:m).
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Therefore

α(m)
mmXk(:,m)

= W(:,m) + V(:,m+1:n)X
(m)
k,2 (X

(m)
k,1 )−1(R(1:m,1:m))

−1em −
∑

1≤i≤m−1

α
(m)
im Xk(:,i)

.

(3.13)

Rearranging (3.13) and taking 2-norm of the resulted expression, we then have

‖α(m)
mmXk(:,m)

−W(:,m)‖2 ≤ ‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

+‖
∑

1≤i≤m−1

αimXk(:,i)
‖2 (3.14)

Next, we bound |αim|. Multiplying XH
k(:,j)

on (3.13) for 1 ≤ j ≤ m− 1, we have

α
(m)
jm = XH

k(:,j)
W(:,m) +XH

k(:,j)
V(:,m+1:n)X

(m)
k,2 (X

(m)
k,1 )−1(R(1:m,1:m))

−1em

Therefore,

|α(m)
jm | ≤ ‖XH

k(:,j)
W(:,m)‖2 + ‖XH

k(:,j)
V(:,m+1:n)X

(m)
k,2 (X

(m)
k,1 )−1(R(1:m,1:m))

−1em‖2

≤
∥

∥

∥

∥

∥

1

α
(j)
jj

WH
(:,m)

(

α
(j)
jj Xk(:,j)

−W(:,j)

)

∥

∥

∥

∥

∥

2

+ ‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

≤
∣

∣

∣

∣

∣

1

α
(j)
jj

∣

∣

∣

∣

∣

‖α(j)
jj Xk(:,j)

−W(:,j)‖2 + ‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

By the induction assumption, we have that

1 − |α(j)
jj | ≤ ‖α(j)

jj Xk(:,j)
−W(:,j)‖ ≤ ∆j max (t

(1)
k , . . . , t

(j)
k ).

Using the assumption (3.9), we get the bound for |α(m)
jm |, 1 ≤ j ≤ m− 1

|α(m)
jm | ≤ ∆j

1 − ∆j max (t
(1)
k , . . . , t

(j)
k )

max (t
(1)
k , . . . , t

(j)
k )

+‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

≤ ∆j

1 − min {1
2
gapj, 1}

max (t
(1)
k , . . . , t

(j)
k )

+‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k
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Thus, using these bounds on (3.14), we have

‖α(m)
mmXk(:,m)

−W(:,m)‖2

≤ ‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

+
∑

1≤i≤m−1

∆j

1 − min {1
2
gapj, 1}

max (t
(1)
k , . . . , t

(j)
k )

+
∑

1≤i≤m−1

‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

≤ m‖V(:,m+1:n)‖2‖(R(1:m,1:m))
−1‖2t

(m)
k

+
∑

1≤i≤m−1

∆j

1 − min {1
2
gapj, 1}

max (t
(1)
k , . . . , t

(j)
k )

≤ ∆m max (t
(1)
k , t

(2)
k , . . . , t

(m)
k )

This completes the induction proof.

Lemma 3.3.3. Under the assumptions and notations of Lemma 3.3.2, we have
∥

∥

∥

∥

∥

Xk(:,j)

max (Xk(:,j)
)
− W(:,j)

max (W(:,j))

∥

∥

∥

∥

∥

2

≤ 2n∆j max (t
(1)
k , . . . , t

(j)
k )

Proof. Because W(:,j) satisfies the assumption of Lemma 3.3.1 and

‖α(j)
jj Xk(:,j)

−W(:,j)‖∞ ≤ ‖α(j)
jj Xk(:,j)

−W(:,j)‖2 ≤ ∆j max (t
(1)
k , . . . , t

(j)
k ) ≤ 1

2
gapj

we apply Lemma 3.3.1 to

∥

∥

∥

∥

∥

Xk(:,j)

max (Xk(:,j)
)
− W(:,j)

max (W(:,j))

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

α
(j)
jj Xk(:,j)

max (α
(j)
jj Xk(:,j)

)
− W(:,j)

max (W(:,j))

∥

∥

∥

∥

∥

∞

≤
2
(

‖α(j)
jj Xk(:,j)

−W(:,j)‖∞
)

‖W(:,p)‖∞

Then the conclusion follows

∥

∥

∥

∥

∥

Xk(:,j)

max (Xk(:,j)
)
− W(:,j)

max (W(:,j))

∥

∥

∥

∥

∥

2

≤ 2n∆j max (t
(1)
k , . . . , t

(j)
k ).
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Lemma 3.3.4. Under the assumptions and notations of Lemma 3.3.2, we have

‖Xk −Xk−1‖2 ≤ 4n
√
npM

(

max (t
(1)
k , . . . , t

(p)
k ) + max (t

(1)
k−1, . . . , t

(p)
k−1)

)

where

M = max
1≤j≤p

∆j. (3.15)

Proof. Let

ηk =
Xk(:,j)

max (Xk(:,j)
)
−

Xk−1(:,j)

max (Xk−1(:,j)
)

Applying Lemma 3.3.3, we have

‖ηk‖2 =

∥

∥

∥

∥

∥

Xk(:,j)

max (Xk(:,j)
)
− W(:,j)

max (W(:,j))
+

W(:,j)

max (W(:,j))
−

Xk−1(:,j)

max (Xk−1(:,j)
)

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

Xk(:,j)

max (Xk(:,j)
)
− W(:,j)

max (W(:,j))

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

W(:,j)

max (W(:,j))
−

Xk−1(:,j)

max (Xk−1(:,j)
)

∥

∥

∥

∥

∥

2

≤ 2n∆j

(

max (t
(1)
k , . . . , t

(j)
k ) + max (t

(1)
k−1, . . . , t

(j)
k−1)

)

.

On the other hand, using ‖Xk−1(:,j)
‖2 = ‖Xk(:,j)

‖2 = 1, we get

1

max (Xk−1(:,j)
)
− ‖ηk‖2 ≤

1

max (Xk(:,j)
)
≤ 1

max (Xk−1(:,j)
)

+ ‖ηk‖2,

i.e.,
∣

∣

∣

∣

∣

1

max (Xk(:,j)
)
− 1

max (Xk−1(:,j)
)

∣

∣

∣

∣

∣

≤ ‖ηk‖2.

Therefore,

‖Xk(:,j)
−Xk−1(:,j)

‖2

≤
∥

∥

∥

∥

∥

(

Xk(:,j)

max (Xk(:,j)
)
−

Xk−1(:,j)

max (Xk−1(:,j)
)

)

max (Xk(:,j)
)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

(

max (Xk(:,j)
)

max (Xk−1(:,j)
)
− 1

)

Xk−1(:,j)

∥

∥

∥

∥

∥

2

≤ ‖ηk‖2 |max (Xk(:,j)
)| + |max (Xk(:,j)

)|
∥

∥

∥

∥

∥

1

max (Xk−1(:,j)
)
− 1

max (Xk(:,j)
)

∥

∥

∥

∥

∥

2

≤ ‖ηk‖2‖Xk(:,j)
‖∞ + ‖Xk(:,j)

‖∞‖ηk‖2

≤ 2‖ηk‖2
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So,

‖Xk −Xk−1‖2 ≤ √
p‖Xk −Xk−1‖1

=
√
p max

1≤j≤p
‖Xk(:,j)

−Xk−1(:,j)
‖1

≤ √
np max

1≤j≤p
‖Xk(:,j)

−Xk−1(:,j)
‖2

≤ 4n
√
np

(

max
1≤j≤p

(∆j)

)

(

max (t
(1)
k , . . . , t

(p)
k ) + max (t

(1)
k−1, . . . , t

(p)
k−1)

)

= 4n
√
npM

(

max (t
(1)
k , . . . , t

(p)
k ) + max (t

(1)
k−1, . . . , t

(p)
k−1)

)

Lemma 3.3.5. Under the assumptions and notations of Lemma 3.3.2, if

lim
k→∞

max {t(1)k , . . . , t
(p)
k } = 0,

then limRk = RΛ−1
1 R−1.

Proof. From max {t(1)k , . . . , t
(p)
k } → 0 and Lemma 3.3.2, we obtain α

(j)
jj Xk(:,j)

−W(:,j) →

0, 1 ≤ j ≤ p. Then max {α(j)
jj Xk(:,j)

} → max {W(:,j)}. Because both max {Xk(:,j)
} and

max {W(:,j)} are positive, the sign of α
(j)
jj must be positive for sufficiently large k.

Also, from |α(j)
jj | = ‖W(:,j) + α

(j)
jj Xk(:,j)

−W(:,j)‖2, we have

1 − ‖α(j)
jj Xk(:,j)

−W(:,j)‖2 ≤ |α(j)
jj | ≤ 1 + ‖α(j)

jj Xk(:,j)
−W(:,j)‖2.

Taking the limit, we have lim |α(j)
jj | = 1 and hence limα

(j)
jj = 1. Therefore limXk =

W .

In addition, from the inexact inverse subspace iteration algorithm, we have

AYk = AXkRk = BXk−1 + Ek−1

or

Rk = (XH
k A

HAXk)
−1XH

k A
H(BXk−1 + Ek−1).

Thus

limRk = (WHAHAW )−1WHAHBW
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Substituting W by V1R
−1 and using the relation AV1 = BV1Λ1, we finally prove our

result

limRk = RΛ−1
1 R−1.

In what follows, set the inner residual reduction ratio δk =
ǫk

‖Zk‖2
where Zk =

AYk − BXk.

Theorem 3.3.6. Let ∆j , 1 ≤ j ≤ p be defined as (3.10) and (3.11) in Lemma 3.3.2

and let M be defined as (3.15) in Lemma 3.3.4. Define

t
(j)
0 = ‖X(j)

0,2(X
(j)
0,1)

−1‖2

and

ρ = max
1≤j≤p

{ρ(j)} where ρ(j) = |λj/λj+1|, 1 ≤ j ≤ p.

If ρ < γ < 1 and ǫk = aγk with

a ≤ min
1≤j≤p

{ (1 − ρ(j))t
(j)
0

‖V ‖2‖U‖2(1 + t
(j)
0 )(ρ(j) + t

(j)
0 )

}

Then

E1γ ≤ lim inf δk ≤ lim sup δk ≤ E2γ

where

E−1
1 = 4n

√
npM‖B‖2

(

1 +
1

γ

)(

1 − ρ

γ

)−1

ρ‖V ‖2‖U‖2 + 1

and

E−1
2 =

sep(RΛ−1
1 R−1,Λ−1

2 )

‖(AV )−1‖2‖V ‖2

lim inf
t
(p)
k

ǫk−1
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Proof. Under the assumptions, we have by Theorem 3.2.6, max (t
(1)
k , . . . , t

(p)
k ) → 0.

‖Zk‖2 = ‖AXkRk −BXk‖2

= ‖AV1X
(1)
k Rk + AV2X

(2)
k Rk − AV1Λ

−1
1 X

(1)
k − AV2Λ

−1
2 X

(2)
k ‖2

= ‖AV1(X
(1)
k Rk − Λ−1

1 X
(1)
k ) + AV2(X

(2)
k Rk − Λ−1

2 X
(2)
k )‖2

=

∥

∥

∥

∥

∥

∥

∥

A(V1, V2)







X
(1)
k Rk − Λ−1

1 X
(1)
k

X
(2)
k Rk − Λ−1

2 X
(2)
k







∥

∥

∥

∥

∥

∥

∥

2

≥

∥

∥

∥

∥

∥

∥

∥







X
(1)
k Rk − Λ−1

1 X
(1)
k

X
(2)
k Rk − Λ−1

2 X
(2)
k







∥

∥

∥

∥

∥

∥

∥

2

/‖(AV )−1‖2

≥ sep(Rk,Λ
−1
2 )‖X(2)

k ‖2/‖(AV )−1‖2

≥ sep(Rk,Λ
−1
2 ) · t(p)

k /‖(X(1)
k )−1‖2‖(AV )−1‖2

≥ t
(p)
k

1 + t
(p)
k

· sep(Rk,Λ
−1
2 )

‖(AV )−1‖2‖V ‖2

where we have used Lemma 3.2.3 for the bound of ‖(X(1)
k )−1‖2 and

sep(Rk,Λ
−1
2 ) = inf

‖P‖F =1
‖PRk − Λ−1

2 P‖2 ≤
‖X(2)

k Rk − Λ−1
2 X

(2)
k ‖2

‖X(2)
k ‖2

.

By Lemma (3.3.5), thus we have

lim inf
‖Zk‖
ǫk−1

≥ sep(RΛ−1
1 R−1,Λ−1

2 )

‖(AV )−1‖2‖V ‖2
lim inf

t
(p)
k

ǫk−1
.

On the other hand, as max {t(1)k , . . . , t
(j)
k } approaches zero, the assumption of

Lemma 3.3.4 is satisfied for sufficiently large k, where we note that α
(j)
jj is a function

of k. We use the conclusion of Lemma 3.3.4 and get the upper bound of ‖Zk‖2 as

follows.

‖Zk‖2 = ‖AXkRk −BXk‖2

= ‖BXk−1 + Ek−1 − BXk‖2

= ‖B(Xk−1 −Xk) + Ek−1‖2

≤ ‖B‖2‖Xk−1 −Xk‖2 + ‖Ek−1‖2

≤ 4n
√
npM‖B‖2

(

(max (t
(1)
k , . . . , t

(p)
k ) + max (t

(1)
k−1, . . . , t

(p)
k−1)

)

+ ǫk−1
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Thus,

lim sup
‖Zk‖2

ǫk−1
≤ 4n

√
npM‖B‖2 lim sup

max (t
(1)
k , . . . , t

(p)
k )

ǫk−1

+4n
√
npM‖B‖2 lim sup

max (t
(1)
k−1, . . . , t

(p)
k−1)

ǫk−1

+ 1

Then, apply the Corollary 3.2.7 to simplify the bound, i.e.,

lim sup
‖Zk‖2

ǫk−1

≤ 4n
√
npM‖B‖2

(

1 +
1

γ

)



1 −
max
1≤j≤p

{ρ(j)}

γ





−1

× max
1≤j≤p

{ρ(j)}‖V ‖2‖U‖2 + 1.

Then let

E−1
1 = 4n

√
npM‖B‖2

(

1 +
1

γ

)(

1 − ρ

γ

)−1

ρ‖V ‖2‖U‖2 + 1

and

E−1
2 =

sep(RΛ−1
1 R−1,Λ−1

2 )

‖(AV )−1‖2‖V ‖2
lim inf

t
(p)
k

ǫk−1
,

then we have proved that E1γ ≤ lim inf δk ≤ lim sup δk ≤ E2γ.

The results above show that, at the convergence stage, δk is bounded below and,

if lim inf
t
(p)
k

ǫk−1

is not 0, it is also bounded above. Hence δk is asymptotically near a

constant. Note that we have that
t
(p)
k

ǫk−1
is bounded by Corollary 3.2.7, but it is possible

that t
(p)
k converges to 0 faster than ǫk−1. Obviously, this is a welcome but unlikely

situation in general.

3.4 Numerical examples

In this section we present some numerical experiments aimed at illustrating the con-

vergence behavior and the effectiveness of inexact inverse subspace iteration algo-

rithm. We performed several tests involving different types of matrices. The purposes

of these experiments are to verify the convergence results. Also we conduct numer-

ical comparison with the Jacobi-Davidson method. In general, the Jacobi-Davidson
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method is a much faster convergent method but it may fail to converge in some dif-

ficult problems where good initial vectors are not found. The subspace iteration is

generally more robust and our results demonstrate this for matrices with very closely

clustered eigenvalues.

We examine convergence of the following residual in our numerical experiment:

‖Zk‖2 = ‖AXkRk −BXk‖2.

In the numerical results listed in the tables below, ”iter” denotes the number of outer

iterations; ”MV” is the total number of matrix-vector products; ”CPU” is the cpu

time; and ”residual” is the residual norm ‖Zk‖2.

Example 1. The matrix A is the finite-difference discretization (center difference) on

a 32×32 grid of the following eigenvalue problem of the convection diffusion operator:

−∆u + 5ux + 5uy = λu on (0, 1)2,

with the homogeneous Dirichlet boundary condition. B is the matrix of the same

dimension as A and is of the form

B =

































1
12

1
22

10
32

1
42

. . .

1
n2

































.

We compute the three smallest eigenvalues with random initial vectors.

In this case, ρ(1) = λ1/λ2 ≈ 0.6655, ρ(2) = λ2/λ3 ≈0.2262, ρ(3) = λ3/λ4 ≈ 0.3756,

thus

max (0.6655, 0.2262, 0.3756) = 0.6655.
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We consider the convergence behavior of the outer iteration under different parametric

values of γ. In Figure 3.1, we present the convergence history of the residual ||Zk||∞
and the threshold ǫk = γk (in dotted lines) for various values of γ. The residuals are

plotted in the solid, dash-dotted, and dashed lines while ǫk is plotted in the dotted

lines from the top down for γ = 0.6655, 0.3756, and 0.2262 respectively in the left

figure and for γ = 0.95, 0.85 and 0.7 respectively in the right figure. On both, the

residual for the exact inverse subspace iteration is plotted in the × mark. In this

example, the dashed-dotted line and the dashed lines overlap with the “×” line in

the left figure. The numerical results showed that the convergence rate is close to

max {γ, max
1≤j≤p

{ρ(j)}}.
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Figure 3.1: Residual convergence history of IIS for computing 3 eigenvalues.

In the next three examples, we compare the inexact inverse subspace iteration with

the Jacobi-Davidson algorithm. We see that the Jacobi-Davidson method does not

perform well for these examples where the eigenvalues sought are severely clustered,

while the inexact inverse subspace iteration finds eigenpair approximations with no
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difficulties.

Example 2. The matrix A is derived from the finite-difference discretization of the

partial differential equation

−∆u + 20ux − 30uy = λu,

on [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions. We discretize the

system by using 32 mesh points in each direction. We use B = 10 ∗ speye(1024).

We compare our algorithm with JD method for computing 3 eigenvalues close to

τ = 0.7952. Then ρ = max
1≤i≤3

{ρ(i)} ≈ 0.52 and tol = 1e − 8. The γ in our algorithm

is respectively ρ, 0.4, 0.3, 0.2 in the left figure and 0.85, 0.75, 0.65, ρ in the right figure

for computing three eigenpairs. For each of the methods, we list the performance

statistics in Table 3.1. Convergence of residual is plotted in Figure 3.2 for Jacobi-

Davidson method and in Figure 3.3 for inexact inverse subspace iteration (IIS) .

Algorithm iter residual CPU (secs) MV
JD 8000 1e-003 356.26 24629

IIS, γ = 0.85 147 1e-009 85.754 6924
IIS, γ = 0.75 84 1e-009 79.955 7088
IIS, γ = 0.65 57 1e-009 62.93 5832
IIS, γ = 0.52 38 1e-009 57.543 5428
IIS, γ = 0.4 33 1e-009 67.848 6264
IIS, γ = 0.3 33 1e-009 85.333 8132
IIS, γ = 0.2 31 1e-009 96.288 8726

Table 3.1: A comparison between JD and IIS for computing 3 eigenvalue

We see from Figure 3.2 that Jacobi-Davidson method does not converge to the

specified tolerance 1e−8 in this case. Figure 3.3 shows that inexact inverse subspace

iteration converges quickly for all the choices of γ. And the convergence rate is close

to 0.52 which is ρ = max {ρ(i)}, 1 ≤ i ≤ 3 when γ ≤ ρ. The convergence rate is close

to γ when γ ≥ ρ.
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Figure 3.2: Residual convergence of Jacobi-davidson for computing 3 eigenvalues.

Example 3. The matrix A in this example is the matrix add20 from the Matrix

Market collection [19]. The matrix B = 10 ∗ speye(2395). We compare our algorithm

with JD method for computing 4 eigenvalues closest to τ = 0.09665. In this case the

tolerance is tol = 1e− 8. Again, let ρ = max {ρ(i)} ≈ 0.881, 1 ≤ i ≤ 4. The γ in our

algorithm is respectively γ = ρ, 0.9, 0.95 in the left of Figure 3.4 and γ = ρ, 0.7, 0.5 in

the right figure. For each of the methods, we list the performance statistics in Table

3.2. Convergence of residual is plotted in Figure 3.4 for inexact inverse subspace

iteration(IIS).

Algorithm iter residual CPU (secs) MV
JD 1200 7.4-007 4274.3 197219

IIS, γ = 0.95 638 9.22e-009 3792.363 69080
IIS, γ = 0.9 311 8.90e-009 2917.255 49082

IIS, γ = 0.881 258 9.85e-009 2868.024 43886
IIS, γ = 0.7 175 9.92e-009 2212.431 38508
IIS, γ = 0.5 183 9.99e-009 2435.793 44314

Table 3.2: A comparison between JD and IIS for computing 4 eigenvalues of add20
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Figure 3.3: Residual convergence of IIS for computing 3 eigenvalues.

From Table 3.2, we see that Jacobi-Davidson only converges to 7.4e− 7, yet the

inexact inverse subspace iteration converges to the tolerance with less iterations and

less CPU times. The inexact inverse subspace iteration also uses much less matrix-

vector products and presents faster convergence for all the current choices of γ. Figure

3.4 further confirms our analysis of the convergence rate of inexact inverse subspace

iteration. The convergence rate is max {γ, ρ} with ρ = max {ρ(i)}, 1 ≤ i ≤ 4.

Example 4. The example we use is the matrix dw2048 from Matrix market collection

[19]. The matrix B = 10 ∗ speye(2048). We compare our algorithm with JD method

for computing 3 eigenvalues closest to τ = 0.09665. Let ρ = max {ρ(i)} ≈ 0.9187, 1 ≤

i ≤ 3. In Figure 3.5, the γ in our algorithm is respectively ρ, 0.7, 0.4 in the left figure

and 0.95, ρ in the right figure. Once again, we list the performance statistics in Table

3.3 for both methods. The convergence of residual for the inexact inverse subspace

iteration is plotted in Figure 3.5. Once again, the inexact inverse subspace iteration

presents better performance.
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Figure 3.4: Residual convergence of IIS for computing 4 eigenvalues of add20.

Algorithm iter residual CPU (secs) MV
JD 900 3.5e-005 2778.1 secs 197550

IIS, γ = 0.95 504 9.57e-009 2047.144 41490
IIS, γ = 0.9187 306 8.82e-009 1374.5 30000

IIS, γ = 0.7 243 9.74e-009 1889.698 41318
IIS, γ = 0.4 205 9.89e-009 2242.435 47766

Table 3.3: A comparison between JD and IIS for computing 3 eigenvalues of dw2048

Copyright c© Ping Zhang, 2009.
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Figure 3.5: Residual convergence of IIS for computing 3 eigenvalues of dw2048.
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Chapter 4 Krylov Subspace Method for the Evaluation of Matrix

Exponential

This part of the thesis is devoted to the problem of computing the product of a matrix

exponential and a vector of the form

e−τAv (4.1)

by using Krylov subspace approximation methods. Here A is a large, sparse and

symmetric positive definite matrix, v is a vector and τ is a positive constant. Often,

τ is the time step parameter in a finite difference time-stepping method.

The problem (4.1) occurs in many applications. A simple example is the solution

of the ordinary differential equations of the form:

dv(t)

dt
= −Av(t) + r(t), v(0) = v0, (4.2)

or the discretized partial differential equation of the following






















∂u(x, t)

∂t
= −Lu(x, t) + r(t), x ∈ Ω

u(x, 0) = u0, x ∈ Ω

u(x, t) = σ(x), x ∈ ∂Ω, t > 0

(4.3)

where L is a positive definite self-adjoint differential operator. By discretizing (4.3)

with respect to the space variable, the partial differential equation is reduced to the

ordinary differential equation of type (4.2). As is well known, the solution of the

system (4.2) is

v(t) = e−tAv0 +

∫ t

0

e(s−t)Ar(s)ds. (4.4)

The numerical solution for (4.4) by a time-stepping procedure is based on approxi-

mation of the formula

v(t+ τ) = e−τAv(t) +

∫ τ

0

e−(τ−δ)Ar(t+ δ)dδ. (4.5)
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The calculation of (4.5) involves the matrix-vector product of form (4.2). There

are many other practical applications in which the exponential integrators only involve

the evaluation or approximation of the product of the exponential matrix with a

vector, such as, functions in statistical methods for spatial date and other complex

structures [23], solutions to fractional-in-space partial differential equations [24] and

solutions of differential equations [12], etc.

Notice that, in (4.1), if one calculates the exponential matrix explicitly and then

find the matrix-vector product, the computation and storage cost would be extremely

expensive even though A is sparse. But computing and storing e−τAv may be done

more efficiently. Similarly to computing A−1v, Krylov subspace projection technique

is an efficient technique for these types of problems. Krylov subspace projection

method to approximate the matrix exponential is based on a combination of the

Krylov subspace projection and the computation of matrix-vector product instead of

the matrix exponential itself. One first projects the exponential of the large and sparse

matrix into a small Krylov subspace, and then uses the transformed exponential of

the compression matrix to approximate the original matrix-vector product.

The earliest work on theoretical analysis of Krylov subspace approximation method

goes to Saad [38] in 1992 in which a priori and a posteriori error estimates are es-

tablished. He also points out that the Krylov subspace approximation approach,

which has been used with success in several applications, provides a systematic way

of defining high order explicit-type schemes for solving systems of ordinary differential

equations or time-dependent partial differential equations. Following this work, sev-

eral different Krylov subspace approximation approaches have been proposed, such

as the polynomial methods of calculating general function including matrix exponen-

tial function [49], variants of the standard Krylov subspace approximation methods

[12, 16, 22], extended Krylov subspace approximation methods [13, 25], and restarted

Krylov subspace approximation methods [1, 14].
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Despite the success of the Krylov subspace approximation techniques to matrix

exponential operators in many applications [36], analysis of standard methods is

based on the use of small time step τ . For many problems, larger time steps are

desirable. For this purpose, we propose the Krylov subspace method generated by

A−1, which allows larger time steps in some cases. It turns out a similar idea has

also been considered. In [16], the Krylov subspace method based on Krylov subspace

generated by (I + σA)−1 is considered with σ chosen to minimize the error bound.

We shall introduce a novel technique for analyzing convergence of all three meth-

ods mentioned above. We compare all three Krylov subspace approximation methods

by their respective theoretical error bounds. Numerical examples are also given to

verify our theoretical bounds. The chapter is closed by using the three Krylov sub-

space approximation methods to solve the system of ODEs of the form (4.2).

4.1 Standard Lanczos approximation

We recall the definition of the mth Krylov subspace of A ∈ Rn×n and 0 6= v ∈ Rn

given by

Km(A, v) = span {v, Av, . . . , Am−1v} = {q(A)v : q ∈ Pm−1}.

We consider a sequence of approximations wm = q(A)v ∈ Km(A, v) to e−τAv with

polynomials q ∈ Pm−1 which in some sense approximate the exponential function.

The standard Lanczos approximation is based on the Lanczos decomposition for A

and v. Given v, Lanczos process generates Vm, Tm such that

AVm = VmTm + βm+1vm+1e
T
m, where Vme1 = v1. (4.6)

Here, the columns of Vm = [v1, v2, . . . , vm] form an orthonormal basis of Km(A, v)

with v1 = v/‖v‖, Tm is a unreduced tridiagonal matrix, and em ∈ Rn denotes the

mth unit coordinate vector. For more details about the standard Lanczos algorithm,

see Section 2.2.2.
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The vector VmV
T
m e

−τAv is the projection of e−τAv onKm(A, v), which is the closest

approximation to e−τAv from Km(A, v). Let β = ‖v‖ and v = βv1, then

VmV
T
me

−τAv = βVmV
T
m e

−τAv1 = βVmV
T
m e

−τAVme1 ≈ βVme
−τTme1.

e−τTme1 is used to approximate V T
m e

−τAVme1. Then the standard Lanczos approxi-

mation to e−τAv is given by

wSL
m := βVme

−τTme1. (4.7)

The superscript SL represents its correspondence to the standard Lanczos method.

We also define the error

ESL
m (τ) = w(τ) − wSL

m (τ), (4.8)

where w(τ) is e−τAv. Saad [38] has proved that the error of the above approximation

is related to the norm of the matrix and the dimension of the subspace.

Theorem 4.1.1. Let A be any matrix and let ρ = ‖A‖. Then the error of the

approximation using Lanczos method satisfies

‖e−τAv − βVme
−τTme1‖ ≤ 2β

(τρ)meτρ

m!

From the theorem, we can see clearly that the smaller ρ is, the better the approx-

imation. For symmetric positive definite matrix A, ρ will be the largest eigenvalue

of A. If ‖A‖ turns out to be a large number, we will have to use very small τ to

reduce the error. Note that in the context of time-stepping (4.5), τ is the step size.

This priori error bound may turn out to be pessimistic. Next, we present a posteriori

bound.

4.1.1 Behavior of |eT
me

−τTme1|

In what follows, we first analyze the behavior of the absolute value of the (m, 1) entry

of the function e−τTm . In Bezni and Golub [4], it was shown that the function of a
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bounded matrix has its entries decay away from the diagonal, see section 2.5. Using

the decay bounds of Benzi and Golub, then we can get a bound for the (m, 1) entry

of the matrix e−τTm .

Lemma 4.1.2. Let Tm be symmetric and tridiagonal. Denote a = λmin(Tm), the

smallest eigenvalue of Tm, and b = λmax(Tm), the largest eigenvalue of Tm. For any

fixed q such that 0 < q < 1, we have

|eT
me

−τTme1| ≤
2

1 − q
e

τ(b−a)(q+ 1
q )

4 qm−1.

Proof. Define f(λ) = e−τλ and F = foψ−1, where ψ : C → C is defined as

ψ(λ) =
2λ− (a+ b)

b− a
.

Then ψ([a, b]) = [−1, 1]. Define

B = ψ(Tm) =
2

b− a
Tm − a+ b

b− a
I.

Then the spectrum of the symmetric matrix B is contained in [−1, 1]. Furthermore,

let χ =
1

q
. Define an ellipse ǫχ which has −1, 1 as its foci, and α =

χ2 + 1

2χ
, β =

χ2 − 1

2χ

as its semi-major axis and semi-minor axis respectively, α > β > 0, α > 1. Since f

is analytic on C, f is analytic in the interior of the ellipse εχ, χ > 1, and continuous

on εχ. Therefore, f satisfies the assumptions of Theorem 2.5.2 in the preliminary.

Applying Theorem 2.5.2, we have the decay bound of the (m, 1) entry of the matrix

e−τTm

|eT
me

−τTme1| ≤ Kqm−1, q =
1

χ
,

where

K = max {K0, ‖F (B)‖}, K0 =
χM(χ)

χ− 1
, and M(χ) = max

z∈εχ

|F (z)|

We now look at the bound for M(χ). Let z = x+ iy ∈ εχ. Set

u =
(b− a)x+ a+ b

2
, v =

b− a

2
y.
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Then

|F (z)| = |e−τ(u+iv)| = e−τu|e−iτv| = e−τu.

We know that α =
χ2 + 1

2χ
=

1

2

(

q +
1

q

)

. Therefore ,

M(χ) = max
z∈εχ

|F (z)|

= max
−α≤x≤α

e
τ((a−b)x−a−b)

2

= e
τ((b−a)α−a−b)

2

= e
τ((b−a)(q+ 1

q )−2(a+b))
4

We then get the bound for K0,

K0 =
2χM(χ)

χ− 1
<

2

1 − q
e

τ((b−a)(q+ 1
q )−2(a+b))
4 ≤ 2

1 − q
e

τ(b−a)(q+ 1
q )

4 .

For the expression ‖F (B)‖, we can bound it as follows:

‖F (B)‖ = ‖e−τTm‖ ≤ e−τa ≤ 1.

Since
2

1 − q
e

τ(b−a)(q+1
q )

4 > 1, we have

|eT
me

−τTme1| <
2

1 − q
e

τ(b−a)(q+1
q )

4 qm−1.

Remark. We see from the bound that, if q → 0, the coefficient e
τ(b−a)(q+ 1

q )
4 → ∞.

Thus while small q gives a faster decay term qm−1, its coefficient also become larger.

If τ is such that τ(b−a)
4

< 1, then letting q = τ(b−a)
4

, we have

|eT
me

−τTme1| <
2

1 − q
e2qm−1.

In this case, |eT
me

−τTme1| decays at least at the rate of q =
τ(b− a)

4
.

We note that the actual bound in the lemma is pessimistic for practical estimation

of the value |eT
me

−τTme1|. But it shows the fast decay rate of entry (m, 1) as the

projection dimension m increases.
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4.1.2 Error Bounds

In this section, we consider approximating w = e−τAv by using the standard Lanczos

approximation. Let the approximate solution wSL
m (t) be defined as in (4.7). Tm is

the projection of A onto the Krylov subspace Km(A, v). The error ESL
m (t) is defined

as in (4.8). We have the following posterior error bound on the standard Lanczos

approximation.

Theorem 4.1.3. The error of the standard Lanczos approximation to the matrix

exponential on Km(A, v) satisfies

‖ESL
m (τ)‖ ≤ τβ|βm+1| max

0≤t≤τ
|eT

me
−tTme1|.

where β = ‖v‖, Tm and βm+1 are generated from the Lanczos process (4.6).

Proof. As we know that w(t) = e−tAv is a solution of

w(t)′ = −Aw(t), w(0) = v.

wSL
m (t) = βVme

−tTme1 is the approximate solution. And wSL
m (t)′ = −βVmTme

−tTme1.

Using (4.6), we have

wSL
m (t)′ = −β(AVm − βm+1vm+1e

T
m)e−tTme1

= −βAVme
−tTme1 + ββm+1vm+1e

T
me

−tTme1

= −AwSL
m (t) + ββm+1(e

T
me

−tTme1)vm+1

Since ESL
m (t) = w(t) − wSL

m (t), Em(0) = 0 and

ESL
m (t)′ = −AESL

m (t) − ββm+1(e
T
me

−tTme1)vm+1

By solving the above ODE, the posterior error is:

ESL
m (τ) =

∫ τ

0
e(t−τ)A

(

−ββm+1(e
T
me

−tTme1)vm+1

)

dt

= −ββm+1

∫ τ

0
(eT

me
−tTme1)e

(t−τ)Avm+1dt
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Taking the norm of the error, we have

‖ESL
m (τ)‖ ≤ β|βm+1|max0≤t≤τ |eT

me
−tTme1|

∫ τ

0
‖e(t−τ)A‖dt‖vm+1‖

≤ τβ|βm+1|max0≤t≤τ |eT
me

−tTme1|

Remark 2. Observe from the above bound that there are four factors that deter-

mine the magnitude of the bound, τ , β, |βm+1| and max0≤t≤τ |eT
me

−τTme1|. First,

the smaller τ is, the smaller the bound of ‖ESL
m (τ)‖. Second, the value β which

is the norm of the initial vector w(0) = v. The smaller the norm of v, the better

the bound. Third, the value |βm+1| can be bounded in terms of ‖A‖. The quantity

max
0≤t≤τ

{|eT
me

−tTme1|} becomes small as m increases. From the bound of |eT
me

−τTme1|,

we know that increasing the dimension of the Krylov subspace will reduce the value

max
0≤t≤τ

{|eT
me

−tTme1|}, thereby reducing the approximation error.

Remark 3. Notice that, if the eigenvalues of A are large, then |βm+1| is large.

max0≤t≤τ |eT
me

−tTme1| might not be small enough to bring down the error to the de-

sirable level. Increasing the dimension will reduce the error to certain level and then

start to stagnate. At the early stage of reducing τ , the value max0≤t≤τ |eT
me

−tTme1|

may increase, but if τ is small enough, we are able to reduce error to any desirable

level.

Corollary 4.1.4. For any 0 < q < 1, the error of the standard Lanczos approximation

to the matrix exponential on Km(A, v) satisfies

‖ESL
m (τ)‖ ≤ 2βτ‖A‖ 2

1 − q
e

τ(λn−λ1)(q+ 1
q )

4 qm−1

where λ1 = λmin(A), λn = λmax(A).

Proof. Let Tm be the projection of A onto the Krylov subspace Km(A, v). By Lemma
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4.1.2 and Theorem 4.1.3, we have

‖ESL
m (τ)‖ ≤ τβ|βm+1| max

0≤t≤τ
|eT

me
−tTme1|

≤ τβ|βm+1|
2

1 − q
max
0≤t≤τ

{e
t(λmax(Tm)−λmin(Tm))(q+ 1

q )
4 }qm−1

≤ τβ|βm+1|
2

1 − q
e

τ(λmax(Tm)−λmin(Tm))(q+1
q )

4 qm−1.

And noting that λmin(Tm) ≥ λmin(A) and λmax(Tm) ≤ λmax(A), we have

‖ESL
m (τ)‖ ≤ τβ|βm+1|

2

1 − q
e

τ(λmax(A)−λmin(A))(q+ 1
q )

4 qm−1

= τβ|βm+1|
2

1 − q
e

τ(λn−λ1)(q+1
q )

4 qm−1.

Since |βm+1| = ‖βm+1vm+1e
T
m‖ = ‖AVm − VmTm‖ ≤ 2‖A‖, then we have

‖ESL
m (τ)‖ ≤ 2βτ‖A‖ 2

1 − q
e

τ(λn−λ1)(q+ 1
q )

4 qm−1.

4.2 Inverse Lanczos approximation

In this section, we propose the inverse Lanczos approximation method. The inverse

Lanczos approximation is based on the projection on Km(A−1, v). Applying Lanczos

algorithm to A−1 and v, we have

A−1Vm = VmTm + βm+1vm+1e
T
m. (4.9)

Similarly, a natural closest approximation to e−τAv from Km(A−1, v) is the vector

VmV
T
m e

−τAv, which is

VmV
T
me

−τAv = βVmV
T
m e

−τAVme1 ≈ βVme
−τT−1

m e1,

where β = ‖v‖, v = βv1 and v1 = Vme1. We call

wIL
m := βVme

−τT−1
m e1, (4.10)
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the inverse Lanczos approximation to e−τAv. We define the error by

EIL
m = w(τ) − wIL

m (τ). (4.11)

where w(τ) = e−τAv. A difference between the standard Krylov subspace method and

the inverse Krylov subspace method is the spectral transformation. The reciprocals

of the smallest eigenvalues of A become the largest eigenvalues of A−1. This trans-

formation plays an important role in the numerical approximation to e−τAv which

is mainly determined by the lower end of the spectrum. In the following, we will

discuss a posterior error estimation for this method. And the analysis shows that if

the matrix A has very large eigenvalues, yet the smallest eigenvalue is not too small,

say around the magnitude of 1, the Lanczos method with inverse is more effective

than the standard Lanczos method.

Before we proceed to a posterior error analysis of the inverse Lanczos approxi-

mation method, we first analyze the quantity |e−1
m T−1

m e−τT−1
m e1|. Similar to the role

that the quantity |e−1
m e−τTme1| plays in the standard Lanczos approximation method,

the behavior of |e−1
m T−1

m e−τT−1
m e1| determines the posterior error of inverse Lanczos

approximation method.

4.2.1 Behavior of |e−1
m T−1

m e−τT−1
m e1|

Lemma 4.2.1. Let Tm be symmetric and tridiagonal. Denote a = λmin(Tm) and

b = λmax(Tm). For any fixed q such that

√
κ− 1√
κ+ 1

< q < 1, where κ = b
a
, we have

|eT
mT

−1
m e−τT−1

m e1| < K0q
m−1,

where K0 =
4

(1 − q)

(

a− b

2

(

1

q
+ q

)

+ a + b

) .

Proof. Define ψ : C → C as

ψ(λ) =
2λ− (a+ b)

b− a
.
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then ψ([a, b]) = [−1, 1]. Define

B = ψ(Tm) =
2

b− a
Tm − a+ b

b− a
I.

Then the spectrum of the symmetric matrix B is contained in [−1, 1]. Let χ =
1

q
. Let

ǫχ be the ellipse which has −1, 1 as its foci and α =
χ2 + 1

2χ
and β =

χ2 − 1

2χ
as its

semi-major axis and semi-minor axis. Let f(λ) = λ−1e−τλ−1
and F = foψ−1. Then

F (z) =

(

(b− a)

2
z +

a+ b

2

)−1

e
−τ

0

@

(b− a)

2
z +

a+ b

2

1

A

−1

.

Next we find the regularity ellipse of F . Recall that the regularity ellipse of F , as in

[31], is the ellipse ǫχ̄ where

χ̄ = χ̄(F ) = sup {χ : F is analytic in the interior of ǫχ}.

So in this case the regularity ellipse for this F is εχ̄

χ̄ =
b+ a

b− a
+

√

(
b+ a

b− a
)2 − 1 =

√
κ+ 1√
κ− 1

,

and κ =
b

a
is the spectral condition number of Tm. For

√
κ− 1√
κ+ 1

< q < 1, i.e.,

1 < χ < χ̄, the function F is analytic inside εχ and continuous on εχ. According to

Theorem 2.5.2, we have

|eT
mT

−1
m e−τT−1

m e1| ≤ Kqm−1, q =
1

χ
,

where K = max {χM(χ)

χ− 1
, ‖F (B)‖2} and M(χ) = maxz∈ǫχ

|F (z)|.

Next, let us look at the bound for M(χ). Let z = x+ iy ∈ εχ. Set

u =
(b− a)x+ a+ b

2
, v =

b− a

2
y.

Then

|F (z)| = |(u+ iv)−1e−τ(u+iv)−1 | =
1√

u2 + v2
|e−τ((u−iv)/(u2+v2))|
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and since α <
b+ a

b− a
, then u > 0. So we have

|e−τ((u−iv)/(u2+v2))| = e
−τ

 u

u2 + v2

!

< 1.

Therefore,

|F (z)| < 1√
u2 + v2

.

The function
1√

u2 + v2
attains its maximum on the ellipse εχ, where χ = α + β, at

the point z = −α on the real axis, so that

M(χ) = max
z∈εχ

|F (z)| < max
z∈εχ

1
√

((b− a)(−α) + a+ b)2/4
=

2

(a− b)(χ2 + 1)

2χ
+ a + b

Thus,

2χM(χ)

χ− 1
<

4

(1 − q)

(

a− b

2
(
1

q
+ q) + a + b

) = K0

and

‖F (B)‖ = ‖T−1
m e−τT−1

m ‖ ≤ 1

a
e
−τ

1

b ≤ 1

a

Notice that

K0 =
4

(1 − q)

(

a− b

2

(

1

q
+ q

)

+ a+ b

)

≥ 4

(1 − q)

(

a− b

2
· 2 + a + b

)

=
2

a(1 − q)
≥ 1

a

Therefore,

|eT
mT

−1
m e−τT−1

m e1| < max {K0,
1

a
}qm−1 = K0q

m−1.
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4.2.2 Posterior error analysis

In this section, we present error bounds for approximating w = e−τAv by using

the inverse Lanczos approximation. Let Tm be the projection of A onto the Krylov

subspace Km(A−1, v). The error EIL
m is defined as in (4.11).

Theorem 4.2.2. The posterior error of the inverse Lanczos approximation to the

matrix exponential on Km(A−1, v) satisfies

‖EIL
m (τ)‖ ≤ β|βm+1| max

0≤t≤τ
|eT

mT
−1
m e−tT−1

m e1|‖I − e−τA‖,

where β = ‖v‖, Tm and βm+1 are generated from the inverse Lanczos process (4.9).

Proof. We rewrite (4.9) as

VmT
−1
m = AVm + βm+1Avm+1e

T
mT

−1
m ,

then

wIL
m (t)′ = −βVmT

−1
m e−tT−1

m e1

= −β(AVm + βm+1Avm+1e
T
mT

−1
m )e−tT−1

m e1

= −βAVme
−tT−1

m e1 − ββm+1Avm+1e
T
mT

−1
m e−tT−1

m e1

= −AwIL
m (t) − ββm+1(e

T
mT

−1
m e−tT−1

m e1)Avm+1

Since EIL
m (t) = w(t) − wIL

m (t), EIL
m (0) = 0, then

EIL
m (t)′ = −AEIL

m (t) + ββm+1(e
T
mT

−1
m e−tT−1

m e1)Avm+1

Solve the above ODE on EIL
m , the posterior error is:

EIL
m (τ) =

∫ τ

0
e(t−τ)A

(

ββm+1(e
T
mT

−1
m e−tT−1

m e1)Avm+1

)

dt

= ββm+1

∫ τ

0
(eT

mT
−1
m e−tT−1

m e1)e
(t−τ)AAvm+1dt

‖EIL
m (τ)‖ ≤ β|βm+1|max0≤t≤τ |eT

mT
−1
m e−tT−1

m e1|‖
∫ τ

0
e(t−τ)AAdt‖‖vm+1‖

≤ β|βm+1|max0≤t≤τ |eT
mT

−1
m e−tT−1

m e1|‖I − e−τA‖
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Remark 4. From the bound of |eT
mT

−1
m e−τT−1

m e1|, we know that increasing the dimen-

sion of the Krylov subspace will reduce the value |eT
mT

−1
m e−τT−1

m e1|, thereby reducing

the approximation error. For the term ‖I − e−τA‖, the smaller τ is, the closer the

matrix e−τA to identity matrix, and thereby the smaller the value ‖I−e−τA‖. But the

speed of the decay of ‖I−e−τA‖ is fairly slow at the early stage unless the eigenvalues

of A are all very small. So whether this term will play a role in reducing the error as

τ decreases depends on the magnitude of the eigenvalues of A. The upper bound of

‖I − e−τA‖ is 1.

Remark 5. We also notice that, if A has very small eigenvalues, then the reciprocal

of these eigenvalues could be huge, then |βm+1| is large. On the other hand, we know

that the magnitude of |eT
mT

−1
m e−τT−1

m e1| largely depends on the condition number

of Tm. If the smallest eigenvalue of Tm is away from zero, |eT
mT

−1
m e−τT−1

m e1| decays

rapidly as m increases. But if the smallest eigenvalues of the original matrix A are

small, in this case, the smallest eigenvalues of Tm would be very small, and therefore

the expression |eT
mT

−1
m e−τT−1

m e1| would be large. But if the small eigenvalues of A

are bounded away from zero , both |βm+1| and |eT
mT

−1
m e−τT−1

m e1| are bounded, and

therefore give a good approximation to the matrix exponential and vector product.

For cases when A has huge largest eigenvalues and moderate smallest eigenvalues,

the Lanczos approximation onto the Krylov subspace Km(A−1, v) will provide better

approximation to e−τAv than Lanczos approximation onto Krylov subspace Km(A, v).

Corollary 4.2.3. Denote λ1 = λmin(A) and λn = λmax(A). For any

√
κ− 1√
κ+ 1

< q < 1,

κ =
λn

λ1

, the error of the inverse Lanczos approximation to the matrix exponential

satisfies

‖EIL
m (τ)‖ ≤ βK0q

m−1,

where K0 =
8λn

(1 − q)

(

λ1 − λn

2

(

1

q
+ q

)

+ λ1 + λn

) .
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Proof. Let Tm be the projection of A onto the Krylov subspace Km(A−1, v). Noting

that λmin(Tm) ≥ 1

λmax(A)
and λmax(Tm) ≤ 1

λmin(A)
, for

√

λmax(Tm)/λmin(Tm) − 1
√

λmax(Tm)/λmin(Tm) + 1
<

√
κ− 1√
κ+ 1

< q < 1, by Lemma 4.2.1 and Theorem 4.2.2, we have

‖EIL
m (τ)‖ ≤ β|βm+1| max

0≤t≤τ
|eT

mT
−1
m e−tT−1

m e1|‖I − e−τA‖

≤ β|βm+1|
4qm−1

(1 − q)

(

λmin(Tm) − λmax(Tm)

2

(

1

q
+ q

)

+ λmin(Tm) + λmax(Tm)

)

= β|βm+1|
4qm−1

(1 − q)

(

λmin(Tm)

[

1/q + q

2
+ 1

]

− λmax(Tm)

[

1/q + q

2
− 1

])

≤ β|βm+1|λ1λn
4qm−1

(1 − q)

(

λmin(A)

[

1/q + q

2
+ 1

]

− λmax(A)

[

1/q + q

2
− 1

])

≤ β|βm+1|λ1λn
4qm−1

(1 − q)

(

λ1

[

1/q + q

2
+ 1

]

− λn

[

1/q + q

2
− 1

])

≤ 2βλn
4qm−1

(1 − q)

(

λ1

[

1/q + q

2
+ 1

]

− λn

[

1/q + q

2
− 1

])

= βK0q
m−1,

where |βm+1| ≤ ‖A−1‖ + ‖Tm‖ ≤ 2‖A−1‖ =
2

λ1
and ‖I − e−τA‖ ≤ 1.

4.3 Shift-and-invert Lanczos approximation

As we can see from the analysis of the inverse Lanczos method, the method outper-

forms the standard Lanczos method when the matrix A has huge largest eigenvalues

and moderate smallest eigenvalues. But when the matrix A has very small eigenval-

ues, the inverse Lanczos method may perform worse. The shift-and-invert Lanczos

approximation with appropriate shift might perform better in this case. In [16], it

was proposed to use Krylov subspace generated by (I+σA)−1 to approximate e−τAv.

A sophisticated technique is introduced to minimize error with respect to σ. Here

we propose to use the shift-and-inverse approximation that is similar to the inverse
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Lanczos approximation. It is based on the Lanczos method for (A+ σI)−1 and v,

(A+ σI)−1Vm = VmTm + βm+1vm+1e
T
m, for σ > 0. (4.12)

The closest approximation to e−τAv from Km((A+σI)−1, v) is the vector VmV
T
m e

−τAv,

which is

VmV
T
me

−τAv = βVmV
T
m e

−τAVme1 ≈ βVme
−τ(T−1

m −σI)e1,

where β = ‖v‖, v = βv1 and v1 = Vme1.

The approximation to e−τAv defined by

wSIL
m := βVme

−τ(T−1
m −σI)e1. (4.13)

is called the shift-and-invert Lanczos approximation The superscript SIL represents

its correspondence to the shift-and-invert Lanczos method. We also define the error

ESIL
m (τ) = w(τ) − wSIL

m (τ), (4.14)

where w(τ) = e−τAv. One would think that the smaller the largest eigenvalue after

the shift-and-invert transformation, the better the approximation error, since this will

induce smaller |βm+1|. But this will induce larger |eT
mT

−1
m e−τ(T−1

m −σI)e1| which shows

up in the bound of the posterior error of the shift-and-invert Lanczos approximation.

So a proper shift is crucial for this method to provide better approximation to the

solution e−τAv which can have moderate |βm+1| and a smaller |eT
mT

−1
m e−τ(T−1

m −σI)e1| .

In the following we will first analyze the behavior of the quantity |eT
mT

−1
m e−τ(T−1

m −σI)e1|,

and then presents the posterior analysis for the Lanczos approximation on Km((A+

σI)−1, v).

4.3.1 Behavior of |eT
mT

−1
m e−τ(T−1

m −σI)e1|

Lemma 4.3.1. Let Tm be symmetric and tridiagonal. Denote a = λmin(Tm) and

b = λmax(Tm). For any fixed q such that

√
κ− 1√
κ+ 1

< q < 1, κ =
b

a
, then we have

|eT
mT

−1
m e−τ(T−1

m −σI)e1| < K0q
m−1,
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where K0 =
4eτσ

(1 − q)

(

a− b

2

(

1

q
+ q

)

+ a + b

) .

We omit the proof since it is similar to the one in the inverse Lanczos approxima-

tion. In the following, we look at the posterior error bound for the shift-and-invert

Lanczos method.

4.3.2 Posterior error analysis

We consider the approximation of w = e−τAv by using the shift-and-invert Lanczos

approximation. Let the approximate solution wSIL
m (t) be defined as in (4.13). Tm is

the projection of A onto the Krylov subspace Km((A + σI)−1, v). The error ESIL
m is

defined as in (4.14). Next we present the posterior error analysis.

Theorem 4.3.2. The posterior error of the Lanczos approximation to the matrix

exponential on Km((A+ σI)−1, v)) is

‖ESIL
m (τ)‖ ≤ β|βm+1| max

0≤t≤τ
|eT

mT
−1
m e−t(T−1

m −σI)e1|(‖I − e−τA‖ + τ |σ|),

where β = ‖v‖, Tm and βm+1 are generated from the Lanczos process (4.12).

Proof. Since

(A + σI)−1Vm = VmTm + βm+1vm+1e
T
m,

we have

Vm(T−1
m − σI) = AVm + βm+1(A+ σI)vm+1e

T
mT

−1
m .

Then

wSIL
m (t)′ = −β(AVm + βm+1(A+ σI)vm+1e

T
mT

−1
m )e−t(T−1

m −σI)e1

= −βAVme
−t(T−1

m −σI)e1 − ββm+1(A + σI)vm+1e
T
mT

−1
m e−t(T−1

m −σI)e1

= −AwSIL
m (t) − ββm+1(e

T
mT

−1
m e−t(T−1

m −σI)e1)(A+ σI)vm+1

Since ESIL
m (t) = w(t) − wSIL

m (t), we have

ESIL
m (t)′ = −AESIL

m (t) + ββm+1(e
T
mT

−1
m e−t(T−1

m −σI)e1)(A+ σI)vm+1
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Solving the above ODE with ESIL
m (0) = 0, the posterior error is:

ESIL
m (τ) =

∫ τ

0
e(t−τ)A(ββm+1(e

T
mT

−1
m e−t(T−1

m −σI)e1)(A+ σI)vm+1)dt

= ββm+1

∫ τ

0
(eT

mT
−1
m e−t(T−1

m −σI)e1)e
(t−τ)A(A+ σI)vm+1dt

Taking norm on both sides of the above expression, we have

‖ESIL
m (τ)‖

≤ β|βm+1| max
0≤t≤τ

|eT
mT

−1
m e−t(T−1

m −σI)e1|‖
∫ τ

0

e(t−τ)A(A + σI)dt‖‖vm+1‖

≤ β|βm+1| max
0≤t≤τ

|eT
mT

−1
m e−t(T−1

m −σI)e1|(‖I − e−τA‖ + τ |σ|)

Notice from the bound of this theorem, similar argument as in the inverse Lanczos

approximation can be made for the term ‖I − e−τA‖ as τ decreases. The modulus of

the (m, 1) entry of matrix function T−1
m e−t(T−1

m −σI), i.e. |eT
mT

−1
m e−t(T−1

m −σI)e1| decays

away from the diagonal as the dimension increases. Choosing small σ will make

|βm+1| small, but the term max0≤t≤τ |eT
mT

−1
m e−t(T−1

m −σI)e1| will be large due to the

small smallest eigenvalue of Tm. This is similar to the analysis of simply inverting

the matrix. So the best σ should not be too large and not be too small.

Corollary 4.3.3. Denote λ1 = λmin(A) and λn = λmax(A). For any

√
κ− 1√
κ+ 1

< q < 1,

κ =
λn + σ

λ1 + σ
, the error of the shift-and-invert Lanczos approximation to the matrix

exponential e−τAv on Krylov subspace Km((A+ σI)−1, v) satisfies

‖ESIL
m (τ)‖ ≤ βK0q

m−1,

where K0 =
8(λn + σ)eτσ

(1 − q)

(

λ1 − λn

2

(

1

q
+ q

)

+ λ1 + λn + 2σ

)(1 + τ |σ|).

In the next section, we compare all the three Lanczos approximation methods by

using examples and explain the benefit of choosing the right Lanczos method, which

in the end allows us to take larger time step in computing solutions in problems like

(4.5).

70



4.4 Numerical Examples

In this section, we carry out numerical tests of Lanzcos based approximation meth-

ods. We compare these methods for computing e−τAv for various values of τ and

dimension m. We define ϕ(Tm, t) = eT
me

−tTme1 for the standard Lanczos approxima-

tion, ϕ(Tm, t) = eT
mT

−1
m e−tT−1

m e1 for the inverse Lanczos approximation and ϕ(Tm, t) =

eT
mT

−1
m e−t(T−1

m −σI)e1 for the shift-and-invert Lanczos approximation. As shown in the

posterior error bound, we shall examine the quantity β(Tm) = max
0≤t≤τ

|ϕ(Tm, t)| for

each Lanczos based method. For the purpose of numerical execution, we use α(Tm)

to approximate β(Tm), where α(Tm) = max
t

|ϕ(Tm, t)|, t =
iτ

pnum
, 1 ≤ i ≤ pnum , i

is integer and pnum is the number of equal partition between 0 and τ .

Example 5. In this example, we compare the standard Lanczos method and the

inverse Lanczos method. The matrix is plat362.mtx from Matrix Market [2]. The

size of the matrix is 362 by 362. The largest eigenvalue is approximately 7.74e− 001,

the smallest eigenvalue is approximately 3.55e− 012. The number of equal partition

we use to calculate |α(Tm)| is pnum = 1000. We use the standard Lanczos method

and the inverse Lanczos method to compute w = e−τAv where v is a random vector

with ‖v‖ = 1. We compare the error of the approximation ‖Em‖ = ‖w − wm‖ for

each method where w is computed by exp {−τA}v of MATLAB. In Table 4.1, we list

various components of the posterior bounds and error. In Figure 4.1, we give the error

history of the standard Lanczos approximation and the inverse Lanczos approximation

with τ = 0.1 and m increasing from m = 1 to m = 20. The dash-dotted line in the

figure corresponds to the error history of the inverse Lanczos approximation and the

solid line corresponds to the error history of the standard Lanczos approximation.

From Table 4.1, we see that the standard Lanczos algorithm on this matrix

performs much better than the inverse Lanczos algorithm. To achieve an error of

4.95e − 016, the standard Lanczos algorithm only needs time step τ = 0.1, m = 10,
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Algorithm m τ βm+1 |α(Tm)| ‖Em‖ CPU (secs)
SLanczos 10 0.1 1.63e-001 5.84e-022 4.95e-016 4.04e+002
SLanczos 10 0.001 1.63e-001 1.78e-039 3.55e-016 4.80e+001
ILanczos 10 0.1 5.69e+007 6.69e-007 1.36e-002 3.13e-001
ILanczos 10 0.001 5.69e+007 6.69e-007 1.39e-004 3.28e-001

Table 4.1: A comparison between SL method and IL method, SL performs better

while for the inverse Lanczos method, even when the time step is τ = 0.001, the

error only reaches to 1.39e − 004. The reason is that the largest eigenvalue of A is

of order 1 while the smallest eigenvalue is very small, resulting βm+1 being small for

the standard Lanczos method, but large for the inverse Lanczos method. Also, we

notice that the posterior bound τβm+1|α(Tm)| of the standard Lanczos method is way

smaller than the error ‖Em‖, this is due to the roundoff error of the machine which

results in ‖Em‖ as order of 10−16 instead of a quantity very close to zero.

0 5 10 15 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Dimension of the Krylov subspace

N
o

rm
a

liz
e

d
 r

e
si

d
u

a
l (

2
)−

n
o

rm

Figure 4.1: Error convergence history of Example 5

From the Figure 4.1, we see that, for fixed τ = 0.1, the error reduces quickly
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to order of 10−16 for the standard Lanczos method as m increases, but the error of

the inverse Lanczos approximation stagnates at order of 10−2 even with increasing

dimension m.

Next we show an example whose largest eigenvalue is large while small eigenvalue

is not too small in which applying the inverse Lanczos method performs better than

the standard Lanczos method.

Example 6. The matrix is lund a.mtx from Matrix Market [2]. The size is 147 by

147. The largest eigenvalue is approximately 2.24e + 008, the smallest eigenvalue is

approximately 8.00e+001. The number of equal partition we use to calculate |α(Tm)| is

pnum = 1000. We plot the value |ϕ(Tm, t)|, t =
iτ

pnum
, 1 ≤ i ≤ 100 to give a picture

of how |ϕ(Tm, t)| changes with respect to t for different Lanczos based methods and

different τ , see Figure 4.3. We use the standard Lanczos approximation method and

the inverse Lanczos method to compute w = e−τAv where v is a random vector with

‖v‖ = 1. The quantity wm is the approximation solution as introduced in the beginning

of each subsection. We compare the error ‖Em‖ = ‖w − wm‖ of the approximation

of each Lanczos method where w is computed by exp {−τA}v of MATLAB. Again,

we list various components of the posterior bounds and error in Table 4.2. In Figure

4.2, we give the error of the standard Lanczos approximation and the inverse Lanczos

approximation with τ = 0.1 and m increasing from m = 1 to m = 20. The solid line

in the figure corresponds to the error history of the standard Lanczos method as m

increases from m = 1 to m = 20, the dash-dotted line corresponds to the error history

of the inverse Lanczos approximation as m increases from m = 1 to m = 20.

In this case, Lanczos algorithm on the inverse matrix performs better than the

standard Lanczos approximation method for both m = 10 and m = 20 with τ not too

small because βm+1 is large for the standard Lanczos approximation method, while

it is small for the inverse Lanczos approximation method. On the other hand, we see

from the table that reducing τ is not beneficial for the inverse Lanczos method at all.
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Algorithm m τ βm+1 |α(Tm)| ‖Em‖ CPU (secs)
SLanczos 10 0.1 6.28e+007 2.32e-005 1.69e-004 4.37e-001
SLanczos 10 0.001 6.28e+007 2.78e-003 4.66e-001 3.59e-001
ILanczos 10 0.1 2.24e-005 9.33e+000 1.14e-013 4.37e-001
ILanczos 10 0.001 2.24e-005 4.18e+003 5.15e-008 4.06e-001

SLanczos 20 0.1 4.10e+007 1.79e-003 1.47e-004 7.65e-001
SLanczos 20 0.001 4.10e+007 4.24e-003 4.07e-001 5.79e-001
ILanczos 20 0.1 4.76e-006 3.54e-004 1.59e-014 8.75e-001
ILanczos 20 0.001 4.76e-006 4.91e+002 6.69e-012 8.75e-001

SLanczos 20 0.000001 4.10e+007 4.20e-004 4.28e-004 5.00e-001
SLanczos 20 0.00000001 4.10e+007 8.90e-024 4.80e-016 4.53e-001
ILanczos 20 0.000001 4.76e-006 1.78e+005 1.34e-003 8.13e-001
ILanczos 20 0.00000001 4.76e-006 2.03e+005 1.26e-001 7.50e-001

Table 4.2: A comparison between SL method and IL method, IL performs better

For the standard Lanczos method, the error deteriorates as τ decreases and after τ

decreases to a certain point, the approximation starts to improve again. In this case

with τ = 0.00000001, we get a better approximation with error ‖Em‖ = 4.80e− 016.

So for the standard Lanczos method, after reducing τ to a certain point, the error

does improve. We also give the errors for different dimensions and fixed τ = 0.1. As

one can see from Figure 4.2, increasing the dimension does not decrease the error

for the standard Lanczos method, but does reduce the error for the inverse Lanczos

method.

We next consider an example where the matrix has extremely large and small

eigenvalues. This is a situation that both of the standard Lanczos approximation

method and the inverse Lanczos approximation method do not perform well.

Example 7. The matrix is bcsstm27.mtx from Matrix Market [2]. In order to make

it symmetric positive definite, we multiply A by constant 100, and then let A=A*A.

The size is 1224 by 1224. The largest eigenvalue is approximately 1.54e + 011, the

smallest eigenvalue is approximately 9.91e − 007. The number of equal partition we

use to calculate |α(Tm)| is pnum = 200000. We use both the standard Lanczos

approximation method and the inverse Lanczos approximation method to compare the

74



0 5 10 15 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Dimension of the Krylov subspace

N
o

rm
a

liz
e

d
 r

e
si

d
u

a
l (

2
)−

n
o

rm

Figure 4.2: Error convergence history of Example 6

error of the approximation and we list various components of the posterior bound of

each of these two Lanczos methods, the error and the CPU time in Table 4.3. In

Table 4.4, we list various components of the posterior bound of the shift-and-invert

Lanczos method, its error and the CPU time. The shift we used is σ = 1. And we

plot the error againt m for all three Lanczos methods in Figure 4.4.

Algorithm m τ βm+1 |α(Tm)| ‖Em‖ CPU (secs)
SLanczos 10 0.1 3.79e+010 1.27e-008 6.12e-001 4.31e+002
SLanczos 10 0.001 3.79e+010 9.96e-003 7.49e-001 8.25e+001
SLanczos 10 0.00000001 3.79e+010 1.10e-002 2.48e-001 6.42e+001
ILanczos 10 0.1 4.26e+002 2.91e-008 7.83e-001 5.75e+001
ILanczos 10 0.001 4.26e+002 2.91e-008 6.28e-001 5.78e+001
ILanczos 10 0.00000001 4.26e+002 2.91e-008 3.54e-001 5.97e+001

Table 4.3: A comparison between SL method and IL method, both perform worse

In this example, we see that both the standard Lanczos approximation method

and the inverse approximation method do not provide good approximation. For the
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Figure 4.3: Function value |ϕ(Tm, t)| as t changes

standard Lanczos approximation, no matter τ = 0.1, τ = 0.001 and τ = 0.00000001,

The error is of order 10−1. This is because the eigenvalues of A are huge, the standard

Lanczos method fails to converge even with τ = 0.00000001. For the inverse Lanc-

zos approximation, the smallest eigenvalue of A is very small. Eigenvalues of T−1
m

approaches the eigenvalues of A. Thus e−τT−1
m is close to identity matrix and then

wm = βVme
−τT−1

m e1 is close to v. Therefore, the error of the inverse Lanczos approx-

imation in this case is close to ‖e−τAv − v‖ which is also of order 10−1. In this case,

the shift-and-invert Lanczos method achieves a little better approximation due to the

characteristics of the spectrum of the transformed matrix. See Table 4.4. We also see

in Table 4.4 that small τ will produce larger error for fixed dimension m. And the

error gets smaller as the dimension increases from m = 10 to m = 50. In Figure 4.4,

we give the error of each Lanczos approximation against the dimension m. Dimension

m changes from 1 to 100. As we can see that the error of the shift-and-invert Lanczos
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approximation(the lowest line in the graph) decreases as the dimension m increases,

and starts to stagnate when the error reaches to order of 1e− 006 to 1e− 007. The

standard Lanczos approximation and the inverse Lanczos approximation both fail to

give error under the order of 10−1.

Algorithm m τ βm+1 |α(Tm)| ‖Em‖ CPU (secs)
SILanczos 10 0.1 2.17e-001 4.28e+001 2.69e-003 7.77e+001
SILanczos 10 0.01 2.17e-001 4.28e+001 2.49e-002 7.57e+001
SILanczos 10 0.001 2.17e-001 4.28e+001 1.33e-001 7.86e+001
SILanczos 50 0.1 2.43e-001 8.09e-001 3.76e-006 7.33e+000
SILanczos 50 0.01 2.43e-001 2.50e+001 1.01e-003 7.12e+000
SILanczos 50 0.001 2.43e-001 4.34e-001 1.65e-002 6.84e+000

Table 4.4: A case study of shift-and-invert Lanczos method with different τ and m

0 20 40 60 80 100
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Dimension of the Krylov subspace

N
o

rm
a

liz
e

d
 r

e
si

d
u

a
l (

2
)−

n
o

rm

Figure 4.4: Error convergence history of Example 7

Example 8. The matrix is mhd3200b.mtx from Matrix Market collection [2]. The

size is 3200 by 3200. The largest eigenvalue is approximately 2.19e+000 , the smallest

eigenvalue is approximately 1.37e − 013. The number of equal partition to calculate
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|α(Tm)| is 1000. We apply all three Lanczos approximation methods to calculate

e−τAv, where v is a random vector with ‖v‖ = 1. In the shift-and-invert transfor-

mation, we use shift σ = 1. In Figure 4.5, we plot the error of all three Lanczos

approximation methods against m. The dotted line represents that the timing step is

0.001, the solid line represents that the timing step is 0.1. The solid line represents

the error history of the inverse Lanczos approximation method, the bottom line rep-

resents the standard Lanczos approximation method, the line in between represents

the shift-and-invert Lanczos approximation method. m changes from 1 to 20. In Ta-

ble 4.5, we list various components of the posterior bounds, error and CPU time for

all the three Lanczos approximation methods with fixed τ = 0.1 and fixed dimension

m = 50.

Algorithm m τ βm+1 |α(Tm)| ‖Em‖ CPU (secs)
SLanczos 50 0.1 2.59e-002 2.55e-140 3.89e-016 1.37e+003
ILanczos 50 0.1 1.54e+009 8.60e-008 1.07e-002 2.18e+001
SILanczos 50 0.1 1.86e-002 8.60e-008 4.23e-016 3.55e+000

Table 4.5: A comparison among SL, IL and SIL methods, SL and SIL performs better

Table 4.5 once again showed the relation between the error and the components

of the posterior bounds for each Lanczos approximation. Among all three Lanczos

methods, the standard Lanczos method and the shift-and-invert Lanczos method

both converge to order of 10−16. The inverse Lanczos method only converges to order

of 10−2 in this case because the smallest eigenvalue of the matrix is close to zero

which results in huge βm+1 for the inverse Lanczos approximation method. For the

standard Lanczos method, the quantity |α(Tm)| is very small which leads to a smaller

posterior error bound than the real error ‖Em‖ = 3.89e−016. This is because that the

quantity wm = βVme
−τTme1 is zero matrix in this case. Since the largest eigenvalues

of A are huge, so are the eigenvalues of Tm. Therefore, e−τTm is approximately a

zero matrix. Therefore, the error is ‖Em‖ = ‖w‖ = ‖e−τAv‖ itself in this case which
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Figure 4.5: Error convergence history of Example 8

is close to 3.89e − 016. In Figure 4.5, we see that, between the standard Lanczos

method and the shift-and-invert Lanczos method, the shift-and-invert method needs

larger number of Lanczos iterations to reduce to the same error precision. When

timing step τ becomes smaller, the number of Lanczos iterations decreases for both

the standard Lanczos method and the shift-and-invert Lanczos method. Both the

standard Lanczos method and the shift-and-invert method start to stagnate after the

error precision reaches to certain accuracy.

Example 9. The square matrix is discretized from a differential operator and is of
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where n is the size of the matrix. The size we used in this case is n = 1000. The

matrix has very large high eigenvalues, but the smallest eigenvalue is approximately

9.87e+000. The number of equal partition to calculate |α(Tm)| is pnum = 5000. We

apply all three Lanczos approximation methods to see the error of the approximation.

In the shift-and-invert transformation method, we use shift σ = 1. The ’+’ line

represents that the timing step is 0.001, the solid line represents that the timing step

is 0.1. See Table 4.6 and Figure 4.6.

Algorithm m τ βm+1 |α(Tm)| ‖Em‖ CPU (secs)
SLanczos 50 0.1 9.77e+005 1.09e-003 2.84e-001 2.84e-001
ILanczos 50 0.1 3.06e-005 3.06e+000 2.23e-011 3.27e+001
SILanczos 50 0.1 3.05e-005 3.06e+000 3.69e-011 3.29e+001

SLanczos 50 0.001 9.77e+005 1.09e-003 5.83e-002 1.59e+001
ILanczos 50 0.001 3.06e-005 1.05e+003 2.89e-013 2.99e+001
SILanczos 50 0.001 3.05e-005 1.04e+003 3.93e-013 3.03e+001

Table 4.6: A comparison among SL, IL and SIL methods, IL and SIL performs better

In this case, the standard Lanczos method does not converge. The inverse Lanczos

method and the shift-and-invert Lanczos method behave similarly. To reach to the

same error precision, the number of Lanczos iterations increases when the timing

step τ becomes smaller for both the inverse Lanczos method and the shift-and-invert

method. While for the standard Lanczos method, reducing the timing step τ does

improve the error precision a little.
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Figure 4.6: Error convergence history of Example 9

Observe from the above two examples, we see that the number of Lanczos iteration

increases for Example 9 and decreases for Example 8 as the timing step becomes

smaller. This is due to the overall performance of the quantities :

|eT
me

−τTme1|, |eT
mT

−1
m e−τT−1

m e1|, |eT
mT

−1
m e−τ(T−1

m −σI)e1|,

‖I − e−τA‖, and τ

in the posterior error bounds. We give two separate, detailed table for each example

with pnum = 5000.

We see from Table 4.7, as τ decrease, βm+1 does not change for each of the Lanczos

methods as βm+1 of the Lanczos process depends on A and v but independent of

τ . However α(Tm) behaves differently. For the standard Lanczos method, α(Tm)

decreases as τ decreases; for the inverse Lanczos method and the shift-and-invert

Lanczos method, it keeps unchanged as τ decreases. The terms ‖I − e−τA‖ and

‖I − e−τA‖ + τ |σ| both decrease but at different rate. For the standard Lanczos
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Algorithm m τ βm+1 |α(Tm)| τ
SLanczos 10 0.1 4.29e-001 3.36e-021 0.1
SLanczos 10 0.01 4.29e-001 3.54e-030 0.01
SLanczos 10 0.001 4.29e-001 1.04e-038 0.001
Algorithm m τ βm+1 |α(Tm)| ‖I − e−τA‖
ILanczos 10 0.1 8.40e+009 1.17e-009 1.97e-001
ILanczos 10 0.01 8.40e+009 1.17e-009 2.17e-002
ILanczos 10 0.001 8.40e+009 1.17e-009 2.2e-003
Algorithm m τ βm+1 |α(Tm)| ‖I − e−τA‖ + τ |σ|
SILanczos 10 0.1 1.10e-001 5.19e-008 2.97e-001
SILanczos 10 0.01 1.10e-001 5.19e-008 3.17e-002
SILanczos 10 0.001 1.10e-001 5.19e-008 3.2e-003

Table 4.7: Analysis of the number of the Lanczos iteration for Example 8

Algorithm m τ βm+1 |α(Tm)| τ
SLanczos 10 0.1 1.04e+006 1.12e-002 0.1
SLanczos 10 0.01 1.04e+006 1.12e-002 0.01
SLanczos 10 0.001 1.04e+006 1.12e-002 0.001
Algorithm m τ βm+1 |α(Tm)| ‖I − e−τA‖
ILanczos 10 0.1 1.05e-003 4.57e+001 1
ILanczos 10 0.01 1.05e-003 1.54e+003 1
ILanczos 10 0.001 1.05e-003 2.63e+003 1
Algorithm m τ βm+1 |α(Tm)|| ‖I − e−τA‖ + τ |σ|
SILanczos 10 0.1 1.05e-003 4.59e+001 1.1
SILanczos 10 0.01 1.05e-003 1.54e+003 1.01
SILanczos 10 0.001 1.05e-003 2.63e+003 1.001

Table 4.8: Analysis of the number of the Lanczos iteration for Example 9

approximation method, the error bound is

‖ESL
m (τ)‖ ≤ τβ|βm+1| max

0≤t≤τ
|eT

me
−tTme1|.

In this example, |α(Tm)| decreases with decreasing τ . Therefore the method takes

smaller number of Lanczos iteration to reach to the same precision as when τ is

bigger. For the inverse Lanczos method and the shift-and-invert Lanczos method,

|α(Tm)| keep unchanged with decreasing τ , but the quantities e−τA is very close to

the identity matrix as A has very small eigenvalues. So ‖I − e−τA‖ becomes smaller
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as τ decreases. Considering the bound for the shift-and-invert Lanczos method

‖ESIL
m (τ)‖ ≤ β|βm+1| max

0≤t≤τ
|eT

mT
−1
m e−t(T−1

m −σI)e1|(‖I − e−τA‖ + τ |σ|),

the overall error are smaller when τ decreases, so it takes less number of Lanczos

iterations as τ becomes smaller. For the inverse Lanczos method,

‖EIL
m (τ)‖ ≤ β|βm+1| max

0≤t≤τ
|eT

mT
−1
m e−tT−1

m e1|‖I − e−τA‖.

The quantity |α(Tm)| keeps unchanged, but ‖I − e−τA‖ is dropping with respect to

τ , so the overall error drops from 10−2 to 10−4 from start, even though the error does

not change as the dimension increases.

Similar argument can be made for Example 9. The difference is that |α(Tm)| for

the inverse Lanczos and shift-and-invert Lanczos methods go to increase as τ becomes

smaller. Yet the term ‖I − e−τA‖ and ‖I − e−τA‖ + τ |σ| do not help in achieving

better precision. This is because A has many large eigenvalues away from zero in

this case. Therefore the number of Lanczos iteration increases as the timing step

becomes smaller for the inverse Lanczos method and the shift-and-invert Lanczos

method. So larger τ is more beneficial in terms of the convergence speed for the

inverse Lanczos method and the shift-and-invert Lanczos method for matrix with

large or modest eigenvalues. In order to achieve convergence of the approximation,

the standard Lanczos method is the one since the other two might fail to converge

by reducing τ .

Finally, we want to emphasize the point that, for a typical matrix, according to

the characteristics of its spectrum, we can choose a method which uses larger τ , i.e.

less timing-steps, to keep the error bound within a desirable level.

4.5 Solving the system of ODEs with a time-dependent forcing term

In this section, we discuss the numerical solution of the system of ODEs with a

time-dependent forcing term by using Krylov subspace method for time-propagation.
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As is given out at the beginning of this chapter, the solution of the system of

ODEs of the form

dw(t)

dt
= −Aw(t) + r(t), w(0) = w0,

is

w(t+ δ) = e−δAw(t) +

∫ δ

0

e−(δ−τ)Ar(t+ τ)dτ.

At each step of the time propagation, we need to evaluate a product of matrix expo-

nential and a vector. We consider using Krylov subspace methods. The objective is

to use large time step. The calculation of w(t+ δ) would involve a numerical integra-

tion. In general the integration is approximated by a quadrature rule on the whole

interval [0, δ] and the accuracy depends on which quadrature rule one uses. Consider

a general quadrature formula of the form,

∫ δ

0

e−(δ−τ)Ar(t+ τ)dτ ≈ δ

p
∑

j=1

µje
−(δ−τj )Ar(t+ τj)

where τ ′js are the quadrature nodes in the interval [0, δ]. Therefore,

w(t+ δ) ≈ e−δAw(t) + δ

p
∑

j=1

µje
−(δ−τj )Ar(t+ τj).

So the calculation of w(t + δ) would involve several calculations of the form e−δAv.

Once again, we can use larger timing step by choosing among different Krylov sub-

space methods. For the simplest trapezoidal rule, we can combine the vectors

w(t+ δ) = e−δA[w(t) +
δ

2
r(t)] +

δ

2
r(t+ δ).

So only one evaluation of an exponential times a vector is needed at each time step.

Another effective quadrature rule is Simpson rule. The approximated w(t+ δ) is

w(t+ δ) = e−δA

(

w(t) +
δ

6
r(t)

)

+
2δ

3
e−

δ
2
Ar

(

t+
δ

2

)

+
δ

6
r(t+ δ).

In the following, we give an example to illustrate the effectiveness of the approxima-

tion by using Simpson rule.
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Example 10. The problem is a simplified version in section 6.2 of [17]. Then the

symmetric problem with time-varying forcing term

∂u(x, t)

∂t
= ∆u(x, t) + r(x, t),

is defined on the unit real line, with homogeneous boundary conditions and initial

conditions: u(x, 0) = x(x − 1). The exact solution of the above partial differential

equation is give by

u(x, t) =
x(x− 1)

1 + t
.

And the function r can be solved from the above relationship. We are dealing with

γ = 0. Then r(t) =
x(1 − x)

(1 + t)2
− 2

1 + t
. The grid points we took is 1000 in one

dimension. The matrix has very large high eigenvalues, but the smallest eigenvalue is

approximately 9.87e+ 000. We apply all three Lanczos approximation methods to see

the error of the approximation. In the shift-and-invert Lanczos method, we use shift

σ = 1. During the whole experiment, we fix m = 10.

In all four Figures, the top curve is the error history for the standard Lanczos

approximation which is in the green dash dot line. The red solid line corresponds to

the error history of the inverse Lanczos approximation. The blue solid “+” line corre-

sponds to the error history of the shift-and-invert approximation. The inverse Lanczos

approximation method and the shift-and-invert Lanczos approximation method have

similar performances in this case. They almost overlap with each other and locate at

the bottom part of each picture. In Figure 4.7, the inverse Lanczos and the shift-and-

invert Lanczos approximation methods converge to order 1 for τ = 0.1; in Figure 4.8,

they both converge to order 1e − 2 for τ = 0.01; in Figure 4.9, they both converge

to order 1e − 3 for τ = 0.001; in Figure 4.10, they both converge to order 1e − 4

for τ = 0.0001. While for the standard Lanczos approximation method, the error

stays around order 1 to 1e− 1. We see that in order to achieve an error precision of

1e − 2, we only need to take the time-step τ = 0.01 for either the inverse Lanczos
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Figure 4.7: Error history for SL, IL and SIL approximation with τ = 0.1

approximation method or the shift-and-invert Lanczos approximation method, while

even with time-step τ = 0.0001, the standard Lanczos approximation method still

can not achieve the error 1e − 2. In that case, we have to use much smaller τ to

get the error precision 1e − 2 for the standard Lanczos method, which is very time

consuming. Therefore a better choice of the Lanczos methods will allow us to use

less time-steps which is very useful for practical purposes.

Copyright c© Ping Zhang, 2009.
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Figure 4.8: Error history for SL, IL and SIL approximation with τ = 0.01
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Figure 4.9: Error history for SL, IL and SIL approximation with τ = 0.001
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Figure 4.10: Error history for SL, IL and SIL approximation with τ = 0.0001
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Chapter 5 Conclusions and further work

In this thesis, we have proposed an inexact inverse subspace iteration method which

can solve multiple and clustered eigenvalues of the generalized eigenvalue problems.

We showed that the inexact inverse subspace iteration recovers its linear convergence

rate of the outer iteration by solving the inner linear systems to a certain accuracy.

We have also proposed a Krylov subspace approximation based on Lanczos Algo-

rithm applied to A−1 for approximating matrix exponentials. We have developed

a novel technique for analyze errors of three Lanczos methods. We have compared

these Lanczos approximation methods both theoretically and numerically. In partic-

ular, the analysis allows us to choose which method to use based on the spectrum

information of the matrix.

There are problems that remain open. First of all, we can apply our analysis

to the Extended Krylov Subspace Method(EKSM), a recent work by Druskin and

Knizhnerman in [13]. Due to the different construction of the orthonormal basis,

the analysis might be quite different from the one that we discussed in chapter 4.

Also due to the operation of A−1 on the vector, there is a possibility to improve

the numerical approximation by switching to inexact linear solver. This has been

observed in the shift and invert Krylov subspace method [37]. And the theoretical

analysis is also needed to guide the usage of the inexact inner-outer iteration solver.

Secondly, it would be useful to present a survey of all the current techniques and

provide practical guidance on using different Krylov subspace approximations for

approximating e−τAv.

Copyright c© Ping Zhang, 2009.
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