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ABSTRACT OF DISSERTATION

ON A PALEY-WIENER THEOREM FOR THE ZS-AKNS SCATTERING
TRANSFORM

In this thesis, we establish an analog of the Paley-Wiener Theorem for the ZS-AKNS
scattering transform on the set of real potentials in L1(R) ∩ L2(R). We first prove
that if the real-valued potential w ∈ L1(R) ∩ L2(R) is supported on [α,+∞), then
the left-hand ZS-AKNS reflection coefficient has the form

r−(z) =

∫ ∞

α

e2izxC(x) dx

where C ∈ L1(R)∩L2(R). Using the Riemann-Hilbert approach to inverse scattering,
we make a shift of contours and obtain a converse to this result: if r−(z) is the
Fourier transform of a function C ∈ L1(R)∩L2(R) supported on [α,+∞), then w(x)
has support on [α,+∞). We then show that the function C in this representation
determines the potential w(x) locally in the sense that only the values of C on [α, x]
are required to recover w(x). We also demonstrate one application of our techniques
to the study of an inverse spectral problem for a half-line Miura potential Schrödinger
equation.
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Chapter 1 Introduction

1.1 Overview

This thesis studies the direct and inverse scattering of a 2 × 2 Zakharov-Shabat-
Ablowitz-Kaup-Newell-Segur (ZS-AKNS) system [1, 48]





d

dx
Ψ = izσ3Ψ+Q(x)Ψ, z ∈ C, x ∈ R

σ3 =

[
1 0
0 −1

]
, Q(x) =

[
0 w(x)

w(x) 0

] (1.1)

where w is a real-valued potential drawn from the set

X = L1(R) ∩ L2(R).

We may also write the ZS-AKNS equation in the form

PΨ = zΨ

where

P = −i
[
d/dx −w
w −d/dx

]

is the the self-adjoint Dirac operator on L2(R)⊗M2×2(C), the space of square 2× 2
matrix-valued functions with entries in L2(R).1

It is not hard to see that any two fundamental solutions Ψ1,Ψ2 to the ZS-AKNS
equation are related by

Ψ1(x, z) = Ψ2(x, z)M(z)

for some matrixM(z). The key to the direct scattering theory of the ZS-AKNS equa-
tion is to consider the solutions Ψ± to (1.1) which satisfy the respective asymptotic
conditions

lim
x→±∞

|Ψ±(x, z)− exp(ixzσ3)| = 0.

The solutions Ψ± are called Jost solutions and these solutions turn out to be related
in a very special way. For z ∈ R, we have that

Ψ+(x, z) = Ψ−(x, z)R(z),

where

R(z) =

[
a(z) b̄(z)
b(z) ā(z)

]

1See [28] for a thorough discussion of the self-adjointness of the operator P .
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with |a(z)|2 − |b(z)|2 = 1. For each potential w ∈ X and every z ∈ R, we use this
relation to define the quantities

r−(z) =
b(z)

a(z)
r+(z) = − b̄(z)

a(z)

called respectively the left and right reflection coefficients. We will explain in Chapter
2 the physical meaning of these coefficients.

The idea behind the scattering of (1.1) is to show that the ZS-AKNS potential
w uniquely determines the reflection coefficients r±(z) and that r±(z) uniquely de-
termine w(x). We define the direct scattering transforms on X to be the nonlinear
mappings

D±
P : w 7→ r±.

The inverse scattering transforms are the nonlinear mappings

I±
P : r± 7→ w.

The direct scattering problem for ZS-AKNS is to completely characterize D±
P ; the

inverse scattering problem is to characterize I±
P . The ZS-AKNS scattering problem

has been well-studied and there are now several general treatments. These include the
classical Gelfand-Levitan-Marchenko integral equation approach developed in [1, 48]
and the Riemann-Hilbert approach pioneered by Beals and Coifman in [2].

Throughout this work, we will use the Fourier transform convention

f̂(z) = Ff(z) =
∫

R

f(x)e2izx dx

f̌(x) = F−1f(x) =
1

π

∫

R

f(z)e−2ixz dz.

Though the direct maps D±
P are nonlinear, they share many properties with the 1-

dimensional Fourier transform F . Our analysis will develop some new analogs of
classical Fourier results for the scattering transforms. The most important of these
analogs is that the support of the potential w ∈ X determines the analyticity and
decay of the reflection coefficients and vice versa.

The major result of this thesis is the following Paley-Wiener type theorem for the
scattering transforms.

Theorem 1.1.1 (Nonlinear Paley-Wiener Theorem for ZS-AKNS). Let r± ∈ X̂ be the
left and right reflection coefficient for the real valued w-potential ZS-AKNS equation
where w ∈ X. Then

1. supp w(x) ⊆ [α,+∞) if and only if r− extends to an analytic function on C+

satisfying
|r−(R + iT )| ≤ Ce−2αT T ≥ 0.
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2. supp w(x) ⊆ (−∞, β] if and only if r+ extends to an analytic function on C+

satisfying
|r+(R + iT )| ≤ Ce2βT T ≥ 0.

Note that in the statement of this theorem and throughout the thesis we make
no notational distinction between a function and any analytic extension it possesses.
The theorem is a nonlinear analog of the following Paley-Wiener Theorem for the
Fourier transform.

Theorem 1.1.2 (Two-Sided Paley-Wiener Theorem for the Fourier Transform). Sup-
pose that f ∈ L1(R) ∩ L2(R). Then

1. supp f ⊆ [α,+∞) if and only if f̂ extends to an analytic function on C+

satisfying
|f̂(R + iT )| ≤ Ce−2αT T ≥ 0.

2. supp f ⊆ (−∞, β] if and only if f̂ extends to an analytic function on C−

satisfying
|f̂(R + iT )| ≤ Ce−2βT T ≤ 0.

A proof of this theorem may be found in Appendix B, where we also collect some
other useful facts about the 1-dimensional Fourier transform.

The main contribution of this thesis is a compelling example of how simple Fourier
analogies can reveal new results in inverse spectral problems, and make known re-
sults in this area more intuitive. The analogy between the Fourier transform and the
scattering transform has long been recognized (see, for example, [1]). There are many
instances in the literature of how Fourier analogies have been profitably exploited in
the study of 1-dimensional inverse theory. A Paley-Wiener analogy inspired Chris-
ter Bennewitz’s single-page proof [5] of the Local Borg-Marchenko theorem for the
1-dimensional Schrödinger equation with classical potentials. Bennewitz extends this
analysis in [6] to the study of more general Sturm-Liouville inverse problems. The
series of papers [45, 47, 46] take an approach quite similar to ours in developing a
Fourier analogy and nonlinear Paley-Wiener theorem to resolve an inverse scattering
problem for the 1-dimensional Helmholtz equation. A nonlinear Paley-Wiener theo-
rem also plays an important role in [18], where the authors apply the inverse theory
of the ZS-AKNS system to a pulse design problem in magnetic resonance imaging.

1.2 Plan for the Thesis

Chapters 2 and 3 of this thesis are devoted to proving Theorem 1.1.1. To outline the
approach taken in these chapters, we must introduce the real-valued function spaces:

3



Figure 1.1: D+
P is a bijection between X and X̂+, and between Kα and K̂α. D−

P is a

bijection between X and X̂−, and between Kβ and K̂β .

X = L1(R) ∩ L2(R)

Kα = {w ∈ X : supp w ⊆ [α,+∞)}
Kβ =

{
w ∈ L1(R) ∩ L2(R) : supp w ⊆ (−∞, β]

}

Kβ
α =

{
w ∈ L1(R) ∩ L2(R) : supp w ⊆ [α, β]

}

X̂± =

{
r(z) =

∫ ∞

−∞
e±2izξC(ξ) dξ : C ∈ X, ‖r‖L∞(R) < 1

}

K̂α =

{
r(z) =

∫ +∞

α

C(x)e2izx dx : C ∈ X, ‖r‖L∞(R) < 1

}

K̂β =

{
r(z) =

∫ β

−∞
C(x)e−2izx dx : C ∈ X, ‖r‖L∞(R) < 1

}
.

The diagram in Figure 1.1 may prove useful for recalling the relationship between
the scattering maps and the various function spaces required for our results.

In [21], the authors prove that D−
P is a bijection from X to X̂+ and that D+

P is a

bijection from X to X̂−. We will prove the following refinement of this result, which
is really a more convenient formulation of Theorem 1.1.1.

Theorem 1.2.1. Let α, β ∈ R.

1. The mapping D−
P is a bijection from Kα to K̂α.

2. The mapping D+
P is a bijection from Kβ to K̂β.

4



The proof of Theorem 1.2.1 naturally divides into two parts. In the forward part
of the proof, we show that the reflection coefficients for half-line supported potentials
have the Fourier representation specified by Theorem 1.2.1. In the inverse part, the
Fourier representation of the reflection coefficient is given and we must deduce that
the potential w has the required support properties.

In Chapter 2, we review the direct scattering theory of the ZS-AKNS system.
Following [21], we develop some new representation formulas for the solutions Ψ± to

(1.1). Working with these formulas, we will show that D+
P maps Kα to K̂α and D−

P

maps Kβ to K̂β .
In Chapter 3, we use the approach developed in [2] to formulate the inverse scat-

tering problem for the ZS-AKNS equation as a Riemann-Hilbert problem. We then
introduce a factorization of the Riemann-Hilbert problem that will allow us to read
off the support of the potential given the data r±. Our approach in this chapter is
quite reminiscent of a standard shift of contours argument from linear Fourier theory.

Chapter 4 of this thesis presents a localization result for the direct scattering map
on the space Kα. If w ∈ Kα then we know that

r−(z) =

∫ ∞

α

C(x)e2izx dx

for C ∈ X . What is the relation between C and w? We use the Riemann-Hilbert
reconstruction formula for the potential to show that only the values of C on [α, x]
are needed to recover the potential w on [α, x].

Theorem 1.2.2. Let r−(z) = D+
−w(z) where w ∈ Kα. Then

r−(z) =

∫ ∞

α

e2izξC(ξ) dξ

where C ∈ X and for a.e. x w(x) is completely determined by from the values of C(ξ)
with ξ ∈ [α, x].

As an immediate consequence, we have

Corollary 1.2.1. Let w, w̃ ∈ Kα and let

r−(z) = D−
Pw(z) =

∫ ∞

α

e2izξC(ξ) dξ

r̃−(x) = D−
P w̃(z) =

∫ ∞

α

e2izξC̃(ξ) dξ

where C, C̃ ∈ X. If C(ξ) = C̃(ξ) for a.e. ξ ∈ [α, β], then w(x) = w̃(x) on [α, β].

In Chapter 5, we present an application of the techniques developed for the ZS-
AKNS equation to the of study an inverse spectral problem for Schrödinger operators
with singular Miura-type potentials. To sketch the results of this chapter, we need
to introduce additional notation and recall a few ideas from the Weyl-Titchmarsh
theory of the 1-dimensional Schrödinger equation.

5



Let
H1(R) =

{
f ∈ L2(R) : f ′ ∈ L2(R)

}

and let H−1(R) be the topological dual to H1(R).
Consider the formal Schrödinger operator

Lq = − d2

dx2
+ q(x)

where q(x) is a distribution in H−1(R). Following [43], for q ∈ H−1(R), we consider
the quadratic form

tq (φ) =

∫ ∞

−∞
|φ′(x)|2 dx+

〈
q, |φ|2

〉
, (1.2)

associated to the formally defined operator Lq. When the form tq is semi-bounded
and closed on L2(R) then it corresponds to a unique self-adjoint operator on L2(R)
(see [29], VI §2, part 1), and it is this operator that we identify with Lq.

2

A potential q ∈ H−1(R) having the representation

q(x) = w′(x) + w(x)2

for w ∈ L2
loc(R) is called a Miura potential. Kappeler, Perry, Shubin, and Topolav

characterize these potentials in [26]. Following [21], we consider a special subclass of
distributions in H−1(R) which may be represented as

q(x) = w′(x) + w(x)2

for some w ∈ X , supported on [α,+∞). Denote this subclass by Mα. From [26],
the representation q = w′ + w2 for q ∈ Mα is unique and the Schrödinger form is
positive and closed. Thus, the Schrödinger operator Lq for q ∈ Mα is a well-defined,
self-adjoint operator on L2(R). We may proceed to study its spectral theory.

In the classical spectral theory for Lq with q ∈ L1
loc[0,+∞), an important role is

played by the Weyl-Titchmarsh m-function. To briefly introduce this object, consider
the Schrödinger equation

Lqu = z2u (1.3)

for q ∈ L1
loc[0,+∞) and self-adjoint boundary conditions imposed at x = 0.3

For any z ∈ C+, we may solve this equation to obtain the solution u(x, z) satisfying
the asymptotic conditions

lim
x→+∞

∣∣u(x, z)− eixz
∣∣ = 0

lim
x→+∞

∣∣u′(x, z)− izeixz
∣∣ = 0.

2See [25] for a complete treatment of the self-adjointness of Lq for q ∈ H1(R).
3To keep our summary completely consistent with Simon’s presentation in [42], we consider only

the case of Lq on the half-line [0,+∞). It is straightforward to translate the results to any half-line
[α,+∞), as we describe in Chapter 5.
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The solution u(x, z) is unique up to a multiplicative constant and the Weyl-
Titchmarsh m-function may be defined as4

m(z2) =
u′(x, z)

u(x, z)

∣∣∣∣
x=α

. (1.4)

Here (′) denotes the derivative in the x variable.
The classical direct spectral problem for Lq is to provide a complete characteriza-

tion of the mapping
DL : q 7→ m

and the inverse spectral problem is to characterize the mapping

IL : m 7→ q.

The characterization of DL is essentially due to Hermann Weyl in the early 1900s.
See, for example, the thorough treatment provided by Chapter 9 of [10]. The classical
approach to the inverse theory is to derive the Gelfand-Levitan-Marchenko integral
equations for Lq. The solution to the inverse problem by this approach are detailed,
for example, in [30]. More recent techniques include Barry Simon’s A-function ap-
proach [42] and the de Branges space method of Christian Remling in [39].

Classical uniqueness results for the mapping DL were obtained by Borg in [7] and
Marchenko in [32]. Borg, for example, proves:

Theorem 1.2.3 (Borg [7]). Let q1, q2 be real-valued, continuous potentials, and let
m1, m2 be the corresponding m-functions for the operators Lq1 , Lq2. Then m1 = m2

if and only if q1 = q2.

Simon in [42] considerably enhances this result. He proves that, in fact, the
asymptotics of the m-function determine the behavior of the potential locally.

Theorem 1.2.4 (Simon [42]). Let q1, q2 ∈ L1
loc[0,+∞). Let Lq1, Lq2 have the respec-

tive m-functions m1, m2. Then

m1(−k2)−m2(−k2) = õ(e−2kβ),

as k → +∞ if and only if q1 = q2 a.e. on [0, β].

The asymptotic notation õ is from [42] and defined as follows. If g(x) → 0 as
|x| → +∞, then we write f(x) = õ (g(x)) when

∀ǫ > 0, lim
x→+∞

|f(x)|
|g(x)|1−ǫ

= 0.

As shown in Appendix 2 of [42], if

f(k) =

∫ ∞

0

e−2kξC(ξ) dξ = õ
(
e−2kβ

)

4Here, we assume that Lq is in the limit-point case at +∞. See the discussion in Chapter 5.
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then C(ξ) is supported on [0, β], which is a Paley-Wiener type result for the Laplace
transform.

The key to Simon’s method is to prove the existence of a function A ∈ L1(R) such
that

m(−k2) = −k −
∫ ∞

0

A(ξ)e−2kξ dξ.

Among other remarkable properties of the A-function, is the fact that the values of A
on [0, x] uniquely determine q(x). In light of our local determination result (Theorem
1.2.2), our expansion of

r−(z) =

∫ ∞

α

C(ξ)e2izξ dξ

for w ∈ Kα is a ZS-AKNS analog of Simon’s A-function expansion of the m-function.
Our work with the ZS-AKNS equation on Kα also provides a means to extend the

direct and inverse spectral theory of Lq to the set of potentials M0.
Let q ∈ M0. In analogy to (1.4), we associate to the operator Lq the modified

m-function

m(z2) =
u[1](x, z)

u(x, z)

∣∣∣∣
x=0

(1.5)

where u is an L2-solution to the q-potential Schrödinger equation and u[1] is the
regularization

u[1] = u′ − wu.

Now if Ψ(i)(x, z) is a column of the solution Ψ to the ZS-AKNS system (1.1) then

χ(x, z) = [1 1]T ·Ψ(i)(x, z) (1.6)

is a solution to the Schrödinger equation (1.3). The same correspondence allows the
authors of [21, 24] to study the scattering theory on the line for the Schrödinger
equation with Miura potential via the Gelfand-Levitan-Marchenko approach to the
ZS-AKNS system. We therefore study the modified m-function through the machin-
ery we have developed for the ZS-AKNS system with potentials in K0. Using the
ZS-AKNS results for w ∈ K0, we will characterize the mappings

DL :(w′ + w2) 7→ m

IL :m 7→ (w′ + w2).

where m is the modified m-function. We then deploy our local determination result
(1.2.1) for the ZS-AKNS equation to prove the following analog of Simon’s Theorem
1.2.4.

Theorem 1.2.5. Let q1, q2 ∈ M0 and let Lq1 , Lq2 have the respective modified m-
functions m1, m2. If

m1(−k2)−m2(−k2) = õ(e−2kβ),

as k → +∞ then q1 = q2 on [0, β].
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The recent preprint [17] establishes a local Borg-Marchenko Theorem (Theorem
4.8) that is considerably more general than our Theorem 1.2.5. In the language of
these authors, the correspondence between a column solution of the ZS-AKNS equa-
tion and the Schrödinger equation expressed by (1.6) is an example of a supersymme-
try, and it is not difficult to generalize this relationship to the case of matrix valued
w(x). The supersymmetry can then be exploited to connect the Weyl-Titchmarsh
theory of Dirac systems developed by Clark and Gesztesy [8, 9] to the spectral theory
of the Miura (matrix) potential Schrödinger equation. We believe our result (1.2.5)
and its simple proof complements the more technical development presented by these
authors, as in our work the Dirac operator Weyl-Titchmarsh technology is replaced
by standard inverse scattering and complex analysis techniques.

Copyright c© Ryan D. Walker, 2013.
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Chapter 2 Direct Scattering for the ZS-AKNS Equation

2.1 Overview

In this chapter, we prove the forward part of Theorem 1.2.1. The main result is:

Theorem 2.1.1. The map D−
P on the set Kα takes its image in K̂α.

Explicitly, the reflection coefficient for w ∈ Kα can be written as

r−(z) =

∫ ∞

α

e2izξC(ξ) dξ, (2.1)

where C ∈ X . Using a symmetry of the real potential ZS-AKNS equation (Proposi-
tion 2.3.5 below), the theorem immediately implies:

Corollary 2.1.1. The map D+
P on the set Kβ takes its image in K̂β .

Let us also explain how Theorem 2.1.1 and Corollary 2.1.1 imply the forward
direction of the Nonlinear Paley-Wiener Theorem 1.1.1. To see why, suppose that
(2.1) holds. A priori, the reflection coefficient r−(z) for w ∈ X is defined only for
z ∈ R. Consider the extension of r−(z) obtained by allowing z ∈ C+ in equation
(2.1). If γ ⊂ C+ is any simple closed curve, it is easy to see that

∫

γ

|r−(z)| dz ≤
∫

γ

e−2αℑz‖C‖1 dz

≤
(
max
z∈γ

e−2αℑz

)
length(γ)‖C‖1

We may then apply Fubini’s Theorem to obtain
∫

γ

r−(z) dz = 0

for any closed curve γ ⊂ C+. By Morera’s Theorem, r−(z) is analytic in C+. More-
over, the continuation of r−(z) satisfies

|r−(R + iT )| ≤ Ce−2αT T ≥ 0.

By a completely analogous computation, if

r+(z) =

∫ β

−∞
C(x)e−2izx dx

then r+(z) continues analytically to C+ and the continuation of r+(z) satisfies

|r+(R + iT )| ≤ Ce2βT T ≥ 0.

Therefore, the forward part of the Nonlinear Paley-Wiener Theorem 1.1.1 is a
simple consequence of Theorem 2.1.1 and Corollary 2.1.1. Before proceeding to the
proofs of our main results, we must first make rigorous the definitions of the direct
scattering maps D±

P .
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2.2 Direct Scattering Theory on the Line

In this section, we present a standard derivation of the direct scattering theory for the
ZS-AKNS system over the class of real potentials X . Our presentation follows closely
the treatments that can be found, for example, in the references [1, 12, 21, 36, 50].

Notation and Preliminaries

LetM2(C) be the space of 2×2 matrices. We will sometimes considerM2(C) equipped
with the matrix 2-norm:

|A|2 = max
|x|=1
x∈C2

|Ax|
|x| ,

where | · | denotes the standard Euclidean length on C2. We recall that |A|2 is equal
to the largest singular value of A, i.e. the square root of the largest eigenvalue of
A∗A.1

Define the Pauli matrices

σ1 =

[
0 1
1 0

]
σ3 =

[
1 0
0 −1

]
.

By 1 we denote the identity matrix in M2(C); by I we denote an identity operator
on a given function space.

Recall that a function f : R → C is absolutely continuous on R if and only if there
exists a function g ∈ L1(R) and a constant c ∈ C such that for all x ∈ R

f(x) = c+

∫ x

−∞
g(y) dy.

By the Lebesgue Differentiation Theorem, if f is absolutely continuous on R then f
is differentiable almost everywhere with derivative f ′(x) = g(x).

The 2× 2 ZS-AKNS system is the first order system

d

dx
Ψ = izσ3Ψ+Q(x)Ψ (2.2)

with

Q(x) =

[
0 w(x)

w(x) 0

]

and w ∈ X .2

1See, for example, Lemma 1.7 of [13] where the author collects a number of useful properties of
matrix norms.

2Actually, this is only a special case of the ZS-AKNS system. In more general treatments, w is
allowed to be complex-valued and

Q(x) =

[
0 w(x)

w(x) 0

]
.
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A function Ψ : R → M2(C) is a solution to the ZS-AKNS equation if Ψ is abso-
lutely continuous and satisfies (2.2) almost everywhere. To make explicit the depen-
dence of Ψ on the spectral parameter z ∈ C, we will often write Ψ(x, z).

The entries of the matrix Ψ(x, z) are the scalars ψij(x, z). When each of the
component functions ψij(·, z) of Ψ(·, z) belong to X , we will say that Ψ(·, z) belongs
to the space

X ⊗M2(C) =

{[
ψ11 ψ12

ψ21 ψ22

]
: ψij ∈ X

}
.

We now recall the definition of the Hardy spaces H2(C±), which play an important
role in the direct and inverse scattering theory of the ZS-AKNS equation. A function
f analytic in C+ belongs to H2(C+) if

sup
T>0

(∫ ∞

−∞
|f(R+ iT )|2 dR

)1/2

< +∞.

The definition for H2(C−) is analogous. These spaces have the useful characteriza-
tions

H2(C+) =

{
f(z) =

∫ ∞

0

f̃(x)e2ixz dx : f̃ ∈ L2(R)

}

and

H2(C−) =

{
f(z) =

∫ 0

−∞
f̃(x)e2ixz dx : f̃ ∈ L2(R)

}
;

see for example Chapter 2.3 of [16]. We will also require the Hardy spaces H∞(C±):
f ∈ H∞(C±) if

sup
T>0

(
sup
R∈R

|f(R± iT )|
)
< +∞.

For a detailed treatment of these important function spaces, we suggest the standard
references [15, 16].

Symmetries of the ZS-AKNS Equation

The ZS-AKNS equation possesses a number of symmetries which are useful in de-
veloping its direct and inverse scattering theory. In this section, we highlight some
of the structural features of (2.2) that will prove useful for establishing a number of
results in this thesis.

Proposition 2.2.1. Let Ψ(x, z) be a solution to the ZS-AKNS equation (2.2) with
potential w ∈ X. Then:

1. det Ψ(x, z) is independent of x.

2. If
Ψ1(x, z) = σ1Ψ(x, z̄)σ1

then Ψ1(x, z) is also a solution to (2.2) with potential w.
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3. Let Ψ1(x, z),Ψ2(x, z) be solutions to (2.2) with potential w. If det Ψ1(x0, z) 6= 0
for some x0 then Ψ1(x, z)

−1Ψ2(x, z) is independent of x.

Proof. Since Ψ(x, z) solves (2.2), for a.e. x ∈ R, we easily compute

d

dx
det Ψ(x, z) =

d

dx
(ψ11ψ22 − ψ21ψ12)

= ψ′
11ψ22 + ψ11ψ

′
22 − ψ′

21ψ12 − ψ21ψ
′
12

= (izψ11 + w(x)ψ21)ψ22 + ψ11(−izψ22 + w(x)ψ12)

− (−izψ21 + w(x)ψ11)ψ12 − ψ21(izψ12 + w(x)ψ22)

= 0.

Therefore, det Ψ(x, z) = c for a.e. x with c ∈ C a constant. But since Ψ(x, z) is con-
tinuous, det Ψ(x, z) = c holds for every x. Conclude that det Ψ(x, z) is independent
of x.

For part (2), note that
σ1σ3 = −σ3σ1

and that σ1Q(x) = Q(x)σ1. Then

d

dx
Ψ1(x, z) =

d

dx

[
σ1Ψ(x, z̄)σ1

]

= −izσ1σ3Ψ(x, z̄)σ1 + σ1Q(x)Ψ(x, z̄)σ1

= izσ3Ψ1(x, z) +Q(x)Ψ1(x, z).

Conclude that Ψ1(x, z) is a solution to the ZS-AKNS equation whenever Ψ(x, z) is.
For part (3), Ψ1(x, z) is invertible for all x since det Ψ1(x0, z) 6= 0 and det Ψ1(x, z) 6=

0 is independent of x. Compute

d

dx

(
Ψ−1

1 Ψ2

)
= −Ψ−1

1 Ψ′
1Ψ

−1
1 Ψ2 +Ψ−1

1 Ψ′
2

= −Ψ−1
1 (izσ3Ψ1 +Q ·Ψ1)Ψ

−1
1 Ψ2

+Ψ−1
1 (izσ3Ψ2 +Q ·Ψ2)

= 0,

holding for a.e. x.

The following useful result is a simple consequence of the facts collected in the
previous proposition.

Proposition 2.2.2. Let Ψ1(x, z),Ψ2(x, z) be two solutions to the ZS-AKNS equation
(2.2) for a fixed potential w ∈ X. Suppose that det Ψ1(x0, z) 6= 0 for some x0 ∈ R.
Then there exists a matrix M(z) so that

Ψ2(x, z) = Ψ1(x, z)M(z).
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Proof. Set
M(z) = Ψ1(x, z)

−1Ψ2(x, z)

By Proposition 2.2.1, M(z) is independent of x and clearly

Ψ1(x, z) = Ψ2(x, z)M(z).

The reality of w(x) introduces further symmetry to the ZS-AKNS equation. The
following proposition shows how to translate results specialized to potentials sup-
ported on the right half-line [α,+∞) to potentials supported on the left half-line
(−∞,−α].
Proposition 2.2.3. Suppose Ψ(x, z) is a solution to the ZS-AKNS equation (2.2)
with w ∈ X. Then

Ψ̃(x, z) = Ψ(−x,−z).
satisfies (2.2) with w replaced by w̃(x) = −w(−x).
Proof. We easily check that

d

dx
Ψ̃(x, z) = −Ψx(−x,−z)

= − [−izσ3Ψ(−x,−z) +Q(−x)Ψ(−x,−z)]
= izσ3Ψ̃(x, z) + Q̃(x)Ψ̃(x, z)

holds for a.e. x.

Jost Solutions and the Direct Scattering Map

Taking w(x) = 0 in (2.2), we obtain the free ZS-AKNS equation. It is easy to see
that the free ZS-AKNS equation has the free solution

exp(ixzσ3) =

[
eixz 0
0 e−ixz

]
.

For matrix potential Q(x) 6= 0, the ZS-AKNS equation is a perturbation of the free
equation. If Q(x) decays as x → ±∞ then the effect of this perturbation should
dissipate out as x→ ±∞. Motivated by this heuristic argument, we seek solutions of
the ZS-AKNS system with the same asymptotics as the free solution. We will prove
that for w ∈ X , there exist unique solutions Ψ± to (2.2) satisfying the respective
asymptotic conditions

lim
x→±∞

∣∣Ψ±(x, z)− eixzσ3

∣∣
2
= 0. (2.3)

These solutions are called the left and right Jost solutions. In slightly different terms,
the Jost solutions are the matrix eigenfunctions for the ZS-AKNS that are asymptotic
at either +∞ or −∞ to the exponential families exp(ixzσ3).

The following relationship between the left and right Jost solutions is the key to
the direct scattering theory of the ZS-AKNS equation.
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Proposition 2.2.4. Suppose for all z ∈ R the solutions Ψ±(x, z) exist and are unique.
Then for each z ∈ R there is a matrix R(z) such that

Ψ+(x, z) = Ψ−(x, z)R(z). (2.4)

Moreover, R(z) has the form

R(z) =

[
a(z) b̄(z)
b(z) ā(z)

]
,

where
|a(z)|2 − |b(z)|2 = 1.

Proof. Since Ψ± are solutions to ZS-AKNS, we can apply part 1 of Proposition 2.2.1
and the asymptotic conditions on Ψ± to conclude that

det Ψ± = det

[
eixz 0
0 e−ixz

]
= 1.

Using part 3 of Proposition 2.2.1, define

R(z) = Ψ−(x, z)
−1Ψ+(x, z).

A priori, the matrix R has the form

R(z) =

[
a11(z) a12(z)
a21(z) a22(z)

]
.

For real z, part 2 of Proposition 2.2.1 implies that

Ψ̃±(x, z) = σ1Ψ±(x, z)σ1

are also solutions to ZS-AKNS. By the asymptotic conditions

Ψ±(x, z) ∼ e−ixzσ3,

and we can compute that

σ1e
−ixzσ3σ1 = σ1

[
e−ixz 0
0 eixz

]
σ1 = eixzσ3 .

Uniqueness of Ψ± gives
Ψ± = σ1Ψ±σ1.

Noting that σ1σ1 = 1, compute

R(z) = Ψ−(x, z)
−1Ψ+(x, z)

= (σ1Ψ−(x, z)σ1)
−1σ1Ψ+(x, z)σ1

= σ1Ψ−(x, z)−1Ψ+(x, z)σ1

= σ1R(z)σ1.

This gives the symmetry
[
a11(z) a12(z)
a21(z) a22(z)

]
=

[
a22(z) a21(z)
a12(z) a11(z)

]
.

Set a = a11, b = a21 and use the fact that det Ψ± = 1 to conclude that R(z) has the
form given in the proposition.
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The Reflection Coefficients

Suppose for the moment that the solutions Ψ±(x, z) exist and are unique for any
w ∈ X . Then for each fixed potential w ∈ X , we may apply the previous proposition
to define the coefficients

r−(z) =
b(z)

a(z)
r+(z) = − b̄(z)

a(z)
(2.5)

for z ∈ R . Note that |a(z)|2 − |b(z)|2 = 1 so that

|a(z)|2 ≥ 1

and
‖r±‖L∞(R) < 1.

Hence, the mappings
D±

P : w 7→ r±

are well-defined on X , provided that we can establish the existence and uniqueness
of Ψ±. Before attending to the technical existence and uniqueness issue, let us first
provide a physical characterization of the reflection coefficients r±(z).

Observe that we can use relation (2.4) to obtain the asymptotic formulas

x→ +∞ : Ψ+(x, z) ∼ exp(ixzσ3)

x→ −∞ : Ψ+(x, z) ∼ exp(ixzσ3)R(z).

Let

t(z) =
1

a(z)

and

e1 =

[
1
0

]
e2 =

[
0
1

]
.

If Ψ
(1)
+ denotes the first column of Ψ+ then

x→ +∞ :
Ψ

(1)
+ (x, z)

a(z)
∼ t(z)e1 e

ixz

x→ −∞ :
Ψ

(1)
+ (x, z)

a(z)
∼ e1 e

ixz + r−(z)e2 e
−ixz

(2.6)

These equations depict a hypothetical process where a wave eixz tuned to frequency
z travels in from the left and interacts with the potential Q. The potential partially
transmits and partially scatters the incident wave. The transmitted part corresponds
to t(z)e1e

ixz, while the reflected part corresponds to r−(z)e2e
−ixz (see the diagram in

Figure 2.2). By a similar computation, the second column Ψ
(2)
+ of Ψ+ corresponds to

a process where a wave incident on the right interacts with Q(x). In this case, the
coefficient r−(z) corresponds to the reflection of the incident wave.
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Figure 2.1: In this cartoon diagram of scattering for the ZS-AKNS system, a wave in-
cident on the left interacts with the potential. The incident wave is partly transmitted
and partly reflected.

Of course, we could also take the limit as x→ +∞ in the relation (2.4) to obtain
the asymptotic formulas

x→ +∞ : exp(ixzσ3)R(z)
−1 ∼ Ψ−(x, z).

If Ψ
(2)
− is the second of column of Ψ−, we then write

x→ −∞ : Ψ
(2)
− (x, z) ∼ e2e

ixz

x→ +∞ : Ψ
(2)
− (x, z) ∼ −b̄(z)e1eixz + a(z)e2e

−ixz.

In this case, it is natural to define the reflection coefficient

r+(z) = − b̄(z)

a(z)
.

The relationship between left and right scattering is well-known; see, for example,
[12, 50]. Since |a(z)|2−|b(z)|2 = 1 for z ∈ R and ‖r±‖L∞(R) < 1, it is easy to see that

|a(z)|2 = 1

1− |r±(z)|2
.

As we shall see, a(z) extends to a bounded analytic function in C+ satisfying a(z) → 1
as z → +∞ in C+. Also, a(z) is non-vanishing on C+ (see Lemma 2.3.1, below). We
may therefore recover a(z) in C+ from its modulus by the formula

a(z) = exp (C(log |a|)(z))

where C is the Cauchy operator on L2(R) (see Appendix C). On the line, we then
recover a(z) from the boundary values

a(z) = exp (C+(log |a|)(z)) .
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Since we can always recover the coefficient a(z) from the modulus of either reflection
coefficient r±, we can use the formula

b(z) = a(z)r−(z) = −a(z)r+(z),

to recover b(z). Therefore, knowing either reflection coefficient is equivalent to know-
ing both reflection coefficients.

Existence and Uniqueness of the Jost Solutions

It remains to prove that the Jost solutions Ψ± exist and are unique for all z ∈ R. We
present an argument similar to the proof developed in [21], and also refer to [20] where
many of the results of [21] are worked out in detail. The first step is to formulate the
ZS-AKNS system as a system of integral equations, and for this it is convenient to
introduce a factorization. Following [50], factor out the leading singularity at ±∞ of
the free solution to ZS-AKNS by setting

Ψ = Φeixzσ3 . (2.7)

Now differentiate this factorization to obtain

izσ3Ψ+Q(x)Ψ = Φxe
ixzσ + izΦσ3e

ixzσ,

so that the matrix Φ satisfies

Φx = izσ3Φ− izΦσ3 +Q(x)Φ. (2.8)

Let adσ3
be the linear operator on M2(C) defined by

adσ3
(A) = [σ3, A] = σ3A−Aσ3.

Write the system (2.8) as
Φx − iz adσ3

Φ = Q(x)Φ. (2.9)

The Jost solutions Ψ± to ZS-AKNS will correspond to the solutions Φ± of the
system (2.9) satisfying the asymptotic conditions

lim
x→±∞

|Φ±(x, z)− 1| = 0. (2.10)

We can integrate (2.9) with either of the conditions (2.10) by introducing an
exponential operator of the form exp(izx adσ3

). This operator is determined from the
eigenbasis of the linear operator adσ3

. It is easy to compute that adσ3
has eigenvalues

λ = −2, 0, 2, so that the action of exp(ixzadσ3
) on M2(C) is given by

eizx adσ3

[
a b
c d

]
=

[
a e2ixzb

e−2ixzc d

]
.

The following properties of the exponential operator exp(ζadσ3
) can be readily

verified by direct computation.
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Proposition 2.2.5. Let A,B ∈M2(C). For any ζ ∈ C:

1. exp(ζ adσ3
)(A · B) = (exp(ζadσ3

)A) · (exp(ζadσ3
)B)

2. exp(ζ adσ3
)A = eζσ3Ae−ζσ3.

Proof. The first identity follows from the second. The second identity holds because
both sides of the equation are solutions to

A′(ξ) = adσ3
A(ξ)

with A(0) = A.

Applying the operator exp(−ixzadσ3
) to equation (2.9), we obtain

e−izx adσ3Φx − ize−ixz adσ3adσ3
Φ = e−ixz adσ3Q(x)Φ,

which simplifies to (
e−ixz adσ3Φ

)
x
= e−ixz adσ3Q(x)Φ.

We integrate this equation from x to ±∞ and have:
[

lim
y→+∞

e−izy adσ3Φ(y, z)

]
− e−ixzadσ3Φ(x, z) =

∫ ∞

x

e−izy adσ3Q(y)Φ(y, z) dy

e−ixzadσ3Φ(x, z)−
[

lim
y→−∞

e−izy adσ3Φ(y, z)

]
=

∫ x

−∞
e−izy adσ3Q(y)Φ(y, z) dy

Now we apply the asymptotic conditions (2.10) and rearrange to arrive at the
integral equations

Φ+(x, z) = 1−
∫ +∞

x

eiz(x−y) adσ3Q(y)Φ+(y, z) dy (2.11)

Φ−(x, z) = 1+

∫ x

−∞
eiz(x−y) adσ3Q(y)Φ−(y, z) dy (2.12)

Let Y be the Banach space of M2(C)-valued functions f : R →M2(C) continuous
in the supremum norm

‖f‖Y = sup
x∈R

|f(x)|2.

Define the operators T± on Y by

(T±f) (x) = ∓
∫ ±∞

x

eiz(x−y) adσ3Q(y)f(y) dy. (2.13)

and recast (2.11)-(2.12) as
Φ± = 1+ T±Φ±.

Formally, the solutions to these equations are

Φ± = (I − T±)
−1

1.

As in [21], we will develop explicit Volterra series expressions for the operators
(I − T±)

−1.
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Lemma 2.2.1 (Permutation Symmetry Lemma). For n ∈ N:

∫

x≤y1≤...≤yn≤+∞
|w(y1)| · · · |w(yn)| dy1 · · · dyn =

1

n!

(∫ ∞

x

|w(y)| dy
)n

∫

−∞≤yn≤...≤y1≤x

|w(y1)| · · · |w(yn)| dy1 · · · dyn =
1

n!

(∫ x

−∞
|w(y)| dy

)n

Proof. The intuition behind this useful fact is the following. Label the permutations
of the integer indices (1, 2, ..., n) by σj = (i1, i2, ..., in) for j = 1, ..., n! with σ1 the
identity permutation. Define the sets

Rσj
(x) = {(y1, y2, .., yn) ∈ R

n : x < yi1 ≤ yi2 ≤ · · · ≤ yin < +∞} .

Observe that

H(x) =
n!⋃

j=1

Rσj
(x) = {(y1, y2, ..., yn) ∈ R

n : yi > x for i = 1, ..., n} .

and Rσi
∩Rσj

has measure zero for i 6= j.
Let

Iσj
(x) =

∫

Rσj

|w(yi1)| · · · |w(yiN )| dyi1 · · · dyin

By the change of variables formula, we see that for any permutation

Iσ1
(x) = Iσj

(x).

Then we have

n!Iσ1
(x) =

n!∑

j=1

Iσj
(x) =

∫

H(x)

|w(y1)||w(y2)| · · · |w(yn)| dy1 · · · dyn

and clearly

Iσ1
(x) =

1

n!

∫

H(x)

|w(y1)||w(y2)| · · · |w(yn)| dy1 · · ·dyn =

(∫∞
x

|w(y)| dy
)n

n!
.

A symmetric argument applies to the second inequality of the lemma. A proper proof
follows directly from a straightforward induction argument.

Lemma 2.2.2. For z ∈ R and w ∈ L1(R), the operators (I − T±)
−1 exist as bounded

linear operators on Y and satisfy the estimates

‖(I − T±)
−1‖Y→Y ≤ exp

(
‖w‖L1(R)

)
.

The operators (I − T±)
−1 have convergent series expansions

(I − T±)
−1 =

∞∑

n=0

T n
±.
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Proof. First, we show that the iterates of T± satisfy

|(T n
+f)(x)| ≤

(∫

x≤y1≤...≤yn<+∞
|w(y1)| · · · |w(yn)| dy1 · · · dyn

)
‖f‖Y

|(T n
−f)(x)| ≤

(∫

−∞≤yn≤...≤y1≤x

|w(y1)| · · · |w(yn)| dy1 · · · dyn
)
‖f‖Y .

Recall that the matrix 2-norm satisfies the sub-multiplicative property

|AB|2 ≤ |A|2 |B|2 .
Observe in addition that for any λ, υ ∈ C,

∣∣∣∣
[
0 υ
λ 0

]∣∣∣∣
2

= max {|λ|, |υ|} .

During the rest of the proof, we suppress the subscript on the | · |2 norm. For fixed
z ∈ R and f ∈ Y , we estimate

|T±f(x)| ≤ ±
∫ ±∞

x

∣∣eiz(x−y) adσ3Q(y)f(y)
∣∣ dy

≤ ±
∫ ±∞

x

∣∣eiz(x−y) adσ3Q(y)
∣∣ |f(y)| dy

≤
∫ ±∞

x

(
sup
t≥y

|f(t)|
)∣∣∣∣
[

0 e2iz(x−y)w(y)
e−2iz(x−y)w(y) 0

]∣∣∣∣ dy

≤ ±
∫ ±∞

x

(
sup
t≥y

|f(t)|
)
|w(y)| dy

This completes the n = 1 base case of an inductive proof. Suppose that the result
holds for n. We estimate for T+ that

∣∣T n+1
+ f(x)

∣∣ ≤
∫ +∞

x

(
sup
t≥x

|T n
+f(t)|

)
|w(y)| dy

≤ ‖f‖Y
∫

x≤y1≤...≤yn+1<+∞
|w(y1)| · · · |w(yn+1)| dy1 · · ·dyn+1

≤ 1

(n+ 1)!

(∫ ∞

x

|w(y)| dy
)n+1

‖f‖Y ,

where the last line follows from the Permutation Symmetry Lemma (Lemma 2.2.1).
A completely analogous computation proves the result for T n

−. Thus, the Volterra
series

(I − T±)
−1 =

∞∑

n=0

T n
±

converge and the resolvents (I − T±)
−1 are bounded linear operators on Y with

‖(I − T±)
−1‖Y→Y ≤ exp(‖w‖1).
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Now we can prove the existence and uniqueness of the Jost solutions Ψ± to ZS-
AKNS.

Proposition 2.2.6. For w ∈ X and z ∈ R, Ψ± exist and are unique.

Proof. Fix z ∈ R. By the previous lemma, (I − T±)
−1 exist as bounded linear

operators on the space Y . Therefore, the functions

Φ±(x, z) = (I − T±)
−11

are continuous solutions to the integral equation

Φ± = 1+ T±Φ±.

Iterate this integral equation once to write

Φ± = 1 + T±(I − T±)
−11.

Now for f ∈ Y , we have

T±f(x) = ∓
∫ ±∞

x

expiz(x−y)adσ3

[
0 w(y)

w(y) 0

]
f(y) dy

= ∓
∫ ±∞

x

[
0 w(y)e2iz(x−y)

w(y)e−2iz(x−y) 0

]
f(y) dy

When f ∈ Y is bounded in each component, the integrand in T± is an integrable
function. The bound

‖Φ±(·, z)‖Y ≤ exp(‖w‖L1)

implies Φ± is uniformly bounded. For each fixed z, Φ± can be written in the form

Φ± = 1+ E±(x)

∫ +∞

x

F±(y) dy,

where the entries of E± are complex exponential factors and the entries of F± are
L1(R) functions. It follows that Φ± are absolutely continuous functions for each fixed
z, as claimed.

Finally, suppose that Φ1,Φ2 ∈ Y both satisfy

Φ = 1+ T+Φ.

Then Φ = Φ1 − Φ2 satisfies
(I − T+)Φ = 0.

Since I − T+ is invertible on Y , it follows that Φ = 0, and so, Φ1 = Φ2. An identical
argument applies to T−. We conclude that Φ± are unique. Set

Ψ± = Φ±e
ixzσ3

to obtain the unique Jost solutions to the ZS-AKNS equation.
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2.3 The Fourier Representation Theorem for the Scattering Map

In the previous section, we established that the Jost solutions to the ZS-AKNS system
for z ∈ R satisfy

Ψ+(x, z) = Ψ−(x, z)R(z), (2.14)

where

R(z) =

[
a(z) b̄(z)
b(z) ā(z)

]
|a(z)|2 − |b(z)|2 = 1.

Now we use the Neumann series for Ψ± together with relation (2.14) to de-
velop Fourier transform formulas for the reflection coefficients r−(z) = b(z)/a(z) and
r+(z) = −b̄(z)/a(z). We will analyze how the support of the potential w determines
analyticity of the coefficients a(z), b(z), r−(z), and r+(z). Throughout this section,
we assume that w ∈ X has support on [α, β] where α, β ∈ R = R ∪ {±∞} .3

The idea behind our approach is to use the series expressions for Ψ± to evaluate
(2.14) at x = α or x = β, and then solve (2.14) for the reflection coefficients. This is
precisely what is done for w supported on the whole line in [21], where the authors
prove

r−(z) = FC1(z)

r+(z) = F−1C2(z)

for some C1, C2 ∈ X .

Series Expansions for the Jost Solutions

To study Ψ± = Φ±e
ixzσ3, we follow [21] and introduce a second factorization. Re-

turning to equation (2.9), we factor out the operator exp(ixzadσ3
) by defining

Φ(x, z) = exp(ixzadσ3
)Θ(x, z). (2.15)

By (2.10), it follows that
lim

x→±∞
|Θ±(x, z)− 1| = 0 (2.16)

where Φ± = exp(ixzadσ3
)Θ±.

From equation (2.9) and the factorization (2.15), we compute

Φx = izadσ3
(exp(ixzadσ3

) Θ) + exp(ixzadσ3
)Θx

= izadσ3
(exp(ixzadσ3

) Θ) +Q(x) · (exp(ixzadσ3
) Θ) .

Therefore,
Θx = exp(−ixzadσ3

)Q(x) · (exp(ixzadσ3
) Θ)

Recalling Part 1 of Proposition 2.2.5, we have

exp(−ixzadσ3
)Q(x) · (exp(ixzadσ3

) Θ) = (exp(−ixzadσ3
)Q(x)) Θ.

3For simplicity, we abuse notation slightly by using the closed interval notation [α, β] even when
α, β may be infinite.
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Figure 2.2: This sketch characterizes the relationship between Θ+ and Θ− in the case
where w is supported on [α,+∞) for α finite. The sketch is only a mnemonic device,
as Θ±, Q(x), R(z) are complex matrices.

Hence
Θx(x, z) = (exp(−ixzadσ3

)Q(x)) Θ(x, z)

We integrate this equation with the conditions (2.16) to obtain the pair of integral
equations

Θ±(x, z) = 1−
∫ ±∞

x

(exp(−iyzadσ3
)Q(y))Θ±(y, z) dy. (2.17)

Now
Ψ± = (exp(ixz adσ3

)Θ±) · eixzσ3 .

Recalling Part 2 of Proposition 2.2.5

Ψ± = eixzσ3Θ±.

The relation (2.14) implies

Θ+(x, z) = Θ−(x, z)R(z).

We now solve for R(z) in (2.14) with these formulas. Recall that Ψ±(x, z) =
(exp(ixzadσ3

)Θ±)e
ixzσ3 and that Θ± → 1 as x→ ±∞. The Jost solutions to the ZS-

AKNS problem withQ(x) = 0 (the free problem) are Ψ± = eixzσ3. For w(x) supported
on [α, β] ⊆ R, it follows by uniqueness of the Jost solutions that Ψ−(x, z) = eixzσ3

for any x ≤ α. Similarly, Ψ+(x, z) = eixzσ3 for any x ≥ β. We therefore have that
Θ+(x, z) = 1 for x ≥ β and Θ−(x, z) = 1 for x ≤ α. Thus,

Θ+(α, z) = R(z)

Θ−(β, z) = R(z)−1.

The heuristic sketch appearing in Figure 2.2 illustrates the relationship between Θ+

and Θ− for α finite.
We summarize the computation of the matrix R(z) from the solutions Θ± in the

following proposition.
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Proposition 2.3.1. Let w ∈ X have support on [α, β] ⊆ R. The limits

Θ+(α, z) : = lim
x→α−

Θ+(x, z)

Θ−(β, z) : = lim
x→β+

Θ−(x, z)

are well-defined for all z ∈ R. Moreover,

R(z) = Θ+(α, z)

R(z)−1 = Θ−(β, z),

and in particular

a(z) = [Θ+(α, z)]11 = [Θ−(β, z)]22
b(z) = [Θ+(α, z)]21 = − [Θ−(β, z)]21

(2.18)

for z ∈ R.

Proof. For finite α, β, the result is an immediate consequence of the continuity of Ψ±
established by Proposition 2.2.6. For α or β infinite, the result will follow from the
series expressions derived for Θ± below.

Now we will derive explicit Neumann series expressions for Θ±.

Θ±(x, z) = 1 +

∞∑

n=1

Sn
±1(x; z)

where for each fixed z the operators S± are defined by

S±f(x; z) =

∫ ±∞

x

(exp(−iyzadσ3
)Q(y)) f(y) dy.

From Lemma 2.2.2 it readily follows that these series converges for each x, z ∈ R.
The first few terms of the series for Θ± − 1 are

S±1(x; z) =

∫ ±∞

x

[
0 e−2iy1zw(y1)

e2iy1zw(y1) 0

]
dy1

S2
±1(x; z) =

∫ ±∞

x

∫ ±∞

y1

[
e2iz(y2−y1)w(y1)w(y2) 0

0 e−2iz(y2−y1)w(y1)w(y2)

]
dy2dy1

We now introduce some additional notation to produce general formulas for Sn
±1.

Let
~y = (y1, ..., yn) ∈ R

n

and
Wn(~y) = w(y1) · · ·w(yn).
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Define ~αn as the n-component vector with k-th component equal to (−1)n−k, i.e. for
n even

~αn = (−1, 1, . . . ,−1, 1)

and for n odd
~αn = (1,−1, 1, . . . ,−1, 1).

Also define the half-spaces

H+
n (x) = {~y ∈ R

n : x ≤ y1 ≤ y2 ≤ ... ≤ yn}

and
H−

n (x) = {~y ∈ R
n : x ≥ y1 ≥ y2 ≥ ... ≥ yn} ,

and let χH±
n (x) denote their respective characteristic functions.

Finally, we let

Fnf
(
~ζ
)
=

∫

Rn

e2i~x·
~ζf(~x) d~x

denote the n-dimensional Fourier transform.
With this notation, we easily obtain the following formulas by induction.

Proposition 2.3.2.

Sn
±1(x; z) =


Fn

[
χH±

n (x) ·Wn

]
(z~αn) 0

0 Fn

[
χH±

n (x) ·Wn

]
(−z~αn)




for n even, and

Sn
±1(x; z) =


 0 Fn

[
χH±

n (x) ·Wn

]
(−z~αn)

Fn

[
χH±

n (x) ·Wn

]
(z~αn) 0




for n odd.

We will now argue that the n-dimensional Fourier transform terms in the preced-
ing proposition may be re-expressed in terms of a 1-dimensional Fourier transform.
Recall the Projection Slice Theorem which says that slicing the n-dimensional Fourier
transform of f along a line ℓ through the origin is equivalent to projecting f on to ℓ
and taking a 1-dimensional Fourier transform.

Theorem 2.3.1 (Projection Slice Theorem, [35]). Let f ∈ L1(Rn) ∩ L2(Rn) and let
~ω be a fixed unit vector in Rn. Then

Fnf(ρ~ω) = (F1P~ωf) (ρ) (2.19)

where

P~ωf(t) =

∫

~ω·~y=t

f(~y)dSn(~y)

and dSn is the n − 1 dimensional Hausdorff measure on the hyperplane defined by
~ω · ~y = t for ~y ∈ Rn.
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Clearly, Wn ∈ L1(Rn) ∩ L2(Rn) for any n. Since |αn| =
√
n, the Projection Slice

Theorem gives

Fn

[
χH±

n (x) ·Wn

]
(z ~αn) =

∫ ∞

−∞
e2i(z

√
n)σ

(∫

~y·~αn=z
√
n

χH±
n
·Wn dSn(~y)

)
dσ

=
1√
n

∫ ∞

−∞
e2izξ



∫

~y·~αn=ξ

~y∈H±
n (x)

Wn(~y)dSn(~y)


 dξ

Some Geometry for the Projection Terms

We briefly consider some geometric properties of the surface integrals

A±
n (x; ξ) =

1√
n

∫
~y·~αn=ξ

~y∈H±
n (x)

Wn(~y)dS(~y).

For n = 1, it is not hard to see that

A+
1 (x; ξ) = w(ξ)χ[x,+∞)(ξ)

A−
1 (x; ξ) = w(ξ)χ(−∞,x](ξ)

in the L2 sense.
Then for each fixed x, A+

1 (x; ξ) has ξ-support in

supp(w) ∩ [x,+∞) = (α, β) ∩ [x,+∞),

and A−
1 (x; ξ) has ξ-support in

supp(w) ∩ (−∞, x] = [α, β] ∩ (−∞, x].

Next, we observe that

A+
2 (x; ξ) =

1√
2

∫
y2−y1=ξ
x≤y1≤y2

w(y1)w(y2) dS2(~y)

A−
2 (x; ξ) =

1√
2

∫
y2−y1=ξ
x≥y1≥y2

w(y1)w(y2) dS2(~y),

which are line integrals in R2. It is easy to see from Figure 2.3 that A+
2 (x; ξ) has

ξ-support in [0,+∞). A similar diagram can be drawn for A−
2 which shows that A−

2

has ξ-support in (−∞, 0].
We now study the ξ-support properties of A±

n for general n; a summary of the
results appears in Table 2.1.

General even n When n is even and ~y ∈ H+
n (x) then

ξ = ~αn · ~y = (y2 − y1) + ...+ (yn − yn−1) ≥ 0,

Similarly, if ~y ∈ H−
n (x) then

ξ = ~αn · ~y = (y2 − y1) + ...+ (yn − yn−1) ≤ 0.

It follows that for n even A+
n (x; ξ) has support in ξ ∈ [0,+∞) and A−

n (x; ξ) has
support in ξ ∈ (−∞, 0].
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Figure 2.3: This diagram depicts the region of support for the integral defining
A+

2 (x; ξ). The gray region is the half-plane H+
2 (x). The part of the line y2 − y1 = ξ

that lies in H+
2 (x) is the integral support of A2(x; ξ). The integral support is empty

if ξ < 0.

n is even n is odd

A+
n (x; ξ) [0,+∞) [α, β] ∩ [x,+∞)

A−
n (x; ξ) (−∞, 0] [α, β] ∩ (−∞, x]

Table 2.1: This table summarizes the ξ-support properties of An(x; ξ) for each fixed
x with w supported in [α, β] ⊆ R.

General odd n Now when n is odd, for ~y ∈ H+
n (x)

ξ = ~αn · ~y = y1 + (y3 − y2) + ...+ (yn − yn−1) ≥ y1 ≥ x,

and for ~y ∈ H−
n (x)

ξ = ~αn · ~y = y1 + (y3 − y2) + ...+ (yn − yn−1) ≤ y1 ≤ x.

Since w(y1) vanishes when the coordinate y1 lies outside of [α, β], A+
n (x; ξ) must

also vanish for ξ < α. Similarly, A−(x; ξ) must vanish for ξ > β.
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Also, observe that if ~y ∈ H+
n (x)

ξ = y1 + (y3 − y2) + ... + (yn − yn−1)

≤ y2 + (y3 − y2) + ...+ (yn − yn−1)

= y3 + (y5 − y4) + .... + (yn − yn−1)

...

≤ yn.

Similarly, if ~y ∈ H−
n (x) we can estimate that

ξ ≥ yn.

Since w(yn) vanishes when the coordinate yn is outside of [α, β], it follows that
A+

n (x; ξ) has ξ-support in [α, β] ∩ [x,+∞) and A−
n (x; ξ) has ξ-support in [α, β] ∩

(−∞, x].

Fourier Formulas for R(z)

Applying the results of Table 2.1, we obtain the following formulas.
For n even:

Fn

[
χH±

n (x) ·Wn

]
(z ~αn) =

±1√
n

∫ ±∞

0

e2izξA±
n (x; ξ) dξ

and for n odd:

Fn

[
χH±

n (x) ·Wn

]
(z ~αn) =

±1√
n

∫ ±∞

x

e2izξA±
n (x; ξ) dξ.

Returning to the formulas of Proposition 2.3.2, we write

Sn
±1(x; z) =

±1√
n

∫ ±∞

0

e2izξσ3A±
n (x; ξ)dξ,

for n even, and

Sn
±1(x; z) =

±σ1√
n

∫ ±∞

x

e2izξσ3A±
n (x; ξ) dξ

for n odd. Note that e2izξσ3 , and hence Sn
±1, are matrix-valued.

Next we show that the series

A±(x; ξ) =
∞∑

k=1

A±
2k(x; ξ)

B±(x; ξ) =

∞∑

k=1

A±
2k−1(x; ξ).

(2.20)
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converge uniformly for each x and that A(x; ·), B(x; ·) ∈ X . We will then be able to
exchange the summation and integral in the series

Θ±(x; ξ) = 1+

∞∑

k=1

Sk
±1(x; z)

and obtain the Fourier formulas

Θ±(x, z) = 1±
∫ ±∞

0

e2iξzσ3A±(x; ξ) dξ

± σ1

∫ ±∞

x

e2iξzσ3B±(x; ξ) dξ.

(2.21)

The following estimates also appear in [21].

Proposition 2.3.3. For each fixed x ∈ R, A±
n (x, ·) ∈ L1(R) ∩ L2(R) with

‖A±
n (x, ·)‖L1(R) ≤

1

n!

(∫ ∞

x

|w(ξ)| dξ
)n

and

‖A±
n (x, ·)‖L2(R) ≤

1

(n− 1)!

(∫ ∞

x

|w(ξ)| dξ
)n−1(∫ ∞

x

|w(ξ)|2 dξ
)1/2

.

Proof. We prove the result for A+
n (x; ξ) only, as the computation for A−

n (x; ξ) is quite
similar.

Recall the coarea formula for u : Ω ⊂ Rn → R Lipschitz and g ∈ L1:

∫

Ω

g(x)|∇u(x)| dx =

∫ ∞

−∞

(∫

ξ=u(x)

g(x) dSn(x)

)
dξ

where dSn is the (n− 1)-dimensional Hausdorff measure on the hypersurface defined
by u(x) = ξ. Also, note that

dSn(~y)dξ = d~y

where d~y denotes the n-dimensional Lebesgue measure and that

|∇~y (~αn · ~y) | =
√
n.

We compute directly:
∫ ∞

−∞
|An(x, ξ)|dξ ≤

1√
n

∫ ∞

−∞

∫

~αn·~y=ξ
x<y1<···<yn

|Wn(~y)| dSn(~y)dξ

=

∫

x<y1<···<yn

|Wn(~y)| d~y

≤
‖w‖nL1(R)

n!
.
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Now suppose that g ∈ L2(R). We compute

∫ ∞

−∞
An(x, ξ)g(ξ) dξ ≤

1√
n

∫ ∞

−∞

(∫

~αn·~y=ξ
x<y1<···<yn

|Wn(~y)| dSn(~y)

)
g(ξ) dξ

≤
∫

x<y1<···<yn

|Wn(~y)||g(~αn · ~y)| d~y

≤
∫

x<y1<···<yn−1

|Wn−1(~y)|
∫ ∞

yn−1

|w(yn−1)||g(~αn · ~y)| dyndy1 · · · dyn−1

≤ ‖g‖L2(R)

(∫ ∞

x

|w(ξ)|2 dξ
)1/2(∫∞

x
|w(ξ)| dξ

(n− 1)!

)
.

Apply the extremal version of Hölder’s inequality to finish the proof.

From Proposition 2.3.3, we obtain the estimates

‖A±(x; ·)‖1 ≤ exp(‖w‖1)
‖A±(x; ·)‖2 ≤ exp(‖w‖1)‖w‖2
‖B±(x; ·)‖1 ≤ exp(‖w‖1)
‖B±(x; ·)‖2 ≤ exp(‖w‖1)‖w‖2,

(2.22)

holding for any fixed x. Since the series for A±(x; ·), B±(x; ·) converge uniformly in
L1, we can exchange the summation and the integral in the series for Θ± and obtain
the formulas in (2.21).

These estimates together with the result of the previous proposition show that
the limits A+(α, ξ), B+(α, ξ) and A−(β, ξ), B−(β, ξ) are well-defined, even in the cases
where α, β are infinite. Recalling Table 2.1, we have

Θ+(α, z) = 1 +

∫ ∞

0

e2iξzσ3A+(α; ξ) dξ + σ1

∫ β

α

e2iξzσ3B+(α; ξ) dξ

Θ−(β, z) = 1 +

∫ 0

−∞
e2iξzσ3A−(β; ξ) dξ + σ1

∫ β

α

e2iξzσ3B−(β; ξ) dξ

(2.23)

We have proved:

Theorem 2.3.2. For w supported on [α, β] ⊆ R,

R(z) = 1+

∫ ∞

0

e2iξzσ3A+(α; ξ) dξ + σ1

∫ β

α

e2iξzσ3B+(α; ξ) dξ

R(z)−1 = 1+

∫ 0

−∞
e2iξzσ3A−(β; ξ) dξ + σ1

∫ β

α

e2iξzσ3B−(β; ξ) dξ

In particular,

a(z) = 1 +

∫ ∞

0

e2izξA+(α; ξ) dξ = 1 +

∫ 0

−∞
e−2izξA−(β; ξ) dξ

b(z) =

∫ β

α

e2izξB+(α; ξ) dξ = −
∫ β

α

e2izξB−(β; ξ) dξ

(2.24)
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Coefficient α, β infinite α finite β finite α, β finite
a(z) C+ C+ C+ C

b(z) None C+ C− C

r−(z) None C+ None C

r+(z) None None C+ C

Table 2.2: This table gives the region of analyticity for the continuations of a(z), b(z),
r−(z), and r+(z) under the various possible hypotheses on the support of w. Here,
supp (w) = [α, β] ⊆ R.

Remark 2.3.1. By uniqueness of the Fourier transform, these formulas imply the
symmetries

A+(α; ξ) = A−(β;−ξ)
B+(α; ξ) = −B−(β; ξ).

The following L1-continuity result for the mappings w 7→ A, w 7→ B appears in
[21]; the proof is a straightforward extension of the proof of Proposition 2.3.3.

Proposition 2.3.4. Let w, w̃ ∈ X. Define A,B for potential w and Ã, B̃ for the
potential w̃ as above. For any x ∈ R:

∥∥∥A±(x; ·)− Ã±(x; ·)
∥∥∥ ≤ C exp

(
‖w‖L1(R) + ‖w̃‖L1(R)

)
‖w − w̃‖L1(R)

∥∥∥B±(x; ·)− B̃±(x; ·)
∥∥∥ ≤ C exp

(
‖w‖L1(R) + ‖w̃‖L1(R)

)
‖|w − w̃‖L1(R)

Analyticity Properties of R(z)

Until this point, all our results have been valid only for z ∈ R. We now consider the
circumstances under which a(z), b(z), r−(z), and r+(z) admit analytic extensions.

From (2.24), a(z) − 1 is an element of the Hardy space H2(C+). Therefore,
a(z) always continues to a bounded analytic function in C+, a well-known result in
scattering theory. The possibility of continuing b(z) analytically depends on at least
one of α, β being finite. We analyze the possible cases in the sections to follow. A
summary of our results appears in Table 2.2.

Half-line Support Cases

When α is finite, we write

b(z) = e2iαz
∫ ∞

0

e2iξzB+(α; ξ − α) dξ,

and see that b(z) continues to an analytic function in C+. In this case, e−2iαzb(z) ∈
H2(C

+) and b(z) satisfies the exponential order condition

|b(R + iT )| ≤ Ce−2αT , T ≥ 0.
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When β is finite, we write

b̄(z) = e−2iβz

∫ 0

−∞
e−2iξzB−(β; ξ) dξ,

and see that b̄(z) continues to an analytic function in C+. In this case, e2iξz b̄(z) ∈
H2(C

+) and b̄(z) satisfies the exponential order condition

|b̄(R + iT )| ≤ Ce2βT , T ≥ 0.

Now we consider the analyticity properties of the reflection coefficients

r−(z) =
b(z)

a(z)
r+(z) = − b̄(z)

a(z)
.

For this, we equip the set

A =

{
χ = λ+

∫ ∞

0

e2izxf(x) dx : f ∈ X, λ ∈ C

}

with the norm ∥∥∥∥λ+

∫ ∞

0

e2izζf(ζ) dζ

∥∥∥∥
A
= |λ|+ ‖f‖L2(R) .

From [22] (see also Remark 3.2 and the appendix of [21]), A is a Banach algebra
under pointwise multiplication. The following theorem from [22], Chapter III, §18.7
provides necessary and sufficient conditions for an element in A to have an inverse in
A.

Theorem 2.3.3. The element

χ(z) = λ+

∫ ∞

0

e2izxf(x) dx ∈ A

has an inverse in A if and only if λ 6= 0 and χ(z) 6= 0 for all z ∈ C+.

We now verify that a(z) satisfies the conditions of this theorem and conclude that
a(z) has an inverse in A.

Lemma 2.3.1. a(z) extends to an analytic function in C+ with a(z) 6= 0 on C+.

Proof. The determinant relation

|a(z)|2 − |b(z)|2 = 1

gives a(z) 6= 0 on R. To see that a(z) 6= 0 in C+, we recall that the operator

P = −i
[
d/dx −w
w −d/dx

]
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is self-adjoint and has no L2 eigenvalues (see [28]). Then we suppose z0 ∈ C+ and
that a(z0) = 0.

From (2.21), it follows that Ψ
(1)
+ (x, z) extends to an analytic function on C+. A

similar argument can be made to show that Ψ
(2)
− (x, z) also extends to an analytic

function in C+.
Define the fundamental solution matrix

M̃(x, z) =
[
Φ

(1)
+ (x, z) Φ

(2)
− (x, z)

]

for z ∈ C+.
Now we have

a(z) = φ+
11(0, z)φ

−
22(0, z)− φ+

21(0, z)φ
−1
12 (0, z)

= det
[
Φ

(1)
+ (0, z) Φ

(2)
− (0, z)

]

= det M̃(0, z)

Recalling Proposition 2.2.1,

det M̃(x, z0) = det M̃(0, z0) = a(z0) = 0.

The columns of M̃(x, z0) are linearly dependent as functions of x, and so

Ψ
(1)
+ (x, z0) = cΨ

(2)
− (x, z0)

for some constant c. Then the column

ψ(x, z0) =

{
cΨ

(2)
− (x, z0) x < 0

Ψ
(1)
+ (x, z0) x ≥ 0

is a solution to
Pψ = zψ.

As x → ±∞, ψ decays exponentially and is hence an L2-eigenvalue of P . This is
impossible.

An alternative proof of this fact may be found in [1].

Now we can establish Theorem 2.1.1.

Proof of Theorem 2.1.1. Suppose that w(x) has support on [α,+∞) with α finite and
let r−(z) = D−

Pw. Because a(z) is nonvanishing in C+, a(z) has an inverse in A. Set

a(z)−1 = 1 +

∫ ∞

0

e2izξD(ξ) dξ

where D ∈ X . Since α is finite, there is a function B(ξ) = B+(α; ξ) in X so that

b(z) =

∫ ∞

α

e2izξB(ξ) dξ
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Compute

r−(z) = b(z)a(z)−1

=

∫ ∞

α

e2izξB(ξ) dξ

(
1 +

∫ ∞

0

e2izξ
′

D(ξ′) dξ′
)

=

∫ ∞

α

e2izξB(ξ) dξ +

∫ ∞

α

∫ ∞

0

e2iz(ξ+ξ′)B(ξ)D(ξ′) dξ′dξ

=

∫ ∞

α

e2izξB(ξ) dξ +

∫ ∞

α

∫ ∞

ξ

e2izyB(y)D(y − ξ) dydξ

=

∫ ∞

α

e2izξB(ξ) dξ +

∫ ∞

α

∫ ξ

α

e2izyB(y)D(y − ξ) dξdy.

We define

C(ξ) = B(ξ) +

∫ ξ

α

B(ξ′)D(ξ − ξ′) dξ′

Since B,D ∈ X , it is easy to estimate that

‖C‖L1(R) ≤ ‖B‖L1(R) + ‖B‖L1((R)‖D‖L1((R)

‖C‖L2(R) ≤ ‖B‖L2(R) + ‖B‖L1((R)‖D‖L2((R).

Thus C ∈ X (as must be the case in order for A to be closed). Since B is supported
on [α,+∞) so is C. We conclude that C ∈ Kα, which completes the proof of Theorem
2.1.1.

Next, recall that if Ψ(x, z) is a solution to the ZS-AKNS equation with real po-
tential Q(x), then

Ψ̃(x, z) = Ψ(−x,−z)
is a solution to the ZS-AKNS equation with potential Q̃(x) = −Q(−x). Evidently,

Ψ̃±(x, z) = Ψ∓(−x,−z)

are the Jost solutions to the Q̃ potential ZS-AKNS equation. For z ∈ R, we have

Ψ̃+(x, z) = Ψ̃−(x, z)R̃(z)

with

R̃(z) =

[
ã(z)

¯̃
b(z)

b̃(z) ¯̃a(z)

]
|ã(z)|2 − |b̃(z)|2 = 1.

Proposition 2.3.5. Let r+ be the right reflection coefficient for the ZS-AKNS equa-
tion with real potential Q(x) and let r̃− be the left reflection coefficient for the ZS-
AKNS equation with potential Q̃(x) = −Q(−x). Then

r̃−(z) = r+(z).
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Proof. Let Ψ̃± be the Jost solutions to the Q̃ potential equation. By Proposition 2.2.3,
Ψ±(−x,−z) are also solutions to the Q̃(x) potential equation. By the asymptotics of
Ψ± and the uniqueness of the Jost solutions (Proposition 2.2.6), we conclude that

Ψ̃±(x, z) = Ψ±(−x,−z).

From Proposition 2.2.4,

Ψ+(x, z) = Ψ−(x, z)R(z)

Ψ−(−x,−z) = Ψ+(−x,−z)R̃(z),
(2.25)

where

R(z) =

[
a(z) b̄(z)
b(z) ā(z)

]
, R̃(z) =

[
ã(z) ¯̃b(z)

b̃(z) ¯̃a(z)

]
.

From (2.25), it follows that
R(−z)−1 = R̃(z)

for z ∈ R.
Because Q is real-valued R(z) = R(−z) for z ∈ R. We conclude that

a(z) = ã(z)

b̄(z) = −b̃(z).

Therefore,
r̃−(z) = r+(z).

Now we can prove Corollary 2.1.1.

Proof of Corollary 2.1.1. IfQ is supported on (−∞, β] then Q̃ is supported on [−β,+∞)
and

r̃−(z) =

∫ ∞

−β

e2izξC(ξ) dξ.

Hence,

r+(z) =

∫ ∞

−β

e2izξC(ξ) dξ

for some C ∈ X . Note that this result can also be obtained by a direct computation
similar to the one carried out for the [α,+∞) support case. We have

|r+(R + iT )| ≤ e2βT‖C‖L1(R), T ≥ 0

and e2iβzr+(z) ∈ H2(C
+).

We now consider some additional special cases.
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Finite Interval Support Case

Suppose that both α and β are finite. We can easily verify that for n even A+
n (α; ξ)

has ξ-support in (0, β−α) and A−
n (x; ξ) has ξ-support in (α−β, 0). See the diagram

for A2 in Figure 2.4. It follows that a(z) is entire. From (2.24) b(z) is also entire.
The argument made in Lemma 2.3.1 will also apply to a(z) for z ∈ C− when this
quantity is defined. Therefore, both r+, r− are entire functions. We have shown:

Proposition 2.3.6. If w ∈ X has compact support than r−(z) is an entire function.

This fact has been known since [1]. We can be a bit more explicit, however, on
the form of r±. Since α is finite, we may write

r−(z) =

∫ ∞

α

e2izξC(ξ) dξ

where

C(ξ) = B(ξ) +

∫ ξ

α

B(ξ′)D(ξ − ξ′) dξ′.

By Table 2.2, it follows that B(α, ξ) is supported on [α, β]. With a change of
variables, the convolutional term becomes

∫ ξ

α

B(ξ′)D(ξ − ξ′) dξ′ =

∫ ξ−α

ξ−β

B(ξ − u)D(u) du.

Since D is supported on [0,+∞) and ξ−β < ξ−α, the convolution vanishes whenever
ξ − β < 0, i.e. for ξ < β. It follows that

r−(z) =

∫ β

α

e2izξC(ξ) dξ,

where C ∈ X . A similar result holds for r+.

Whole Line Support Case

Finally, if both α, β are infinite then b(z) does not admit analytic continuation to
either half plane. As before, a(z) 6= 0 in C+ and it follows that a(z) has an inverse
in A. As in [21],

r−(z) =

∫ ∞

−∞
C(ξ)e2izξ dξ

for C ∈ X , and a similar expansion can be made for r+. It is generally not possible
to continue r− or r+ analytically to either half-plane.

Copyright c© Ryan D. Walker, 2013.
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Figure 2.4: This diagram depicts the integral support of A+
2 (x; ξ) when α, β are both

finite. The gray region is the half-plane H+
2 (x). For fixed x, A

+
2 (x; ξ) is supported in

0 < ξ < β − α.
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Chapter 3 Inverse Scattering and the Nonlinear Paley-Wiener theorem

3.1 Overview

In this chapter, we prove the inverse part of Theorem 1.2.1:

Theorem 3.1.1. If r− = D−
Pw ∈ K̂α then w ∈ Kα.

We will again appeal to the symmetry in Proposition 2.3.5, to obtain the corollary:

Corollary 3.1.1. If r+ = D+
Pw ∈ K̂β then w ∈ Kβ.

Now if r− ∈ K̂α then according to the discussion in the introduction to Chapter
2:

1. F−1r−(x) ∈ X ,

2. r−(z) extends to an analytic in function in C+,

3. For T ≥ 0: |r−(R + iT )| < Ce−2αT for some constant C,

4. ‖r−‖L∞(R) < 1.

On the other hand, if r−(z) satisfies conditions (1)-(4) then r−(z) ∈ K̂α by the Two-
Sided Paley-Wiener Theorem 1.1.2. Therefore, conditions (1)-(4) are equivalent to

r−(z) ∈ K̂α. A similar statement can be made for r+. Hence, by the end of this
chapter we will also have established the main result of this thesis, the Nonlinear
Paley-Wiener Theorem 1.1.1 for the ZS-AKNS scattering transforms.

Our proof of Theorem 3.1.1 will use the Riemann-Hilbert approach to inverse
scattering of the ZS-AKNS equation developed by Beals and Coifman in [2]. After
formulating the inverse problem as an equivalent Riemann-Hilbert problem, we will
factorize the Riemann-Hilbert jump matrix so that the dependence of supp(w) on the
analyticity properties of r−(z) = D−

P (w) is explicit. We begin with a recapitulation
of the inverse scattering theory for the ZS-AKNS equation over X via the Riemann-
Hilbert method.

3.2 Inverse Scattering with the Riemann-Hilbert Method.

Recall the ZS-AKNS system





d

dx
Ψ = izσ3Ψ+ Q(x)Ψ, z ∈ C, x ∈ R

σ3 =

[
1 0
0 −1

]
, Q(x) =

[
0 w(x)

w(x) 0

]

w ∈ X = L1(R) ∩ L2(R)

, (3.1)
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In the inverse scattering problem for this system, the reflection coefficients r± are
known but the potential w is unknown. To solve the problem, we must construct the
inverse scattering maps

I±
P : r± → w.

There are two main approaches to this problem. The classical approach described,
for example, in [1] uses the structure of the ZS-AKNS equation to formulate the in-
verse scattering problem as a Gelfand-Levitan-Marchenko system of integral equa-
tions. The authors of [21] apply the classical method to show that D±

P : X → X̂∓ are
bijections.

The modern approach, pioneered by Beals and Coifman in [2], formulates the
inverse scattering problem as a family of Riemann-Hilbert problems. This approach
has been well-developed for the scattering of the ZS-AKNS equation. See for example
[12, 14, 50]. Here, we will follow the presentation of the Riemann-Hilbert method as
found in Deift and Zhou [12].1 The advantage of the Riemann-Hilbert method is that
it will allow us to prove the nonlinear Paley-Wiener theorem by making a shift of
contours in the Riemann-Hilbert problem. The approach has the intuitive appeal of
being quite similar to standard shift of contour techniques used to establish a number
of identities in Fourier theory.

Preliminaries

Let us briefly describe a simple scalar model for the type of Riemann-Hilbert problems
relevant to ZS-AKNS scattering.

Problem 3.2.1 (Scalar Riemann-Hilbert Model Problem). Let f ∈ L2(R). Deter-
mine a function F satisfying all of the following properties.

1. F is analytic on C\R and continuous on C+,C−

2. F (z) → 1 as |z| → +∞

3. If the boundary values of F at R are given by the pointwise limits

F+(z) = lim
ℑz→0+

F (z) F−(z) = lim
ℑz→0−

F (z),

then
f(z) = F+(z)− F−(z).

1Note, however, the ZS-AKNS theory developed in Section 3 of [12] is primarily focused on the
scattering for potentials smoother than ours, namely those belonging to the weighted Sobolev space

H1,1(R) =
{
w ∈ L2(R) : xw, xw′ ∈ L2(R)

}
.

These authors use the convention r−(z) = − b̄(z)
ā(z) whereas our reflection coefficient is r−(z) =

b(z)
a(z) ,

and also use the matrix σ = 1
2σ3 where we use only σ3.
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Intuitively, the solution F (z) to this problem is an analytic function in C+ and
C− but which has a “jump”

f(z) = F+(z)− F−(z)

across the the real axis. Since the difference of two solutions to this problem is an
entire function vanishing at infinity, the solution F (z) to this problem is unique by
Liouville’s theorem.

The Cauchy integral operator on L2(R) plays an important role in constructing the
solution to Riemann-Hilbert problems. We define the Cauchy integral of f ∈ L2(R)
as

Cf(z) = 1

2πi

∫

R

f(ζ)
1

ζ − z
dζ

for z ∈ C\R. Using Morera’s theorem, it is easy to verify that Cf(z) extends f to an
analytic function on C\R. The Cauchy boundary values for f ∈ L2(R) are obtained
for z ∈ R by

C±f(z) = lim
ǫ↓0

Cf(z ± iǫ).

Without further mention, we will extend the operators C, C± to act component-wise
on L2(R)⊗M2(C) functions when needed.

As shown in Appendix C, the projection operators C± act as cutoff functions in
Fourier space:

C+f(z) =
∫ ∞

0

f̌(x)e2ixz dx

C−f(z) = −
∫ 0

−∞
f̌(x)e2ixz dx.

We can also readily check that

‖C±f‖L2(R) ≤ ‖f‖L2(R). (3.2)

and
C+ − C− = I. (3.3)

From these facts, it follows that the unique solution to Problem 3.2.1 is given by

F (z) = 1 + Cf(z).

Outline of the Riemann-Hilbert Method

We now outline the Riemann-Hilbert approach to inverse scattering for the ZS-AKNS
equation following [12]. We focus on the reconstruction from the left reflection co-
efficient r−(z), as in our case the left-side result implies the right-side result by a
symmetry argument. Further details on the right-side reconstruction may be found
in [12].
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Recall that by introducing the factorization

Ψ = Φeixzσ3

into (3.1), we obtain the factorized ZS-AKNS equation

d

dx
Φ = izadσ3

Φ +Q(x)Φ. (3.4)

As we will show, for each w ∈ X there exists a unique family of solutions M(x, z)
to the following problem.

Problem 3.2.2 (Beals-Coifman Problem [2]). Determine the matrix M(x, z) satis-
fying the factorized ZS-AKNS equation (3.4) and all of the following properties:

1. For each fixed x ∈ R:

a) M(x, z) is an analytic function of z in C\R
b) M(x, z) has the continuous boundary values

M±(x, z) = lim
±ℑz↓0

M(x, z).

c) M±(x, ·)− 1 ∈ L2(R)⊗M2(C)

2. For each fixed z ∈ C\R:

a) M(x, z) → 1 as x→ −∞.

b) |M(x, z)| is bounded as x→ +∞.

The solution family M(x, z) to this problem is called the Beals-Coifman solution.
Suppose that w belongs to the Schwartz class

S(R) =
{
f ∈ C

∞(R) :

∥∥∥∥xµ
dνf

dxν

∥∥∥∥
L∞(R)

<∞, ν, µ ∈ {0, 1, 2, ...}
}
.

Since
lim
z→∞

M(x, z) = 1,

it can be shown (see [12]) that M has the large-z asymptotics

M(x, z) = 1+
M1(x)

z
+ o

(
1

z

)

for each fixed x.
Inserting this expansion into the factorized ZS-AKNS equation (3.4), we obtain

w(x) = i [M1(x)]21 . (3.5)

42



Figure 3.1: The contour CR used to recover w(x) from M+(x, z).

Since M(x, z) is analytic in C+ and continuous on C+, we may integrate the asymp-
totic expansion over the semi-circular contour C+

R depicted in Figure 3.1. Sending
R → +∞ and applying the Cauchy Integral Theorem, we obtain

w(x) =
1

π

∫ ∞

−∞
[M+]21(x, z) dz. (3.6)

This gives a formula to recover the Schwartz class potential w from the Beals-Coifman
solution M(x, z). Arguing by density, (3.6) holds in the L2-sense for general w ∈ X .
Therefore, w may be recovered from M(x, z) by formula (3.6). We again refer to [12]
and the references therein for details.

On the other hand, the Beals-Coifman solution M(x, z) for given w ∈ X is also
a solution to the following x-parametrized family of multiplicative matrix Riemann-
Hilbert problems.

Problem 3.2.3. For each fixed x, determine the 2× 2 matrix function M(x, z) sat-
isfying 




M(x, z) is analytic in C \R
M(x, z) continuous on C+,C−

M(x, z) → 1 uniformly as |z| → ∞ in C+ ∪ C−

M+(x, z) =M−(x, z)Vx(z) for z ∈ R

(3.7)

where Vx(z) is the multiplicative jump matrix

Vx(z) = exp(ixzadσ3
)

[
1− |r−(z)|2 −r−(z)

r−(z) 1

]
. (3.8)

Observe that Problem 3.2.3 contains a multiplicative jump condition across the
real axis, a situation somewhat different than the additive jump considered in the
model problem. To solve Problem 3.2.3, one factorizes the jump matrix and trans-
forms the multiplicative problem to an additive one (see Figure 3.2). This additive
Riemann-Hilbert problem can then be cast in the form of a uniquely solvable singular
integral equation, as we will describe below.
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Figure 3.2: M(x, z) has a multiplicative jump along the contour R. We have sup-
pressed the x dependence in the diagram for simplicity.

Given the data r− ∈ X̂+, the solution family M(x, z) to the family of Riemann-
Hilbert problems in Problem 3.2.3 exists and is unique. As it turns out, the same
family M(x, z) also uniquely solves Problem 3.2.2 with the initial data w ∈ X such
that D−

Pw = r−. To recover w from its corresponding reflection coefficient r−, we
therefore first solve Problem 3.2.3 for M(x, z). Then we use (3.6) to extract w from
M(x, z).

The Riemann-Hilbert approach to ZS-AKNS scattering is well-established and
can be applied in considerably more generality than we require here (for example, see
[3, 14, 50]). For w ∈ X , results from the previous chapter allow us to give relatively
simple proofs of the ideas outlined above. In the sections to follow, we present some
details of the development of the Riemann-Hilbert framework specialized to the case
of real potentials w ∈ X .

We begin by proving that a unique Beals-Coifman solution family M(x, z) exists
for each fixed potential w ∈ X . Then we show that this solution family M(x, z)
also uniquely solves the family of Riemann-Hilbert problems (3.2.3) with initial data
r− = D−

Pw. Finally, we show that every family of Riemann-Hilbert problems (3.2.3)

with initial data r− ∈ X̂+ has a unique solution. By [21], D−
P is a bijection between X

and X̂+. Hence, for any r− ∈ X̂+ we may uniquely recover w ∈ X such that r− = D−
Pw

by solving the family of Riemann-Hilbert problems 3.2.3 to obtain M(x, z).

The Beals-Coifman Solutions

We begin by establishing the existence of a unique Beals-Coifman solution family for
each potential w ∈ X .

Theorem 3.2.1. For each w ∈ X, a unique solution family M(x, z) to Problem 3.2.2
exists.

Proof. The proof is constructive.
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Let Ψ± = Φ±e
ixzσ3 be the Jost solutions to the ZS-AKNS equation with potential

w ∈ X .
Recall that Φ± are the unique solutions to equation (3.4), satisfying the respective

asymptotic conditions
lim

x→±∞
|Φ±(x, z)− 1|2 = 0.

From the previous chapter,

Φ±(x, z) = exp(ixzadσ3
)Θ±(x, z),

where by the formula (2.21)

Θ±(x, z) = 1±
∫ ±∞

0

e2iξzσ3A±(x; ξ) dξ ± σ1

∫ ±∞

x

e2iξzσ3B±(x; ξ) dξ.

Here A,B are scalar functions with A±(x, ·), B±(x, ·) ∈ X for each fixed x and by
(2.22):

‖A±(x, ·)‖1 ≤ exp
(
‖w‖L1(R)

)

‖B±(x, ·)‖1 ≤ exp
(
‖w‖L1(R)

)
.

Using the properties of exp(ixz adσ3
) collected in Proposition 2.2.5, we compute

Φ±(x, z) = 1±
∫ ±∞

0

e2iξzσ3A±(x; ξ) dξ

±
∫ ±∞

x

exp(ixzadσ3
)
(
σ1e

2iξzσ3
)
B±(x; ξ) dξ

= 1±
∫ ±∞

0

e2iξzσ3A±(x; ξ) dξ

± σ1

∫ ±∞

x

e2iz(ξ−x)σ3B±(x; ξ) dξ.

Changing variables in the last line, we obtain the representation formula

Φ±(x, z) = 1+

∫ ±∞

0

e2izσ3 [A±(x; ξ) + σ1B±(x; ξ + x)] dξ. (3.9)

By this formula, it follows that for each fixed x the first column Φ
(1)
+ (x, z) of Φ+ and

the second column Φ
(2)
− of Φ− extend to analytic functions of z ∈ C+. Moreover, we

have the uniform bounds
∣∣∣Φ(1)

+ (x, z)
∣∣∣ ≤ 1 + exp(‖w‖L1(R))

∣∣∣Φ(2)
− (x, z)

∣∣∣ ≤ 1 + exp(‖w‖L1(R))
(3.10)

holding for z ∈ C+.
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Motivated by the asymptotics in (2.6) and recalling Lemma 2.3.1, we define

M(x, z) =

[
Φ

(1)
+ (x, z)

a(z)
Φ2

−(x, z)

]
. (3.11)

which is a fundamental solution to (3.4) for z ∈ C+.
From equation (3.9) and Theorem 2.3.3, it follows that for each fixed x there is

M̃x ∈ X ⊗M2(C) so that

M(x, z) = 1+

∫ ∞

0

e2izξM̃x(ξ) dξ. (3.12)

From this representation, we readily conclude that for each fixed x:

• M(x, ·)− 1 ∈ L2(R)⊗M2(C)

• M(x, z) extends to an analytic function of z ∈ C+

• M(x, z) has continuous boundary values as ℑz ↓ 0.

We now show that for each fixed z ∈ C+, M(x, z) → 1 as x→ −∞ and |M(x, z)|
remains bounded as x→ +∞.

Recalling that Ψ+ = Φ+e
ixz, from the asymptotics (2.6) it is clear that

lim
x→−∞

∣∣φ+
11(x, z)− a(z)

∣∣ = 0 (3.13)

holds for z ∈ R.
Now from the integral equation (2.11), we have

φ+
11(x, z) = 1−

∫ ∞

x

w(y)φ+
21(y, z) dy

φ+
21(x, z) = −

∫ ∞

x

e−2iz(x−y)w(y)φ+
11(y, z) dy

(3.14)

From (3.14), it follows that

a(z) = 1−
∫ ∞

−∞
w(y)φ+

21(y, z) dy (3.15)

holds for z ∈ R. Since φ21(x, z) extends analytically to C+ and satisfies the uniform
bound in (3.10), the integral on the right in equation (3.15) is well-defined for z ∈ C+.
Hence, the relation (3.15) extends to hold for z ∈ C+. It follows that (3.13) holds for
z ∈ C+. We easily apply equation (3.14) and the bounds (3.10), to obtain that

M(x, z) → 1

as x→ −∞.
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By definition Φ
(1)
+ (x, z) → e1 as x → +∞ and Φ

(2)
− (x, z) is bounded uniformly

in z as x → +∞ by (3.10). Hence, M(x, z) is bounded as x → +∞. In fact since
|a(z)| ≥ 1, we have the uniform bound

|M(x, z)| ≤ 1 + exp(‖w‖L1(R)) (3.16)

from (3.10).
Finally, we extend M(x, z) to an analytic function in C− by defining

M(x, z) = σ1M(x, z̄)σ1 ℑz < 0. (3.17)

An easy computation verifies that this extension satisfies all the required properties
of the theorem. Uniqueness follows directly from the uniqueness of the Jost solutions
Ψ± (see Proposition 2.2.6).

The Riemann-Hilbert Problem

Now we show that the Beals-Coifman solution family M(x, z) for potential w ∈ X
is also the solution to the family of Riemann-Hilbert problems in Problem 3.2.3 with
the initial data r− = D−

Pw.

Theorem 3.2.2. Let M(x, z) be the Beals-Coifman solution family for Problem 3.2.2
with potential w ∈ X. Then M(x, z) solves the Riemann-Hilbert Problem 3.2.2 with
the data r− = D−

P (w).

Proof. Fix any x ∈ R. By uniqueness, M(x, z) is given by (3.11) with the extension
defined in (3.17). It follows that M(x, z) is analytic in C\R and continuous to the
boundary at R. For each fixed x, apply the Riemann-Lebesgue Lemma to (3.12) to
see that M(x, z) → 1 pointwise in C+. Using the extension (3.17) the result also
holds for z ∈ C−. This convergence is uniform in x using the uniform bound (3.16).

Next we verify the jump condition forM(x, z) across the contour R, oriented from
−∞ to +∞ (Figure 3.2). By Proposition 2.2.2,

Ψ+(x, z) = Ψ−(x, z)R(z)

where Ψ± = Φ±e
ixz are the Jost solutions, and

R(z) =

[
a(z) b̄(z)
b(z) ā(z)

]
.

It is easy to check that

Φ+(x, z) = Φ−(x, z)e
ixzσ3R(z)e−ixzσ3 = Φ−(x, z) exp(ixzadσ3

)R(z).

On the other hand, we also have that M+(x, z)e
ixzσ3 and M−(x, z)e

ixzσ3 are so-
lutions to the same unfactorized ZS-AKNS equation (3.1).2 It follows that for each
fixed z, these boundary values are related by

M+(x, z)e
ixzσ3 =M−(x, z)e

ixzσ3V (z)
2Note carefully that the ± subscript on M±(x, z) denotes boundary values of M(x, z), and not

a normalization of a solution at ±∞.
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for some matrix V (z).
With r−(z) = b(z)/a(z), we can write:

M+(x, z) =
[

1
a(z)

Φ
(1)
+ Φ

(2)
−

]

=

[
Φ−

[
1

r−(z)e
−2ixz

]
Φ

(2)
−

]

= Φ−

[
1 0

r−(z)e
−2ixz 1

]
.

Then by (3.17)

M−(x, z) = σ1M+(x, z)σ1 = σ1Φ−

[
1 0

r−e
2ixz 1

]
σ1.

Hence,

Φ−

[
1 0

r−(z)e
−2ixz 1

]
eixzσ3 = σ1Φ−

[
1 0

r−e
2ixz 1

]
σ1e

ixzσ3V (z).

Using the asymptotics of Φ− as x→ −∞ and solving for V (z):

V (z) = e−ixzσ3σ1

[
1 0

−r̄−(z)e2ixz 1

]
σ1

[
1 0

r−(z)e
−2ixz 1

]
eixzσ3

=

[
1− |r−(z)|2 −r̄−(z)

r−(z) 1

]
.

Finally, we prove the existence and uniqueness of the solutions M(x, z) to the

Riemann-Hilbert Problem 3.2.3 for data r− ∈ X̂+ and give an explicit procedure for
computing M(x, z).

To state the result, we will require some additional notation. Upper-lower factorize
the jump matrix (3.8) as

Vx(z) = V−,x(z)
−1V+,x(z) (3.18)

where

V−,x(z) =

[
1 r−(z)e

2ixz

0 1

]

V+,x(z) =

[
1 0

r−(z)e
−2ixz 1

]
.

(3.19)

Then let

θ−,x(z) = V−,x(z)− 1 =

[
0 0

r−(z)e
−2ixz 0

]

θ+,x(z) = 1− V+,x(z) =

[
0 −r−(z)e2ixz
0 0

]
.

(3.20)
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Define the integral operator Cθ,x by

Cθ,xf(z) = C−[fθ+,x](z) + C+[fθ−,x](z). (3.21)

for f ∈ L2(R)⊗M2(C).
The following is essentially Proposition 2.11 of [12].

Theorem 3.2.3. Let r− ∈ X̂+. The unique solution to Problem 3.2.3 with data r−
is

M(x, z) = 1+ C (µ(x, ·) [θ−,x(·) + θ+,x(·)]) (z),
where for each fixed x, µ(x, z) is the solution to

(I − Cθ,x)µ(x, z) = 1. (3.22)

Proof. We begin by converting the multiplicative Riemann-Hilbert Problem 3.2.3 to
an additive Riemann-Hilbert problem, a matrix analog of Problem 3.2.1.

Use the factorization (3.18) to write the jump relation M+ = M−Vx of Problem
3.2.3 as

M+(x, z)V+,x(z)
−1 =M−(x, z)V−,x(z)

−1.

Then define

µ(x, z) =M+(x, z)V+,x(z)
−1 =M−(x, z)V−,x(z)

−1. (3.23)

We compute the additive jump condition

M+(x, z)−M−(x, z) = µ(x, z)V+,x(z)− µ(x, z)V−,x(z)

= µ(x, z) (V+,x(z)− V−,x(z))

= µ(x, z) (θ−,x(z) + θ+,x(z)) .

For each x,
M(x, z) = 1+ C (µ(x, ·)(θ−,x(·) + θ+,x(·))) (z)

defines the extension of M(x, z) off of the contour R. Sending ℑz ↓ 0, we obtain

M+(x, z) = 1+ C+ (µ(x, ·)(θ−,x(·) + θ+,x(·))) (z). (3.24)

Since
M+ = µ (1 + θ+,x) ,

we can write (3.24) as

µ(x, z) = 1− µ(x, z)θ+,x(z) + C+ (µ(x, ·)(θ−,x(·) + θ+,x(·))) (z).

Then by (3.3)
[(C+ − C−)µ(x, ·)θ+,x(·)](z) = µ(x, z)θ+,x(z),

and we obtain the singular integral equation (3.22).
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Formally, the solution to this equation (3.22) is

µ = (I − Cθ,x)−1
1.

Equip M2(C) with the Frobenius norm

|A|F =

( ∑

i,j=1,2

|Aij|2
)1/2

Recall that the projection C± on f ∈ L2(R)⊗M2(C) satisfy (3.2). We then estimate

‖Cθ,xf‖L2(R)⊗M2(C) ≤ ‖r‖L∞(R)‖f‖L2(R)⊗M2(C)

< ‖f‖L2(R)⊗M2(C).
(3.25)

Since ‖r‖L∞(R) < 1, the resolvent operator (I − Cθ,x)−1 exists as a bounded linear
operator on L2(R)⊗M2(C) and

∥∥(I − Cθ,x)−1
∥∥
L2(R)⊗M2(C)→L2(R)⊗M2(C)

≤ 1

1− ‖r−‖∞
.

Since 1 /∈ L2(R)⊗M2(C), we iterate once to obtain

µ(x, z) = 1 + (I − Cθ,x)−1 Cθ,x1.

We note that
Cθ,x1 = C+θ−,x(·) + C−θ+,x(·) ∈ L2(R)⊗M2(C) (3.26)

since r− ∈ L2(R).
It follows that

M(x, z) = 1+ C (µ(x, ·)(θ+,x(·) + θ−,x(·))) (z)

is a well-define solution to the Riemann-Hilbert Problem (3.2.3).
The uniqueness is straightforward but requires some additional computation not

otherwise needed for our work. We refer to the proof in [12].

Reconstruction

Let us close this section with a summary of the reconstruction of w from the scattering
coefficient r−(z). Because D−

P is a bijection, for any r− ∈ X̂+ there is w ∈ X so that
r− = D−

Pw. We solve the singular integral equation (3.22) with the data r− to
obtain the solution M(x, z) to the family of Riemann-Hilbert problems in (3.2.3).
M(x, z) is also the solution to the family of problems in (3.2.2) with potential w.
SinceM+(x, z) = µ(x, z)v+,x(z), recalling equation (3.6) we obtain the reconstruction
formula

w(x) =
1

π

∫ ∞

−∞
r−(z)µ22(x, z)e

−2ixz dz. (3.27)
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Note that to leading order µ22(x, z) = 1 and (3.27) is simply the inverse Fourier
transform of r−(z). When

r−(z) =

∫ ∞

α

C(ξ)e2izξ dξ,

to first order approximation we have

w(x) ≈ χ[α,+∞)(x)C(x). (3.28)

3.3 Shifting Contours in the Riemann-Hilbert Problem

Now let r− be a reflection coefficient in the space K̂α. Then

r−(z) =

∫ ∞

α

C(ξ)e2izξ dξ

= e2izαr0(z),

where C ∈ L1(R) ∩ L2(R) and

r0(z) =

∫ ∞

0

C(ξ + α)e2izξ dξ.

Recalling the symmetry
r−(z) = r−(−z),

it follows that

r−(z) =

∫ ∞

α

C(ξ)e−2izξ dξ

= e−2izαr0(z).

Since C ∈ X , it is easy to see that r0 ∈ H2(C+) ∩ H∞(C+) and r0 ∈ H2(C−) ∩
H∞(C−). We note explicitly that r−(z) continues analytically to C+, while r−(z)
continues to C−. We also have the estimates

|r−(z)| ≤ e−2αℑz |r0(z)| z ∈ C+

|r−(z)| ≤ e2αℑz |r0(z)| z ∈ C−.
(3.29)

Our strategy for proving Theorem 3.1.1 is to make a change of contours in the
Riemann-Hilbert problem (3.2.3) so that the support of w may be read off directly
from the asymptotics of the transformed Riemann-Hilbert solution. In particular, we
will use the transformed problem to show that µ(x, z) = 1 for all x < α and z ∈ R. In
this case, the approximation (3.28) is exact for x < α so that w(x) = 0 when x < α.
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Figure 3.3: B(x, z; Γ) has jumps along the contours ℑ(z) = ±iΓ. We have suppressed
the x dependence for simplicity.

The Transformed Problem

Let M(x, z) be the solution to the Riemann-Hilbert Problem (3.2.3) with the data
r−.

For each Γ > 0, define the family

B(x, z; Γ) =





M(x, z) ℑz > Γ

M(x, z)

[
1 0

−r−(z)e−2ixz 1

]
0 ≤ ℑz < Γ

M(x, z)

[
1 −r−(z)e2ixz
0 1

]
−Γ ≤ ℑz < 0

M(x, z) ℑz < −Γ

(3.30)

B(x, z; Γ) is analytic in z off of the lines ℑz = ±Γ. It is continuous in z from
above and below ℑz = ±Γ, but has a multiplicative jump as z crosses these lines.
See Figure 3.3. Clearly, this shift is only possible because r−(z) and r−(z) extend
analytically to C+ and C− respectively. Also observe from (3.23) that

B(x, z; Γ) = µ(x, z) (3.31)

for z ∈ R and any Γ > 0.
Define the contours

ΣΓ
1 = {z ∈ C : ℑ(z) = Γ}

ΣΓ
2 = {z ∈ C : ℑ(z) = −Γ}

ΣΓ = ΣΓ
1 ∪ ΣΓ

2
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and orient these in the direction of increasing real part as in Figure 3.3.
We now compute the jump matrices for B(x, z; Γ). Along the contour ΣΓ

1 , we have

B+(x, z; Γ) =M(x, z)

B−(x, z; Γ) =M(x, z)

[
1 0

−r−(z)e−2ixz 1

]

so that

B+(x, z; Γ) = B−(x, z; Γ)

[
1 0

r−(z)e
−2ixz 1

]
(3.32)

Similarly, along the contour ΣΓ
2 , we have

B+(x, z; Γ) =M(x, z)

[
1 −r−(z)e2ixz
0 1

]

B−(x, z; Γ) =M(x, z)

so that

B+(x, z; Γ) = B−(x, z; Γ)

[
1 −r−(z)e2ixz
0 1

]
. (3.33)

Proposition 3.3.1. Fix x < α and Γ > 0. B(x, z; Γ) defined by (3.30) is the solution
to the Riemann-Hilbert problem





B(x, z; Γ) is analytic for z ∈ C\ΣΓ,

B+(x, z; Γ) = B−(x, z; Γ)Ux(z) for z ∈ ΣΓ,

lim
|z|→+∞

B(x, z; Γ) = 1

(3.34)

where

Ux(z) =





Vx,+(z)
−1 z ∈ Σ1

Vx,−(z)
−1 z ∈ Σ2

.

Proof. Fix x < α,Γ > 0. B(x, z; Γ) is analytic for z ∈ C\ΣΓ, sinceM(x, z) is analytic
for z ∈ C\R and r−(z), r−(z) extend analytically to the upper and lower half-planes
respectively. By the computations in (3.32) and (3.33), B(x, z; Γ) also satisfies the
required jump conditions. It remains to compute the pointwise limit of B(x, z; Γ) as
|z| → +∞.

For this, we first recall that M is normalized to satisfy

lim
|z|→+∞

M(x, z) = 1.

Then using the estimates in (3.29), for z ∈ C+

|r−(z)e2ixz| ≤ e2(x−α)ℑ(z)|r0(z)|
≤ Ce2(x−α)ℑ(z).

(3.35)
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Similarly, for z ∈ C−

|r−(z)e−2ixz| ≤ e2(α−x)ℑ(z)|r0(z)|
≤ Ce2(α−x)ℑ(z)

(3.36)

For z ∈ R,
|r−(z)e2ixz| = |r0(z)|,

and by the Riemann-Lebesgue Lemma,

lim
|z|→+∞

z∈R

|r0(z)| = 0.

Hence
lim

|z|→+∞
z∈C+

|r−(z)e2ixz| = |z|→+∞
z∈C−

|r−(z)e−2ixz| = 0.

From (3.30) we conclude that

lim
|z|→+∞

B(x, z; Γ) = 1.

Analysis of the Transformed Inverse Problem

Following the treatment of the inhomogeneous Riemann-Hilbert problems in [12], we
now derive the solution formula for the Riemann-Hilbert in (3.34) for x < α.

We introduce a second change of variables to convert the multiplicative jump
problem to an additive one. Define

z ∈ Σ1 : ν1(x, z) : = B+(x, z; Γ) = B−(x, z; Γ)

[
1 0

r−(z)e
−2ixz 1

]

z ∈ Σ2 : ν2(x, z) : = B+(x, z; Γ) = B−(x, z; Γ)

[
1 −r−(z)e2ixz
0 1

]
.

Then for z ∈ ΣΓ
1

B+(x, z; Γ)− B−(x, z; Γ) = ν1(x, z)− ν1(x, z)

[
1 0

r−(z)e
−2ixz 1

]

= ν1(x, z)

[
0 0

−r−(z)e−2ixz 0

]
,

and for z ∈ ΣΓ
2

B+(x, z; Γ)−B−(x, z; Γ) = ν2(x, z)− ν2(x, z)

[
1 −r−(z)e2ixz
0 1

]

= ν2(x, z)

[
0 r−(z)e

2ixz

0 0

]
.
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The Cauchy operator on L2(ΣΓ) is

Cf(z) = 1

2πi

∫

ΣΓ

f(ζ)

z − ζ
dζ.

The Cauchy boundary value operators on L2(ΣΓ) are the projections

C±f(z) = lim
ǫ↓0

Cf(z ± iǫ),

with
‖C±f‖L2(ΣΓ) ≤ ‖f‖L2(ΣΓ) (3.37)

and
C+ − C− = I. (3.38)

See, for example, [3, 12]. Again, we extend these operators to act on L2(ΣΓ)⊗M2(C)
functions component-wise.

Now set

ν(x, z; Γ) =





ν1(x, z) z ∈ ΣΓ
1

ν2(x, z) z ∈ ΣΓ
2

and

d(x, z; Γ) =





d1(x, z) z ∈ ΣΓ
1

d2(x, z) z ∈ ΣΓ
2

where

d1(x, z; Γ) =

[
0 0

−r−(z)e−2ixz 0

]
, d2(x, z; Γ) =

[
0 r−(z)e

2ixz

0 0

]
.

For z ∈ ΣΓ,

B+(x, z; Γ)− B−(x, z; Γ) = ν(x, z; Γ)d(x, z; Γ)

The analytic extension of B(x, z; Γ) off of the contours ΣΓ is

B(x, z) = 1+ C[ν(x, ·)d(x, ·)](z), (3.39)

where for readability we have temporarily suppressed the dependence of B, ν, and d
on the parameter Γ.

Taking boundary values from above ΣΓ
1 ,Σ

Γ
2 in this expression yields

B+(x, z) = 1+ C+[ν(x, ·)d(x, ·)](z).
On the other hand,

B+(x, z) = ν(x, z).

Hence, we obtain the integral equation

ν(x, z) = 1+ Cd[ν(x, ·)](z), (3.40)

where the operator Cd on L2(ΣΓ)⊗M2(C) is defined by

Cdf(z) = C+[f(·)d(x, ·)](z). (3.41)
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Proposition 3.3.2. For Γ sufficiently large, the singular integral equation (3.40) has
a unique solution for all x < α.

Proof. Fix Γ > 0 and x < α.
Formally, the solution to (3.40) is

ν(x, z) = (1− Cd)−11.

Note however that 1 /∈ L2(Σ), so we iterate once to obtain the putative solution
formula

ν(x, z) = 1+ (1− Cd)−1 Cd1. (3.42)

Define the norm
‖A(z)‖L2(ΣΓ⊗M2(C)) = ‖|A|F‖L2(ΣΓ).

on the Banach space L2(ΣΓ ⊗M2(C)).
Notice that the factor d(x, z) can be trivially rewritten as

d(x, z) = d1(x, z)χΣ1
(z) + d2(x, z)χΣ2

(z).

For z ∈ ΣΓ, it follow from the estimates (3.35) and (3.36) that

∣∣∣di(x, z)χΣΓ
i

∣∣∣
F
≤ Ce2(x−α)Γ

when i = 1, 2.
Then if f ∈ L2(ΣΓ ⊗ M2(C)), we apply the sub-multiplicative property of the

Frobenius norm to estimate

‖Cdf‖L2(ΣΓ)⊗M2(C) =
∥∥∥
∣∣∣f · d1 · χΣΓ

1
+ f · d2 · χΣΓ

2

∣∣∣
F

∥∥∥
L2(ΣΓ)

≤ ‖ |f · d1|F‖L2(ΣΓ
1
) + ‖ |f · d2|F‖L2(ΣΓ

2
)

≤ ‖ |f |F |d1|F‖L2(ΣΓ
1
) + ‖ |f |F |d2|F‖L2(ΣΓ

2
)

≤ Ce2(x−α)Γ ‖f‖L2(ΣΓ)⊗M2(C)
.

When the contour parameter Γ is sufficiently large, Cd has small L2(ΣΓ)⊗M2(C)
operator norm and (1−Cd)−1 is a bounded operator on L2(ΣΓ⊗M2(C)). Note that this
result is somewhat different from the Σ = R Riemann-Hilbert problem for ZS-AKNS
where one can estimate the norm of the singular integral operator independently of
x.

Now let us verify that Cd1 ∈ L2(ΣΓ ⊗M2(C)). Compute

‖Cd1‖L2(ΣΓ⊗M2(C)) ≤ ‖C+d1(x, ·)‖L2(ΣΓ⊗M2(C))
+ ‖C+ [d2(x, ·)]‖L2(ΣΓ

1
)

≤ ‖r−(·)e−2ix(·)‖L2(ΣΓ
1
) + ‖r−(·)e2ix(·)‖L2(ΣΓ

2
)
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Using the estimates in (3.29), compute:

‖r−(·)e−2ix(·)‖2L2(ΣΓ
1
) =

∫ ∞

−∞

∣∣r−(R + iΓ)e−2ix(R+iΓ)
∣∣2 dR

≤
∫ ∞

−∞

[
e−2αΓr0(R + iΓ)

∣∣e−2ix(R+iΓ)
∣∣]2 dR

≤ e4(x−α)Γ ‖r0‖H2(C+)

‖r−(·)e2ix(·)‖L2(ΣΓ
2
) =

∫ ∞

−∞

∣∣r−(R + i(−Γ))e2ix(R+i(−Γ))
∣∣2 dR

≤
∫ ∞

−∞

[
e2α(−Γ)r0(R− iΓ)

∣∣e2ix(R−iΓ)
∣∣]2 dR

≤ e4(x−α)Γ ‖r0‖H2(C−)

Thus Cd1 ∈ L2(Σ
Γ) for any Γ. Together with the boundedness of the resolvent,

this proves the solvability of the integral equation (3.40) for x < α and the validity
of the putative solution formula (3.42).

For each fixed x < α, we have from (3.31) that

µ(x, z) = 1 + C [ν(x, · ; Γ)d(x, · ; Γ)] (z)

for z ∈ R and Γ sufficiently large.
We will now take Γ → +∞ in this expression and show that

µ(x, z) = 1

holds pointwise for any x < α. Let 0 be the 2× 2 zero matrix.

Proposition 3.3.3. For z ∈ C\ΣΓ

lim
Γ→+∞

C [ν(x, · ; Γ)d(x, · ; Γ)] (z) = 0.

Proof. We have

C [ν(x, · ; Γ)d(x, · ; Γ)] (z) =
∫

ΣΓ

ν(x, ζ ; Γ)d(x, ζ ; Γ)

ζ − z
dζ

= T1(x, z; Γ) + T2(x, z; Γ),

where

T1(x, z; Γ) =

∫ ∞

−∞

ν1(x, ξ + iΓ; Γ)d1(x, ξ + iΓ; Γ)

ξ + iΓ− z
dζ

T2(x, z; Γ) =

∫ ∞

−∞

ν2(x, ξ − iΓ; Γ)d2(x, ξ − iΓ; Γ)

ξ − iΓ− z
dζ.

We estimate only the T1 term, as T2 is quite similar.
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|T1(x, z; Γ)|F ≤
∫ ∞

−∞

|ν1(x, ξ + iΓ; Γ)|F |d1(x, ξ + iΓ; Γ)|F
|ξ − iΓ− z| dξ

≤ e2(x−α)Γ

∫ ∞

−∞

|ν1(x, ξ + iΓ; Γ)|F |r0(ξ + iΓ)|
|ξ − iΓ− z| dξ

≤ e2(x−α)Γ

(∫ ∞

−∞
|ν1(x, ξ + iΓ; Γ)|2F |r0(ξ + iΓ)|2 dξ

)1\2

×
(∫ ∞

−∞

1

|ξ − iΓ− z|2 dξ
)1\2

=
πe2(x−α)Γ

|Γ−ℑz|

(∫ ∞

−∞
|ν1(x, ξ + iΓ; Γ)|2F |r0(ξ + iΓ)|2 dξ

)1\2

To estimate

G(x; Γ) =

∫ ∞

−∞
|ν1(x, ξ + iΓ; Γ)|2F |r0(ξ + iΓ)|2 dξ,

we write
ν1(x, z; Γ) = 1+ ν̃1(x, z; Γ)

where
ν̃(x, z; Γ) = (1− Cd)−1 Cd1.

Now ν̃1(x, · ; Γ) ∈ L2(ΣΓ)⊗M2(C) for Γ sufficiently large, with

‖ν̃1(x, · ; Γ)‖L2(ΣΓ)⊗M2(C) ≤ ‖(1− Cd)−1Cd1‖L2(ΣΓ)⊗M2(C)

≤ 1

1− ‖Cd‖L2(ΣΓ)⊗M2(C)

‖Cd1‖L2(ΣΓ)⊗M2(C)

≤ e4(x−α)Γ
(
‖r0‖H2(C+) + ‖r0‖H2(C−)

)

= 2e4(x−α)Γ‖r0‖H2(C+).
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Then

|G(x; Γ)| =
∫ ∞

−∞
|1+ ν̃1(x, ξ + iΓ; Γ)|2F |r0(ξ + iΓ)|2 dξ

≤
∫ ∞

−∞
(1 + |ν̃1(x, ξ + iΓ; Γ)|2F + 2 |ν̃1(x, ξ + iΓ; Γ)|)

× |r0(ξ + iΓ)|2 dξ
≤ ‖r0‖2H2(C+) + ‖r0‖2H∞(C+)‖ν̃1(x, ξ + iΓ; Γ)‖2L2(ΣΓ

1
)⊗M2(C)

+ 2‖r0‖H∞(C+)

∫ ∞

−∞
|ν̃1(x, ξ + iΓ; Γ)|F |r0(ξ + iΓ)| dξ

≤ ‖r0‖2H2(C+) + 2 ‖r0‖H2(C+) ‖r0‖2H∞(C+)e
4(x−α)Γ

+ 2‖r0‖H2(C+)‖r0‖H∞(C+)‖ν̃1(x, ·; Γ)‖L2(ΣΓ)⊗M2(C)

≤ ‖r0‖2H2(C+) + 2‖r0‖H2(C+)‖r0‖2H∞(C+)e
4(x−α)Γ

+ 4‖r0‖2H2(C+)‖r0‖H∞(C+)e
4(x−α)Γ

≤ K(r0),

where

K(r0) = ‖r0‖2H2(C+) + 2‖r0‖H2(C+)‖r0‖2H∞(C+) + 4‖r0‖2H2(C+)‖r0‖H∞(C+).

Thus G(x,Γ) may be uniformly bounded in Γ. Estimating T2 in a completely
similar way, we obtain

|C [ν(x, · ; Γ)d(x, · ; Γ)] (z)|F ≤ 2πe2(x−α)Γ

|Γ− ℑz| K(r0).

Sending Γ → +∞ completes the proof.

We may now prove Theorem 3.1.1, the main result of this chapter.

Proof of Theorem 3.1.1. Let r− = D−
Pw ∈ K̂α where w ∈ X .

By the previous proposition, we may conclude that µ(x, z) = 1 for z ∈ R and
x < α.

Then for each x < α, the reconstruction formula

w(x) =
1

π

∫ ∞

−∞
µ22(x, z)r−(z)e

−2ixz dz

reduces to

w(x) =
1

π

∫ ∞

0

r−(z)e
−2ixz dz.

Since

r−(z) =

∫ ∞

−∞
χ[α,+∞)(ξ)C(ξ)e

2izξ dξ

for some C ∈ X , we have
w(x) = 0 for x < α

by the Fourier Inversion Formula. Therefore, w ∈ Kα.
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Now we use Theorem 3.1.1 and a ZS-AKNS symmetry to prove Corollary 3.1.1.

Proof of Corollary 3.1.1. If r+(z) = D+
Pw ∈ K̂β then by changing variables

r+(z) =

∫ ∞

−β

C(ξ)e2ixξ dξ

for some C ∈ X . Let r̃− = D−
P w̃ where w̃(x) = −w(−x). By Proposition 2.3.5

r̃−(z) = r+(z).

Thus r−(z) ∈ K̂−β. From Theorem 3.1.1, it follows that w̃(x) ∈ K−β so that w(x) ∈
Kβ.

Copyright c© Ryan D. Walker, 2013.
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Chapter 4 Localization of the Reconstruction

4.1 Introduction

The previous chapter described how to reconstruct a ZS-AKNS potential w ∈ Kα

from its reflection coefficient r−(z). In this chapter, we elaborate on the relationship
between r−(z) and the local behavior of w. The main result of the chapter is:

Theorem 4.1.1. If

r−(z) =

∫ ∞

α

e2izξC(ξ) dξ

for w ∈ Kα then for a.e. x, w(x) may be recovered from the values of C on [α, x].

As a direct consequence of this result, we have:

Corollary 4.1.1. Let w, w̃ ∈ Kα and let

r−(z) = D−
Pw(z) =

∫ ∞

α

e2izξC(ξ) dξ

r̃−(x) = D−
P w̃(z) =

∫ ∞

α

e2izξC̃(ξ) dξ

where C, C̃ ∈ X. If C(ξ) = C̃(ξ) for a.e. ξ ∈ [α, β], then w(x) = w̃(x) a.e. on [α, β].

Notation and Preliminaries

Let ∗ denote the convolution

(f ∗ g)(x) =
∫

R

f(x− t)g(t) dt.

One easily computes the Fourier convolution formulas:

Ff(z) · Fg(z) = F (f ∗ g) (z)

F−1f(x) · F−1g(x) =
1

π
F−1 (f ∗ g) (x).

Denote by Tc the translation

Tcf(x) = f(x− c),

and by R the reflection
Rf(x) = f(−x).

From the definitions, we easily check that

e2iczF (f) (z) = F (Tcf) (z)

e2icxF−1 (f) (x) = F (T−cf) (x).
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Observe that if r− ∈ X̂ then

r− = FC
r− = FRC

for some C ∈ X .
The Cauchy boundary operators C± act as half-line cutoffs in Fourier space:

C+f(z) = F
[
χ+ · F−1f

]
(z)

C−f(z) = −F
[
χ− · F−1f

]
(z)

(see Appendix C). The symbols χ± are a shorthand for the cutoff functions

χ+(x) =

{
0 x ∈ (−∞, 0]
1 x ∈ (0,+∞)

χ−(x) =

{
1 x ∈ (−∞, 0]
0 x ∈ (0,+∞)

The following simple proposition will be very useful.

Proposition 4.1.1. Let f be supported on [α, β] ⊆ R = R∪{±∞} and g on [γ, δ] ⊆
R. Then

supp (f ∗ g) ⊆ [α + γ, β + δ],

with the convention that a + (+∞) = +∞ and b+ (−∞) = −∞ for any a, b ∈ R.

Proof. Suppose that f is supported on [α, β] and g is supported on [γ, δ]. Then

(f ∗ g)(x) =
∫

R

f(x− t)g(t) dt

=

∫ δ

γ

f(x− t)g(t) dt

= −
∫ x−δ

x−γ

f(u)g(x− u) du

=

∫

[x−δ,x−γ]

χ[α,β](u)f(u)g(x− u) du

=

∫

[x−δ,x−γ]∩[α,β]
f(u)g(x− u) du

The convolution vanishes when [x− δ, x−γ]∩ [α, β] = ∅. There are two ways for this
to happen; either x − δ > β or x − γ < α. Thus when x > β + δ or x < α + γ, the
convolution vanishes.

4.2 Localization of the reflection coefficients

Recall from equation (3.27) of the previous chapter that the integral

w(x) =
1

π

∫

R

r−(z)µ22(x, z)e
−2ixz dz. (4.1)
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inverts the scattering operator DP on X . From Theorem 3.2.3, the function µ(x, z)
is the solution to the family of x-parametrized integral equations

(I − Cx)µ(x, z) = 1, (4.2)

where the action of Cx on a matrix valued function Ψ ∈ X is given by

CxΨ(z) =

[
C− [r−(◦)e−2ix◦ψ12(◦)] (z) C+ [r−(◦)e2ix◦ψ11(◦)] (z)
C− [r−(◦)e−2ix◦ψ22(◦)] (z) C+ [r−(◦)e2ix◦ψ21(◦)] (z)

]
. (4.3)

µ(x, z) may be expanded in a Neumann series as

µ(x, z) = 1+
∞∑

k=1

Ck
x1 (4.4)

where µ(x, z)− 1 ∈ L2(R)⊗M2(C).
Let

ex(z) = e2ixz

and observe that

C2
xΨ(z) =

[
C− [r−e−xC+(r−e+ψ11)] C+ [r−exC−(re−xψ12)]
C− [r−e−xC+(r−e−ψ21)] C+ [r−exC−(re−xψ22)]

]
(z).

Hence, the operator C2
x acts component-wise on the entries of the matrix Ψ. It follows

that the iterate Ck
x1 is diagonal when k is even, and off-diagonal when k is odd. Only

the even terms of the series in (4.4) contribute to µ22(x, z). In particular,

µ22 = (I − Sx)
−11 = 1 +

∞∑

k=1

Sk
x1

where
Sxf = C+(r−e−xC+(rexf)). (4.5)

The operator Sx is defined for f ∈ L2(R) but may be extended to act on constant
functions f = κ as follows. Recall that C± are projections on L2(R) with

‖C±f‖L2(R) < c‖f‖L2(R).

Also, note that r− ∈ L2(R) ∩ L∞(R) with ‖r−‖∞ < 1. By taking f = κ in definition
(4.5), we easily estimate that

‖Sx1‖L2(R) < |κ|c‖r−‖L∞(R)‖r‖L2(R)

(c.f. equation (3.26) of the previous chapter). Similarly, for f ∈ L2(R), we estimate

‖Sxf‖L2(R) ≤ c‖r−‖L∞(R)‖C− (r−exf) ‖L2(R)

≤ c‖r−‖2L∞(R)‖f‖L2(R)
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(c.f. equation (3.25)). Hence the iterates Sk
x1 are well-defined with

‖Sk
x1‖L2(R) ≤ c‖r−‖2k−1

L∞(R)‖r−‖L2(R). (4.6)

Set

νx(z) = [µ(x, z)]22 − 1 =
∞∑

k=1

Sk
x1. (4.7)

Since νx(·) ∈ L2(R) for each x, we may also define

Nx(y) = F−1 (νx) (y). (4.8)

If r− ∈ X has the Fourier representation r− = FC, by putting (4.7) into (4.1) we
compute that

w(x) = C(x) + (C(◦) ∗Nx(◦)) (x). (4.9)

The inversion formula (4.1) for r− ∈ X̂ therefore decomposes into a linear term and
a nonlinear convolution term. Heuristically, the linear C(x) term arises because the
inverse scattering transform I−

P is Fourier inversion to first order approximation, while

the lower-order convolution term captures the nonlinearity of I−
P . When r− ∈ K̂α,

the nonlinearity C ∗Nx in (4.9) has a simple finite support structure. In particular,
we will prove:

Lemma 4.2.1 (Localization Lemma). Let r− ∈ K̂α have the Fourier representation
r− = FC for C ∈ Kα.

1. Nx is supported on [0, x− α].

2. νx = FNx is completely determined by the values of C on [α, x].

The proof of this result is somewhat technical and we postpone it until the end of
the chapter. Assuming the result for the moment, let us show how the main results
of this chapter are simple consequences of Lemma 4.2.1.

Proof of Theorem 4.1.1. Since Nx(ξ) is supported on [0, x−α] , we first observe that

C ∗Nx(x) =

∫ ∞

−∞
C(τ)Nx(x− τ) dτ

=

∫ x

α

C(τ)Nx(x− τ) dτ.

For each fixed x, the function νx is completely determined by the values of C on
[α, x]. Therefore, Nx = F−1νx is also determined by C on [α, x]. It follows that the
convolution C ∗Nx(x) is completely determined by the range of C on [α, x].

Hence
w(x) = C(x) + C ∗Nx(x)

is completely determined by C on [α, x].

64



Proof of Corollary 4.1.1. Suppose that r
(1)
− , r

(2)
− ∈ K̂α have the Fourier representa-

tions r
(1)
− = FC1, r

(2)
− = FC2 for C1, C2 ∈ Kα with C1 = C2 a.e. on [α, β]. By

Proposition 4.2.1, ν
(1)
x , ν

(2)
x are completely determined by the values of C1 = C2 on

[α, x], and so
ν(1)x = ν(2)x

for any x ∈ [α, β]. Then for any x ∈ [α, β], N
(1)
x = N

(2)
x , and we have from (4.9) that

w1(x)− w2(x) =
(
C1 ∗N (1)

x

)
(x)−

(
C2 ∗N (2)

x

)
(x)

=
(
[C1(◦)− C2(◦)] ∗N (1)

x

)
(x).

Now C1(◦)−C2(◦) is supported on [β,+∞) and N
(1)
x is supported on [0, x−α]. By

Proposition 4.1.1, the support of the convolution [C1(◦)− C2(◦)] ∗N (1)
x is contained

in [β,+∞). We conclude that w1(x) = w2(x) a.e. on (−∞, β].

4.3 Proof of the Localization Lemma

The proof of Lemma 4.2.1 use elementary techniques, but requires carefully track-
ing how the support of w(x) propagates through the nonlinear transformation D−

P .
Though the computation is rather involved, the underlying idea is quite simple. If
w(x) is supported on [α,+∞) then so is C, the inverse Fourier transform of r−. The
function νx(z) is obtained from the iteration of the operator Sx on 1. The oper-
ator Sx composes the Cauchy boundary value operators C± with multiplication by
r−e−x, r−ex. The combination of the [α,+∞) support of C and the cutoff action of
C± leads to the finite support properties claimed in Lemma 4.2.1.

We first prove that Nx is supported on [0, x−α] when C is supported on [α,+∞),
which is Part (1) of Lemma 4.2.1. Recall that

Nx(y) = F−1

( ∞∑

k=1

Sk
x1

)
(y). (4.10)

We need the following lemma.

Lemma 4.3.1. Suppose C ∈ Kα. Then F−1(Sxψ) is supported on [0, x− α] for any
ψ ∈ L2(R) or ψ a constant function.

Proof. Recall that r− ∈ L2(R) ∩ L∞(R). If ψ ∈ L2(R) or ψ is a constant function,
we may compute

F−1(Sxψ) = F−1 (C+ (r−exC− (r−e−xψ)))

= −χ+ F−1
(
r−ex · F

(
χ−F−1 (r−e−xψ)

))
.

Set f = r−ex and g = F [χ−F−1(re−xψ)]. It is easily verified that f, g ∈ L2(R)
for ψ ∈ L2(R) or ψ a constant function.
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Then

F−1(Sxψ) = χ+F−1 (f · g)
= πχ+

(
F−1f

)
∗
(
F−1g

)
.

Note that

F−1f = F−1 [(FRC)ex]
= F−1F(TxRC)

= TxRC

has support in (−∞, x− α]. On the other hand,

F−1g = χ−F−1(r−e−xψ)

has support on (−∞, 0]. By Proposition 4.1.1, the convolution (F−1f) ∗ (F−1g) is
supported on (−∞, x − α]. Because of the cutoff χ+, it follows that F−1(Sxψ) is
supported in [0, x− α] for any ψ ∈ L2(R) or ψ a constant function.

Now we prove the first part of Lemma 4.2.1.

Proof of Lemma 4.2.1, Part 1. To see that Nx(y) is supported on [0, x−α], we must
argue that the inverse Fourier transform in (4.10) may be brought under the summa-
tion.

Let
Yk(ξ) = F−1

(
Sk
x1
)
.

Using the Plancherel identity and the estimate (4.6), we have

‖Yk‖L2(R) ≤ c‖r−‖2k−1
L∞(R)‖r−‖L2(R).

Since Yk is supported on [0, x− α], we also have that Yk ∈ L1(R) with the bound

‖Yk‖L1(R) ≤ c|x− α|1/2‖r−‖2k−1
L∞(R)‖r−‖L2(R).

Yk(ξ) is defined for a.e. ξ so that the sequences of partial sums

FN (ξ) =
N∑

i=1

Y2k(ξ)e
2izξ,

and

GN(ξ) =

N∑

i=1

|Y2k(ξ)|

are also defined for a.e. ξ.
Then

‖GN‖L1(R) ≤ c|x− α|
N∑

k=1

(
‖r‖L∞(R)

)k ≤ c
|x− α|
1− ‖r‖∞

.
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Let
G(ξ) = lim

N→∞
GN(ξ).

The Lebesgue Monotone Convergence Theorem applies to show that G is measur-
able and belongs to L1(R). The series for G(ξ) therefore converges pointwise for a.e.
ξ. Thus, the series

N(ξ) =

∞∑

k=1

Y2k(ξ)e
2izξ

is pointwise absolutely convergent for a.e. ξ. Hence, FN → N pointwise for a.e ξ.
Since

|FN(ξ)| ≤ GN (ξ) ≤ G(ξ),

an application of the Lebesgue Dominated Convergence Theorem completes the proof.

A priori, if r− = FC with C ∈ Kα and x ∈ R, we would expect in the reconstruc-
tion formula (4.9) that νx depends on the values of the C on [α,+∞). In fact, we
will now prove that νx is determined by the values of C over the finite interval [α, x].
This is part 2 of Proposition 4.2.1. To this end, we define

C̃(y) = χ[α,x](y)C(y).

Recall that
Sxf = C+ (r−exC− (re−xf)) .

Working from the inside out, we have

C− (re−x · f) = −F
(
χ−F−1 (FC e−x · f)

)

= −Fu1

where
u1 = χ−F−1 (F(T−xC) · f) .

Compute

Sxf = C+ (r−ex · Fu1)
= F

[
χ+F−1 (F(RC) ex · Fu1)

]

= F
[
χ+F−1 (F (TxRC) · Fu1)

]

= F [χ+(TxRC) ∗ u1] .

Thus,
Sxf = −F

[
χ+

{
(TxRC) ∗

(
χ−F−1 (F(T−xC) f)

)}]
.

This motivate us to define

S̃xf = −F
[
χ+

{(
TxRC̃

)
∗
(
χ−F−1

(
F(T−xC̃) f

))}]
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We now prove part 2 of Lemma 4.2.1. We will show that νx = ν̃x where

ν̃x =
(
1− S̃x

)−1

S̃x1,

by establishing that
Sk
x1 = S̃k

x1

for each k.

Lemma 4.3.2. If either:

1. ψ is a constant function

2. ψ ∈ L2(R) with F−1ψ supported in [0, x− α]
then

Sxψ = S̃xψ.

Proof. Define

f1 = TxRC

g1 = χ−F−1 (F(T−xC)ψ)

f2 = TxRC̃

g2 = χ−F−1
(
F(T−xC̃)ψ

)

We must show that
χ+(f1 ∗ g1) = χ+(f2 ∗ g2),

or equivalently that

χ+(f1 − f2) ∗ g1 − χ+f2 ∗ (g1 − g2) = 0. (4.11)

Observe that f1 − f2 = TxR(C − C̃) has its support in (−∞, 0] since C − C̃ has
its support in [x,+∞). Now g1 has its support in (−∞, 0] because of the cutoff χ−.
Therefore,

χ+(f1 − f2) ∗ g1 = 0

by Proposition 4.1.1.
If ψ = c is constant then

g1 − g2 = cχ−T−x

(
C − C̃

)
.

The support of this difference is empty since T−x(C − C̃) is supported on [0,+∞)
and χ− is supported on (−∞, 0]. Equation (4.11) follows immediately.

If ψ ∈ L2(R), we compute that

g1 − g2 = χ−

(
F−1

(
F [(T−x(C − C̃)]ψ

))

= χ−

(
T−x(C − C̃)

)
∗ F−1ψ
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T−x(C− C̃) is supported on [0,+∞). By assumption F−1ψ is supported on [0, x−α].
By Proposition 4.1.1, the support of g1 − g2 is empty, so that g1 − g2 = 0. Equation
(4.11) also holds in this case.

We can now complete the proof of the second part of Lemma 4.2.1.

Proof of Lemma 4.2.1, Part 2. We claim that

Sk
x1 = S̃k

x1

holds for any k = 1, 2, ....
For k = 1, the result follows by applying Lemma 4.3.2 with ψ = 1.
For ψ ∈ L2(R), let

f = Sxψ

f̃ = S̃xψ

By Lemma 4.3.1, F−1f,F−1f̃ have support on [0, x − α]. By Lemma 4.3.2, it
follows that

f = f̃ .

In particular,
S̃k
x1 = S̃k

x1

for any k = 2, 3, ...,.
It follows that νx = ν̃x and hence that νx is depends only on the values of C on

[α, x].

Copyright c© Ryan D. Walker, 2013.
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Chapter 5 An Application to Singular Potential Schrödinger Equations

5.1 Introduction

In this final chapter, we describe an application of our results to an inverse spectral
problem for a class of Schrödinger operators with distributional potentials.

Miura Potentials

Let H−1(R) be the dual to the Sobolev space

H1(R) =
{
f ∈ L2(R) : f ′ ∈ L2(R)

}
.

Following the seminal work of Miura in [34], define the Miura map from L2
loc(R) →

H−1
loc (R) by

B(w) = w′ + w2.

B is well-known in the theory of Korteweg-de Vries (KdV) equation as the map which
takes classical solutions of the modified KdV equation to classical solutions of the KdV
equation (see [33, 34]). Kappeler, Perry, Shubin, and Topolav have characterized the
range and geometry of this mapping in [26]. Following these authors, we call a
distribution q ∈ H−1

loc (R) in the range of B a Miura potential and a function w ∈ L2
loc

a Riccati representative for q. If q is in the class of Miura potentials, the self-adjoint
Schrödinger operator

Lq = − d2

dx2
+ q(x)

can be factorized as

Lq =

(
d

dx
− w

)∗(
d

dx
+ w

)

where ∗ is the adjoint in the L2 inner product (see [25]). Moreover, the range con-
ditions in [26] show that Miura potential Schrödinger operator Lq is nonnegative
definite, and that Lqy = 0 has a strictly positive solution in H1

loc(R). Thus, the
Miura class is a natural one over which to study the spectral and scattering theory
of Lq, and new results for singular potential problems using the framework of [26]
appear in [21, 24, 27].

To make precise the definition of the self-adjoint operator Lq on L2(R) for q a
Miura potential, we recall that there is a bijective correspondence between semi-
bounded, self-adjoint operators on L2(R) and symmetric quadratic, semi-bounded,
and closed quadratic forms on L2(R) (see [29], VI §2, part 1). In particular, for
q ∈ H−1(R) define

tq (φ) =

∫ ∞

−∞
|φ′(x)|2 dx+

〈
q, |φ|2

〉
(5.1)

for φ ∈ C∞
0 (R). Here 〈·, ·〉 is the dual space pairing of distribution and test function.

It is possible to show that this symmetric quadratic form is closed and nonnegative
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(see [43] and the Appendix of [26]). Hence, there exists a unique nonnegative, self-
adjoint operator T such that:

1. D(T ) ⊂ D(tq) and
tq (φ, ψ) = (Tφ, ψ)

holds for all φ, ψ ∈ D(T ).

2. If φ ∈ D(tq) and there exists χ ∈ L2(R) with

∀ψ ∈ D(tq), tq(φ, ψ) = (χ, ψ)

then Tφ = χ.

By this identification, the formal Schrödinger equation (5.3) with Miura potential q
is a well-defined, self-adjoint operator on L2(R).

Overview

Following the work of [21] on the whole-line scattering for Lq, we consider Miura
potential Schrödinger operators

Lq = − d2

dx2
+ q(x) (5.2)

on L2(R) where q ∈ H−1(R) has the form

q = B(w)

for w ∈ Kα. In general, a Miura potential may have more than one Riccati repre-
sentation, however when q = B(w) with w ∈ L1(R) ∩ L2(R) then w is unique [26].
Some explicit examples of the Miura representation of distributional potentials may
be found in [21, 26].

For each α, we define the subclass of the Miura potentials

Mα = {q = B(w) : w ∈ Kα} .

There is a simple relation between the Schrödinger equation

Lqu = z2u z ∈ C
+ (5.3)

with q = w′ +w2 ∈ Mα, and the ZS-AKNS equation with potential w ∈ Kα. In par-
ticular, if Ψ

(1)
+ (x, z) is the first column of the Jost solution to the ZS-AKNS equation,

then
u(x, z) =

[
1 1

]
·Ψ(1)

+ (x, z)

is an L2 solution to (5.3). In the remainder of the chapter, we exploit this simple
relation to develop a singular potential analog of the classical direct and inverse
spectral theory of the Schrödinger operator. In particular, we will an analog of the
classical Weyl-Titchmarsh m-function the operator Lq with Miura potential q. We
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will then use the direct and inverse scattering theory of the ZS-AKNS equation to
study the direct spectral mapping

DL : q 7→ m

and its inverse
IL : m 7→ q.

We close the chapter by establishing a local Borg-Marchenko type result for the Mα

potential Schrödinger equation, a result which follows quite naturally from Theorem
4.1.1 of the previous chapter.

5.2 The Direct and Inverse Spectral Problem for Lq

We begin with a brief summary of the classical direct and inverse spectral theory
of the operator Lq. Our presentation primarily follows the standard treatments in
[10, 30].

The Classical Spectral Theory of the Half-Line Schrödinger Equation

In the classical spectral theory of the 1D Schrödinger operator, we assume that q ∈
L1
loc(R) and consider the classical operator Lq on L

2[α,+∞) formally defined by (5.2).
The solutions θ(x, z) and ξ(x, z) of

Lqu = z2u z ∈ C
+

satisfying {
θ(α, z) = sin η
θ′(α, z) = − cos η

{
ξ(α, z) = cos η
ξ′(α, z) = sin η

form a basis for the solution space of (5.3). In our convention z2 ∈ C/[0,+∞) is the
spectral parameter and we parameterize solution families of the Schrödinger equation
by z ∈ C+.

Now impose a boundary condition on u(x, z) at x = β > α:

cos γu(β, z) + sin γu′(β, z) = 0. (5.4)

For z ∈ C+, every solution to Lqu = z2u satisfying (5.4) may be written as

u(x, z) = θ(x, z) +m ξ(x, z), (5.5)

up to a multiplicative constant. Solving for m, we find that

m(z2; β) = −cot γ θ(β, z) + θ′(β, z)

cot γ ξ(β, z) + ξ′(β, z
. (5.6)

Sending β → +∞, which corresponds to imposing a boundary condition at x = +∞,
a simple geometric argument shows that the coefficient m(z2; β) either converges to
a single point or a circle of points (see, for example, Chapter 9.2 of [10]). Hence, we
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have the limit-point/limit-circle dichotomy for the half-line problem. In the limit-
point case, there is only one independent L2(R) solution to Lqu = z2u for z ∈ C+;
in the limit-circle case any solution is L2(R). This is a rather difficult distinction to
work with in practice, but we note that a sufficient condition for the equation to be
in the limit-point case is that

q(x) > −kx2

a.e. for some constant k > 0 [38]. We restrict our attention to the limit-point case and
refer to [10] for further discussion of the limit-circle case. Taking the limit as β → +∞
in (5.6), we obtain the celebrated Weyl-Titchmarsh m-function, which we denote by
m(z2). To understand how the m-function relates to the spectral decomposition of
Lq, we must first state the following theorem, due originally to Weyl and which may
be found, for example, in [10, 30].

Theorem 5.2.1. There exists a monotone increasing function ρ so that the transform

Fρ(λ) =

∫ +∞

α

f(x)ξ(x, λ) dx

defines a unitary mapping between L2[α,+∞) and L2(R, dρ).

The function ρ of this theorem is called the spectral function for the operator Lq.
For sin η 6= 0, it is related to the m-function by the transformation

m(z) = − cot η +

∫ ∞

−∞

dρ(λ)

z − λ

(see [30, 31] where the case sin η = 0 is also treated). Observe also that the m-
function is meromorphic in the spectral parameter z2 on the slit plane C/[0,∞), with
simple poles on [0,+∞) coinciding with any eigenvalues of Lq [31]. This makes the
m-function a natural and convenient object to consider in the study of the spectral
theory of the self-adjoint operator Lq.

For any z ∈ C/R, we may solve (5.3) with asymptotic conditions

lim
x→+∞

∣∣u(x, z)− eixz
∣∣ = 0

lim
x→+∞

∣∣u′(x, z)− izeixz
∣∣ = 0.

(5.7)

We call such a solution a Jost solution to the Schrödinger equation. Because we are
in the limit point case, up to multiplicative constants there is only one L2 solution to
(5.3), and hence

cu(x, z) = θ(x, z) +m(z2)ξ(x, z)

cu′(x, z) = θ′(x, z) +m(z2)ξ(x, z).

Using a spectral argument, one can show that the Jost solution u(x, z) to (5.3) is
nonvanishing (see, for example, [19]). Hence the quotient

u′(α, z)

u(α, z)
=

− cos η +m(z2) sin η

sin η +m(z2) cos η
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is well-defined for each z. Note that if η = π/2, then the m-function is simply:

m(z2) =
u′(x, z)

u(x, z)

∣∣∣∣
x=α

, (5.8)

and more generally the m-function is a fractional linear transformation of this deriva-
tive. Without loss of generality, we may therefore take the definition of them-function
to be (5.8). This gives a simple way to resolves the direct problem; given q, we can
find the Jost solution and evaluate (5.8).

There are several distinct approaches to the inverse spectral problem for Lq. The
classical approach detailed in Chapter 2 of [30] is to formulate the inverse problem as a
Gelfand-Levitan-Marchenko integral equation. More recent approaches are Remling’s
de Branges space technique [39] and Simon’s A-function method [42]. Remling [39, 40]
applies de Branges space characterization results from [11] to establish a bijection
between Schrödinger operators and families of de Branges spaces. His approach has
been extended to consider the case of measure potentials in [4].

For q supported [0,+∞), Simon [42] proves that the m-function for k ∈ R has the
form

m(−k2) = −k −
∫ ∞

0

A(z)e−2kz dz (5.9)

for A ∈ L1[0,+∞). He then proves that the A-function in this expansion serves as
the initial data A(z, 0) = A(z) for the uniquely solvable PDE

∂A

∂x
=
∂A

∂z
+

∫ z

0

A(ζ, x)A(z − ζ, x) dζ, (5.10)

where A(0, x) = q(x). To solve the inverse problem by this method, one first inverts
the Laplace transform in (5.9) and then evolves A(z) to q(x) through the PDE (5.10).
The A-function determines the potential q locally in the sense that q(x) may be
recovered from the values of A(ξ) on [0, x] via this framework. More precisely, if A1, A2

are A-functions for q1, q2, and A1(ξ) = A2(ξ) for a.e. ξ ∈ [0, β] then q1(x) = q2(x) for
a.e. x ∈ [0, β].

We recall that f(x) = õ (g(x)) when g(x) → 0 as |x| → +∞ and

∀ǫ > 0, lim
x→+∞

|f(x)|
|g(x)|1−ǫ

= 0. (5.11)

Appendix 2 of [42] gives an elementary proof of the following Paley-Wiener type
result for the Laplace transform.

Proposition 5.2.1. If

f(k) =

∫ ∞

0

e−2kξC(ξ) dξ = õ
(
e−2kβ

)

the C(ξ) is supported on [0, β].

Because A on [0, x] determines q(x), Simon applies this proposition to prove the
following local Borg-Marchenko Theorem:
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Theorem 5.2.2. Suppose q1, q2 ∈ L1
loc[0,+∞) and let Lq1 , Lq2 have the m-functions

m1, m2. If
m1(−k2)−m2(−k2) = õ

(
e−2kβ

)

as k → +∞ then q1 = q2 on [0, β].

As mentioned in Chapter 1, this theorem is an improvement of the results of Borg
in [7] and Marchenko in [32], which show that

m1(z) = m2(z) ⇒ q1 = q2.

Simon’s elegant technique has received considerable elaboration in [23, 37, 40, 49].
Let us make explicit how the results of Simon [42] translate to the half-line

[α,+∞).

Proposition 5.2.2. Let q, q̃ ∈ L1
loc[α,+∞). Consider the m-functions m and m̃

defined for the self-adjoint operators Lq and Lq̃ by equation (5.8). Then:

1. There is A ∈ L1(R) so that

m(−k2) = −k −
∫ ∞

0

e−2kξA(ξ) dξ.

For x ≥ α, the values of A on [0, x− α] determine q on [α, x].

2. If
m(−k2)− m̃(−k2) = õ

(
e−2k(β−α)

)

then q(x) = q̃(x) a.e. on [α, β].

Proof. Suppose q(x) has support on [α,+∞). Then if we set qα(x) = q(x + α), the
operator Lqα is a self-adjoint operator on L2[0,+∞) whenever Lq is a self-adjoint
operator on L2[α,+∞). Moreover, if u(x, z) is the Jost solution to Lqu = z2u then
uα(x, z) = u(x+ α, z) is the Jost solution to Lqαu = z2u. We have

m(−z2; q) = u′(x, z)

u(x, z)

∣∣∣∣
x=α

=
u′α(x, z)

uα(x, z)

∣∣∣∣
x=0

= m(−z2; qα)

= −k −
∫ ∞

0

A(ξ)e−2kξ dξ.

The function A(ξ) on [0, x] determines qα(x) and hence A(ξ) on [0, x−α] determines
q(x).

Next suppose that

m(−k2)− m̃(−k2) =
∫ ∞

0

(
A(ξ)− Ã(ξ)

)
e−2kξ dξ = õ

(
e−2k(β−α)

)

as k → +∞. By Proposition 5.2.1, it follows that A = Ã a.e. on [0, β − α]. Because
A and Ã on [0, x−α] determine q(x) and q̃(x) for almost every x < β, it follows that
q(x) = q̃(x) a.e. on [α, β].
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The Direct Problem For the Singular Potential Equation

Suppose that q ∈ Mα so that q = w′ + w2 for some w ∈ Kα. We will now introduce
an analog of the classical Weyl-Titchmarsh m-function for the Schrödinger operator
Lq and show how this quantity is related to the reflection coefficient r−(z) for the
w-potential ZS-AKNS equation. The basic idea of the approach is to define the m-
function for the Miura potential equation by (5.8). The problem with this definition is
that, although L2 solutions to Lqu = z2u exist, pointwise evaluation of (5.8) no longer
makes sense. To remedy this, we first define the quasiderivative of u ∈ H1[α,+∞)
by

u[1] = u′ − wu. (5.12)

This type of regularization is a standard tool in the spectral theory of singular po-
tential Sturm-Liouville operators, see [43].

The Schrödinger equation

−u′′ + (w′ + w2)u = z2u (5.13)

is equivalent by a direct computation to the first-order system

d

dx

[
u
u[1]

]
=

[
w 1
−z2 −w

] [
u
u[1]

]
; (5.14)

see [26] where this computation is carried out in detail. We can readily prove that
this first-order system with the prescribed initial condition has its solution in the ab-
solutely continuous functions so that u and u[1] have meaningful pointwise definition.

Lemma 5.2.1. Any Jost solution to the Schrödinger equation Lqu = z2u is nonvan-
ishing for z ∈ C+.

Proof. The operator Lq admits the factorization Lq = D∗D where

D =

(
d

dx
− w

)
.

Suppose that u ∈ L2[0,+∞) satisfies Lqu = z2u and the Dirichlet condition u(0, z) =
0. Then on the one hand

(u, Lqu) = z2‖u‖L2(R).

On the other,
(u, Lqu) = (u,D∗Du) = (Du,Du) = ‖Du‖2L2(R).

This can only happen if z2 ∈ [0,+∞), i.e. if z ∈ R.

Remark 5.2.1. One can extend the argument of [19] to show that Lqu = z2u has no
L2 eigenvalues for z ∈ [0,+∞) as well, but we will not require this fact.

In analogy to (5.8), we may use the Lemma to define the modified m-function for
the singular problem by

m(z2) =
u[1](x, z)

u(x, z)

∣∣∣∣
x=α

, (5.15)

where u satisfies Lqu = z2u and the Jost conditions (5.7).
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Remark 5.2.2.

1. We stress that the definition of the modified m-function has been made only
based on the analogy with (5.8). The operator Lq with q ∈ Mα is meant as an
operator on L2(R) with potential supported on [α,+∞), where as the classical
m-function is defined with regards to a self-adjoint operator on L2[α,+∞).

2. By direct computation, it follows that, if w is also continuous, then both the
classical and modified m-function are defined and

mclassical(z
2) = m(z2)− w(α). (5.16)

Given the correspondence between the Jost solution of the w-potential ZS-AKNS
equation and the q = w′+w2 Schrödinger equation described in the introduction, we
easily obtain the following proposition.

Proposition 5.2.3. The modifiedm-function for the q = w′+w2 potential Schrödinger
equation (5.3) is given by

m(z2) = iz
ψ+
11(x, z)− ψ+

21(x, z)

ψ+
11(x, z) + ψ+

21(x, z)

∣∣∣∣
x=α

(5.17)

where

Ψ
(1)
+ (x, z) =

[
ψ+
11(x, z)
ψ+
21(x, z)

]

is the first column of the solution to the w-potential ZS-AKNS equation (1.1).

Proof. From the ZS-AKNS equation (1.1),

ψ′+
11 = izψ+

11 + wψ+
21

ψ′+
21 = −izψ+

21 + wψ+
11

we compute

u[1](x, z) = (ψ′+
11 + ψ′+

21 )− w(ψ+
11(x, z) + ψ+

21(x, z))

= (izψ+
11(x, z) + w(x)ψ+

21(x, z)− izψ+
21(x, z) + w(x)ψ+

11(x, z))

− w(ψ+
11(x, z) + ψ+

21(x, z))

= iz(ψ+
11(x, z)− ψ+

21(x, z)).

Recall from Chapter 2 that for z ∈ R

r−(z) =
b(z)

a(z)

where
Ψ+(α, z) = Ψ−(α, z)R(z)
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and

R(z) =

[
a(z) b̄(z)
b(z) ā(z)

]
.

It follows that
a(z) = eiαzψ+

11(α, z) b(z) = e−iαzψ+
21(α, z),

and we note that ψ11(α, z), ψ21(α, z) extend analytically to C+. We write

m(z2) = iz
1 − e−2iαzr−(z)

1 + e−2iαzr−(z)
. (5.18)

There are several ways to look at this formula. Given q = w′ +w2, we can determine
the Jost solutions to the ZS-AKNS equation, construct the reflection coefficient r−(z),
and then use (5.18) to determine m. This solves the direct spectral problem for Lq.

Recall also that

r−(z) =

∫ ∞

α

e2izξC(ξ) dξ, (5.19)

and hence

1 + e−2izαr−(z) = 1 +

∫ ∞

0

e2izξC(ξ + α) dξ.

From Lemma 5.2.1, this quantity is nonvanishing for z ∈ C+ and is therefore an
invertible element of the Banach algebra A. We use Theorem 2.3.3 to write

(
1 +

∫ ∞

0

e2izξC(ξ + α) dξ

)−1

= 1 +

∫ ∞

0

e2izξE(ξ) dξ (5.20)

where E ∈ X .
Then we compute

m(z2) = iz

(
1 +

∫ ∞

0

e2izξC(ξ + α) dξ

)(
1 +

∫ ∞

0

e2izξE(ξ) dξ

)−1

= iz + iz

∫ ∞

0

e2izξG(ξ) dξ.

(5.21)

with

G(ξ) = C(ξ + α) + E(ξ) +

∫ ξ

0

C(τ + α)E(ξ − τ) dτ.

Taking z = ik in this formula, we obtain the singular potential analog of (5.9):

m(−k2) = −k − k

∫ ∞

0

G(ξ)e−2kξ dξ.

In [42], the A-function and the potential have the same degree of singularity. The
additional factor of k in our analogous expression arises because our potentials are
more singular than Simon’s. A formal integration by parts argument using (5.16)
shows that when both the A-function and the G-function exist, then

G′(ξ) = 2A(ξ)

up to an additive constant. We also make note of the fact that G is supported on
[0,∞), independent of α.
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5.3 The Inverse Spectral Problem

Given m(z2) the modified m-function for Lq, we may solve (5.18) for r− to obtain

r−(z) = e2iαz
iz −m(z2)

iz +m(z2)
. (5.22)

We can recover the potential using the reconstruction procedure described in Chapter
3, which is a straightforward way to solve the inverse problem for the modified m-
function.

We now argue that the modified m-function determines the potential locally. We
shall prove:

Theorem 5.3.1. Suppose that q, q̃ ∈ Mα. Let m(−k2), m̃(−k2) be the modified m-
functions for the operator Lq and Lq̃, respectively. If

m(−k2)− m̃(−k2) = õ(e−2k(β−α))

then q = q̃ a.e. on [α, β].

Proof. For q = w2+w′ and q̃ = w̃2+ w̃′, we let r−(z) and r̃−(z) denote the left reflec-
tion coefficients for the w and w̃ potential ZS-AKNS problem, respectively. Taking
z = ik with k > 0 in (5.22), we compute

r−(ik)− r̃−(ik) = −2ke−2αk m̃(−k2)−m(−k2)
(−k +m(−k2))(−k + m̃(−k2))

= −2ke−2αk m̃(−k2)−m(−k2)
(−2k +m0(−k2))(−2k + m̃0(−k2))

,

(5.23)

where
m0(z

2) = m(z2)− iz m̃0(z
2) = m̃(z2)− iz.

We make a change of variables in formula (5.19) to write r−(z) = e2iαzr0(z) and
r̃−(z) = e2iαz r̃0(z), where

r0(z) =

∫ ∞

0

C(ξ + α)e2izξ dξ

r̃0(z) =

∫ ∞

0

C̃(ξ + α)e2izξ dξ.

Then using (5.23), we have

r0(ik)− r̃0(ik) =
m̃(−k2)−m(−k2)

τ(k)
(5.24)

where

τ(k) =

(
1− m0(−k2)

2k

)(
1− m̃0(−k2)

2k

)
.
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By (5.21):

m0(−k2) = −k
∫ ∞

0

G(ξ)e−2kξ dξ,

and by the Cauchy-Schwarz Inequality

|m0(−k2)| ≤
√
k
‖G‖L2(R)

2
.

A similar estimate can be made for m̃0, so we deduce that

τ(k) = 1 +O
(

1√
k

)
.

Using definition (5.11), it readily follows that

f(k)

h(k)
= õ(g(k))

whenever f(k) = õ(g(k)) and h(k) = 1 +O(1/
√
k). Since by hypothesis

m̃(−k2)−m(−k2) = õ
(
e−2k(β−α)

)
,

equation (5.24) implies

r0(ik)− r̃0(ik) = õ
(
e−2k(β−α)

)
.

Then by Proposition 5.2.1,

C(ξ + α) = C̃(ξ + α)

for ξ ∈ [0, β−α]. That is, C(ξ) = C̃(ξ) for ξ ∈ [α, β]. By Corollary 4.1.1, w(x) = w̃(x)
for a.e. x ∈ [α, β]. Conclude that q(x) = q̃(x) for a.e. x ∈ [α, β].
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Appendix A: Notation Index

adσ3
, 18

a(z), 2

b(z), 2

C(ξ), 8
C, 41
C±, 41
Cθ,x, 49

DL, 7
D±

P , 2

F , 2
Fn, 26
f̂ , 2

H1, 6
H2(C±), 12
H−1, 6
Hn(x), 26

IL, 7
I±
P , 2

Kβ, 4
Kα, 4
Kβ

α, 4

M(x, z), 42
M2(C), 11
Mα, 6
m, 7

Nx, 64
νx, 64

õ, 7

P , 1
Φ±, 18
Ψ±, 1

Q(x), 11

R (Reflection operator), 61
R(z) (matrix), 15
r±, 2

Sx, 63
σ1, 11
σ3, 11

T±, 19
Tc, 61
Θ±, 23
θ±,x, 48

V±,x, 48

X ⊗M2(C), 12
X , 4
X̂±, 4

Y , 19
~y, 25
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Appendix B: Analyticity and the Fourier Transform

In this appendix, we collect some useful facts about the 1D Fourier transform and
prove the “two-sided” version of the linear Paley-Wiener Theorem.

Recall that our convention on the direct and inverse Fourier transform of f ∈
L2(R) is

Ff(z) = f̂(z) =

∫ ∞

−∞
f(x)e2ixz dx

F−1f(x) = f̌(x) =
1

π

∫ ∞

−∞
f(z)e−2ixz dz.

The nonstandard factor of 2 in the exponential of our definition accounts for the
nonstandard factor of 2 appearing in the statements to follow.

Preliminaries

Following [15], we shall say a function f analytic in the region Ω has exponential type
K in Ω if there exist constants C > 0 and K < +∞ so that

|f(z)| ≤ Ce2K|z|

holds for all z ∈ Ω.
For functions satisfying an exponential type T condition, it is often possible to

extend the Maximum Modulus Principle to certain unbounded domains Ω. A result
of this kind is called a Phragmén-Lindelöff Theorem. We recall the following sectorial
version of the Phragmén-Lindelöff Theorem.

Theorem 1 (The Phragmén-Lindelöff Theorem, [15]). Let f be analytic on the sector

Ω = {z ∈ C : α < arg z < β}

with β − α < π and continuous on the closure Ω. Suppose in addition that f has
exponential type K on Ω and satisfies

|f(z)| ≤M

on the boundary ∂Ω of Ω. Then

|f(z)| ≤M

on Ω.

We refer to the proof in section 3.1.7 of [15].
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The Linear Paley-Wiener Theorem

A standard statement of the Paley-Wiener theorem is along the lines of the one found,
for example, in [41]:

Theorem 2 (Standard Paley-Wiener Theorem). A function f ∈ L2(R) has its sup-
port in [−A,A] if and only if its Fourier transform f̂ extends to an entire function
with

|f̂(z)| ≤ Ce2A|z|.

For our purposes, we need a somewhat more specific version which allows for
consideration of half-line supports and half-plane extensions.

Theorem 3 (Two-Sided Paley-Wiener Theorem for the Fourier Transform). Suppose
that f ∈ L1(R) ∩ L2(R). Then

1. supp f ⊆ [α,+∞) if and only if f̂ extends to an analytic function on C+

satisfying
|f̂(R + iT )| ≤ Ce−2αT T ≥ 0.

2. supp f ⊆ (−∞, β] if and only if f̂ extends to an analytic function on C−

satisfying
|f̂(R + iT )| ≤ Ce−2βT T ≤ 0.

Proof. We consider only the first case, since the second follows from the first by the
symmetry

f̂(−z) = f̂(z).

Suppose f is supported on [α,+∞). Then we estimate

|f̂(R + iT )| =
∣∣∣∣
∫ ∞

α

f(x)e2ixRe−2xT dx

∣∣∣∣
≤ e−2αT ‖f‖1

so that f̂(z) for any z ∈ C+ is well-defined. Note that such a bound cannot be made
for T < 0, and in general the integral may fail to converge in C−.

To prove that f̂ is analytic on C+, we apply Morera’s theorem. For this, let
γ ⊂ C+ be any simple closed contour. Estimate that

∫

γ

∫ +∞

α

∣∣f(x)e2ixz
∣∣ dz ≤

∫

γ

e−2αℑz‖f‖1 dz

≤ length(γ)

(
max
z∈γ

e−2αℑz

)
‖f‖1 < +∞.

Fubini’s theorem applies and we may compute
∫

γ

f̂(z) dz = 0.
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Since γ is arbitrary, it follows that f̂ is analytic in C+. This completes the proof of
the forward implication.

To prove the reverse implication, we adapt the clever proof of the standard Paley-
Wiener Theorem that appears in Chapter 3.3 of [15]. Suppose that f̂ extends to an
analytic function on C+ satisfying

|f̂(R + iT )| ≤ Ce−2αT T ≥ 0.

For y ∈ C+, define

h(y) =
1

2

∫ 1

−1

f̂(y + z) dz.

On the one hand, we readily compute

h(z) =
1

2

∫ 1

−1

f̂(z + y) dy

=
1

2

∫ 1

−1

∫ ∞

−∞
f(x)e2ix(z+y) dx dy

=
1

2

∫ ∞

−∞
f(x)e2ixz

∫ 1

−1

e2ixy dy dx

=

∫ ∞

−∞
f(x)

sin 2x

2x
e2ixz dx

=
̂

[
f(x)

sin 2x

2x

]
(z).

On the other hand, we will verify below that

ȟ(x) = 0 (25)

for a.e. x < α.
It follows that

sin (2x)f(x) ≡ 0

holds for a.e x < α, and hence that f(x) = 0 a.e. on (−∞, α].
To prove (25), we first estimate

∫ ∞

−∞
|h(R)|2 dR ≤ 1

4

∫ ∞

−∞

(∫ 1

−1

|f̂(R + z)| dz
)2

dR

≤ 1

2

∫ ∞

−∞

∫ 1

−1

|f̂(R + z)|2 dz dR

=
1

2

∫ 1

−1

∫ ∞

−∞
|f̂(R + z)|2 dR dz

= ‖f̂‖22.
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For T ≥ 0, R ∈ R, we also have the bound

|h(R + iT )|2 ≤
∫ 1

−1

|f̂(R + iT + y)|2 dy

≤ Ce−4αT .

Now, fix ξ < α. For y = R + iT ∈ C+ define

g(y) = e−2iξyh(y).

Then we have

|g(R+ iT )| ≤ e2ξT |h(R + iT )|

≤ Ce2ξT

2

∫ 1

−1

∣∣∣f̂(R + iT + z)
∣∣∣ dz

≤ Ce2(ξ−α)T

so that g is of exponential order (ξ − α) in C+. In particular, we have

|g(iT )| ≤ Ce2(ξ−α)T ≤ C

|g(R)| ≤ C.

Now g is analytic in the upper-half plane. Because f ∈ L1(R), f̂ is continuous on
R and hence g is continuous on C+. We may then apply the method of Phrágmen
and Lindelöf (Theorem 1) to extend the bound holding for g on the real and the
positive imaginary axes to all of C+. We do this by applying the method in the first
and second quadrants separately. We then have the bound g(z) ≤ C, holding for all
z ∈ C+.

Since h(z) = g(z)e2iξz, we have

|h
(
ρeiθ

)
| < C

∣∣exp
(
2iξρeiθ

)∣∣
≤ C exp(−2ξρ sin θ),

holding for 0 ≤ θ ≤ π and ρ ≥ 0.
Then for fixed A > 0 and x < ξ < α, define the function

vA(z) =
h(z)

1− iAz
.

Let CR ⊂ C+ be the semicircular contour of points

[−R,R] ∪
{
Reiθ : R > 0, θ ∈ (0, π)

}
,

oriented counterclockwise. Because vA(z) is analytic in C+, Cauchy’s Integral Theo-
rem implies

∫ R

−R

e−2ixzvA(z) dz = −iR
∫ π

0

eiθ exp
(
−2ixReiθ

)
vA(Re

iθ) dθ.
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Then we estimate
∣∣∣∣
∫ R

−R

e−2ixzvA(z) dz

∣∣∣∣ ≤ R

∫ π

0

| exp
(
−2ixReiθ

)
||h
(
Reiθ

)
|

|1− iAReiθ| dθ

≤ CR

∫ π

0

exp (2xR sin θ) exp (−2ξR sin θ)

AR + 1
dθ

≤ CR

AR + 1

∫ π

0

exp (−2R(ξ − x) sin θ) dθ.

Since for θ ∈ [0, π/2] we have

sin θ ≥ 2θ

π
,

we obtain the bound
∣∣∣∣
∫ R

−R

e−2ixzvA(z) dz

∣∣∣∣ ≤
2CR

AR + 1

∫ π
2

0

exp (−4R(ξ − x)θ/π) dθ

=
CRπ

2R(AR + 1)(ξ − x)
[1− exp (−4R(ξ − x))]

Since R(ξ − x) > 0, the integral vanishes as R → +∞. But this is just to say that
the inverse Fourier transform of vA(z) vanishes when x < ξ. Now observe that for
R ∈ R

|vA(R)| ≤
∣∣∣∣

1

1− iAR

∣∣∣∣ |h(R)| < |h(R)|

and by dominated convergence vA(R) → h(R) in L2(R) as A ↓ 0. Therefore, ȟ(x) = 0
holds for x < ξ < α. Since ξ < α is arbitrary, it follows that ȟ(x) and hence f(x)
vanish a.e. on (−∞, α].

Copyright c© Ryan D. Walker, 2013.
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Appendix C: The Cauchy Operator on L2(R)

Here we show that the Cauchy boundary operators on L2(R) act as cutoff-functions
in Fourier space. For the treatment of the Cauchy operators on L2(Σ) for Σ ⊂ C a
general contour, see [3].

Proposition 1. For f ∈ L2(R),

C+f(z) =
∫ ∞

0

f̌(x)e2ixz dx

C−f(z) = −
∫ 0

−∞
f̌(x)e2ixz dx.

(26)

Define the contours

C+
R = [−R,R] ∪

{
Reiθ : θ ∈ (0, π)

}

C−
R = [−R,R] ∪

{
Reiθ : θ ∈ (π, 2π)

}

γ+R =
{
Reiθ : θ ∈ (0, π)

}

γ−R =
{
Reiθ : θ ∈ (π, 2π)

}
,

where C−
R , γ

−
R are oriented clockwise and C+

R , γ
+
R are oriented counter-clockwise.

For the proof of Proposition 1, we need the following version of Jordan’s Lemma

Lemma 1.

1. (C+ version) Suppose that f(ζ) = e−2ixζg(ζ) with x < 0. Then
∣∣∣∣∣

∫

C+

R

f(z) dz

∣∣∣∣∣ ≤
π

2x
max
z∈C+

R

|g(z)|.

2. (C− version) Suppose that f(ζ) = e−2ixζg(ζ) with x > 0. Then
∣∣∣∣∣

∫

C−

R

f(z) dz

∣∣∣∣∣ ≤
π

2x
max
z∈C+

R

|g(z)|.

For a proof of this fact, consult an elementary text on complex variables such as
[44].

Proof of Proposition 1. For each fixed z, set

gz(ζ) =
1

ζ − z
,

and write

Cf(z) = 1

2πi

∫ ∞

−∞
f(ζ)gz(ζ) dζ =

1

2πi
(f, ḡz)L2(R) .
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With the given Fourier convention, apply the Fourier convolution theorem to
compute the Plancherel relation

(f, g)L2(R) =

∫ ∞

−∞
f(x)ḡ(x) dx

= π

[
1

π

∫ ∞

−∞
f(z)ḡ(z)e−2i0z dz

]

= πF−1 [f ḡ] (0)

= π

∫ ∞

−∞
f̌(x)ˇ̄g(0− x) dx

= π

∫ ∞

−∞
f̌(x)ˇ̄g(−x) dx

Thus

Cf(z) = 1

2i

∫ ∞

−∞
f̌(x)ǧz(−x) dx.

We must compute

ǧz(x) =
1

π

∫ ∞

−∞

1

ζ − z
e−2ixζ dζ

We consider four cases.

Case # 1. Suppose that ℑz < 0 and x < 0. By Cauchy’s theorem
∫

γ+

R

1

ζ − z
e−2ixζ dζ = 0

so that ∫ R

−R

1

ζ − z
e−2ixζ dζ = −

∫

C+

R

1

ζ − z
e−2ixζ dζ

For each fixed x < 0, apply the C+ version of Jordan’s Lemma, and take
R→ +∞ to obtain ∫ ∞

−∞

1

ζ − z
e−2ixζ dζ = 0.

Case # 2. Suppose that ℑz < 0 and x > 0. By the Residue Theorem
∫

γ−

R

1

ζ − z
e−2ixζ dζ = 2πi Res

(
1

ζ − z
e−2ixζ , ζ = z

)
.

Compute

Res

(
1

ζ − z
e−2ixζ , ζ = z

)
= lim

ζ→z
(ζ − z) ·

(
1

ζ − z
e−2ixζ

)
= e−2ixz.

For each fixed x > 0, apply the C− version of Jordan’s Lemma, and take
R→ +∞ to obtain ∫ ∞

−∞

1

ζ − z
e−2ixζ ζ = −2πie−2ixz

The negative sign comes from the orientation of the contour.
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Case # 3. Suppose that ℑz > 0 and x > 0. By Cauchy’s Theorem
∫

γ−

R

1

ζ − z
e−2ixζ dζ = 0.

Apply the C− version of Jordan’s Lemma to obtain
∫ ∞

−∞

1

ζ − z
e−2ixζ dζ = 0.

Case # 4. Suppose that ℑz > 0 and x < 0. By the Residue Theorem
∫

γ+

R

1

ζ − z
e−2ixζ dζ = 2πie−2ixz.

Apply the C+ version of Jordan’s Lemma to obtain
∫ ∞

−∞

1

ζ − z
e−2ixζ ζ = 2πie−2ixz.

Combining the four cases, we have

ǧz(x) = 2i





{
0 x < 0
−e−2ixz x > 0

ℑz < 0

{
e−2ixz x < 0
0 x > 0

ℑz > 0

With z = R + iT , we write

ǧz(−x) = 2i





{
0 x > 0
−e2ix(R+iT ) x < 0

T < 0

{
e2ix(R+iT ) x > 0
0 x < 0

T > 0

Then for T > 0:

Cf(R + iT ) =

∫ ∞

0

f̌(x)e2ix(R+iT ) dx.

and for T < 0:

Cf(R + iT ) = −
∫ 0

−∞
f̌(x)e2ix(R+iT ) dx.

Taking T → 0 and applying the Lebesgue Dominated Convergence Theorem, we
conclude (26).

Copyright c© Ryan D. Walker, 2013.
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