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ABSTRACT OF DISSERTATION

FLAG F -VECTORS OF POLYTOPES WITH FEW VERTICES

We may describe a polytope P as the convex hull of n points in space. Here we
consider the numbers of chains of faces of P . The toric g-vector and CD-index
of P are useful invariants for encoding this information. For a simplicial polytope
P , Lee defined the winding number wk in a Gale diagram corresponding to P . He
showed that wk in the Gale diagram equals gk of the corresponding polytope. In this
dissertation, we fully establish how to compute the g-vector for any polytope with few
vertices from its Gale diagram. Further, we extend these results to polytopes with
higher dimensional Gale diagrams in certain cases, including the case when all the
points are in affinely general position. In the Generalized Lower Bound Conjecture,
McMullen and Walkup predicted that if gk(P ) = 0 for some simplicial polytope P and
some k, then P is (k− 1)-stacked. Lee and Welzl independently use Gale transforms
to prove the GLBC holds for any simplicial polytope with few vertices. In the context
of Gale transforms, we will extend this result to nonpyramids with few vertices. We
will also prove how to obtain the CD-index of polytopes dual to polytopes with few
vertices in several cases. For instance, we show how to compute the CD-index of
a polytope from the Gale diagram of its dual polytope when the Gale diagram is
2-dimensional and the origin is captured by a line segment.
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CD-index
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Chapter 1 Preliminaries

1.1 Introduction

People have long been interested in the number of faces of polytopes. Studying the
faces of a given polytope allows us to better understand the polytope itself. Every
convex d-polytope P can be defined as the convex hull of n vertices in Rd. If P
is d-dimensional, then P has fi i-dimensional faces for −1 ≤ i ≤ d − 1, where the
empty set is the only face of dimension −1 and there are n 0-faces. For a simplicial

d-polytope, the components of the h-vector satisfy hk =
k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1

for 0 ≤ k ≤ d. The symmetry of the h-vector, i.e., hi = hd−i, is a consequence
of the Dehn-Sommerville equations. The g-vector is defined by g0 = h0 = 1 and
gi = hi − hi−1, for 1 ≤ i ≤

⌊
d
2

⌋
.

McMullen and Walkup stated the generalized lower bound conjecture (GLBC) in
1971 [23].

Conjecture 1.1.1 (McMullen-Walkup 1971). Let P be any simplicial d-polytope.
Then

1. gi(P ) ≥ 0 for 0 ≤ i ≤
⌊
d
2

⌋
.

2. For 1 ≤ k ≤
⌊
d
2

⌋
, the following statements are equivalent.

• gk(P ) = 0;

• P is (k − 1)-stacked; i.e., there exists a triangulation T of P for which
there is no interior face of dimension less than d− k + 1.

In 1971 McMullen made a conjecture to characterize the sequences that are real-
izable as the f -vectors of simplicial polytopes [21]. There was not a complete proof
of the g-conjecture until the 1980’s when Billera and Lee proved the sufficiency of
McMullen’s conditions for f -vectors [5] and Stanley proved the necessity of these
conditions [27]. With this complete proof, the statement is now called the g-theorem.
The g-theorem establishes the non-negativity of the gi for 0 ≤ i ≤

⌊
d
2

⌋
, which is the

first part of the GLBC. We are still interested in elementary proofs and interpreta-
tions. For a simplicial polytope P , Lee [18] interprets gk(P ) as a winding number
wk(o) in terms of k-splitters winding around the origin o in P ’s corresponding Gale
diagram, which is a representation of the polytope itself. In Chapter 2, we generalize
the simplicial case to some classes of convex polytopes Q. We show how to deter-
mine the g-vector of Q when all the points are in affinely general position and the
origin lies in the relative interior of the convex hull of at least one k-splitter in the
Gale diagram (see Theorem 2.1.1 and Corollary 2.1.5). We also show how to deter-
mine the g-vector of Q when the origin lies in the relative interior of the convex hull
of at least one splitter spanned by at least e + 1 points in affinely general position

1



with respect to their span in the e-dimensional Gale diagram (see Theorem 2.2.9 and
Corollary 2.2.12). Further, we argue how to determine the g-vector of Q when the
origin coincides with at least one point in the Gale diagram (see Theorems 2.1.10
and 2.2.1). As a consequence, we establish how to determine the g-vector for any
polytope with a two-dimensional Gale diagram.

When they made the GLBC, McMullen and Walkup verified that if P is (k − 1)-
stacked, then gk(P ) = 0 [23]. Later, Lee and Welzl independently showed that the
forward implication holds for polytopes with few vertices, i.e., the number of vertices
is at most d+3 [18, 29]. Recent work by Murai and Nevo established the validity of this
forward implication for all simplicial d-polytopes [25]. In Chapter 3, we extend the
generalized lower bound theorem to general convex (i.e., nonsimplicial) nonpyramidal
polytopes Q with few vertices in the context of Gale transforms in Theorem 3.1.1 by
proving that when gk = 0 for such polytopes there exists a triangulation for which
there is no interior face of dimension less than d−k+ 1. Our proof uses the fact that
we can shift the points in the Gale transform in a certain way without changing the
resulting triangulation of the polytope.

In Chapter 4, we prove how to interpret the CD-index of polytopes dual to poly-
topes with few vertices in several cases. For instance, we show how to compute the
CD-index of a polytope from the 2-dimensional Gale diagram of its dual polytope
when the origin is in the relative interior of the convex hull of a line segment (see
Theorem 4.3.8). Then we conjecture how to extend this result to determine the CD-
index of a polytope from the 2-dimensional Gale diagram of its dual polytope when
the origin is in the relative interior of the convex hull of a line segment with multiple
points on either end in Conjecture 4.3.20.

1.2 Convex Polytopes

First, we will introduce the notions of a polytope and its faces. For additional infor-
mation on convex polytopes, see Grünbaum [14] and Ziegler [30].

Convex polyhedra are subsets of Rd that are intersections of finitely many closed
halfspaces. Adding one more condition gives us the following definition of convex
polytopes.

Definition 1.2.1 (cf. Ziegler 1995). A convex polytope P ⊂ Rd is the bounded
intersection of finitely many closed halfspaces.

There is an equivalent definition of convex polytopes.

Theorem 1.2.2 (cf. Ziegler 1995). Consider a subset P ⊂ Rd. Then P is the convex
hull of finitely many points exactly when P is the bounded intersection of finitely many
closed halfspaces.

This equivalence is the fundamental theorem for polytopes and proofs may be
found in various sources, including [14] and [30]. The usefulness of both descriptions
of polytopes cannot be overstated. There are some problems, as in combinatorial
optimization, that are more approachable through the lens of halfspaces. There are

2



other problems that more naturally encourage the use of the convex hull description
of a polytope. Here we will use this latter definition. It is also important to note
that throughout this dissertation, all polytopes are convex. Since we are always
considering convex polytopes, we will often omit the term convex. Thus, anywhere
the term polytope arises, convex polytope is understood. Throughout this dissertation,
we also assume all polytopes are full dimensional; i.e., a d-dimensional polytope is a
subset of Rd.

Studying the faces of polytopes helps us understand the structure of polytopes.
For any polytope P ⊂ Rd, the empty set and P itself are the improper faces of P .
Every subset F of P is a proper face of P if F = P∩H for some supporting hyperplane
H of P . Consider a 2-dimensional n-gon, Pn. Then Pn has 2n + 2 faces, including
the empty set, n vertices, n edges, and Pn itself. More generally, for any d-polytope
P that has n vertices, there are n 0-dimensional faces and fi i-dimensional faces for
1 ≤ i ≤ d − 1. The empty set and P itself are also faces of dimension −1 and d,
respectively. We say the 0-faces are vertices, the 1-faces are edges, the (d − 2)-faces
are subfacets, and the (d− 1)-faces are facets.

Every d-polytope P has a dual d-polytope P ∗, which is defined as follows.

Definition 1.2.3 (cf. Ziegler 1995). Consider d-polytopes P and P ∗. Then P and
P ∗ are dual polytopes exactly when there is an inclusion inversing bijection between
their face lattices.

For example, every facet of P corresponds to a vertex of P ∗. Also every vertex
of P corresponds to a facet of P ∗. Notice that Pn is its own dual. Now consider the
following 3-dimensional polytopes, which are dual to one another.

Figure 1.1: The triangular bipyramid and the triangular prism are dual 3-polytopes.

Example 1.2.4. In Figure 1.1, the triangular bipyramid is on the left and the trian-
gular prism is on the right. It is obvious that the vertices of the bipyramid correspond
to the facets of the triangular prism, and the facets of the bipyramid correspond to
the vertices of the triangular prism.

3



We may use the above notions to introduce some important classes of polytopes.
Simplicial polytopes form a well behaved class of convex polytopes. Every face of a
d-dimensional simplicial polytope P is a simplex; in other words, for 0 ≤ i ≤ d − 1,
each i-face of P consists of exactly i + 1 vertices. On the other hand, every vertex
of a simple d-dimensional polytope P is adjacent to exactly d facets. There is an
important relationship between simplicial polytopes and simple polytopes, as stated
in the following theorem.

Theorem 1.2.5 (cf. Brøndsted 1983). Consider dual d-polytopes P and P ∗. Then P
is simplicial exactly when P ∗ is simple.

The proof of this result is straightforward and may be found in [7] and [30]. Let
us now consider a simplicial 3-polytope, the octahedron, and its dual 3-polytope, the
cube.

Figure 1.2: The octahedron and the cube are also dual polytopes.

Example 1.2.6. Every facet of the octahedron is a triangle, so the octahedron is a
simplicial polytope. Every vertex in the cube is adjacent to three facets, so the cube
is a simple polytope. Further, as Figure 1.2 illustrates, the octahedron and the cube
are dual polytopes.

We are interested in studying the faces of polytopes. The f -vector is one useful
tool for encoding the number of faces of a polytope in each dimension. For a d-
polytope P , we have the following definition.

Definition 1.2.7 (cf. Ziegler 1995). The f -vector of P , f(P ), is defined as
(f−1, f0, f1, . . . , fd−1), where f−1 is always 1 and fi denotes the number of i-dimensional
faces of P , for 0 ≤ i ≤ d− 1.

We can determine the f -vectors for our examples above as follows.

Example 1.2.4 continued. The f -vector of the triangular bipyramid is
f(triangular bipyramid) = (1, 5, 9, 6), and the f -vector of the triangular prism is
f(triangular prism) = (1, 6, 9, 5).
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Example 1.2.6 continued. The f -vector of the octahedron is f(octahedron) =
(1, 6, 12, 8), and the f -vector of the cube is f(cube) = (1, 8, 12, 6).

As these examples show, the relationship between a polytope and its dual is
reflected in their f -vectors. For any d-polytope P and its dual polytope P ∗, fi(P ) =
fd−1−i(P

∗) for 0 ≤ i ≤ d− 1.
We will now explore further properties of polytopes.

1.3 The h- and g-vectors

Here we consider one way to encode some information about the chains of faces in a
polytope.

In the previous section, we saw that the f -vector encodes information about a
polytope’s faces. The toric h- and g-vectors also encode information concerning the
numbers of chains of faces of a general convex polytope. Stanley first introduced the
following recursive definition of the toric h- and g-vectors in [26].

Definition 1.3.1 (Stanley 1987). Let P be any d-polytope. Then we define the toric
h-vector and the toric g-vector recursively using the following relations

h(∂P, x) =
∑

G face of ∂P

g(∂G, x)(x− 1)d−1−dim(G)

h(∂P, x) =
d∑
i=0

hix
d−i

g(∂P, x) =

b d2c∑
i=0

gix
i,

where g(∅, x) = h(∅, x) = 1, g0 = g0(∂P ) = h0, and gi = gi(∂P ) = hi − hi−1 for
1 ≤ i ≤

⌊
d
2

⌋
.

Using this definition, we will compute the toric h- and g-vectors for some interest-
ing examples. We will also highlight a few useful results. First, we will find the toric
h- and g-vectors of 3-dimensional pyramids and bipyramids. Since these equations
are defined recursively, we need the toric g- and h-vectors of all the lower dimensional
polytopes which are faces of 3-dimensional pyramids and bipyramids. Let us start
with the 0-polytope, which is the convex hull of a single point.

Example 1.3.2. When P is the 0-polytope, the only face of ∂P is the empty set of
dimension −1. So

h(∂P, x) = g(∂P, x)(x− 1)0−1−(−1) = g(∅, x) = h(∅, x) = 1.

h(x) = 1, g(x) = 1
h = (1), g = (1)
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Figure 1.3: Here is the line segment, a 1-dimensional polytope P .

Since we have the toric g-vector for the empty set and single points, then we may
determine the toric h- and g-vectors of the 1-dimensional line segment (Figure 1.3).

Example 1.3.3. When P is the line segment, the faces of ∂P are one empty set and
two points, of dimensions −1 and 0, respectively. So

h(∂P, x) = 1 · g(∂∅)(x− 1)1−1−(−1) + 2 · g(∂ point , x)(x− 1)1−1−0

= (x− 1) + 2(1)
= x+ 1.

h(x) = x+ 1, g(x) = 1
h = (1, 1), g = (1)

Figure 1.4: Here is the n-gon, a 2-dimensional polytope P .

Using these two examples, we may now compute the toric h- and g-vectors of a
2-dimensional n-gon (Figure 1.4).

Example 1.3.4. When P is an n-gon, the faces of ∂P are one empty set, n points,
and n line segments, of dimensions −1, 0, and 1, respectively. So

h(∂P, x) = 1 · g(∂∅)(x− 1)2−1−(−1) + n · g(∂ point, x)(x− 1)2−1−0

+n · g(∂ line segment, x)(x− 1)2−1−1

= 1(1)(x− 1)2 + n(1)(x− 1) + n(1)(1)
= x2 − 2x+ 1 + nx− n+ n
= x2 + (n− 2)x+ 1.

h(x) = x2 + (n− 2)x+ 1, g(x) = 1 + (n− 3)x
h = (1, n− 2, 1), g = (1, n− 3)

In the following two examples, we will find the toric h- and g-vectors for the
3-dimensional pyramid (Figure 1.5) and bipyramid (Figure 1.6) over a general n-gon.
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Figure 1.5: Here is the pyramid Q over an n-gon.

Example 1.3.5. Let Q be a pyramid over an n-gon. Then the faces of ∂Q are one
empty set, n+ 1 points, 2n line segments, n triangles, and one n-gon, of dimensions
−1, 0, 1, 2, and 2, respectively. So

h(∂Q, x) = 1((1)(x− 1)3−1−(−1)) + (n+ 1)((1)(x− 1)3−1−0) + 2n((1)(x− 1)3−1−1)
+n((1)(x− 1)3−1−2) + 1((1 + (n− 3)x)(x− 1)3−1−2)

= 7(x− 1)3 + (n+ 1)(x− 1)2 + 2n(x− 1) + n+ 1 + (n− 3)x
= x3 − 3x2 + 3x− 1 + (n+ 1)(x2 − 2x+ 1) + 2nx− 2n+ n+ 1 + nx− 3x
= x3 + (n− 2)x2 + (n− 2)x+ 1.

h(x) = x3 + (n− 2)x2 + (n− 2)x+ 1, g(x) = 1 + (n− 3)x
h = (1, n− 2, n− 2, 1), g = (1, n− 3)

Figure 1.6: Here is the bipyramid R over an n-gon.

Example 1.3.6. Let R be a bipyramid over an n-gon. Then the faces of ∂R are one
empty set, n + 2 points, 3n line segments, and 2n triangles, of dimensions −1, 0, 1,
and 2, respectively. So

h(∂R, x) = 1((1)(x− 1)3−1−(−1)) + (n+ 2)((1)(x− 1)3−1−0)
+3n((1)(x− 1)3−1−1) + 2n((1)(x− 1)3−1−2)

= (x− 1)3 + (n+ 2)(x− 1)2 + 3n(x− 1) + 2n
= x3 − 3x2 + 3x− 1 + (n+ 2)(x2 − 2x+ 1) + 3nx− 3n+ 2n
= x3 + (n− 1)x2 + (n− 1)x+ 1.
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h(x) = x3 + (n− 1)x2 + (n− 1)x+ 1, g(x) = 1 + (n− 3)x
h = (1, n− 1, n− 1, 1), g = (1, n− 2)

As these examples illustrate, there is a relationship between the toric h- and g-
vectors of a 2-dimensional n-gon and the toric h-vectors of the pyramid and bipyramid
over that n-gon. In particular, h(∂Q, x) = xh(∂P, x) + g(∂P, x) and h(∂R, x) =
(x + 1)h(∂P, x). As the next theorem states, these relationships hold for any d-
polytope P and the pyramid Q and the bipyramid R over P . The proof involves easy
computations and the results were observed, for instance, by Fine [13].

Theorem 1.3.7 (cf. Fine 2010). Let P ∈ Rd be any polytope. Let Q and R denote the
pyramid and bipyramid, respectively, over P . Then h(∂Q, x) = xh(∂P, x) + g(∂P, x)
and h(∂R, x) = (x+ 1)h(∂P, x).

First note that h(∂Q, x) = xh(∂P, x)+g(∂P, x) if and only if g(∂Q, x) = g(∂P, x).
Thus, we will prove the first statement by proving this equivalent statement g(∂Q, x) =
g(∂P, x) using an inductive argument on the dimension of faces.

In the following proof, pyr (F ) denotes the pyramid over a face F on the boundary
of P .

Proof. For any polytope P , we know

h(∂P, x) =
∑

G face of ∂P

g(∂G, x)(x− 1)d−1−dim(G)

=
d∑
i=0

hix
d−i

when dim(P ) = d and P ∈ Rd. Since Q and R denote the pyramid and bipyramid
over P , respectively, then P and Q are both in Rd+1.

Let us first consider the base case. From Example 1.3.2, we know that g(∂point, x) =
1. The pyramid over a point is a line, and we found that g(∂line segment, x) = 1.
Thus, the g-vector of a point is equivalent to the g-vector of the pyramid over a point.
Now suppose that the g-vector of ∂pyr (F ) is the same as the g-vector of ∂F for all
F whose dimension is less than or equal to d− 1.

In the case of Q, ∂Q contains ∂P , P itself, and pyr (F ) for all F in ∂P . Then
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h(∂Q, x)

=
∑

G face of ∂Q

g(∂G, x)(x− 1)(d+1)−1−dim(G)

=
∑

G face of ∂P

g(∂G, x)(x− 1)(d−1−dim(G))+1 + g(∂P, x)(x− 1)(d+1)−1−dim(P )

+
∑

G=pyr(F ):F face of ∂P

g(∂G, x)(x− 1)(d+1)−1−dim(G)

= (x− 1)
∑

G face of ∂P

g(∂G, x)(x− 1)d−1−dim(G) + g(∂P, x)(x− 1)d+1−1−d

+
∑

G face of ∂P

g(∂G, x)(x− 1)(d+1)−1−(dim(G)+1) by the induction assumption

= (x− 1)h(∂P, x) + g(P, x) + h(∂P, x)
= xh(∂P, x) + g(∂P, x).

In the case of R, ∂R contains ∂P and two sets of pyr (F ) for all F in ∂P . Then
h(∂R, x)

=
∑

G face of ∂R

g(∂G, x)(x− 1)(d+1)−1−dim(G)

=
∑

G face of ∂P

g(∂G, x)(x− 1)(d−1−dim(G))+1

+2
∑

G=pyr(F ):F face of ∂P

g(∂G, x)(x− 1)(d+1)−1−dim(G)

= (x− 1)
∑

G face of ∂P

g(∂G, x)(x− 1)d−1−dim(G)

+2
∑

G face of ∂P

g(∂G, x)(x− 1)(d+1)−1−(dim(G)+1) by the induction assumption

= (x− 1)h(∂P, x) + 2h(∂P, x)
= (x+ 1)h(∂P, x).

Figure 1.7: Here is the triangular prism.

Our earlier examples for low-dimensional polytopes provide us with enough infor-
mation to compute the toric h- and g-vectors of the 3-dimensional triangular prism
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(Figure 1.7). Since the triangular prism is a nonsimplicial polytope, we will discuss
it in further detail throughout this dissertation.

Example 1.3.8. In Example 1.2.4, we determined the f -vector of the triangular
prism. Now we will determine its toric h- and g-vectors. The h-vector is

h(∂P, x) = 1((1)(x− 1)3−1−(−1)) + 6((1)(x− 1)3−1−0) + 9((1)(x− 1)3−1−1)
+3((1 + x)(x− 1)3−1−2) + 2((1)(x− 1)3−1−2)

= (x− 1)3 + 6(x− 1)2 + 9(x− 1) + 3(1 + x) + 2
= x3 − 3x2 + 3x− 1 + 6x2 − 12x+ 6 + 9x− 9 + 3 + 3x+ 2
= x3 + 3x2 + 3x+ 1.

h(x) = x3 + 3x2 + 3x+ 1, g(x) = 1 + 2x
h = (1, 3, 3, 1), g = (1, 2)

As we saw in Example 1.2.4, the bipyramid over a triangle is the dual of the
triangular prism. Thus, knowing the toric g-vector of the triangular bipyramid is
useful as well.

Example 1.3.9. From Example 1.3.6, we know that the g-vector of a n-gon bipyra-
mid is (1, n− 2). Since the triangle is a 3-gon, the h- and g-vectors of the bipyramid
over a triangle are (1, 2, 2, 1) and (1, 1), respectively.

Historically, h- and g-vectors were first defined in the simplicial (and dually simple)
case. So we want to explore the relationship between the toric h- and g-vectors and
the ordinary h- and g-vectors here.

For a simplicial d-polytope, the h-vector is defined by the following alternating
sum.

Definition 1.3.10 (cf. Ziegler 1995). For a simplicial d-polytope and 0 ≤ k ≤ d, the

kth component of the h-vector is hk =
k∑
i=0

(−1)k−i
(
d− i
d− k

)
fi−1.

Figure 1.8: Orient the edges of the cube in the direction of the sweep.
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The symmetry of the h-vector, i.e. hi = hd−i, is a consequence of the Dehn-
Sommerville equations. From [7], for example, we know that we are able to determine
the ordinary h-vector of a simplicial polytope by sweeping its dual. Here, we will
compute the h-vector of the octahedron by sweeping the cube. To sweep a polytope,
choose a hyperplane in general position so that it crosses each vertex at a different time
as it moves parallel to itself across the polytope. Orient the edges in the direction of
the sweep, as illustrated in Figure 1.8. Count the out-, or equivalently the in-, degree
at each of its vertices as the plane ‘sweeps’ the polytope. Through this process, we
see that one vertex has in-degree 0, three vertices have in-degree 1, three vertices
have in-degree 2, and one vertex has in-degree 3. So the h-vector of the octahedron
is (1, 3, 3, 1) and, subsequently, the g-vector of the octahedron is (1, 2). Now we will
use the information we found in our earlier examples to compute the toric h- and
g-vectors of the octahedron.

Example 1.3.11. We first considered the octahedron P in Example 1.2.6. Notice
that P is a bipyramid over a 4-gon, the square. So we can use our results from
Example 1.3.6 to find the following information.

h(x) = x3 + 3x2 + 3x+ 1, g(x) = 1 + 2x
h = (1, 3, 3, 1), g = (1, 2)

Notice that the simplicial h-vector of the octahedron matches its toric h-vector.
This equality is not a coincidence. As Stanley proved in [26], the two h-vectors always
match when P is a simplicial polytope. We will verify that this equality holds for a
d-simplex and a simplicial d-polytope.

Example 1.3.12. Let P be a d-simplex. From sweeping, we know h(x) = xd +

xd−1 + . . .+ x+ 1 =
xd+1 − 1

x− 1
. Then h = (1, 1, . . . , 1︸ ︷︷ ︸

d+1

) and g = (1, 0, . . . , 0︸ ︷︷ ︸
b d2c+1

). The toric

h-vector should match.

h(∂P, x) =
d−1∑
j=−1

(
d+ 1

j + 1

)
(1)(x− 1)d−1−j

=
∑d

j=0

(
d+ 1

j

)
(x− 1)d−j

= (
∑d+1

j=0

(
d+ 1

j + 1

)
(1)(x− 1)d−j)− 1

x− 1

=
(x− 1 + 1)d+1

x− 1
− 1

x− 1

=
xd+1 − 1

x− 1
,

which matches the h-vector obtained from sweeping.

Since it will prove to be very useful in future calculations, we will reiterate the
following well known result.
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Lemma 1.3.13. For a simplex of arbitrary dimension, g(∂simplex, x) = 1.

Now we compute the h- and g-vectors for an arbitrary d-dimensional simplicial
polytope P .

Example 1.3.14. Let P be a simplicial d-polytope. Then ∂P is a (d−1)-dimensional
simplicial complex with f -vector (f−1, f0, f1, . . . , fd−1), where fi denotes the number
of i-dimensional faces. So

h(∂P, x) =
∑

G face of ∂P

g(∂G, x)(x− 1)d−1−dim(G)

=
d−1∑
i=−1

fi(x− 1)d−1−i

=
d−1∑
i=−1

fi

d−1−i∑
j=0

(
d− 1− i

j

)
xj(−1)d−1−i−j by the Binomial Theorem.

Then the coefficient of xd−k is:

=
d−1∑
i=−1

fi

(
d− 1− i
d− k

)
(−1)d−1−i−(d−k)

=
d∑
i=0

fi−1

(
d− 1− (i− 1)

d− k

)
(−1)−1−(i−1)+k

=
d∑
i=0

fi−1

(
d− i
d− k

)
(−1)k−i.

We know hk =
k∑
j=0

fj−1

(
d− j
d− k

)
(−1)k+j, which is equivalent to the previous line.

Consider two simplicial polytopes P and Q on disjoint vertex sets. Then (as sets
of vertices) ∂P ∗ ∂Q = {S ∪ T |S ⊂ ∂(P ), T ⊂ ∂(Q)} denotes the simplicial join of P
and Q. It is well known, and an easy computation to show, that the following holds.

Lemma 1.3.15. For simplicial polytopes P and Q on disjoint vertex sets,
h(∂P ∗ ∂Q, x) = h(∂P, x) · h(∂Q, x).

A sequence that is nondecreasing to a certain term and then nonincreasing after-
ward is said to be unimodal. Stanley showed that the ordinary h-vector is unimodal
[27]. Then Karu proved that the toric h-vector also behaves this way [15].

Theorem 1.3.16 (Karu 2004). The toric h-vector of any polytope Q is unimodal.
Thus, the g-vector is nonnegative.

We will use this fact when determining toric g-vectors from Gale diagrams in
Chapter 2, thus extending some results of Lee [18] and Welzl [29].
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1.4 The ab-, cd- and CD-indices

In addition to the f -vector and the toric h- and g-vectors, there are other ways to
encode information about the numbers of faces of a polytope in each dimension.
In this section, we will introduce three indices. It is common to use the ab-index
and cd-index to encode information about numbers of chains of faces in polytopes.
Alternatively, we may use the CD-index to encode the same information. Thus,
we will focus on this last index. First, we will introduce and explore the ab- and
cd-indices. For more information on the cd-index, see for example [28].

Let P be any d-polytope. Then the flag f -vector of P encodes the number of
chains of faces of various types S = {S1 < S2 < · · · < Sk} ⊆ {0, 1, . . . , d − 1}. We
define the flag f -vector more formally below.

Definition 1.4.1 (cf. Stanley 2012). For a subset S ⊆ {0, 1, . . . , d− 1}, an S-flag of
P is a chain ∅ ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk ⊂ P with dim(Fi)=Si for i = 1, . . . , k. Set f(P )
equal to the number of S-flags of P . Then (f(P ))S⊆{0,1,...,d−1} is the flag f -vector of
P .

The flag f -vector is an extension of the f -vector. In fact, all the single element
subsets encode the f -vector itself. Thus, these entries of the flag f -vector are identi-
cal to the f -vector. Since we already found the f -vectors of the triangular bipyramid
and the octahedron, we will now find their flag f -vectors.

Figure 1.9: Triangular bipyramid

Example 1.3.9 continued. We are considering the triangular bipyramid P (Fig-
ure 1.9). From Example 1.2.4, f(P ) = (1, 5, 9, 6). As the picture illustrates, two ver-
tices are incident to three edges and the other three vertices are incident to four edges.
So the number of chains consisting of a 0-face and a 1-face is f01 = 2(3) + 3(4) = 18.
Similarly, f02 = 2(3) + 3(4) = 18 and f12 = 9(2) = 18. It is also easy to see that
f012 = 2(3)(2) + 3(4)(2) = 36. Therefore, (f(P )) = (1, 5, 9, 6, 18, 18, 18, 36).
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Figure 1.10: Octahedron

Example 1.3.11 continued. We are considering the octahedron P here (Figure 1.10).
So (f(P )) = (1, 6, 4 · 3, 4 · 2, 6 · 4, 6 · 4, 12 · 2, 6 · 4 · 2) = (1, 6, 12, 8, 24, 24, 24, 48).

It is easy to see that every polytope has a flag f -vector. The information encoded
by the flag f -vector is used to determine the ab-index for any polytope.

Definition 1.4.2 (Stanley 2012). The flag h-vector of a polytope P is defined by
the flag f -vector through the following relationship,

h(P ) =
∑
T⊆S

(−1)|S\T |fT (P ).

For S ⊆ {0, 1, . . . , d− 1}, let

wi =

{
a if i /∈ S
b if i ∈ S

.

Then the ab-index of P is

Ψ(P ) =
∑

S⊆{0,1,...,d−1}

hS(P )w0w1 · · ·wn−1,

where a and b are noncommuting variables.

Using an alternating sum based on set inclusion, we may determine the flag h-
vector from the flag f -vector. Then we may determine the ab-index. This polynomial
in the non-commutative variables a and b encapsulates information about the number
of chains of faces. So let’s find the flag h-vector and ab-index for both the triangular
bipyramid and the octahedron.

Example 1.3.9 continued. For the triangular bipyramid P (see Figure 1.9), we have
the following.
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wS fS hS (a+ b)3 (a+ b)(ab+ ba) (ab+ ba)(a+ b)
aaa 1 1 1
baa 5 4 1 3
aba 9 8 1 4 3
aab 6 5 1 4
bba 18 5 1 4
bab 18 8 1 4 3
abb 18 4 1 3
bbb 36 1 1

So h(P ) = (1, 4, 8, 5, 5, 8, 4, 1) and the ab-index of P is Ψ(P ) = 1a3 + 4ba2 + 8aba +
5a2b+ 5b2a+ 8bab+ 4ab2 + 1b3.

Example 1.3.11 continued. For the octahedron P (see Figure 1.10), we have the
following.

wS fS hS (a+ b)3 (a+ b)(ab+ ba) (ab+ ba)(a+ b)
aaa 1 1 1
baa 6 5 1 4
aba 12 11 1 6 4
aab 8 7 1 6
bba 24 7 1 6
bab 24 11 1 6 4
abb 24 5 1 4
bbb 48 1 1

So h(P ) = (1, 5, 11, 7, 7, 11, 5, 1) and the ab-index of P is Ψ(P ) = 1a3+5ba2+11aba+
7a2b+ 7b2a+ 11bab+ 5ab2 + 1b3.

As the tables in these two examples indicate, there is another index which encodes
this information more concisely than the ab-index. Bayer and Klapper first introduced
the cd-index in [3]. Our tables above suggest their definition.

Definition 1.4.3 (Bayer-Klapper 1991). Define c = a + b and d = ab + ba. For
the non-commutative variables c and d, define the cd-index Φ(P ) by rewriting the
ab-index in terms of c and d, which can be done by the result of Bayer and Klapper.

Note that c3 = a3+ba2+aba+a2b+b2a+bab+ab2+b3, cd = aba+a2b+b2a+bab,
and dc = ba2 + aba+ bab+ ab2. So we have the cd-index for both polytopes above.

Example 1.3.9 continued. For the triangular bipyramid P , the cd-index is Φ(P ) =
1c3 + 4cd+ 3dc.

Example 1.3.11 continued. For the octahedron P , the cd-index is Φ(P ) = 1c3 +
6cd+ 4dc.

The CD-index, which is equivalent to the cd-index, is yet another useful tool for
encoding information about a polytope’s faces introduced by Fine [12, 13]. Start by
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building up polytopes P from a point using pyramids, via applying C, and using
prisms, via applying I.

Definition 1.4.4 (Fine 1995). Let P be a polytope. We define CP as the pyramid,
or cone, over P ; and we define IP as the prism over P .

Figure 1.11: Here are equivalent ways to construct a line segment.

We make the following simple, but useful, observation.

Note 1.4.5. Figure 1.11 shows that a pyramid over a point is combinatorially equiv-
alent to a prism over a point.

Thus, initially, we may apply either C or I. We may use different CI-sequences
to build up certain polytopes from a point. In the following example, we will practice
building up the tetrahedron.

Figure 1.12: Here is one way to build the tetrahedron.

Example 1.4.6. We will build the tetrahedron from a point. For the first step,
we may build a cone over a point. Then we build a cone over this edge. We end by
building a cone over this triangle. As Figure 1.12 shows, we may build the tetrahedron
using C3.

Since building a prism over a point is equivalent to building a cone over a point,
both C3 and C2I are valid IC-words used to describe the construction of the tetra-
hedron. In the third step, applying I rather than C builds a prism over a triangle
rather than a pyramid over a triangle. Thus, we can also build the triangular prism
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from a point as shown below.

Example 1.3.8 continued. Consider the triangular prism P in Figure 1.7. As the
picture shows, IC2 is one IC-word which constructs P .

In Example 1.2.6, we noted that the cube is a simple polytope dual to the octa-
hedron. We will determine an IC word for the cube below.

Figure 1.13: Here is one way to build the cube.

Example 1.4.7. We want to construct the cube Q as shown in Figure 1.13. Taking
a prism over a point builds one edge. Taking a prism over the edge builds a square.
Taking a prism over a square builds a cube. So I3 is one IC-word of Q.

Unfortunately, it is not always possible to build up a polytope from a point using
only the geometric operations C (pyramid) and I (prism) in a single word. For
instance, neither the triangular bipyramid from Example 1.3.9 nor the octahedron
from Example 1.3.11 may be constructed using only these operations. At the first
step, applying C or I builds a line segment in R. Applying the next operation builds
a polytope in R2 and so on. So it is only possible to build 2d−1 polytopes of dimension
d.

We may regard C and I as operations on flag vectors rather than regarding them
as geometric operations. In other words, a CI-word w is equated to the flag f -vector
of the polytope w(point). In [1, 2], Bayer and Billera proved that Fd − 1 is the
dimension of the vector space spanned by flag f -vectors of d-polytopes, where Fd is
the dth-Fibonacci number (F0 = F1 = 1 and Fi = Fi−1 + Fi−2 for i ≥ 2). Moreover,
they showed that applying d-combinations of the pyramid and bipyramid operations
to a point spans the flag vectors of d-polytopes [2]. Dually, CI-words of length d span
the space of flag f -vectors [12]. But there are relations among these words. Through
truncation, Fine shows the following result [12].

Theorem 1.4.8 (Fine 1995). For any polytope P , IICP = ICCP + ICIP −CCIP
(as a flag f -vector identity).

Successively applying this relation and the fact that I· = C·, Fine defines a unique
(C, IC)-polynomial for (the flag f -vector of) a polytope P . So let us revisit our ex-
ample from earlier.
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Example 1.4.7 continued. Above, we found that I3 is an (I, C)-word for the cube
Q. Use Note 1.4.5 to rewrite I3 as I2C. Now we may apply Fine’s result to rewrite
I2C as IC2 + ICI −C2I. Then we apply Note 1.4.5 again to rewrite this polynomial
as 2IC2 − C3. So 2(IC)C − CCC is the unique (C, IC)-polynomial for Q.

Fine introduced the CD-index of a polytope with the following definition [13].

Definition 1.4.9 (Fine 1995). Define D = IC − CC.

Note that C is regarded as having degree 1 and D as having degree 2. When deter-
mining the CD-index, the following theorem, which is equivalent to Theorem 1.4.8,
is useful [12].

Theorem 1.4.10 (Fine 1995). For any polytope P , ID = DI.

These relations allow us to compute the CD-index from (C, IC)-polynomials or
IC-polynomials. By eliminating IC terms in the (C, IC) basis, the CD-index is a
more concise way to encode information about a polytope. We quickly determine the
CD-index for the cube and triangular prism.

Example 1.4.7 continued. Recall that the (C, IC)-polynomial for the cube Q is
2(IC)C − CCC. So 2(D + CC)C − CCC = 2DC + CCC is the CD-index of Q.

Example 1.3.8 continued. For the triangular prism P , IC2 is the (C, IC)-word.
Thus, the DC-index of P is DC + C3.

Recall that we were not able to determine the IC-word for the triangular bipyra-
mid or octahedron through construction. So we need to regard C and I as operations
on flag vectors. In [11], Ehrenborg and Readdy showed how the cd-index changes un-
der the geometric operations C (pyramid) and I (prism). As a result, the CD-index
of a polytope can be converted into its cd-index. Conversely, Lee [18] argued that
setting c = 2C − I and d = IC − CI allows one to convert from the cd-index to the
CD-index via an intermediate IC-polynomial.

Before finding the CD-index of the triangular bipyramid or octahedron, let’s use
these relationships to rewrite the cd-basis in terms of the CD-basis via the (C, IC)-
basis.
We have
c3 = (2C − I)3

= 8C3 − 4C2I − 4CIC + 2CI2 − 4IC2 + 2ICI + 2I2C − I3
= 4C3 − 2CIC − 2IC2 + I2C
= 4C3 − 2C(D + C2)− 2(D + C2)C + I(D + C2)
= 4C3 − 2CD − 2C3 − 2DC − 2C3 + ID + IC2

= −2CD − 2DC +DI + (D + C2)C
= −2CD − 2DC +DC +DC + C3

= −2CD + C3.
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We also have
cd = 2CIC − 2C2I − I2C + ICI

= 2CIC − 2C3 − I2C + IC2

= 2C(D + C2)− 2C3 − I(D + C2) + (D + C2)C
= 2CD + 2C3 − 2C3 − ID − IC2 +DC + C3

= 2CD −DI − (D + C2)C +DC + C3

= 2CD −DC −DC − C3 +DC + C3

= 2CD −DC.
Additionally,
dc = 2IC2 − ICI − 2CIC + CI2

= IC2 − CIC
= (D + C2)C − C(D + C2)
= DC + C3 − CD − C3

= DC − CD.
Now we will quickly determine the CD-index for the following examples.

Example 1.3.9 continued. Recall that for the triangular bipyramid P , the cd-index
is Φ(P ) = 1c3 + 4cd+ 3dc. Then the CD-index is

1(−2CD + C3) + 4(2CD −DC) + 3(DC − CD)

= C3 + 3CD −DC.

Example 1.3.11 continued. The cd-index of the octahedron P is Φ(P ) = 1c3+6cd+
4dc. So the CD-index is

1(−2CD + C3) + 6(2CD −DC) + 4(DC − CD)

= C3 + 6CD − 2DC.

Here we are going to highlight a couple of important results concerning the CD-
index. The first result is proven by various people, including Fine and Lee [13, 16].

Theorem 1.4.11 (cf. Fine 2010, Lee 2016). For a simplicial d-polytope P , the CD-
index of its (simple) dual P ∗ is of the form

b d2c∑
i=0

gi(P )DiCd−2i.

The other theorem is a direct consequence of the geometric definition of C and
the fact that (CP )∗ = CP ∗.

Theorem 1.4.12. If Q is a k-fold pyramid over P , then the CD-index of Q∗ is the
CD-index of P ∗ premultiplied by Ck; i.e.,

ψ(Q∗) = Ck · ψ(P ∗).
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The following result by Fine allows us to determine the g-vector of a polytope Q
from the CD-index of its dual Q∗ [13].

Theorem 1.4.13 (Fine 2010). For a d-polytope Q, say ψ(Q∗) = w(C,D) is the
CD-index of its dual Q∗. Then g(Q, x) = ψ(1, x).

Therefore, it is possible to recover the g-vector of a polytope from the CD-index
of its dual.

In Chapter 4, we will show how to determine a polytope’s CD-index from one of
its representations, the Gale diagram, in certain cases. Now that we know how to
encode information about the polytope’s faces using these different indices, we are
going to explore a way to build up a polytope by shelling on its facets.

1.5 Shellings

There are many important interpretations of the components of the h-vectors of
simplicial polytopes. As we saw when discussing the ordinary h-vector in Section 1.3,
hk of a simplicial polytope P counts the number of vertices of in-degree k when
sweeping its dual P ∗ with a hyperplane. Alternatively, hk counts the number of
unique minimal new faces of P with exactly k vertices in an arbitrary shelling of
the facets of P . These two interpretations are dual to one another in the simplicial
case when the shelling is a line shelling. In particular, for any simplicial polytope P ,
hk(P ) is found either by shelling P itself or sweeping its dual. Since they are counting
something, the components of the h-vector are nonnegative. Thus, we will discuss
shelling in detail here. For more general information on shelling, see [30].

For the simplicial case, Bayer and Lee gave the following definition of a shelling
[4].

Definition 1.5.1 (Bayer-Lee 1993). Let ∆ be a simplical complex on V . Thus, ∆ is
closed under inclusion. Then ∆ is shellable if it satisfies the following criteria.

1. For every i-face of ∆, there is a facet of ∆ containing F (i.e., ∆ is pure).

2. The facets in ∆ may be ordered F1, . . . , Fn so that for 1 ≤ k ≤ n, there is a

unique face Gk ∈ F(Fk) such that Tk = F(Fk)
⋂[ k−1⋃

j=1

F(Fj)

]
is precisely the

set of faces of Fk not containing Gk.

Here Gk is the unique minimal new face. It is also important to remember that
any subset of facets of a simplex is shellable in any order. In this dissertation, we
are extending results to general polytopes. So we will need the general definition for
shelling the boundary complex of a (k + 1)-polytope [30].

Definition 1.5.2 (Ziegler 1995). Let C = ∂P for a (k + 1)-polytope. A shelling of
C is a linear ordering F1, . . . , Fs of the facets of C such that either C is 0-dimensional
(and, thus, facets are points) or it satisfies the following criteria.
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1. The boundary complex C(∂F1) of the first facet F1 has a shelling.

2. For 2 ≤ j ≤ s, Fj
⋂[ j−1⋃

i=1

Fi

]
=

r⋃
i=1

Gi is nonempty and the beginning segment

of a shelling G1, . . . , Gr, . . . , Gt of C(∂Fj), the (k − 1)-dimensional boundary
complex of Fj.

We say that the complex of a polytope C(P ) is shellable if the boundary complex
C(∂P ) is shellable. So “shelling a polytope” means finding a shelling order for the
facets of P . The following result allows us to reverse the ordering of any shelling [30].

Lemma 1.5.3 (Ziegler 1995). If F1, F2, . . . , Fs is a shelling order for the boundary
of a polytope P , then Fs, Fs−1, . . . , F1 is also a shelling order of it.

Bruggesser and Mani proved the following key result [8].

Theorem 1.5.4 (Bruggesser-Mani 1971). All polytopes are shellable.

They used a “line” shelling argument to prove this result. In particular, the
ordering of the facets of a polytope P corresponds to the ordering of the vertices of P ∗

for a particular dual of P (a polar dual) by sweeping with a hyperplane. Shellings that
arise from Bruggesser and Mani’s construction are called line shellings. Switching the
orientation of the line reverses the ordering of a given line shelling and, subsequently,
results in another line shelling. Various people, including Bruggesser and Mani, have
shown that there is a shelling in which any specified facet comes first [8, 9, 20, 6].
Ziegler makes the following observation [30].

Corollary 1.5.5 (Ziegler 1995). Every regular subdivision of a polytope is shellable.
In particular, every Schlegel diagram is shellable.

When sweeping the d-polytope Q∗ with a hyperplane H, each vertex has a corre-
sponding S∗ and T∗ as H sweeps Q∗ at v [19]. For a vertex v, S∗ is the vertex figure
of Q∗ at v. For a vertex v, T∗ is the intersection S∗ ∩ H. So S∗ is a polytope of
dimension d− 1 and T∗ is a polytope of dimension d− 2.

Sweeping the d-polytope Q∗ corresponds to a shelling of Q induced by “lifting”
the points in a Gale diagram, as described in Chapter 4. The vertex figure S∗ is
dual to the (co)facet S that we will shell on in the Gale diagram in Chapter 4. The
intersection of the vertex figure with H is dual to the boundary of the intersection
of the new facet with the old facets as we shell on a (co)facet in the Gale diagram
in Chapter 4. Using the relationships from the previous section, Lee verifies how to
calculate the CD-index of Q∗ by shelling its dual Q [16].

Theorem 1.5.6 (Lee 2016). The CD-index of Q∗ is ψ(Q∗) =
∑
v

ψv(Q
∗
v), where

ψv(Q
∗
v) =

1

2

(
(2C − I)ψ(S∗v) + (4D − I2)ψ(T∗v)

)
.
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Here, for a fixed j, 1 ≤ j ≤ s, Sv = ∂Fj and Tv = ∂

r⋃
i=1

Gi. In the case that

v is a simple vertex with i edges below the hyperplane and d − i points above the
hyperplane, then we have the following Corollary from Lee [16].

Corollary 1.5.7 (Lee 2016). Consider the d-polytope Q. Let v be a vertex of Q of
in-degree i. Then

ψv(Q
∗) = −1

2
∆d
i = −1

2
∆d
d−i,

where ∆d
i = DiCd−2i −Di+1Cd−2(i+1) for i 6=

⌊
d
2

⌋
and ∆d

b d2c
= 2Db

d
2c when 2|d and

∆d

b d2c
= Db

d
2cC otherwise.

Now that we have discussed various properties of polytopes, we are going to
consider one useful representation of a polytope.

1.6 Gale Transforms and Gale Diagrams

In this section, we will discuss Gale transforms, Gale diagrams, and some useful
properties. For more details and further information, see McMullen, Grünbaum, and
Ziegler [22, 14, 30].

Before drawing attention to a few key results, we will define Gale transforms and
diagrams and consider some examples.

Definition 1.6.1 (cf. Ziegler 1995). Consider a set of points V = {v1, v2, . . . , vn} in
Rd. Suppose P = convV ⊆ Rd. Then define a (d+ 1)× n-matrix A as follows.

A =


v1,1 v2,1 · · · vn,1
v1,2 v2,2 · · · vn,2

...
...

. . .
...

v1,d v2,d · · · vn,d
1 1 · · · 1


Let α(1), α(2), . . . , α(n−d−1) be a basis for the n−d−1-dimensional nullspace of A. We
define a (n− d− 1)× n-matrix A with rows α(1), α(2), . . . , α(n−d−1) as follows.

A =


α1,1 α2,1 · · · αn,1
α1,2 α2,2 · · · αn,2

...
...

. . .
...

α1,n−d−1 α2,n−d−1 · · · αn,n−d−1


Then V = {v1, v2, . . . , vn} is the Gale transform of P , where vi = (αi,1, αi,2, . . . , αi,n−d−1)
for 1 ≤ i ≤ n.

Note there is a natural correspondence between the points of V and the points of
V . Using this definition, we will find the Gale transform for the octahedron and cube
below.
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Figure 1.14: Here is the octahedron and its Gale transform.

Example 1.6.2. Consider the octahedron

P = conv ({(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}).
Then A is

A =


1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 1 1 1 1 1


and one possible A is

A =

(
1 1 −1 −1 0 0
1 1 0 0 −1 −1

)
So the Gale transform is V = {(1, 1), (1, 1), (−1, 0), (−1, 0), (0,−1), (0,−1)}. Fig-
ure 1.14 shows the octahedron and its Gale transform.

This example shows that there is a relationship between a d-dimensional polytope
P = conv ({v1, v2, . . . , vn}) ⊂ Rd and its Gale transform V ⊂ Rn−d−1. Before stating
this well known result, we introduce the following definition.

Definition 1.6.3 (Lee-N). We say that S “captures” a point q if and only if
q ∈ rel int ( conv ( S)).

The following theorem gives the relationship between sets that “capture” the
origin o in the Gale transform and faces of the corresponding polytope P .
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Theorem 1.6.4 (cf. Grünbaum 2003). Consider any subset S of {1, 2, . . . , n}. Then
the set {vi|i ∈ S} is V ∩ F for some face F of P , F 6= P , if and only if the origin o
is in the relative interior of conv ({vi|i /∈ S}).

In other words, the complement of every point set of a face of P must “capture” the
origin o in the relative interior of its convex hull in P ’s corresponding Gale transform.
So there is a one-to-one correspondence between the faces of a polytope P (6= P ) and
the sets of points that capture o in the corresponding Gale transform. In our example
above, notice that conv ({v2, v4}) is a face of P and o ∈ rel int (conv ({v1, v3, v5, v6})).
It is also true that o /∈ rel int (conv ({v1, v2, v3})) and conv ({v4, v5, v6}) is not a face
of P .

In Example 1.2.6, we noted that the cube is dual to the octahedron. So we will
now find the Gale transform for the cube.

Example 1.6.5. Consider the cube Q = conv ({(1, 1, 1), (−1, 1, 1), (1,−1, 1),
(−1,−1, 1), (1, 1,−1), (−1, 1,−1), (1,−1,−1), (−1,−1,−1)}).

Then A is

A =


1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1


and one possible A is

A =


1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

 .

So the Gale transform is V = {(1, 1, 1, 1), (−1,−1, 1,−1), (−1, 1,−1,−1),
(1,−1,−1, 1), (1,−1,−1,−1), (−1, 1,−1, 1), (−1,−1, 1, 1), (1, 1, 1,−1)}. Since the Gale
transform is 4-dimensional, we are not going to sketch it.

These two examples illustrate an important fact. When the number of points n
and the dimension of the polytope d are close enough, then the dimension of the
Gale transform is smaller than the dimension of the polytope itself. However, when
n and d are not close enough, then the dimension of the Gale transform can be
larger than the dimension of the polytope itself. Subsequently, Gale transforms are
particularly useful representations of polytopes when n − d is small. Furthermore,
the Gale transform preserves many properties of the original polytope. So studying
properties of the polytope through the Gale transform helps us better understand
higher-dimensional polytopes. Therefore, in this dissertation, we will show how to
determine information about polytopes with few vertices (i.e., n ≤ d+ 3) from their
Gale transforms. When interpreting the toric h- and g-vectors, we will actually study
Gale diagrams, which are closely related to Gale transforms through the following
well known relationship.
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Definition 1.6.6 (cf. Grünbaum 2003). Suppose that V ⊂ Rn−d−1 is the Gale trans-
form of the d-polytope P ⊂ Rd. Then V ′ ⊂ Rd is a Gale diagram of P if and only if
the origin o ∈ rel int (conv ({vi|i ∈ S})) exactly when o ∈ rel int (conv ({v′i|i ∈ S}))
for every subset S ⊂ {1, 2, . . . , n}.

Figure 1.15: Here is the triangular bipyramid and its Gale diagram.

Figure 1.16: Here is the triangular prism and its Gale digram.

Every d-polytope P ∈ Rd corresponds to a unique Gale diagram in Re, up to
combinatorial equivalence. Using this definition, we may construct Gale diagrams for
the triangular bipyramid and the triangular prism without using matrices.

Example 1.2.4 continued. Figures 1.15 and 1.16 show the Gale diagrams for the
triangular bipyramid and the triangular prism, respectively. Notice that the comple-
ment of every point set of a face of a given polytope does capture the origin o in its
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Gale diagram. Further, the complement of every point set that does not capture the
origin in the Gale diagram is not a face of that polytope.

The relationship between faces in P and the points in the Gale diagram leads to
the following result, which is stated in [14].

Corollary 1.6.7 (cf. Grünbaum 2003). The origin o in the Gale diagram coincides
with i points, say {v1, v2, . . . vi}, from V if and only if the polytope P is an i-fold
pyramid over the points {vi+1, vi+2, . . . , vn}.

A d-polytope P has a corresponding e-dimensional Gale diagram V , where e =
n − d − 1. Then the following result of McMullin shows how to determine the Gale
diagram for any of the faces L of P from V [22].

Theorem 1.6.8 (McMullin 1979). Regard L as a polytope itself. Then the Gale
diagram of L is found by projecting onto the space orthogonal to V \ L in the Gale
diagram corresponding to P and then deleting the points associated to V \ L.

When the number of vertices of a polytope is close enough to its dimension, then
the Gale diagram is low-dimensional. Thus, this representation is particularly helpful
when exploring properties of polytopes with few vertices.

1.7 Triangulations and Regular Triangulations

Here we briefly introduce triangulations and their significance in the upcoming chap-
ters. There is some historical context in [14]. Additional information about triangu-
lations may be found in [10].

McMullen and Walkup stated the generalized lower bound conjecture (GLBC) [23].

Conjecture 1.7.1 (McMullen-Walkup 1971). Let P be any simplicial d-polytope.
Then

1. gi(P ) ≥ 0 for 0 ≤ i ≤
⌊
d
2

⌋
.

2. For 1 ≤ k ≤
⌊
d
2

⌋
, the following statements are equivalent.

• gk(P ) = 0;

• P is (k− 1)-stacked, i.e. P admits a subdivision into a simplicial complex
whose (d− k)-faces are also faces of P .

In 1971 McMullen made a conjecture to characterize the f -vectors of simplicial
polytopes [21]. Billera and Lee proved the sufficiency of McMullen’s conditions for
f -vectors [5] and Stanley proved the necessity of these conditions [27]. With this
complete proof, the statement is now called the g-theorem. The g-theorem establishes
the non-negativity of the gi for 0 ≤ i ≤

⌊
d
2

⌋
, which is Part 1 of the GLBC.

In this section, we focus our attention to Part 2 of the GLBC. An equivalent defi-
nition states that a d-polytope P is (k−1)-stacked exactly when P has a triangulation
T for which there is no interior face of dimension less than d− k + 1. Consider any
d-polytope P = conv (V ) where V = {v1, . . . , vn}. Lee gives the following definition
of a triangulation of P [17].
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Definition 1.7.2 (Lee 1991). A triangulation of P is a collection T = {S1, . . . , Sm}
of subsets of V that satisfy the following conditions.

• dim(conv (Si)) = d for 1 ≤ i ≤ m;

• |Si| = d+ 1 for 1 ≤ i ≤ m;

•
m⋃
i=1

conv (Si) = P ;

• conv (Si) ∩ conv (Sj) = conv (F ) for some common proper face F of Si and Sj
where 1 ≤ i < j ≤ m.

McMullen and Walkup proved that if P is (k − 1)-stacked, then gk(P ) = 0 when
they made the GLBC [23]. Then Lee and Welzl independently showed that the
forward implication holds for polytopes with few vertices, i.e., the number of vertices
is at most d+ 3 [18, 29]. In his proof, Lee showed how to interpret the gk as winding
numbers in the Gale diagram. We will explore these concepts further in the next
section.

In 2004, McMullen proved the following result [24].

Theorem 1.7.3 (McMullen 2004). If a simplicial polytope P has a triangulation T
with no interior faces F such that dim(F ) ≤

⌊
d
2

⌋
, then this triangulation T is unique.

The validity of the forward implication for Part 2 of the GLBC is now fully
verified due to recent work by Murai and Nevo [25]. So for all simplicial d-polytopes
P , gk(P ) = 0 exactly when P is (k−1)-stacked. In fact, Murai and Nevo also showed
that the forward implication holds in the more general context of homology spheres
which satisfy the weak Lefschetz property. In Chapter 3, we extend this forward
implication to general convex (i.e., non-simplicial) nonpyramidal polytopes Q with
few vertices in the context of Gale transforms.

1.8 Winding Numbers

Let e ≥ 1, n ≥ e+1, and d = n−e−1. Consider a set of points V = {v1, ..., vn} ⊆ Re

in affinely general position.

Definition 1.8.1 (Lee 1991). Let X = {X ⊂ V : |X| = e}. In Re, an X in X is a
k-splitter if the hyperplane H = aff (X) partitions the remaining n − e points of V
into two sets, at least one of which has cardinality k.

Example 1.8.2. Consider the 2-dimensional Gale diagram in Figure 1.17. The 7
points of V are evenly spaced around a circle. All the 2-splitters of these 7 points are
shown.
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Figure 1.17: All the 2-splitters are marked in this 2-dimensional Gale diagram.

Figure 1.18: Here is the set up for computing the winding number.

Now we may discuss winding numbers. Choose any p ∈ Re in affinely general
position with respect to the points in V . The hyperplane H spanned by a splitter X
partitions V \X into two sets F and G, where F is the set of points of V in the same
open halfspace H− as p and G is the set of points in the opposite open halfspace H+.
See Figure 1.18. Then Lee defined the winding number wk(p) of p as follows [18].

Definition 1.8.3 (Lee 1991). The sign of X with respect to p is

sg(X) =


+1, if card(G) < card(F )

−1, if card(G) > card(F )

0, if card(G) = card(F )

.

Let α(X) denote the measure of the solid angle of the cone which is determined by
conv (X) and whose apex is p. (Total angle equals 1.)

Then the kth winding number is wk =
∑

k−splitters

X∈X

sg(X)α(X) for a fixed k, 0 ≤ k <
⌊
n−e
2

⌋
.
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Figure 1.19: Here we want to determine w2 in the Gale diagram.

Intuitively, the kth winding number, wk(p), counts how many times k-splitters
“wind around” p. So we may determine the kth winding number of regions deter-
mined by the sets conv (X) for k-splitters X. We calculate w2 in Figure 1.19.

Example 1.8.2 continued. We found all the 2-splitters of 7 points evenly spaced
around a circle above. Here we determine the winding number w2(p) for different
points p that fall in affinely general position with respect to the points of V .

Then Lee proved the following result [18].

Theorem 1.8.4 (Lee 1991). Let 0 ≤ k ≤
⌊
d
2

⌋
. Then the kth winding number of p,

wk(p), equals gk for the corresponding simplicial polytope P , where the origin of the
Gale diagram is chosen to be p.

As stated in the previous section, it is known that wk(p) ≥ 0 for 0 ≤ k ≤
⌊
d
2

⌋
, as

a consequence of the g-theorem. Using Gale diagrams, Lee and Welzl independently
provided elementary proofs by providing interpretations of the g-vector for simplicial
polytopes with few vertices (e.g., e = 2) [18, 29]. As noted in the last section, Lee
and Welzl also independently proved that if gk(P ) = 0 for 1 ≤ k ≤

⌊
d
2

⌋
, then P is

(k − 1)-stacked. In particular, they showed the following result holds.

Theorem 1.8.5 (Lee 1991, Welzl 2001). Suppose P is a simplicial d-polytope, with
at most d + 3 vertices, whose corresponding Gale transform has origin q. Let 0 ≤
k ≤

⌊
d
2

⌋
. If gk(q) = 0, then there exists a ray from q crossing no k-splitters. This ray

determines the triangulation predicted by the GLBC.

Example 1.8.2 continued. See Figure 1.20. Suppose the origin q in this Gale trans-
form with 7 points corresponds to the 4-dimensional polytope Q. Since q falls in
affinely general position with respect to the points in V of the Gale transform, then
Q is a simplicial polytope. Further, since g2(Q) = g2(q) = 0, then there exists a ray
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Figure 1.20: Here is a ray that does not cross any 2-splitters in the Gale transform.

Figure 1.21: Here the ray crosses three splitters in the Gale transform.

that does not cross any 2-splitter. One such ray is indicated in Figure 1.20.

A ray in general direction crosses the relative interior of the convex hull of exactly
one X ∈ X at any given point. The maximum simplices in the triangulation are
the complements of the splitters crossed by the ray. Figure 1.21 verifies that the ray
chosen above is in general direction. As it moves towards infinity, this ray crosses the
1-splitter {v1, v6}, the 1-splitter {v2, v7}, and the 0-splitter {v1, v7}. Thus, this ray
determines a triangulation of Q for which the maximum simplices are V \ {v1, v6},
V \ {v2, v7}, and V \ {v1, v7}.

McMullen’s earlier result [22] verifies that Theorem 1.8.5 determines a triangula-
tion of the corresponding polytope.

Theorem 1.8.6 (McMullen 1979). Let V be the e-dimensional Gale transform with
origin o corresponding to the d-polytope P . Adding a point z in affinely general
position with respect to the points V ∪{o} determines a triangulation of P . The faces
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of this triangulation are the complements of the sets of points which together with z
capture the origin o.

Figure 1.22: Here the point z is opposite the ray in the Gale transform.

Adding z in general position with respect to V determines a triangulation that
is equivalent to the triangulation determined by a ray in general position. In fact,
if the ray is pointing in the opposite direction of z, as in Figure 1.22 then these two
methods determine the exact same triangulation. Triangulations obtained in this way
are called regular triangulations.

By extending these results to certain non-simplicial polytopes in Chapter 2, we
determine the g-vector for any polytope P whose Gale diagram is e-dimensional in
various cases. In particular, we are able to determine the g-vector of every polytope
with a 2-dimensional Gale diagram. Then we extend the triangulation result to
general nonpyramidal polytopes with few vertices in Chapter 3.

Copyright c© Sarah A. Nelson, 2016.
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Chapter 2 The Toric g-Vector and Gale diagrams

Using the winding number interpretation of Lee in [18], we know how to find the g-
vector of any simplicial polytope from its Gale diagram. In particular, we compute the
winding number of the origin, which falls in affinely general position with respect to
the points V of the Gale diagram. Our goal in this chapter is to determine the g-vector
of a general convex polytope from its Gale diagram. We will compute the g-vector
for d-dimensional polytopes with e-dimensional Gale diagrams whose points are in
various states of special position. In addition, we will provide winding interpretations
in some cases. First, we will consider Gale diagrams V in which all the points of V
are in affinely general position but the origin is not in affinely general position with
respect to V . Then we will consider Gale diagrams in which all the points V are in
affinely general position except a subset of vertices which fall on a single hyperplane
containing the origin. We will close this chapter with a complete analysis of polytopes
with few vertices.

For notational ease, we will write V , instead of V , for points in the Gale diagram
throughout the rest of this dissertation. Whether V refers to the points of a polytope
or points of its Gale diagram will be clear from the context.

2.1 Gale Diagrams in e-Dimensions whose Origin is not in Affinely Gen-
eral Position

We will first consider convex d-polytopes with e-dimensional Gale diagrams in which
the points V of the diagram fall in affinely general position, except for the origin,
which is not in affinely general position with respect to V . In the case when the
origin q is in the relative interior of the convex hull of a single splitter, we will show
that gk(q) equals the smaller of the winding numbers of the two regions immediately
adjacent to q in Theorem 2.1.1. When the origin lands on multiple splitters, we argue
that each splitter acts “independently” by Lemma 2.1.4. The g-vector for a polytope
Q whose origin q lands on one of the vertices v in its Gale diagram is the same as the
g-vector obtained when that vertex v is deleted in Theorem 2.1.10.

In this section, we start with a collection of n points, V , in affinely general position
in Re. Consider a point q that is in affinely general position with respect to V
except that q is in the relative interior of the convex hull of each of α splitters, say
X1, X2, . . . , Xα, where Xi is a ki-splitter for 1 ≤ i ≤ α, and aff (Xi) 6= aff (Xj) for all
i 6= j. Then there exists a p in affinely general position with respect to V ∪ {q} so
that pq does not meet the convex hull of any splitter except X1, X2, . . . , Xα.

Define Hi = aff (Xi) for all i. Let Fi be the points of V that are in the open
halfspace of Hi containing p, and let Gi be points of V that are in the opposite open
halfspace of Hi. See Figure 2.1. Then V = Fi ∪ Gi ∪ Xi for each i. Note that
placing the origin at p corresponds to a simplicial polyope P , and placing the origin
at q corresponds to a nonsimplicial poytope Q.
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Figure 2.1: Multiple splitters capture the origin q here.

We know how to compute the winding number of p and, subsequently, we know
how to determine the g-vector of P . How do we compute the g-vector of Q when q
falls on the relative interior of the convex hull of some splitters in the corresponding
Gale diagram? How do we interpret the winding number q in this case?

Single k-Splitter

Figure 2.2: One k-splitter captures q here.

We will first determine the g-vector of Q when α = 1. In other words, we assume
that q falls in the relative interior of the convex hull of a single k-splitter X1, or X.
See Figure 2.2.

Theorem 2.1.1 (Lee-N). When the origin q in the Gale diagram falls in the relative
interior of the convex hull of exactly one k-splitter, then gk(Q) equals the minimum gk
of its neighboring regions. Otherwise gi(Q) = gi(P ) for i 6= k, where P is the polytope
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corresponding to having the origin p in either of the regions immediately adjacent to
q.

Proof. We already know how to handle the simplicial case, so we want to take advan-
tage of this fact when working on the nonsimplicial case. We will determine g(∂Q) in
terms of g(∂P ). We need to determine which faces are different for P and Q. Start
by considering which sets capture p or q but not both.

Clearly, X captures only q. Since p is in affinely general position with respect to
V , then any set that captures p in its interior must have full dimension e. Since pq
does not meet the convex hull of any splitter except X, we also note that any set
which captures p in its interior either captures q in its interior or on its boundary.
Sets which capture both p and q in their relative interiors correspond to common
faces of P and Q. Sets which capture p in their interiors and q on their boundaries
are exactly the sets of the form F ′ ∪ X for F ′ a nonempty subset of F .

Since we know what is different between the sets that capture only p or q, then
we also know exactly what is different about the faces of P and Q by considering
complements by Definition 1.6.6. The nonsimplicial polytope Q has the face V \ X =
F ∪ G. The simplicial polytope P has all the faces of the form V \ (F ′ ∪ X) =
(F \ F ′) ∪ G for every nonempty subset F ′ of F .

Then we may compute the h-vector of ∂Q by subtracting terms for all the faces
of ∂P not in ∂Q and adding the term for the face of ∂Q not in ∂P to the h-vector of
∂P .

h(∂Q, x) = h(∂P, x)

−
∑

G face of ∂P not in ∂Q

g(∂G, x)(x− 1)d−1−dim(G)

+
∑

G face of ∂Q not in ∂P

g(∂G, x)(x− 1)d−1−dim(G)

Since P is simplicial, all of its faces are simplices. For simplicial objects, we may
use the ordinary h- and g-vectors [26]. Recall that g(∂simplex, x) = 1 (Lemma 1.3.13).
Also, for 1 ≤ i ≤ |F | and |F ′| = i, there are

(|F |
i

)
sets of the form (F \ F ′) ∪ G of
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dimension d− i. Thus, we have the following:∑
L face of ∂P not in ∂Q

g(∂L, x)(x− 1)d−1−dim(L)

=

|F |∑
i=1

(
|F |
i

)
(1) · (x− 1)d−1−(d−i)

=

|F |∑
i=1

(
|F |
i

)
(x− 1)i−1

=
1

x− 1

|F |∑
i=1

(
|F |
i

)
(x− 1)i

=
1

x− 1

(
x|F | − 1

)
by the Binomial Theorem

=
x|F | − 1

x− 1
= x|F |−1 + x|F |−2 + · · ·+ x2 + x+ 1.

Observe that the face F ∪ G is a simplicial (d− 1)-polytope that attaches along
the boundary of the complex of the faces of P after the above faces of P are removed.
The facets of ∂(F ∪ G) are of the form (F \ t) ∪ (G \ s) where t ∈ F and s ∈ G. They
have cardinality d− 1 and are contained in exactly one set of the form (F \ t) ∪ G
where t is an element of F . Therefore, ∂(F ∪ G) = (2F \ t) ∪ (2G \ s) = ∂2F ∗ ∂2G,
where ∗ denotes the simplicial join. We need to determine g(∂(F ∪ G), x). Since
∂(F ∪ G) is the join of the simplicial complexes ∂2F and ∂2G, then we have that

h(∂(F ∪ G), x)
= h(∂F , x) · h(∂G, x) by Lemma 1.3.15

= (x|F |−1 + x|F |−2 + · · ·+ x+ 1) · (x|G|−1 + x|G|−2 + · · ·+ x+ 1) as shown above.

Since |F |+ |G| − 2 = d− 1, then h(∂(F ∪ G), x) equals

xd−1 + 2xd−2 + · · ·+ `xd−` + · · ·+ `x`−1 + · · ·+ 2x+ 1.

where ` = min{|F |, |G|}. Therefore, g(∂(F ∪ G), x) equals

1 + x+ · · ·+ x`−1.

Thus, we have the following: ∑
L face of ∂Q not in ∂P

g(∂L, x)(x− 1)d−1−dim(L)

= (1 + x+ · · ·+ x`−1) · (x− 1)d−1−(d−1)

= (1 + x+ · · ·+ x`−1).

With both of these results, we are able to determine the change in the toric h-
vector when we move the origin from p to q in the Gale diagram. The change in the
toric h-vector is

−(1 + x+ · · ·+ x|F |−1) + (1 + x+ · · ·+ x`−1).
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In the case that ` = |F | ≤ |G|, there is no change in the h-vector. In the case that
` = |G| < |F |, then the change in the h-vector is

−xG − xG+1 − · · · − x|F |−1.

By looking at the differences, we are able to determine the change in the toric g-
vector when we move from p to q in the Gale diagram. In the former case, there is no
change in the g-vector. So g`(Q) = g`(P ) = w`(p). In the latter case, the change in
the g-vector is −x|G|. So g`(Q) = g`(P )− 1 = w`(p)− 1. In either case, g`(Q) equals
the minimum `th winding number of the two regions adjacent to q.

Figure 2.3: Use Theorem 2.1.1 to determine g(Q).

Consider the following example.

Example 2.1.2. See Figure 2.3. In Example 1.8.2, we found g2(P ) = w2(p) for
different points p that fall in affinely general position with respect to the points of V .
The point q is in the relative interior of the convex hull of the 2-splitter {v3, v7}. As
the figure here shows, p is in region adjacent to q for which g2 is minimum. Let P be
the simplicial 4-polytope corresponding to the Gale diagram in which the origin is p.
Then by Theorem 2.1.1, g(Q) = g(P ) = (1, 1, 0).
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This result leads to the following winding interpretation.

Corollary 2.1.3 (Lee-N). When the origin q in the Gale diagram falls on exactly
one k-splitter, then that splitter is not winding around q.

We know how to compute the g-vector of Q when q falls in the relative interior
of the convex hull of exactly one k-splitter in the Gale diagram. How do we compute
the g-vector of Q when q falls in the relative interiors of the convex hulls of multiple
splitters simultaneously?

Multiple k-Splitters

Now we will determine the g-vector of Q when α > 1; in other words, q falls in
the relative interior of the convex hulls of multiple splitters X1, X2, . . . , Xα, where
aff (Xi) 6= aff (Xj) for all i 6= j. See Figure 2.1. We first need to consider the
relationship between any pair of splitters that cross on their interiors.

For each i, let H−i and H+
i be the closed halfspaces of Xi on the same side as Fi

and Gi, respectively.

Lemma 2.1.4 (Lee-N). If Xi and Xj contain a common point q in the relative
interiors of their convex hulls for 1 ≤ i < j ≤ α, then there exists a point of Xj in
each of Gi and Fi.

Proof. Without loss of generality, we may consider i = 1 and j = 2. Since X1 6= X2,
then H1 6= H2. We know that

q ∈ rel int (conv (X1)) ∩ rel int (conv (X2)).

Then q ∈ rel int (conv (X1)) ⊆ H1, and, subsequently,

q /∈ H+
1 \H1. (2.1)

Since q ∈ rel int (conv (X2)) ⊆ H2 and H1 6= H2, then

q ∈ rel int (conv (X2)) * H1.

Now suppose there is no point of X2 in F1. Then X2 ⊆ H+
1 . It follows that

rel int (conv (X2)) ⊆ H+
1 . Thus, we have

q ∈ rel int (conv (X2)) ⊆ H+
1 \ H1,

which contradicts (2.1). Therefore, there must be at least one point of X2 in F1.
Using the same argument with H−1 and G1 rather than H+

1 and F1, respectively, we
conclude that there must be at least one point of X2 in G1. Relabeling also gives us
that there is at least one point of X1 in F2 and at least one point of X1 in G2. Now,
in general, we know that Xj ∩ (H+

i \ Hi) 6= ∅ and Xj ∩ (H−i \ Hi) 6= ∅. Therefore,
Xj ∩ Gi 6= ∅ and Xj ∩ Fi 6= ∅.
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Corollary 2.1.5 (Lee-N). Let 0 ≤ k ≤
⌊
d
2

⌋
. When the origin q in the Gale diagram

falls on multiple k-splitters as described above, then we have to consider whether we
are moving from the positive side (the closed halfspace of Xi with more points) towards
the negative side (the closed halfspace Xi with fewer points) of each k-splitter Xi when
moving the origin from p to q. We subtract one from gk(P ) for every k-splitter which
has p on its positive side.

Proof. The sets of points capturing the origin q for each splitter are disjoint from
Lemma 2.1.4. So the sets of faces that are changed when moving the origin from
p to q for the different splitters are disjoint. The result then follows by applying
Theorem 2.1.1 to each splitter.

Figure 2.4: Use Corollary 2.1.5 to determine g(Q).

Consider the following example.

Example 2.1.6. See Figure 2.4. In Example 1.8.2, we found g2(P ) = w2(p) for
different points p that fall in affinely general position with respect to the points of
V . The point q is in the relative interior of the convex hull of the 2-splitter {v3, v7}
and the 2-splitter {v2, v6}. Let P be the simplicial 4-polytope corresponding to the
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Gale diagram in which the origin is p. Notice that p is on the negative side of both
the 2-splitter {v3, v7} and the 2-splitter {v2, v6}. So g2(Q) = g2(P ) − 0 = 0 by
Corollary 2.1.5. Then g(Q) = g(P ) = (1, 2, 0).

Figure 2.5: Determine g3(Q) using Corollary 2.1.5.

Note 2.1.7. In general, gk(Q) does not equal the minimum wk of its neighboring
regions.

The following example illustrates this important fact.

Example 2.1.8. See Figure 2.5. Consider this 2-dimensional Gale diagram with
origin q corresponding to the non-simplicial 6-polytope Q. Then Xi is a 3-splitter
for all i = 1, 2, 3. Further, these are the only 3-splitters which capture q. One may
show that the numbers in each region indicate w3(o) for different points o that fall
in affinely general position with respect to the points of V . Having the origin at p
corresponds to the simplicial 6-polytope P , and g3(P ) = 3. Notice that p is on the
positive side of X1 and X3. Then g3(Q) = g3(P )− 2 = 3− 2 = 1 by Corollary 2.1.5.
As indicated in the figure, the regions immediately adjacent to q correspond to g3 = 2
or g3 = 3. So g3(Q) is not the minimum g3 of its neighboring regions.

Theorem 2.1.9 (Lee-N). When the origin q in the Gale diagram is in the relative
interiors of the convex hulls of multiple splitters, then we only consider the k-splitters
when determining gk(Q). In other words, we consider each set of k-splitters sepa-
rately.

With these results, we may determine the g-vector for any d-polytope whose e-
dimensional Gale diagram consists of points falling in affinely general position except
for the origin q falling in the relative interior of the convex hull of at least one splitter.
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Origin Falls on a Point

Now we will determine the the g-vector of a d-polytope Q when the origin coincides
with a point in the e-dimensional Gale diagram V . In other words, q falls on exactly
one of the points v.

Consider the (d − 1)-polytope Q′ which corresponds to the e-dimensional Gale
diagram consisting of the origin q and the n − 1 points that do not coincide with q;
i.e., the set V \ v. Now we will argue that the g-vector of Q is the same as the
g-vector of Q′.

Theorem 2.1.10 (Lee-N). When the origin q in the Gale diagram falls on exactly
one point v, then we find g(Q) by first deleting v from the Gale diagram.

Proof. Since q coincides with v in the Gale diagram, we know that Q is a pyramid over
Q′ by Corollary 1.6.7. As noted in Section 1.3, building a pyramid over a polytope
does not change its g-vector (Theorem 1.3.7). Therefore, the g-vectors of Q and Q′

are equivalent.

If the points in V \ v are in affinely general position with respect to each other
and q, then Q′ is a simplicial polytope. Thus, we may find the g-vector of Q′ using
the winding number interpretation provided by Lee [18].

Using Corollary 2.1.5 and Theorem 2.1.10, we may now determine the g-vector
of any polytope whose Gale diagram consists of all points in affinely general position
except for the origin, which lies in the relative interior of the convex hulls of some
of the splitters and is itself in V . All of these results hold for e-dimensional Gale
diagrams. In the next section, we will continue to study polytopes with e-dimensional
Gale diagrams. We will now prove Theorems 2.2.9 and 2.2.9, which establish how to
find the g-vector in certain cases of Gale diagrams whose points are in affinely general
position except for a subset of points that falls on a single hyperplane containing the
origin.

2.2 Considering Hyperplanes

We say the points V in Re are in affinely general position if no more than i+ 1 points
lie in any common i-dimensional affine space for 0 ≤ i ≤ e− 1.

First, we consider the case when more than one point lies on a 0-dimensional
affine space. We will extend our previous result to argue that the g-vector for an
e-dimensional Gale diagram in which multiple points coincide with the origin is the
same as the g-vector for that Gale diagram without those stacked points at the origin.
Then we will determine the g-vector for certain d-polytopes with e-dimensional Gale
diagrams in which there exists a hyperplane H containing at least e+ 1 points.

Origin Falls on Multiple Points

We will determine the the g-vector of a d-polytope Q when the origin coincides with
multiple points in the e-dimensional Gale diagram V . In other words, q coincides
with the stacked points v1, v2, . . . , vσ, where σ ≥ 2.

40



Consider the (d − σ)-polytope Q′′ which corresponds to the e-dimensional Gale
diagram consisting of the origin q and the n− σ points that do not coincide with q;
i.e., the set V \ {v1, v2, . . . , vσ}. Now we will apply Theorem 2.1.10 to show that the
g-vector of Q is the same as the g-vector of Q′′.

Theorem 2.2.1 (Lee-N). Suppose the origin q in the Gale diagram falls on more
than one point {v1, v2, . . . , vσ} in V . Then we find g(Q) by first deleting the points
v1, v2, . . . , vσ from the Gale diagram.

Proof. Since q coincides with {v1, v2, . . . , vσ} in the Gale diagram, we know that Q
is a σ-fold pyramid over Q′′ by Corollary 1.6.7. As noted in Section 1.3, building
a pyramid over a polytope does not change its g-vector (Theorem 1.3.7). Then
building a multipyramid over a polytope also does not change the g-vector. Thus, as
in Theorem 2.1.10 the g-vectors of Q and Q′′ are equivalent.

Further, suppose that the points in V \ {v1, v2, . . . , vσ} are in affinely general
position with respect to each other and q. Then Q′′ is a simplicial polytope. Thus,
we may find the g-vector of Q′′ using the winding number interpretation provided by
Lee [18].

We have now shown how to determine the g-vector of any d-polytope whose e-
dimensional Gale diagram consists of all points in affinely general position except for
multiple points coinciding with the origin. Next we will consider what happens when
many points fall on a single hyperplane H in the Gale diagram.

For the remainder of this section, we will show how to compute the g-vector from
e-dimensional Gale diagrams in which there exists a hyperplane H that satisfies the
following conditions.

• H contains at least e+ 1 points from V and another point q;

• The set Y = V ∩H affinely spans H;

• Any minimal affinely dependent subset of V of at most e+ 1 points lies in H;

• Every subset of e points in Y ∪ {q} is affinely independent.

Let γ ≥ e + 1 denote the cardinality of Y . Say Y = {v1, v2, . . . , vγ}, relabeling if
necessary. Then q is in the relative interior of the convex hull of nonempty subsets
of Y ; denote them {Yβ}.

Here we generalize the notion of a splitter.

Definition 2.2.2 (Lee-N). Suppose e ≥ 1, n ≥ e + 1, and d = n − e − 1. Consider
a set of vertices V = {v1, ..., vn} in affinely general position, where each vi ∈ Re. In
Re, a splitter is a maximal subset of V affinely spanning a hyperplane.

Thus, the nonempty subsets Yβ of Y are splitters. Then there exists a point p in
affinely general position with respect to V ∪ {q} so that pq does not meet the convex
hull of any splitters except those Yβ of Y . There also exists a p′ in affinely general
position with respect to V ∪ q that satisfies the following conditions.
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Figure 2.6: Here the splitter consisting of 5 points maximally spans H.

• The point p′ is in the line spanned by p and q;

• The lines segment pp′ does not meet the convex hull of any splitters except the
same subsets Yβ of Y ;

• The point p′ is in the open halfspace of H not containing p.

Let F be the points of V that are in the open halfspace of H containing p, and
let G be points of V that are in the opposite open halfspace of H containing p′. See
Figure 2.6. Then V = F ∪ G ∪ Y . Note that placing the origin at p and p′

corresponds to simplicial polytopes P and P ′, respectively, and placing the origin at
q corresponds to a nonsimplicial polytope Q.

We know how to compute g(P ) and g(P ′) [18]. How does the g-vector change
when crossing a hyperplane H with more than e points? How do we compute gk(Q)
when q is in H?

Crossing a Splitter

We will first determine the relationship between the g-vectors determined by placing
the origin at p and p′, respectively. In other words, we are considering what change
corresponds to crossing the convex hull of a set of points on a single hyperplane H
with at least e+ 1 points, which are in affinely general position with respect to H.

Proposition 2.2.3 (Lee-N). Suppose the origin in an e dimensional Gale diagram
crosses H, as described above, from F to G. Then for 0 ≤ k ≤

⌊
d
2

⌋
, the change in

the kth component of the toric g-vector is given by the coefficient of xk in the product

(x− 1)d−n+1(x|F | − x|G|)
∑
Yβ

(x− 1)|Yβ |.
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Proof. Since we would like to compute the change in the toric g-vector, we are going
to determine g(∂P ′) in terms of g(∂P ). We need to determine which faces are different
for P and P ′. Let’s start by considering which sets capture p or p′ but not both.

Since p and p′ are both in affinely general position with respect to V , then any
set that captures p or p′ in its interior must have full dimension e. Since pq does
not meet the convex hull of any splitters except the subsets Yβ of Y , we also note
that any set which captures p in its interior either captures q in its interior or on its
boundary. Since pp′ also does not meet the convex hull of any splitters except the
subsets Yβ of Y , then any set which captures both p and q in its interior also captures
p′ in its interior.

Sets which capture both p and p′ in their interiors correspond to common faces of
P and P ′. So we only need to consider sets which capture p in their interiors and q on
their boundaries. Such sets do not capture p′ in their interiors or on their boundaries.
Sets which capture p in their interiors and q on their boundaries are exactly the sets
of the form F ′ ∪ Yβ for every nonempty subset F ′ of F and every nonempty subset
Yβ of Y that captures q.

Applying the same argument to p′, we know that we only need to consider sets
which capture p′ in their interiors and q on their boundaries. Such sets do not capture
p in their interiors or on their boundaries. Sets which capture p′ in their interiors and
q on their boundaries are exactly the sets of the form G′ ∪ Yβ for every nonempty
subset G′ of G and every nonempty subset Yβ of Y that captures q.

Since we know what is different between the sets that capture only p or p′, then
we also know exactly what is different about the faces of P and P ′ by considering
complements by Definition 1.6.6. P has all the faces of the form V \ (F ′ ∪ Yβ) =
(F \ F ′) ∪ G ∪ (Y \ Yβ) for every nonempty subset F ′ of F and every nonempty
subset Yβ of Y that captures q. P ′ has all the faces of the form V \ (G′ ∪ Yβ) =
F ∪ (G \ G′) ∪ (Y \ Yβ) for every nonempty subset G′ of G and every nonempty
subset Yβ of Y that captures q.

Then we may compute the h-polynomial of ∂P ′ by subtracting the terms of the h-
polynomial for all the faces of ∂P not in ∂P ′ and adding the terms of the h-polynomial
for all the faces of ∂P ′ not in ∂P to the h-polynomial of ∂P .

h(∂P ′, x) = h(∂P, x)

−
∑

G face of ∂P not in ∂P ′

g(∂G, x)(x− 1)d−1−dim(G)

+
∑

G face of ∂P ′ not in ∂P

g(∂G, x)(x− 1)d−1−dim(G)

First, we will rewrite the second term. Since P is simplicial, all of its faces are
simplices. Consider L = (F \ F ′) ∪ G ∪ (Y \ Yβ). Since L is a simplex, then
g(∂L, x) = 1 by Lemma 1.3.13 and dim(L) = card(L)− 1 = |F | − |F ′|+ |G|+ |Y | −
|Yβ| − 1 = n− |F ′| − |Yβ| − 1.

So we have the following:
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∑
L face of ∂P not in ∂P ′

g(∂L, x)(x− 1)d−1−dim(L)

=
∑

L face of ∂P not in ∂P ′

(1)(x− 1)d−1−(n−|F
′|−|Yβ |−1)

=
∑

L face of ∂P not in ∂P ′

(x− 1)d−n+|F
′|+|Yβ |

=
∑
∅(T⊂F

∑
Yβ

(x− 1)d−n+|F
′|+|Yβ |

= (x− 1)d−n
∑
∅(T⊂F

(x− 1)|F
′|
∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n
|F |∑
i=1

(
|F |
i

)
(x− 1)i

∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n(x|F | − 1)
∑
Yβ

(x− 1)|Yβ | by the Binomial Theorem.

Next, we will rewrite the third term. In this case, P ′ is simplicial and L =
F ∪ (G \ G′) ∪ (Y \ Yβ). So g(∂L, x) = 1 (Lemma 1.3.13) and dim(L) =
card(L)− 1 = |F |+ |G| − |G′|+ |Y | − |Yβ| − 1 = n− |G′| − |Yβ| − 1.

Then we have the following:∑
L face of ∂P not in ∂P ′

g(∂L, x)(x− 1)d−1−dim(L)

= (x− 1)d−n(x|G| − 1)
∑
Yβ

(x− 1)|Yβ | by a similar argument.

With both of these results, we are able to determine the change in the toric h-
vector when we move the origin in the Gale diagram from p to p′. The change in the
toric h-vector is

∆(x) = (x− 1)d−n
(
−(x|F | − 1) + (x|G| − 1)

)∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n(x|G| − x|F |)
∑

Yβ
(x− 1)|Yβ |.

Since the toric h-vector is unimodal by Theorem 1.3.16 [15], then g(x) agrees with
(1− x) · h(x) in the lower degree terms ≤

⌊
d
2

⌋
, i.e., h(P ′, x)− h(P, x) = ∆(x). Both

h(P ′, x) and h(P, x) are symmetric; hence, so is ∆(x). Thus, the change in g(x)
matches the lower order terms (xj, 0 ≤ j ≤

⌊
d
2

⌋
) of (1− x)∆(x). Therefore, the toric

g-vector as we move the origin in the Gale diagram from p to p′ is given by

(1− x)(x− 1)d−n(x|G| − x|F |)
∑
Yβ

(x− 1)|Yβ |

= −(x− 1)d−n+1(x|G| − x|F |)
∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n+1(x|F | − x|G|)
∑
Yβ

(x− 1)|Yβ |
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Figure 2.7: We will determine the change in the g-vector when crossing this splitter.

We will apply this result to the following example.

Example 2.2.4. Consider this 2-dimensional Gale diagram with 13 points as shown
in Figure 2.7. Let the origin p correspond to the simplicial 10-polytope P and the
origin p′ correspond to the simplicial 10-polytope P ′. Then the change in the kth

component of the toric g-vector when the origin moves from p to p′ is given by the
coefficient of xk (for 0 ≤ k ≤

⌊
d
2

⌋
= 5) in the product

(x− 1)−2(x5 − x3)
∑
Yβ

(x− 1)|Yβ |

by Proposition 2.2.3.

Figure 2.8: Here Y is a 2-dimensional Gale diagram corresponding to a simplicial
2-polytope P .

Now consider Y as a set of points in dimension e−1 within the ambient spaceH. In
this case, q corresponds to a simplicial polytope Q̂ of dimension |Y |−(e−1)−1 = γ−e.
Figure 2.8 shows the Gale diagram Y that corresponds to the hyperplane in Figure 2.6.
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Proposition 2.2.5 (Lee-N). Suppose the origin in H lies in the convex hull of points
Y that affinely span H and are not in affinely general position. When the origin falls
in affinely general position with respect to Y , then the kth component of the toric
h-vector of Q̂ is given by the coefficient of xk in the product

(x− 1)d−n+1
∑
Yβ

(x− 1)|Yβ |.

Proof. Since Q̂ is simplicial, all of its faces are simplices. So we may use the ordinary
h- and g-vectors and the fact that g(∂simplex, x) = 1. Only the subsets Yβ of Y

capture q. By considering complements, all the faces of Q̂ have the form Y \ Yβ. Since
Y \ Yβ is a simplex, then dim(Y \ Yβ) = card(Y \ Yβ)−1 = |Y |−|Yβ|−1 = γ−|Yβ|−1.

So we have the following:

h(∂Q̂, x) =
∑

L face of ∂Q̂

g(∂L, x)(x− 1)dim(Q̂)−1−dim(L)

=
∑
Yβ

(1)(x− 1)(γ−e)−1−(γ−|Yβ |−1)

=
∑
Yβ

(x− 1)|Yβ |−e

=
∑
Yβ

(x− 1)|Yβ |+d−n+1

= (x− 1)d−n+1
∑
Yβ

(x− 1)|Yβ |

Since q is in affinely general position with respect to Y , we may combine the
previous two results in the following theorem.

Theorem 2.2.6 (Lee-N). Suppose H and Y are defined as above. Then for 0 ≤ k ≤
⌊
d
2

⌋
,

the change in the kth component of the toric g-vector corresponding to crossing H
from p to p′ in dimension e equals the kth component of the product of the difference
x|F | − x|G| times the toric h-vector of Q̂.

Proof. By Proposition 2.2.3, for 0 ≤ k ≤
⌊
d
2

⌋
, the change in the kth component of

the toric g-vector is given by the coefficient of xk in the product

(x− 1)d−n+1(x|F | − x|G|)
∑
Yβ

(x− 1)|Yβ |

= (x|F | − x|G|)(x− 1)d−n+1
∑
Yβ

(x− 1)|Yβ |

= (x|F | − x|G|)h(∂Q̂, x) by Proposition 2.2.5.
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Figure 2.9: The 1-dimensional Gale diagram of Y .

Example 2.2.4 continued. Consider the 1-dimensional Gale diagram in Figure 2.9.
Let the origin q in this Gale diagram correspond to the simplicial 3-polytope Q̂. This
Gale diagram is combinatorially equivalent to the Gale diagram of the triangular
bipyramid in Figure 1.15. So Q̂ is the triangular bipyramid from Example 1.2.4. Then
h(∂Q̂, x) = x3 + 2x2 + 2x+ 1 by Example 1.3.6. Since this is also the 1-dimensional
Gale diagram of Y from Figure 2.7, then the change in the kth component of the toric
g-vector (for 0 ≤ k ≤

⌊
d
2

⌋
= 5) is given by the coefficient of xk in the product

(x5 − x3)(x3 + 2x2 + 2x+ 1)
= (x8 + 2x7 + 2x6 + 1x5)− (x6 + 2x5 + 2x4 + 1x3)
= x8 + 2x7 + x6 − x5 − 2x4 − 1x3

by Theorem 2.2.6. Thus, g(∂P ′, x) = g(∂P, x)− x5 − 2x4 − 1x3.
So we know how to compute the change in the toric g-vector when the origin

moves across a hyperplane H whose points are not in affinely general position. How
do we compute the toric g-vector of a polytope Q whose origin q lies on a hyperplane
H with more than e points?

Landing on a Splitter

Now we will determine the toric g-vector for q when q falls on the hyperplane H with
at least e + 1 points, as described after the proof of Theorem 2.2.1. See Figures 2.6
and 2.8.

Let ` = min{|F |, |G|}. Then the following result holds.

Proposition 2.2.7 (Lee-N). Suppose the origin in an e dimensional Gale diagram
is in the convex hull of Y whose points span the hyperplane H, as described above.
Then for 0 ≤ k ≤

⌊
d
2

⌋
, the change in the kth component of the toric g-vector is

given by the coefficient of xk in the product

(x− 1)d−n+1(x|F | − x`)
∑
Yβ

(x− 1)|Yβ |.

Proof. Since we would like to compute the change in the toric g-vector, we are going
to determine g(∂Q) in terms of g(∂P ). We need to determine which faces are different
for P and Q. Let’s start by considering which sets capture p or q but not both.

Since p is in affinely general position with respect to V , then any set that captures
p in its interior must have full dimension e. Further, pq does not meet the convex
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hull of any splitters except all the nonempty subsets Yβ of Y that capture q. We also
note that any set which captures p in its interior either captures q in its interior or
on its boundary.

Sets which capture both p and q in their interiors correspond to common faces of
P and Q. So we only need to consider sets which capture p in their interiors and q
on their boundaries. Sets which capture p in their interiors and q on their boundaries
are exactly the sets of the form F ′ ∪ Yβ for every nonempty subset F ′ of F and every
nonempty subset Yβ of Y that captures q.

The nonempty subsets Yβ of Y are the only sets which capture only q.
Since we know what is different between the sets that capture only p or q, then

we also know exactly what is different about the faces of P and Q by considering
complements (Definition 1.6.6). P has all the faces of the form V \ (F ′ ∪ Yβ) =
(F \ F ′) ∪G ∪ (Y \ Yβ) for every nonempty subset F ′ of F and every nonempty subset
Yβ of Y that captures q. Q has all the faces of the form V \ Yβ = F ∪ G ∪ (Y \ Yβ)
for every nonempty subset Yβ of Y that captures q.

Then we may compute the h-polynomial of ∂Q by subtracting the terms of the h-
polynomial for all the faces of ∂P not in ∂Q and adding the terms of the h-polynomial
for all the faces of ∂Q not in ∂P to the h-polynomial of ∂P .

h(∂Q, x) = h(∂P, x)

−
∑

G face of ∂P not in ∂Q

g(∂G, x)(x− 1)d−1−dim(G)

+
∑

G face of ∂Q not in ∂P

g(∂G, x)(x− 1)d−1−dim(G)

From the proof of Proposition 2.2.3 in the previous section, the second term may
be rewritten as follows. ∑

L face of ∂P not in ∂Q

g(∂L, x)(x− 1)d−1−dim(L)

= (x− 1)d−n(x|F | − 1)
∑
Yβ

(x− 1)|Yβ |

Next, we will rewrite the third term. In this case, L = F ∪ G ∪ (Y \ Yβ).
Recall that in the hyperplane H, no e− 1 points fall on an (e− 2)-dimensional affine
space with q. So these sets Yβ that capture q must be full dimensional within H; i.e.,
they are (e− 1)-dimensional with at least e points. Note that any set of e points of
Y spans the hyperplane H. In particular, each Yβ spans H.

McMullin proved that projecting orthogonally to Yβ and then deleting its points
gives the Gale diagram of the face L, regarded as a polytope [22]. Since Yβ spans H,
the Gale diagram of L is a one-dimensional line with the points F falling on one side
of q, the points of G falling on the other side of q and |Y | − |Yβ| = γ − |Yβ| points
coinciding with q. Then g(∂L, x) = 1 + x+ x2 + · · ·+ x`−1. If Yβ is a cofacet, then L
is a facet of dimension d− 1 = n− e− 2 and cardinality n− e. The dimension and
cardinality of L decreases by 1 for each additional point added to a cofacet. Thus,
the dim(L) = n− |Yβ| − 2 for the face L corresponding to any coface Yβ.
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Then we have the following:∑
L face of ∂Q not in ∂P

g(∂L, x)(x− 1)d−1−dim(L)

=
∑
Yβ

x` − 1

x− 1
(x− 1)d−1−(n−|Yβ |−2)

=
x` − 1

x− 1

∑
Yβ

(x− 1)|Yβ |−e

=
x` − 1

(x− 1)e+1

∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n(x` − 1)
∑
Yβ

(x− 1)|Yβ |.

With both of these results, we are able to determine the change in the toric h-
vector when we move the origin in the Gale diagram from p to q. The change in the
toric h-vector is

(x− 1)d−n
(
−(x|F | − 1) + (x` − 1)

)∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n(x` − x|F |)
∑
Yβ

(x− 1)|Yβ |.

As before, since the toric h-vector is symmetric by Theorem 1.3.16 [15], then g(x)
agrees with (1− x) · h(x) in the lower degree terms ≤

⌊
d
2

⌋
. Therefore, the change in

the lower terms of the toric g-vector as we move the origin in the Gale diagram from
p to q is given by

(1− x)(x− 1)d−n(x` − x|F |)
∑
Yβ

(x− 1)|Yβ |

= −(x− 1)d−n+1(x` − x|F |)
∑
Yβ

(x− 1)|Yβ |

= (x− 1)d−n+1(x|F | − x`)
∑
Yβ

(x− 1)|Yβ |.

We will apply this result to the following example.

Example 2.2.8. Consider the 2-dimensional Gale diagram with 13 points as shown
in Figure 2.10. Let the origin p correspond to the simplicial 10-polytope P and the
origin q correspond to the nonsimplicial 10-polytope Q. Since ` = |G| < |F |, the
change in the kth component of the toric g-vector when the origin moves from p to q
is given by the coefficient of xk (for 0 ≤ k ≤

⌊
d
2

⌋
= 5) in the product

(x− 1)−2(x5 − x3)
∑
Yβ

(x− 1)|Yβ |

by Proposition 2.2.7.
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Figure 2.10: We will determine the change in the g-vector when landing on this
splitter.

Recall that when considering Y as a set of points in dimension e − 1 within the
ambient space H, q corresponds to a simplicial polytope Q̂ of dimension |Y | − (e −
1)− 1 = γ − e. Then we may use Proposition 2.2.5 to express g(∂Q) in terms of the

(γ − e)-dimensional simplicial polytope Q̂.

Theorem 2.2.9 (Lee-N). Suppose H, Y , and ` are defined as above. Then for
0 ≤ k ≤

⌊
d
2

⌋
, the change in the kth component of the toric g-vector corresponding

to moving the origin from p to q on H equals the kth component of the product of the
difference x|F | − x` times the toric h-vector of Q̂.

Proof. By Proposition 2.2.7, for 0 ≤ k ≤
⌊
d
2

⌋
, the change in the kth component of

the toric g-vector is given by the coefficient of xk in the product

(x− 1)d−n+1(x|F | − x`)
∑
Yβ

(x− 1)|Yβ |

= (x|F | − x`)(x− 1)d−n+1
∑
Yβ

(x− 1)|Yβ |

= (x|F | − x`)h(∂Q̂, x) by Proposition 2.2.5.

When |F | ≤ |G|, the following result is immediate.

Corollary 2.2.10 (Lee-N). Suppose H, Y , and ` are defined as above. Let
0 ≤ k ≤

⌊
d
2

⌋
. If |F | ≤ |G|, then there is no change in the kth component of the

toric g-vector corresponding to moving the origin from p to q on H.

Example 2.2.8 continued. Consider the 1-dimensional Gale diagram in Figure 2.9.
Recall that the origin q in this Gale diagram correspond to the simplicial 3-polytope
Q̂. As noted in Example 2.2.4, Q̂ is the triangular bipyramid from Example 1.2.4
and h(∂Q̂, x) = x3 + 2x2 + 2x + 1. Since this is the 1-dimensional Gale diagram of
Y from Figure 2.10, then the change in the kth component of the toric g-vector (for
0 ≤ k ≤

⌊
d
2

⌋
= 5) is given by the coefficient of xk in the product

(x|F | − x`)h(∂Q̂, x)
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by Theorem 2.2.9. Further, since ` = |G| < |F |, this product is equivalent to the
product

(x|F | − x`)h(∂Q̂, x).

Thus, g(∂Q, x) = g(∂P, x)− x5 − 2x4 − 1x3 by the calculations in Example 2.2.4.

Multiple Splitters

We will discuss Lemma 2.1.4 in the context of splitters.
Consider an e-dimensional Gale diagram in which there exists α hyperplanes Hi,

with α > 1, satisfying the following conditions.

• Each Hi contains at least e points from V and the point q /∈ V ;

• The set Yi = V ∩Hi affinely spans Hi for each i;

• Any minimal affinely dependent subset of V of at most e+ 1 points lies in one
of the Hi’s;

• Every subset of e points in any Yi ∪ {q} is affinely independent;

• Hi 6= Hj for all i 6= j.

Let γi ≥ e+1 denote the cardinality of Yi. Say Yi = {v1,i, v2,i, . . . , vγ,i}, relabeling
if necessary. Then q is in the relative interior of the convex hull of nonempty subsets
of Yi, denote them {Yβ,i}.

As we saw earlier in this section, nonempty subsets Yβ,i of Yi are splitters.
Then there exists a point p in affinely general position with respect to V ∪ {q}

so that pq does not meet the convex hull of any splitters except those Yβ,i of Y . Let
Fi be the points of V that are in the open halfspace of Hi containing p, and let Gi

be points of V that are in the opposite open halfspace of H not containing p. Then
V = Fi ∪ Gi ∪ Yi for each i. Note that placing the origin at p corresponds to
simplicial polytopes P , and placing the origin at q corresponds to a nonsimplicial
polytope Q.

For each i, let H−i and H+
i be the closed halfspaces of Yi on the same side as Fi

and Gi, respectively. Then we may extend Lemma 2.1.4 for k-splitters to the more
general definition of splitters.

Lemma 2.2.11 (Lee-N). If Yi and Yj contain a common point q in their relative
interiors for 1 ≤ i < j ≤ α, then there exists a point of Yj in each of Gi and Fi.

Proof. The argument in the proof of Lemma 2.1.4 relies on the hyperplanes and closed
halfspaces determined by a given Xi. Replacing the Xi from the k-splitter setting
with the Yi from the current splitter setting does not change the argument. Thus,
the proof of this result follows immediately from the proof of Lemma 2.1.4.

Therefore, the following results also hold in this more general setting.
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Corollary 2.2.12 (Lee-N). Let 0 ≤ k ≤
⌊
d
2

⌋
. When the origin q in the Gale diagram

falls on multiple splitters as described above, then each splitter acts independently. To
determine the total change in the g-vector, we sum over the change for each splitter
using Corollary 2.1.5 and Theorem 2.2.9.

Proof. The sets of points capturing the origin q for each splitter are disjoint from
Lemma 2.2.11. So the sets of faces that are changed when moving the origin from
p to q for the different splitters are disjoint. The result then follows by applying
Theorem 2.2.9 to each splitter.

Figure 2.11: We will determine how the g-vector changes when the origin moves onto
multiple splitters from p to q.

We will apply this result to the 2-dimensional Gale diagram in Figure 2.11.

Example 2.2.13. Consider the 2-dimensional Gale diagram with 14 points as shown
in Figure 2.11. Let the origin p correspond to the simplicial 11-polytope P and the
origin q correspond to the nonsimplicial 11-polytope Q. Note that q is captured by
the 4-splitter {v1, v10}, the splitter {v2, v3, v11, v12, v13}, and the splitter {v4, v5, v15}.
Since p is on the positive side of the 4-splitter {v1, v10}, then this splitter decreases
g4(P ) by one.

Notice that p is also on the positive side of the splitter {v2, v3, v11, v12, v13}. The
Gale diagram {v2, v3, v11, v12, v13} as a set of points in dimension 1 is combinatorially
equivalent to the Gale diagram of the triangular bipyramid in Figure 1.15. As we
calculated in Example 2.2.4, h(∂triangular bipyramid, x) = x3+2x2+2x+1. Then the
contribution of this splitter to the change in the kth component of the toric g-vector
(for 0 ≤ k ≤

⌊
d
2

⌋
= 5) is given by the coefficient of xk in the product

(x7 − x2)(x3 + 2x2 + 2x+ 1)
= (x10 + 2x9 + 2x8 + x7)− (x5 + 2x4 + 2x3 + x2)
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by Theorem 2.2.9. So this splitter decreases g5(P ) by one, g4(P ) by two, g3(P ) by
two, and g2(P ) by one.

Note that p is on the negative side of the splitter {v4, v5, v15}. Then by Corol-
lary 2.2.10, this splitter contributes no change to the g-vector as the origin moves
from p to q.

Therefore, g(∂Q, x) = g(∂P, x)− x5 − 3x4 − 2x3 − 1x2.

2.3 Complete Analysis for Gale Diagrams of Polytopes with Few Vertices

Recall that a d-polytope with few vertices has at most d+ 3 vertices. In this section,
we want to determine the g-vector of any polytope with few vertices from its Gale
diagram. Polytopes with few vertices have Gale diagrams of dimension at most 2.

Gale Diagrams of Dimension 0 and 1

Theorem 2.3.1 (Lee-N). Let P be any d-dimensional polytope with a 0-dimensional
Gale diagram. Then the g-polynomial of P is g(P, x) = 1.

Proof. Any d-polytope P with 0-dimensional Gale diagram is a d-simplex. Then the
result follows immediately from Lemma 1.3.13.

Now consider any d-polytope Q with a 1-dimensional Gale diagram. The d + 2
points are collinear in the Gale diagram. So u points fall on one side of the origin q,
σ points coincide with the origin q, and the remaining r points fall on the other side
of the origin q where u+ σ + r = d+ 2, u ≥ r ≥ 1, and σ ≥ 0.

Theorem 2.3.2 (Lee-N). Let Q be any d-dimensional polytope with a 1-dimensional
Gale diagram. Suppose σ points coincide with the origin q. Let u points fall on one
side of the origin q and r points fall on the other side of the origin q. If r ≤ u, then
g(Q, x) = 1 + x+ x2 + · · ·+ xr−1.

Proof. By Corollary 1.6.7, Q is a σ-fold pyramid over the polytope Q̂ whose 1-
dimensional Gale diagram has u points on one side of the origin q and r points
on the other side of the origin q. Since the origin q falls in affinely general position
in the Gale diagram of Q̂, then Q̂ is a simplicial (d− σ)-polytope. Since u ≥ r, the
g-polynomial is g(Q̂, x) = 1 + x+ x2 + · · ·+ xr−1 by Lee’s result in [18].

Therefore, the result follows from Theorem 1.3.7.

Using these two results, we may determine the g-vector of any polytope whose
Gale diagram has dimension 0 or 1. Now we turn out attention to polytopes with 2-
dimensional Gale diagrams. Notice that polytopes with 2-dimensional Gale diagrams
are the convex hulls of d+ 3 points.
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Gale Diagrams of Dimension 2

When the d+ 3 points of V and the origin q all fall in affinely general position with
respect to one another, then Q is a simplicial d-polytope. In this case, we determine
g(Q) using Lee’s result [18].

For any polytope Q whose origin q coincides with σ point(s) (with σ ≥ 0) in the
Gale diagram V , the g-vector of Q is the same as the g-vector of the polytope Q̂
whose Gale diagram consists of the points V̂ = {v ∈ V |v 6= q} by Theorem 2.1.10
and Theorem 2.2.1. If all the points in V̂ ∪ {q} are in affinely general position with
respect to each other, then the d-polytope Q is a σ-fold pyramid over the simplicial
(d − σ)-polytope Q̂. In this case, we determine g(Q̂) using Lee’s results [18] and,
subsequently, know g(Q).

In all other cases, the d+ 4 points of V ∪ {q} are not in affinely general position
with respect to each another. Suppose that Y1, Y2, . . . , Yα are the only splitters that
“capture” q. Then there exists a point p in affinely general position with respect to
V ∪ {q} so that pq does not meet the convex hull of any splitter except Y1, Y2, . . . , Yα.
To determine the total change in the g-vector, we sum over the change for each splitter
using Corollary 2.1.5 and Theorem 2.2.9.

Using these results, we may determine the g-vector of any polytope whose Gale di-
agram is 2-dimensional. Now we will analyze splitters in 2-dimensional Gale diagrams
further.

For the remainder of this section, we will show how to compute the g-vector from
2-dimensional Gale diagrams in which there exists a line H that satisfies the following
conditions.

• The line H contains at least 2 points from V and the origin q;

• The set Y = V ∩H affinely spans H;

• Any minimal affinely dependent subset of V of at most 3 points lies in H;

• Every subset of 2 points in Y ∪ {q} is affinely independent.

Without loss of generality, say u points Y1 = {y1, y2, . . . , yu} of Y fall on one side
of q and the remaining r points Y2 = {z1, z2, . . . zr} of Y fall on the other side of q
with u ≥ r ≥ 1. Note that all the points in V \ Y are in affinely general position
with respect to V ∪ {q}. Then q is in the relative interior of the convex hull of
nonempty subsets of Y , denote them Yβ. In this case, each Yβ is the union of any
nonempty subset Y ′1 of Y1 with any nonempty subset Y ′2 of Y2.

Recall that the the nonempty subsets Yβ of Y are splitters. In particular, Y ′1 ∪ Y ′2
is a splitter for every nonempty subset Y ′1 of Y1 and every nonempty subset Y ′2 of Y2.

Then there exists a point p in affinely general position with respect to V ∪ {q}
so that pq does not meet the convex hull of any splitters except those Yβ of Y . There
also exists a p′ in affinely general position with respect to V ∪ q that satisfies the
following conditions.

• The point p′ is in the affine hull of {p, q};
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• The line segment pp′ does not meet the convex hull of any splitters except the
same subsets Yβ of Y ;

• The point p′ is in the open halfplane not containing p.

Figure 2.12: Here is a line in a 2-dimensional Gale Diagram with points in V ∪{p}∪
{p′} ∪ {q}.

Let F be the points of V that are in the open halfplane of H containing p, and
let G be points of V that are in the opposite open halfplane of H containing p′. See
Figure 2.12. Then V = F ∪ G ∪ Y = F ∪ G ∪ Y1 ∪ Y2. Note that placing
the origin at p and p′ corresponds to simplicial polytopes P and P ′, respectively, and
placing the origin at q corresponds to a nonsimplicial polytope Q.

Since p and p′ fall in affinely general position with respect to V , we know how to
compute g(P ) and g(P ′) [18]. How does the g-vector change when crossing a splitter
with at least 2 points? How do we compute gk(Q) when q is in the relative interior of
the convex hull of that splitter? In both of these cases, we show that various gk’s will
change simultaneously and, thus, intuitively, there are multiple k-splitters winding
around the point q.

Crossing a Splitter With Multiple Points on Each End

We will determine the change in the g-vector when the origin moves from p to p′. In
other words, we show how the g-vector changes when the origin crosses the relative
interior of the convex hull of a single splitter Y with |Y1| = u points on one end and
|Y2| = r points on the other end.

Theorem 2.3.3 (Lee-N). When the origin in a 2-dimensional Gale diagram moves
from p to p′ crossing a single splitter Y from F to G with u points on one end and
r points on the other end, then for 0 ≤ k ≤

⌊
d
2

⌋
the change in the kth component of

the toric g-vector is given by the coefficient of xk in the product

(xr−1 + xr−2 + · · ·+ x2 + x+ 1)(xu−1 + xu−2 + · · ·+ x2 + x+ 1)
(
x|F | − x|G|

)
.
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Proof. By Theorem 2.2.6, for 0 ≤ k ≤
⌊
d
2

⌋
, the change in the kth component of

the toric g-vector is given by the coefficient of xk in the product

(x|F | − x|G|)h(∂Q̂, x).

The sets Yβ which capture q are of the form Y ′1 ∪ Y ′2 for every nonempty subset Y ′1 and

Y ′2 of Y1 and Y2, respectively. Since all the faces of ∂Q̂ are of the form (Y1\Y ′1)∪(Y2\Y ′2)

for every nonempty subset Y ′1 of Y1 and every nonempty subset Y ′2 of Y2, then the ∂Q̂

is actually the simplicial join ∂2Y1 ∗ ∂2Y2 . Therefore, h(∂Q̂, x) = h(∂Y1, x) · h(∂Y2, x)
by Lemma 1.3.15.

Then the change in the toric g-vector is encoded by

xr − 1

x− 1
· x

u − 1

x− 1
(x|F | − x|G|)

and the result follows.

Then the following corollary is an immediate consequence.

Corollary 2.3.4 (Lee-N). When the same number of points are on both sides of the
single splitter, i.e., |F | = |G|, then there is no change in the kth component of the
toric g-vector for 0 ≤ k ≤

⌊
d
2

⌋
.

When there is exactly one point on each end of the splitter, then we know what
change occurs by Theorem 2.1.1.

Corollary 2.3.5 (Lee-N). When r = u = 1, then the change in the toric g-vector is
the same as the change in the toric g-vector when crossing a single `-splitter, where
` = min{|F |, |G|} (Theorem 2.1.1).

Proof. In the case that r = u = 1, our theorem states that the change in the g-
polynomial is the restriction of the following product to terms of degree ≤

⌊
d
2

⌋
:

(1)(1)
(
x|F | − x|G|

)
= x|F | − x|G|.

When we also have |F | < |G|, then g|F |(P
′) = g|F |(P ) + 1. So you increase by one

when moving to the side with more points. When we also have |F | > |G|, then
g|G|(P

′) = g|F |(P ) − 1. So you decrease by one when moving to the side with fewer
points. Thus, we get the change that we were expecting, and are generalizing, when
crossing a single `-splitter, where ` = min{|F |, |G|}.

Note that even when the points in Y1(Y2) coincide, then these results would still
hold. Whether the u(r) points are distinct or coincide, the sets Yβ of Y do not change.
Thus, the faces of P and P ′ are the same.

Example 2.3.6. Let e = 2. See Figure 2.13. Suppose |Y2| = 6, |F | = 3, |Y1| = 4,
and |G| = 5. Then there are 18 points in V , d = 18 − 2 − 1 = 15, and

⌊
d
2

⌋
= 7. By
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Figure 2.13: We will determine the change in the g-vector when crossing a line.

Figure 2.14: Here is the 1-dimensional Gale diagram of Y .

Theorem 2.3.3, for 0 ≤ k ≤
⌊
d
2

⌋
= 7, the change in the kth component of the toric

g-vector is given by the coefficient of xk in the product

(x5 + x4 + x3 + x2 + x+ 1)(x3 + x2 + x+ 1) (x3 − x5)
= (x8 + 2x7 + 3x6 + 4x5 + 4x4 + 4x3 + 3x2 + 2x+ 1) (x3 − x5)
= (1 + 2x+ 3x2 + 4x3 + 4x4 + 4x5 + 3x6 + 2x7 + x8) (x3 − x5) .

After distributing, we have

1x3 +2x4 +3x5 +4x6 +4x7 +4x8 +3x9 +2x10 +1x11

−1x5 −2x6 −3x7 −4x8 −4x9 −4x10 −3x11 −2x12 −1x13

= 1x3 +2x4 +2x5 +2x6 +1x7 +0x8 −1x9 −2x10 −2x11 −2x12 −1x13.

So the change in the toric g-vector is (0, 0, 0, 1, 2, 2, 2, 1).
Now let e = 1. See Figure 2.14. Once more, |Z| = 6, and |Y | = 4. So there are

10 points in V , d = 10− 1− 1 = 8, and
⌊
d
2

⌋
= 4.

Then the g-vector corresponding to having the origin o is (1, 1, 1, 1, 0). We may
compute the g-vector by moving in along the splitter to the origin from either the
left or the right. If we move in from the left, then we pass one positive 0-splitter,
1-splitter, 2-splitter, and 3-splitter. If we move in from the right, then we pass one
positive 0-splitter, 1-splitter, 2-splitter, 3-splitter, and 4-splitter and one negative 4-
splitter. In either case, the h-vector is (1, 2, 3, 4, 4, 4, 3, 2, 1). Notice that multiplying
this h-polynomial by x|F | − x|G| matches the change in the g-vector found above.
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Landing on a Splitter With Multiple Points on Each End

We now know how to compute the change in the toric g-vector when the origin moves
from p to p′ across the relative interior of the convex hull of a single splitter which
has multiple points on either end in a 2-dimensional Gale diagram. Now we will
determine the g-vector of q when q falls on the relative interior of the convex hull of
a single splitter with multiple points on either end in a 2-dimensional Gale diagram.

Let ` = min{|F |, |G|}. Recall that when considering Y as a set of points in

dimension 1 within the ambient space H, q corresponds to a simplicial polytope Q̂ of
dimension |Y | − 1− 1 = u+ r − 2. Then the following result holds.

Theorem 2.3.7 (Lee-N). When the origin in a 2-dimensional Gale diagram moves
from p to q in the relative interior of the convex hull of a single splitter Y with u
points on one end and r points on the other end, then for 0 ≤ k ≤

⌊
d
2

⌋
the change in

the kth component of the toric g-vector is given by the coefficient of xk in the product

(xr−1 + xr−2 + · · ·+ x2 + x+ 1)(xu−1 + xu−2 + · · ·+ x2 + x+ 1)
(
x|F | − x`

)
.

Proof. By Theorem 2.2.9, for 0 ≤ k ≤
⌊
d
2

⌋
, the change in the kth component of

the toric g-vector is given by the coefficient of xk in the product

(x|F | − x`)h(∂Q̂, x).

Then the result follows immediately from the argument used in the proof of Theo-
rem 2.3.3.

Figure 2.15: We will determine the change in the g-vector when landing on a line.

We will revisit the example introduced in the previous subsection.

Example 2.3.6 continued. See Figure 2.15. Consider this 2-dimensional Gale dia-
gram with 18 points, where |Y1| = 4 and |Y2| = 6. Let the origin p correspond to
the simplicial 15-polytope P , and let the origin q correspond to the nonsimplicial
15-polytope Q. Since ` = |F | < |G|, then g(Q) = g(P ) by Theorem 2.3.7.
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Let the origin p′ correspond to the simplicial polytope P ′. If the points in the
Gale diagram were relabeled so that the points in F were in the same plane as p′,
then

g(Q) = g(P ′)− (x5 − x3)(x3 + x2 + x+ 1)(x5 + x4 + x3 + x2 + x+ 1)

by Theorem 2.3.7. The product is

−1x3 −2x4 −3x5 −4x6 −4x7 −4x8 −3x9 −2x10 −1x11

+1x5 +2x6 +3x7 +4x8 +4x9 +4x10 +3x11 +2x12 +1x13

= −1x3 −2x4 −2x5 −2x6 −1x7 +0x8 +1x9 +2x10 +2x11 +2x12 +1x13.

So the change in the toric g-vector is (0, 0, 0,−1,−2,−2,−2,−1). Notice that the
change in the g-vector when moving the origin from p′ to p is the negative of the
change in the g-vector when moving the origin from p to p′ (as computed at the end
of the previous subsection).

Copyright c© Sarah A. Nelson, 2016.
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Chapter 3 Triangulations and Gale Transforms

Part of McMullen and Walkup’s GLBC states that for a simplicial d-polytope P , if
gk(P ) ≥ 0 for some 1 ≤ k ≤

⌊
d
2

⌋
, then P has a triangulation T in which there is no

interior face of dimension less than d− k + 1 [23]. Murai and Nevo proved that this
statement holds for all simplicial polytopes [25].

3.1 Extension to Non-Pyramids

Recall that a polytope with few vertices has at most d + 3 vertices. Lee and Welzl
showed that this statement holds for polytopes with few vertices, i.e., the number
of vertices is at most d + 3, and the triangulation is regular in this case [18, 29].
In his proof, Lee showed how to interpret the gk as winding numbers in the Gale
transform. We will extend the triangulation result in the Gale transform setting to
general nonpyramidal polytopes with few vertices. Note that polytopes with few
vertices have Gale transforms of dimension at most 2.

Suppose a d-polytope Q has a Gale transform in which σ points coincide with
the origin q for σ > 0. Then by Corollary 1.6.7, Q is a σ-fold pyramid over the
(d − σ)-polytope Q̂. If there is a triangulation T of Q̂ in which there is no interior
face of dimension less than d−σ−k+ 1, then T of Q̂ extends to a triangulation of Q
where no interior face has dimension less than d− k + 1. Therefore, we will restrict
our attention to polytopes Q which are not pyramids.

Theorem 3.1.1 (Lee-N). Consider any d-polytope Q which is not a pyramid and has
few vertices. If gk(Q) = 0 for some k where 0 ≤ k ≤

⌊
d
2

⌋
, then there exists a regular

triangulation of Q for which there is no interior face of dimension less than d−k+1.

Proof. Let Q be any d-polytope Q that is not a pyramid and has few vertices whose
corresponding Gale transform is V = {v1, v2, . . . , vn} with origin q. Further, suppose
that gk(Q) = 0 for some k where 0 ≤ k ≤

⌊
d
2

⌋
.

Figure 3.1: Here is a general 1-dimensional Gale transform.

Any d-polytope P with 0-dimensional Gale transform has all its points coincide
with q and is a d-simplex and, thus, P is a pyramid.

For any d-polytope Q with a 1-dimensional Gale transform, the d + 2 points are
collinear in the Gale transform. Figure 3.1 depicts an arbitrary Gale transform of
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dimension 1. Since no points coincide with q (i.e., σ = 0), then u points fall on one
side of q and the remaining r points fall on the other side of q where u + r = d + 2.
Without loss of generality, u ≥ r ≥ 1. Since q falls in affinely general position in
the Gale transform of Q, then Q is a simplicial d-polytope. Then the result follows
from Lee and Welzl [18, 29].

Therefore, previous work takes care of all d-dimensional polytopes that are not
pyramids and have at most d + 2 points. Now we will prove that the above result
holds for all d-dimensional polytopes that are not pyramids and have d+ 3 vertices.
In this case, Q’s corresponding Gale transform is 2-dimensional.

Figure 3.2: Three splitters capture q in this 2-dimensional Gale transform.

Figure 3.3: Positively scale the points of the Gale transform.
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Figure 3.4: Shift the splitters capturing q in the Gale transform towards their larger
sides.

Figure 3.5: Find a ray in the Gale transform from origin q that does not cross any
3-splitters.

If the origin q falls in affinely general position with respect to the points V in
the Gale transform, then its corresponding polytope Q is simplicial. Then the result
follows from Lee and Welzl again [18, 29].

If q does not fall in affinely general position with respect to V , then the polytope
Q is nonsimplicial. So q is in the relative interior of the convex hull of at least one
splitter, as in Figure 3.2. Positively scale all the points in V independently with
respect to q so that they fall on the boundary of a circle. Then positively scale any
points in V that coincide on the boundary of the circle independently with respect
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to q by arbitrarily small positive amounts so that no points in the Gale transform
coincide. See Figure 3.3. This positively scaled Gale transform also corresponds to
the nonsimplicial polytope Q, since the sets of points capturing q and not capturing
q are the same.

The line through each splitter divides the remaining points (which are not on that
splitter) into two sets. Denote the side of the line with fewer points as the negative
side, and denote the side of the line with more points as the positive side. Whenever
the number of points on both sides is equivalent, arbitrarily choose one side of the
line as the positive side and the other side as the negative side. Translate the line
and all the points on it in an arbitrarily small parallel motion towards its positive
side. See Figure 3.4. Once all the splitters are shifted by arbitrarily small amounts,
then q falls in affinely general position with respect to all points.

Notice that the splitters no longer “capture” q. So the sets of points which do and
do not capture q have now changed. Further, this shifted Gale transform corresponds
to a simplicial polytope P of dimension d with d + 3 vertices. Since q falls on the
negative side of each splitter, then gk(P ) = gk(Q) for all k by Corollary 2.1.5 and
Theorem 2.2.9. So P is a simplicial d-polytope and gk(P ) = 0.

Using Lee’s Theorem 1.8.5, we find a ray r in general position from the origin q
that does not cross any k-splitters. Scaling the Gale transform by arbitrarily small
amounts and shifting guarantees that the ray crosses each splitter individually. Then
we shift each splitter back towards its negative side so that it captures q once more.
See Figure 3.5. Since 0 ≤ k ≤

⌊
d
2

⌋
and the splitter is moving from its negative side,

this shift does not change what k-splitters r is crossing. So r still does not cross
k-splitters in the Gale transform of Q. Therefore, there exists a regular triangulation
of Q where no interior face has dimension less than d− k + 1.

Figure 3.6: The ray in this Gale transform determines the regular triangulation of
the polytope.
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Consider the following example.

Example 3.1.2. Consider the 2-dimensional Gale transform with origin q and 14
points as shown in Figure 3.2. Let q correspond to the nonsimplicial 11-polytope
Q. One may show that g3(Q) = 0. As the figures throughout the proof illustrate,
the chosen ray does not cross any 3-splitters. In fact, as it moves towards infinity,
this ray crosses the 2-splitter {v1, v12}, the 1-splitter {v1, v13}, the 2-splitter {v2, v14},
the 1-splitter {v3, v14}, and the 0-splitter {v1, v14}. See Figure 3.6. Thus, this ray
determines a triangulation of Q for which the maximum simplices are V \ {v1, v12},
V \ {v1, v13}, V \ {v2, v14}, V \ {v3, v14}, and V \ {v1, v14}

3.2 Counter Example: Pyramid

Before our theorem, we discussed a d-polytope Q which is a σ-fold pyramid over the
(d − σ)-polytope Q̂. Since the dimension of Q̂ is (d − σ), we would have to restrict
k so that 0 ≤ k ≤

⌊
d−σ
2

⌋
in order for the above result to still hold. Otherwise, the

required triangulation might not exist. Consider the following example.

Example 3.2.1. Suppose Q is a pyramid over P , where P is the regular octahedron.
Note that Q is a 4-dimensional polytope and P is a 3-dimensional polytope. From
Example 1.3.11, recall that h(P ) = (1, 3, 3, 1) and g(P ) = (1, 2). Then by Theo-
rem 1.3.7, h(Q) = (1, 3, 3, 3, 1). So g(Q) = (1, 2, 0). In particular, g2(Q) = 0 where

2 ≤
⌊
dim(Q)

2

⌋
. However, Q does not have any triangulation T for which there is no

interior face of dimension less than d−k+1 = 4−2+1 = 3. If T was a triangulation
of Q, the T would induce a triangulation T ′ of the base P where there is no interior
face of dimension less than 2. Since every triangulation of the regular octahedron
must contain an interior edge, then such a T can not exist.

Copyright c© Sarah A. Nelson, 2016.
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Chapter 4 The CD-index and Gale diagrams

Recall that a d-polytope with few vertices has at most d+ 3 vertices. In this chapter,
we want to determine the CD-index of a polytope from the Gale diagram of its dual
polytope, which has few vertices. Polytopes with few vertices have Gale diagrams of
dimension at most 2.

4.1 Dimension 0 and 1

Recall that Cd· corresponds to taking a d-fold pyramid over a point. Further, (CP )∗ =
CP ∗. Thus, for any d-dimensional polytope P with a 0-dimensional Gale diagram,
ψ(P ∗) = Cd.

Now consider any d-polytope Q with a 1-dimensional Gale diagram. Without loss
of generality, say u points fall on one side of the origin q, σ points coincide with
the origin q, and the remaining r points fall on the other side of the origin q where
u+ σ + r = d+ 2, u ≥ r ≥ 1, and σ ≥ 0. Figure 3.1 depicts this arbitrary Gale
diagram of dimension 1.

Theorem 4.1.1 (Lee-N). Let Q be any d-dimensional polytope with a 1-dimensional
Gale diagram. Suppose σ points coincide with q where 0 ≤ σ ≤ d+ 2. If u points fall
on one side of q and the remaining r points fall on the other side of q, for u ≥ r ≥ 1,
then

ψ(Q∗) =
r−1∑
i=0

CσDiCd−σ−2i.

Proof. By Corollary 1.6.7, Q is a σ-fold pyramid over the polytope Q̂ whose 1-
dimensional Gale diagram has u points on one side of q and r points on the other
side of q. Since q falls in affinely general position with respect to the points in the
Gale diagram of Q̂, then Q̂ is a simplicial (d− σ)-polytope. So the CD-index of the

polytope dual to Q̂ is ψ(Q̂∗) =

b d−σ2 c∑
i=0

giD
iCd−σ−2i by Theorem 1.4.11. Since u ≥ r,

then gi = 1 for 0 ≤ i ≤ r − 1 and 0 otherwise. So ψ(Q̂∗) =
r−1∑
i=0

DiCd−σ−2i.

Therefore, the result follow from Theorem 1.4.12.

Using these two results, we may compute the CD-index of a polytope whose dual
polytope has a Gale diagram of dimension 0 or 1. We will consider a few impor-
tant cases that hold for e-dimensional Gale diagrams before turning our attention to
polytopes whose dual polytopes have 2-dimensional Gale diagrams.
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4.2 General Dimension

Many different cases arise in e-dimensional Gale diagrams, as we saw in Chapter 2.
Here we will discuss a few results that are straightforward in this general setting.

We will explain how to interpret the CD-index of a polytope from the e-dimensional
Gale diagram of its dual polytope in the case that all the points in V are in affinely
general position except for a subset which coincides with the origin.

Simplicial Polytopes

When the d + e + 1 points of V and the origin p all fall in affinely general position
with respect to one another, then P is a simplicial d-polytope. So computing the
CD-index of P ∗ is straightforward.

Theorem 4.2.1 (cf. Fine 2010, Lee 2016). Let P be any d-dimensional simplicial
polytope with an e-dimensional Gale diagram. Then

ψ(P ∗) =

b d2c∑
i=0

gi(P )DiCd−2i.

Proof. By Theorem 1.4.11, the CD-index of P ∗ is

b d2c∑
i=0

gi(P )DiCd−2i.

Then we determine g(P ) using Lee’s results [18].

Multipyramids over Polytopes

Now consider any polytope Q whose origin q coincides with σ point(s) in the Gale
diagram V for 0 ≤ σ ≤ d+ e+ 1. Let V̂ = {v ∈ V |v 6= q} be the Gale diagram of the
(d− σ)-polytope Q̂. Note that Q̂ = Q and V̂ = V when σ = 0. Recall the following
relationship between ψ(Q∗) and ψ(Q̂∗).

Theorem 1.4.12 Let Q be any d-dimensional polytope with an e-dimensional Gale
diagram V . Suppose σ points coincide with the origin q where 0 ≤ σ ≤ d + e + 1. If
V̂ = {v ∈ V |v 6= q} is the Gale diagram of the (d− σ)-polytope Q̂, then

ψ(Q∗) = Cσψ(Q̂∗).

Proof. The d-polytope Q is a σ-fold pyramid over the (d− σ)-polytope Q̂ by Corol-
lary 1.6.7. Since CσQ̂ corresponds to taking a σ-fold pyramid over the (d−σ)-polytope
Q̂ and (CQ̂)∗ = CQ̂∗, then the result follows.

This result allows us to focus our attention on the base Q̂ of the pyramid Q. If
all the points in V̂ ∪ {q} are in affinely general position with respect to each other,
then computing the CD-index of Q∗ is straightforward.
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Corollary 4.2.2 (Lee-N). Let Q be any d-dimensional polytope with an e-dimensional
Gale diagram. Suppose σ points coincide with the origin q where 0 ≤ σ ≤ d + e + 1,
and V̂ ∪ {q} are in affinely general position with respect to each other. Then

ψ(Q∗) =

b d−σ2 c∑
i=0

g(Q̂)CσDiCd−σ−2i,

where Q̂ is the (d − σ)-polytope corresponding to the e-dimensional Gale diagram V̂
with origin q.

Proof. By Theorem 1.4.12, ψ(Q∗) = Cσψ(Q̂∗). So we need to understand ψ(Q̂∗).
Since all the points in V̂ ∪ {q} are in affinely general position with respect to

each other, then Q̂ is a simplicial (d − σ)-polytope. Therefore, g(Q̂) = ψ(Q̂∗) =
b d−σ2 c∑
i=0

gi(Q̂)DiCd−σ−2i by Theorem 4.2.1. Recall that the g-vector of Q is the same as

the g-vector of the polytope Q̂ whose Gale diagram consists of the points V̂ = {v ∈
V |v 6= q} by Theorem 2.1.10 and Theorem 2.2.1. Then then result follows.

Since Q̂ is simplicial, then we use Lee’s result to determine g(Q̂) [18].
In all other cases, the points of V̂ ∪ {q} are not in affinely general position with

respect to each another. For the rest of this chapter, we are going to focus on the
base Q̂ of the pyramid Q in the case that Q̂ has a 2-dimensional Gale diagram. (Since
Q̂ is the base of the pyramid, no points of V̂ coincide with q.)

Recall Theorem 1.5.6, which states that the CD-index ofQ∗ is ψ(Q∗) =
∑
v

ψv(Q
∗
v),

where ψv(Q
∗
v) =

1

2

(
(2C − I)ψ(S∗v) + (4D − I2)ψ(T∗v)

)
. So we first show how to de-

termine S and T for each (co)facet we shell on in an e-dimensional Gale diagram.

Shelling via Gale diagrams

Consider a set V = {v1, v2, . . . , vn} in Rd, where vi ∈ Rd for 1 ≤ i ≤ d. Let Q be the
polytope that is the convex hull of this point set, and let V ⊂ Re be a Gale diagram
for this point set.

Lift the points of V by appending an (e+1)st coordinate to each point so that the
new points are in affinely general position with respect to any nonvertical hyperplane.
(Nonvertical means that the last coordinate of the normal vector is nonzero.) Call
this new set V̂ ⊂ Re+1.

Consider the line L = (q, t), −∞ < t <∞, which we visualize as a vertical line.
A cofacet in V , which corresponds to a facet in Q ((d− 1)-dimensional face), is a

minimal set S such that S “captures” q. Therefore, it will be a k-simplex for some
0 ≤ k ≤ e. The set Ŝ will also be a k-simplex, and will have exactly one point on L.

A cosubfacet in V , which corresponds to a subfacet in Q ((d − 2)-dimensional
face) is a minimal affinely dependent set S such that S captures q. Therefore, S
will be a k-dimensional set of k + 2 points for some 0 ≤ k ≤ e. The set Ŝ will
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be a (k + 1)-simplex, and will intersect L in a line segment through some points
in rel int (conv (Ŝ)). Note that the “lower” endpoint of this segment will lie in
rel int (conv (S1)) for some unique face of Ŝ, and likewise the “upper” endpoint of
this segment will lie in rel int (conv (S2)) for some unique face of Ŝ. Then S1 and S2

will be the unique pair of cofacets containing the cosubfacet S.
In general, any coface S in V that is not a cofacet will lift to a subset Ŝ of V̂ that

will intersect L in a line segment through some points in rel int (conv (Ŝ)).
In particular, a coface in V which corresponds to a (d− 3)-face in Q is an affinely

dependent k-dimensional set S of k + 3 points such that S captures q for some
0 ≤ k ≤ e. The set Ŝ will be a (k + 1)-dimensional set of k + 3 points (hence
minimally affinely dependent), and will also intersect L in a line segment through
points in rel int (conv (Ŝ)).

Lemma 4.2.3 (Lee-N). Order the cofacets S1, . . . ,Sm of V in the order in which
the Ŝi are intersected by L as t goes from −∞ to ∞. This ordering corresponds to a
shelling order of the facets S ′1, . . . , S

′
m of Q, where S ′i = V \ Si for all i.

Proof. Claim: Fix 2 ≤ i ≤ m. For every proper face F ′ that is in both S ′i and S ′j for
some j, 1 ≤ j < i, there exists k, 1 ≤ k < i, such that S ′i∩S ′k is a subfacet containing
F ′. That is to say, as a polyhedral complex, S ′i ∩ (S ′1 ∪ · · · ∪ S ′i−1) is generated by a
collection of subfacets of Q in S ′i.

Proof. In terms of V , let F , Si, and Sj be the corresponding cofaces, where

F ⊃ Si and F ⊃ Sj. Then pi = L ∩ Ŝi is higher than pj = L ∩ Ŝj. Note that the

entire open line segment (pj, pi) from pj to pi lies in rel int (conv (Ŝi∪Ŝj)) ⊆ conv (F̂ ).

Choose a point p on (pj, pi) sufficiently close to pi such that there is a simplex Ŝ,

Ŝi ⊂ Ŝ ⊆ (Ŝi ∪ Ŝj) that contains p in its relative interior. Consider the lower point

q′ of the intersection of L with conv (Ŝ) . There is a unique face T̂ of Ŝ such that
q′ ∈ rel int (conv (T̂ )). This set T̂ will correspond to the desired cofacet Sk.

From the above we can identify the collection S1, . . . , S` of cosubfacets such that
as a polyhedral complex, S ′i ∩ (S ′1 ∪ · · · ∪ S ′i−1) is generated by S ′1, . . . , S

′
`. These will

be all the cosubfacets S for which the upper vertex of the line segment L ∩ Ŝ lies in
conv Ŝi.

Claim: This collection of subfacets is the beginning of a shelling of the boundary
of S ′i.

We can prove this by induction on dimension. Recall that a Gale diagram for S ′i
can be obtained from that of Q by projecting all points of V \ Si orthogonally onto
the space W perpendicular to span Si. Now extend W to Ŵ = span (W ∪L). Project
the points of V̂ parallel to aff Ŝi onto Ŵ . The result will be a lifting of the Gale
diagram for S ′i in which S1, . . . , S` are now cofacets, and come first in the ordering
of all cofacets of S ′i via the line L. (The base cases of d = 0 or d = 1 are easily
handled.)

For CD-index calculations we are going to need the Gale diagram of the boundary
Ti
′ of S ′1 ∪ · · · ∪ S ′`.
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Lemma 4.2.4 (Lee-N). If we place the origin at L∩Ŝi and project within V̂ as above,
then this projection yields a Gale diagram for Ti.

Proof. The Gale diagram of the boundary T ′i of S ′1 ∪ · · · ∪ S ′` is generated by all
(d− 3)-faces of S ′i that lie in at least one (d− 2)-face of S ′i in {S ′1 ∪ · · · ∪ S ′`} and in
at least one (d− 2)-face of S ′i not in {S ′1 ∪ · · · ∪ S ′`}. Thus we need minimal affinely
dependent sets R̂ in V̂ that satisfy the following conditions simultaneously.

1. T̂ contains a lifted cosubfacet containing Ŝi but lie below Ŝi;

2. T̂ contains a lifted cosubfacet containing Ŝi but lie above Ŝi.

If we place the origin at L ∩ Ŝi and project within V̂ as above, such T̂ projects to
a simplex containing the origin in its relative interior. Thus this projection yields a
Gale diagram for Ti.

4.3 Dimension 2

As we saw in Chapter 2, many cases arise in 2-dimensional Gale diagrams. The results
from Section 4.2 allow us to interpret the CD-index from 2-dimensional Gale diagrams
whose points are in affinely general position except for a subset which coincides with
the origin.

In all other cases, the points of V̂ ∪ {q} are not in affinely general position with
respect to each another. For the rest of this chapter, we are going to focus on the
base Q̂ of the pyramid Q. So we are going to focus on determining the CD-index
of a polytope Q∗ from the Gale diagram of its dual Q in the case that Q has a
2-dimensional Gale diagram in which no points coincide with the origin q.

An `-Splitter

Let V be the a collection of n points in affinely general position in R2. Consider a
point q that is in affinely general position with respect to V except that q is in the
relative interior of the convex hull of some l-splitter X. Define H = aff (X). Let F be
the points of V that are in one open halfplane of H, and let G be points of V that are
in the opposite open halfplane of H. Then V = F ∪ G ∪ X. Say that X = {y1, z1}
and |F | = ` ≤ |G| = m, relabeling the points of V if necessary. Then there exists
a point p in affinely general position with respect to V ∪ {q} so that pq does not
meet the convex hull of any splitter except X and p falls in the same halfplane as
the points of F . See Figure 4.1. Note that placing the origin at p corresponds to
a simplicial polyope P , and placing the origin at q corresponds to a nonsimplicial
poytope Q. How does the CD-index of the dual polytope change when the origin in
the Gale diagram moves from p to q onto the splitter with exactly 2 points?

Definition 4.3.1 (Lee-N). Denote the change in the CD-index from P ∗ to Q∗ as the
origin shifts from p to q in the relative interior of the convex hull of a line Y with at
least 2 points as χ(u, r, `,m) if the u+ r+ `+m points fall on a circle in such a way
that there are u points and r points on either side of the splitter which “captures” q
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Figure 4.1: Here is a 2-dimensional Gale diagram with an `-splitter.

Figure 4.2: We want to determine χ(u, r, `,m) in this 2-dimensional Gale diagram.

and the points of F are on the left side of q and the points of G are on the right side
of q. See Figure 4.2.

Here we will determine χ(1, 1, `,m), where ` ≤ m. Notice that we lose ` (co)facets
and gain 1 (co)facet. To determine which (co)facets are lost, lift the 2-dimensional
Gale diagram so that y1 is higher than z1 and the ` points in F and the m points
in G are suitably low. Relabel the points of F v0, v1, . . . , v` in such a way that vi is
higher than vi+1 for 0 ≤ i ≤ `− 2. See Figure 4.3. Then all the points V̂ ⊂ R3 are in
affinely general position with respect to any nonvertical plane. So we are able to use
our results from the last section to find each S and T as we shell on the (co)facets.
We are also able to determine which (co)facets are shelled off by considering how
many points are split above each of the ` planes determined by the two endpoints
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Figure 4.3: Lift the Gale diagram to find the (co)facets for shelling off facets lost.

and one point from F . We may calculate how many different ways i points are split
above a plane as follows.

Lemma 4.3.2 (Lee-N). There is one i-splitter, for 0 ≤ i ≤ `− 1.

Proof. The number of points above the plane determined by y1, z1 and one point vi
from F is equivalent to the number of points in F above vi for 0 ≤ i ≤ `− 1. There
are i points of F above vi for 0 ≤ i ≤ `− 1. So the result follows.

This result tells us there is one (co)facet of each type d− i for 0 ≤ i ≤ `− 1 being
shelled off. Due to the symmetry of ∆d

i = ∆d
d−i as noted in Corollary 1.5.7, we may

equivalently think of shelling off one (co)facet of each type i for 0 ≤ i ≤ `− 1. So we
may compute the total contribution of the (co)facets shelled off to the total change
in the CD-index as we move onto the `-splitter as follows.

Proposition 4.3.3 (Lee-N). The contribution from all the (co)facets shelled off to
the change in the CD-index from P ∗ to Q∗ as the origin moves from p to q onto an
`-splitter is

−1

2

`−2∑
i=0

(DiC2`−1−2i −Di+1C2`−1−2(i+1))− 1

2
D

2`−2
2 C

if ` = m and

−1

2

`−1∑
i=0

(DiC(`+m−1)−2i −Di+1C(`+m−1)−2(i+1))

if ` < m.
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Proof. Shelling simplicial d-polytopes gives the CD-index of their dual polytopes. So
shelling off the (co)facets lost allows us to determine the CD-index contribution of
the vertices of their duals, which are simple vertices. Therefore, we may use Lee’s
∆-formulas in [16]. When the simplicial (co)facet is d-dimensional, the contribution
of the cofacets shelled off to the change in the CD-index from P ∗ to Q∗ as the origin
moves from p to q in the relative interior of the convex of hull of the `-splitter X is
given by

−1

2

b d2c−1∑
i=0

Bi · (DiCd−2i −Di+1Cd−2(i+1))

−1

2
2Bi ·D

d
2

−1

2

`−1∑
i=b d2c+1

Bi · (Dd−iCd−2(d−i) −Dd+1−iCd−2(d+1−i)).

when 2|d, and

−1

2

b d2c−1∑
i=0

Bi · (DiCd−2i −Di+1Cd−2(i+1))

−1

2
Bi ·D

d−1
2 C

−1

2

`−1∑
i=b d2c+1

Bi · (Dd−iCd−2(d−i) −Dd+1−iCd−2(d+1−i)).

otherwise; where Bi is the number of i-splitters crossed in the lifting above.
Here the dimension is d = `+m− 1. If ` = m, then d = 2`− 1 and

⌊
d
2

⌋
= `− 1.

So d is not divisible by d and the change is

−1

2

`−2∑
i=0

(DiC(2`−1)−2i −Di+1C(2`−1)−2(i+1))− 1

2
D

(2`−1)−1
2 C.

When ` < m, then ` ≤
⌊
d
2

⌋
. So either ` = 0 and there are no cofacets lost; or

` > 0 and 0 ≤ `− 1 <
⌊
d
2

⌋
. In both cases, there are no terms for i ≥

⌊
d
2

⌋
.

There is exactly one (co)facet shelled on to the polytope. We determine S as
follows.

Lemma 4.3.4 (Lee-N). The CD-index of ψ(S∗) is ψ(S∗) =
`−1∑
i=0

DiC`+m−2(i+1).

Proof. The (co)facet gained consists of y1 and z1. To obtain the Gale diagram for
this (co)facet, project the 2-dimensional Gale diagram V onto the line orthogonal to
V \ {y1, z1} and then delete those two points [22]. So the Gale diagram V̂ for the
(co)facet is 1-dimensional with ` points on one side of q and m points on the other
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Figure 4.4: Here is the Gale diagram for S.

side of q. See Figure 4.4. Since q is in affinely general position with respect to the
points in V̂ , then S a simplicial polytope of dimension l +m− 2. Since ` ≤ m, then

ψ(S∗) =
`−1∑
i=0

DiC`+m−2−2i by Theorem 4.1.1.

Figure 4.5: Here is the Gale diagram for T of type (u, r, `,m).

Now, we need to determine T as follows. First, make note of the following defini-
tion.

Definition 4.3.5 (Lee-N). We say T has type (u, r, `,m) if the u+ r+ `+m points
fall on a circle in such a way that there are u points and r points on either side of
the splitter which “captures” q and the points of F are on the lower side left of q and
the points of G are on the lower side right of q. See Figure 4.5.

Lemma 4.3.6 (Lee-N). The CD-index ψ(T∗) is 0.

Proof. To obtain the Gale diagram for T, lift the 2-dimensional Gale diagram once
more so that y1 is higher than z1 and the ` points in F and the m points in G are
suitably low. Then the origin starts below the higher points y1 and z1 points and
above the lower points in F and G points. As the origin moves up, it crosses exactly

73



Figure 4.6: Lift the Gale diagram with an `-splitter to determine a shelling order for
the facets shelled on.

Figure 4.7: Project the lifting to obtain the Gale diagram of T.

one splitter, namely X. See Figure 4.6. Project in the direction of the splitter X
onto the plane perpendicular to the unlifted X and delete the two points. Then we
have a 2-dimensional Gale diagram for T with no points on either side of the diagonal
and the points of F on the low left side and the points of G on the low right side.
See Figure 4.7. Therefore, this particular T is of type (0, 0, `,m). Since no subsets
“capture” q, then the result follows.

Let us determine χ(1, 1, 1, 1).
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Example 4.3.7. When determining χ(1, 1, 1, 1), we shell off one (co)facet and shell
on one (co)facet. Notice that n = 4 and d = 1. So the facet shelled off has a CD-
index of C. Projecting orthogonally shows that the CD-index of S∗ is 1. Lifting and
then projecting gives that the CD-index of T∗ is 0. Thus,

χ(1, 1, 1, 1) = −1

2
C +

1

2

(
(2C − I) · 1 + (4D − I2) · 0

)
= −1

2
C + C − 1

2
I

= −1

2
C + C − 1

2
C

= −C + C
= −D0C1 +D0C1D0C0

= −D0C1−0 +D0C2−1D0C2−2.

So there is no change in the CD-index from P ∗ to Q∗ as the origin moves from p to
q onto the 1-splitter.

Combining these results, we determine χ(1, 1, `,m) as follows.

Theorem 4.3.8 (Lee-N). The change in the CD-index from P ∗ to Q∗ as the origin
moves from p to q onto X in the Gale diagram, as shown in Figure 4.1 is

χ(1, 1, `,m) = −
`−1∑
i=0

DiC`+m−1−2i +
`−1∑
i=0

CDiC`+m−2−2i.

Proof. The previous example shows the computation holds when ` = m = 1.
There are two cases that arise here. First, suppose that ` = m. Then

ψ(Q∗) = ψ(P ∗)

−1

2

`−2∑
i=0

(DiC2`−1−2i −Di+1C2`−1−2(i+1))− 1

2
D

2`−2
2 C

+
1

2
(2C − I)

`−1∑
i=0

DiC2`−2(i+1)

+
1

2
(4D − I2)0

So

χ(1, 1, `, `) = −1

2
(D0C2`−1 −D`−1C1)− 1

2
D

2`−2
2 C

+
`−1∑
i=0

CDiC2`−2−2i − 1

2

`−1∑
i=0

DiIC2`−2−2i

Since 2`− 2− 2(`− 1) = 0, then we peel off the last term of this last sum and rewrite
the rest of the sum using the following relationship.

DiIC2`−2−2i = Di(IC)C2`−3−2i

= Di(D + C2)C2`−3−2i

= Di+1C2`−3−2i +DiC2`−1−2i
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Then

χ(1, 1, `, `) = −1

2
D0C2`−1 +

1

2
D`−1C1 − 1

2
D

2`−2
2 C

+
`−1∑
i=0

CDiC2`−2−2i − 1

2
D`−1I

−1

2

`−2∑
i=0

(Di+1C2`−3−2i +DiC2`−1−2i)

So

χ(1, 1, `, `) = −1

2
D0C2`−1 +

1

2
D`−1C1 − 1

2
D`−1C

+
`−1∑
i=0

CDiC2`−2−2i − 1

2
D`−1C

−1

2

`−2∑
i=0

Di+1C2`−3−2i − 1

2

`−2∑
i=0

DiC2`−1−2i)

= −1

2
D0C2`−1 − 1

2
D`−1C +

`−1∑
i=0

CDiC2`−2−2i

−1

2

`−1∑
i=1

DiC2`−1−2i − 1

2

`−2∑
i=0

DiC2`−1−2i

= −1

2
D0C2`−1 − 1

2
D`−1C +

`−1∑
i=0

CDiC2`−2−2i

−1

2
D`−1C2`−1−2(`−1) −

`−2∑
i=1

DiC2`−1−2i − 1

2
D0C2`−1

= −D0C2`−1 −
`−2∑
i=1

DiC2`−1−2i −D`−1C1

+
`−1∑
i=0

CDiC2`−2−2i

= −
`−1∑
i=0

DiC2`−1−2i +
`−1∑
i=0

CDiC2`−2−2i

And the result follows.
Now suppose that ` < m Then

ψ(Q∗) = ψ(P ∗)

−1

2

`−1∑
i=0

(DiC(`+m−1)−2i −Di+1C(`+m−1)−2(i+1))

+
1

2
(2C − I)

`−1∑
i=0

DiC`+m−2(i+1)

+
1

2
(4D − I2)0
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So

χ(1, 1, `,m) = −1

2
(D0C`+m−1 −D`Cm−`−1)

+
`−1∑
i=0

CDiC`+m−2(i+1) − 1

2

`−1∑
i=0

DiIC`+m−2(i+1)

Since ` + m− 2(`− 1 + 1) = m− ` ≥ 1, we rewrite the fourth term again using the
relationship found above. Then

χ(1, 1, `,m) = −1

2
D0C`+m−1 +

1

2
D`Cm−`−1

+
`−1∑
i=0

CDiC`+m−2−2i − 1

2

`−1∑
i=0

(Di+1C`+m−3−2i +DiC`+m−1−2i

So

χ(1, 1, `,m) = −1

2
D0C`+m−1 +

1

2
D`Cm−`−1

+
`−1∑
i=0

CDiC`+m−2−2i

−1

2

`−1∑
i=0

Di+1C`+m−3−2i − 1

2

`−1∑
i=0

DiC`+m−1−2i

= −1

2
D0C`+m−1 +

1

2
D`Cm−`−1

+
`−1∑
i=0

CDiC`+m−2−2i

−1

2

∑̀
i=1

DiC`+m−1−2i − 1

2

`−1∑
i=0

DiC`+m−1−2i

= −1

2
D0C`+m−1 +

1

2
D`Cm−`−1

+
`−1∑
i=0

CDiC`+m−2−2i − 1

2
D`C`+m−1−2(`)

−
`−1∑
i=1

DiC`+m−1−2i − 1

2
D0C`+m−1

= −D0C`+m−1 −
`−1∑
i=1

DiC`+m−1−2i

+
`−1∑
i=0

CDiC`+m−2−2i

= −
`−1∑
i=0

DiC`+m−1−2i +
`−1∑
i=0

CDiC`+m−2−2i

And the result follows.
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Figure 4.8: Here is the Gale diagram of the triangular prism P ∗.

Figure 4.9: Here is the Gale diagram of the triangular bipyramid P .

We will use previous results to determine the CD-index of the triangular bipyra-
mid and the triangular prism from the appropriate Gale diagram.

Example 4.3.9. To determine the CD-index of the triangular bipyramid P , consider
the Gale diagram of its dual P ∗, the triangular prism. See Figure 4.8. No matter
which direction we move in to o, we cross one 0-splitter and two 1-splitters. When we
move the origin onto o, then o is captured by three 2-splitters. By Theorem 1.4.11
and Lemma 2.1.4, the CD-index of P is ψ(P ) = C3 + 2DC + 3 · χ(1, 1, 2, 2). Using
Theorem 4.3.8, we find that χ(1, 1, 2, 2) = −C3 − DC + C3 + CD = CD − DC.
Therefore, ψ(P ) = C3 + 2DC + 3CD − 3DC = C3 −DC + 3CD, which agrees with
our earlier computations (see Example 1.3.9).

To determine the CD-index of the triangular prism P ∗, consider the Gale diagram
of its dual P , the triangualr bipyramid. See Figure 4.9. We cross one 0-splitter and
one 1-splitter as we move to o from the left. By Theorem 1.4.11, ψ(P ∗) = C3 +DC,
which also agrees with are earlier computations (see Example 1.3.8).
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Figure 4.10: Here is a 2-dimensional Gale diagram with a splitter Y .

A Splitter

We would like to generalize the result for an `-splitter to any splitter defined by at
least 2 points. As in Section 2.3, we will consider 2-dimensional Gale diagrams in
which there exists a line H that satisfies the following conditions.

• The line H contains at least 3 points from V and the origin q;

• The set Y = V ∩H affinely spans H;

• Any minimal affinely dependent subset of V of at most 3 points lies in H;

• Every subset of 2 points in Y ∪ {q} is affinely independent.

Once more, the u points Y1 = {y1, y2, . . . , yu} of Y fall on one side of q and the
remaining r points Y2 = {z1, z2, . . . zr} of Y fall on the other side of q with u ≥ r ≥ 1.
Note that all the points in V \ Y are in affinely general position with respect to
V ∪ {q}. Then q is in the relative interior of the convex hull of nonempty subsets
of Y , denote them Yβ. In this case, each Yβ is the union of any nonempty subset Y ′1
of Y1 with any nonempty subset Y ′2 of Y2. Recall that the nonempty subsets Yβ of Y
are splitters. In particular, Y ′1 ∪ Y ′2 is a splitter for every nonempty subset Y ′1 of Y1
and every nonempty subset Y ′2 of Y2.

Let F be the points of V that are in one open halfplane of H, and let G be points
of V that are in the opposite open halfplane of H. Say that |F | = ` ≤ |G| = m,
relabeling the points of V if necessary. So l + m ≥ 3 and V = F ∪ G ∪ Y =
F ∪ G ∪ Y1 ∪ Y2. Then there exists a point p in affinely general position
with respect to V ∪ {q} so that pq does not meet the convex hull of any splitters
except those Yβ of Y and p falls in the same halfplane of H as the points of F . See
Figure 4.10. Note that placing the origin at p corresponds to simplicial polytope
P , and placing the origin at q corresponds to a nonsimplicial polytope Q. Since p
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falls in affinely general position with respect to V , we know how to compute ψ(P ∗)
by Theorem 1.4.11. How does the CD-index of the dual polytope change when the
origin in the Gale diagram moves from p to q into the relative interior of the convex
hull of the splitter with at least 3 points?

Figure 4.11: Lift the Gale diagram with a splitter Y to order the (co)facets for
shelling.

Notice that we lose ur` (co)facets and gain ur (co)facets. To determine which
(co)facets are lost, lift the 2-dimensional Gale diagram so that the u points in Y1
are higher than the r points in Y2 and the ` points in F and the m points in G are
suitably low. Relabel the points of F v0, v1, . . . , v` in such a way that vσ is higher
than vσ+1 for 0 ≤ σ ≤ `−2. Also relabel the points of Y1 y0, y1, . . . , yu−1 in such a way
that yj is higher than yj+1 for 0 ≤ j ≤ u− 2. Relabel the points of Y2 z0, z1, . . . , zr−1
in such a way that zk is higher than zk+1 for 0 ≤ k ≤ r − 2. Then all the points
V̂ ⊂ R3 are in affinely general position with respect to any nonvertical plane. See
Figure 4.11. So we are able to use our results from the last section to find each S
and T as we shell on the (co)facets. We are also able to determine which (co)facets
are shelled off by considering how many points are split above each of the ur` planes
determined by one point from Y1, one point from Y2, and one point from F . We may
calculate how many different ways i = σ + j + k points are split above a plane for
0 ≤ i ≤ u+ r + `− 3 as follows.

Lemma 4.3.10 (Lee-N). The number of i-splitters is given by the sum
(
i+2
2

)
−(

i+2−u
2

)
−
(
i+2−r

2

)
−
(
i+2−`

2

)
+
(
i+2−u−r

2

)
+
(
i+2−u−`

2

)
+
(
i+2−r−`

2

)
+
(
i+2−u−r−`

2

)
, where(

p
2

)
= 0 if p < 0.

Proof. The number of points above the plane determined by one point yj from Y1,
one point zk from Y2, and one point vi from F is equivalent to the sum of the number
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of points in F above vσ, the number of points in Y1 above yj, and the number of
points in Y2 above zk for any given σ, j, and k. There are σ points of F above vσ for
0 ≤ σ ≤ ` − 1. There are j points of Y1 above yj for 0 ≤ j ≤ u − 1. There are k
points of Y2 above zk for 0 ≤ k ≤ r − 1.

Determining the number of i-splitters is equivalent to finding all possible combi-
nations of σ + j + k = i where 0 ≤ σ ≤ `− 1, 0 ≤ j ≤ u− 1, and 0 ≤ k ≤ r− 1. The
total number of such combinations is the coefficient of xi in the product(
u−1∑
j=0

xj

)(
r−1∑
k=0

xk

)(
`−1∑
σ=0

xσ

)

=
1− xu

1− x
1− xr

1− x
1− x`

1− x
=

1− xu − xr − x` + xu+r + xu+` + xr+` − xu+r+`

(1− x)3

= (1− xu − xr − x` + xu+r + xu+` + xr+` − xu+r+`)
∞∑
j=1

(
j + 2

2

)
xj.

Then the result follows.

This result tells us how to count how many (co)facets of each type are shelled off.
Using this result, we may compute the total contribution of the (co)facets shelled off
to the total change in the CD-index as we move onto the splitter Y .

Due to the symmetry of ∆d
i = ∆d

d−i as noted in Corollary 1.5.7, we may compute
the total contribution of the (co)facets shelled off to the total change in the CD-index
as we move onto the splitter Y as follows.

Proposition 4.3.11 (Lee-N). The contribution from all the (co)facets shelled off to
the change in the CD-index from P ∗ to Q∗ as the origin moves from p to q in the
relative interior of the convex of hull of the splitter Y is given by the following sum.

−1

2

b d2c−1∑
i=0

B · (DiCd−2i −Di+1Cd−2(i+1))

−1

2
B · 2D

d
2

−1

2

u+r+`−3∑
i=b d2c+1

B · (Dd−iCd−2(d−i) −Dd+1−iCd−2(d+1−i)),

if 2|d;

−1

2

b d2c−1∑
i=0

B · (DiCd−2i −Di+1Cd−2(i+1))

−1

2
B ·D

d−1
2 C

−1

2

u+r+`−3∑
i=b d2c+1

B · (Dd−iCd−2(d−i) −Dd+1−iCd−2(d+1−i)),
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where B =
(
i+2
2

)
−
(
i+2−u

2

)
−
(
i+2−r

2

)
−
(
i+2−`

2

)
+
(
i+2−u−r

2

)
+
(
i+2−u−`

2

)
+
(
i+2−r−`

2

)
+(

i+2−u−r−`
2

)
.

Proof. Shelling simplicial d-polytopes gives the CD-index of their dual polytopes. So
shelling off the (co)facets lost allows us to determine the CD-index contribution of
the vertices of their duals, which are simple vertices. Therefore, we may use Lee’s
∆-formulas in [16] and the result follows immediately.

Now we need to explore the ur (co)facets which are shelled on by determining the
S and T associated with each (co)facet shelled on. After finding the CD-index for S,
we will find the CD-index for T.

Lemma 4.3.12 (Lee-N). The CD-index of a given S∗ is

Cu+r−2

(
`−1∑
i=0

DiC`+m−2(i+1)

)
.

Figure 4.12: Here is the Gale diagram for S in the splitter case.

Proof. Each (co)facet consists of one point from either end of the splitter, i.e., one
point yi from Y1 and another point zj from Y2. To obtain the Gale diagram of one of
these cofacets, project the 2-dimensional Gale diagram V onto the line orthogonal to
V \{yi, zj} and then delete those two points [22]. So the Gale diagram for a (co)facet
is 1-dimensional with two fewer points. See Figure 4.12. Notice that ` points fall on
one side of q, u+ r− 2 points are stacked at q, and m points fall on the other side of
q. Thus, the result follows from Theorem 4.1.1.

There are ur Q’s and they are combinatorially equivalent. So they all have the
same CD-index. Thus, we have the following result.

Corollary 4.3.13 (Lee-N). The sum of the CD-indices of all the S∗’s is

ur · Cu+r−2

(
`−1∑
i=0

DiC`+m−2(i+1)

)
.

Using this result, we may compute the contribution of the ur Q’s to the total
change in the CD-index as we move onto the splitter.
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Proposition 4.3.14 (Lee-N). The contribution from all the S’s to the change in the
CD-index from P ∗ to Q∗ as the origin moves from p to q onto a splitter Y is

ur

2
· Cu+r−1

(
`−1∑
i=0

DiC`+m−2(i+1)

)
− ur

2
·DCu+r−3

(
`−1∑
i=0

DiC`+m−2(i+1)

)
.

Proof. Recall that m ≥ `, `+m ≥ 2, and u+ r ≥ 3. Then the following calculations

hold.
1

2
(2C − I) · ur · Cu+r−2

(
`−1∑
i=0

DiC`+m−2(i+1)

)

= ur · Cu+r−1

(
`−1∑
i=0

DiC`+m−2(i+1)

)
− ur

2
(IC)Cu+r−3

(
`−1∑
i=0

DiC`+m−2(i+1)

)

= ur · Cu+r−1

(
`−1∑
i=0

DiC`+m−2(i+1)

)
− ur

2
(D + C2)Cu+r−3

(
`−1∑
i=0

DiC`+m−2(i+1)

)

= ur · Cu+r−1

(
`−1∑
i=0

DiC`+m−2(i+1)

)
− ur

2
· DCu+r−3

(
`−1∑
i=0

DiC`+m−2(i+1)

)
− ur

2
·

Cu+r−1

(
`−1∑
i=0

DiC`+m−2(i+1)

)

=
ur

2
· Cu+r−1

(
`−1∑
i=0

DiC`+m−2(i+1)

)
− ur

2
·DCu+r−3

(
`−1∑
i=0

DiC`+m−2(i+1)

)

Figure 4.13: Lift the Gale diagram with a splitter Y to determine a shelling order for
the facets shelled on.

Now that we understand the contribution of the S’s to the change in the CD-index,
we need to understand the contribution of the T’s to the change in the CD-index.
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Figure 4.14: Project this lifting to obtain the Gale diagram for T.

As we argued in the previous section, we obtain the Gale diagrams for the T’s
by lifting the 2-dimensional Gale diagram so that the u points are higher than the r
points and the ` points and the m points are much lower. The origin starts below the
higher u and r points and above the lower ` and m points. As the origin moves up, it
crosses all possible splitters determined by one point from the r points and one point
from the u points. See Figure 4.13. For a given splitter, project in the direction of
the splitter onto the plane perpendicular to the unlifted splitter and delete the two
points. Then we have a 2-dimensional Gale diagram for T with a total of r + u − 2
points on either side of the diagonal and the ` points on the low left side and the m
points on the low right side. See Figure 4.14. To compute the CD-contribution from
all the T’s, we will determine how many T’s of each type arise.

Lemma 4.3.15 (Lee-N). All T’s are of type (r + u− 2− i, i, `,m). There are i+ 1
T’s for 0 ≤ i ≤ r− 1 and r+ u− 1− i R’s for u ≤ i ≤ r+ u− 2. When r < u, there
are also r T’s for r ≤ i ≤ u− 1.

Proof. Each T arises by projecting orthogonally when the origin crosses a splitter
as it moves up. So the number of splitters of each type crossed is equivalent to the
number of T’s of each type arising during this process.

There is exactly one way to choose a point from the r (u) vertices to split off i
points above that point for every i where 0 ≤ i ≤ r − 1 (0 ≤ i ≤ u − 1). Then the
number of i-splitters is given by the coefficient of xi in the following product(

r−1∑
i=0

xi

)(
u−1∑
i=0

xi

)
.

When r 6= u, this product may be written as follows.

(1 + x+ x2 + . . .+ xr−1)(1 + x+ x2 + . . .+ xu−1)
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= 1+2x+3x2 + . . .+rxr−1 +rxr+ . . .+rxu−1 +(r−1)xu+ . . .+2xu−1+r−2 +xu−1+r−1

=
r−1∑
i=0

(i+ 1)xi +
u−1∑
i=r

rxi +
r−1∑
i=1

(r − i)xu−1+i

=
r−1∑
i=0

(i+ 1)xi +
u−1∑
i=r

rxi +
r+u−2∑
i=u

(r + u− i− 1)xi

When r = u, the middle sum is empty.
The i runs over all possible i-splitters. So after projecting orthogonally, there

will be i points below the origin and r + u − 2 − i points above the origin. Since
the coefficient of xi records how many T’s of each type arise as the origin moves up
through all the possible splitters, then the result follows.

Figure 4.15: Here is the Gale diagram for T of type (α, β, γ, ν).

Since we know how many T’s arise of each type, it is now important to understand
the CD-index of each type of T. So we need to determine the CD-index of a general
T of type (α, β, γ, ν), as shown in Figure 4.15. First we need to calculate the number
of w-splitters of each type crossed as the origin approaches the splitter in this general
T.

Lemma 4.3.16 (Lee-N). Consider a general T as described above. There are w+1 w-
splitters for 0 ≤ w ≤ min{α, γ}−1 and α+γ−w−1 w-splitters for max{α, γ} ≤ w ≤
α+γ−2. When α 6= γ, the number of w-splitters for min{α, γ} ≤ w ≤ max{α, γ}−1
is min{α, γ}.

Proof. There is exactly one way to choose a point from the α (γ) vertices to split off
w points above that point for every w where 0 ≤ w ≤ α − 1 (0 ≤ w ≤ γ − 1). Then
the number of w-splitters is given by the coefficient of xw in the following product(

α−1∑
w=0

xw

)(
γ−1∑
w=0

xw

)
.
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When α 6= γ, this product may be written as follows.

(1 + x+ x2 + . . .+ xα−1)(1 + x+ x2 + . . .+ xγ−1)

= 1 + 2x+ 3x2 + . . .+ min{α, γ}xmin{α,γ}−1

+min{α, γ}xmin{α,γ} + . . .+ min{α, γ}xmax{α,γ}−1

+(min{α, γ} − 1)xmax{α,γ} + . . .+ 2xmax{α,γ}−1+min{α,γ}−2 + xmax{α,γ}−1+min{α,γ}−1

=

min{α,γ}−1∑
w=0

(w + 1)xw +

max{α,γ}−1∑
w=min{α,γ}

min{α, γ}xi

+

min{α,γ}−1∑
w=1

(min{α, γ} − w)xmax{α,γ}−1+w

=

min{α,γ}−1∑
w=0

(w + 1)xw +

max{α,γ}−1∑
w=min{α,γ}

min{α, γ}xw +

α+γ−2∑
w=max{α,γ}

(α + γ − w − 1)xw

When α = γ, the middle sum is empty and, thus, the above product may be
written as follows.

(1 + x+ x2 + . . .+ xα−1)(1 + x+ x2 + . . .+ xα−1)

= 1 + 2x+ 3x2 + . . .+ αxα−1 + (α− 1)xα + . . .+ 2x2α−3 + x2α−2

=
α−1∑
w=0

(w + 1)xw +
α−1∑
w=1

(α− w)xα−1+w

=
α−1∑
w=0

(w + 1)xw +
2α−2∑
w=α

(2α− w − 1)xw

The result follows from these two sums.

Summing over all possible w values and adding the change that occurs as we move
the origin onto the splitter gives the entire CD-index of a general T∗.

Corollary 4.3.17 (Lee-N). The CD-index of a general T∗ is

min{α,γ}−1∑
w=0

(w + 1)DwCα+β+γ+ν−3−2w +

max{α,γ}−1∑
w=min{α,γ}

min{α, γ}DwCα+β+γ+ν−3−2w

+

α+γ−2∑
w=max{α,γ}

(α + γ − w − 1)DwCα+β+γ+ν−3−2w + x(α, β, γ, ν),

where x(α, β, γ, ν) denotes the change in the CD-index as we move the origin onto
the splitter from very close by.
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Simplifying algebraically, our previous results give the CD-index for the sum over
all T’s.

Corollary 4.3.18 (Lee-N). The sum of the CD-indices of all the T∗’s that arise
when starting with a Gale diagram of type (r, u, `,m) is
r−1∑
i=0

(i+ 1)

(
min{r+u−2−i,`}−1∑

w=0

(w + 1)DwCr+u+`+m−5−2w

+

max{r+u−2−i,`}−1∑
w=min{r+u−2−i,`}

min{r + u− 2− i, `}DwCr+u+`+m−5−2w

+
r+u+`−4−i∑

w=max{r+u−2−i,`}

(r + u+ `− 3− i− w)DwCr+u+`+m−5−2w

+ χ(r + u− 2− i, i, `,m)

)

+
u−1∑
i=r

r

(
min{r+u−2−i,`}−1∑

w=0

(w + 1)DwCr+u+`+m−5−2w

+

max{r+u−2−i,`}−1∑
w=min{r+u−2−i,`}

min{r + u− 2− i, `}DwCr+u+`+m−5−2w

+
r+u+`−4−i∑

w=max{r+u−2−i,`}

(r + u+ `− 3− i− w)DwCr+u+`+m−5−2w

+ χ(r + u− 2− i, i, `,m)

)

+
r+u−2∑
i=u

(r + u− 1− i)

(
min{r+u−2−i,`}−1∑

w=0

(w + 1)DwC(r+u+`+m−5−2w

+

max{r+u−2−i,`}−1∑
w=min{r+u−2−i,`}

min{r + u− 2− i, `}DwCr+u+`+m−5−2w

+
r+u+`−4−i∑

w=max{r+u−2−i,`}

(r + u+ `− 3− i− w)DwCr+u+`+m−5−2w

+ χ(r + u− 2− i, i, `,m)

)
Using this result, we may compute the contribution of all ur T’s to the total

change in the CD-index as we move onto the splitter.

Proposition 4.3.19 (Lee-N). The contribution from all the T’s to the change in the
CD-index from P ∗ to Q∗ as the origin moves from p to q is

1

2
(4D − I2)

[
r−1∑
i=0

(i+ 1)

(
min{r+u−2−i,`}−1∑

w=0

(w + 1)DwCr+u+`+m−5−2w
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+

max{r+u−2−i,`}−1∑
w=min{r+u−2−i,`}

min{r + u− 2− i, `}DwCr+u+`+m−5−2w

+
r+u+`−4−i∑

w=max{r+u−2−i,`}

(r + u+ `− 3− i− w)DwCr+u+`+m−5−2w

+ χ(r + u− 2− i, i, `,m)

)

+
u−1∑
i=r

r

(
min{r+u−2−i,`}−1∑

w=0

(w + 1)DwCr+u+`+m−5−2w

+

max{r+u−2−i,`}−1∑
w=min{r+u−2−i,`}

min{r + u− 2− i, `}DwCr+u+`+m−5−2w

+
r+u+`−4−i∑

w=max{r+u−2−i,`}

(r + u+ `− 3− i− w)DwCr+u+`+m−5−2w

+ χ(r + u− 2− i, i, `,m)

)

+
r+u−2∑
i=u

(r + u− 1− i)

(
min{r+u−2−i,`}−1∑

w=0

(w + 1)DwCr+u+`+m−5−2w

+

max{r+u−2−i,`}−1∑
w=min{r+u−2−i,`}

min{r + u− 2− i, `}DwCr+u+`+m−5−2w

+
r+u+`−4−i∑

w=max{r+u−2−i,`}

(r + u+ `− 3− i− w)DwCr+u+`+m−5−2w

+ χ(r + u− 2− i, i, `,m)

)]
To rewrite an (IC)-polynomial as a CD-polynomial, the following equalities are

useful.
Whenever the power of C is at least 2, then I2DaCb

= DaI2Cb

= DaI(IC)Cb−1

= DaI(D + C2)Cb−1

= Da+1(IC)Cb−2 +Da(IC)Cb

= Da+1(D + C2)Cb−2 +Da(D + C2)Cb

= Da+2Cb−2 +Da+1Cb +Da+1Cb +DaCb+2

= Da+2Cb−2 + 2Da+1Cb +DaCb+2.
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Whenever the power of the first C is exactly 1 and the power of the second C is
at least 1, then I2DaCDbCe

= DaI2CDbCe

= DaI(IC)DbCe

= DaI(D + C2)DbCe

= DaIDb+1Ce +Da(IC)CDbCe

= Da+b+1(IC)Ce−1 +Da(IC)CDbCe

= Da+b+1(D + C2)Ce−1 +Da(D + C2)CDbCe

= Da+b+2Ce−1 +Da+b+1Ce+1 +Da+1CDbCe +DaC3DbCe.

We put together all of these pieces to determine the change in the CD-index from
P ∗ to Q∗ as the origin moves from p to q in the relative interior of the convex hull of
the splitter Y .

Conjecture 4.3.20 (Lee-N). Denote the change in the CD-index from P ∗ to Q∗ as
the origin moves from p to q in the relative interior of the convex hull of the splitter
Y as χ(u, r, `,m). Then χ(u, r, `,m) = χ(r, u, `,m)

= −
`−1∑
β=0

(
r−1∑
α=0

Dα+βCd−2(α+β)

)
+

(
r−1∑
α=0

DαCu+r−1−2α

)(
`−1∑
β=0

DβC`+m−2(β+1)

)

Evidence We have computed the change in the CD-index for a few values of u, r,
`, and m. They are listed here to motivate our above conjecture.

χ(1, 1, 2, 2) = −D0C3 −DC
+D0CD0C2 +D0CDC0

χ(2, 1, 2, 2) = χ(1, 2, 2, 2)
= −D0C4 −DC2

+D0C2D0C2 +D0C2DC0

χ(3, 1, 2, 2) = χ(1, 3, 2, 2)
= −D0C5 −DC3

+D0C3D0C2 +D0C3DC0

χ(2, 2, 2, 2) = −D0C5 −DC3

+D0C3D0C2 +D0C3DC0

−DC3 −D2C
+DCD0C2 +DCDC0

χ(3, 2, 2, 2) = χ(2, 3, 2, 2)
= −D0C6 −DC4

+D0C4D0C2 +D0C4DC0

−DC4 −D2C2

+DC2D0C2 +DC2DC0
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χ(1, 1, 2, 6) = −D0C7 −DC5

+D0CD0C6 +D0CDC4

χ(2, 1, 2, 6) = χ(1, 2, 2, 6)
= −D0C8 −DC6

+D0C2D0C6 +D0C2DC4

χ(3, 1, 2, 6) = χ(1, 3, 2, 6)
= −D0C9 −DC7

+D0C3D0C6 +D0C3DC4

χ(4, 1, 2, 6) = χ(1, 4, 2, 6)
= −D0C10−DC8

+D0C4D0C6 +D0C4DC4

χ(2, 2, 2, 6) = −D0C9 −DC7 −DC7 −D2C5

+D0C3D0C6 +D0C3DC4 +DCD0C6 +DCDC4

χ(3, 2, 2, 6) = χ(2, 3, 2, 6)
= −D0C10 −DC8 −DC8 −D2C6

+D0C4D0C6 +D0C4DC4 +DC2D0C6 +DC2DC4

χ(3, 3, 2, 6) = −D0C11 −DC9

+D0C5D0C6 +D0C5DC4

−DC9 −D2C7

+DC3D0C6 +DC3DC4

−D2C7 −D3C5

+D2CD0C6 +D2CDC4

χ(4, 3, 2, 6) = χ(3, 4, 2, 6)
= −D0C12 −DC10

+D0C6D0C6 +D0C6DC4

−DC10 −D2C8

+DC4D0C6 +DC4DC4

−D2C8 −D3C6

+D2C2D0C6 +D2C2DC4
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χ(1, 1, 3, 6) = −D0C8 −DC6 −D2C4

+D0CD0C7 +D0CDC5 +D0CD2C3

χ(2, 1, 3, 6) = χ(1, 2, 3, 6)
= −D0C9 −DC7 −D2C5

+D0C2D0C7 +D0C2DC5 +D0C2D2C3

χ(3, 1, 3, 6) = χ(1, 3, 3, 6)
= −D0C10 −DC8 −D2C6

+D0C3D0C7 +D0C3DC5 +D0C3D2C3

χ(2, 2, 3, 6) = −D0C10 −DC8 −D2C6

+D0C3D0C7 +D0C3DC5 +D0C3D2C3

−DC8 −D2C6 −D3C4

+DCD0C7 +DCDC5 +DCD2C3

χ(3, 2, 3, 6) = χ(2, 3, 3, 6)
= −D0C11 −DC9 −D2C7

+D0C4D0C7 +D0C4DC5 +D0C4D2C3

−DC9 −D2C7 −D3C5

+DC2D0C7 +DC2DC5 +DC2D2C3

χ(3, 3, 3, 6) = −D0C12 −DC10 −D2C8

+D0C5D0C7 +D0C5DC5 +D0C5D2C3

−DC10 −D2C8 −D3C6

+DC3D0C7 +DC3DC5 +DC3D2C3

−D2C8 −D3C6 −D4C4

+D2CD0C7 +D2CDC5 +D2CD2C3

So, it appears as though χ(j, k, `,m) = χ(k, j, `,m) satisfies the following pattern.

−D0Cj+k+`+m−3 −DCj+k+`+m−5 − . . .−D`−1Cj+k+m−`−1

+D0Cj+k−1D0C`+m−2 +D0Cj+k−1DC`+m−4 + . . .+D0Cj+k−1D`−1Cm−`

−DCj+k+`+m−5 −D2Cj+k+`+m−7 − . . .−D`Cj+k+m−`−3

+DCj+k−3D0C`+m−2 +DCj+k−3DC`+m−4 + . . .+DCj+k−3D`−1Cm−`

. . .

. . .

. . .
−Dk−1Cj+`+m−k−1 −DkCj+`+m−k−3 − . . .−Dk+`−2Cj+m−k−`+1

+Dk−1Cj−k+1D0C`+m−2 +Dk−1Cj−k+1DC`+m−4 + . . .+Dk−1Cj−k+1D`−1Cm−`

The next result follows immediately from Conjecture 4.3.20.

Corollary 4.3.21 (Lee-N). The g-vector of Q∗ is the same as the g-vector of P ∗.

Proof. We may determine the change in the g-vector by plugging in x for D and 1
for C by Theorem 1.4.13 [13]. Then we obtain the following result.

−
`−1∑
β=0

(
r−1∑
α=0

xα+β · 1d−2(α+β)
)

+

(
r−1∑
α=0

xα · 1u+r−1−2α
)(

`−1∑
β=0

xβ · 1`+m−2(β+1)

)
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= −
`−1∑
β=0

(
r−1∑
α=0

xα · xβ
)

+
r−1∑
α=0

xα
`−1∑
β=0

xβ

= −
`−1∑
β=0

xβ
r−1∑
α=0

xα +
r−1∑
α=0

xα
`−1∑
β=0

xβ

= 0

So there is no change in the g-vector. Since we are moving from the smaller side
to the larger side, this result agrees with our g-vector calculations in Chapter 2
(Theorem 2.3.7).

This agreement with our earlier result further supports the validity of our conjec-
ture.

Copyright c© Sarah A. Nelson, 2016.
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Chapter 5 Future Work

Here are some unanswered questions worth pursuing.

• How do we read off the g-vector from any Gale diagram? How do we completely
generalize the interpretation of the g-vector from the Gale diagram?

• To what extent does the triangulation part of the generalized lower bound
theorem extend to non-simplicial polytopes?

• Prove the CD-Conjecture for all 2-dimensional Gale diagrams.

• How do we read off the CD-index from any Gale diagram? How do we com-
pletely generalize the interpretation of the CD-index from the Gale diagram?

Copyright c© Sarah A. Nelson, 2016.

93



Bibliography

[1] Margaret M. Bayer and Louis J. Billera. Counting faces and chains in polytopes
and posets. In Combinatorics and algebra (Boulder, Colo., 1983), volume 34 of
Contemp. Math., pages 207–252. Amer. Math. Soc., Providence, RI, 1984.

[2] Margaret M. Bayer and Louis J. Billera. Generalized dehn-sommerville relations
for polytopes, spheres and eulerian partially ordered sets. Inventiones mathe-
maticae, 79(1):143–157, 1985.

[3] Margaret M. Bayer and Andrew Klapper. A new index for polytopes. Discrete
Comput. Geom., 6(1):33–47, 1991.

[4] Margaret M. Bayer and Carl W. Lee. Combinatorial aspects of convex polytopes.
In Handbook of convex geometry, Vol. A, B, pages 485–534. North-Holland, Am-
sterdam, 1993.

[5] Louis J. Billera and Carl W. Lee. A proof of the sufficiency of McMullen’s
conditions for f -vectors of simplicial convex polytopes. J. Combin. Theory Ser.
A, 31(3):237–255, 1981.

[6] Anders Björner and Michelle Wachs. On lexicographically shellable posets.
Trans. Amer. Math. Soc., 277(1):323–341, 1983.

[7] Arne Brøndsted. An introduction to convex polytopes, volume 90 of Graduate
Texts in Mathematics. Springer-Verlag, New York-Berlin, 1983.

[8] H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres. Math.
Scand., 29:197–205 (1972), 1971.

[9] Gopal Danaraj and Victor Klee. Shellings of spheres and polytopes. Duke Math.
J., 41:443–451, 1974.
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