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ABSTRACT OF DISSERTATION

LEFSCHETZ PROPERTIES AND ENUMERATIONS

An artinian standard graded algebra has the weak Lefschetz property if the multipli-
cation by a general linear form induces maps of maximal rank between consecutive
degree components. It has the strong Lefschetz property if the multiplication by
powers of a general linear form also induce maps of maximal rank between the appro-
priate degree components. These properties are mainly studied for the constraints
they place, when present, on the Hilbert series of the algebra. While the majority
of research on the Lefschetz properties has focused on characteristic zero, we pri-
marily consider the presence of the properties in positive characteristic. We study
the Lefschetz properties by considering the prime divisors of determinants of critical
maps.

First, we consider monomial complete intersections in a finite number of variables.
We provide two complements to a result of Stanley. We next consider monomial al-
most complete intersections in three variables. We connect the characteristics in
which the weak Lefschetz property fails with the prime divisors of the signed enumer-
ation of lozenge tilings of a punctured hexagon. Last, we study how perturbations of
a family of monomial algebras can change or preserve the presence of the Lefschetz
properties. In particular, we introduce a new strategy for perturbations rooted in
techniques from algebraic geometry.

KEYWORDS: Commutative algebra, combinatorics, Lefschetz properties, monomial
ideals, determinants
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Chapter 1 Introduction

In this dissertation we will consider a pair of algebraic properties which were moti-
vated by a topological theorem. In fact, the weak and strong Lefschetz properties are
natural abstractions from the conclusion of the Hard Lefschetz Theorem. We study
these properties by using techniques in combinatorics, number theory, and algebraic
geometry.

Both Lefschetz properties have been studied extensively; the recent manuscript by
Harima, Maeno, Morita, Numata, Wachi, and Watanabe [21] provides a wonderfully
comprehensive exploration of the Lefschetz properties. In particular, the presence
of the properties provides interesting constraints on the Hilbert functions of the al-
gebras (see, e.g., [1], [22], [41], and [53]). For example, Harima, Migliore, Nagel,
and Watanabe [22] completely classified the Hilbert functions of algebras with the
Lefschetz properties.

The Lefschetz properties have been used in many contexts, e.g., Stanley [48] used,
essentially, the strong Lefschetz property to prove the necessity of the conditions in
the g-theorem, thus classifying the f -vectors of simplicial convex polytopes. Despite
this utility much is still unknown about the presence of the Lefschetz properties, even
in seemingly simple cases (see, e.g., [5] and [38]).

In 1980, Stanley [49] proved that every artinian monomial complete intersection
over a polynomial ring has the strong Lefschetz property. See the survey [40] by
Migliore and Nagel for a discussion of the amount and depths of research that this
theorem has inspired. We emphasise that this theorem, and indeed most results about
the Lefschetz properties, are specific to characteristic zero. We focus on establishing
the presence or absence of the Lefschetz properties in positive characteristic. In
particular, we consider artinian monomial complete intersections, artinian monomial
almost complete intersections, and perturbations of the latter.

We now give an overview of the contents of the dissertation.
In Chapter 2 we introduce the fundamental concepts from commutative algebra

that we will use throughout this thesis. Then we will provide an array of algebraic
tools that are used extensively in our study of the Lefschetz properties.

In Chapter 3 we study artinian monomial complete intersection over a polynomial
ring for the presence of the weak and strong Lefschetz properties in positive charac-
teristic in contrast to the aforementioned theorem of Stanley. We first demonstrate
that any possible failure must occur in small primes for both the weak Lefschetz
property (Proposition 3.10) and the strong Lefschetz property (Theorem 3.11). We
then provide a complement to Stanley’s result in characteristic two:

Theorem. (Theorem 3.35) Let d0 ≥ · · · ≥ dn ≥ 2 be integers with n ≥ 1, and let
I = (xd0

0 , . . . , xdn
n ) ⊂ R = K[x0, . . . , xn], where K is an infinite field of characteristic

two. Then R/I has the strong Lefschetz property if and only if n = 1 and either (i)
d0 is odd and d1 = 2 or (ii) d0 = 4k + 2 for some k ∈ N and d1 = 3.

If we restrict to the case of generation by monomials all of the same degree, then

1



a more complete picture is possible. In particular, the weak Lefschetz property is
classified by Brenner and Kaid [5] (for three variables) and Kustin and Vraciu [32]
(for at least four variables), both in 2011. We provide a complement to this result
with regard to the strong Lefschetz property:

Theorem. (Theorem 3.36) Let d ≥ 2, n ≥ 1, and I = (xd
0, . . . , x

d
n) ⊂ R =

K[x0, . . . , xn], where K is an infinite field of characteristic p. Then R/I has the
strong Lefschetz property if and only if p is zero or p is a positive prime and either

(i) n = 1 and ps > 2(d − 1), where s is the largest integer such that ps−1 divides
(2d − 1)(2d + 1), or

(ii) n ≥ 2 and p > (n + 1)(d − 1).

The above two results indicate that most of the interesting variation occurs in
two variables. This lead us to ask Question 3.37: for which prime characteristics p
does the algebra K[x, y]/(xa, yb), where a ≥ b ≥ 2, fail to have the strong Lefschetz
property? Similar behaviour holds for the weak Lefschetz property; in the case of
generation in a single degree, the weak Lefschetz property always holds in two vari-
ables (Proposition 2.16) but requires more care in three or more variables (see [5,
Theorem 2.6] and Theorem 3.31).

In Chapter 4 we examine artinian monomial almost complete intersections in
three variables for the presence of the weak Lefschetz property, in both characteristic
zero and positive characteristic. To the end, we introduce a natural correspondence
between these algebras and punctured hexagons.

Let A be an artinian monomial almost complete intersection in three variables,
that is, an artinian ideal with four monomial generators. In Proposition 4.10, we
connect the prime characteristics where the weak Lefschetz property is absent for
A to the prime divisors of the determinants of a binomial matrix N and a zero-one
matrix Z. In Theorem 4.15 we prove that the determinant of N is the enumeration of
signed lozenge tilings of the associated punctured hexagon H , and in Theorem 4.18 we
prove that the determinant of Z is the enumeration of signed perfect matchings of an
associated bipartite graph. Moreover, we show that the sign coming from the lozenge
tilings agrees with the sign of the perfect matching. Then, we show in Theorem 4.23
that the determinant of N is the same, up to sign, as the determinant of Z.

Using the above connections, in Section 4.4 we provide a wide variety of results
about both the presence of the weak Lefschetz property for artinian monomial almost
complete intersections and the enumeration of signed lozenge tilings of punctured
hexagons. One interesting example, which is surprising in its simplicity, is that when
the puncture of the associated punctured hexagon has even side length, then the
enumeration of signed lozenge tilings is positive:

Theorem. (Theorem 4.28) Suppose a > α ≥ 0, b > β ≥ 0, and c > γ ≥ 0. Let
A = K[x, y, z]/I, where I = (xa, yb, zc, xαyβzγ), and suppose A has a semistable
syzygy bundle. If a + b + c is even, then the associated punctured hexagon has even
side length. Moreover, A has the weak Lefschetz property in characteristic zero and
when the characteristic is sufficiently large.

2



This result is indeed applicable because we characterise the ideals that have a
semistable syzygy bundle in Proposition 4.3.

We close Chapter 4 by considering the perturbations in the generic splitting type
of the syzygy bundle of the algebra that come from the presence or absence of the
weak Lefschetz property. Using this, we see that the weak Lefschetz property, at
least in the case of artinian monomial almost complete intersection in three variables,
does not just have algebraic and combinatorial interpretations, but it also has an
interpretation in the terms of algebraic geometry:

Theorem. (Theorem 4.67) Let R = K[x, y, z], where K is a field of arbitrary char-
acteristic. Let I = (xa, yb, zc, xαyβzγ) be associated to a punctured hexagon; in partic-
ular, a + b + c + α + β + γ ≡ 0 (mod 3) and syz I is semistable (see Proposition 4.3).
Set s = 1

3
(a + b + c + α + β + γ) − 2.

Then the following conditions are equivalent:

(i) The algebra R/I has the weak Lefschetz property;

(ii) the regularity of S/J is s, where S/J = K[x, y]/(xa, yb, (x + y)c, xαyβ(x + y)γ).

(iii) the determinant of the associated binomial matrix N (i.e., the enumeration of
signed lozenge tilings of the punctured hexagon H) modulo the characteristic of
K is non-zero; and

(iv) the determinant of the associated zero-one matrix Z (i.e., the enumeration of
signed perfect matchings of the bipartite graph associated to H) modulo the
characteristic of K is non-zero.

If the characteristic of K is zero, then there is one further equivalent condition:

(v) The generic splitting type of syz I is (s + 2, s + 2, s + 2).

In Chapter 5 we consider the subtlety of the weak Lefschetz property under de-
formation. As a motivation, we note that in [38, Section 5] it was shown by example
that a small ad hoc perturbation of a monomial ideal without the weak Lefschetz
property may result in an ideal having the weak Lefschetz property for almost every
field characteristic. Instead of an ad hoc approach, we propose a systematic way of
deforming a monomial ideal that preserves the Hilbert function but possibly modi-
fies the presence or absence of the weak Lefschetz property. In particular, we show
that the general hyperplane section of a family of level artinian set of points has the
weak Lefschetz property in almost every characteristic, whereas a special hyperplane
section never has the weak Lefschetz property:

Theorem. (Corollary 5.8) Let t ≥ 1 be an integer and set A = R/It, where

It :=

(

t
∏

i=0

(x − iw),

t
∏

i=0

(y − iw),

t
∏

i=0

(z − iw), xyz

)

⊂ R = K[w, x, y, z].

Then:

3



(i) If the characteristic of K is zero or greater than t, then the ideal It defines a
set of 3(t + 1)t + 1 points in P3 that is level of type three.

(ii) If ℓ ∈ [R]1 is a general linear form, then A/ℓA has the weak Lefschetz property,
regardless of the characteristic of K.

(iii) If ℓ = w, then the Artinian algebra A/ℓA has the weak Lefschetz property if and
only if t is odd and char K 6= 2.

Copyright c© David Cook II 2012
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Chapter 2 The Lefschetz properties

This chapter provides a primer of the fundamental concepts and tools used throughout
this dissertation. In particular, in Section 2.1 we give an overview of definitions and
concepts relevant to the study of the Lefschetz properties. In Section 2.2 we describe
new and old techniques for establishing the Lefschetz properties, particularly for
monomial algebras.

2.1 Fundamental concepts

We assume the reader is familiar with basic ring and module theory. For further
details on the fundamental concepts of commutative algebra, the reader may consult
any graduate text on commutative algebra, such as [13] or [42].

The most basic object we will be working with is a graded ring.

Definition 2.1. A graded ring is a ring R with a decomposition of abelian groups

R =
⊕

d∈Z

[R]d

such that
[R]i · [R]j ⊂ [R]i+j

for all integers i and j. The elements in [R]d are called the homogeneous elements of
degree d, and an ideal of R generated by homogeneous elements is called a homoge-
neous ideal. Moreover, for an integer a, we denote the ath twist of R as R(−a), where
[R(−a)]i := [R]i−a.

A graded ring we will be using for the remainder of the dissertation is the poly-
nomial ring over a field.

Example 2.2. Consider the (n + 1)-variate polynomial ring R = K[x0, . . . , xn] over
the field K. We will always consider R as a graded ring with the standard grading,
that is, deg xi = 1. The dth homogeneous component of R, [R]d, is the set of degree d
homogeneous polynomials in R. For example, if the degree of the variables xi is set
to one, then [R]0 = K and

[R]1 = {a0x0 + · · · + anxn | ai ∈ K}.

Definition 2.3. A graded ring R is said to be artinian if there exists an integer e
such that [R]d = 0 for all d > e. If R/I is artinian, then we say that I is artinian.

That is, an artinian ring is one that is finite, when viewed as a vector space over
the homogeneous component of degree zero.

For the remainder of this section let R = K[x0, . . . , xn] be the (n + 1)-variate
polynomial ring over the field K, and let I be a homogeneous ideal of R.

5



Definition 2.4. Assume K is an infinite field. The algebra R/I is said to have the
strong Lefschetz property if there exists a linear form ℓ ∈ R/I such that the map

×ℓk : [R/I]d → [R/I]d+k

has maximal rank for all integers d ≥ 0 and k ≥ 1. In this case, ℓ is called a strong
Lefschetz element of R/I.

If the property holds for k = 1, then R/I is said to have the weak Lefschetz
property, and ℓ is called a weak Lefschetz element of R/I.

Clearly, the presence of the strong Lefschetz property implies the presence of the
weak Lefschetz property.

Definition 2.5. The Hilbert function of R/I is the integer function hR/I : N0 → N0

defined by
hR/I(d) := dimK [R/I]d,

i.e., the dimension of [R/I]d as a vector space over K.
Further, if R/I is artinian with [R/I]d = 0 for d > e, but [R/I]e 6= 0, then we

define the h-vector of R/I to be the finite sequence of positive integers

h(R/I) := (hR/I(0), . . . , hR/I(e)).

Thus, the Hilbert function encodes the size of each of the homogeneous compo-
nents of a graded ring.

Example 2.6.

(i) The Hilbert function in degree d ≥ 0 of R is the number of monomials of degree
d, that is, hR(d) =

(

n+d
n

)

.

(ii) Suppose n = 2, and consider the ideal I = (x3
0, x

3
1, x

2
2). Then R/I is artinian

as every monomial of degree at least 6 is present in I, i.e., [R/I]6 = 0. The
h-vector of R/I is (1, 3, 5, 5, 3, 1).

Definition 2.7. The socle of R/I is the set socR/I of all elements of R/I annihilated
by every variable of R. If the socle is concentrated in a single degree, say t, then R/I
is said to be level of socle degree t. Moreover, the K-dimension of the socle is called
the type of the socle.

Example 2.8. (Example 2.6(ii) continued) Suppose n = 2, and consider the ideal
I = (x3

0, x
3
1, x

2
2). Then socR/I = {ax2

0x
2
1x2 | a ∈ K} is concentrated in degree 5.

Indeed, the degree 4 monomials in R/I are x2
0x1x2, x2

0x
2
1, and x0x

2
1x2, each of which

divides x2
0x

2
1x2 hence is not in the socle. Thus R/I is a level algebra of socle degree

5.
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2.2 Algebraic tools

Let R = K[x0, . . . , xn] be the polynomial ring over the infinite field K.

Proposition 2.9. [38, Proposition 2.1] Let I be a homogeneous artinian ideal of R.
Set A = R/I, and let ℓ be a general linear form. Consider the maps ϕd : [A]d → [A]d+1

given by multiplication by ℓ, for d ≥ 0.

(i) If ϕi is surjective, then ϕi+1 is surjective.

(ii) If R/I is level and ϕi is injective for some i ≥ 1, then ϕi−1 is injective.

(iii) If R/I is level and dimK [R/I]i = dimK [R/I]i+1 for some i, then R/I has the
weak Lefschetz property if and only if ϕi is injective (and hence is a bijection).

Proposition 2.9(i) generalises to modules generated in degrees that are sufficiently
small.

Lemma 2.10. Let M be an R-module generated in degrees bounded by e, and let ℓ be
a general linear form. If the map ×ℓ : [M ]d → [M ]d+1 is surjective, and d ≥ e, then
the map ×ℓ : [M ]d+1 → [M ]d+2 is surjective.

Proof. Consider the sequence

[M ]d
×ℓ
−→ [M ]d+1 → [M/ℓM ]d+1 → 0.

Notice the first map is surjective if and only if [M/ℓM ]d+1 = 0. By assumption
the map is surjective, so [M/ℓM ]d+1 = 0. Hence [M/ℓM ]d+2 is zero as M has no
generators with degree greater than d.

Thus, from this we get an analogous result to Proposition 2.9(ii) for non-level
algebras.

Proposition 2.11. Let I be a homogeneous artinian ideal of R. Set A = R/I, and
let ℓ be a general linear form. If the map ×ℓ : [A]d−1 → [A]d is injective, and d is not
greater than the smallest socle degree of A, then ×ℓ : [A]d−2 → [A]d−1 is injective.

Proof. The K-dual of A, M , is a shift of the canonical module of A and is generated
in degrees that are a linear shift of the socle degrees of A. Consider now the map
×ℓ : [M ]i → [M ]i+1. Using Lemma 2.10 we see that once i is at least as large as the
largest degree in which M is generated, and the map is surjective, then the map is
surjective thereafter. The result then follows by duality.

Further recall that a monomial algebra has the weak (strong) Lefschetz property
exactly when the sum of the variables is a weak (strong) Lefschetz element.

Proposition 2.12. [38, Proposition 2.2] Let I be a homogeneous artinian ideal of R
generated by monomials. Then R/I has the weak (strong) Lefschetz property if and
only if x0 + · · · + xn is a weak (strong) Lefschetz element of R/I.

7



Hence, the weak Lefschetz property can be decided for monomial ideals, in a small
number of cases, by simple invariants. The following lemma is a generalisation of [33,
Proposition 3.7].

Lemma 2.13. Let I be an artinian ideal of R generated by monomials. Suppose that
a is the least positive integer such that xa

i ∈ I, for 0 ≤ i ≤ n, and suppose that the
Hilbert function of R/I weakly increases to degree s+1. Then, for any positive prime
p such that a ≤ pm ≤ s + 1 for some positive integer m, R/I fails to have the weak
Lefschetz property in characteristic p.

Proof. By Proposition 2.12, we need only consider ℓ = x0 + · · · + xn. Suppose the
characteristic of K is p, then by the Frobenius endomorphism ℓ · ℓpm−1 = ℓpm

=
xpm

0 + · · · + xpm

n . Moreover, as a ≤ pm, then ℓpm

= 0 in A while ℓ 6= 0 in A. Hence
×ℓpm−1 : [A]1 → [A]pm is not injective and thus A does not have the weak Lefschetz
property.

Further, for monomial ideals, if the weak Lefschetz property holds in characteristic
zero, then it holds for almost every characteristic.

Lemma 2.14. Let I be an artinian ideal in R generated by monomials. If R/I has the
weak Lefschetz property when char K = 0, then R/I has the weak Lefschetz property
whenever char K is sufficiently large.

Proof. By Proposition 2.12, we need only consider if ℓ = x0 + · · · + xn is a weak
Lefschetz element. As R/I is artinian, then there are finitely many maps that need
to be checked for the maximal rank property, and this in turn implies finitely many
determinants that need to be computed. Further, because of the form of ℓ, the
matrices in question are all zero-one matrices when the rows and columns are indexed
by monomials. Thus, the maximum determinants are integers. Moreover, they are
non-zero because R/I has the weak Lefschetz property in characteristic zero. Simply
let p be the smallest prime larger than all prime divisors of the determinants, then the
determinants are all non-zero modulo p and so R/I has the weak Lefschetz property
if char K ≥ p.

Conversely, again for monomial ideals, if the weak Lefschetz property holds in
some positive characteristic, then it holds for characteristic zero.

Lemma 2.15. Let I be an artinian ideal in R generated by monomials. If R/I has
the weak Lefschetz property when char K = p > 0, then R/I has the weak Lefschetz
property for char K = 0.

Proof. The proof is the same as that of Lemma 2.14 except we notice that if an
integer d is non-zero modulo a prime p, then d is not zero.

We note that any artinian ideal in two variables has the weak Lefschetz property.
This was proven for characteristic zero in [22, Proposition 4.4] and then for arbitrary
characteristic in [41, Corollary 7], though it was not specifically stated therein, as
noted in [33, Remark 2.6]. We provide a brief, direct proof of this fact to illustrate the
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weak Lefschetz property. The argument does not extend to three or more variables,
even for monomial ideals.

Proposition 2.16. Let R = K[x, y], where K is an infinite field with arbitrary
characteristic. Every artinian algebra R/I has the weak Lefschetz property.

Proof. Assume I is minimally generated by f1, . . . , fm. Let s = min{deg fi | 1 ≤ i ≤
m}, and let ℓ be a general linear form. As [R]i = [R/I]i for i < s and multiplication
by ℓ in R is injective, we have that [R/I]i−1 → [R/I]i is injective for i < s. Moreover,
since R/(I, ℓ) ∼= K[x]/(xs) and [K[x]/(xs)]i = 0 for i ≥ s, then the map [R/I]i−1 →
[R/I]i has a trivial cokernel for i ≥ s, that is, the map is surjective for i ≥ s. Hence
R/I has the weak Lefschetz property with Lefschetz element ℓ.

2.3 Stability of syzygy bundles

The syzygy bundle of an ideal will be an important tool that we use in both Chapter 3
and Chapter 4. The syzygy bundle encodes the possible cancellations among the
generators of an ideal.

Definition 2.17. Assume I is artinian. The syzygy module of I = (f1, . . . , fm) is the
module syz I that fits into the exact sequence

0 → syz I →
m
⊕

i=1

R(− deg fi) → I → 0.

The sheafification s̃yz I is a vector bundle on Pn, called the syzygy bundle of I.

The next two technical conditions essentially imply that the syzygy bundle is
“very nice.”

Definition 2.18. A vector bundle E on projective space is said to be semistable if
the inequality

c1(F )

rk(F )
≤

c1(E)

rk(E)

holds for every coherent subsheaf F ⊂ E. If the inequality is always strict, then E is
said to be stable.

Fortunately, Brenner gave a beautiful and simple classification of monomial ideals
with (semi)stable syzygy bundles. Moreover, we only consider the (semi)stability of
syzygy bundles of monomial ideals, so the following may be taken as the definition
of (semi)stability.

Theorem 2.19. [3, Proposition 2.2 & Corollary 6.4] Let I = (f1, . . . , fm) be an
artinian ideal in R generated by monomials. Then I has a semistable syzygy bundle if
and only if, for every subset J of {1, . . . , m} with at least two elements, the inequality

dJ −
∑

j∈J

deg fj

|J | − 1
≤

−
m
∑

i=1

deg fi

m − 1
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holds, where dJ is the degree of the greatest common divisor of the fj where j ∈ J .
Further, I has a stable syzygy bundle if and only if the above inequality is always
strict.

Example 2.20. [3, Corollary 7.2] Let I = (xd0

0 , . . . , xdn
n ) be an ideal of the ring

R = K[x0, . . . , xn], where d0 ≥ · · · ≥ dn ≥ 1. Then the syzygy bundle of I is
semistable if and only if d0 + · · · + dn ≥ nd0. Moreover, stability holds if and only if
the inequality is strict.

(Example 2.6(ii) continued) More specifically, suppose n = 2, and consider the
ideal I = (x3

0, x
3
1, x

2
2). Then d0 + d1 + d2 = 8 and nd0 = 6, so syz I is stable. On the

other hand, consider the ideal J = (x6
0, x

3
1, x

2
2). Then d0 + d1 + d2 = 11 and nd0 = 12,

so syz I is non-semistable.

Copyright c© David Cook II 2012
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Chapter 3 Monomial complete intersections

We start with a theorem that motivates the results in this chapter. It was first proven
by Stanley [49] using algebraic topology, but has since been shown in many different
ways. Most notably it has been proven by Watanabe [51] using representations of
gl2, and later by Reid, Roberts, and Roitman [46] using purely algebraic techniques.

Theorem 3.1. ([49, Theorem 2.4], [51, Corollary 3.5], [46, Theorem 10]) Every ar-
tinian monomial complete intersection over a polynomial ring has the strong Lefschetz
property in characteristic zero.

This result does not hold in positive characteristic. Moreover, there has been a
great deal of recent interest in positive characteristic (see, e.g., [6, 11, 33]). Specif-
ically, Brenner and Kaid [5] (for three variables) and Kustin and Vraciu [32] (for at
least four variables) completely characterised the characteristics in which the weak
Lefschetz property is present for monomial complete intersections generated by mono-
mials all having the same degree.

The goal of this chapter is to provide complements to Theorem 3.1 in characteristic
two (see Theorem 3.35) and further in the case of generation by monomials of the same
degree (see Theorem 3.36). The remainder of the chapter is organised as follows: In
Section 3.1 we describe a few old and new ways to establish the Lefschetz properties,
specifically in the case of monomial complete intersections. In Section 3.2 we describe
the characteristics in which the Lefschetz properties may fail, and prove they are
bounded linearly in the degrees of the generating monomials. The proofs involve
an analysis of the prime divisors of an associated determinant. In Section 3.3 we
discuss, as an example, an interesting class of monomial complete intersections: those
generated by quadrics, except possibly for one term.

As demonstrated in [32], when fewer variables are used, exploring the presence
of the Lefschetz properties becomes more interesting. In Sections 3.4 and 3.5 we
consider monomial complete intersections in two and three variables, respectively. In
Section 3.6 we handle the case of at least four variables. Throughout these three
sections, we use a variety of techniques to establish the presence and failure of the
Lefschetz properties. These techniques include determining syzygy gaps, using basic
number theory, and finding explicit syzygies of small degree. Finally, in Section 3.7
we close with the desired classifications and a few comments.

The contents of this chapter is taken from [8].

3.1 Background

Let K be an infinite field of arbitrary characteristic. All artinian monomial complete
intersections over the polynomial ring R = K[x0, . . . , xn] are of the form R/Id, where

Id = (xd0

0 , xd1

1 , . . . , xdn

n ),
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d = (d0, d1, . . . , dn) ∈ Nn+1, and, without loss of generality, d0 ≥ d1 ≥ · · · ≥ dn ≥ 2.
Throughout the remainder of the chapter we use the above definition of Id.

The weak Lefschetz property

Notice that the socle degree of R/Id is t := d0 + . . . + dn − (n + 1). Moreover, if the
largest generating degree is sufficiently large (relative to the socle degree), then the
weak Lefschetz property always holds.

Proposition 3.2. [37, Proposition 5.2] Let d ∈ Nn+1, d0 ≥ d1 ≥ · · · ≥ dn ≥ 2, and
t = d0 + · · · + dn − (n + 1). If d0 >

⌈

t
2

⌉

, then R/Id has the weak Lefschetz property,
regardless of the characteristic of K.

In the case of an artinian monomial complete intersection, we have a series of
conditions on the algebra that are equivalent to the algebra having the weak Lefschetz
property.

Lemma 3.3. Let ℓ = x0 + · · · + xn. Suppose t is odd and set s =
⌊

t
2

⌋

. Then the
following are equivalent (where the ordering on the di is ignored):

(i) The algebra R/Id has the weak Lefschetz property;

(ii) the multiplication map ×ℓ : [R/Id]s → [R/Id]s+1 is an injection;

(iii) the K-dimension of [R/(Id, ℓ)]s+1 is 0;

(iv) the K-dimension of [S/Jd]s+1 is 0, where S = K[x1, . . . , xn] and

Jd = ((x1 + · · ·+ xn)d0 , xd1

1 , . . . , xdn

n ).

Proof. By Proposition 2.12, as Id is a monomial ideal, it suffices to consider ℓ =
x0 + . . . + xn. Further note that as the Hilbert function of R/Id is symmetric and t
is odd, then dimK [R/Id]s = dimK [R/Id]s+1.

The equivalences follow as:

(i) & (ii): use Proposition 2.9(ii) and duality;

(ii) & (iii): [R/(Id, ℓ)]s+1 is the cokernel of the map in (ii); and

(iii) & (iv): [R/(Id, ℓ)]s+1
∼= [S/Jd]s+1.

If the socle degree is even, then the weak Lefschetz property is sometimes inherited.

Corollary 3.4. If t is even and R[xn+1]/I(d,2) has the weak Lefschetz property, then
R/Id has the weak Lefschetz property.

Proof. Notice that s = t
2

=
⌊

t+1
2

⌋

as t is even. Set ℓ := x0 + · · ·xn.
By Lemma 3.3, if R[xn+1]/I(d,2) has the weak Lefschetz property, then K-dimen-

sion of [R/(Id, ℓ
2)]s+1 is zero. Moreover, this is the cokernel of the map ×ℓ2 :

[R/Id]s−1 → [R/Id]s+1; hence the map is a bijection. This implies ×ℓ : [R/Id]s−1 →
[R/Id]s is an injection. Thus, using Proposition 2.9(iii) and duality we have that R/Id

has the weak Lefschetz property.
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The strong Lefschetz property

If the Hilbert function is symmetric, then demonstrating the strong Lefschetz property
is equivalent to showing certain maps are bijections.

Remark 3.5. An artinian algebra A with socle degree t has the strong Stanley prop-
erty if there exists a linear form ℓ ∈ A such that the map ×ℓt−2k : [A]k → [A]t−k

is a bijection for all 0 ≤ k ≤
⌊

t
2

⌋

. Clearly then, an artinian algebra has the strong
Stanley property if and only if the algebra has the strong Lefschetz property and has
a symmetric Hilbert function.

It follows that R/Id has the strong Stanley property if and only if it has the strong
Lefschetz property. Moreover, this provides a deeper connection between the strong
and weak Lefschetz properties.

Proposition 3.6. R/Id has the strong Lefschetz property if and only if each of the
rings R[xn+1]/I(d,t−2k) has the weak Lefschetz property for 0 ≤ k ≤

⌊

t
2

⌋

.

Proof. Set ℓ := x0 + · · ·xn. The socle degree of Ak := R[xn+1]/I(d,t−2k) is 2(t−k)−1,

which is odd, and further
⌊

2(t−k)−1
2

⌋

= t − k − 1. By Lemma 3.3, Ak has the weak

Lefschetz property if and only if the K-dimension of [R/(Id, ℓ
t−2k)]t−k is zero. The

latter is equivalent to the map ϕk := ×ℓt−2k : [R/Id]k → [R/Id]t−k being a bijection.
By Remark 3.5, R/Id has the strong Lefschetz property if and only if it is the

strong Stanley property, that is, if and only if ϕk is a bijection (i.e., Ak has the weak
Lefschetz property) for 0 ≤ k ≤

⌊

t
2

⌋

.

3.2 Bounding failure of the Lefschetz properties

Let R/Id be an artinian monomial complete intersection as defined in Section 3.1,
and let t = d0 + · · ·+dn− (n+1) be the socle degree of R/Id. Set s :=

⌊

t
2

⌋

. If t is odd
and d0 ≤

⌈

t
2

⌉

, then Lemma 3.3(iv) holds if and only if the determinant of Md, the
associated matrix defined by the map, is non-zero modulo the characteristic of K.
We use this to describe the characteristics in which the Lefschetz properties may fail
and to prove they are bounded linearly in the degrees of the generating monomials.

A connection to weak compositions

An ordered n-tuple m = (m1, . . . , mn) ∈ Nn
0 with m1 + · · · + mn = k is called a

weak composition of k into n parts. Define the set C(n, m, k) to be the set of weak
compositions a of k into n parts such that a is component-wise bounded by m. For
elements a, b ∈ C(n, m, k), define a! := a1! · · ·an! and b − a = (b1 − a1, . . . , bn − an).
Notice that if a is component-wise bounded by b, then b − a ∈ C(n, m, k).

Given an n-tuple a = (a1, a2, . . . , an), we define xa = xa1

1 · · ·xan
n . The matrix Md

has rows indexed by the monomials xa of [S/Jd]s+1−d0
and columns indexed by the

monomials xb of [S/Jd]s+1. The element in the xa row and the xb column is zero if a
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is larger than b in at least one component, otherwise it is the multinomial coefficient

(

d0

b1 − a1, . . . , bn − an

)

=
d0!

(b − a)!
.

Notice that the monomials in [S/Jd]i are in bijection with the weak compositions
in C(n, ď− 1, i), where ď = (d1, . . . , dn) and 1 = (1, . . . , 1). Hence the matrix Md can
be seen as a matrix with rows indexed by a ∈ C(n, ď − 1, s + 1 − d0) and columns
indexed by b ∈ C(n, ď − 1, s + 1) with entries given by zero if a is larger than b in at
least one component and d0!

(b−a)!
otherwise.

Seeing Md in this new light, a theorem of Proctor computes the determinant of
Md in terms of compositions.

Theorem 3.7. [44, Corollary 1] Let d ∈ Nn+1, where d0 ≥ d1 ≥ · · · ≥ dn ≥ 2, and

suppose d0 + · · · + dn − (n + 1) is odd. Set s :=
⌊

d0+d1+···+dn−(n+1)
2

⌋

. Then

| detMd| =

∏

a a!
∏

b b!

s+1−d0
∏

i=0

〈i + 1〉
δs+1−d0−h

d0
,

where a and b run over C(n, ď − 1, s + 1 − d0) and C(n, ď − 1, s + 1), respectively,
〈x〉m := x(x + 1) · · · (x + m − 1), and δi = #C(n, ď − 1, i) − #C(n, ď − 1, i − 1).

Remark 3.8. By the work of Gessel and Viennot [17], we have that the determinant
of Md is the enumeration of signed non-intersecting lattice paths from the hyperplane
x1 + · · ·+xn = s+1−d0 to the hyperplane x1 + · · ·+xn = s+1 in the parallelepiped
of size (d1 − 1) × · · · × (dn − 1) .

If the top generating degree, d0, is as large as possible such that the preceding
theorem is still applicable, then the matrix has one entry.

Lemma 3.9. Let n ≥ 2 and d1 ≥ · · · ≥ dn ≥ 2; set d0 = d1 + · · ·+ dn − n. Then the
algebra R/I(d0,d1,...,dn) has the weak Lefschetz property if and only if p does not divide
(

d0

d1−1,...,dn−1

)

.

Proof. The socle degree is t = 2(d1 + · · · + dn − n) − 1 = 2d0 − 1, and so the
peak is s = d0 − 1. Thus, Md is the 1 × 1 matrix with entry

(

d0

d1−1,...,dn−1

)

, and so

det Md =
(

d0

d1−1,...,dn−1

)

.

Bounding failure

Using the above connection, and some algebraic considerations, we can bound the
prime characteristics in which the weak Lefschetz property can fail.

Proposition 3.10. Let n ≥ 2 and d0 ≥ · · · ≥ dn ≥ 2; set t = d0 + · · · + dn − n.
Suppose K is a field of characteristic p, where p is a positive prime, and suppose
d0 ≤

⌈

t
2

⌉

. Then:
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(i) If d1 ≤ p ≤ d0 or d0 ≤ pm ≤
⌈

t
2

⌉

, for some positive integer m, then R/Id fails
to have the weak Lefschetz property. In particular, injectivity fails in degree d0

or pm, respectively.

(ii) If p >
⌈

t+1
2

⌉

, then R/Id has the weak Lefschetz property.

Proof. Set ℓ := x0 + · · ·+ xn and ϕk := ×ℓ : [R/Id]k−1 → [R/Id]k.
Assume d1 ≤ p ≤ d0. Then ℓd0 is zero in R/Id as the coefficients

(

d0

i1,...,in

)

are zero

modulo p except for on xd0

i , 0 ≤ i ≤ n, but these are in Id. Hence ϕd0
is not injective

and so R/Id fails to have the weak Lefschetz property.
Next, assume d0 ≤ pm ≤

⌈

t
2

⌉

, for some positive integer m. Then ϕpm is not
injective and R/Id fails to have the weak Lefschetz property by Lemma 2.13. (Recall
that xd0

i ∈ Id for 0 ≤ i ≤ n and the Hilbert function of R/Id weakly increases to
t −
⌊

t
2

⌋

=
⌈

t
2

⌉

.)
Finally, assume p >

⌈

t+1
2

⌉

. We consider the two cases given by the parity of t.
Suppose t is odd; then

⌈

t+1
2

⌉

=
⌈

t
2

⌉

. Moreover, analysing Theorem 3.7 we see
that the terms in the formula are bounded between 1 and

⌈

t+1
2

⌉

. Thus, det Md is not
divisible by primes p >

⌈

t+1
2

⌉

, and R/Id has the weak Lefschetz property if p >
⌈

t+1
2

⌉

.
Suppose t is even; then

⌈

t+1
2

⌉

= t
2

+ 1 =
⌈

t+2
2

⌉

. By the previous paragraph,
R[xn+1]/Id,2 has the weak Lefschetz property for p >

⌈

t+2
2

⌉

=
⌈

t+1
2

⌉

. Hence, by
Corollary 3.4 R/Id has the weak Lefschetz property if p >

⌈

t+1
2

⌉

.

Notice that the algebras in Proposition 3.6, which we desire to show have the
weak Lefschetz property, all have odd socle degree. We exploit this, along with the
preceding proposition, to find a similar bound in the case of the strong Lefschetz
property.

Theorem 3.11. Suppose K is a field of characteristic p, where p is a positive prime.
Then:

(i) If max{d1, 2d0 − t} ≤ p ≤ d0 or d0 ≤ pm ≤ t, for some positive integer m, then
R/Id fails to have the strong Lefschetz property.

(ii) If p > t, then R/Id has the strong Lefschetz property.

Proof. Set ℓ := x0 + · · · + xn and Ak := R[xn+1]/I(d,t−2k). Recall that by Proposi-
tion 3.6, R/Id has the strong Lefschetz property if and only if each Ak, for 0 ≤ k ≤
⌊

t
2

⌋

, has the weak Lefschetz property. Set r := min{
⌊

t
2

⌋

, t − d0} and notice that the
largest generating degree of Ak is max{d0, t − 2k}. Thus Ak satisfies the hypotheses
of Proposition 3.10 if and only if 0 ≤ k ≤ r.

Suppose d0 ≤
⌈

t
2

⌉

and max{d1, 2d0−t} ≤ p ≤ d0 or d0 ≤ pm ≤ t, for some positive
integer m. Then max{d1, 2d0 − t} = d1, and by Proposition 3.10(i) R/Id fails to have
the weak Lefschetz property, hence fails to have the strong Lefschetz property.

Suppose d0 >
⌈

t
2

⌉

and max{d1, 2d0− t} ≤ p ≤ d0. We then have that 0 < t−d0 <
⌊

t
2

⌋

and At−d0
fails to have the weak Lefschetz property by Proposition 3.10(i).

Let 0 ≤ k ≤ r. Then by Proposition 3.10(i), Ak fails to have the weak Lefschetz
property if max{t − 2k, d0} ≤ pm ≤ t − k, for some positive integer m. Hence
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ranging k from 0 to r we get that R/Id fails to have the weak Lefschetz property for
d0 ≤ pm ≤ t.

On the other hand, by Proposition 3.10(ii), Ak has the weak Lefschetz property
for p > t−k. Hence if p > t, then each Ak has the weak Lefschetz property and R/Id

has the strong Lefschetz property.

Case (ii) of the preceding theorem can be recovered with some work from results
of Lindsey [34, Lemma 5.2 and Corollary 5.3], or Hara and Watanabe’s proof of [20,
Proposition 8].

3.3 Almost quadratically generated ideals

In this section we consider monomial complete intersections that are quadratically
generated, except possibly for one generator. In particular, we consider d0 ≥ d1 =
· · · = dn = 2.

Using Proposition 3.10 and Theorem 3.11, we can completely classify the weak
Lefschetz property and largely classify the strong Lefschetz property in this case.

Proposition 3.12. Let d = (d, 2, . . . , 2) be an (n + 1)-tuple, where d ≥ 2. Suppose p
is the characteristic of K. Then:

(i) If d ≤ n, then R/Id has the weak Lefschetz property if and only if p = 0 or
p >

⌈

d+n−1
2

⌉

.

(ii) If d > n, then R/Id has the weak Lefschetz property, regardless of the field
characteristic.

(iii) If d ≤ n + 1, then R/Id has the strong Lefschetz property if and only if p = 0
or p > d + n − 1.

(iv) If d > n+1, then R/Id has the strong Lefschetz property if p = 0 or p > d+n−1.

Proof. Note that the socle degree of R/Id is t = d + n − 1.
Part (i) follows from Proposition 3.10, as d1 = 2. Part (ii) follows directly from

Proposition 3.2, as d >
⌈

d+n−1
2

⌉

if and only if d > n.
Parts (iii) and (iv) follow directly from Theorem 3.11, where we need only notice

max(2, 2d − t) ≤ 2 if and only if 2d − t ≤ 2 if and only if d ≤ n + 1.

This, however, leaves open a question.

Question 3.13. Let d > n + 1. For which primes p does R/Id have the strong
Lefschetz property?

Remark 3.14. Suppose 2 ≤ d ≤ n and n−d is even, i.e., d and n have the same parity.
The matrix Md was studied by Wilson [52] and Krämer [26] as it is the incidence
matrix of n−d

2
-subsets vs. n+d

2
-subsets of the n-set {1, . . . , n}. It was further studied

by Hara and Watanabe [20] as it is related to the presence of the strong Lefschetz
property for the algebra S/Ie, where e0 = . . . = en−1 = 2. We note that in the
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latter, the authors only explicitly prove the presence of the strong Lefschetz property
in characteristic zero. However, their proof easily extends to show that the strong
Lefschetz property exists in positive characteristic if and only if the characteristic is
greater that n.

We note that the matrix Md has its determinant calculated in each of the papers
list in the preceding remark, and further it is a specialisation of Proctor’s evalua-
tion given in Theorem 3.7. We give yet another equivalent form of the determinant
evaluation as it provides (more easily) a few interesting examples. As in the remark,
suppose 2 ≤ d ≤ n and n − d is even. Then

| detMd| = d!
( d

n−d
2

)
n−d

2
−1

∏

j=0

(

n+d
2

− j
n−d

2
− j

)(n

j)

=

n+d
2
∏

j=1

j
( n

min{n−d
2

,
n+d

2
−j})−( n

n−d
2

−j
)
,

where the first comes from [20, Proposition 6] and the second is a simple alternate
representation of the first

If d = n, then | detMd| = n!. If d = n − 2, then | detMd| = (n − 2)!n(n − 1). But
the most interesting case is d = 2 and n = 2m, for some positive integer m. In this
case,

| det Md| =

m+1
∏

j=1

jCm+j,m+1−j ,

where Cm+j,m+1−j = j
m+1

(

2m+2
m+1−j

)

comes from a generalisation of the Catalan numbers

called Catalan’s triangle [47, A009766]. In particular, the exponents on the integers
1, . . . , m + 1 are exactly the (2m + 1)st diagonal of Catalan’s triangle.

3.4 The presence of the Lefschetz properties for two variables

Recall that any homogeneous artinian ideal in two variables has the weak Lefschetz
property by Proposition 2.16. On the other hand, the strong Lefschetz property is
much more subtle. By Proposition 3.6, R/I(a,b) has the strong Lefschetz property if
and only if Bk = R[x2]/I(a,b,a+b−2−2k) has the weak Lefschetz property for 0 ≤ k ≤
⌊

a+b−2
2

⌋

. In this case, if k > b − 2, then Bk always has the weak Lefschetz property,
by Proposition 3.2; hence we need only to consider 0 ≤ k ≤ b − 2.

A few particular cases stand out. Using Lemma 3.9, we have that the algebra B0

has the weak Lefschetz property in characteristic p if and only if p does not divide
(

a+b−2
b−1

)

. Similarly, Bb−2 has the weak Lefschetz property in characteristic p if and

only if p does not divide
(

a
b−1

)

.
For 2 ≤ b ≤ 3, we characterise the strong Lefschetz property with the above. We

single out these cases because they play a special role in the classification of the strong
Lefschetz property in characteristic two for arbitrary R/Id given in Section 3.7.
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Lemma 3.15. Let R = K[x, y] and p be the characteristic of K. Then:

(i) R/I(a,2), for a ≥ 2, has the strong Lefschetz property if and only if p does not
divide a.

(ii) R/I(a,3), for a ≥ 3, has the strong Lefschetz property if and only if p = 2 and
a ≡ 2 (mod 4) or p 6= 2 and a is not equivalent to −1, 0, or 1 modulo p

Proof. By the comments above, R/I(a,2) has the strong Lefschetz property if and only
if p does not divide

(

a
1

)

= a.
Similarly, R/I(a,3) has the strong Lefschetz property if and only if p does not divide

either
(

a+1
2

)

or
(

a
2

)

. That is, p does not divide
(

a+1
2

)(

a
2

)

= 1
4
(a−1)a2(a+1). Analysing

this, we see that this is equivalent to the claim.

Syzygy gaps

Let a ≥ b, and let Bk = R[x2]/I(a,b,a+b−2−2k) for 0 ≤ k ≤ b − 2. Notice that a + b >
a + b − 2 − 2k as k ≥ 0, and b + (a + b − 2 − 2k) > a as b − 2 ≥ k. Thus, by
[3, Corollary 3.2], Bk has a stable syzygy bundle, and so by [4, Theorem 2.2], Bk

has the weak Lefschetz property if and only if the syzygy bundle of Bk splits on the
line x + y + z with twists, say, s0 ≤ s1, such that s1 − s0 ≤ 1, i.e., the syzygy gap
(introduced by Monsky [43]) of (xa, yb, (x+y)a+b−2−2k) in R is at most one. Moreover,
it is easy to see that s0 + s1 = −2(a + b− 1− k), and hence the parity of the syzygy
gap s1 − s0 is even.

Han [19] provides a way to compute the syzygy gap via a continuation of the
syzygy gap function. Define δ : N3 → N0 to be the syzygy gap of (xa, yb, (x + y)c)
in K[x, y] (notice δ depends on the characteristic of K). Let δ⋆ : [0,∞)3 → [0,∞)
be the continuous continuation of δ. Define Z3

odd to be the integer triples (u, v, w)
such that u + v + w is odd. Further, define µ, the Manhattan distance on R3, to be
µ((a, b, c), (u, v, w)) = |u − a| + |v − b| + |w − c|.

Theorem 3.16. [19, Theorems 2.25 and 2.29] Let K be an algebraically closed field
of characteristic p > 0, and assume the entries (a, b, c) ∈ [0,∞)3 satisfy a ≤ b ≤
c < a + b. If there exists a negative integer s and a triple (u, v, w) ∈ Z3

odd
such that

µ(ps(a, b, c), (u, v, w)) < 1, then δ⋆(a, b, c) > 0. Otherwise, if no such s and (u, v, w)
exist, then δ⋆(a, b, c) = 0.

This approach was used by Brenner and Kaid in [5] to classify the characteristics
in which K[x, y, z]/(xd, yd, zd) has the weak Lefschetz property.

Characteristic two

Let n be a positive integer, and n = bs2
s + · · · + b02

0 be its binary representation,
i.e., bi ∈ {0, 1}. Define the bit-positions of n to be the set B(n) of indices i such
that bi = 1 in the binary representation of n. For example, B(42) = {1, 3, 5} and
B(2m) = {m}, for m ≥ 0.

The following theorem is due to Kummer [29]. (We thank Fabrizio Zanello for
pointing us to this reference.)
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Theorem 3.17. If n ≥ k ≥ 0 and p is a prime, then the largest power of p dividing
(

n
k

)

is the number of carries that occur in the addition of k and n − k in base-p
arithmetic.

An immediate (and simple) corollary of this theorem is a classification for when
binomial coefficients are odd.

Corollary 3.18. If n ≥ k ≥ 0, then
(

n
k

)

is odd if and only if B(k) and B(n − k) are
disjoint.

Using the above classification, we get a useful intermediate result.

Lemma 3.19. If a ≥ b ≥ 2, then
(

a+b−2
b−1

)

is odd and
(

a
b−1

)

is odd if and only if
a = 2mℓ and b = 2m + 1, where m ≥ 0 and l ≥ 3 odd.

Proof. Suppose
(

a+b−2
b−1

)

and
(

a
b−1

)

are odd. Then by Corollary 3.18, B(a − 1) and
B(b−1) are disjoint as are B(b−1) and B(a−b+1). Thus, B(a) = B(b−1) ·∪B(a−b+1)
has at least two elements, as B(b−1) and B(a− b+1) each have at least one element.

Suppose B(a − 1) contains 0, . . . , m − 1 but not m. Then B(a) contains m but
not 0, . . . , m − 1. Further, for i > m, i ∈ B(a − 1) if and only if i ∈ B(a). As
B(b − 1) ⊂ B(a), and B(b − 1) has at least one element, then B(b − 1) and B(a − 1)
being disjoint implies B(b − 1) = {m}. That is, b − 1 = 2m and so b = 2m + 1.
Moreover, as B(a) contains m but not 0, . . . , m − 1, a = 2mℓ, where ℓ is odd. As
a ≥ b, then a ≥ 3.

On the other hand, suppose a = 2mℓ and b = 2m+1. Then B(a−1) = {0, . . . , m−
1} ·∪{m + 1 + i | i ∈ B(ℓ)}, B(b − 1) = {m}, and B(a − b + 1) = B(2m+1 ℓ−1

2
) only

contains values at least m+1. Thus B(a−1) and B(b−1) are disjoint as are B(b−1)
and B(a−b+1), and so by Corollary 3.18 we have that

(

a+b−2
b−1

)

and
(

a
b−1

)

are odd.

Using the syzygy gap method described in Subsection 3.4, we complete the clas-
sification in the exceptional cases.

Lemma 3.20. If a = 2mℓ and b = 2m + 1, where m ≥ 0 and l ≥ 3 odd, then
R/I(a,b,a+b−2(k+1)) fails to have the weak Lefschetz property in characteristic two if
and only if 1 ≤ k ≤ b − 3.

Proof. If k = 0 or k = b−2, then R/I(a,b,a+b−2) or R/I(a,b,a−b+2) has the weak Lefschetz
property by Lemmas 3.9 and 3.19.

Suppose 1 ≤ k ≤ b − 3 = 2m − 2. We have the following:

µ

(

1

2m
(a, b, a + b − 2 − 2k), (ℓ, 1, ℓ)

)

=

∣

∣

∣

∣

2mℓ

2m
− ℓ

∣

∣

∣

∣

+

∣

∣

∣

∣

2m + 1

2m
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

2m(ℓ + 1) − 1 − 2k

2m
− ℓ

∣

∣

∣

∣

=
1

2m
+

∣

∣

∣

∣

2k + 1

2m
− 1

∣

∣

∣

∣

=

{

1 − k
2m−1 if k ≤ 2m−1,

k+1
2m−1 − 1 if k > 2m−1.
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Notice that 1 − k
2m−1 < 1 if and only if k

2m−1 > 0 if and only if k > 0. Further,
k+1
2m−1 − 1 < 1 if and only if k < 2m − 1 if and only if k ≤ 2m − 2 = b − 3.

Thus, µ
(

1
2m (a, b, a + b − 2 − 2k), (ℓ, 1, ℓ)

)

< 1 for 1 ≤ k ≤ b − 3. Notice 2ℓ + 1
is odd. Hence, by Theorem 3.16, R/I(a,b,a+b−2(1+k)) fails to have the weak Lefschetz
property in characteristic two.

Combining the above two lemmas, we classify the strong Lefschetz property in
characteristic two for the two-variable case.

Corollary 3.21. Let a ≥ b ≥ 2. Then R/I(a,b) fails to have the strong Lefschetz
property in characteristic two if and only if one of the following hold:

(i) b = 2 and a is even,

(ii) b = 3 and a 6≡ 2 (mod 4), or

(iii) b ≥ 4.

Proof. Parts (i) and (ii) follow from Lemma 3.15 (alternatively, see Lemma 3.19 and
Lemma 3.20, after considering each case).

Recall that by Proposition 3.6, R/I(a,b) has the strong Lefschetz property if and
only if each Bk := S/I(a,b,a+b−2−2k) has the weak Lefschetz property, for 0 ≤ k ≤ b−2.

Suppose that b ≥ 4. If a 6= 2mℓ for some m ≥ 0 or b 6= 2m + 1 for some l ≥ 3
odd, then by Lemma 3.19,

(

a+b−2
b−1

)

is even or
(

a
b−1

)

is even. That is, B0 or Bb−2,
respectively, fails to have the weak Lefschetz property in characteristic two.

On the other hand, if a = 2mℓ and b = 2m + 1, where m ≥ 0 and l ≥ 3 odd, then
for 0 < k < b− 2, Bk fails to have the weak Lefschetz property in characteristic two,
by Proposition 3.20. Note that b ≥ 4 implies b − 2 ≥ 2.

Generation in a single degree

Using the syzygy gap method in Subsection 3.4, we get the following classification of
the strong Lefschetz property for R/I(d,d).

Theorem 3.22. Let R = K[x, y], where p is the characteristic of K, and Id =
(xd, yd), where d ≥ 2. Then R/Id has the strong Lefschetz property if and only if p = 0
or 2d − 2 < ps, where s is the largest integer such that ps−1 divides (2d− 1)(2d + 1).

Proof. By Theorem 3.11, if d ≤ p ≤ 2d − 2, then the strong Lefschetz property fails
and if p > 2d − 2 then the strong Lefschetz property holds. By Corollary 3.21, if
p = 2, then the strong Lefschetz property fails. Hence, we need only to consider
2 < p < d.

Next, notice that if such a triple (u, v, w) ∈ Z3
odd exists, then u = v and so w is

odd. Otherwise, if u 6= v, then |m − u| + |m − v| ≥ |u − v| ≥ 1 for all m ∈ R by the
triangle inequality; in particular, this holds for m = d

ps .

Set s to be the largest integer such that ps−1 divides (2d − 1)(2d + 1). Further,
set e = 2d + 1, if p divides 2d + 1, otherwise set e = 2d − 1.
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As the sum d+d+2(d−1−k) is even, if r = 0, then pr(d, d, 2(d−1−k)) is at least
one from every point in Z3

odd, under the Manhattan distance. Suppose 0 < r < s,
then p divides e; set e = prn for some odd integer n (recall e is odd). If e = 2d − 1,

then d = prn+1
2

. The minimal value of
∣

∣

∣

d
pr − u

∣

∣

∣
is pr−1

2pr at u = n+1
2

. The minimal value

of
∣

∣

∣

2(d−1−k)
pr − w

∣

∣

∣
is 1+2k

pr at w = n. However, 2pr−1
2pr + 1+2k

pr = pr+2k
pr is at least one for

all k. Similarly, if e = 2d + 1, then the Manhattan distance to any point in Z3
odd is at

least one.
Suppose 2d− 2 < ps. Let r ≥ s; then 2d− 2 < pr, and so d

pr ≤ 1
2
. Hence, we may

set u = v = 0, and thus w ≥ 1 as w must be odd. As 2(d − 1 − k) ≤ 2d − 2 < pr, we
must choose w = 1. However, for all k ≥ 0,

µ

(

1

pr
(d, d, 2(d− 1 − k)), (0, 0, 1)

)

=
pr + 2 + 2k

pr
> 1.

Suppose 2d− 2 ≥ ps; then e > ps, and we can write e = psn+ j, where p does not
divide n and 0 < j < ps (j > 0 as ps does not divide e). Notice that n > 0 as e > ps.
We consider two cases, given by the parity of n.

Suppose n is even, then j is odd as e is odd. As ps is odd and j is odd, then
j 6= ps − 1 and j 6= ps − 3. Assume e = 2d − 1, that is, p does not divide 2d + 1.
Notice, j 6= ps −2, otherwise, 2d−1 = ps(n+1)−2, and so 2d+1 = ps(n+1), which
contradicts our choice of e. Thus, j ≤ ps−4. Set u = v = n

2
, w = n−1, and k = j+1.

As n ≥ 2, 2ps < e and so ps ≤ d. This in turn implies k = j + 1 < ps − 2 ≤ d − 2;
thus, k is applicable. As e = 2d − 1, then d = psn+j+1

2
. Further,

µ

(

1

ps
(d, d, 2(d− 1 − k)), (u, v, w)

)

= 2

∣

∣

∣

∣

n

2
+

j + 1

2ps
−

n

2

∣

∣

∣

∣

+

∣

∣

∣

∣

n +
−j − 3

ps
− (n − 1)

∣

∣

∣

∣

=
j + 1

ps
+

ps − j − 3

ps

=
ps − 2

ps

< 1.

Assume e = 2d + 1, that is, p does divide 2d + 1. In this case, set u = v = n
2
,

w = n − 1, and k = j. Notice, k ≤ ps − 2. As n ≥ 2, 2ps < e and so ps ≤ d. This
in turn implies k = j ≤ ps − 2 ≤ d − 2; thus, k is applicable. As e = 2d + 1, then
d = psn+j−1

2
. Further,

µ

(

1

ps
(d, d, 2(d− 1 − k)), (u, v, w)

)

= 2

∣

∣

∣

∣

n

2
+

j − 1

2ps
−

n

2

∣

∣

∣

∣

+

∣

∣

∣

∣

n +
−j − 3

ps
− (n − 1)

∣

∣

∣

∣

=
j − 1

ps
+

∣

∣

∣

∣

ps − j − 3

ps

∣

∣

∣

∣

(⋆)

=
ps − 2

ps

< 1.
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Note for (⋆): If j ≤ ps − 3, then the absolute value disappears; on the other hand, if
j = ps − 2, then the latter term is 1

ps .

Suppose n is odd, then j is even as e is odd. Set u = v = n+1
2

, w = n, and

k = j
2
− 1. Notice that n ≥ 1 and j ≥ 2. As j < ps < 2d − 1 ≤ e, then j ≤ 2d − 3.

So k = j
2
− 1 ≤ d − 2; thus, k is applicable. Suppose e = 2d − 1, then d = psn+j+1

2
.

µ

(

1

ps
(d, d, 2(d− 1 − k)), (u, v, w)

)

= 2

∣

∣

∣

∣

n

2
+

j + 1

2ps
−

n + 1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

n +
1

ps
− n

∣

∣

∣

∣

=
ps − j − 1

ps
+

1

ps

=
ps − j

ps

< 1.

When e = 2d + 1, the result follows similarly with the finally fraction being ps−j+2
ps .

We notice that if j = 2, then e = 2d + 1 = psn − 2 and so 2d − 1 = psn. That is, p
divides 2d − 1, contradicting our choice of e. Thus, j ≥ 4.

3.5 The presence of the Lefschetz properties for three variables

In this section, we focus entirely on the strong Lefschetz property for R/I(d,d,d), where
d ≥ 2. We use the method of Kustin and Vraciu [32] that is based on finding syzygies
of low enough degree which we recall next.

Minimal degree syzygies

Let S = K[x1, . . . , xn] and d = (d0, d1, . . . , dn) ∈ Nn+1. Define φd : ⊕n
i=0S(−di) → S

by the matrix [(x1 + · · · + xn)d0 , xd1

1 , . . . , xdn
n ], and let syz(d) := ker φd. Next, define

Kos(d) to be the S-submodule of syz(d) generated by the Koszul relations on the
entries of the matrix defining φd, and define syz(d) to be the quotient syz(d)/ Kos(d).
Last, for a non-zero graded module M , the minimal generator degree of M is the
smallest d such that Md is non-zero; we denote this by mgd M .

Proposition 3.23. [32, Corollary 2.2(4 & 6)] Let d = (d0, d1, . . . , dn) ∈ Nn+1, and
set t = d0 + · · ·+dn − (n+1). Then R/Id has the weak Lefschetz property if and only
if
⌊

t+3
2

⌋

≤ mgd syz(d).

Thus, R/Id fails to have the weak Lefschetz property if we can demonstrate that
there exists a non-Koszul syzygy of small enough degree.

Finding syzygies

First, we describe an explicit non-Koszul syzygy of S/I(k,k+j,k+j,k) that will be used
repeatedly in the proceeding proof. This is a generalisation of the syzygy described
in the proof of [32, Lemma 4.2].
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Lemma 3.24. Let j ∈ N0 and k ∈ N. Then (−fk+j, gk, (−1)k+j+1gk, fk+j) is a
non-Koszul syzygy in syz(k, k + j, k + j, k), where

fk :=
yk − (−z)k

y + z
=

k−1
∑

i=0

yi(−z)k−i−1

and

gk :=
xk − (x + y + z)k

y + z
= −

k−1
∑

i=0

(

k

i

)

xi(y + z)k−i−1.

Proof. Notice that (−fk+j, gk, (−1)k+j+1gk, fk+j) ∈ syz (k, k + j, k + j, k) as

− fk+jx
k + gky

k+j + (−1)k+j+1gkz
k+j + fk+j(x + y + z)k

= fk+j((x + y + z)k − xk) + gk(y
k+j − (−z)k+j)

=
yk+j − (−z)k+j

y + z
((x + y + z)k − xk) +

xk − (x + y + z)k

y + z
(yk+j − (−z)k+j)

= 0.

Furthermore, it is clear that fk+j 6∈ (xk, yk+j, zk+j) since fk+j is a polynomial in
y and z of degree k + j − 1. Thus, the described syzygy is non-Koszul.

In order to demonstrate that the algebra R/I(d,d,d) does not have the strong Lef-
schetz property, we classify the weak Lefschetz property for S/I(d,d,d,d−3).

Proposition 3.25. Let d ≥ 6, and set d = (d, d, d, d − 3). Then R/Id has the weak
Lefschetz property in characteristic p if and only if p = 0 or p > 2d − 3.

Proof. Set β to be the quadruple (xd, yd, zd, (x + y + z)d−3). The proof follows from
several cases.

(i) Characteristic two: Let p = 2. If d 6= 2m + 1 for some m ∈ N, then d = 2m − k
for some 0 ≤ k ≤ 2m−1−2, and 2d−3 = 2m+1−2k−3 ≥ 2m+1. Thus, d ≤ 2m ≤ 2d−3
and so R/Id fails to have the weak Lefschetz property by Proposition 3.10.

Suppose d = 2m + 1 for some m ∈ N. Then α = (yz, xz, xy, xyz(x + y + z)2) is a
syzygy in syz(d) as

α · β = x2m+1yz + xy2m+1z + xyz2m+1 + xyz(x + y + z)2m

= xyz(x2m

+ y2m

+ z2m

+ (x + y + z)2m

)

= xyz (x + y + z + (x + y + z))2m

= 0.

Further, xyz(x + y + z)2 6∈ (xd, yd, zd) and deg α = d + 2 ≤ 2d − 3, as d ≥ 6. Hence
by Proposition 3.23, R/Id fails to have the weak Lefschetz property.

Note that many of the following cases are proven almost identically to the case in
the preceding paragraph. In each of the forward cases, we provide only the syzygy,
as the rest is straightforward to check.
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(ii) Characteristic three: Let p = 3, and write 2d = 3q + r with unique q, r ∈ NN
such that 0 ≤ r ≤ 2. Suppose q = 3m and r = 1, then d = 3m + 3m+1

2
= 3j− 1, where

j = 3m+1
2

. Let α be

(

xj−1yj(x + y + z)j−3, (x − z)3
m

(x + y + z)j−3,−yjzj−1(x + y + z)j−3,−(x − z)3
m

yj
)

.

Then α is in syz(d), and deg α = 2d − 3. Thus, by Proposition 3.23, R/Id fails to
have the weak Lefschetz property.

Suppose 3m < q ≤ 2 · 3m − 1 for some m, then d ≤ 6·3m−3+r
2

≤ 3m+1 and
2d − 3 = 3q + (r − 3) ≥ 3(3m + 1) − 3 = 3m+1. Thus, R/Id fails to have the weak
Lefschetz property by Proposition 3.10.

Suppose 2 · 3m ≤ q < 3m+1 for some m. Set k = d− 3m+1, so 0 ≤ k ≤ 3m+1−1
2

. Let
α be
(

ykzk(x + y + z)j , xkzk(x + y + z)j , xkyk(x + y + z)j ,−xkykzk(x + y + z)max{0,3−k}
)

,

where j = max{0, k − 3}. Then α is syz(d), and deg α ≤ 2d − 3. Thus, by Proposi-
tion 3.23, R/Id fails to have the weak Lefschetz property.

(iii) Characteristic at least five: Let p ≥ 5 be prime, and let fk and gk be defined
as in Lemma 3.24. Write 2d = qp + r with unique q, r ∈ NN such that 0 ≤ r < p.
Notice that q and r must have the same parity as p is odd. We distinguish two
sub-cases based on the parity of q and r.

(a) The quotient is even: Suppose q and r are even. Set j = max{0, r
2
− 3}, and

α to be
(

y
r
2 z

r
2 (x + y + z)j(−f p

q

2

), x
r
2 z

r
2 (x + y + z)jgp

q

2

,

x
r
2 y

r
2 (x + y + z)j((−1)

q

2
+1g q

2
)p, x

r
2 y

r
2 z

r
2 (x + y + z)max{0,3− r

2
}f p

q

2

)

.

Then α is in syz(d), and deg α ≤ 2d − 3. Thus, by Proposition 3.23, R/Id fails to
have the weak Lefschetz property.

(b) The quotient is odd : Suppose q and r are odd. First, suppose r = 1. Then set
j = d − q−1

2
p, and α to be

(

(x + y + z)j−3(−f q+1

2

)p, xjyj−1(x + y + z)j−3gp
q−1

2

,

xjzj−1(x + y + z)j−3((−1)
q−1

2
+2g q−1

2

)p, xjf p
q+1

2

)

.

Notice that d + j − 1 = q+1
2

p. Then α is in syz(d), and deg α = 2d − 3. Thus, by
Proposition 3.23, R/Id fails to have the weak Lefschetz property.

Last, suppose r ≥ 3. Then set j = d − r − q−1
2

p, and α to be

(

xj(−f q+1

2

)p, yjgp
q+1

2

, zj((−1)
q+1

2
+1g q+1

2

)p, (x + y + z)j+3f p
q+1

2

)

.

Then α is in syz(d), and deg α ≤ 2d − 3. Thus, by Proposition 3.23, R/Id fails to
have the weak Lefschetz property.
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Remark 3.26. Each of the syzygies described in the preceding proof are modifica-
tions of extant syzygies by means of the Frobenius homomorphism and multiplying
by an appropriate ring element. This is similar to the approach used by Kustin and
Vraciu [32].

Further, to discuss the cases left out in Proposition 3.25, we notice that the
determinants associated to (4, 4, 4, 1), and (5, 5, 5, 2) are 20 = 22 · 5 and −43750 =
−2 · 55 · 7, respectively. Thus, R/I(4,4,4,1) fails to have the weak Lefschetz property in
exactly characteristics 2 and 5. Similarly, R/I(5,5,5,2) fails to have the weak Lefschetz
property in exactly characteristics 2, 5, and 7.

Theorem 3.27. Let d ≥ 2, and set d = (d, d, d). Then R/Id has the strong Lefschetz
property in characteristic p if and only if p = 0 or p > 3(d − 1).

Proof. By Theorem 3.11, if d ≤ p ≤ 3(d − 1), then R/Id fails to have the strong
Lefschetz property, and if p > 3(d− 1), then R/Id has the strong Lefschetz property.

If d ≥ 6, then by Proposition 3.25, for 2 ≤ p < d, S/I(d,d,d,d−3) fails to have
the weak Lefschetz property. Thus by Proposition 3.6, R/Id fails to have the strong
Lefschetz property for 2 ≤ p < d as d − 3 = t − 2k, where t = 3d − 3 and k = d.

For the remaining four cases, we consider k = 0 and use Lemma 3.9. In particular,
notice that

(

3
1,1,1

)

= 2·3,
(

6
2,2,2

)

= 2·32 ·5,
(

9
3,3,3

)

= 24 ·3·5·7, and
(

12
4,4,4

)

= 2·32 ·52 ·7·11.

Hence, for 2 ≤ d ≤ 5, S/I(d,d,d,t) fails to have the weak Lefschetz property for 2 ≤ p <
d, and so R/I(d,d,d) fails to have the strong Lefschetz property.

3.6 The presence of the Lefschetz properties in many variables

We first consider the strong Lefschetz property in characteristic two when n ≥ 2,
that is, when R has at least three variables. Then we consider the strong Lefschetz
property for Id having generators of the same degree d0 = · · · = dn in at least four
variables.

Characteristic two

We expand Corollary 3.18 to classify when multinomial coefficients are odd.

Lemma 3.28. Let a0 ≥ · · · ≥ an ≥ 1. Then the following are equivalent:

(i)
(

a0+···+an

a0,...,an

)

is odd,

(ii) B(ai) and B(aj) are disjoint for all 0 ≤ i < j ≤ n, and

(iii) B(ai1 + · · · + aim) and B(aj) are disjoint for any 1 ≤ m < n and
j 6∈ {i1, . . . , im} ( [n].

Proof. Set M =
(

a0+···+an

a0,...,an

)

.

(i) ⇒ (ii): Notice
(

ai+aj

ai

)

divides M for all 0 ≤ i < j ≤ n. Thus, if M is odd,

then so is
(

ai+aj

ai

)

. Hence, by Corollary 3.18, B(ai) and B(aj) are disjoint.
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(ii) ⇒ (iii): Let 1 ≤ m < n and j 6∈ {i1, . . . , im} ( [n]. As B(a0), . . . ,B(an) are
disjoint, B(ai1 + · · ·+ aim) = ·∪Bik is disjoint from B(aj).

(iii) ⇒ (i): Recall that

M =

(

a0 + · · ·+ an

a0, . . . , an

)

=
n
∏

i=2

(

a1 + · · ·+ ai

ai

)

.

As B(a1+· · ·+ai−1) and B(ai) are disjoint, by Corollary 3.18,
(

a1+···+ai

ai

)

is odd. Hence
M is a product of odd integers, that is, M is odd.

By the preceding lemma, for certain pairs of multinomial coefficients, one must
be even.

Lemma 3.29. Let n ≥ 2, a0 ≥ · · · ≥ an ≥ 1, and suppose a0 ≥ a1 + · · · + an. Then
(

a0+···+an

a0,...,an

)

is even or
(

a0+1
a0+1−(a1+···+an),a1,...,an

)

is even.

Proof. Suppose
(

a0+···+an

a0,...,an

)

and
(

a0+1
a0+1−(a1+···+an),a1,...,an

)

are odd. By Lemma 3.28, the

B(ai) are disjoint for all 0 ≤ i ≤ n, B(a0) and B(a1 + · · · + an) are disjoint, and
B(a0 + 1 − (a1 + · · · + an)) and B(a1 + · · · + an) are disjoint. Thus we have that
B(a0 + 1) = B(a0 + 1 − (a1 + · · · + an)) ·∪B(a1 + · · · + an). Notice that since an ≥ 1,
each B(ai) has at least one element, and so B(a1 + · · ·+ an) has at least n elements.

Suppose B(a0) contains 0, . . . , m − 1 but not m. Then for k > m, k ∈ B(a0 + 1)
if and only if k ∈ B(a0). Moreover, B(a0 + 1) contains m but not 0, . . . , m − 1. As
B(a1 + · · ·+ an) ⊂ B(a0 +1), and the former has at least n ≥ 2 elements, there exists
a k ∈ B(a1 + · · · + an) ⊂ B(a0 + 1) with k > m. Thus B(a1 + · · · + an) and B(a0)
have k in common, contradicting B(a0) and B(a1 + · · · + an) being disjoint. This in
turn contradicts

(

a0+···+an

a0,...,an

)

being odd.

As a corollary, we classify the strong Lefschetz property in characteristic two for
all monomial complete intersections in at least three variables.

Corollary 3.30. Let d0 ≥ · · · ≥ dn ≥ 2 with n ≥ 2. Then R/Id fails to have the
strong Lefschetz property in characteristic two.

Proof. If d0 ≤
⌈

t
2

⌉

, then t+1
d0

≥ 2 and so d0 ≤ 2m ≤ t, for some m ∈ N. Thus, by
Theorem 3.11 R/Id fails to have the strong Lefschetz property in characteristic two.

Set ℓ := x0 + · · ·+ xn and Bk := R[xn+1]/I(d,t−2k). Recall that by Proposition 3.6,
R/Id has the strong Lefschetz property if and only if each Bk has the weak Lefschetz
property, for 0 ≤ k ≤

⌊

t
2

⌋

.
Suppose d0 >

⌈

t
2

⌉

, that is, d0 ≥ d0 + · · · + dn − n. Notice B0 has the weak
Lefschetz property in characteristic 2 if and only if

(

t
d0−1,...,dn−1

)

is odd. Further,

t−d0 ≤
⌊

t
2

⌋

as d0 >
⌈

t
2

⌉

, and Bt−d0
has the weak Lefschetz property in characteristic

2 if and only if
(

d0

d1−1,...dn−1,d0−(d1+···+dn−n)

)

is odd (notice that t−2(t−d0) = 2d0− t =

d0 + 1 − (d1 + · · ·+ dn − n)).
By Lemma 3.29,

(

t
d0−1,...,dn−1

)

is even or
(

d0

d1−1,...dn−1,d0−(d1+···+dn−n)

)

is even, thus

B0 or Bt−d0
fails to have the weak Lefschetz property in characteristic 2. Hence, R/Id

fails to have the strong Lefschetz property in characteristic two.
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Generation in a single degree

In this subsection, we consider monomial complete intersections generated by mono-
mials of the same degree, that is, d0 = · · · = dn = d ≥ 2. Notice that the socle degree
is (n + 1)(d − 1).

The case when n = 1 is handled in Section 3.4. In particular, the weak Lefschetz
property is classified in Proposition 2.16, and the strong Lefschetz property is classi-
fied in Theorem 3.22. Brenner and Kaid [5, Theorem 2.6] classify the weak Lefschetz
property when n = 2. We note that Kustin, Rahmati, and Vraciu [31] relate this re-
sult to the projective dimension of K[x, y, z]/(xd, yd, zd) : (xn + yn + zn). Kustin and
Vraciu [32, Theorem 4.3] classify the weak Lefschetz property when n = 3. Further
still, Kustin and Vraciu [32] prove the surprising classification of the weak Lefschetz
property when n ≥ 4. We recall the last here, as we will use it.

Theorem 3.31. [32, Theorem 6.4] Let d ≥ 2 and n ≥ 4. Then R/I(d,...,d) has the
weak Lefschetz property if and only if the characteristic of K is 0 or greater than
⌈

(n+1)(d−1)
2

⌉

.

As a corollary of the above theorem, we get a classification of the strong Lefschetz
property when n ≥ 4.

Corollary 3.32. Let d ≥ 2 and n ≥ 4. Then R/I(d,...,d) has the strong Lefschetz
property if and only if the characteristic of K is 0 or greater than (n + 1)(d − 1).

Proof. As the strong Lefschetz property implies the weak Lefschetz property, we
combine Theorems 3.11 and 3.31 to verify the claim.

Before classifying the strong Lefschetz property for n = 3, we prove a more general
lemma regarding the weak Lefschetz property and monomial complete intersections
generated by monomials all having the same degree, except one.

Lemma 3.33. Let d ∈ Nn+1, where d ≥ 3, n ≥ 4, d0 = · · · = dn−1 = d and dn = d−1.
If d or n is odd, and 2 ≤ p < d, then R/Id fails to have the weak Lefschetz property.

Proof. Set e = (d, . . . , d) ∈ Nn+1.
By Theorem 3.31, R/Ie fails the weak Lefschetz property for 2 ≤ p < d. Thus,

by Proposition 3.23 and as (n + 1)(d − 1) + 3 is odd, mgd syzd <
⌊

(n+1)(d−1)+3
2

⌋

=
(n+1)(d−1)+2

2
.

Let α = (z0, . . . , zn) be a homogeneous representative of a nonzero syzygy in syze
of degree mgd syze such that z0 6∈ (xd

1, . . . , x
d
n). Without loss of generality we may

further assume xd−1
n does not divide z0 (otherwise, the degree of α would be at least

(n + 1)(d − 1), which is larger than (n+1)(d−1)+2
2

), that is, z0 6∈ (xd
1, . . . , x

d
n−1, x

d−1
n ).

Then α′ = (z0, . . . , xnzn) is a homogeneous nonzero syzygy in syz d. Further, as
z0 is not a member of (xd

1, . . . , x
d
n−1, x

d−1
n ), and all relations in Kos d must have a

S-linear combination of xd
1, . . . , x

d
n−1, x

d−1
n in the first entries, then α′ is not in Kos d.

Thus, α′ is a homogeneous representative of a nonzero syzygy in syzd.
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Notice, the degree of α′ is the degree of α, and is strictly bounded above by
(n+1)(d−1)+2

2
. Hence, mgd syzd < (n+1)(d−1)+2

2
. Notice though,

⌊

n(d−1)+(d−2)+3
2

⌋

=
(n+1)(d−1)+2

2
. Therefore, by Proposition 3.23, R/Id fails to have the weak Lefschetz

property for 2 ≤ p < d.

From this we get a classification of the strong Lefschetz property when n = 3.

Proposition 3.34. Let d ≥ 2. Then R/I(d,d,d,d) has the strong Lefschetz property if
and only if the characteristic of K is 0 or greater than 4(d − 1).

Proof. By Theorem 3.11, we need only to consider 2 ≤ p < d.
By Proposition 3.6, R/I(d,d,d,d) fails the strong Lefschetz property if the ring

R[z]/I(d,d,d,d,4d−4−2k) fails to have the weak Lefschetz property for some 0 ≤ k ≤ 2d−2.
Suppose d is even, then 4d − 4 − 2k = d when k = 3d−4

2
< 2d − 2. Thus, using

Theorem 3.31 we see that R/I(d,d,d,d) fails to have the strong Lefschetz property for

p ≤
⌈

5(d−1)
2

⌉

. As d <
⌈

5(d−1)
2

⌉

for all d, then the claim holds.

Suppose d is odd, then 4d−4−2k = d−1 when k = 3d−3
2

< 2d−2. By Lemma 3.33
we see that R/I(d,d,d,d) fails to have the strong Lefschetz property for 2 ≤ p < d.

3.7 Conclusions

We combine Corollaries 3.21 and 3.30 to get the following theorem classifying the
strong Lefschetz property for monomial complete intersections in characteristic two.

Theorem 3.35. Let d0 ≥ · · · ≥ dn ≥ 2 with n ≥ 1, and let I = (xd0

0 , . . . , xdn
n ) ⊂ R =

K[x0, . . . , xn], where K is an infinite field of characteristic two. Then R/I has the
strong Lefschetz property if and only if n = 1 and either (i) d0 is odd and d1 = 2 or
(ii) d0 = 4k + 2 for some k ∈ N and d1 = 3.

Moreover, combining Theorem 3.22 (n = 1), Theorem 3.27 (n = 2), Proposi-
tion 3.34 (n = 3), and Corollary 3.32 (n ≥ 4), we completely classify the strong
Lefschetz property for monomial complete intersections generated by monomials all
having the same degree.

Theorem 3.36. Let d ≥ 2, n ≥ 1, and I = (xd
0, . . . , x

d
n) ⊂ R = K[x0, . . . , xn], where

K is an infinite field of characteristic p. Then R/I has the strong Lefschetz property
if and only if p is zero or p is a positive prime and either

(i) n = 1 and ps > 2(d − 1), where s is the largest integer such that ps−1 divides
(2d − 1)(2d + 1), or

(ii) n ≥ 2 and p > (n + 1)(d − 1).

By Theorem 3.11, for a monomial complete intersection generated in degrees
d0 ≥ · · · ≥ dn ≥ 2, the presence of the strong Lefschetz property is uniform for primes
at least d0. However, for small primes (those less than d0), the strong Lefschetz prop-
erty appears to behave chaotically when arbitrary degree sequences d = (d0, . . . , dn)
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are considered. However, some restrictions, such as characteristic two or a fixed gen-
erating degree, can limit this apparent chaos to only the case of two variables. This
suggests that perhaps more focus should be given to two variables.

Question 3.37. For which prime characteristics p does the algebra K[x, y]/(xa, yb),
where a ≥ b ≥ 2, fail to have the strong Lefschetz property?

Unfortunately, Proposition 3.10 has a gap when the socle degree t is even and
p = t

2
+ 1. Note, Corollary 3.4 cannot be used in this specific case. As an example,

consider A = K[w, x, y]/(w5, x5, y5) and B = K[w, x, y, z]/(w5, x5, y5, z2). In this
case, A has the weak Lefschetz property in characteristic 7, but B does not.

Experimentally, the weak Lefschetz property always holds. We have checked all
non-degenerate complete intersections for 2 ≤ p ≤ 7. Further, we have checked all
non-degenerate complete intersections in up to six variables for 11 ≤ p ≤ 19. We
formalise the above experimental results.

Conjecture 3.38. Let t be the socle degree of R/Id. If t is even and the characteristic
of K is p = t

2
+ 1, then the algebra R/Id has the weak Lefschetz property.

Conjecture 3.38 is true when n = 2.

Remark 3.39. Let a ≥ b ≥ c ≥ 2 such that t = a+b+c−3 = 2(p−1) for some prime
p, and suppose that a ≤

⌈

t
2

⌉

= p − 1. Set A = K[x, y, z]/(xa, yb, zc). Let α = p − b
and β = b − 1, and notice that 0 < α < a. Consider the following commutative
diagram, where B = K[x, y, z]/(xa, yb, zc, xαyβ) and ℓ = x + y + z.

[A]p−2
×ℓ //

∼=
��

[A]p−1

[B]p−2
×ℓ // [B]p−1

?�

OO

Thus, the top map is injective if the bottom map is. Using Proposition 4.37, we
see that B has the weak Lefschetz property, and thus the bottom map is injective, if
the characteristic of K is at least a+b+c+α+β

3
= p. Hence the top map is injective and

A has the weak Lefschetz property in characteristic p.

Moreover, we conjecture that when d0 is “small” (i.e., when the weak Lefschetz
property is not guaranteed to hold by Proposition 3.2), then the strong Lefschetz
property only holds when guaranteed by Theorem 3.11. Notice that Theorems 3.35
and 3.36 provide evidence for this conjecture.

Conjecture 3.40. Suppose d0 ≤
⌈

t
2

⌉

, where t is the socle degree of R/Id. Then R/Id

has the strong Lefschetz property if and only if the characteristic of K is either 0 or
greater than t.

Copyright c© David Cook II 2012
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Chapter 4 Monomial almost complete intersections

The starting point of this chapter was an intriguing conjecture in [38] on the weak
Lefschetz property of certain algebras. In this chapter we make progress on the
above conjecture and illustrate the depth of the problem by considering a larger class
of algebras and relating the problem to a priori seemingly unrelated questions in
combinatorics and algebraic geometry. This builds on the work of many authors.

In [9], Nagel and the author found a connection between certain families of level
artinian monomial almost complete intersections and lozenge tilings of hexagons; in-
dependently, Li and Zanello [33] found a similar connection for artinian monomial
complete intersections (see also Corollary 4.30). However, both were without combi-
natorial bijection until one was found by Chen, Guo, Jin, and Liu [6]; Boyle, Migliore,
and Zanello [2] have pushed this connection further. Brenner and Kaid [5] also con-
sider artinian monomial complete intersections in three variables with generators all
of the same degree. We also note that in their study of pure O-sequences Boij,
Migliore, Miró-Roig, Nagel, and Zanello [1] have explored the relation between the
weak Lefschetz property and pure O-sequences.

In this chapter we extend the connection found by Chen, Guo, Jin, and Liu
to a connection between artinian monomial almost complete intersections in three
variables and lozenge tilings of more general regions that we call punctured hexagons.
In Section 4.1 we introduce the algebras we are interested in: artinian monomial
almost complete intersections in three variables. These are the ideals discussed in [4,
Corollary 7.3] and [38, Section 6]. We also demonstrate that the prime characteristics
in which the weak Lefschetz property fails for a given algebra are exactly the prime
divisors of the determinants of two different matrices. In Section 4.2 we organise
the monomials generating the peak homogeneous components of such an algebra in
a plane. It turns out that the monomials fill a punctured hexagon. We argue that
the determinant of one of the associated matrices is the enumeration of the signed
lozenge tilings of the punctured hexagon, up to sign. In Section 4.3 we show that the
determinants of the two matrices are the same, up to sign.

In Section 4.4 we find closed formulae for the determinant of the above matrices, up
to sign, in several cases. In Section 4.5 we explore two different ways to centralise the
puncture. In particular, one of the central conditions is equivalent to the associated
algebra being level, that is, its socle is concentrated in one degree. In Section 4.6
we describe several interesting families of algebras whose associated matrices have
specified determinants. In Section 4.7 we explicitly determine (in one case, depending
on the presence of the weak Lefschetz property) the splitting type of all artinian
monomial almost complete intersections. Moreover, in the case of ideals associated
to punctured hexagons, we relate the weak Lefschetz property to a number of other
problems in algebra, combinatorics, and algebraic geometry.

The contents of this chapter come from [11], a joint work with Uwe Nagel.
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4.1 Background

Let K be an infinite field, and consider the ideal

Ia,b,c,α,β,γ = (xa, yb, zc, xαyβzγ)

in R = K[x, y, z], where 0 ≤ α < a, 0 ≤ β < b, and 0 ≤ γ < c. If α = β = γ = 0, then
we define Ia,b,c,0,0,0 to be (xa, yb, zc) which is a complete intersection and is studied
extensively in [33] and [6]. Assume at most one of α, β, and γ is zero.

Proposition 4.1. [38, Proposition 6.1] Let I = Ia,b,c,α,β,γ be defined as above. As-
sume, without loss of generality, that 0 ≤ α ≤ β ≤ γ.

(i) If α = 0, then R/I has socle type 2 with socle degrees a+β+c−3 and a+b+γ−3;
thus R/I is level if and only if b − β = c − γ.

(ii) If α > 0, then R/I has socle type 3 with socle degrees α+b+c−3, a+β +c−3,
and a + b + γ − 3; thus R/I is level if and only if a − α = b − β = c − γ.

(iii) Moreover, the minimal free resolution of R/I has the form

0 →

R(−a − b − γ)
⊕

R(−a − β − c)
⊕

Rn(−α − b − c)

→

R(−a − β − γ)
⊕

R(−α − b − γ)
⊕

R(−α − β − c)
⊕

R(−a − b)
⊕

R(−a − c)
⊕

Rn(−b − c)

→

R(−α − β − γ)
⊕

R(−a)
⊕

R(−b)
⊕

R(−c)

→ R → R/I → 0

(4.1)

where n = 1 if α > 0 and n = 0 if α = 0.

Moreover, we see that in characteristic zero the weak Lefschetz property follows
for certain choices of the parameters.

Proposition 4.2. [38, Theorem 6.2] Let K be an algebraically closed field of charac-
teristic zero. Then R/Ia,b,c,α,β,γ has the weak Lefschetz property if a+b+c+α+β+γ 6≡
0 (mod 3).

Semi-stability

The syzygy module syz I of I = Ia,b,c,α,β,γ fits into the exact sequence

0 −→ syz I −→ R(−α − β − γ) ⊕ R(−a) ⊕ R(−b) ⊕ R(−c) −→ Ia,b,c,α,β,γ −→ 0.
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The sheafification s̃yz I is a rank 3 bundle on P2, and it is called the syzygy bundle of
I. Recall that a vector bundle E on projective space is said to be semistable if, for
every coherent subsheaf F ⊂ E, the inequality c1(F )

rk(F )
≤ c1(E)

rk(E)
holds.

We analyse when Ia,b,c,α,β,γ has a semistable syzygy bundle. (Note, the slightly
awkward definition of s in the following is kept for consistency with [38, Section 7],
the starting point of this work.)

Proposition 4.3. Let K be an algebraically closed field of characteristic zero. Fur-
ther, let I = Ia,b,c,α,β,γ, and define the following rational numbers

s :=
1

3
(a + b + c + α + β + γ) − 2,

A :=s + 2 − a,

B :=s + 2 − b,

C :=s + 2 − c, and

M :=s + 2 − (α + β + γ).

Then I has a semistable syzygy bundle if and only if the following conditions all hold:

(i) 0 ≤ M ,

(ii) 0 ≤ A ≤ β + γ,

(iii) 0 ≤ B ≤ α + γ, and

(iv) 0 ≤ C ≤ α + β.

Proof. Using [3, Corollary 7.3] we have that I has a semistable syzygy bundle if and
only if

(a) max{a, b, c, α + β + γ} ≤ s + 2,

(b) min{α + β + c, α + b + γ, a + β + γ} ≥ s + 2, and

(c) min{a + b, a + c, b + c} ≥ s + 2.

Notice that condition (a) is equivalent to A, B, C, and M being non-negative.
Moreover, condition (b) is equivalent to the upper bounds on A, B, and C. We claim
that condition (c) follows directly from condition (a).

Indeed, by condition (a) we have that C +M ≥ 0 and so A+B+C +M = s+2 ≥
A + B = 2(s + 2) − a − b, thus a + b ≥ s + 2. Similarly, we have a + c ≥ s + 2 and
b + c ≥ s + 2. Thus condition (c) holds if condition (a) holds.

This gives further conditions on the parameters that force the weak Lefschetz
property in characteristic zero (see [4, Theorem 3.3]). This extends [38, Lemma 6.7].

Corollary 4.4. Let K be an algebraically closed field of characteristic zero, and let
I = Ia,b,c,α,β,γ. If any of the conditions (i)-(iv) in Proposition 4.3 fail, then R/I has
the weak Lefschetz property.
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The above definitions of s, A, B, C, and M are not without purpose. Before going
further, we make a few comments about the given parameters.

Remark 4.5. Suppose s, A, B, C, and M are defined as in Proposition 4.3. Then
clearly s is an integer if and only if a+b+c+α+β+γ ≡ 0 (mod 3); if s is an integer,
then so are A, B, C, and M . Further, A+B+C+M = s+2 and A+B+C = α+β+γ.

Associated matrices

Given the minimal free resolution of R/I (see (4.1)), we can easily compute the
h-vector of R/I as a weighted sum of binomial coefficients dependent only on the
parameters a, b, c, α, β, and γ.

We say h(A) has twin peaks if there exists an integer s such that hs = hs+1. When
Ia,b,c,α,β,γ has parameters as in Proposition 4.3 and s is an integer, then the algebras
R/Ia,b,c,α,β,γ always have twin peaks and the peaks are bounded by the socle degrees.
This extends the results in [38, Lemma 7.1] wherein the level algebras R/Ia,b,c,α,β,γ

with twin peaks are identified.

Lemma 4.6. Assume the parameters of I = Ia,b,c,α,β,γ satisfy the conditions in Propo-
sition 4.3 and suppose a + b + c + α + β + γ ≡ 0 (mod 3). Then R/I has twin peaks
in degrees s and s + 1. Moreover, s + 1 is bounded above by the socle degrees of R/I.

Proof. The upper bounds on A, B, and C are exactly those required to force the
ultimate and penultimate terms in the minimal free resolution of R/I, see Proposi-
tion 4.1(iii), to not contribute to the h-vector for degrees up to s + 1. Moreover, as
A, B, C, and M are non-negative, and using

(

n+1
2

)

−
(

n
2

)

= n for n ≥ 0, then

hs+1 − hs =
((

s+3
2

)

−
(

A+1
2

)

−
(

B+1
2

)

−
(

C+1
2

)

−
(

M+1
2

))

−
((

s+2
2

)

−
(

A
2

)

−
(

B
2

)

−
(

C
2

)

−
(

M
2

))

=s + 2 − (A + B + C + M)

=0.

Suppose, without loss of generality, that α ≤ β ≤ γ. The socle degrees of R/I
are α + b + c − 3, a + β + c − 3, and a + b + γ − 3, with the first removed if α = 0.
The following argument shows that α + b + c − 3 is at least s + 1, however, up to a
change of labels it shows that each of the socle degrees is at least s + 1.

As we are considering the socle degree α+b+c−3, we may assume α ≥ 1. Notice
that α+b+c−3 = 2A+B+C+2M+α−3, which is at least s+1 = A+B+C+M−1
exactly when A + M + α ≥ 2. If A + M ≥ 1, then we are done. Suppose A + M = 0,
then A = M = 0 and b + c = α + β + γ. Moreover, since b > β and c > γ, then
α + β + γ = b + c ≥ β + γ + 2. Thus α ≥ 2.

A consequence of the previous lemma is that exactly one map need be considered
for each algebra in order to determine the presence of the weak Lefschetz property.
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Corollary 4.7. Assume the parameters of I = Ia,b,c,α,β,γ satisfy the conditions in
Proposition 4.3 and suppose a + b + c + α + β + γ ≡ 0 (mod 3). Then R/I has the
weak Lefschetz property if and only if the map ×(x + y + z) : [R/I]s → [R/I]s+1 is
injective (or surjective).

Proof. This follows immediately from Lemma 4.6 by using Propositions 2.9(iii), 2.11,
and 2.12.

This leads to the definition of two matrices with determinants that determine the
weak Lefschetz property. The first is a zero-one matrix and the second is a matrix of
binomial coefficients.

Proposition 4.8. Assume the parameters of I = Ia,b,c,α,β,γ satisfy the conditions in
Proposition 4.3 and suppose a + b + c + α + β + γ ≡ 0 (mod 3).

Then there exists a matrix Z = Za,b,c,α,β,γ such that

(i) Z is a square integer matrix of size hs,

(ii) R/I has the weak Lefschetz property if and only if det Z 6≡ 0 (mod char K),
and

(iii) the entries of Z are given by

(Z)i,j =

{

1 nj is a multiple of mi,

0 otherwise,

where {m1, . . . , mhs
} and {n1, . . . , nhs

} are the monomial bases of [R/I]s and
[R/I]s+1, respectively, and are given in lexicographic order.

Proof. We notice that the map ×(x + y + z) : [R/I]s → [R/I]s+1 can be represented
as a matrix Z with rows and columns indexed by fixed monomial bases of [R/I]s
and [R/I]s+1, respectively. This follows immediately from viewing [R/I]d as a vector
space over K.

Claim (i) follows from Lemma 4.6 wherein it is shown that hs = hs+1. Since Z is
square, then the injectivity of ×(x+y+z) : [R/I]s → [R/I]s+1 is equivalent to Z being
invertible, that is, equivalent to det Z being non-zero in K. Thus, claim (ii) follows
from Corollary 4.7 wherein it is shown that the injectivity of the map ×(x + y + z) :
[R/I]s → [R/I]s+1 exactly determines the presence of the weak Lefschetz property
for R/I. Claim (iii) follows immediately from the construction of the map.

The following generalises the results in [38, Theorem 7.2 and Corollary 7.3].

Proposition 4.9. Assume the parameters of I = Ia,b,c,α,β,γ satisfy the conditions in
Proposition 4.3, and suppose a + b + c + α + β + γ ≡ 0 (mod 3).

Then there exists a matrix N = Na,b,c,α,β,γ such that

(i) N is a square integer matrix of size C + M ,
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(ii) R/I has the weak Lefschetz property if and only if det N 6≡ 0 (mod char K),
and

(iii) the entries of N are given by

(N)i,j =















(

c

A + j − i

)

if 1 ≤ i ≤ C,
(

γ

A + C − β + j − i

)

if C + 1 ≤ i ≤ C + M.

Proof. Notice that R/(I, x + y + z) ∼= S/J , where S = K[x, y] and

J = (xa, yb, (x + y)c, xαyβ(x + y)γ).

Thus the sequence

[R/I]d
×(x+y+z)
−−−−−−→ [R/I]d+1 → [R/(I, x + y + z)]d+1 → 0

implies that ×(x + y + z) : [R/I]s → [R/I]s+1 is injective exactly when [S/J ]s+1 = 0.
Hence it suffices to show that all s+2 monomials of the form xiyj where i+ j = s+1
are in J .

Clearly if i ≥ a or j ≥ b, then xiyj is in J . This leaves s+2−(s+2−a)−(s+2−b) =
s+2−A−B = C +M monomials that are not trivially in J . Thus there are C +M
equations and unknowns, all of which only involve the non-monomial terms (after
reduction by the monomial terms). Associated to this system of equations is a square
integer matrix of size C + M , call it N . Then N is invertible if and only if det N is
non-zero in K. Thus, claims (i) and (ii) hold.

There are s + 2 − c = C ways to scale (x + y)c and s + 2 − (α + β + γ) = M
ways to scale xαyβ(x + y)γ to be degree s + 1. In both cases consider the binomial
coefficient indexed by the degree of y. Then (N)i,j is the coefficient on xa−jyA+j−1

in the scaling xC−iyi−1(x + y)c for 1 ≤ i ≤ C, i.e.,
(

c
A+j−i

)

, and in the scaling

xC+M−iyi−C−1xαyβ(x + y)γ for C + 1 ≤ i ≤ C + M , i.e.,
(

γ
A+C−β+j−i

)

. Thus claim

(iii) holds.

Clearly det Za,b,c,α,β,γ and det Na,b,c,α,β,γ must both be either zero or have the same
set of prime divisors. We can determine a few of the prime divisors from the known
failure of the weak Lefschetz property.

Proposition 4.10. Assume the parameters of I = Ia,b,c,α,β,γ satisfy the conditions in
Proposition 4.3, and suppose a + b + c + α + β + γ ≡ 0 (mod 3). If K has positive
characteristic p and their exists a positive integer m such that

max{a, b, c} ≤ pm ≤ s + 1 =
1

3
(a + b + c + α + β + γ) − 1,

then

(i) R/I fails to have the weak Lefschetz property,
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(ii) p is a prime divisor of the determinant of Za,b,c,α,β,γ, and

(iii) p is a prime divisor of the determinant of Na,b,c,α,β,γ.

Proof. By Lemma 4.6, the Hilbert function of R/I weakly increases to degree s + 1,
hence part (i) follows by Lemma 2.13. Parts (ii) and (iii) then follow from Proposi-
tions 4.8 and 4.9, respectively.

In the next section we will see a nice combinatorial interpretation for both matrices
as well as the defined values s, A, B, C, and M .

4.2 Punctured hexagons and friends

Recall the definition of s, A, B, C, and M , and the conditions thereon, from Propo-
sition 4.3. In this section we assume, without exception, that I = Ia,b,c,α,β,γ has
parameters matching these conditions and further that a + b + c + α + β + γ ≡ 0
(mod 3).

Punctured hexagons

Notice that every monomial in [R]d is of the form xiyjzk where i, j, and k are
non-negative integers such that i + j + k = d. Hence we can organise the monomials
in [R]d into a triangle of side-length d + 1 with xd at the lower-center, yd at the
upper-right, and zd at the upper-left. (See Figure 4.1(i).)

(i) The monomial triangle for [R]3 (ii) The interlaced region for [R]2 and [R]3

Figure 4.1: The interlaced basis region for R = K[x, y, z]

Notice that we can interlace the monomials of [R]d−1 within the monomials of [R]d.
If we stay consistent with our orientation (i.e., largest power of x at the lower-center,
largest power of y at the upper-right, and largest power of z at the upper-left), then
two monomials are adjacent if and only if one divides the other. (See Figure 4.1(ii).)
We call such a figure the interlaced basis region of [R]d−1 and [R]d.

If we compute the interlaced basis region of [R/Ia,b,c,α,β,γ]s and [R/Ia,b,c,α,β,γ]s+1,
then we get a punctured hexagonal region.
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Theorem 4.11. Let I = Ia,b,c,α,β,γ satisfy the conditions in Proposition 4.3, and
suppose a+ b+ c+α+β +γ ≡ 0 (mod 3). Then the interlaced basis region Ha,b,c,α,β,γ

of [R/I]s and [R/I]s+1 is in the shape of a hexagon with side-lengths (in clockwise
cyclic order, starting at the bottom)

(A, B + M, C, A + M, B, C + M)

and with a puncture in the shape of an equilateral triangle of side-length M . The
puncture has sides parallel to the sides of the hexagon of lengths A + M, B + M, and
C + M . Moreover, the puncture is located α, β, and γ units from the sides of length
A + M, B + M, and C + M , respectively. (See Figure 4.2.)

Figure 4.2: Ha,b,c,α,β,γ, the interlaced basis region of [R/I]s and [R/I]s+1

Proof. The interlaced basis region of [R/I]s and [R/I]s+1 corresponds to a spatial
placement of the monomials of the associated components of R/I. As I is a monomial
ideal, we can easily get restrictions on the monomials xiyjzk in the region:

(i) The generator xa forces 0 ≤ i < a; this corresponds to the lower-center missing
triangle which has side-length s + 2 − a = A.

(ii) The generator yb forces 0 ≤ j < b; this corresponds to the upper-right missing
triangle which has side-length s + 2 − b = B.

(iii) The generator zc forces 0 ≤ k < c; this corresponds to the upper-left missing
triangle which has side-length s + 2 − c = C.

(iv) The generator xαyβzγ forces one of i < α, j < β, or k < γ to also hold; this
corresponds to the center missing triangle, which has side-length s + 2 − α −
β − γ = M . This further forces the particular placement of the puncture.
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Moreover, the conditions in Proposition 4.3 force the regions to have non-negative
side-lengths and to not overlap.

Remark 4.12. The ideals I = Ia,b,c,α,β,γ in Theorem 4.11 are in bijection with their
hexagonal regions (assuming a fixed orientation and assuming a puncture of side-
length zero is still considered to be in a particular position). Suppose we have a
punctured hexagonal region, as in Figure 4.2, with parameters A, B, C, M, α, and β.
Then a = B +C +M , b = A+C +M , c = A+B +M , and γ = A+B +C − (α+β).

Moreover, we notice that, in characteristic zero, these ideals are exactly the ar-
tinian monomial almost complete intersections which do not immediately have the
weak Lefschetz property from Proposition 4.2 or Proposition 4.3.

Notice that by Lemma 4.6 we have hs = hs+1, so the region Ha,b,c,α,β,γ has the
same number of upward pointing triangles as it has downward pointing triangles. In
particular, it may then be possible to tile the region by lozenges (i.e., rhombi with
unit side-lengths and angles of 60◦ and 120◦; we also note a pair of alternate names
used in the literature: calissons and diamonds).

Non-intersecting lattice paths

We follow [7, Section 5] (similarly, [15, Section 2]) to translate lozenge tilings of
Ha,b,c,α,β,γ to families of non-intersecting lattice paths. An example of a lozenge tiling
and its associated family of non-intersecting lattice paths is given in Figure 4.3.

Hexagon tiling by lozenges Family of non-intersecting lattice paths

Figure 4.3: A lozenge tiling and its associated family of non-intersecting lattice paths

In order to transform a lozenge tiling of a punctured hexagon Ha,b,c,α,β,γ into a
family of non-intersecting lattice paths, we follow three simple steps (see Figure 4.4):

(i) Mark the midpoints of the triangle edges parallel to the sides of length C and
C + M with vertices. Further, label the midpoints, always moving lower-left to
upper-right,
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a) along the hexagon side of length C as A1, . . . , AC ,

b) along the puncture as AC+1, . . . , AC+M , and

c) along the hexagon side of length C + M as E1, . . . , EC+M .

(ii) Using the lozenges as a guide, we connect any pair of vertices that occur on a
single lozenge.

(iii) Thinking of motion parallel to the side of length A as horizontal and motion
parallel to the side of length B as vertical, we orthogonalise the lattice (and
paths) and consider the lower-left vertex as the origin.

(i) Mark midpoints with vertices and
label particular vertices (ii) Connect vertices using the tiling

(iii) Orthogonalise the path family The family by itself

Figure 4.4: Converting lozenge tilings to families of non-intersecting lattice paths

Given the above transformation of Ha,b,c,α,β,γ to the integer lattice, we see that Ai

and Ej have easy to compute coordinates:

Ai =

{

(i − 1, B + M + i − 1) if 1 ≤ i ≤ C,

(β + i − C − 1, B − α + i − 1) if C + 1 ≤ i ≤ C + M,
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and
Ej = (A + j − 1, j − 1) for 1 ≤ j ≤ C + M.

Now we associate to each family of non-intersecting lattices paths a permutation
and use it to assign a sign to the family of paths.

Definition 4.13. Let L be a family of non-intersecting lattice paths as above, and
let λ ∈ SC+M be the permutation so that Ai is connected to Eλ(i). We define the
sign of L to be the signature (or sign) of the permutation λ. That is, sgn L := sgn λ.

Now we are ready to use a beautiful theorem relating (signed) enumerations of
families of non-intersecting lattice paths with determinants. In particular, we use a
theorem first given by Lindström in [35, Lemma 1] and stated independently in [17,
Theorem 1] by Gessel and Viennot. Stanley gives a very nice exposition of the topic
in [50, Section 2.7].

Here we give a specialisation of the theorem to the case when all edges have the
same weight—one. In particular, this result is given in [7, Lemma 14].

Theorem 4.14. Let A1, . . . , An, E1, . . . , En be distinct lattice points on N2
0. Then

det
1≤i,j≤n

(P (Ai → Ej)) =
∑

λ∈Sn

sgn(λ)P+
λ (A → E),

where P (Ai → Ej) is the number of lattice paths from Ai to Ej and, for each permu-
tation λ ∈ Sn, P+

λ (A → E) is the number of families of non-intersecting lattice paths
with paths going from Ai to Eλ(i).

Thus, we have an enumeration of the signed lozenge tilings of a punctured hexagon
with signs given by the non-intersecting lattice paths.

Theorem 4.15. The enumeration of signed lozenge tilings of Ha,b,c,α,β,γ, with signs
given by the signs of the associated families of non-intersecting lattice paths (Def-
inition 4.13), is given by det Na,b,c,α,β,γ, where the matrix Na,b,c,α,β,γ is defined in
Proposition 4.9.

Proof. Notice that the number of lattice paths from (u, v) to (x, y), where u ≤ x and
v ≥ y, is given by

(

x−u+v−y
x−u

)

as there are x − u + v − y steps and x − u must be
horizontal steps (equivalently, v − y must be vertical steps). Thus the claim follows
immediately from the steps above.

However, we need not consider all (C + M)! permutations λ ∈ SC+M as the vast
majority will always have P+

λ (A → E) = 0. Given our choice of Ai and Ej the only
possible choices of λ are given by

λk =

(

1 · · · k k + 1 · · · C C + 1 · · · C + M
1 · · · k M + k + 1 · · · C + M k + 1 · · · M + k

)

,

where 0 ≤ k ≤ C and k corresponds to the number of lattice paths that go below the
puncture. In particular, the three parts of λk correspond to the paths going below,

40



above, and starting from the puncture. We call these permutations the admissible
permutations of Ha,b,c,α,β,γ.

We will use this connection to compute determinants in Section 4.4, but first we
look at an alternate combinatorial connection.

Perfect matchings

Lozenge tilings of a punctured hexagon can be associated to perfect matchings
on a bipartite graph. This connection was first used by Kuperberg in [30] to study
symmetries on plane partitions. An example of a lozenge tiling and its associated
perfect matching of edges is given in Figure 4.5.

(i) Hexagon tiling by lozenges (ii) Perfect matching of edges

Figure 4.5: A lozenge tiling and its associated perfect matching of edges

In order to transform a lozenge tiling of a punctured hexagon Ha,b,c,α,β,γ into a
perfect matching of edges, we follow three simple steps (see Figure 4.6):

(i) Put a vertex at the center of each triangle.

(ii) Connect the vertices whose triangles are adjacent.

(iii) Select the edges which the lozenges cover–this set is the perfect matching.

Notice that the graph associated to the punctured hexagon Ha,b,c,α,β,γ is a bipartite
graph with colour classes given by monomials in [R/I]s and [R/I]s+1. Thus we can
represent this bipartite graph by a bi-adjacency matrix with rows enumerated by the
monomials in [R/I]s and columns enumerated by the monomials in [R/I]s+1. We fix
the order on the monomials to be the lexicographic order. Clearly then the matrix
Za,b,c,α,β,γ from Proposition 4.8 is the bi-adjacency matrix described here.

Consider the permanent of Z = Za,b,c,α,β,γ, that is,

perm Z =
∑

π∈Shs

hs
∏

i=1

(Z)i,π(i).
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(i) Put vertices in triangle centers (ii) Connect vertices of adjacent triangles

(iii) Select edges covered by lozenges The perfect matching by itself

Figure 4.6: Converting lozenge tilings to perfect matchings of edges

As Z has entries which are either zero or one, we see that all summands in perm Z
are either zero or one. Moreover, each non-zero summand corresponds to a perfect
matching, as it corresponds to an isomorphism between the two colours classes of
the bipartite graph, namely, the monomials in [R/I]s and [R/I]s+1. Thus, perm Z
enumerates the perfect matchings of the bipartite graph associated to Ha,b,c,α,β,γ, and
hence perm Z also enumerates the lozenge tilings of Ha,b,c,α,β,γ.

Proposition 4.16. The number of lozenge tilings of Ha,b,c,α,β,γ is perm Za,b,c,α,β,γ.

Since each perfect matching is an isomorphism between the two colour classes, it
can be seen as a permutation π ∈ Shs

. As with Definition 4.13, it is thus natural to
assign a sign to a given perfect matching.

Definition 4.17. Let P be a perfect matching of the bipartite graph associated to
Ha,b,c,α,β,γ, and let π ∈ Shs

be the associated permutation (as described above). We
define th sign of P to be the signature of the permutation π. That is, sgn P := sgn π.
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Since the sign is the sign that is used in computing the determinant of the matrix
Za,b,c,α,β,γ, we get an enumeration of the signed lozenge tilings of a punctured hexagon
with signs given by the perfect matchings.

Theorem 4.18. The enumeration of signed perfect matchings of the bipartite graph
associated to Ha,b,c,α,β,γ, with signs given by the signs of the related perfect matchings,
is given by det Za,b,c,α,β,γ, where the matrix Za,b,c,α,β,γ is defined in Proposition 4.8.

Remark 4.19. Kasteleyn [24] provided, in 1967, a general method for computing
the number of perfect matchings of a planar graph as a determinant. Moreover, he
provided a classical review of methods and applications of enumerating perfect match-
ings. Planar graphs, such as the “honeycomb graphs” described here, are studied for
their connections to physics; in particular, honeycomb graphs model the bonds in
dimers (polymers with only two structural units) and perfect matchings correspond
to so-called dimer coverings. Kenyon [25] gave a modern recount of explorations on
dimer models, including random dimer coverings and their limiting shapes.

Remark 4.20. Recall that Proposition 4.10 provides a numerical constraint that
determines some of the prime divisors of the determinants of the matrices Za,b,c,α,β,γ

and Na,b,c,α,β,γ by means of some algebra deciding the weak Lefschetz property for
the algebra R/Ia,b,c,α,β,γ. Hence, by Theorems 4.15 and 4.18, we see that information
from algebra can indeed be used to determine some of the prime divisors of the
enumerations of signed lozenge tilings and of signed perfect matchings.

Finally, we note that in [45], Propp gives a history of the connections between
lozenge tilings (of non-punctured hexagons), perfect matchings, plane partitions, and
non-intersecting lattice paths.

4.3 Interlude of signs

In the preceding section we discussed three related combinatorial structures from
which we can extract the primes p for which the algebras R/Ia,b,c,α,β,γ fail to have
the weak Lefschetz property. Therein we discussed two different ways to assign a
sign to a lozenge tiling: by the associated family of non-intersecting lattice paths
(Definition 4.13) and by the associated perfect matching (Definition 4.17). We now
show that the two signs indeed agree.

Fix a hexagonal region H = Ha,b,c,α,β,γ, and fix a lozenge tiling T of H . As
discussed in Section 4.2, we associate to the tiling T a family of non-intersecting
lattice paths LT and a perfect matching PT . Moreover, we introduced a permutation
λT ∈ SC+M associated to LT (see Definition 4.13) and a permutation πT ∈ Shs

associated to PT via Za,b,c,α,β,γ (see Definition 4.17).
We first notice that “rotating” particular lozenge groups of T do not change the

permutation associated to the non-intersecting lattice paths.

Lemma 4.21. Let T be a lozenge tiling of Ha,b,c,α,β,γ. Pick any triplet of lozenges in
T which is either an up or a down grouping, as in Figure 4.7, and let U be T with
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Figure 4.7: up and down lozenge groups with lattice path pieces superimposed

the triplet exchanged for the other possibility (i.e., rotated 180◦). Then U is a lozenge
tiling of Ha,b,c,α,β,γ and λT = λU . Moreover, πU = τπT , for some three-cycle τ ∈ Shs

.

Proof. First, we note that if T is a lozenge tiling of Ha,b,c,α,β,γ then clearly so is U as
the change does not modify any tiles besides the three in the triplet.

Next, notice that exchanging the triplet in T for its rotation only modifies the
associated family of non-intersecting lattice paths in one path. Moreover, it does not
change the starting or ending points of the path, merely the order in which it gets
there, that is, either right then down or down then right. Thus, λT = λU .

Last, suppose, without loss of generality, that our chosen triplet is an up lozenge
group. Label the three upward pointing triangles in the triplet i, j, k as in Figure 4.8.
Thus we see that πU(i) = πT (k), πU (j) = πT (i), πU(k) = πT (j), and πU (m) = πT (m)

Figure 4.8: An up lozenge group with labeling

for m not i, j, or k. Hence πU = τπT where τ is the three-cycle (πT (k), πT (j), πT (i)).

It follows that two lozenge tilings that have the same λ permutation have π per-
mutations with the same sign.

Proposition 4.22. For each Ha,b,c,α,β,γ there exists a constant i ∈ {1,−1} such that
for all lozenge tilings T of Ha,b,c,α,β,γ the expression sgn LT = i · sgn PT holds, where
LT is the family of non-intersecting lattice paths associated to T and PT is the family
of perfect matchings associated to T .

Proof. Step 1 :
Let T and U be two lozenge tilings of Ha,b,c,α,β,γ with λT = λU . As λT = λU ,

then the families of non-intersecting lattice paths associated to T and U start and
end at the same places. Hence T can be modified by a series of, say n, rotations, as
in Lemma 4.21, to U . Thus

πU = τnτn−1 · · · τ1πT ,
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where τ1, . . . , τn ∈ Shs
are three cycles by Lemma 4.21. As sgn τi = 1 for 1 ≤ i ≤ n,

and sgn is a group homomorphism, we see that sgn πT = sgn πU .

Step 2 :
By the comments following Theorem 4.15 we only need to consider the admissible

permutations λ0, . . . , λC . Moreover, sgn λk = (−1)M(C−k) so sgn λk = (−1)M sgn λk+1.
Let T and U be two lozenge tilings of H = Ha,b,c,α,β,γ with λT = λk and λU = λk+1.

That is, sgn λT = (−1)M sgn λU . First, α ≥ C − k by the existence of T as C − k
paths go above the puncture and so must go through a gap of size α, and similarly
β ≥ k + 1 by the existence of U .

By Step 1, we may pick T and U however we wish, as long as λT = λk and
λU = λk+1. In particular, let T , and similarly U , be defined as follows (see Figure 4.9):

(i) The tiling T (ii) The tiling U

Figure 4.9: An example of tilings T and U of H9,8,9,4,3,3, for k = 1, which are “minimal”
below the puncture and “maximal” everywhere else; both tilings have the regions of
similarity highlighted.

(i) The C−k paths above the puncture (C−k−1 for U) always move right before
moving down.

(ii) The M paths from the puncture always move right before moving down.

(iii) The k paths below the puncture (k +1 for U) always move down before moving
right.

With the idea of up and down triplets from Lemma 4.21, we can say a path is
“minimal” if it contains no up triplets and a path is “maximal” if it contains no
down triplets. Thus, T and U are “minimal” below the puncture and “maximal”
everywhere else.

Given this choice, T and U have exactly the same paths for the top C − k − 1
paths above the puncture and the bottom k paths below the puncture. Hence we
can trim off these paths to make two new tilings, T ′ and U ′, of the new punctured
hexagon H ′ = HB+M+1,A+M+1,c,α−(C−k−1),β−k,γ. Notice that H and H ′ have the same
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A, B, M, and γ, only C, α, and β have changed; in particular, C ′ = 1. See Figure 4.10
parts (i) and (ii) for an example of the tilings T ′ and U ′ with their region-of-difference
highlighted in bold.

(i) The tiling T ′ (ii) The tiling U ′

Figure 4.10: The punctured hexagon H7,6,9,3,2,3; both tilings have the region-of-
difference highlighted.

Clearly then T ′ and U ′ differ in four ways: (i) the upper path in T ′ except the small
overlap near the end, (ii) the lower path in U ′, (iii) the position of the bend in the
puncture-paths, and (iv) the part past the bend of the bottom puncture-path in T ′.
The difference between T ′ and U ′ is exactly 2(A+B +M)+M−1 tiles; moreover the
region-of-difference forms a cycle so that there exists a (2(A+B+M)+M −1)-cycle,
σ, such that πT ′ = σπU ′ . We then have

sgn πT ′ = (−1)2(A+B+M)+M−1−1 sgn πU ′ = (−1)M sgn πU ′ .

That is, sgn πT = (−1)M sgn πU . Since sgn λT = (−1)M sgn λU , the claim follows.

We conclude that Za,b,c,α,β,γ and Na,b,c,α,β,γ have the same determinant, up to sign.

Theorem 4.23. Consider the punctured hexagon Ha,b,c,α,β,γ. Then

| detZa,b,c,α,β,γ| = | detNa,b,c,α,β,γ|.

Proof. Combine Theorems 4.15 and 4.18 via Proposition 4.22.

Moreover, when the puncture is of even length, the determinant and permanent
of Za,b,c,α,β,γ are the same.

Corollary 4.24. Consider the punctured hexagon Ha,b,c,α,β,γ. If M is even, then

perm Za,b,c,α,β,γ = | det Za,b,c,α,β,γ|.

Proof. A simple analysis of the proof of Proposition 4.22 implies that when M is even
then sgn πT = sgn πU for all tilings T and U of Ha,b,c,α,β,γ. Thus, the enumeration
of signed lozenge tilings of Ha,b,c,α,β,γ is, up to sign, the enumeration of (unsigned)
lozenge tilings of Ha,b,c,α,β,γ. Thus, the claim follows from Proposition 4.16 and The-
orem 4.18.
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Remark 4.25. We make a pair of remarks regarding the preceding corollary.

(i) The corollary can be viewed as a special case of Kasteleyn’s theorem on enu-
merating perfect matchings [24]. To see this, notice that when M is even, then
all “faces” of the bipartite graph have size congruent to 2 (mod 4).

(ii) The corollary extends [6, Theorem 1.2], where punctured hexagons with trivial
puncture (i.e., M = 0) are considered. We further note that [25, Section 3.4]
provides, independently, essentially the same proof as [6], and the proof of
Lemma 4.21 builds on this technique.

We conclude this section with some observations on the signs introduced here.
Let T be a lozenge tiling of Ha,b,c,α,β,γ, and let LT and PT be the associated family

of non-intersecting lattice paths and perfect matching, respectively. By Proposi-
tion 4.22, we may assume that sgn LT = sgn PT . Thus we may assign to T the sign
sgn T = sgn LT .

Recall that there are C admissible permutations λ0, . . . , λC (see the discussion
after Theorem 4.15) associated to Ha,b,c,α,β,γ. Further, sgn λk = (−1)M(C−k) and so if
M is even then sgn λk = 1 for all k. Hence, we need only consider M odd. In this
case, sgn λk = 1 if and only if C − k is even. Thus, the sign of T is (−1)C−k.

(i) The sign of a family of
non-inter. lattice paths

(ii) The sign of a lozenge
tiling

(iii) The sign of a perfect
matching

Figure 4.11: Example of interpreting the sign

By definition of λk, C−k is the number of lattice paths in the family that go above
the puncture; see Figure 4.11(i). For the lozenge tiling T , C−k is the number of edges
of lozenges of T that touch the line formed by extending the edge of the puncture
parallel to the side of length C to the side of length A + M ; see Figure 4.11(ii).
Note that this interpretation is in line with the definition of the statistic n(·) in [7,
Section 2]. Last, for the perfect matching, C − k is the number of non-selected edges
that correspond to those on the edge described for lozenge tilings; see Figure 4.11(iii).

4.4 Determinants

We continue to use the notation introduced in Proposition 4.3 and Theorem 4.11.
Throughout this section we assume that A, B, C, and M meet conditions (i)-(iv) of
Proposition 4.3 and a + b + c + α + β + γ ≡ 0 (mod 3).
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We will discuss properties of the determinant of the matrix Na,b,c,α,β,γ given in
Proposition 4.9 using Theorem 4.15. In particular, we are chiefly interested in whether
the determinant is zero and if we can compute an upper bound on the prime divisors.
In some cases we can explicitly compute the determinant.

A few properties

First, a brief remark about the polynomial nature of the determinants.

Remark 4.26. The argument in [7, Section 6] demonstrates that for fixed A, B, and
C and α, β, and γ satisfying certain restraints, then the determinant of Na,b,c,α,β,γ is
a polynomial in M , the side-length of the puncture of Ha,b,c,α,β,γ, with integer coeffi-
cients for M of a fixed parity. This argument centers around an alternate bijection
between the lozenge tilings and non-intersecting lattice paths.

We note that the argument is completely independent of the restrictions on α, β,
and γ. Thus, their argument can be easily seen to generalise to show that, for fixed
A, B, C, α, β, and γ, the determinant of Na,b,c,α,β,γ is polynomial in M , for M of a
fixed parity.

We demonstrate that every punctured hexagonal region Ha,b,c,α,β,γ has at least one
tiling.

Lemma 4.27. Every region Ha,b,c,α,β,γ has at least one lozenge tiling.

Proof. In this case, it is easier to show there exists a family L of non-intersecting
lattice paths. In particular, it is sufficient to show that the sum of the maximum
numbers of paths that can go above and below the puncture is at least C. By analysis
of Ha,b,c,α,β,γ, we see that at most min{C, β, B + C − α} paths can go below the
puncture and up to min{C, α, A+C−β} paths can go above the puncture. However,
as 0 ≤ A, B, C and C ≤ α +β, then min{C, β, B +C −α}+min{C, α, A+C −β} ≥
C.

Thus when M is even, the determinant is always positive.

Theorem 4.28. If a + b + c is even, then M is even and det Na,b,c,α,β,γ > 0. Thus

Ia,b,c,α,β,γ = (xa, yb, zc, xαyβzγ)

has the weak Lefschetz property in characteristic zero and when the characteristic is
sufficiently large.

Proof. Recall the definition of the admissible permutations λk, for 0 ≤ k ≤ C (see the
discussion following Theorem 4.15). Since M is even, then sgn λk = 1 for 0 ≤ k ≤ C
and hence det Na,b,c,α,β,γ is the number of tilings of Ha,b,c,α,β,γ. Thus, by Lemma 4.27,
det Na,b,c,α,β,γ > 0.
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Mahonian determinants

MacMahon computed the number of plane partitions (finite two-dimensional ar-
rays that weakly decrease in all columns and rows) in an A×B ×C box as (see, e.g.,
[45, Page 261])

Mac(A, B, C) :=
H(A)H(B)H(C)H(A + B + C)

H(A + B)H(A + C)H(B + C)
,

where A, B, and C are non-negative integers and H(n) :=
∏n−1

i=0 i! is the hyperfac-
torial of n. David and Tomei proved in [12] that plane partitions in an A × B × C
box are in bijection with lozenge tilings in an non-punctured hexagon of side-lengths
(A, B, C, A, B, C). We note that Propp states on [45, Page 258] that Klarner was
likely the first to have observed this. See Figure 4.12 for an illustration of the con-
nection.

Figure 4.12: A 3 × 6 × 5 plane partition and its associated lozenge tiling (with light
grey as the top faces of the boxes)

We can use MacMahon’s formula to compute the determinant of Na,b,c,α,β,γ in
many cases. Also, note that the prime divisors of Mac(A, B, C) are sharply bounded
above by A+B +C − 1. A first case is when the puncture is trivial. This extends [9,
Theorem 4.5] where the level algebras of this family are considered.

Proposition 4.29. If a + b + c = 2(α + β + γ), then M = 0 and det Na,b,c,α,β,γ is

Mac(A, B, C).

Thus, Ia,b,c,α,β,γ has the weak Lefschetz property if the characteristic of K is zero or
at least A + B + C = α + β + γ = 1

2
(a + b + c).

Proof. When M = 0 then there is no puncture in the region Ha,b,c,α,β,γ. Hence the
region is a simple hexagon with side-lengths (A, B, C, A, B, C), exactly the region to
which MacMahon’s formula applies.

This result allows us to recover some earlier results about complete intersections.

Corollary 4.30. If a + b + c is even, then the complete intersection J = (xa, yb, zc)
has the weak Lefschetz property if and only if the characteristic of K is not a prime
divisor of Mac(A, B, C). That is, the algebra R/J has the weak Lefschetz property if
the characteristic of K is zero or at least A + B + C = α + β + γ = 1

2
(a + b + c).
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Figure 4.13: When the puncture has side-length zero, the region is a simple hexagon.

Proof. Set α = 1
2
(−a + b + c), β = 1

2
(a − b + c), γ = 1

2
(a + b − c), and consider

I = (xa, yb, zc, xαyβzγ). Then Proposition 4.29 applies to I and the mixed term,
xαyβzγ , has total degree s + 2. Thus we have that [R/I]i ∼= [R/J ]i for i ≤ s + 1.
That is, the twin peaks of R/I are isomorphic to the twin peaks of the complete
intersection R/J . Hence R/J has the weak Lefschetz property if and only if R/I has
the weak Lefschetz property, and Proposition 4.29 gives the claim.

In particular, the corollary recovers [33, Theorem 3.2(1)] when combined with
Proposition 4.9 and [6, Theorem 1.2] when combined with Corollary 4.24. Further,
the special case in [33, Theorem 4.2] can be recovered if we set a = β + γ, b = α + γ,
and c = α + β.

MacMahon’s formula can be used again in another special case, when C = 0.
(Notice if A or B is zero, then we can simply relabel the sides to ensure C is zero.)
We notice this extends [9, Theorem 4.3] where the level algebras of this family are
considered.

Proposition 4.31. If c = 1
2
(a + b + α + β + γ), then C = 0 and det Na,b,c,α,β,γ is

Mac(M, A − β, B − α).

Thus, Ia,b,c,α,β,γ has the weak Lefschetz property if the characteristic of K is zero or
at least A + B + M − α − β = c − α − β.

Proof. In this case, it is easier to consider families of non-intersecting lattice paths.
In particular, since C = 0, then the only starting points, the Ai, are those on the
puncture. Further, since lattice paths must move only right and down, then we can
focus on the isolated region between the puncture and the bottom-right edge. If we
convert this region back into a punctured hexagon, then it is just a hexagon without a
puncture and with side-lengths (M, A+C−β, B+C−α, M, A+C−β, B+C−α).

Remark 4.32. Notice that in the preceding proof, we show that the only possible
lattice paths come from the puncture to the opposite edge. Converting this back to
the language of lozenge tilings, we see this means that a large region of the figure has
fixed tiles leaving only a small region in which variation can occur. See Figure 4.14
for an illustration of this.
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Figure 4.14: When C is zero, the lightly shaded region has tiles that are fixed, leaving
the only variation in the darkly shaded region.

Further, given the condition in Proposition 4.31, we see that the pure power of
z, zc, has total degree c = s + 2. Thus, if we let I = Ia,b,c,α,β,γ, then we have that
[R/I]i ∼= [R/J ]i for i ≤ s + 1, where J = (xa, yb, xαyβzγ). Thus, the twin peaks of
R/I are isomorphic to the twin peaks of the non-artinian algebra R/J .

Corollary 4.33. Let J = (xa, yb, xαyβzγ) and c = 1
2
(a+b+α+β+γ), with parameters

still suitably restricted. Then the map

[R/J ]i
×(x+y+z)
−→ [R/J ]i+1

is injective for i ≤ c.

Further, MacMahon’s formula can be used when C is maximal, that is, C = α+β.

Proposition 4.34. If c = 1
2
(a + b + γ)−α−β, then C = α + β and det Na,b,c,α,β,γ is

Mac(A, B, C + M).

Thus, Ia,b,c,α,β,γ has the weak Lefschetz property if the characteristic of K is zero or
at least A + B + C + M = s + 2 = c + α + β.

Proof. In this case, it is easier to consider families of non-intersecting lattice paths.
In particular, since C = α + β, then γ = A + B and so the puncture has a point
touching the side labeled C; see Figure 4.15. Thus the lattice paths starting from
A1, . . . , Aβ have the first M moves being down and the lattice paths starting from
Aβ+1, . . . , AC have the first M moves being right. However, we then see that each
Ai “starts” on the same line, the line running through the lower-right side of the
puncture. If we convert the region-of-interest back into a punctured hexagon, then it
is a simple hexagon with side-lengths (A, B, C + M, A, B, C + M).

The next case considered, when the mixed term is in two variables, needs a special
determinant calculation which may be of independent interest.
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Figure 4.15: When C is maximal, the lightly shaded region has tiles which are fixed,
leaving the only variation in the darkly shaded region.

Lemma 4.35. Let T be an n-by-n matrix defined as follows

(T )i,j =















(

p

q + j − i

)

if 1 ≤ j ≤ m,
(

p

q + r + j − i

)

if m + 1 ≤ j ≤ n,

where p, q, r, and m are non-negative integers and 1 ≤ m ≤ n. Then

det T = Mac(m, q, r) Mac(n − m, p − q − r, r)
H(q + r)H(p − q)H(n + r)H(n + p)

H(n + p − q)H(n + q + r)H(p)H(r)
.

Proof. In this case, we can use [7, Equation (12.5)] to evaluate det T to be

∏

1≤i<j≤n

(Lj − Li)
n
∏

i=1

(p + i − 1)!

(n + p − Li)!(Li − 1)!
,

where Lj = q + j if 1 ≤ j ≤ m and Lj = q + r + j if m + 1 ≤ j ≤ n. If we split the
products in the previously displayed equation relative to the split in Lj, then we get
the following equations:

∏

1≤i<j≤n

(Lj − Li) =

(

∏

1≤i<j≤m

(j − i)

)(

∏

m<i<j≤n

(j − i)

)(

∏

1≤i≤m<j≤n

(r + j − i)

)

= (H(m)) (H(n − m))

(

H(n + r)H(r)

H(n + r − m)H(m + r)

)
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and

n
∏

i=1

(p + i − 1)!

(n + p − Li)!(Li − 1)!
=

(

n
∏

i=1

(p + i − 1)!

)(

m
∏

i=1

1

(n + p − q − i)!(q + i − 1)!

)

(

n
∏

i=m+1

1

(n + p − q − r − i)!(q + r + i − 1)!

)

=

(

H(n + p)

H(p)

)(

H(n + p − m − q)H(q)

H(n + p − q)H(m + q)

)

(

H(p − q − r)H(m + q + r)

H(n + p − m − q − r)H(n + q + r)

)

.

Bringing these equations together we have that det T is

det T =
H(m)H(q)H(r)H(m + q + r)

H(m + r)H(m + q)
×

H(n − m)H(p − q − r)H(n + p − m − q)

H(n + r − m)H(n + p − m − q − r)

×
H(n + r)H(n + p)

H(p)H(n + p − q)H(n + q + r)
.

After minor manipulation, this yields the claimed result.

Remark 4.36. Lemma 4.35 generalises the result of [33, Lemma 2.2] where the case
r = 1 is discussed. Further, when r = 0, then det T = Mac(n, p − q, q), as expected
(see the running example, det

(

a+b
a−i+j

)

, in [27]).

The case when the mixed term has only two variables follows immediately.

Proposition 4.37. If γ = 0, then | detNa,b,c,α,β,γ| is

Mac(β − A, A, M) Mac(α − B, B, M)

×
H(A + M)H(B + M)H(C + M)H(A + B + C + M)

H(a)H(b)H(c)H(M)
.

Thus, the type 2 ideal
Ia,b,c,α,β,0 = (xa, yb, zc, xαyβ)

has the weak Lefschetz property if the characteristic of K is zero or at least A + B +
C + M .

Proof. As γ = 0, N = Na,b,c,α,β,γ has entries given by

(N)i,j =







(

c
A+j−i

)

if 1 ≤ i ≤ C,
{

1 if j = i + β − A − C
0 if j 6= i + β − A − C

}

if C + 1 ≤ i ≤ C + M.
.
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Figure 4.16: When γ is zero, the starting points AC+1, . . . , AC+M coincide with the
M consecutive ending points EA−β+1, . . . , EA−β+M .

Further, if we define the matrix T by

(T )i,j =

{
(

c
A+j−i

)

if 1 ≤ j ≤ β − A,
(

c
A+M+j−i

)

if β − A + 1 ≤ j ≤ C
,

then | det N | = | detT | due to the structure of the lower-part of N . Thus, if we let
p = c, q = A, r = M, m = β−A, and n = C, then by Lemma 4.35 we have the desired
determinant evaluation.

Moreover, α + M and β + M are smaller than A + B + C + M , so the prime
divisors of det N are strictly bounded above by A + B + C + M .

Remark 4.38. Proposition 4.37 deserves a pair of comments:

(i) The evaluation of the determinant includes two Mahonian terms and a third
non-Mahonian term. It should be noted that both hexagons associated to the
Mahonian terms actually show up in the punctured hexagon. See Figure 4.17

Figure 4.17: The darkly shaded hexagons correspond to the two Mahonian terms in
the determinantal evaluation.

where the darkly shaded hexagons correspond to the Mahonian terms. It is not
clear (to us) where the third term comes from, though it may be of interest to
note that if one subtracts M from each hyperfactorial, before the evaluation,
then what remains is Mac(A, B, C).

(ii) We notice the proposition also extends [38, Lemma 6.6] where it was shown
that the associated almost complete intersection always has the weak Lefschetz
property in characteristic zero (i.e., the determinant is non-zero). That is, all
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level type 2 artinian monomial almost complete intersections in R have the
weak Lefschetz property in characteristic zero.

Exploring symmetry

When a = b (equivalently, A = B) and α = β, then Ha,a,c,α,α,γ is symmetric;
see Figure 4.18. In this case, c is even exactly when M = 1

3
(2a + c − 4α − 2γ) is

even; similarly, γ is even exactly when C = 1
3
(2a − 2c + 2α + γ) is even. Moreover,

α = A + 1
2
(C − γ).

Figure 4.18: When a = b and α = β, then Ha,a,c,α,α,γ is symmetric.

When C and M are odd, we can exploit symmetry to show det Na,a,c,α,α,γ is 0.
This result extends the evaluation in [38, Corollary 7.4] and offers a (more) direct
combinatorial proof, rather than one based on linear algebra.

Proposition 4.39. If c and γ are odd, a = b, and α = β, then Ha,a,c,α,α,γ is symmetric
with an odd puncture (i.e., M odd; see Figure 4.18) and det Na,a,c,α,α,γ is 0. Thus,

Ia,a,c,α,α,γ = (xa, ya, zc, xαyαzγ)

never has the weak Lefschetz property, regardless of characteristic.

Proof. Recall the admissible partitions of Ha,a,c,α,α,γ are λ0, . . . , λC . For 0 ≤ i ≤
C−1

2
we see that P+

λi
(A → E) = P+

λC−i
(A → E) by symmetry, and further that

sgn λi = − sgn λC−i, as sgn λk = (−1)M(C−k) and C is odd. Hence, det Na,b,c,α,β,γ =
∑C

i=0 sgn λiP
+
λi

(A → E) = 0.

From the preceding proof we see that if we consider c even instead of c odd (i.e.,
M even instead of M odd), then det Na,a,c,α,α,γ is even, when γ is odd (i.e., C is odd).

Recall the definitions of A, B, C, and M from Proposition 4.3, Ha,a,c,α,α,γ from
Theorem 4.11, and Na,b,c,α,β,γ from Proposition 4.9. If C or M is even, then the
region Ha,a,c,α,α,γ is symmetric and we offer the following conjecture for a closed form
for det Na,a,c,α,α,γ. Notice that in this case α = A + 1

2
(C − γ).
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Conjecture 4.40. Suppose a = b and α = β so Ha,a,c,α,α,γ is symmetric. If c or γ is
even, then det Na,b,c,α,β,γ is

(−1)M⌈C
2 ⌉ ×

H(
⌊

M
2

⌋

)H(
⌊

M
2

⌋

+ A)H(
⌊

M
2

⌋

+ C+γ
2

)H(
⌊

M
2

⌋

+ A + C−γ
2

)

H(
⌊

M+C
2

⌋

)H(
⌊

M+γ
2

⌋

)H(
⌊

M+C
2

⌋

+ A)H(
⌊

M−γ
2

⌋

+ A)

×
H(
⌈

M
2

⌉

)H(
⌈

M
2

⌉

+ A)H(
⌈

M
2

⌉

+ C+γ
2

)H(
⌈

M
2

⌉

+ A + C−γ
2

)

H(
⌈

M+C
2

⌉

)H(
⌈

M+γ
2

⌉

)H(
⌈

M+C
2

⌉

+ A)H(
⌈

M−γ
2

⌉

+ A)

×
H(A −

⌊

γ
2

⌋

)H(
⌊

C
2

⌋

)H(
⌊

γ
2

⌋

)H(A −
⌈

γ
2

⌉

)H(
⌈

C
2

⌉

)H(
⌈

γ
2

⌉

)

H(γ)H2(A + C−γ
2

)

×
H(M + C)H(M + γ)H(M + A +

⌊

C
2

⌋

)H(M + A +
⌈

C
2

⌉

)H(M + 2A + C)

H(M + 2A)H2(M + A + C)H2(M + C+γ
2

)
.

Further, the ideal
Ia,a,c,α,α,γ = (xa, ya, zc, xαyαzγ)

has the weak Lefschetz property when the characteristic of K is zero or at least 2A +
C + M .

Remark 4.41. The above symmetry conjecture deserves a few remarks.

(i) Note that by Remark 4.26, det Na,b,c,α,β,γ is polynomial in M . Further, the
conjectured form of the determinant would imply that the polynomial factors
completely into linear terms and has degree AC +

⌊

γ
2
(C − γ

2
)
⌋

.

(ii) If Conjecture 4.40 were shown to hold, then it would complete the (−1)-
enumeration of symmetric punctured hexagons when combined with Propo-
sition 4.39,

(iii) As expected, the conjecture corresponds to Proposition 4.31 when C = 0, to
Proposition 4.34 when A = 1

2
γ (this implies α = 1

2
C and so C = 2α, which is

maximal), and to Proposition 4.37 when γ = 0. Moreover, when A = C = γ,
then Ha,a,c,α,α,γ has an axis-central puncture (see Section 4.5) and the conjecture
corresponds to Corollary 4.46.

We give an example of using the symmetry conjecture.

Example 4.42. Consider A = B = 8, C = 6, γ = 2, and M even. Then α = β = 10,
a = b = 14 + M , and c = 16 + M . Moreover, the region H14+M,14+M,16+M,10,10,2 is
symmetric and does not fall into the case of Remark 4.41(iii).

Supposing Conjecture 4.40 holds, then the (−1)-enumeration of the punctured
hexagon H14+M,14+M,16+M,10,10,2 is

1

−2343165676
× (M + 1)(M + 3)3(M + 4)2(M + 5)3(M + 7)(M + 2)2(M + 13)4

×(M + 14)6(M + 15)5(M + 16)6(M + 17)3(M + 18)4(M + 19)(M + 20)2.

Thus, I14+M,14+M,16+M,10,10,2 = (x14+M , y14+M , z16+M , x10y10z2) has the weak Lef-
schetz property when the characteristic of the ground field is 0 or at least M + 21.
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So far, in every case where we can bound the prime divisors of det Na,b,c,α,β,γ from
above, we can do so linearly in the parameters (actually, always by at most s + 2).
This may, however, not always be the case. We provide the following example to
demonstrate that this is true, but also as a contrast to the symmetry conjecture,
where some restrictions lead to a (conjectured) closed form.

Example 4.43. Consider the level and type 3 algebra given by R/I, where

I1+t,4+t,7+t,1,4,7 = (x1+t, y4+t, z7+t, xy4z7)

and t ≥ 4. By Remark 4.26, we have that det N = det N1+t,4+t,7+t,1,4,7 is a polynomial
in t. Hence we can use interpolation to determine the polynomial in terms of t; in
particular, det N1+t,4+t,7+t,1,4,7 is

4

H(7)
(t − 3)(t − 2)(t − 1)3t3(t + 1)2(t + 2)(t + 4)(t + 6)(t2 + 6t − 1)

if t is odd and otherwise is

4

H(7)
(t − 2)2(t − 1)2t4(t + 1)2(t + 2)(t + 5)(t + 7)(t2 + 2t − 9).

In 1857, Bouniakowsky conjectured that for every irreducible polynomial f ∈ Z[t]
of degree at least 2 with common divisor d = gcd{f(i) | i ∈ Z}, there exists
infinitely many integers t such that 1

d
f(t) is prime. We note that the weaker Fifth

Hardy-Littlewood conjecture, which states that t2 + 1 is prime for infinitely many
positive integers t, is a special case of the Bouniakowsky conjecture.

When t is odd, the determinant has the quadratic factor t2 + 6t − 1. If we let
t = 2k+1, then this factor becomes 2(2k2+8k+3), which is an irreducible polynomial
over Z[k] with common divisor 2 (when k = 4 then the polynomial evaluates to
134 = 2 · 67). Hence the quadratic factor of the determinant is prime for infinitely
many odd integers t, assuming the Bouniakowsky conjecture. Similarly the quadratic
factor of the determinant for t even is prime for infinitely many even integers t, again
assuming the Bouniakowsky conjecture.

Hence, assuming the Bouniakowsky conjecture, for large enough t, the upper
bound on the prime divisors of the determinant grows quadratically in t.

The above example falls in to the case of Proposition 4.50(ii)(a) or the second
open case immediately following the proposition, depending on the parity of t.

4.5 Centralising the puncture

In this section we consider two subtlety different ways to centralise the puncture of a
punctured hexagon. The first, axis-central, forces the puncture to be centered along
each axis, individually. The second, gravity-central, forces the puncture to be the
same distance, simultaneously, from the three sides of the hexagon that are parallel
to the puncture-sides.
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Throughout this section we assume, in addition to the conditions in Proposi-
tion 4.3 and a + b + c + α + β + γ ≡ 0 (mod 3), that Ia,b,c,α,β,γ has type 3, that is, α,
β, and γ are non-zero.

Axis-central

We define a punctured hexagon Ha,b,c,α,β,γ to have an axis-central puncture if the
puncture is “central” as defined in [7, Section 1]. Specifically, for each side of the
puncture, the puncture-side should be the same distance from the parallel hexagon-
side as the puncture-vertex opposite the puncture-side is from the other parallel
hexagon-side; see Figure 4.19(i). However, when c has a different parity than both
a and b, then an adjustment has to be made; in particular, translate the puncture
parallel to the hexagon-side of length C one-half unit toward the side of length A;
see Figure 4.19(b).

(i) The parity of c agrees with a and
b. (ii) The parity of c differs from a and b.

Figure 4.19: A punctured hexagon with an axis-central puncture.

When Ha,b,c,α,β,γ has an axis-central puncture, then the ideal has a nice form.
Suppose first that a, b, and c have the same parity. Then α = a − M − α so
a = 2α + M ; similarly, b = 2β + M and c = 2γ + M . Thus, if we set t = M , then

I2α+t,2β+t,2γ+t,α,β,γ = (x2α+t, y2β+t, z2γ+t, xαyβzγ).

The conditions in Proposition 4.3 simplify to α ≤ β + γ, β ≤ α + γ, γ ≤ α + β, and
t ≥ 0.

Now, suppose the parity of c differs from that of both a and b. Then α = a−M −
α + 1, β = b − M − β − 1, and γ = c −M − γ, so a = 2α + M − 1, b = 2β + M + 1,
and c = 2γ + M . Thus, if we set t = M , then

I2α+t−1,2β+t+1,2γ+t,α,β,γ = (x2α+t−1, y2β+t+1, z2γ+t, xαyβzγ).

The conditions in Proposition 4.3 simplify to α ≤ β +γ +1, β ≤ α+γ−1, γ ≤ α+β,
and t ≥ 0.
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Much to our fortune, the determinants of Na,b,c,α,β,γ have been calculated for
punctured hexagons with axis-central punctures. We recall the four theorems here,
although we forgo the exact statements of the determinant evaluations; the explicit
evaluations can be found in [7]. Note, the abbreviations CEKZ comes from the four
authors of [7]: Ciucu, Eisenkölbl, Krattenthaler, and Zare.

Theorem 4.44. [7, Theorems 1, 2, 4, & 5] Let A, B, C, and M be non-negative
integers and let H be the associated hexagon with an axis-central puncture. Then

(1) The number of lozenge tilings of H is CEKZ1(A, B, C, M) if A, B, and C share
a common parity.

(2) The number of lozenge tilings of H is CEKZ2(A, B, C, M) if A, B, and C do
not share a common parity.

(4) The number of signed lozenge tilings of H is

(i) CEKZ4(A, B, C, M) if A, B, and C are all even, and

(ii) 0 if A, B, and C are all odd.

(5) The number of signed lozenge tilings of H is CEKZ5(A, B, C, M) if A, B, and
C do not share a common parity.

Moreover, the four functions CEKZi are polynomials in M with integer coefficients
which factor completely into linear terms. Further, each can be expressed as a quotient
of products of hyperfactorials and, in each case, the largest hyperfactorial term is
H(A + B + C + M).

Thus, we calculate the permanent of Za,b,c,α,β,γ.

Corollary 4.45. Let Ha,b,c,α,β,γ be a hexagon with an axis-central puncture. Then

perm Za,b,c,α,β,γ =

{

CEKZ1(A, B, C, M) if a, b, and c share a common parity;

CEKZ2(A, B, C, M) otherwise.

Proof. This follows from Proposition 4.16 and Theorem 4.44.

Moreover, we calculate the determinant of Na,b,c,α,β,γ, and thus can completely
classify when the algebra R/Ia,b,c,α,β,γ has the weak Lefschetz property.

Corollary 4.46. Let Ha,b,c,α,β,γ be a hexagon with an axis-central puncture. If M is
even, then

det Na,b,c,α,β,γ =

{

CEKZ1(A, B, C, M) if a, b, and c have the same parity;

CEKZ2(A, B, C, M) otherwise.
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If M is odd, then

det Na,b,c,α,β,γ =



















CEKZ4(A, B, C, M) if a, b, c, and s + 2 have the same parity;

0
if a, b, and c have the same parity
different from the parity of s + 2;

CEKZ5(A, B, C, M) if a, b, and c do not have the same parity.

Thus, R/Ia,b,c,α,β,γ always fails to have the weak Lefschetz property if a, b, c, and
M are odd, regardless of the field characteristic. Otherwise, R/Ia,b,c,α,β,γ has the weak
Lefschetz property if the field characteristic is zero or at least A + B + C + M .

Proof. This follows from Theorem 4.15 and Theorem 4.44.

As we will see in the following subsection, having a gravity-central puncture is
equivalent to the associated algebra being level.

Question 4.47. Consider the punctured hexagon Ha,b,c,α,β,γ. Is there an algebraic
property P of algebras such that Ha,b,c,α,β,γ has an axis-central puncture if and only
if R/Ia,b,c,α,β,γ has property P ?

Gravity-central

We define a punctured hexagon Ha,b,c,α,β,γ to have a gravity-central puncture if the
vertices of the puncture are each the same distance from the perpendicular side of the
hexagon; see Figure 4.20. That is, we have that B +C −α = A+C −β = A+B−γ,

Figure 4.20: A punctured hexagon with a gravity-central puncture.

which simplifies to the relation a−α = b−β = c−γ, and this is exactly the condition
in Proposition 4.1(ii) for R/Ia,b,c,α,β,γ to be level and type 3. Thus, if we let t be this
common difference, then we can rewrite Ia,b,c,α,β,γ as

Iα+t,β+t,γ+t,α,β,γ = (xα+t, yβ+t, zγ+t, xαyβzγ).

Without loss of generality, assume 0 < α ≤ β ≤ γ. Then the conditions in Proposi-
tion 4.3 simplify to t ≥ 1

3
(α + β + γ) and γ ≤ 2(α + β).
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The ideals Iα+t,β+t,γ+t,α,β,γ are studied extensively in [38, Sections 6 & 7]. In
particular, [38, Conjecture 6.8] makes a guess as to when R/Iα+t,β+t,γ+t,α,β,γ has the
weak Lefschetz property in characteristic zero. We recall the conjecture here, though
we present it in a different but equivalent form.

Conjecture 4.48. Consider the ideal Iα+t,β+t,γ+t,α,β,γ in R where K has characteristic
zero, 0 < α ≤ β ≤ γ ≤ 2(α+β), t ≥ 1

3
(α+β +γ), and α+β +γ is divisible by three.

If (α, β, γ, t) is not (2, 9, 13, 9) or (3, 7, 14, 9), then R/Iα+t,β+t,γ+t,α,β,γ fails to have
the weak Lefschetz property if and only if t is even, α + β + γ is odd, and α = β or
β = γ.

Remark 4.49. [38, Conjecture 6.8] is presented in a format that does not elucidate
the reasoning behind it. We present the conjecture differently so it says that the
weak Lefschetz property fails in two exceptional cases and also when a pair of parity
conditions and a symmetry condition hold.

We add further support to the conjecture.

Proposition 4.50. Let I = Iα+t,β+t,γ+t,α,β,γ be as in Conjecture 4.48. Then

(i) R/I fails to have the weak Lefschetz property when t is even, α + β + γ is odd,
and α = β or β = γ;

(ii) R/I has the weak Lefschetz property when

a) t and α + β + γ have the same parity, or

b) t is odd and α = β = γ is even.

Proof. Part (i) follows from Proposition 4.39 (also by [38, Corollary 7.4]). Part (ii)(a)
implies M is even and so follows by Theorem 4.28. Part (ii)(b) follows from [7,
Theorem 4], which is recalled here in Theorem 4.44(4)(i).

We note that Conjecture 4.48 remains open in two cases, both of which are con-
jectured to have the weak Lefschetz property:

(i) t even, α + β + γ odd, and α < β < γ;

(ii) t odd, α + β + γ even, and α < β or β < γ.

Remark 4.51. Notice that the second open case in the above statement is solved for
the cases when α = β or β = γ if Conjecture 4.40 is true.
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Axis- and gravity-central

Suppose a, b, and c have the same parity. Then the punctured hexagons that
are both axis- and gravity-central are precisely those with a = b = c = α + t and
α = β = γ. In this case, we strengthen [38, Corollary 7.6].

Corollary 4.52. Consider the level, type 3 algebra A given by

R/Iα+t,α+t,α+t,α,α,α = R/(xα+t, yα+t, zα+t, xαyαzα),

where t ≥ α. Then A fails to have the weak Lefschetz property in characteristic zero
if and only if α is odd and t is even.

In [28], Krattenthaler described a bijection between cyclically symmetric lozenge
tilings of the punctured hexagon considered in the previous corollary and descending
plane partitions with specified conditions.

If c has a different parity than a and b, then α − 1 = β + 1 = γ. Thus for α ≥ 3
and M non-negative we have that the ideals of the form

I2α+M,2α+M−2,2α+M−1,α,α,α = (x2α+M , y2α+M−2, z2α+M−1, xαyα−2zα−1),

are precisely those that are both axis- and gravity-central.

4.6 Interesting families and examples

In this section, we give several interesting families and examples.

Large prime divisors

Throughout the two preceding sections, when we could bound the prime divisors
of det N above, we bounded them above by (at most) s + 2. However, this need
not always be the case, as demonstrated in Example 4.43. We provide here a few
exceptional-looking though surprisingly common cases.

Example 4.53. Recall that s+2 = 1
3
(a+ b+ c+α+β +γ). In each case, we specify

the parameter set by a sextuple (a, b, c, α, β, γ).

(i) Consider the parameter set (4, 6, 6, 1, 1, 3). Then s + 2 = 7 and det N = 11.
This is the smallest s + 2 so that det N has a prime divisor greater than s + 2.

(ii) For the parameter set (20, 20, 20, 3, 8, 13), we get s + 2 = 28 and

det N = 2 · 32 · 53 · 7 · 11 · 172 · 196 · 235 · 20554657.

Hence det N is divisible by a prime that is over 700000 times large than s + 2.
Moreover, 20554657 is greater than the multiplicity of the associated algebra.
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(iii) Consider the parameter set (7, 12, 13, 1, 7, 2). Then s + 2 = 14 and det N =
13 · 17 · 23. This is the smallest s + 2 so that det N has more than one prime
divisor greater than s + 2.

(iv) Last, for the parameter set (8, 12, 15, 2, 8, 5), we get s + 2 = 17 and det N =
2 · 11 · 132 · 179 · 197. In this case, notice that det N has two prime divisors
both greater than a + b + c + α + β + γ, the sum of the generating degrees of
R/Ia,b,c,α,β,γ.

Given the previous example and Example 4.43, it seems unlikely that there is
a reasonably simple closed formula for the determinant of Na,b,c,α,β,γ in general, as
opposed to the case of a symmetric region (see Conjecture 4.40).

Fixed determinants

For any positive integer n, there is an infinite family of punctured hexagons with
exactly n tilings. Note the algebras are type 2 if β is zero or c = n + β + 1 and type
3 otherwise.

Proposition 4.54. Let n be a positive integer. If β ≥ 0 and c ≥ n + β + 1, then

det Nc−β−1,β+2,c,c−n−β−1,β,n = n.

Hence the ideal

Ic−β−1,β+2,c,c−n−β−1,β,n = (xc−β−1, yβ+2, zc, xc−n−β−1yβzn)

has the weak Lefschetz property when the characteristic of K is either zero or not a
prime divisor of n.

Proof. In this case, s = c − 2, A = β + 1, B = c − β − 2, C = 0, and M = 1.
Using Proposition 4.31 we have that

det Nc−β−1,β+2,c,c−n−β−1,β,n = Mac(M, A − β, B − α) = Mac(1, 1, n − 1) = n.

Alternatively, from Proposition 4.9 we have that

Nc−β−1,β+2,c,c−n−β−1,β,n =

((

γ

A + C − β

))

=

((

n

1

))

= (n) .

Clearly then the determinant is n.

Thus for any prime p, Proposition 4.54 provides infinitely many monomial almost
complete intersections that fail to have the weak Lefschetz property exactly when the
field characteristic is p.

A result of Proposition 4.54 is an infinite (in fact, two dimensional) family whose
members have a unique tiling. Note that the algebras are type 2 if β is zero or
c = β + 2 and type 3 otherwise.
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Corollary 4.55. If β ≥ 0 and c ≥ β +2, then det Nc−β−1,β+2,c,c−β−2,β,1 is 1. That is,

Ia,b,c,α,β,γ = (xc−β−1, yβ+2, zc, xc−β−2yβz)

has the weak Lefschetz property independent of the field characteristic.

Another family whose members have a unique tiling comes from Proposition 4.37.
Note that it is a three dimensional family but also that all of the associated algebras
are type 2.

Proposition 4.56. If a = b = α+β+c and γ = 0, then A = B = 0 (see Figure 4.21)
and det Na,b,c,α,β,γ is 1. That is,

Ia,b,c,α,β,γ = (xα+β+c, yα+β+c, zc, xαyβ)

has the weak Lefschetz property independent of the field characteristic.

Figure 4.21: When A = B = γ = 0, then Ha,b,c,α,β,γ has a unique tiling.

Proof. This follows from Proposition 4.37.

Several questions were asked in [38], two of which we can answer in the affirmative.

Remark 4.57. Question 8.2(2c) asked if there exist non-level almost complete in-
tersections which never have the weak Lefschetz property. The almost complete
intersection

R/I5,5,3,2,2,1 = R/(x5, y5, z3, x2y2z)

is non-level and never has the weak Lefschetz property, regardless of field character-
istic, as det N5,5,3,2,2,1 = 0 by Proposition 4.39.

Further, we notice here that Question 8.2(2b) in [38] is answered in the affirmative
by the comments following Question 7.12 in [38]. In particular, I11,18,22,2,9,13 is a level
almost complete intersection which has odd socle degree (39) and never has the weak
Lefschetz property, as det N11,18,22,2,9,13 = 0.
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Minimal multiplicity

The Huneke-Srinivasan Multiplicity Conjecture, which was proven by Eisenbud
and Schreyer [14, Corollary 0.3], shows that the multiplicity of a Cohen-Macaulay
module gives nice bounds on the possible shifts of the Betti numbers. Moreover, as
the algebras A can be viewed as finite dimensional vector spaces, then the multiplicity
is the dimension of A as a vector space. Thus, algebras that have minimal multiplicity
while retaining a particular property are the smallest, in the above sense, examples
one can generate.

Example 4.58. Possibly of interest are a few cases of minimal multiplicity with
regard to the weak Lefschetz property.

The following examples never have the weak Lefschetz property, that is, the de-
terminant of their associated matrix Na,b,c,α,β,γ is 0. Note that both examples are
type 3.

(i) The unique level ideal with minimal multiplicity is

I3,3,3,1,1,1 = (x3, y3, z3, xyz).

Its Hilbert function is (1, 3, 6, 6, 3) and so it has multiplicity 19. It is worth
noting that this ideal is extensively studied in [4, Example 3.1] and is the basis
for an exploration of the subtlety of the Lefschetz properties in Chapter 5.

(ii) The unique non-level ideal with minimal multiplicity is

I5,5,3,2,2,1 = (x5, y5, z3, x2y2z).

Its Hilbert function is (1, 3, 6, 9, 12, 12, 9, 4, 1) and so it has multiplicity 57. Fur-
ther, this ideal is the example given in Remark 4.57.

Moreover, the following examples always have the weak Lefschetz property, re-
gardless of the base field characteristic. That is to say, the determinant of their
associated matrix Na,b,c,α,β,γ is 1.

(i) The two level ideals with minimal multiplicity are

I1,2,3,0,1,2 = (x, y2, z3, yz2) and I1,3,3,0,1,1 = (x, y3, z3, yz).

Both ideals have Hilbert function (1, 2, 2) and thus multiplicity 5. However,
both ideals are isomorphic to ideals in K[y, z].

(ii) The unique level, type 2 ideal without x as a generator and with minimal
multiplicity is

I2,2,3,1,1,0 = (x2, y2, z3, xy).

Its Hilbert function is (1, 3, 3, 2) and so it has multiplicity 9.
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(iii) The unique level, type 3 ideal with minimal multiplicity is

I3,3,6,1,1,4 = (x3, y3, z6, xyz4).

Its Hilbert function is (1, 3, 6, 8, 9, 9, 7, 3) and so it has multiplicity 46.

(iv) The unique non-level, type 2 ideal with minimal multiplicity is

I2,2,3,0,1,1 = (x2, y2, z3, yz).

Its Hilbert function is (1, 3, 3, 1) and so it has multiplicity 8.

(v) The unique non-level, type 3 ideal with minimal multiplicity is

I2,2,4,1,1,2 = (x2, y2, z4, xyz2).

Its Hilbert function is (1, 3, 4, 4, 2) and so it has multiplicity 14.

Notice that example (ii) and (iv) in the above enumeration differ only slightly in
the mixed term yet one is level and the other is not. It should also be noted that
all of the above examples were found via an exhaustive search in the finite space of
possible ideals using Macaulay2 [18].

4.7 Splitting type and regularity

Throughout this section we assume K is an algebraically closed field of characteristic
zero.

Recall the definition of the ideals given in Section 4.1; consider

I = Ia,b,c,α,β,γ = (xa, yb, zc, xαyβzγ),

where 0 ≤ α < a, 0 ≤ β < b, 0 ≤ γ < c, and at most one of α, β, and γ is zero. In this
section we consider the splitting type of the syzygy bundles of the artinian algebras
R/I, regardless of any extra conditions on the parameters.

Recall, also from Section 4.1, that the syzygy module syz I of I is defined by the
exact sequence

0 −→ syz I −→ R(−α − β − γ) ⊕ R(−a) ⊕ R(−b) ⊕ R(−c) −→ Ia,b,c,α,β,γ −→ 0

and the syzygy bundle s̃yz I on P2 of I is the sheafification of syz I. Its restriction
to the line H ∼= P1 defined by ℓ = x + y + z splits as OH(−p) ⊕OH(−q) ⊕OH(−r).
The arguments in [38, Proposition 2.2] (recalled here in Proposition 2.12) imply that

(p, q, r) is the splitting type of the restriction of s̃yz I to a general line. Thus, we call
(p, q, r) the generic splitting type of syz I.

In order to compute the generic splitting type of syz I, we use the observation that
R/(I, ℓ) ∼= S/J , where S = K[x, y], and J = (xa, yb, (x + y)c, xαyβ(x + y)γ). Define
syz J by the exact sequence

0 −→ syz J −→ S(−α − β − γ) ⊕ S(−a) ⊕ S(−b) ⊕ S(−c) −→ J −→ 0 (4.2)
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using the possibly non-minimal set of generators {xa, yb, (x + y)c, xαyβ(x + y)γ} of J .
Then syz J ∼= S(−p) ⊕ S(−q) ⊕ S(−r). The Castelnuovo-Mumford regularity of a
homogeneous ideal I is denoted by reg I.

Remark 4.59. For later use, we record the following facts on the generic splitting
type (p, q, r) of syz Ia,b,c,α,β,γ.

(i) As the sequence in (4.2) is exact, we see that p + q + r = a + b + c + α + β + γ.

(ii) Further, if any of the generators of J are extraneous, then the degree of that
generator is one of p, q, and r.

(iii) As regularity can be read from the Betti numbers of R/J , we get that reg J+1 =
max{p, q, r}.

Before moving on, we prove a useful lemma.

Lemma 4.60. Let S = K[x, y], where K is a field of characteristic zero, and let
a, b, α, β, and γ be non-negative integers with α + β + γ < a + b. Without loss of
generality, assume that 0 < a − α ≤ b − β. Then reg (xa, yb, xαyβ(x + y)γ) is






a + β + γ − 1 if α = 0 and 0 < γ ≤ b − β − a;
α + b − 1 if 0 < α, γ ≤ b − β + α − a, and 0 < β or 0 < γ;
⌈

1
2
(a + b + α + β + γ)

⌉

− 1 if γ > b − β + α − a.

Further still, we always have reg (xa, yb, xαyβ(x + y)γ) ≤
⌈

1
2
(a + b + α + β + γ)

⌉

−
1.

Proof. We proceed in three steps.
First, consider γ = 0, 0 < α, and 0 < β. Then by the form of the minimal free

resolution of the quotient algebra S/(xa, yb, xαyβ) we have that reg (xa, yb, xαyβ) =
α + b − 1.

Second, consider γ > 0 and α = β = 0. By [22, Proposition 4.4], the algebra
S/(xa, yb) has the strong Lefschetz property in characteristic zero. Thus the Hilbert
function of S/(xa, yb, (x + y)γ) is

dimK [S/(xa, yb, (x + y)γ)]j = max{0, dimK [S/(xa, yb)]j − dimK [S/(xa, yb)]j−γ}.

By analysing when the difference becomes non-positive, we get that the regularity is
a + γ − 1 if γ ≤ b − a and

⌈

1
2
(a + b + γ)

⌉

− 1 if γ > b − a.
Third, consider γ > 0 and 0 < α or 0 < β. Notice that

(xa, yb, xαyβ(x + y)γ) : xαyβ = (xa−α, yb−β, (x + y)γ).

Considering the short exact sequence (with end terms truncated)

[S/(xa−α, yb−β, (x + y)γ)](−α − β)
×xαyβ

−→ S/(xa, yb, xαyβ(x + y)γ) → S/(xa, yb, xαyβ),

where the first map is multiplication by xαyβ, we obtain

reg (xa, yb, xαyβ(x + y)γ) = max{α+β +reg (xa−α, yb−β, (x + y)γ), reg (xa, yb, xαyβ)}.

The claims then follows by simple case analysis.
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Recall that the semistability of syz Ia,b,c,α,β,γ is completely determined by the pa-
rameters a, b, c, α, β, γ in Proposition 4.3.

Non-semistable syzygy bundle

We first consider the case when the syzygy bundle is not semistable. We distin-
guish three cases. It turns out that in two cases, at least one of the generators of J
is extraneous.

Proposition 4.61. Let K be a field of characteristic zero and suppose I = Ia,b,c,α,β,γ

is an ideal of R. Let J = (xa, yb, (x+y)c, xαyβ(x+y)γ) be an ideal of S. We assume,
without loss of generality, that a ≤ b ≤ c so that C ≤ B ≤ A.

(i) If M < 0, then the generator xαyβ(x + y)γ of J is extraneous. The generic
splitting type of syz I is (a + c, b, α + β + γ) if c ≤ b − a; otherwise the generic
splitting type of syz I is (

⌊

1
2
(a + b + c)

⌋

,
⌈

1
2
(a + b + c)

⌉

, α + β + γ).

(ii) If M ≥ 0 and C < 0, then the generator (x + y)c of J is extraneous. The
generic splitting type of syz I is (a + b + α + β + γ − r − 1, r + 1, c), where
r = reg (xa, yb, xαyβ(x + y)γ) (which is given in Lemma 4.60).

(iii) If M ≥ 0, C ≥ 0, and A > β + γ, then the only destabilising sub-bundle of syz I
is syz (xa, xαyβzγ) and so the generic splitting type of syz I is (

⌊

1
2
(α + b + c)

⌋

,
⌈

1
2
(α + b + c)

⌉

, a + β + γ).

Proof. Assume M < 0, then 1
2
(a + b + c) < α + β + γ and when c ≥ a + b then

a + b − 1 ≤
1

2
(a + b + c) − 1 < α + β + γ.

By Lemma 4.60 the regularity of (xa, yb, (x + y)c) is a + b − 1 when c ≥ a + b
and ⌈1

2
(a + b + c)⌉ − 1 otherwise; hence we have that xαyβ(x + y)γ is contained in

(xa, yb, (x + y)c) and the first claim follows.
Assume M ≥ 0 and C < 0, then 2(α+β +γ) ≤ a+ b+ c, c ≥ 1

2
(a+ b+α+β +γ),

and when α + β + γ ≥ a + b then 2(α + β + γ) ≤ a + b + c implies c ≥ a + b. By
Lemma 4.60, the regularity of (xa, yb, xαyβ(x + y)γ) is a + b − 1 if α + β + γ ≥ a + b
and at most ⌈1

2
(a + b + α + β + γ)⌉ − 1 otherwise; hence we have that (x + y)c is

contained in (xa, yb, xαyβ(x + y)γ) and the second claim follows.
Last, assume M ≥ 0, C ≥ 0, and A > β+γ. Note that since A+B+C = α+β+γ

we then have that B + C < α and, in particular, B < α + γ and C < α + β. Using
Brenner’s combinatorial criterion for the semi-stability of syzygy bundles of monomial
ideals (see [3, Corollary 6.4]), we see that that S = syz (xa, xαyβzγ) ∼= R(−r), where
r = a + β + γ, is the only destabilising sub-bundle of syz I. Further, (syz I)/S is a
semistable rank two vector bundle, so by Grauert-Mülich theorem, the quotient has
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generic splitting type (p, q) where 0 ≤ q−p ≤ 1. Thus, if we consider the short exact
sequence

0 −→ S −→ syz I −→ (syz I)/S −→ 0,

then the third claim follows after restricting to ℓ.

In the third case, when A > β + γ, the associated ideal J ⊂ S may be minimally
generated by four polynomials, unlike in the other two cases.

Example 4.62. Consider the ideals

I4,5,5,3,1,1 = (x4, y5, z5, x3yz) and J = (x4, y5, (x + y)5, x3y(x + y))

in R and S, respectively. Notice that in this case, 0 ≤ C ≤ B ≤ A, 0 ≤ M ,
and A > β + γ so the syzygy bundle of R/I4,5,5,3,1,1 is non-semistable and its generic
splitting type is determined in Proposition 4.61(iii). Further, J is minimally generated
by the four polynomials x4, y5, xy3(2x + y), and x3y2.

Semistable syzygy bundle

Order the entries of the generic splitting type (p, q, r) of the semistable syzygy

bundle s̃yz I such that p ≤ q ≤ r. Then by Grauert-Mülich theorem we have that
r − q and q − p are both non-negative and at most 1. Moreover, [4, Theorem 2.2]
specialises in our case.

Theorem 4.63. Let I = Ia,b,c,α,β,γ. If R/I has the weak Lefschetz property, then
p = q or q = r and r − p ≤ 1; otherwise q = p + 1 and r = p + 2.

When a + b + c + α + β + γ 6≡ 0 (mod 3), then the generic splitting type of syz I
and regularity of J can be computed easily.

Proposition 4.64. Let R = K[x, y, z] where K is a field of characteristic zero.
Suppose I = Ia,b,c,α,β,γ is an ideal of R with a semistable syzygy bundle and let J =
(xa, yb, (x + y)c, xαyβ(x + y)γ) be an ideal of S. Let k =

⌊

1
3
(a + b + c + α + β + γ)

⌋

.
Then reg J = k and the generic splitting type of syz I is

{

(k, k, k + 1) if a + b + c + α + β + γ = 3k + 1, and

(k, k + 1, k + 1) if a + b + c + α + β + γ = 3k + 2.

Proof. Let (p, q, r) be the generic splitting type of syz I, so a + b + c + α + β + γ =
3(s + 2) = p + q + r. By Proposition 4.2, R/I has the weak Lefschetz property so
p = q, q = r, and r − p ≤ 1. Clearly if p = q = r then p + q + r = 3p is 0 modulo 3
so cannot be a + b + c + α + β + γ.

If p = q < r, then r = p + 1 and p + q + r = 3p + 1. This matches the case when
a + b + c + α + β + γ = 3k + 1, so p = k and the splitting type of syz I is (k, k, k + 1).
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Similarly, if p < q = r, then q = r = p + 1 and p + q + r = 3p + 2. This matches the
case when a + b + c + α + β + γ = 3k + 2, so p = k and the splitting type of syz I is
(k, k + 1, k + 1).

In both cases, we have that k − 1 ≤ reg J ≤ k by Remark 4.59(iii). How-
ever, we see that dimK [R/I]k−2 < dimK [R/I]k−1 so dimK [R/(I, x + y + z)]k−1 =
dimK [S/J ]k−1 > 0 and thus reg J > k − 1. Hence reg J = k.

The generic splitting type of Ia,b,c,α,β,γ, when the ideal is associated to a punctured
hexagon, depends on thew ideal having the weak Lefschetz property.

Proposition 4.65. Let R = K[x, y, z] where K is a field of characteristic zero.
Suppose I = Ia,b,c,α,β,γ is an ideal of R with a semistable syzygy bundle (see Proposi-
tion 4.3) and a+b+c+α+β+γ ≡ 0 (mod 3). Let J = (xa, yb, (x+y)c, xαyβ(x+y)γ)
be an ideal of S and let s + 2 = 1

3
(a + b + c + α + β + γ). Then

(i) If R/I has the weak Lefschetz property, then the generic splitting type of syz I
is (s + 2, s + 2, s + 2) and reg J = s + 1.

(ii) If R/I does not have the weak Lefschetz property, then the generic splitting type
of syz I is (s + 1, s + 2, s + 3) and reg J = s + 2.

Proof. Let (p, q, r) be the generic splitting type of syz I, so a + b + c + α + β + γ =
3(s + 2) = p + q + r.

Assume that R/I has the weak Lefschetz property. Suppose p 6= q, then q =
r = p + 1 and p + q + r = 3p + 2, similarly, if q 6= r, then p = q and r = p + 1
so p + q + r = 3p + 1; neither case is 0 modulo 3, hence cannot be 3(s + 2). Thus
p = q = r = s + 2. Further we then see that reg J = s + 1 by Remark 4.59(iii).

Now assume R/I fails to have the weak Lefschetz property. Then p + q + r =
3p + 3 = 3(s + 2) so p + 1 = s + 2 and p = s + 1. Thus, the generic splitting type
of syz I must be (s + 1, s + 2, s + 3). As R/I has twin-peaks at s + 1 and s + 2 by
Corollary 4.7, we see that reg J ≤ s + 1 if and only if R/I has the weak Lefschetz
property; so reg J ≥ s+2. However, by Remark 4.59(iii) we have that reg J+1 ≤ s+3
so reg J ≤ s + 2, hence reg J = s + 2.

This proposition can be combined with the results in the previous sections to
compute the generic splitting type of many of syzygy bundles of the artinian algebras
R/Ia,b,c,α,β,γ.

Example 4.66. Consider the ideal I7,7,7,3,3,3 = (x7, y7, z7, x3y3z3) which never has
the weak Lefschetz property, by Proposition 4.39. The generic splitting type of
syz I7,7,7,3,3,3 is (9, 10, 11). Notice that the similar ideal I6,7,8,3,3,3 = (x6, y7, z8, x3y3z3)
has the weak Lefschetz property in characteristic zero as det N6,7,8,3,3,3 = −1764 and
the generic splitting type of syz I6,7,8,3,3,3 is (10, 10, 10).

If I = Ia,b,c,α,β,γ is not associated to a punctured hexagon, then we have seen
in Proposition 4.2 and Corollary 4.4 that R/I has the weak Lefschetz property in
characteristic zero. We summarise part of our results by pointing out that in the case
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when I is associated to a punctured hexagon then deciding the presence of the weak
Lefschetz property is equivalent to determining other invariants of the algebra.

Theorem 4.67. Let R = K[x, y, z] where K is a field of arbitrary characteristic. Let
I = Ia,b,c,α,β,γ be associated to a punctured hexagon; in particular, a+b+c+α+β+γ ≡
0 (mod 3) and syz I is semistable (see Proposition 4.3). Set s = 1

3
(a + b + c + α +

β + γ) − 2.
Then the following conditions are equivalent:

(i) The algebra R/I has the weak Lefschetz property;

(ii) the regularity of S/J is s;

(iii) the determinant of Na,b,c,α,β,γ (i.e., the enumeration of signed lozenge tilings of
the punctured hexagon Ha,b,c,α,β,γ) modulo the characteristic of K is non-zero;
and

(iv) the determinant of Za,b,c,α,β,γ (i.e., the enumeration of signed perfect matchings
of the bipartite graph associated to Ha,b,c,α,β,γ) modulo the characteristic of K
is non-zero.

Moreover, if the characteristic of K is zero, then there is one further equivalent
condition:

(v) The generic splitting type of syz I is (s + 2, s + 2, s + 2).

Proof. Combine Corollary 4.7, Propositions 4.8 and 4.9, Theorems 4.15 and 4.18, and
Proposition 4.65.

This relates the weak Lefschetz property to a number of other problems in algebra,
combinatorics, and algebraic geometry.

Jumping lines

Recall that a jumping line is a line, L = 0, over which the syzygy bundle splits
differently than in the generic case, x + y + z = 0. Since I = Ia,b,c,α,β,γ is a monomial
ideal it is sufficient to consider the two cases z = 0 and y + z = 0.

Proposition 4.68. Let R = K[x, y, z] where K is a field of characteristic zero and
let I = Ia,b,c,α,β,γ be an ideal of R. The splitting type of syz I on the line z = 0 is
(c, α+b, a+β) if γ = 0 and (c, α+β+γ, a+b) if γ > 0. And the splitting type of syz I
on the line y + z = 0 is (c, a + β + γ, α + b) if β + γ < b ≤ c and (c, α + β + γ, a + b)
if b ≤ min{c, β + γ}.

Proof. All four cases follow immediately by analysing the monomial algebra S/J
isomorphic to R/(I, L), where L = 0 is the splitting line, and using Lemma 4.60 to
compute the regularities.

Copyright c© David Cook II 2012

71



Chapter 5 Subtlety to perturbation

Herein we propose a systematic way of deforming a monomial ideal without the
weak Lefschetz property to an ideal with the weak Lefschetz property (in almost
every characteristic) and the same Hilbert function as the original ideal. This could
potentially be useful, for example, if one expects an ideal to have a unimodal Hilbert
function. Indeed, showing that the deformed ideal has the weak Lefschetz property
would then imply the desired unimodality.

The basic idea is to lift the monomial ideal to a finite set of points. We then
expect the general hyperplane section of this set of points to have the Lefschetz
properties. We test this idea in the case of level monomial ideals in three variables
of low type that do not have the weak Lefschetz property. If the type is one, then
such an ideal is a complete intersection, so it has the weak Lefschetz property in
characteristic zero. The latter is also true if the type is two by [1, Theorem 7.17].
Thus, we focus on a family of almost complete intersections of type three that do
not have the weak Lefschetz property. Lifting such an ideal to a finite set of points
we get a level set of points in 3-space of type three; recall that a subscheme of Pn is
called level if any, hence every, Artinian reduction is level (as an algebra). We show
that the general hyperplane section of the level set of points has the weak Lefschetz
property in almost every characteristic, whereas a special hyperplane section never
has the weak Lefschetz property (see Corollary 5.8). Notice that examples of level
sets of points in P3 of type three such that every Artinian reduction fails the weak
Lefschetz property have been constructed in [36, Section 3].

This chapter is organised as follows. In Section 5.1 we recall the method of lifting
an Artinian monomial ideal to a set of points and we introduce the family of Artinian
monomial ideals that we focus on. In Section 5.2, we use this family to explore the
subtlety of the weak Lefschetz property under various hyperplane sections and in
arbitrary characteristic. Remark 5.6 and Theorem 5.7 show that general hyperplane
sections of our liftings have the weak Lefschetz property but that there exists a special
hyperplane section where it fails. Finally, in Section 5.3 we comment on the strong
Lefschetz property in characteristic zero.

The contents of this chapter comes from the published work [10], a joint work
with Uwe Nagel.

5.1 Liftings and hyperplanes sections

Let R = K[x0, . . . , xn] and S = K[x1, . . . , xn] be standard graded polynomial rings
over an infinite field K. Let J ⊂ S be a homogeneous ideal and I ⊂ R be a homoge-
neous radical ideal. Then we say that J lifts to I if x0 is a non-zero-divisor of R/I
and (I, x0)/(x0) ∼= J . If such an I exists, then J is called a liftable ideal.

If α = (a1, . . . , an) ∈ Nn
0 , then define xα := xa1

1 · · ·xan
n ; the degree of xα is |α| =

∑n
i=1 ai. For each 1 ≤ j ≤ n, choose an infinite set {pj0, pj1, . . .} ⊂ K of distinct

elements. Then to α ∈ Nn
0 we associate the point α := [1 : p1a1

: · · · : pnan
] ∈ Pn

K and
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to xα we associate the homogeneous polynomial

xα :=
n
∏

j=1

aj−1
∏

i=0

(xj − pjix0) ∈ R.

Using this construction, it was shown in [23, Theorem 4.9] and [16, Theorem 2.2]
that monomial ideals are liftable given that the field K is infinite.

Theorem 5.1. Let I ⊂ S be a monomial ideal with minimal generators xα1 , . . . , xαm,
and assume K is infinite. Then I lifts to the ideal I := (xα1 , . . . , xαm) ⊂ R.

Thus, given an Artinian monomial ideal I ⊂ S, the lifted ideal I is a saturated
ideal of a reduced set of points. Moreover, using [39, Proposition 2.6] we get that I
is level if and only if I is level. Hence, starting with a level Artinian monomial ideal,
the action of lifting yields a (Krull) dimension one saturated ideal of a reduced level
set of points.

Let Z be a subscheme of Pn
K and let H be a hyperplane (i.e., codim H = 1) in

Pn
K . Then Z ∩ H is a hyperplane section of Z. Given a linear form h ∈ R, we abuse

notation and call (I, h) a hyperplane section of I. If I is Artinian, then (I, h) is an
Artinian reduction of I if and only if dim R/(I, h) = 0. Specifically, R/(I, x0) ∼= S/I
is an Artinian reduction of I, hence all Artinian reductions of I have the same Hilbert
function as I.

A family of almost complete intersections

Let S = K[x, y, z] be the standard graded polynomial ring in three variables over an
infinite field K. Then for t ≥ 1, define It to be the ideal

It := (xt+1, yt+1, zt+1, xyz) ⊂ S.

Proposition 5.2. For t ≥ 1, the ideal It ⊂ S defined above has the following prop-
erties:

(i) S/It is level and Artinian,

(ii) The minimal free resolution of S/It has the form

0 −→ S3(−3 − 2t) −→
S3(−3 − t)

⊕
S3(−2 − 2t)

−→
S(−3)
⊕

S3(−1 − t)
−→ S −→ S/It −→ 0,

in particular, S/It has socle type 3, and

(iii) The Hilbert function of S/It is given by

hS/It
(d) =















1 if d = 0;
3d if 1 ≤ d ≤ t;
3(2t + 1 − d) if t < d ≤ 2t;
0 if t > 2t.
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Proof. The first two statements follow immediately from [38, Proposition 6.1] and
the third statement follows from (ii).

A member of this family, I2, was discussed in [4, Example 3.1] where it was used
to answer negatively the question of whether every almost complete intersection in
S has the weak Lefschetz property. Motivated by this, a larger family containing the
It is discussed in Chapter 4, [3, Corollary 7.3], [38, Sections 6 and 7], and [9]. We
continue this exploration by considering hyperplane sections of a lift of It.

We consider the particular lift of It in R = K[w, x, y, z] given by pxi = pyi = pzi = i
for 0 ≤ i ≤ t, that is, the homogeneous ideal

It :=

(

t
∏

i=0

(x − iw),
t
∏

i=0

(y − iw),
t
∏

i=0

(z − iw), xyz

)

⊂ R.

If 2 ≤ char K ≤ t, then It is not a true lifting of It, but we will consider it
nonetheless. When It is a true lifting, i.e., char K = 0 or char K > t, then It is the
ideal of the level set of points

{[1 : a : b : c] | 0 ≤ a, b, c ≤ t and at least one of a, b, c is zero} ⊂ P3
K ,

which is in bijection with the standard monomials of S/It; recall that a subscheme of
Pn is called level if any, hence every, Artinian reduction is level (as an algebra).

Given the lift It of It, we consider the hyperplanes in R of the form w + ax for
a ∈ K. If a ∈ N := {y | yi = −1 for some i ∈ {1, 2, . . . , t}}, then w + ax is a
zero-divisor of R/It and so (It, w + ax) is non-Artinian. Suppose a 6∈ N , then w + ax
is a non-zero-divisor of R/It and so the hyperplane section (It, w + ax) is Artinian.
Further still, R/(It, w + ax) ∼= S/Jt,a where

Jt,a :=

(

xt+1,

t
∏

i=0

(iax + y),

t
∏

i=0

(iax + z), xyz

)

⊂ S. (5.1)

Specifically, Jt,0 = It.
We will next analyse the ideals Jt,a for the presence of the Lefschetz properties.

5.2 The weak Lefschetz property

In Proposition 2.12, it was shown that x + y + z (and through a similar argument,
x + y − z) is a weak Lefschetz element of an Artinian monomial algebra if and only
if the algebra has the weak Lefschetz property. However, S/Jt,a is not a monomial
algebra unless a = 0. We investigate whether the linear form ℓ := bx + cy − z is a
weak Lefschetz element of S/Jt,a.

Notice that S/(Jt,a, ℓ) ∼= T/Lt,a where T = K[x, y] and

Lt,a :=

(

xt+1,

t
∏

i=0

(iax + y),

t
∏

i=0

((ia + b)x + cy), xy(bx + cy)

)

⊂ T. (5.2)
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The second and third generators of Lt,a are products of linearly-consecutive binomial
terms and can be described using the unsigned Stirling numbers of the first kind.

The unsigned Stirling numbers of the first kind, denoted sn,k, are defined recur-
sively, for 1 ≤ k ≤ n, as sn+1,k = sn,k−1 + nsn,k with the initial conditions s1,1 = 1
and sn,0 = 0, for n ≥ 1. In particular,

∏n−1
i=0 (x + i) =

∑n
k=1 sn,kx

k (see, e.g., [50,
Theorem 1.3.4]).

We take the convention that both the empty product and 00 are one.

Lemma 5.3. Let 0 6= a and b be in K and let k and n be integers with 0 ≤ k ≤ n.
Define V to be the set of n elements of K of the form ia + b, for 0 ≤ i < n. Then
the sum of all products of the elements of subsets in V with k elements, denoted
dn,n−k(a, b), is

k
∑

i=0

sn,n−i

(

n − i

k − i

)

aibk−i.

Proof. By way of preparation we make two remarks. First, for all n ≥ 1, if k = 0,
then

dn,n(a, b) = 1, (5.3)

as ∅ is the unique subset of size zero. Second, for all n ≥ 1, if k = n, then

dn,0(a, b) =

n−1
∏

i=0

(ia + b) =

n
∑

k=1

sn,ka
n−kbk =

n
∑

i=0

sn,n−i

(

n − i

n − i

)

aibn−i. (5.4)

Now use induction on n ≥ 1. If n = 1, then we are done by (5.3) and (5.4).
Suppose that n ≥ 1 and 1 ≤ k ≤ n. Let V be the set of n elements of K of the form
ia + b for 0 ≤ i < n and W = V ∪ {na + b}; that is, W is the set of n + 1 elements of
K of the form ia + b for 0 ≤ i ≤ n. Then the sum of all products of the elements of
subsets of W with k elements is the sum of all products of the elements of subsets of
V with k elements plus the sum of all products of the elements of subsets of V with
k − 1 elements, each scaled by na + b. That is,

dn+1,(n+1)−k(a, b) = dn,n−k(a, b) + (na + b)dn,n−(k−1)(a, b). (5.5)

If k = 0 or k = n + 1, then we are done by (5.3) and by (5.4), respectively. If
1 ≤ k ≤ n, then by (5.5) and the induction hypothesis we get

dn+1,(n+1)−k(a, b) = dn,n−k(a, b) + (na + b)dn,n−(k−1)(a, b)

=

k
∑

i=0

sn,n−i

(

n − i

k − i

)

aibk−i + (na + b)

k−1
∑

i=0

sn,n−i

(

n − i

k − 1 − i

)

aibk−1−i

=

k
∑

i=0

sn,n−i

(

n + 1 − i

k − i

)

aibk−i +

k
∑

i=1

nsn,n−(i−1)

(

n + 1 − i

k − i

)

aibk−i

=

k
∑

i=0

(sn,n−i + nsn,n−(i−1))

(

n + 1 − i

k − i

)

aibk−i

=

k
∑

i=0

sn+1,(n+1)−i

(

n + 1 − i

k − i

)

aibk−i,
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where we use the properties of binomial coefficients and the unsigned Stirling numbers
of the first kind, as needed.

It should be noted that dn,n−k(1, 0) = sn,n−k as the set V is then {0, 1, . . . , n− 1}.
Using Lemma 5.3, the second generator of Lt,a can be described using the unsigned

Stirling numbers of the first kind as

t
∏

i=0

(iax + y) =

t
∑

i=0

st+1,t+1−ia
ixiyt+1−i =

t
∑

i=0

dt+1,t+1−i(a, 0)xiyt+1−i

and the third generator of Lt,a can be described using Lemma 5.3 as

t
∏

i=0

((ia + b)x + cy) =

t
∑

i=0

dt+1,t+1−i(a, b)ct+1−ixiyt+1−i.

Now we return to studying the weak Lefschetz property. We have explicitly de-
scribed the coefficients of the generators of Lt,a, hence we can use linear algebra to
determine whether S/Jt,a has ℓ = bx + cy − z as a weak Lefschetz element. Define
N = {y | yi = −1 for some i ∈ {1, 2, . . . , t}}, as above.

Proposition 5.4. Consider the algebra A = S/Jt,a as in Equation (5.1) and a 6∈ N .
Let Mt,a,b,c be the (t + 1) × (t + 1) K-matrix given by



















st+1,1a
t st+1,2a

t−1 st+1,3a
t−2 · · · st+1,ta 1

dt+1,1(a, b)c dt+1,2(a, b)c2 dt+1,3(a, b)c3 · · · dt+1,t(a, b)ct ct+1

b c 0 · · · 0 0
0 b c · · · 0 0

...
0 0 0 · · · c 0



















.

Then the algebra A = S/Jt,a, from Equation (5.1), has ℓ = bx + cy − z as a weak
Lefschetz element if and only if det Mt,a,b,c is nonzero in K.

Thus, det Mt,a,b,c 6= 0 ∈ K for some b, c ∈ K if and only if A has the weak
Lefschetz property.

Proof. Since Jt,a is an Artinian reduction of the lift of It, then their Hilbert functions
are equal. Thus using Proposition 5.2(iii), we have then that the Hilbert function of
S/Jt,a is strictly unimodal from 0 to 2t and has a twin-peak at t and t + 1; that is,
hS/Jt,a

(t) = 3t = hS/Jt,a
(t + 1). Hence by [38, Proposition 2.1], S/Jt,a has the weak

Lefschetz property if and only if the map [S/Jt,a]t
bx+cy−z
−→ [S/Jt,a]t+1 is an isomorphism

for some b, c ∈ K and thus it suffices to check whether [T ]t+1 ⊂ Lt,a.
Thus, the matrix Mt,a,b,c corresponds to the system of equations which needs to

be solved to determine if a polynomial in [T ]t+1 with no xt+1 term is in Lt,a. Hence,
det Mt,a,b,c 6= 0 ∈ K if and only if Mt,a,b,c is invertible in K, i.e., [T ]t+1 ⊂ Lt,a.

Furthermore, we give a closed form for the determinant of Mt,a,b,c.
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Proposition 5.5. Assuming b, c both nonzero, then the determinant of Mt,a,b,c is

(−1)tct

(

t
∏

i=1

(ai + b) −
t
∏

i=1

(aci − b)

)

.

Proof. By straightforward Gaussian elimination, we get

det Mt,a,b,c =bt−1ct
t
∑

j=1

(

(

−
c

b

)t−j

cat+1−jst+1,j −

(

−
1

b

)t−j

dt+1,j(a, b)

)

=bt−1ct

(

t
∑

j=1

(

−
c

b

)t−j

cat+1−jst+1,j

−
t+1
∑

k=1

at+1−kst+1,k

t
∑

j=1

(

−
1

b

)t−j

bk−j

(

k

k − j

)

)

=(−1)tct

t+1
∑

j=1

at+1−jbj−1st+1,j

(

(−1)jct+1−j + 1
)

=(−1)tct

(

t+1
∑

j=1

at+1−jbj−1st+1,j +
t+1
∑

j=1

(−1)jat+1−jbj−1ct+1−jst+1,j

)

=(−1)tct

(

t
∏

i=1

(ai + b) −
t
∏

i=1

(aci − b)

)

.

Given the above determinant calculation, we make the following observations.

Remark 5.6. If we specialise the parameters a, b, and c suitably, then we get three
nice determinant evaluations.

(i) When a = 0: Then Jt,0 = It and det Mt,0,b,c = btct((−1)t − 1). Hence S/Jt,0 has
the weak Lefschetz property if and only if t is odd and char K 6= 2, recovering [9,
Proposition 3.1].

(ii) When b = c = 1: Then

det Mt,a,1,1 =

{

2
∑t/2

i=1 a2i−1st+1,t+1−(2i−1) if t is even;

−2(1 +
∑⌊t/2⌋

i=1 a2ist+1,t+1−2i) if t is odd.

Thus in characteristic zero, x + y − z is a weak Lefschetz element of S/Jt,a if
a 6= 0 and a 6∈ N .

(iii) When a = b = c = 1: Then det Mt,1,1,1 = (−1)t(t + 1)!. Hence x + y − z is a
weak Lefschetz element of S/Jt,1 if and only if char K = 0 or char K > t + 1,
i.e., It is a true lifting of It.
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Theorem 5.7. Let K be any infinite field and S = K[x, y, z]. Then for all a in K
such that a 6= 0 and a 6∈ N and for all positive integers t, the algebra A = S/Jt,a has
the weak Lefschetz property.

Proof. Let a, c be nonzero elements of K. Then b = ac is nonzero and moreover

det Mt,a,b,c = (−1)tct

t
∏

i=1

(ai + b) = (−1)tatct

t
∏

i=1

(i + c) ⊂ K[x, y, z].

As K is infinite, there exists a nonzero c in K such that i + c 6= 0 for 1 ≤ i ≤ t.
Hence, det Mt,a,b,c is nonzero in K. Therefore, if a 6∈ N , then A has the weak Lefschetz
property.

We partially summarise our results as follows:

Corollary 5.8. Let t ≥ 1 be an integer and set A = R/It, where

It :=

(

t
∏

i=0

(x − iw),

t
∏

i=0

(y − iw),

t
∏

i=0

(z − iw), xyz

)

⊂ R = K[w, x, y, z].

Then:

(i) If the characteristic of K is zero or greater than t, then the ideal It defines a
set of 3(t + 1)t + 1 points in P3 that is level of type three.

(ii) If ℓ ∈ [R]1 is a general linear form, then A/ℓA has the weak Lefschetz property.

(iii) If ℓ = w, then the Artinian algebra A/ℓA has the weak Lefschetz property if and
only if t is odd and char K 6= 2.

Proof. Claim (i) follows by Theorem 5.1 and Proposition 5.2.
In order to prove (ii), notice that Theorem 5.7 shows that A/ℓ′A has the weak

Lefschetz property, where ℓ′ = w + ax and a 6= 0 is any element in K \N . Let L ∈ R
be another general linear form. Then, for all j ∈ Z, one has

dimK [A/(ℓ, L)A]j ≤ dimK [A/(ℓ′, L)A]j

Since A/ℓ′A has the weak Lefschetz property, this must be an equality, hence A/ℓA
also has the weak Lefschetz property.

Part (iii) has been shown in Remark 5.6(i).

Specialising to t = 2, we get an example reminiscent of [4, Example 3.1], which
showed that, in characteristic zero, for any degree three form f , the ideal (x3, y3, z3, f)
has the weak Lefschetz property if and only if f 6= xyz modulo x3, y3, z3.

Example 5.9. Let t = 2, char K 6= 2, and a ∈ K \ {−1,−1
2
}, then

Jt,a = (x3, y(ax + y)(2ax + y), z(ax + z)(2ax + z), xyz)

is Artinian. Moreover, S/Jt,a has the weak Lefschetz property if and only if a 6= 0,
that is, Jt,a is non-monomial.
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5.3 The strong Lefschetz property

In case, a = 0, where S/Jt,a is a monomial algebra, the strong Lefschetz property
fails spectacularly.

Proposition 5.10. The algebra S/Jt,0 = S/It has the strong Lefschetz property if
and only if t = 1 and char K 6= 2.

Proof. Let ℓ = x+y−z, then by [38, Proposition 2.2], ℓ is a strong Lefschetz element
of S/Jt,0 if and only if S/Jt,0 has the strong Lefschetz property.

If t is even or char K = 2 then, by Proposition 5.4, S/Jt,0 fails to have the weak
Lefschetz property hence fails to have the strong Lefschetz property.

Suppose then t is odd and char K 6= 2. If t = 1, then, by Proposition 5.4, S/J1,0

has the weak Lefschetz property. As the regularity of S/J1,0 is two and the map

[S/J1,0]0
ℓ2
−→ [S/J1,0]2 is injective since ℓ2 6∈ J1,0, then S/J1,0 has the strong Lefschetz

property.
Suppose t ≥ 3 and let A = S/Jt,0. As dimK [A]2 = 6 = dimK [A]2t−1 by

Proposition 5.2(iii), then it suffices to show the map ϕ : [A]2
ℓ2t−3

−→ [A]2t−1 is not
injective. Let p, q ∈ K, not both zero, such that p(2t − 2) + qt = 0; such a
non-trivial solution exists in K regardless of characteristic. Consider then f =
p(x2 + y2 + z2) + q(xy + xz + yz) which is a nonzero element of [A]2. As ℓ2t−3f
is equivalent to (p(2t − 2) + qt)(xtyt−1 + xt−1yt + xtzt−1 − xt−1zt + xtzt−1 − xt−1zt)
modulo It, then ℓ2t−3f is in It. Hence, ϕ is not injective and thus A fails to have the
strong Lefschetz property.

Now we consider the case when the Artinian algebra S/Jt,a is not a monomial
algebra.

Remark 5.11. Suppose K is a field of characteristic zero. Let a 6∈ N be a nonzero
element of K and let A = S/Jt,a. As the Hilbert function of A is symmetric from 1 to
2t with peak t, t+1 and A is level by Proposition 5.2, then using [38, Proposition 2.1]
it suffices to show for 1 ≤ i ≤ t the following hold:

(i) [A]t−i+1
ℓ2i−1

−→ [A]t+i is an isomorphism,

(ii) [A]t−i
ℓ2i

−→ [A]t+i is an injection, and

(iii) [A]t−i+1
ℓ2i

−→ [A]t+i+1 is a surjection.

As A has the weak Lefschetz property, if part (i) is shown for all i, then parts (ii)
and (iii) follow immediately:

(ii) [A]t−i
ℓ2i

→ [A]t+i = [A]t−i
ℓ
→ [A]t−i+1

ℓ2i−1

→ [A]t+i is a composition of injective
maps, hence injective.

(iii) [A]t−i+1
ℓ2i

→ [A]t+i+1 = [A]t−i+1
ℓ2i−1

→ [A]t+i
ℓ
→ [A]t+i+1 is a composition of surjec-

tive maps, hence surjective.
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Thus, in order to show A has the strong Lefschetz property it is sufficient to show
part (i) holds for 2 ≤ i ≤ t.

Using Macaulay2 [18], we have verified that in characteristic zero, if t ≤ 30, then
there exists some a ∈ K such that ℓ is a strong Lefschetz element of S/Jt,a. We
suspect that this is always true.

Conjecture 5.12. Suppose K is a field of characteristic zero. Let a 6∈ N be a
nonzero element of K and let A = S/Jt,a. Then A has the strong Lefschetz property
with strong Lefschetz element ℓ = x + y − z.

Thus, if the conjecture holds, then, at least in characteristic zero, there is only
one “bad” choice for the strong Lefschetz property and it is, interesting in its own
right, the only monomial case.

Copyright c© David Cook II 2012
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