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ABSTRACT OF DISSERTATION

A POSTERIORI ERROR ESTIMATES FOR SURFACE FINITE

ELEMENT METHODS

Problems involving the solution of partial differential equations over surfaces appear
in many engineering and scientific applications. Some of those applications include
crystal growth, fluid mechanics and computer graphics. Many times analytic solutions
to such problems are not available. Numerical algorithms, such as Finite Element
Methods, are used in practice to find approximate solutions in those cases.
In this work we present L2 and pointwise a posteriori error estimates for Adaptive
Surface Finite Elements solving the Laplace-Beltrami equation −△Γu = f . The two
sources of errors for Surface Finite Elements are a Galerkin error, and a geometric
error that comes from replacing the original surface by a computational mesh. A
posteriori error estimates on flat domains only have a Galerkin component. We use
residual type error estimators to measure the Galerkin error. The geometric compo-
nent of our error estimate becomes zero if we consider flat domains, but otherwise has
the same order as the residual one. This is different from the available energy norm
based error estimates on surfaces, where the importance of the geometric components
diminishes asymptotically as the mesh is refined. We use our results to implement an
Adaptive Surface Finite Element Method.
An important tool for proving a posteriori error bounds for non smooth functions is
the Scott-Zhang interpolant. A refined version of a standard Scott-Zhang interpola-
tion bound is also proved during our analysis. This local version only requires the
interpolated function to be in a Sobolev space defined over an element T instead of
an element patch containing T .
In the last section we extend our elliptic results to get estimates for the surface heat
equation ut −△Γu = f using the elliptic reconstruction technique.

Keywords: Numerical Analysis, Finite Element Methods, Adaptive Refinement,
Partial Differential Equations on Surfaces, Laplace Beltrami Operator.
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Chapter 1

Introduction

We present adaptive surface finite element methods (ASFEM) solving elliptic and
parabolic partial differential equations (PDEs) on surfaces. The adaptive algorithms
are based on the L2 and pointwise error estimates proved in chapter 3.

1.1 Finite Element Method

The finite element method (FEM) is an important tool in engineering and science
used to approximate the solution of a partial differential equation (PDE) over a given
domain. It was first developed to solve problems in structural analysis. In 1942
Courant published an article [18] in which he solved the St. Venant’s torsion of a
hollow square box. In this work he introduced a Rayleigh-Ritz method with piecewise
continuous polynomials defined over a triangular mesh to obtain an approximate
solution. The name finite element method is attributed to Clough who first used the
term in [17] (cf. [37], [47]).

We proceed to state some basic definitions and explain briefly the mechanics of a
FEM. The interested reader is directed to [29] and [11] for a more in depth treatment.

Definition. [See [29] ] Let D be a domain in R
d. A mesh Th of D is a union of a

finite number N of compact, connected Lipschitz domains Ti with non-empty interior
such that {Ti}Ni=1 forms a partition of D, i.e,

D̄ =
N
⋃

i=1

{Ti}, and T̊j
⋂

T̊i = ∅ for i 6= j.

The subsets T are called the mesh elements. The subscript h on Th refers to the
level of refinement of the mesh. For notational ease we will drop the sub-index h and
refer to the mesh simply as T unless there is danger of confusion.

Definition. A mesh is said to be conforming if for any Ti, Tj ∈ T their intersection
is either a common edge or vertex of both elements.

Definition. The element diameter hT is the diameter of the smallest ball contain-
ing an element T of T .

Definition. The element patch ωT is defined to be the union of the elements K ∈ T
touching T , i.e. T ∩K 6= ∅.

Definition. A mesh is shape regular if for every element T ∈ T the ratio of the
element diameter and the diameter of the largest ball that can be contained in T is
uniformly bounded.
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Shape regularity implies that there exist fixed constants c1 and c2 such that for
any T ∈ T the following inequality holds:

c1hTi
≤ hT ≤ c2hTi

∀ Ti ∈ ωT . (1.1)

Mesh generation or grid generation is the name given to the process of creating
the computational domain where we seek the numerical solution of a given PDE.
Depending on the domain that one wants to represent it can be a very complicated
process. The main types of grids are: structured, unstructured or combinations of
both. Adaptive finite element methods, like the ones we propose, generate unstruc-
tured meshes. For a more thorough discussion the interested reader is directed to
[57].

1.1.1 Galerkin approximation

Let L denote a differential operator, let u be a function in some space S, and consider
the PDE

Lu = f, (1.2)

defined over a domain Ω ⊂ R
n. The weak form of (1.2) is find u ∈ S such that

a(u, v) = f(v), ∀v ∈ V, (1.3)

where V is a space of test functions, a(·, ·) is the bilinear form corresponding to L
and f(v) is a bounded linear functional. The finite element idea is to replace S and
V , which are infinite dimensional spaces, with finite dimensional versions Sh and Vh.
The spaces Sh and Vh are defined over the elements T of a mesh T of Γ. Sh is known
as the space of trial functions and Vh is the space of test functions.

The corresponding discrete version of (1.3) is to find uh ∈ Sh such that

a(uh, vh) = f(vh), ∀vh ∈ Vh, (1.4)

This is known as the Galerkin method. If Sh and Vh are equal we refer to it as a
standard Galerkin method. Otherwise it is known as a Petrov Galerkin Method.
We say that the approximation scheme is conformal if Sh ⊂ S and Vh ⊂ V ; other-
wise it is said to be non-conformal. The space Sh is known as the finite element

space.

Remarks:

(1) The spaces S and V are in general taken to be Banach spaces, i.e. complete
normed vector spaces. In our application S = V is a tangential Sobolev space
defined in section 2.3. In particular S is taken to be the Hilbert space H1.

(2) The bilinear form a(·, ·) is continuous on S × V , hence it is bounded on S × V .

(3) We chose to implement a standard Galerkin method i.e. S = V , Sh = Vh, such

2



that the true solution u of (1.8) satisfies

a(u, v) = f(vh), ∀vh ∈ Vh. (1.5)

A Galerkin Approximation scheme satisfying (1.5) is said to be consistent. Equa-
tions (1.4) and (1.5) imply

a(u− uh, vh) = 0, ∀ vh ∈ Sh, (1.6)

which is known as Galerkin orthogonality.

1.1.2 Finite Element

We use Ciarlet’s definition of finite elements as triplets given in [15], section 2.3.

Definition. A finite element in R
n is a triplet (K,Sh,Σ) where:

(i) K is a closed subset of Rn with a non empty interior and Lipschitz-continuous
boundary,

(ii) Sh is a space of real valued functions defined over the set K,

(iii) Σ is a finite set of linearly independent linear forms σi, 1 ≤ i ≤ N , defined
over the space Sh. It is assumed that Σ is Sh unisolvent in the following sense:
Given any real scalars αi, 1 ≤ i ≤ N , there is a unique p ∈ Sh which satisfies

σi(p) = αi, 1 ≤ i ≤ N.

It follows that there exist functions φi ∈ Sh, 1 ≤ i ≤ N , such that

σj(φi) = δij , 1 ≤ j ≤ N. (1.7)

The functions φi form a basis for Sh, and the linear forms σi are called the degrees of
freedom of the finite element. Equation (1.7) implies that one can regard {σi}Ni=1 as
the dual basis of {φi}Ni=1.

1.1.3 Implementation of a FEM

We now illustrate how these concepts apply to implement a FEM. Consider the
Laplace equation with homogeneous Dirichlet boundary conditions:

−△u = f on Ω,

u = 0 in ∂Ω.
(1.8)

Here Ω denotes a domain in R
n. The corresponding discrete bilinear form a(·, ·)

3



and linear functional f(vh) of equation (1.4) are

a(uh, vh) =

∫

Ω

∇uh · ∇vh dx,

f(vh) =

∫

Ω

fvh dx,

(1.9)

where dx denotes Lebesgue measure over Ω.

We chose to use a conformal standard Galerkin method. In the following discussion
T to denotes a conforming shape regular mesh of Ω. The basis functions φi are taken
to be continuous piecewise polynomials1 with compact support. We use zi ∈ Γh,
1 ≤ i ≤ N to represent the finite element nodal points, that is the set of points such
that σi(p) = p(zi) for any p ∈ Sh. We construct φi such that φi(zj) = δij , 1 ≤ i, j ≤ N
and φi|T ≡ 0 for zi /∈ T , T ∈ T .

For example, suppose that Sh is taken to be the space of piecewise linear poly-
nomials, let Ω be a domain in R

2, let Tα ∈ T be a triangular element with vertices
A(xA, yA), B(xB, yB) and C(xC , yC). Consider the affine transformation A(Tα) :
R

2 → Tα such that
A(0, 0) = A(xA, yA),

A(1, 0) = B(xB, yB),

A(0, 1) = C(xC , yC).

(1.10)

Then the restrictions of the basis functions φA, φB and φC to the element Tα satisfy
the equations

A−1(φA|Tα
) = 1− x− y,

A−1(φB|Tα
) = x,

A−1(φC |Tα
) = y.

(1.11)

Figure 1-1: Affine transformation from an arbitrary element Tα ∈ T to the reference
element A(Tα).

1Discontinuous piecewise polynomials are also used in the so called discontinuous Galerkin meth-
ods.
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The ellipticity of △ implies that a(·, ·) is coercive, that is,

a(ψ, ψ) ≥ c1‖ψ‖2, for some c1 > 0 independent of ψ.
(1.12)

Here we take ψ in some Hilbert space H , and ‖ · ‖ is the induced norm in H . Since
a(·, ·) is a bounded coercive bilinear form on S × S it defines an inner product in S.
The induced norm

|||v|||2 = a(v, v), (1.13)

is called the energy norm.

Because uh ∈ Sh it can be expressed as a linear combination of finite element basis
functions

uh =

N
∑

i=1

σi(uh)φi. (1.14)

Choosing vh = φj, 1 ≤ j ≤ N , and defining Ui ≡ uh(zi) = σi(uh) we rewrite equation
(1.4)

N
∑

i=1

Ui

[
∫

Ω

∇φj · ∇φi dx

]

=

∫

Ω

fφj dx, 1 ≤ j ≤ N, (1.15)

which can be expressed in matrix form as

AU = F,

[A]i,j =

∫

Ω

∇φj · ∇φi dx,

[U]i = Ui,

[F]j =

∫

Ω

fφj dx.

(1.16)

The matrixA is the stiffness matrix and F is the load vector. It is clear from (1.9) that
A is symmetric and by the construction of φi, 1 ≤ i ≤ N , A is sparse. Furthermore
because A is symmetric and |||uh|||2 = a(uh, uh) = UTAU > 0 for U 6= 0 it follows
that A defined in (1.16) is symmetric positive definite.

Notice that (1.11) provides a way to construct the basis {φj}Nj of Sh. In practice
we do not need to explicitly compute the basis. We work with the functions defined on
the reference triangle A(Tα) (see Figure 1-1) and use a change of variable to calculate
the stiffness matrix A and load vector F given by (1.16).

1.2 Error estimates

We find the numerical solution uh by solving the linear system (1.16) and substituting
the result into (1.14). A natural question is to ask how close uh is to the true solution
u. The quality of the numerical solution depends on the discretization parameters
(mesh size) and the choice of the finite element space. We want the numerical solution

5



to converge to the true solution as the discretization parameter goes to zero. To
guarantee convergence our numerical method should be consistent and stable. The
selection of Sh is an important one as inadequate choices can lead to inconsistent
schemes (cf. [4] Figure 1.2, [29] section 2.3.3). Sh must be chosen such that the
approximation setting has the approximability property. We cite [29] Definition 2.1.4.

Definition. Let h be the discretization parameter, S(h) ≡ S + Sh and let ‖ · ‖S(h)
denote the norm of the space S(h). Assume that

(a) ‖uh‖S(h) = ‖uh‖Sh
for all uh ∈ Sh.

(b) S is continuously embedded in S(h) i.e., ‖u‖S(h) ≤ c‖u‖Sh
, c > 0.

The Galerkin approximation scheme is said to have the approximability property
if

lim
h→0

‖u− uh‖S(h) = 0. (1.17)

The approximation properties of Sh are often derived using the Bramble-Hilbert
Lemma [9], [10] or similar of arguments.

1.2.1 A priori and a posteriori error estimates

There are two basic types of error estimates, a priori and a posteriori. A priori error
estimates are error bounds that use information about the unknown solution u to es-
timate the error before we compute the approximate solution uh. A posteriori error
estimates are computable estimates that use information gathered from the problem
data and numerical solution. In sections 3.2 and 3.3 we prove L2 and pointwise error
estimates that are used to implement an adaptive finite element method.

Inequalities (1.18) through (1.23) show “standard” a priori and a posteriori error
estimates, for domains in R

n. In these estimates u is the solution to the variational
problem (1.3), u ∈ V ∩Hk+1(Ω), uh ∈ Sh is the solution of (1.4), while h represents
the mesh size.

Energy norm a priori estimate: (cf. (58) Chapter 4 of [54].)

|||u− uh|||(Ω) ≤Chk|u|Hk+1(Ω), for some k ∈ (0, 1]. (1.18)

L2 a priori estimate: (cf. (60) Chapter 4 of [54].)

‖u− uh‖L2(Ω) ≤ Ch2k|u|Hk+1(Ω), for some k ∈ (0, 1]. (1.19)

L∞ a priori estimate:

‖u− uh‖L∞(Ω) ≤ C log

(

1

h

)

hk+1|u|W k+1
∞ (Ω), for 0 ≤ k ≤ deg(Sh). (1.20)

Energy norm a posteriori estimate:

|||u− uh|||2 ≤ C
∑

T∈T

{

h2T ‖f +△uh‖2L2(Ω) + hT‖J∇uhK‖2L2(∂Ω)

}

. (1.21)
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L2 a posteriori error estimate:

‖u− uh‖L2(Ω) ≤ C
∑

T∈T

{

h4T‖f − uh‖2L2(Ω) + h3T‖J∇uhK‖2L2(∂T )

}

. (1.22)

L∞ a posteriori error estimate: Let h = minT∈T {hT}, then for all x ∈ Ω the
following bound holds

|u− uh|(x) ≤ C(1 + ln h)max
T∈T

{h2T‖f +△uh‖L∞(T ) + hT‖∇uh‖L∞(∂T )}. (1.23)

1.2.2 Adaptive finite element method

Given a mesh and finite element space Sh there are two main ways that one can
choose to reduce the finite element error. The first one is to change the mesh. This is
typically done through a refinement process. The second way is to exchange Sh for a
space with better approximation properties. For example, one can use higher degree
polynomials as the basis elements of Sh while maintaining a fixed mesh.

Adaptive finite element methods (AFEMs) use a posteriori error estimates
to direct the computational effort to the regions of the mesh where the error is big-
ger. They contrast with uniform refinement where the error is reduced by refining
the mesh uniformly. A classic adaptive finite element method repeats the scheme
SOLVE → ESTIMATE → MARK → REFINE (cf. [46]) until the a posteriori error
estimate is less than a threshold. AFEMs are more efficient than uniform refinement
when solving problems with singularities or other strong local variations of the solu-
tion. If we reduce the error through mesh refinement we call the method h-adaptive.
If instead we increase the polynomial degree we say that we have a p-adaptive method.
In practice a combination of h and p adaptivity can be implemented.

A good adaptive algorithm equi-distributes the error over the computational mesh.
It uses less degrees of freedom (computational nodes) to produce a solution with a
given accuracy than a uniform refinement algorithm. An important practical question
is how to decide between uniform and adaptive refinement. The answer depends on
the problem in question, the convergence rates and the number of floating point
operations per step required for each scheme. If the solution and domain are smooth
enough then uniform refinement is recommended. If we want high-accuracy and the
solution presents strong localized variations then adaptivity may be a good option.
One advantage of adaptive over uniform refinement, is that the first requires less
degrees of freedom to achieve a given accuracy.

1.3 Surface Finite element method

In this section we discuss the main differences between a finite element method for
domains in R

n and a Surface Finite Element Method (SFEM). We use Γ to denote an
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Mesh with DOF =738
Area of smallest triangle = 0.0019531

Mesh with DOF =1536
Area of smallest triangle = 0.0019531

Figure 1-2: Left figure shows a mesh obtained using adaptive refinement, the right
figure shows a mesh obtained using uniform refinement.

n− 1 dimensional surface embedded in R
n and consider the elliptic model equation:

−△Γu = f on Γ,

u = 0 in ∂Γ, or

∂Γ = ∅.
(1.24)

If ∂Γ = ∅, then (1.24) does not have a unique solution. In that case to guarantee
uniqueness we require the solution to satisfy

∫

Γ
u dσ = 0. Existence is ensured by

requiring
∫

Γ
f dσ = 0. The operator △Γ is known as the Laplace-Beltrami operator.

It is the manifold equivalent of the Laplace operator. One interesting property of the
Laplace-Beltrami operator is that, up to a sign, its eigenvalues and eigenfunctions
are invariant to isometric transformations of Γ. This is one of the reasons why the
eigenvalues of the Laplace-Beltrami operator are used in diffusion geometry as an
isometric invariant descriptor of Γ (cf. [2], [61], [52]). A more detailed explanation of
the Laplace-Beltrami operator is given in section 2.2.

In order to compute the numerical solution, we replace Γ by a polyhedral approxi-
mation Γh of it. The faces of Γh are assumed to be simplices. Another possible choice
that could be the object of future work is the use of curved meshes [49].

We consider an initial conforming shape regular mesh with nodes lying in Γ; and
assume that all the refined meshes Th have all their nodes lying in Γ and are also
shape regular. Typical refinement algorithms in R

n preserve shape regularity. This
also seems to be the case over surfaces, but we are unaware of a proof (c.f. [20] Section
2.2).

We define a discrete version of (1.9) over the discrete surface Γh:

ah(uh, vh) =

∫

Γh

∇Γh
uh · ∇Γh

vh dσh,

f(vh) =

∫

Γh

fhvh dσh,

(1.25)

where ∇Γh
is the tangential gradient over Γh, dσh denotes Lebesgue measure over
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Γh and fh is an approximation of f defined on Γh. A precise definition of ∇Γh
is given

in section 2.2.

Equations (1.10) and (1.11) still hold with the difference that now we need three
coordinates to describe the vertices of T . That is, A = A(xA, yA, zA), B = B(xB, yB, zB)
and C = C(xC , yC , zC); cf. Figure 1-3.

Figure 1-3: Affine transformation to an arbitrary element Tα ∈ T from the reference
element A(Tα).

Equations (1.5), (1.15) and (1.16) change to

ah(u
ℓ, vh) = fh(vh), ∀vh ∈ Vh, (1.26)

N
∑

i=1

Ui

[
∫

Γh

∇Γh
φj · ∇Γh

φi dσh

]

=

∫

Γh

fhφj dσh, 1 ≤ j ≤ N, (1.27)

and
AU = Fh,

[A]i,j =

∫

Γh

∇Γh
φj · ∇Γh

φi dσh,

[U]i = Ui,

[Fh]j =

∫

Ω

fhφj dσh.

(1.28)

The term uℓ in (1.26) is a lift of u to Γh defined in Section 2.2.1.

1.4 Adaptive Surface Finite Element (ASFEM)

Some interesting applications where it is necessary to solve surface PDEs include
applications to Materials Science, Thin Films, Fluid Interfaces and Image Processing;
cf. [16, 33, 34, 48, 51] among others. Previous work for ASFEM includes residual
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a posteriori error estimates in the energy norm for SFEMs [20] and some variations
such as [36, 60, 42, 23, 8].

A posteriori errors for controlling the energy norm (1.13) are discussed in [24]
and [20]. Typical error estimates for surfaces have a residual component (Galerkin
error) and a geometric component. Inequalities (1.21) through (1.23) are examples
of residual estimates.

The geometric component arises because our polyhedral approximation Γh 6= Γ.
This is known as a variational crime [55]. The variational crime decreases as Γh → Γ.
For the energy case the geometric component of the a posteriori estimate is of higher
order and the estimate is asymptotically dominated by the residual. It was proved in
[20] that for properly defined approximations fh of f the following bound holds:

‖∇Γ(u− uh)‖L2(Γ) ≤ C

(

∑

T∈T
B(ωT )η1(T )

2

)1/2

+ C‖(P− Aℓ
h)M∇Γu

ℓ
h‖L2(Γ). (1.29)

Here B(ωT ) is a multiplicative geometric term satisfying B(ωT ) → 1 as the mesh size
goes to zero, η1 is a standard energy residual error indicator (Galerkin error), ωT is
the patch of elements K ∈ T touching the element T , and ‖(P − Aℓ

h)M∇Γu
ℓ
h‖L2(Γ)

is a geometric additive term. The residual term
(
∑

T∈T B(ωT )η1(T )
2
)1/2

is of linear
order with respect to the mesh size while the geometric term ‖(P−Aℓ

h)M∇Γu
ℓ
h‖L2(Γ)

depends quadratically on the mesh size.
A priori error estimates, for Sh consisting of piecewise linear polynomials defined

over a polyhedral Γh, also suggest that the error measured in the energy norm should
decrease linearly with respect to the mesh size. This assertion is illustrated by the
following a priori bounds (cf. page 2 of [19], [24]).

‖∇Γ(u− uh)‖L2(Γ) ≤ Ch‖u‖H2(Γ) + Ch2‖u‖H1(Γ). (1.30)

‖u− uh‖L2(Γ) ≤ Ch2‖u‖H2(Γ). (1.31)

In sections 3.2 and 3.3 we present efficient a posteriori L2 and pointwise error
estimates for elliptic equations on surfaces. In contrast with the energy norm estimate
(1.29) the geometric and residual components are of the same order. Thus adaptivity
can be driven by the geometric error in fine meshes as illustrated in Figure 3-1. A
byproduct of our analysis is a more local version of the Bramble-Hilbert Lemma (see
Section 2.4.3). In Section 4.3 we extend our results to parabolic PDEs using the
elliptic reconstruction technique proposed in [41].

c©Fernando Camacho MMXIV. All rights reserved.
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Chapter 2

Technical Preliminaries

In this section we introduce the notation, and geometric definitions that will be used
in the subsequent chapters. We briefly state the basic definition of a Sobolev space
and extend it to define tangential Sobolev spaces. In Section 2.4 we introduce the
Scott-Zhang interpolant; and then we proceed to discuss its approximation properties.

2.1 Surface geometry and notation

We recall that Γ is used to denote an (n − 1)-dimensional smooth oriented surface
embedded in R

n, and Γh is a polyhedral approximation of Γ. We assume that Γh has
simplicial faces denoted by T . This assumption helps in obtaining “cleaner” proofs.
In practice the faces need not to be simplices. For example, in 2-D, other popular
choices are rectangular faces or mixes of different shapes.

We assume that the number of elements in the patch ωT is bounded by a fixed
constant for any T ∈ T . This is always true for shape regular meshes over R

n, but
does not necessarily hold for arbitrary surface meshes. However if the number of
elements in each ωT is bounded in the initial mesh, standard adaptive refinement
algorithms maintain the bound for subsequent meshes ([20] section 2.2).

The signed distance function from a point x to Γ is denoted by d(x). The outward
unit normal vectors to Γ and Γh are denoted by ~ν(x) and ~νh(x) respectively. We let
~s1(T ), ~s2(T ) and ~s3(T ) be vectors aligned with the sides of T such that the chain
~s1(T ) → ~s2(T ) → ~s3(T ) traverses the boundary ∂T of T with positive orientation.
Then ~ν(x) and ~νh(x) can be computed with the following equations:

Figure 2-1: Positively oriented boundary ∂T

~ν(x) = ∇d(x), (2.1)

and

~νh(x) =
~s1 × ~s2
‖~s1 × ~s2‖

. (2.2)
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The Hessian H(x) := D2d(x) of d(x) is also called the Weingarten map. Its nonzero
eigenvalues are the principal curvatures of Γ. Since |~ν(x)| = 1, ~νTH = ~0T and
H~ν = ~0.

Figure 2-2: Surface and polyhedral approximation

Definition. The projection of a point x ∈ R
3 is defined by the equation

a(x) : U → Γ a(x) = x− d(x)~ν(x) for x ∈ U, (2.3)

If Γ is smooth enough there is a tubular region U containing Γ where the restriction
of (2.3) to U is unique [32].

Throughout this document we assume that Γ and Γh are such that a : Γh → Γ is
a bijection. For shape regular meshes, and d(x) small enough the following bound
holds

‖d‖L∞(T ) + hT‖~ν − ~νh‖L∞(T ) . h2T , ∀T ∈ T . (2.4)

By a . b we mean a ≤ Cb, where C depends on global properties of Γ but not other
essential quantities. Let µh(x) be the Jacobian of the transformation a(x)|Γh

: Γh → Γ,
so that

µhdσh = dσ. (2.5)

Definition. (See [30] appendix C.1.) Let Ω ⊂ R
n be open and bounded, k ∈

{1, 2, . . .}. We say that ∂Ω is Ck if for each point x0 ∈ ∂Ω there exist r > 0 and a Ck

12



function γ : Rn−1 → R such that upon relabelling and reorienting axes if necessary
we have

Ω
⋂

B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, . . . , xn−1)}.

Here B(x0, r) denotes the n-dimensional ball of radius r centered at the point x0.

2.1.1 Projection matrices

The projection matrices onto the tangent spaces of Γ and Γh are denoted by P(x) and
Ph(x) respectively. The matrices can be computed using the following expressions:

P(x) = I− ~ν ⊗ ~ν, Ph(x) = I− ~νh ⊗ ~νh. (2.6)

Here ⊗ is used to denote the vector tensor product defined by the equation

[~a⊗~b]i,j = aibj .

2.2 Surface Derivatives.

Definition. Let ξ(x) be a function defined on a tubular region U of Γ. The surface
or tangential gradient of ξ(x) is given by (see e.g. [26])

∇Γξ(x) = ∇ξ(x)−∇ξ(x) · ~ν(x)~ν(x) = [D1ξ(x), . . . , Dnξ(x)]. (2.7)

Here Di =
∂
∂xi

()− νi
∑n

j=1
∂

∂xj
()νj.

Definition. The Laplace-Beltrami operator is defined as the tangential divergence
of the tangential gradient, that is

△Γξ(x) = ∇Γ · ∇Γξ(x) =
n
∑

i=1

DiDiξ(x). (2.8)

An equivalent way of writing (2.8), suitable for numerical computation, is

△Γξ(x) = tr(D2u) + ~ν[D2u]~νT − tr(H)~ν · ∇u. (2.9)

For more details see [20] and [27].

2.2.1 Lifts and extensions

See [24, 20] for more details. We extend v defined on Γ to U by

vℓ(x) = v(a(x)), x ∈ U. (2.10)

For vh defined on Γh we define the lift ṽh by vh(x) = ṽh(a(x)), where a(x) ∈ Γ is
as in (2.3). For vh defined on Γh and x ∈ U we extend ṽh to U by the equation

13



vℓh(x) = ṽh(a(x)). The relationship between ∇Γu
ℓ
h(a(x)) and ∇Γh

uh(x) is given by

∇Γu
ℓ
h(a(x)) = [(I− dH)(x)]−1

[

I− ~νh ⊗ ~ν

~νh · ~ν

]

∇Γh
uh(x). (2.11)

Definition. Following [20] we define the energy inner product transformation

Ah:

Ah(x) = Aℓ
h(a(x)) =

1

µh(x)
[P(x)][(I− dH)(x)][Ph(x)][(I− dH)(x)][P(x)]. (2.12)

Equation 2.22 of [20] yields

∫

Γh

∇Γh
vh · ∇Γh

ψh dσh =

∫

Γ

[∇Γv
ℓ
h(a(x))]

T [Aℓ
h][∇Γψ

ℓ
h(a(x))] dσ. (2.13)

2.3 Function spaces

Let Ω be a domain in R
n.

Definition. The following definitions are standard, the reader is referred to Chapters
1 and 2 of [11] for additional details. For 1 ≤ p <∞, let

‖f‖Lp(Ω) :=

(
∫

Ω

|f(x)|p dx
)1/p

, (2.14)

and for p = ∞
‖f‖L∞(Ω) := ess sup{|f(x)| : x ∈ Ω}. (2.15)

Let 1 ≤ p ≤ ∞ the Lebesgue space Lp(Ω) is defined as

Lp(Ω) := {f : ‖f‖Lp(Ω) <∞}. (2.16)

Definition. The Sobolev space W k
p (Ω) is defined as

W k
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ k}, (2.17)

here Dα denotes a weak derivative, and α is a multi-index.

Definition. The Sobolev space W k
2 (Ω) is referred as the Hilbert space Hk(Ω).

In a similar way we can define the tangential Sobolev spaceW k
p (Γ) and tangential

Hilbert space Hk(Γ) by substituting the weak derivatives Dα in (2.17) by tangential
weak derivatives Dα as defined in equation (2.7) (cf. Section 4.2 of [8]).
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2.4 Interpolants and approximation results

Interpolation is used to carry out error analysis for FEM. For example in Section 3.2
we use interpolation to find a bound for the expression

a(u− uℓh, v) =

∫

Γ

∇Γ(u− uℓh) · ∇Γv dσ.

Using equation (3.5) of [20] we end with an expression containing factors of the form
(vℓ − vh) defined over Γh. The term vh ∈ Sh is taken to be an interpolant of vℓ /∈ Sh.
The accuracy of the error estimate will depend on the approximation properties of
the interpolant used. A powerful tool used to prove approximation properties of such
interpolants is the Bramble-Hilbert Lemma. We cite [11] Lemma (4.3.8).

Lemma 2.4.1 (Bramble-Hilbert) Let B be a ball in Ω such that Ω is star-shaped
with respect to B and such that its radius ρ > 1

2
ρmax. Let Qmu be the Taylor poly-

nomial of degree m of u averaged over B where u ∈ Wm+1
p (Ω) and p ≥ 1. Then

|u−Qmu|W k
p (Ω) ≤ Cm,nh

m−k|u|Wm
p (Ω), k = 0, 1, . . .m, (2.18)

where h = diam(Ω).

Common interpolation schemes for smooth functions are Hermitian and Lagrangian.
The results obtained in Section 3.2 can be proved using Lagrange interpolation ([11]
Definition (3.3.1)). However the proof of the pointwise a posteriori estimate uses
Green’s functions. Lagrange interpolation requires us to be able to sample point val-
ues to approximate the function. Since Greens functions have local singularities we
can not use Lagrange interpolation to prove our pointwise estimates. Thus we pick
an interpolant suitable for non-smooth functions. Some examples of such interpolants
are Clément and Scott-Zhang. We chose a Scott-Zhang type interpolant because, in
contrast to Clément schemes, it is a projection.

In [20] the authors defined and proved approximation properties for a Lagrange
interpolant on Γh, but their operator only yields the first-order approximation prop-
erties needed for energy estimates. Such estimates are simpler because u ∈ W 1

p (Γ)
implies uℓ ∈ W 1

p (Γh). We must instead consider broken spaces, since u ∈ W 2
p (Γ)

implies only uℓ ∈ W 2
p (T ) for T ∈ T . Typical proofs of higher-order approximation

properties for Scott-Zhang type interpolants employ a Bramble-Hilbert lemma which
in our context would require uℓ ∈ W 2

p (ωT ) for patches ωT , so the standard proof
does not apply. The main technical ideas in this section are essentially contained in
Theorem 3.1 of [58], though they are applied there in a somewhat different context.

15



2.4.1 Interpolant (Scott-Zhang)

Let T and T be as defined previously, let eTz be a face of the simplex T, and let
N := {Finite element nodes}. For all nodes z ∈ N define:

Fz :=



















T, if z is an interior node of T ,

eTz, if z is an interior point of eTz,

eTz for an arbitrary eTz ∋ z, if z is contained in more than

one face.

(2.19)

Let {ϕz}z∈N be the nodal basis for Sh, i.e., ϕzj (zj) = δij and deg(ϕz) = n. Let
{ψz}z∈N be the basis dual to {ϕz}z∈N , i.e.

∫

Fz
ψziϕzj = δij , where zi, zj are nodes

associated with the simplex Fz and ψz : Pd−1
n → R is a polynomial of degree n.

Following [53], we define the interpolant Ihv
ℓ of vℓ as

Ihv
ℓ =

∑

z∈N
ϕz

∫

Fz

ψz(ζ)v
ℓ(ζ) dζ. (2.20)

Ih is a projection, that is, Ihs = s ∀s ∈ Sh.

Lemma 2.4.2 For any node z ∈ N

‖ψz‖Lq(Fz) . h
− dim(Fz)(1−1/q)
T . (2.21)

Proof To prove (2.21) let A : F̂z → Fz be an affine transformation as described in
[53] equation (3.1):

A(x̂) = Bx̂+ x0.

From [53] equation (3.3) it follows that

‖ψ̂j‖Lq(F̂z)
=

(
∫

F̂z

|det(B)ψj(A(x̂))|q dx̂
)1/q

.

After changing variables we get

‖ψ̂j‖Lq(F̂z)
=

(
∫

Fz

|det(B)ψj(x)|q
1

det(B)
dx

)1/q

= det(B)1−1/q‖ψ‖Lq(Fz).

The result then follows since det(B) . h
dim(Fz)
T [53] equation (3.2).

Lemma 2.4.3 Let dim{T} = d, 0 < hT < 1. Since |ϕz| ≤ 1, it follows that

‖ϕz‖W k
p (T ) . h

−k+d/p
T . (2.22)

Proof To verify (2.22) we consider the change of variable x = hx̂ and define ϕ̂z(x̂) :=
ϕz(hx̂) then,

‖ϕ̂z‖W k
p (T̂ ) =

k
∑

t=0

‖Dtϕ̂z‖Lp(T̂ ).
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Each term ‖Dtϕ̂z‖Lp(T̂ ) = h
t−d/p
T ‖Dtϕz‖Lp(T ) (c.f [45] section 1.2). Because ‖ϕ̂z‖W k

p (T̂ )

is bounded and 0 < h < 1, it follows that hk−d/p ≤ ht−d/p for all t = 0, 1, . . . , k, thus

h
k−d/p
T ‖ϕz‖W k

p (T ) ≤ ‖ϕ̂z‖W k
p (T̂ ),

‖ϕz‖W k
p (T ) ≤ h

−k+d/p
T

concluding the verification of inequality (2.22).

Remark From this point on we let Ih denote the Scott-Zhang interpolant defined
on (2.20). We consider finite element spaces Sh of arbitrary degree n over meshes T
of arbitrary space dimension, since the proof is no more difficult and more general
results are of interest when considering SFEM in higher space dimensions; cf. [19].

2.4.2 Trace inequality

For any element T ∈ T and Φ ∈ W 1
p (T ), 1 ≤ p < ∞, a standard scaled trace

inequality (cf. [11] Theorem 1.6.6) yields

‖Φ‖Lp(∂T ) . h
−1/p
T ‖Φ‖Lp(T ) + h

1−1/p
T ‖∇Φ‖Lp(T ). (2.23)

2.4.3 Approximation properties

If p and ℓ satisfy 1 ≤ p ≤ ∞ and ℓ ≥ 1 if p = 1, and ℓ > 1
p
otherwise, then equation

4.3 of [53] and Lemma 1.130 of [29] give approximation properties for the Scott-Zhang
interpolator of the form

‖IhΦ− Φ‖Wm
p (T ) . hℓ−m

T |Φ|W ℓ
p(ωT ).

For our purpose we consider functions Φ that lie in W ℓ
p(K) for all K ∈ ωT but that

may not be in W ℓ
p(ωT ). Assuming Φ ∈ W 1

1 (ωT ) in order to guarantee continuity of
traces, our goal is to prove that

‖IhΦ− Φ‖Wm
p (T ) . hℓ−m

T

∑

K∈ωT

|Φ|W ℓ
p(K).

Lemma 2.4.4 and Theorem 2.4.5 below were inspired by [58].

Lemma 2.4.4 Let z ∈ N and let Fz be a simplex of dimension d − 1 defined as in
(2.19) and let T ∈ T be a simplex of dimension d such that z ∈ T ∩ Fz. Define ωT

to be the set of all simplices in T that touch T . For p ≥ 1 let Φ ∈ W ℓ
p(T̃ ) for some

1 ≤ ℓ ≤ n + 1 and for all T̃ ∈ T . Let pT ∈ Sh be the ℓ− 1-st degree average Taylor
polynomial of Φ over the simplex T , as defined in Lemma 4.3.8 of [11]. Pick q such

that
1

p
+

1

q
= 1 and assume that T is a shape regular conforming mesh. Then for
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Φ ∈ W 1
1 (ωT̃ )

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

. h
−(d−1)(1−1/q)+(ℓ−1/p)
T

∑

T̃∈ωT

|Φ|W ℓ
p(T̃ ). (2.24)

Proof Observe that if T = Fz the result follows directly from the Bramble-Hilbert
Lemma (2.18). If T ∩ Fz is a face of T then the claim follows from the Trace In-
equality (2.23) and Bramble-Hilbert Lemma. Hence assume that T ∩ Fz is a simplex
of dimension at most d − 2, and let {Tj}Mj=1 be a chain of d-dimensional simplices
inside of ωT such that Tj+1 ∩ Tj = Fj are (d − 1)-dimensional simplices, z ∈ Fj for
1 ≤ j ≤ M , T1 = T and Fz is a face of TM but Fz 6= FM−1. M is uniformly bounded
over T , by our assumptions. (2.20) yields

∫

Fz

ψz(Φ− pT ) ds = Ih(Φ− pT )(z).

Let ψj be the dual to ϕz on Fj as in (2.20) so that
∫

Fj
ψjϕz = 1 and

∫

Fj
ψjvh =

vh(z), vh ∈ Sh. Note that in general ψz 6= ψj since Fz 6= Fj . Then (pTj+1
− pTj

)(z) =
∫

Fj
ψTj

(pTj+1
−pTj

) dσ, so that using a telescoping sum along with Hölders and triangle

inequalities we obtain

∫

Fz

ψz(Φ− pT ) ds =

∫

Fz

ψz(Φ− pTM
) ds+

M−1
∑

j=1

∫

Fj

ψαj
(pTj+1

− pTj
) ds

≤‖ψz‖Lq(Fz)‖Φ− pTM
‖Lp(Fz)

+

M−1
∑

j=1

‖ψj‖Lq(Fj)

(

‖Φ− pTj+1
‖Lp(Fj) + ‖Φ− pTj

‖Lp(Fj)

)

.

(2.25)

It then follows from (1.1) and (2.21) that

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

.h
−(d−1)(1−1/q)
T

[

‖Φ− pTM
‖Lp(Fz)

+

M−1
∑

j=1

(

‖Φ− pTj+1
‖Lp(Fj) + ‖Φ− pTj

‖Lp(Fj)

)

]

.

(2.26)

Then by the Trace Inequality (2.23), shape regularity, and the Bramble-Hilbert
Lemma (2.18) (c.f. [11] 4.3.8.) we obtain

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

. h
−(d−1)(1−1/q)+(ℓ−1/p)
T

[

|Φ|W ℓ
p(TM ) +

M−1
∑

j=1

(

|Φ|W ℓ
p(Tj+1) + |Φ|W ℓ

p(Tj)

) ]

. h
−(d−1)(1−1/q)+(ℓ−1/p)
T

∑

T̃∈ωT

|Φ|W ℓ
p(T̃ ),
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thus finishing the proof.

Theorem 2.4.5 Let n denote the degree of the finite element space Sh, and let 1 ≤
ℓ ≤ n+ 1, 1 ≤ p <∞, and 0 ≤ k ≤ ℓ. For Φ ∈ W 1

p (ωT ) satisfying Φ ∈ W ℓ
p (T̃ ) for all

T̃ ∈ ωT ,

‖IhΦ− Φ‖W k
p (T ) . hℓ−k

T

∑

T̃∈ωT

|Φ|W ℓ
p(T̃ ). (2.27)

Proof Let pT be as in Lemma 2.4.4. Then the triangle inequality and (2.22) yield

‖IhΦ− Φ‖W k
p (T ) ≤ ‖Φ− pT‖W k

p (T ) + ‖Ih(Φ− pT )‖W k
p (T ).

Applying the Bramble-Hilbert Lemma to the first term in the right hand side and
using (2.20), we obtain

‖IhΦ− Φ‖W k
p (T ) . hℓ−k

T |Φ|W ℓ
p(T ) +

∑

z∈T

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

‖ϕz‖W k
p (T ).

Let N̊T denote the set of interior nodes of T and let ∂NT be the set of boundary
nodes of T . Then

‖IhΦ− Φ‖W k
p (T ) . hℓ−k

T |Φ|W ℓ
p(T ) +

∑

z∈N̊T

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

‖ϕz‖W k
p (T )

+
∑

z∈∂NT

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

‖ϕz‖W k
p (T ).

(2.28)

Let q be such that 1
p
+ 1

q
= 1 and let d be the dimension of T . Observe that Fz = T for

z ∈ N̊T and the number of nodes z ∈ T is bounded by a fixed constant C(n) depending
on n. We use Hölders inequality, (2.21), (2.22), the Bramble-Hilbert Lemma and
−d(1− 1/q)− k + d/p = −k to obtain

∑

z∈N̊T

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

‖ϕz‖W k
p (T ) . ‖ψz‖Lq(T )‖Φ− pT‖Lp(T )‖ϕz‖W k

p (T )

. h
−d(1−1/q)−k+d/p
T ‖Φ− pT‖Lp(T )

. hℓ−k
T |Φ|W ℓ

p(T ).

(2.29)

Lemma (2.4.4) and the fact that the number of nodes of any T ∈ T is bounded by
C(n) imply that

∑

z∈∂NT

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

‖ϕz‖W k
p (T ) . h

−(d−1)(1−1/q)+(ℓ−1/p)
T

∑

T∈ωT

|Φ|W ℓ
p(T ) ‖ϕz‖W k

p (T ).

(2.22) applied to ‖ϕz‖W k
p (T ), −(d − 1)(1 − 1/q) + (ℓ − 1/p) − k + d/p = ℓ − k, and
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shape regularity yield

∑

z∈∂NT

∣

∣

∣

∣

∫

Fz

ψz(Φ− pT ) ds

∣

∣

∣

∣

‖ϕz‖W k
p (T ) . hℓ−k

T

∑

T∈ωT

|Φ|W ℓ
p(T ). (2.30)

We substitute (2.29) and (2.30) into (2.28) to obtain (2.27), finishing the proof.

The following are scaled versions of standard Sobolev embedding theorems; cf. [1]
Theorem 4.12. We only consider ranges of indices used in our proofs below.

Lemma 2.4.6 Assume that 1 ≤ p1 <
d−1
d−2

, 1 ≤ p2 <
d

d−2
and either m = 2 and s = 1

or m = 1 and
dpj
d+pj

≤ s < d
d−1

, s ≤ pj for j = {1, 2}. Then

‖Φ‖Lp1 (∂T ) .

m
∑

j=0

h
j−d/s+(d−1)/p1
T |Φ|W j

s (T ), for Φ ∈ W j
s (T ), (2.31a)

‖Φ‖Lp2 (T ) .

m
∑

j=0

h
j−d/s+d/p2
T |Φ|W j

s (T ), for Φ ∈ W j
s (T ). (2.31b)

In the following sections we apply our approximation results in the following form.

Corollary 2.4.7 Assume that either p1 = p2 = s = 2 and m = 1 or m = 2, or that
p1, p2, s, and m are related as in Lemma 2.4.6 above. Then for T ∈ T ,

‖IhΦ− Φ‖Lp1 (∂T ) . h
m−d/s+(d−1)/p1
T

∑

Ti∈ωT

|Φ|Wm
s (Ti), (2.32a)

‖IhΦ− Φ‖Lp2 (T ) . h
m−d/s+d/p2
T

∑

Ti∈ωT

|Φ|Wm
s (Ti). (2.32b)

In addition, for 1 ≤ p ≤ ∞

‖IhΦ‖Lp(T ) .
∑

Ti∈ωT

(

‖Φ‖Lp(Ti) + hT ‖∇Φ‖Lp(Ti)

)

. (2.33)

Proof We easily verify (2.32) by combining Theorem 2.4.5 and (2.31). (2.33) follows
from the triangle inequality and Theorem 2.4.5.

2.4.4 A generalized Bramble-Hilbert Lemma

In [53] a Bramble-Hilbert Lemma is applied over element patches in order to prove
approximation properties for the Scott-Zhang interpolant. Employing the same no-
tation as above, let 0 ≤ j ≤ n, 0 ≤ ℓ ≤ n + 1, and u ∈ W ℓ

p (ωT ) with 1 ≤ p < ∞.
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Then

inf
v∈Sh

|u− v|W j
p (ωT ) ≤ inf

p∈Pn

|u− pT |W j
p (ωT ) . hℓ−j

T |u|W ℓ
p(ωT ). (2.34)

Lemma 2.4.4 and Theorem 2.4.5 may be rewritten as a Bramble-Hilbert lemma for
broken Sobolev spaces. Let 0 ≤ j ≤ n, k = max{j, 1}, 1 ≤ ℓ ≤ n + 1, u ∈ W 1

p (ωT ),
and u ∈ W ℓ

p (T
′) for each T ′ ⊂ ωT . Then

inf
v∈Sh

(

∑

T ′⊂ωT

|u− v|p
W j

p (T ′)

)1/p

.

(

∑

T ′⊂ωT

inf
pT ′∈Pn

hk−j
T |u− pT ′|p

W k
p (T

′)

)1/p

,

.hℓ−j
T

(

∑

T ′⊂ωT

|u|p
W ℓ

p(T
′)

)1/p

.

(2.35)

The two differences between (2.34) and (2.35) are that the former uses standard
and the latter broken Sobolev spaces, and that (2.35) requires k, ℓ ≥ 1. Theorem
3.2 of [58] establishes that continuous and discontinuous finite element spaces yield
equivalent approximation in the H1 seminorm not only asymptotically but on any
mesh satisfying reasonable assumptions; this is essentially the first inequality in (2.35)
with p = 2 and j = k = 1. We thus again emphasize that we apply techniques in [58]
in a different context but with only modest generalization of the basic ideas.

c©Fernando Camacho MMXIV. All rights reserved.
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Chapter 3

A posteriori error estimates for elliptic equations

This chapter contains results that we proved in [12]. We present new efficient L2 and
pointwise a posteriori error estimates for the Laplace-Beltrami equation (2.8). Some
interesting applications that make use of this type of estimates include solutions for
the Allen-Cahn equation [6], [26] among others.

3.1 Model problem

We consider the model elliptic surface PDE

−∆Γu = f on Γ. (3.1)

Throughout we consider (3.1) while assuming
∫

Γ
u dσ =

∫

Γ
f dσ = 0 in order to

ensure existence and uniqueness of solutions. Here Γ is a C3 closed (i.e. ∂Γ = ∅),
two-dimensional surface Γ embedded in R

3; extension to higher-dimensional surfaces
of codimension one is mostly immediate.

3.1.1 Finite element approximation

A canonical surface finite element method (SFEM) was defined in [24]. This is the
method we consider throughout, though extension to higher order FEM and surface
approximations could also be considered [19, 42]. The weak form of (3.1) is: find
u ∈ H1(Γ) such that

∫

Γ
u dσ = 0 and

∫

Γ

∇Γu∇Γv dσ =

∫

Γ

fv dσ ∀ v ∈ H1(Γ). (3.2)

Denote by fh(x) an approximation of f over Γh satisfying
∫

Γh
fh = 0, for example,

fh(x) = µhf(a(x)), x ∈ Γh. Let Sh denote the finite element space of piecewise
polynomials defined over the faces of Γh. Our finite element method produces uh ∈ Sh

that solves the problem

∫

Γh

∇Γh
uh∇Γh

vh dσh =

∫

Γh

fhvh dσh ∀ vh ∈ Sh. (3.3)

3.1.2 Comparison of Sobolev norms on discrete and continuous surfaces

Our main results are proved by duality arguments involving dual functions lying inW 2
p

Sobolev spaces. [24] contains a brief comparison ofW 2
p Sobolev norms of functions on

Γ and their extensions to Γh. We give a more precise statement about the geometric
dependencies of these relationships.
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Lemma 3.1.1 Let T ∈ T and v ∈ W 2
p (a(T )) for some 1 ≤ p ≤ ∞. Then

|vℓ|W 2
p (T ) ≤

∥

∥

∥

∥

1

µh

∥

∥

∥

∥

1/p

L∞(T )

(

‖Ph[I− dH]‖2L∞(a(T ))|v|W 2
p (a(T ))

+
[

‖PhH‖L∞(a(T ))‖~ν − (~ν · ~νh)~νh‖L∞(a(T ))

+ max
i=1,2,3

‖dPhHxi
‖L∞(a(T ))

]

|v|W 1
p (a(T ))

)

.

(3.4)

Before beginning the proof, we mention a couple of notational conventions. First, for
vectors a, b, c, d we have (a⊗ b)(c⊗ d) = (b · c)a⊗ d. Second, we regard ∇v(a(x)) as
a column vector.

Proof By equation (2.10) and the change of variable formula (2.5) we have

|vℓ|W 2
p (T ) =

{

∑

|α|=2

∫

T

[Dα
h(v

ℓ(x))]pdσh

}1/p

=
{

∑

|α|=2

∫

a(T )

1

µh
[Dα

h (v(a(x)))]
pdσ
}1/p

.

(3.5)

(2.7), (2.3), the chain rule and the fact that the projection matrix Ph is constant in
each triangle yield

D2
h(v

ℓ(x)) = ∇Γh
{Ph[P− dH]∇v(a(x))}

= Ph∇Γh
{[P− dH]∇v(a(x))}

= Ph∇{[I− dH]∇Γv(a(x))}Ph.

Next we expand the right hand side of the previous equation:

D2
h(v

ℓ(x)) =Ph

{

∇∇Γv(a(x))[P− dH]−H∇Γv(a(x))⊗ ~ν

− d[Hxi
∇Γv(a(x))]

3
i=1 − dH∇∇Γv(a(x))[P− dH]

}

Ph.
(3.6)

Here Hxi
denotes the derivative of H with respect to xi, and [Hxi

∇Γv(a(x))]
3
i=1 is a

matrix whose i-th column is given by Hxi
∇Γv(a(x)). Regrouping terms then yields

∇2
Γv(a(x))[I − dH]− dH∇2

Γv(a(x))[I− dH] = [I− dH]∇2
Γv(a(x))[I− dH].

Hence we write

D2
h(v

ℓ(x)) =Ph

{

[I− dH]∇2
Γv(a(x))[I− dH]−H∇Γv(a(x))⊗ ~ν

− d[Hxi
∇Γv(a(x))]

3
i=1

}

Ph.
(3.7)

Using (3.5), (3.7) and Hölder’s inequality we obtain (3.4).
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For p = 2 Lemma 3.1.1 has the same form as Lemma 3 in [24], which states that

|vℓ|H2(T ) ≤ C
{

hT |v|H1(a(T ))+|v|H2(a(T ))

}

. The difference is that Lemma 3.1.1 includes

explicit geometric information about the constant. We quickly verify that using
equation (3.4) we get Lemma 3 of [24]. Because Γ ∈ C3, ‖Ph[I − dH]‖L∞(a(T )) . 1
in (3.4). From (2.4) and Γ ∈ C3 it follows that the term multiplying |v|W 1

p (a(T )) is of
order hT , reducing to the statement of [24] Lemma 3.

3.2 L2 a posteriori estimate

In this section we derive an L2 a posteriori error estimate. We first state a standard
regularity result.

Lemma 3.2.1 Regularity (c.f. [19] Lemma 2.1). Let f ∈ L2(Γ) satisfy

∫

Γ

f dσ = 0,

and assume that Γ is a C2 surface. Then the problem L(u, v) = (f, v) ∀ v ∈ H1(Γ)

has a unique weak solution satisfying

∫

Γ

u dσ = 0 and

‖u‖H2(Γ) ≤ C‖f‖L2(Γ). (3.8)

We next define the error e := u − uℓh. From this point on vh will be used to
denote the interpolant of vℓ, i.e. vh ≡ Ihv

ℓ. Our main result is stated in the following
theorem.

Theorem 3.2.2 Let u(x) be the solution to (3.1), assume that Γ is a C3 surface, and
define

Cp(K) :=

∥

∥

∥

∥

1

µh

∥

∥

∥

∥

1/p

L∞(K)

, Cp(ωK) =

∥

∥

∥

∥

1

µh

∥

∥

∥

∥

1/p

L∞(ωK )

θp(K) := Cp(K)
(

‖Ph[I− dH]‖2L∞(a(K))

+ ‖PhH‖L∞(a(K))‖~ν − (~ν · ~νh)~νh‖L∞(a(T ))

+ max
i=1,2,3

‖dPhHxi
‖L∞(a(K))

)

,

θp(ωK)
p =

∑

K ′⊂ωK

θp(K
′)p, 1 ≤ p <∞, θ∞(ωK) = max

K ′⊂ωK

θ∞(K ′)

γ2(K) = C2(K)(1 + hT‖P− dH‖L∞(K)), γ2(ωK)
2 =

∑

K ′⊂ωK

γ2(K
′)2.

(3.9)
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Then the following bound holds:

‖u− uℓh‖L2(Γ) .
[

∑

T∈T

(

θ2(ωT )
2
{

h4T‖µhf
ℓ +△Γh

uh‖2L2(T )

+ h3T‖J∇Γh
uhK‖2L2(∂T )

}

+ ‖[(P−Aℓ
h)∇Γu

ℓ
h]‖2L2(a(T ))

+ ‖uℓh − µhu
ℓ
h‖2L2(a(T )) + γ2(ωT )

2‖µhf
ℓ − fh‖2L2(T )

]1/2

.

(3.10)

The constant hidden in “.” depends on the regularity constant in (3.8) but not other
essential quantities.

We use the following lemma to prove Theorem 3.2.2.

Lemma 3.2.3 Let u and uℓh be the continuous and discrete solutions of (3.1) respec-
tively. Let v solve −△Γv = u − µhu

ℓ
h in Γ,

∫

Γ
v dσ = 0. Then the following bound

holds:
‖u− uℓh‖2L2(Γ) . I + II + III + IV + ‖µhu

ℓ
h − uℓh‖2L2(Γ), (3.11)

where

I =

∫

Γh

(µhf
ℓ +△Γh

uh)(v
ℓ − vh) dσh, II = −

∫

Γ

[(P−Aℓ
h)∇Γu

ℓ
h] · ∇Γv dσ,

III =− 1

2

∑

T∈T

∫

∂T

J∇Γh
uhK(v

ℓ − vh) ds, IV =

∫

Γh

(µhf
ℓ − fh)vh dσh.

Proof Since
∫

Γ
u = 0 and

∫

Γh
uh = 0, it follows that

∫

Γ
(u − µhu

ℓ
h) dσ = 0. Now we

compute the L2 norm of the error by

‖u− uℓh‖2L2(Γ) = (u− uℓh, u− µhu
ℓ
h + µhu

ℓ
h − uℓh)

= (u− uℓh,−△Γv) + (u− uℓh, µhu
ℓ
h − uℓh) = A+ (u− uℓh, µhu

ℓ
h − uℓh),

(3.12)

where A = (u− uℓh,−△Γv). By integration by parts we get since ∂Γ = ∅:

A = (u− uℓh,−△v) =
∫

Γ

∇Γ(u− uℓh)∇Γv dσ. (3.13)
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The residual identity given in equation (3.5) of [20] gives us

A =

∫

Γ

∇Γ(u− uℓh)∇Γv dσ =

∫

Γh

(µhf
ℓ +△Γh

uh)(v
ℓ − vh) dσh

−
∫

Γ

[(P−Aℓ
h)∇Γu

ℓ
h] · ∇Γv dσ

− 1

2

∑

T∈T

∫

∂T

J∇Γh
uhK(v

ℓ − vh) ds

+

∫

Γh

(µhf
ℓ − fh)vh dσh

=I + II + III + IV.

(3.14)

Combining equations (3.12) and (3.14) we easily get for any ε > 0

‖u− uℓh‖2L2(Γ) ≤ I + II + III + IV + ‖u− uℓh‖L2(Γ)‖µhu
ℓ
h − uℓh‖L2(Γ)

≤ I + II + III + IV +
ε

2
‖u− uℓh‖2L2(Γ) +

1

2ε
‖µhu

ℓ
h − uℓh‖2L2(Γ).

(3.15)

Taking ε = 1
2
and rescaling concludes the proof of the Lemma.

3.2.1 A posteriori upper bound (Proof of Theorem 3.2.2)

We now prove bounds for elements I through IV of (3.14).
Bound for I. Hölder’s inequality yields

I =

∫

Γh

|(µhf
ℓ +△Γh

uh)(v
ℓ − vh)| dσh

≤
∑

T∈T
‖µhf

ℓ +△Γh
uh‖L2(T )‖vℓ − vh‖L2(T ).

(3.16)

Recall that we defined vh = Ihv
ℓ. Then by (2.32b) with p = s = m = 2 we get

‖vℓ − vh‖L2(T ) . h2
T

∑

K∈ωT

|vℓ|H2(K). (3.17)

Next we apply Lemma 3.1.1, (3.9), and observe that ‖ · ‖H2(T ) bounds the H1 and
H2 semi-norms to get

∑

K∈ωT
|vℓ|H2(K) . θ2(ωT )‖v‖H2(a(ωT )). Finite overlap of the

patches ωT then yields

I .

(

∑

T∈T
h4T‖µhf

ℓ +△Γh
uh‖2L2(T )θ2(ωT )

2

)1/2

‖v‖H2(Γ). (3.18)
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Bound for II. The Cauchy-Schwarz inequality and ‖v‖H1(Γ) ≤ ‖v‖H2(Γ) yields

II =

∫

Γ

[(P−Aℓ
h)∇Γu

ℓ
h] · ∇Γv dσ

≤ ‖[(P−Aℓ
h)∇Γu

ℓ
h]‖L2(Γ)‖∇Γv‖L2(Γ)

=

{

∑

T∈T
‖[(P−Aℓ

h)∇Γu
ℓ
h]‖2L2(a(T ))

}1/2

‖v‖H2(Γ).

(3.19)

Bound for III. Using Hölder’s inequality, (2.32a) with p = s = m = 2, and comput-
ing as in (3.19) yields

III =
∑

T∈T

∫

∂T

J∇Γh
uhK(v

ℓ − vh) ds

≤
∑

T∈τ
‖J∇Γh

uhK‖L2(∂T )‖vℓ − vh‖L2(∂T )

.
∑

T∈T
‖J∇Γh

uhK‖L2(∂T )h
3/2
T

∑

K∈ωT

|vℓ|H2(K)

.

(

∑

T∈T
‖J∇Γh

uhK‖2L2(∂T )h
3
T θ2(ωT )

2

)1/2

‖v‖H2(Γ).

(3.20)

Bound for IV. It follows from Hölder’s inequality and (2.33) that

IV =

∫

Γh

|(µhf
ℓ − fh)vh| dσh

≤
∑

T∈T
‖(µhf

ℓ − fh)‖L2(T )‖vh‖L2(T )

.
∑

T∈T
‖µhf

ℓ − fh‖L2(T )

∑

K∈ωT

(‖vℓ‖L2(K) + hT‖∇Γv
ℓ‖L2(K)).

(3.21)

Then we use (2.3), (2.5), (2.33) and Hölder’s inequality to deduce that

∫

Γh

|(µhf
ℓ − fh)vh| dσh .

∑

T∈T

[

‖µhf
ℓ − fh‖L2(T )

∑

K∈ωT

C2(K)(‖v‖L2(a(K))

+ hT ‖(I− dH)∇v‖L2(a(K)))
]

.
∑

T∈T
γ2(ωT )‖µhf

ℓ − fh‖L2(T )‖v‖H2(a(K))

.

(

∑

T∈T
γ2(ωT )

2‖µhf
ℓ − fh‖2L2(T )

)1/2

‖v‖H2(Γ)).

(3.22)
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Bound for (3.14). Let

η2 =
∑

T∈T
h4T‖µhf

ℓ +△Γh
uh‖2L2(T )θ2(ωT )

2 + ‖[(P−Aℓ
h)∇Γu

ℓ
h]‖2L2(Γ)

+
∑

T∈T
‖J∇Γh

uhK‖2L2(∂T )h
3
T θ2(ωT )

2 +
∑

T∈T
γ2(ωT )

2‖µhf
ℓ − fh‖2L2(T ).

(3.23)

Using (3.18), (3.19), (3.20) and (3.22), and the regularity result (3.8) yields

I + II + III + IV . η‖u− µhu
ℓ
h‖L2(Γ). (3.24)

We combine (3.24), (3.14), (3.11) and then use Cauchy and the triangle inequality
to get

‖u− uℓh‖2L2(Γ) . η‖u− µhu
ℓ
h‖L2(Γ) + ‖uℓh − µhu

ℓ
h‖2L2(Γ)

≤ 1

4ǫ
η2 + ǫ‖u− µhu

ℓ
h‖2L2(Γ) + ‖uℓh − µhu

ℓ
h‖2L2(Γ)

≤ 1

4ǫ
η2 + 2ǫ‖u− uℓh‖2L2(Γ) + 2ǫ‖uℓh − µhu

ℓ
h‖2L2(Γ) + ‖uℓh − µhu

ℓ
h‖2L2(Γ).

Rearranging terms and taking ǫ sufficiently small write finalizes the proof of Theorem
3.2.2. �

We define the error indicator η̂(T ) in each triangle T ∈ T as follows:

η̂(T ) :=
{

h2T‖µhf
ℓ +△Γh

uh‖L2(T ) + h
3/2
T ‖J∇Γh

uhK‖L2(∂T )

}

θ2(ωT )

+ ‖[(P−Aℓ
h)∇Γu

ℓ
h]‖L2(a(T )) + ‖uℓh − µhu

ℓ
h‖L2(a(T ))

+ γ2(ωT )‖µhf
ℓ − fh‖L2(T ).

(3.25)

Thus we write ‖u− uℓh‖L2(Γ) .
(
∑

T∈T η̂
2(T )

)1/2
.

3.2.2 Efficiency

Next we verify that the residual part of the estimator (3.25) is bounded above by
the true error plus data oscillation and geometric terms. We use standard techniques
developed in [59].

We start by defining and describing geometric constants that arise when we move
from Γh to Γ.

Lemma 3.2.4 Assume that T ∈ T and γ is an edge of T . Let P be the piecewise
constants on T . For x ∈ Γh let x̃ = a(x), ṽh(a(x)) = vh(x), and T̃ = a(T ). Let φT ,
φγ be the squares of the interior bubble function associated with T and the edge bubble
function associated with γ respectively and define

G := [I− dH]−1

[

I − ~νh ⊗ ~ν

~νh · ~ν

]

. (3.26)
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Then for vh ∈ P and 1 ≤ p ≤ ∞

‖△Γ(φ̃T ṽh)‖Lp(T̃ ) ≤
(

h−2
T ‖G‖L∞(T ) + h−1

T ‖DG‖L∞(T )

)

‖v‖Lp(T ), (3.27a)

‖△Γ(φ̃γ ṽh)‖Lp(T̃ ) ≤
(

h
−2+1/p
T ‖G‖L∞(T ) + h

−1+1/p
T ‖DG‖L∞(T )

)

‖v‖Lp(γ). (3.27b)

Proof Let w := φTv. (2.8) yields △Γw̃ = ∇ · ∇Γw̃ − ~ν[D∇Γw̃]~ν
T . We apply [20]

equation 2.19 to this equation. Let ei denote the column unit vector with entry-i
equal to one and zero everywhere else, let [(·)i], 1 ≤ i ≤ 3 denote a matrix where the
i-th column is given by (·)i, and calculate

△Γw̃ =∇ · (G∇Γh
w)− ~ν [D (G∇Γh

w)]~νT

=
3
∑

i=1

(

eTi G∂xi
(∇Γh

w)
)

− ~ν [G∂xi
(∇Γh

w)]3i=1 ~ν
T

+
3
∑

i=1

(

eTi ∂xi
(G)∇Γh

w
)

− ~ν [∂xi
(G)∇Γh

w]3i=1 ~ν
T .

Taking the Lp norm of both sides and using the triangle and Hölder’s inequalities
yields

‖△Γw‖Lp(T̃ ) ≤
3
∑

i=1

(

‖eTi G‖L∞(T )‖∂xi
∇Γh

w‖Lp(T ) + ‖eTi ∂xi
G‖L∞(T )‖∇Γh

w‖Lp(T )

)

+ ‖~νG‖L∞(T )‖D(∇Γh
w)~νT‖Lp(T ) + ‖DG‖L∞‖∇Γh

w‖Lp(T ),

thus
‖△Γw‖Lp(T̃ ) . ‖G‖L∞(T )|φTv|W 2

p (T ) + ‖DG‖L∞(T )|φTv|W 1
p (T ).

Because v is constant in each T we can use an inverse estimate to deduce (3.27a).
The same argument, after observing that we apply a scaling argument to go from T
to γ, yields (3.27b).

We are ready to prove the following efficiency result.

Lemma 3.2.5 Let f̄ be an elementwise constant approximation to f . Let 1 ≤ q ≤ ∞,
f ∈ Lq(Γ). For x ∈ Γh let x̃ = a(x), ṽh(a(x)) = vh(x), choose µhf

ℓ = fh, and let G
be defined by equation (3.26). Then

h2T‖µhf
ℓ +△Γh

uh‖Lq(T ) + h
1+1/q
T ‖J∇Γh

uhK‖Lq(∂T )

.‖e‖Lq(ω̃T )(‖G‖L∞(ωT ) + hT ‖DG‖L∞(ωT ))

+ hT ‖G‖L∞(ωT )‖(P−Aℓ
h)∇Γu

ℓ
h‖Lq(ω̃T ) + h2T‖µhf

ℓ − f̄‖Lq(ωT ).

(3.28)

We observe that (3.28) does not contain all the geometric terms of (3.25). The
omission of this terms simplifies the analysis and does not affect the understanding of

30



the efficiency result. It is discussed in [8] that while the efficiency estimates, for the
residual component of the error estimator, play an important role in understanding
convergence and optimality for ASFEM, the efficiency of the geometric components
does not.

Proof We introduce a more compact notation for the residuals:

r := µhf
ℓ +△Γh

uh, R := −J∇Γh
uhK. (3.29)

and define
G1 := h−2

T ‖G‖L∞(T ) + h−1
T ‖DG‖L∞(T ). (3.30)

Let r̄ and R̄ denote piecewise constant approximations of r and R respectively. We
choose p such that 1

p
+ 1

q
= 1, use the residual equation (3.14) and let v = φ̃T ˜̄r, vh = 0.

Since φT and ∇Γh
φT vanish on ∂T we obtain

∫

T̃

∇Γe∇Γ(φ̃T ˜̄r) dσ =

∫

T

φT rr̄ dσh −
∫

T̃

(P−Aℓ
h)∇Γu

ℓ
h∇Γ(φ̃T ˜̄r) dσ.

Thus after adding and subtracting the appropriate terms and rearranging we get

∫

T

φT r̄
2 dσh =

∫

T̃

(∇Γe+ (P−Aℓ
h)∇Γu

ℓ
h)∇Γ(φ̃T ˜̄r) dσ +

∫

T

φT r̄(r̄ − r) dσh. (3.31)

Integration by parts together with Lemma 3.2.4 and (3.30) gives

∫

T̃

∇Γe∇Γ(φ̃T ˜̄r) dσ =

∫

T̃

−e△Γ(φ̃T ˜̄r) dσ

≤‖e‖Lq(T̃ )‖△Γφ̃T ˜̄r‖Lp(T̃ )

≤‖e‖Lq(T̃ )

(

h−2
T ‖G‖L∞(T ) + h−1

T ‖DG‖L∞(T )

)

‖r̄‖Lp(T )

=G1‖e‖Lq(T̃ )‖r̄‖Lp(T ).

(3.32)

In a similar way we apply Hölder’s inequality, use [20] equation 2.19 together with
the definition of G, [3] Lemma 2.1 and Theorem 2.2 to obtain

∫

T̃

(P−Aℓ
h)∇Γu

ℓ
h∇Γ(φ̃T ˜̄r) dσ

≤ ‖G‖L∞(T )‖(P−Aℓ
h)∇Γu

ℓ
h‖Lq(T̃ )‖∇Γh

(φT r̄)‖Lp(T )

. h−1
T ‖G‖L∞(T )‖(P−Aℓ

h)∇Γu
ℓ
h‖Lq(T̃ )‖r̄‖Lp(T ).

(3.33)

We combine (3.31), (3.32) and (3.33) to get

∫

T

φT r̄
2 dσh ≤‖r̄‖Lp(T )

{

G1‖e‖Lq(T̃ ) + h−1
T ‖G‖L∞(T )‖(P−Aℓ

h)∇Γu
ℓ
h‖Lq(T̃ )

+ ‖r̄ − r‖Lq(T )

}

.

(3.34)
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It follows from [3] Lemma 2.1 that ‖r̄‖2L2(T ) .

∫

T

φT r̄
2 dσh. Let d be the dimen-

sion of the simplex T . The equivalence of norms in a finite dimensional space and
a scaling argument gives the bound h

−d/p+d/2
T ‖r̄‖Lp(T ) . ‖r̄‖L2(T ). Thus we have

h
d−d(1/p+1/q)
T ‖r̄‖Lp(T )‖r̄‖Lq(T ) . ‖r̄‖2L2(T ). Observe that d − d(1/p + 1/q) = 0 and

finally apply the triangle inequality to ‖r̄‖Lq(T ) to obtain

‖r‖Lq(T ) ≤ G1‖e‖Lq(T̃ ) + h−1
T ‖G‖L∞(T )‖(P−Aℓ

h)∇Γu
ℓ
h‖Lq(T̃ ) + ‖r̄ − r‖Lq(T ). (3.35)

Let γ be an edge of T , v := φ̃γ
˜̄R, vh = 0, and µhf

ℓ = fh. Let ωγ := {T ∈
T |T ∩ γ 6= ∅} and observe that φγ vanishes outside of ωγ . Then it follows from (3.14)
that
∫

γ

R̄2 ds .

∫

γ

φγR̄
2 ds =

∫

ω̃γ

(∇Γe+ (P−Aℓ
h)∇Γu

ℓ
h)∇Γ(φ

ℓ
γ
˜̄R) dσ −

∫

ωγ

φγrR̄ dσh

+

∫

γ

φγR̄(R̄− R) dσ.

Following the steps used to derive (3.35) we use Hölder’s inequality, Lemma 3.2.4 of
[3], Lemma 2.1, (3.30), (3.35), the triangle inequality, and inverse estimates to deduce
that

h
−1/p
T ‖R‖Lq(γ) .G1‖e‖Lqω̄γ

+ h−1
T ‖G‖L∞(ωγ )‖(P−Aℓ

h)∇Γu
ℓ
h‖Lq(ω̄γ )

+ ‖r̄ − r‖Lq(ωγ ) + ‖R− R̄‖Lq(γ).

The result follows after multiplying this inequality by h2T , equation (3.35) by h2T ,
substituting G1 for the right hand side of (3.30), and choosing R = R̄ and r = f̄ .

3.3 Pointwise Estimator

Now we proceed to find a pointwise a posteriori estimator for the problem (3.1).
Following [28], [44] and [21] we start the proof by writing the weak form of the
problem using the Green’s function as the auxiliary function.

3.3.1 Regularity properties of the Green’s functions

We cite [19] Lemma 2.2.

Lemma 3.3.1 There exists a function G(x, y) (unique up to a constant) such that
for all functions u(x) ∈ C2(Γ),

u(x)− 1

|Γ|

∫

Γ

u(x) dσ =

∫

Γ

G(x, y)(−△Γu(y)) dσ

=

∫

Γ

∇Γ,yG(x, y)∇Γ,yu(y) dσ.

(3.36)

Let α(x, y) be the surface distance between x, y ∈ Γ, and let d denote the dimension of
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Γ. Further assume that α(x, y) < 1. Then (c.f. [19] Lemma 2.2, [5] Theorem 4.17)

|G(x, y)| .
{

ln
(

C
α(x,y)

)

for d = 2,

α(x, y)2−d d > 2.
(3.37)

Let |γ + β| > 0 where γ, β are multiindices. Then

|Dγ
Γ,yD

β
Γ,xG(x, y)| . α(x, y)2−d−|γ+β|. (3.38)

Lemma 3.3.2 Let d ≥ 2 denote the dimension of the surface Γ. Then

G(x, y) ∈ W 1
p (Γ), where p <

d

d− 1
.

Proof By (3.38) we have |G|pW 1
p (Γ)

=
∫

Γ
|∇G|p dσ .

∫

Γ
|α(x, y)1−d|p dσ. ∇G is

bounded uniformly away from the singularity at y = x, so we analyze what hap-
pens in a y-neighborhood U of x. There is a local isomorphism χ that maps U to a
disk D contained in a plane of dimension d embedded in R

d+1. We let µ denote the
Jacobian of the transformation χ : U → D. Then

|G|pW 1
p (U) . ‖µ‖L∞(D)

∫

D

|r(1−d)p| dσD,

where r := |χ(x) − χ(y)|, y ⊂ U . By a linear scaling we can choose χ such that
rD = rU , where rD and rU represent the radii of D and U respectively. Then we use
polar coordinates to get:

|G|pW 1
p (U) . ‖µ‖L∞(D)

∫

Sd

∫ rD

0

rp(1−d)rd−1 dr dSd. (3.39)

The last integral is finite whenever p(1−d)+d−1 > −1 i.e. p < d
d−1

. This completes
the proof.

Corollary 3.3.3 Let p satisfy p < d
d−1

. Then there is a constant, C(p, d), depending

on p and d such that |G|W 1
p (U) . C(p, d) and C(p, d) → ∞+ as p→

(

d
d−1

)−
.

Proof From (3.39) we get

|G|W 1
p (U) .

1

[d− p(d− 1)]1/p
r
1−d+d/p
D , (3.40)

where rD > 0 is a fixed constant and clearly C(p, d) :=
(

1
d−p(d−1)

)1/p

→ ∞+ as

p→
(

d
d−1

)−
.
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Lemma 3.3.4 Let x0 be the singularity of the Green’s function and let U be a neigh-
borhood of x0 such that there is a constant c1 for which the disk of radius c1 centered
at x0 is contained in the interior of U (i.e Bc1(x0) ⊂ Ů). Then

|G|W 2
1
(Γ\U) . 1 + ln

(

1

c1

)

. (3.41)

Proof Let c2 denote the diameter of Γ. By equation (3.38),

|G|W 2
1
(Γ\U) .

∫ c2

c1

r−1 dr . 1 + ln

(

1

c1

)

.

3.3.2 Estimator

We are ready now to state and prove the main result. Define:

e := u(x)− uℓh(x) +
1

|Γ|

∫

Γ

uℓh(x) dσ. (3.42)

Theorem 3.3.5 Let u(x) be the solution to the Laplace-Beltrami equation (3.1), let
h = min

{T∈T }
{hT}, d ≥ 2, q1 >

d
2
, q2 > d, q3 > d − 1, and q4 >

d
2
. Let θ(T ) be as in

(3.9) and define θ̂∞(T ) := θ∞(T )+‖ 1
µh
‖L∞(T )‖I−dH‖L∞(T ) and similarly for θ̂∞(ωT ).

Then for x ∈ Γ, there holds

|e(x)| . max
T∈T

{

θ̂∞(ωT )(1 + | lnh|)
(

h
2−d/q1
T ‖µhf

ℓ +△Γh
uh‖Lq1 (T )

+ h
1−(d−1)/q3
T ‖J∇Γh

uhK‖Lq3 (∂T )

)}

+ ‖(P−Aℓ
h)∇Γu

ℓ
h‖Lq2 (Γ)

+ C̃q4‖µhf
ℓ − fh‖Lq4 (Γh).

(3.43)

The constant in “.” depends on shape regularity properties of T and on properties of

Γ via the Green’s function G, and blows up as q2 → d+, q3 → (d− 1)+ or q1, q4 → d
2

+

respectively, and C̃q4 depends on q4, ‖ 1
µh
‖L∞(Γ), and ‖P− dH‖L∞(Γ).

Remark In (3.43) we use Sobolev embeddings in order to define elementwise resid-
uals measured in Lq norms for q < ∞. This has two advantages. It allows us to
admit data f not in L∞, and to measure the geometric term ‖(P −Aℓ

h)∇Γu
ℓ
h‖Lq2 (Γ)

in a weaker norm in the event u /∈ W 1
∞(Γ). Our methodology yields no advantage

in the jump residual terms for constant-coefficient operators, but does in the case
of nonconstant diffusion coefficients. In our numerical experiments we simply take
qi = ∞ for all i.

Inequality (3.43) is similar to the results for flat domains Ω ∈ R
n obtained in [28],

[44] and [21].
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Proof We make use of equations (3.36) and (3.29) to rewrite (3.42) as

e(x) =

∫

Γ

∇ΓyG(x, y)∇Γ

(

u− uℓh

)

dσ. (3.44)

Let Gℓ(x, y) = G(x, a(y)) for y ∈ Γh and let Gh = IhG
ℓ. The residual equation (3.14)

yields

e(x) =

∫

Γ

∇ΓyG∇Γ

(

u(y)− uℓh(y)
)

dσ

=

∫

Γh

r(Gℓ −Gh) dσh −
∫

Γ

[(P−Aℓ
h)∇Γu

ℓ
h] · ∇ΓG dσ

− 1

2

∑

T∈T

∫

∂T

R(Gℓ −Gh) ds+

∫

Γh

(µhf
ℓ − fh)Gh dσh.

(3.45)

For j = {1, 2, 3, 4} let pj , qj, sj, tj ≥ 1 be such that p1, p4 < d
d−2

, p2 < d
d−1

,

p3 <
d−1
d−2

, 1
pj

+ 1
qj

= 1, and 1
sj

+ 1
tj

= 1. We first recall (3.29) and apply Hölder’s

inequality to (3.45). Then we apply (2.32) while choosing m = 1 or m = 2 according

to the criteria explained below. Form = 1 we pick
dpj
d+pj

= sj <
d

d−1
, satisfying Lemma

2.4.6. For m = 2 we pick sj = 1. This yields

|e(x)| .
∑

T∈T

{

‖r‖Lq1 (T )‖Gℓ −Gh‖Lp1 (T )

+ ‖(P−Aℓ
h)∇Γu

ℓ
h‖Lq2 (a(T ))‖∇ΓG‖Lp2(a(T ))

+ ‖R‖Lq3 (∂T )‖Gℓ −Gh‖Lp3 (∂T )

+ ‖µhf
ℓ − fh‖Lq4 (T )‖Gh‖Lp4 (T )

}

,

|e(x)| .
∑

T∈T

{

‖r‖Lq1 (T )h
m−d/s1+d/p1
T

∑

Ti∈ωT

|Gℓ|Wm
s1

(Ti)

+ ‖(P−Aℓ
h)∇Γu

ℓ
h‖Lq2 (a(T ))‖∇ΓG‖Lp2 (a(T ))

+ ‖R‖Lq3 (∂T )h
m−d/s3+(d−1)/p3
T

∑

Ti∈ωT

|Gℓ|Wm
s3

(Ti)

+ ‖µhf
ℓ − fh‖Lq4 (T )‖Gh‖Lp4 (T )

}

.

(3.46)

Let T0 = {T ∈ Th: x ⊂ T}. Let also ω′
T = {T ′ ∈ T : T ′ ∩ ωT 6= ∅}. Subsequently

we split the terms involving |Gℓ|Wm
sj

(Ti), Ti ∈ ωT in two sets covering Γh. If T ∈ ω′
T0

we choose m = 1 and m = 2 if T ∈ T \ ω′
T0
. In the first case we pick s1 = dp1

d+p1
so

m− d
s1
+ d

p1
= 0, and in the latter case we pick s1 = 1 so m− d

s1
+ d

p1
= 2− d+ d

p1
and

observe that
∑

T∈T \ω′

T0

(

∑

Ti∈ωT
|Gℓ|W 2

1
(Ti)

)

≤ |Gℓ|W 2
1
(Γh\ωT0

). Then it follows from
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(3.40) with rD = hT and p1 <
d

d−2
, (3.41) with c1 = hT and the same choice of p1 that

∑

T∈ω′

T0

‖r‖Lq1(T )h
1−d+d/p1
T

∑

Ti∈ωT

|Gℓ|W 1
s1

(Ti)

. ‖ 1

µh

‖L∞(T )‖I− dH‖L∞(T ) max
T∈ω′

T0

{

‖r‖Lq1(T )h
2−d/q1
T

}

(3.47)

and
∑

T∈T \ω′

T0

‖r‖Lq1(T )h
2−d+d/p1
T

∑

Ti∈ωT

|Gℓ|W 2
1
(Ti)

. θ̂∞(ωT ) max
T∈T \ω′

T0

{

‖r‖Lq1(T )h
2−d/q1
T

}

(1 + | lnh|).
(3.48)

The terms ‖I − dH‖L∞(T ) and θ̂∞(ωT ) come from the chain rule and Lemma 3.1.1.

Then by a similar argument with s3 = 1 when m = 2 and s3 =
dp3
d+p3

when m = 1 we
get

∑

T∈ω′

T0

‖R‖Lq3 (∂T )h
1−d+(d−1)/p3
T

∑

Ti∈ωT

|Gℓ|W 1
s3

(Ti)

.

∥

∥

∥

∥

1

µh

∥

∥

∥

∥

L∞(T )

‖I− dH‖L∞(T ) max
T∈ω′

T0

{

‖R‖Lq(∂T )h
1−(d−1)/q3
T

}

,

(3.49)

∑

T∈T \ωT0

‖R‖Lq3 (∂T )h
2−d+(d−1)/p3
T

∑

Ti∈ωT

|Gℓ|W 2
1
(Ti)

. θ̂∞(ωT ) max
T∈T \ω′

T0

{

‖R‖Lq3 (∂T )h
1−(d−1)/q3
T

}

(1 + | lnh|).
(3.50)

Pick s4 = dp4
d+p4

. Then an inverse estimate ‖Gh‖Lp4 . h
−d/s4+d/p4
T ‖Gh‖Ls4 (T ) and

(2.33) yield

∑

T∈T
‖µhf

ℓ − fh‖Lq4 (T )‖Gh‖Lp4(T )

≤
∑

T∈T
‖µhf

ℓ − fh‖Lq4 (T )h
−d/s4+d/p4
T ‖Gh‖Ls4(T )

≤
∑

T∈T
‖µhf

ℓ − fh‖Lq4 (T )

∑

K∈ωT

h
−d/s4+d/p4
T

{

‖Gℓ‖Ls4 (T )

+ hT‖∇Gℓ‖Ls4(T )

}

.

(3.51)

From Hölder’s inequality follows h
−d/s4+d/p4
T ‖Gℓ‖Ls4 (T ) ≤ ‖Gℓ‖Lp

4
. 1 − d

s4
+ d

p4
= 0

by our choice of s4, and since s4 ≤ p4 it follows that (
∑

T∈T ‖∇Γh
Gℓ‖p4Ls4 (ωT ))

1/p4 ≤
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(
∑

T∈T ‖∇Γh
Gℓ‖s4Ls4 (ωT ))

1/s4 . Thus

∑

T∈T
‖µhf

ℓ − fh‖Lq4 (T )‖Gh‖Lp4 (T )

≤
∑

T∈T
‖µhf

ℓ − fh‖Lq4 (T )

∑

K∈ωT

{

‖Gℓ‖Lp4 (T ) + ‖∇Γh
Gℓ‖Ls4(T )

}

≤CG,q4

(

∑

T∈T
[(Cp4(ωT )

+ Cs4(ωT )‖P− dH‖L∞(ωT ))‖µhf
ℓ − fh‖Lq4 (T )]

q4
)1/q4

.

(3.52)

Here CG,q4 = ‖G‖Lp4
(Γ) + ‖∇ΓG‖LS4

(Γ). Because s4 =
dp4
d+p4

→ d
d−1

−
as p4 → d

d−2

−
we

see that CG,q4 blows up as p4 → d
d−2

−
(i.e. q4 → d

2

+
). Thus

∑

T∈T
‖µhf

ℓ − fh‖Lq4 (T )‖Gh‖Lp4(T ) . CG,q4C̃q4‖µhf
ℓ − fh‖Lq4 (Γh). (3.53)

Similarly

∑

T∈T
‖(P−Aℓ

h)∇Γu
ℓ
h‖Lq2 (a(T ))‖∇ΓG‖Lp2(a(T )) . Cq2‖(P−Aℓ

h)∇Γu
ℓ
h‖Lq2 (Γ), (3.54)

where Corollary 3.3.3 gives that Cq2 → ∞ as p2 =→ d
d−1

− ⇐⇒ q2 → d+. Combining
equations (3.46), (3.47), (3.48), (3.49), (3.50), (3.53) and (3.54) to get (3.43) finishes
the proof of the Theorem.

3.3.3 Efficiency

Lemma 3.2.5 gives that the residual parts of the error indicator are bounded by the
L∞ norm of the error plus some higher order geometric terms when q1 = q3 = ∞.

R :=h2T ‖µhf
ℓ +△Γh

uh‖L∞(T ) + hT‖J∇Γh
uhK‖L∞(∂T )

. ‖e‖L∞(ω̃T )(‖G‖L∞(ωT ) + hT‖DG‖L∞(ωT ))

+ hT‖G‖L∞(ωT )‖(P−Aℓ
h)∇Γu

ℓ
h‖L∞(ω̃T ) + h2T‖µh(f̄ − f)‖L∞(ω̃T ).

(3.55)

Similar estimates follows easily from Hölder’s inequality for other allowable choices
of q1, q3.

3.4 Numerical Experiments

In this section we use our a posteriori estimates to implement an Adaptive Surface Fi-
nite Element Method (ASFEM). We use a maximum marking strategy with threshold
0.25, that is, we mark T for refinement if η(T ) ≥ 0.25maxT ′∈T η(T ′). We tuned our
error indicator using empirical constant factors multiplying the residual components
in order to ensure that estimators and errors had similar magnitudes. For the L2
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case the factor chosen was 0.001 and 0.01 for the pointwise case. The error indica-
tor for the pointwise estimator is based on (3.43), where we choose all qi = ∞ for
i = {1, 2, 3, 4}. We used iFEM [14] as a platform for our numerical experiments.

We first consider the torus obtained by rotating the circle (x − 4)2 + z2 = 3.92

about the z-axis. We take u = x and show the adaptive results for the L2 estimator.
This torus has large curvature inside of its “doughnut hole”, so we expect geometric
components of the estimator to be important. In the right chart in Figure 3-1 the
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Figure 3-1: Results for ASFEM solving −△Γu = f with Γ a torus having major radius
4 and minor radius 3.9 and u = x. Left: Percent of elements marked for refinement
whose geometric component of the estimator is higher than the residual one. Right:
Evolution of the L2 error, estimator, and the geometric and residual components of
the estimator.

geometric part of the estimator and the overall estimator practically overlap. The
residual part is about one order of magnitude smaller than the geometric part. Both
the geometric and residual components appear to decrease at optimal rate DOF−1.
In the left figure we observe that the majority of elements refined have a dominant
geometric component. Thus in this example the refinement is mostly being driven
by the geometric component of the estimator. Note however that which component
dominates also depends on the choice of constants multiplying the estimator compo-
nents.

We next take Γ as above but u = exp
(

1
62.6975−x2

)

. The residual component of
the estimator is more important than when u = x above (left chart in Figure 3-2),
which is expected because u has an exponential peak on the outer radius of the torus
were the curvatures and thus geometric error effects are small. In the right chart of
Figure 3-2 we observed unexpected oscillations in the geometric component of the
L2 estimator and to some extent also the error even on fine meshes. This initially
seems counterintuitive since refinement usually yields nearly monotonically decreas-
ing estimators. After a careful analysis we observed that although the initial mesh
is nearly transverse to Γ, some of the intermediate meshes are not, as illustrated in
Figure 3-3. We identify this phenomena as the cause of the oscillations. In particular,
the quality of the approximation of ν by νh may be worse on a finer mesh, affect-
ing all the quantities whose calculation depends on it. These include the Jacobian
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Figure 3-2: Results for ASFEM on a torus with major and minor radii 4 and 3.9 and
u = exp

(

1
62.6975−x2

)

. In the left plot we graph the percent of elements refined whose
geometric component of the estimator is higher than the residual one. In the right
plot we show the evolution of the L2 error, residual and its components.

Figure 3-3: Left: The initial transverse triangulation. Right: An intermediate trian-
gulation. The right mesh contains darkly-shaded non-transverse elements that cause
“kinks” in Γh. These were marked for refinement by ASFEM due to large geometric
estimators.

µh = ν · νh(1 − d(x)κ1(x))(1 − d(x)κ2(x)) [20], Ah defined in (2.12) and Ph. When
we performed uniform refinement of the mesh, the oscillation and non-transverse
intermediate meshes were not observed. Even for adaptive refinement asymptotic
convergence rates are not affected by these geometric artifacts, and a quasi-monotone
decrease of the geometric error may still be expected [8].

For the second example we use the torus obtained by rotating the circle (x −
4)2 + z2 = 1 over the z−axis and choose u = exp

(

1
25.2875−x2

)

. The solution has an
exponential peak around the points (±5, 0, 0). We use ASFEM based on the L2 and
pointwise error estimators. All components of the estimator converge with optimal
rate DOF−1 (the error plots are standard and thus not pictured). In Figure 3-4 we
present meshes obtained by our L2 and pointwise ASFEMs showing more refinement
near the points (±1, 0, 0). This is expected since the solution has exponential peaks
there and the geometric quantities H,Hxi

are relatively small on Γ. The pointwise
estimator gives a higher density of refinement near (±1, 0, 0) than the L2 estimator,
as is expected since the maximum norm is stronger.
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Figure 3-4: Intermediate meshes obtained by adaptive refinement based on L2 (left)
and pointwise (right) estimators.

For the final example we apply our estimator to a spherical wedge Γ := {(ρ, φ, θ) :
ρ = 1, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 5π

3
} (Figure 3-5). We chose u = sin(λθ) sin(φ)λ. Our theory

does not apply to this example since Γ is not closed. Γ has a re-entrant corner and is
thus a surface counterpart of a nonconvex polygonal (Euclidean) domain. Our proof
for the L2 a posteriori estimator relies on H2 regularity, which does not hold on non-
convex polygonal domains or for Γ. Thus we expect the L2 estimator to be unreliable
as on nonconvex polyhedron; cf. [40, 62]. This is confirmed in the left plot of Figure
3-5, which shows that the L2 error decreases at a slower rate than our estimator. The
jump term ‖J∇Γh

uhK‖L2(∂T )h
3/2
T θ2(ωT )) dominates the estimator asymptotically, so we

compare it to the L2 error. This corroborates that the L2 estimator is not reliable.
On the other hand we expect the pointwise estimator to be reliable as on nonconvex
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Figure 3-5: In the left plot we show the L2 error decrease versus the residual part of
the L2 estimator. On the right plot we show a mesh obtained by adaptive refinement
based on our pointwise estimator

polyhedra [44, 21] and the corresponding ASFEM to yield optimal mesh refinement.
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This is confirmed in Figure 3-6, which shows that our estimator is reliable under both
uniform and adaptive refinement and that the pointwise ASFEM achieves optimal
convergence.
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Figure 3-6: We show the error and estimator plots for the pointwise estimator using
adaptive refinement and uniform refinement

3.4.1 Remark on the importance of the geometric terms in the numerical tests

We have discussed in the previous section that the additive geometric component
‖(P−Aℓ

h)∇Γu
ℓ
h‖ of our L2 and pointwise estimates can dominate the adaptive refine-

ment process. Besides the geometric additive part our error estimates also include
multiplicative geometric terms1 that arise naturally when moving between Γ and Γh.
Exact calculation of these multiplicative components is not practical, and numerical
estimation can be expensive. In particular we analyse the effect of replacing θ(·) by
a constant equal to one. We recall that in (3.9) we define

θp(T ) :=

∥

∥

∥

∥

1

µh

∥

∥

∥

∥

p

L∞(K)

(

‖Ph[I− dH]‖2L∞(a(T )) + ‖PhH‖L∞(a(K))‖~ν − (~ν · ~νh)~νh‖L∞(a(T ))

+ max
i=1,2,3

‖dPhHxi
‖L∞(a(T ))

)

.

We note that
∣

∣

∣
1− ‖Ph[I− dH]‖2L∞(a(T ))

∣

∣

∣
= O(h2T ), ‖~ν − (~ν · ~νh)~νh‖L∞(a(T )) = O(hT ),

and maxi=1,2,3 ‖dPhHxi
‖L∞(a(T )) = O(h2T ). For fine enough meshes µh ≈ 1, thus

|1− θp(T )| = O(hT ).
Next show the results for a numeric test where we take u = exp

(

1
62.6975−x2

)

to the
solution of (3.1). Here Γ is the torus with parametric equation

Γ =



















x(ψ, φ) =[4 + 3.9 cos(ψ)] cos(φ),

y(ψ, φ) =[4 + 3.9 cos(ψ)] sin(φ),

z(ψ) =3.9 sin(ψ),

ψ, φ ∈[0, π].

(3.56)

1See (3.9) and their pointwise counterparts defined on Theorem 3.3.5.
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Figure 3-7 shows that for fine enough meshes |1− θ2(T )| = O(hT ) ∼ C√
DOF

. Initially
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Figure 3-7: Evolution of |θ(T )− 1|

the expression is dominated by the term
∣

∣

∣
1− ‖Ph[I− dH]‖2L∞(a(T ))

∣

∣

∣
, thus |1− θ2(T )|

initially decreases with order O(h2T ) ∼ C
DOF

.
A important question is how much is the performance of the adaptive algorithm

affected when we set θ2(T ) = 1. A comparison between the results obtained when
θ2(T ) is calculated versus set to be constant are shown in Figure 3-8 The multiplicative
term θ2 only affects the residual component of the error estimator. In Figure 3-8 we
show that asymptotically the residual part of the estimator behaves the same when
θ2 is set to be constant versus when it is computed. Similar results were obtained
when the solution of (3.1) is taken to be u = x.

Preliminary tests suggest that we can safely set θ2(T ) = 1 and the accuracy of the
estimator would not be negatively affected. A more rigorous analysis is desirable to
find conditions when this assertion holds. The advantages of avoiding extra, possibly
unnecessary, computation are obvious. They will be particularly important in the
next chapter when the need of implementing faster algorithms is more critical.

c©Fernando Camacho MMXIV. All rights reserved.
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Chapter 4

A posteriori estimate for surface parabolic equations

In this chapter we adapt the results obtained in sections 3.2 and 3.3 to obtain an
a posteriori error estimator for the heat equation on a fixed surface. The technique
that we use is similar to the one proposed for flat surfaces in [41]. For future work we
are interested in transitioning to evolving surface finite element methods (ESFEM)
[27], [25]. The stationary surface problem introduces some of the features that we
need to consider for the evolving surface case. For example, an efficient numerical
implementation solving the heat equation in stationary or evolving surfaces would
require mesh coarsening. Mesh coarsening helps to keep a manageable size of the
computational problem [50], [43]. Time stepping is also a common feature of problems
in both stationary and evolving surfaces.

Another practical consideration is that computational cost of time dependent
problems is considerably larger than the one for time independent ones. Hence, for
implementation, it becomes important to use numerical schemes that require fewer
time steps and fewer floating point operations. Adaptivity may require larger running
times; that is why many time dependent applications don’t use adaptive refinement.
However adaptivity offers the advantage of greater accuracy with less memory. Some
work discussing how to implement adaptive refinement on moving meshes can be
found in [13] and [35].

In order to reduce the computational and theoretical overhead of our parabolic
error estimates, we neglect the multiplicative geometric constants θp(·), Cp(·), θ∞(ωk)
and γ2(·) defined in Section 3.2. We point out that from our numerical experiments we
observed that the convergence rate of the estimator was not heavily impacted by these
constants. In the other hand the additive geometric term ‖[P −Aℓ

h]∇Γu
ℓ
h(t)‖L2(a(T ))

plays an important role in the convergence of the AFEM. That is why we include it
in our error estimate.

4.1 Introduction

Elliptic reconstruction is a technique for proving a posteriori error estimates for
parabolic equations. It was introduced for spatially semidiscrete schemes by Nochetto
and Makridakis [41]. It had previously been observed that “usual” energy techniques
for proving a posteriori error estimates yield suboptimal rates of convergence in the
L∞(0, T ;L2(Ω)) norm. Here Ω is the spatial domain and [0, T ] is the time interval.

Fully discrete versions (discretized in time and space) yielding results valid for
energy norms have been given by Lakkis and Makridakis [39]. Demlow, Lakkis and
Makridakis proved results for the maximum norm valid for semidiscrete and fully
discrete schemes [22]. Kopteva and Linss proved a posteriori error estimates in the
maximum norm for semilinear second order parabolic equations. Their estimates are
valid for semidiscrete schemes and for fully discrete schemes using backward Euler
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and Crank-Nicholson time discretizations [38].

4.2 Finite element approximation

In the same way as in the previous chapter we consider conformal consistent Galerkin
approximation schemes, and our meshes are assumed to be conforming and shape
regular. We discuss some known results for flat surfaces. Assume that Γ is a flat
surface and consider the heat equation with homogeneous Dirichlet boundary condi-
tions. Further assume that initial value conditions are such that the problem is well
posed in the sense of Hadamard. For domains Ω ∈ R

n it is known that the following
a posteriori bound for the heat equation holds (cf. Theorem 3.1 of [41])

max
0≤t≤T

‖u(t)− uh(t)‖L2(Ω) ≤‖u(0)− uh(0)‖L2(Ω) +

(
∫ T

0

E(uh,t, gh,t;H−1)2
)1/2

2 max
0≤t≤T

E(uh,t, gh,t;L2).

(4.1)

Here E(uh,t(t), gh,t, X) is an elliptic a posteriori estimator function depending on the
finite element solution to the heat equation uh,t, gh, t is an “equivalent” load vector
associated with the elliptic reconstruction of the heat equation, and the space X ∈
{L2(Ω), H−1(Ω)}.

In this chapter we prove an a posteriori version of (4.1) for the case when Γ
is not necessarily a flat surface. For E(uh,t(t), gh,t, L2) we use (3.10), and derive
E(uh,t(t), gh,t, H−1) repeating the argument used to pove (3.10) with minor modifica-
tions. In order to simplify notation we write EL2 and EH−1 instead of E(uh,t(t), gh,t, L2)
and E(uh,t(t), gh,t, H−1) respectively.

4.2.1 Model problem

We consider the surface heat equation over a surface with smooth boundary.

ut −△Γu = f in Γ× [0, T ],

u(·, 0) = u0(·) in Γ,

u = 0 on ∂Γ× [0, T ].

(4.2)

Here △Γ is the Laplace-Beltrami operator defined in (2.8) and (2.9).

The results proved in Chapter 3 were obtained assuming that Γ = ∅. In this
chapter we assume that ∂Γ is smooth. The proof for both cases is basically the same.
Since we are using Dirichlet boundary conditions the boundary terms cancel the same
way they did when we assumed empty boundary. The difference is that we do not
need to assume that

∫

Γ
u(t) dσ = 0 nor

∫

Γ
f dσ = 0 to guarantee existence and

uniqueness of the solution.
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4.2.2 Bilinear forms

We define the continuous bilinear form a(·, ·) by

a(u, v) :=

∫

Γ

∇Γu · ∇Γv dσ, (4.3)

and discrete bilinear form ah(·, ·) by

ah(uh, vh) :=

∫

Γh

∇Γh
uh · ∇Γh

vh dσh. (4.4)

We take V = H1
0 ; and equip it with the induced norm

‖v‖H1 := a(v, v)1/2. (4.5)

We use (·, ·)h to denote the L2 discrete inner product

(uh, vh)h =

∫

Γh

uhvh dσh. (4.6)

4.2.3 Discrete Elliptic operator Ah

In this section we let the finite element space Sh to be either piecewise linear or
piecewise quadratic functions. We let uh, be the Finite Element approximation of u
solving the equation

(uh,t, χ)h + ah(uh, χ) = (fh, χ)h ∀ χ ∈ Sh. (4.7)

Here uh(·, t) ∈ Sh for each t, and uh is continuously differentiable in time, and fh
is an approximation to f . For convenience we choose fh ∈ Sh. We then define the
discrete Laplace-Beltrami operator Ah by

(Ahuh, vh)h = ah(uh, vh), for vh ∈ Sh, (4.8)

Ah then satisfies pointwise
uh,t + Ahuh = fh. (4.9)

4.2.4 Matrix formulation

We start by writing uh as a linear combination of the basis elements of Sh:

uh =

N
∑

i=1

Ui(t)φi, (4.10)

where the coefficients Ui are a function of time and the basis elements {φi}Ni=1 depend
only on the spatial coordinates.
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Using the same idea as in (1.16) we write

BUt +AU =Fh

[B]i,j =

∫

Γh

φjφi dσh,

[A]i,j =

∫

Γh

∇Γh
φj · ∇Γh

φi dσh,

[U]i =Ui,

[Fh]j =

∫

Γh

fhφj dσh.

(4.11)

B is called the mass matrix and A is the stiffness matrix. We point out that A and
B are symmetric positive definite matrices.

4.2.5 Ritz projection

We define theRitz projection, also known as the elliptic projection, πe : H
1
0 (Γ) →

Sh(Γh) to satisfy the equation

ah(πew, χ) := a(w, χℓ), ∀ χ ∈ Sh, for w ∈ H1
0 (Γ). (4.12)

(cf. [56] equation (1.22) or [41] equation (2.1) for the flat surface case).

4.2.6 Elliptic Reconstruction

For a given Γ and Γh define the elliptic reconstruction û = Ruh ∈ H1
0 (Γ) to be such

that
a(û, v) = (µ−1

h (Ahuh − fh)
ℓ, v) + (f, v), ∀ v ∈ H1(Γ). (4.13)

Define
g(t) := µ−1

h (Ahuh − fh)
ℓ + f, (4.14)

and
gh(t) := Ahuh. (4.15)

Then
µhg

ℓ − gh = µhf
ℓ − fh. (4.16)

It follows directly from (4.13) that

−△Γû(t) = g(t). (4.17)

Remark Equations (4.12), (4.13) and (4.15) imply that for an equivalence class of
functions π−1

e uh ∈ H1
0(Γ) the following equation holds

a(û, χℓ) = a(π−1
e uh, χ

ℓ) + (µhf
ℓ − fh, χ)h, ∀ χ ∈ Sh (4.18)

i.e., modulo a geometric term (µhf
ℓ − fh, χ)h that goes to zero as Γh → Γ, the Ritz
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projection of the elliptic reconstruction û is the finite element solution uh of the
elliptic equation

{

−△Γu =g, on Γ,

u =0, in ∂Γ.
(4.19)

Equation (4.19) allows us to apply the elliptic error estimates proved in Chapter 3 to
prove our parabolic bounds.

4.3 A posteriori error bound

We now proceed to prove an a posteriori error bound (4.38) with similar structure to
(4.1). Before proving the a posteriori bound we state and prove Lemmas 4.3.1, 4.3.2
and 4.3.3. We follow a similar argument to one presented in [41] for domains in R

n.

Definition. For s ≥ 1 and v ∈ L2(Ω), we define the negative norm

‖v‖H−s(Ω) = sup
w∈Hs(Ω)∩H1

0
(Ω)

(v, w)

‖w‖Hs(Ω)
(4.20)

(cf. [56], [29])

Lemma 4.3.1 Let u be the solution of (4.2) and û be the elliptic reconstruction
defined as in (4.13). Then for all t ∈ [0, T ]

‖(û− u)(t)‖2L2(Γ) ≤‖(û− u)(0)‖2L2(Γ)

+

∫ t

0

{

‖(û− uℓh)τ‖2H−1(Γ) + ‖(1− µ−1
h )uℓh,τ‖2H−1(Γ)

}

dτ
(4.21)

Proof In the following discussion we use A := −△Γ to denote the elliptic operator.
It follows from (4.13) that

Aû =µ−1
h (Ahuh − fh)

ℓ + f

=µ−1
h (−uℓh,t) + f.

Adding (û− u)t to both sides of the previous equation and using Au = f − ut we get

(û− u)t + A(û− u) = (û− uℓh)t + (1− µ−1
h )uℓh,t.

We proceed with an energy argument. Multiplying by (û − u) on both sides of the
last equation yields

(û− u)t(û− u) + A(û− u)(û− u) =
[

(û− uℓh)t + (1− µ−1
h )uℓh,t

]

(û− u). (4.22)
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We then integrate in time and space and insert (4.22) to obtain

∫

Γ

∫ t

0

{

1

2

∂

∂τ
(û− u)2 + A(û− u)(û− u)

}

dτ dσ

=

∫

Γ

∫ t

0

{

(û− uℓh)τ (û− u) + (1− µ−1
h )uℓh,τ(û− u)

}

dτ dσ.

(4.23)

Observe that
∫

Γ
A(û − u)(û − u) dσ =

∫

Γ
∇Γ(û − u) · ∇Γ(û − u) = ‖(û − u)‖2H1(Γ).

Then

1

2

(

‖(û− u)(t)‖2L2(Γ) − ‖(û− u)(0)‖2L2(Γ)

)

+

∫ t

0

‖û− u‖2H1(Γ) dτ

=

∫

Γ

∫ t

0

{

(û− uℓh)τ (û− u) + (1− µ−1
h )uℓh,τ(û− u)

}

dτ dσ.

(4.24)

Next we apply Hölder’s and Cauchy’s inequalities to obtain

1

2

(

‖(û− u)(t)‖2L2(Γ) − ‖(û− u)(0)‖2L2(Γ)

)

+

∫ t

0

‖û− u‖2H1(Γ) dτ

≤
∫ t

0

‖(û− uℓh)τ‖H−1(Γ)‖û− u‖H1(Γ) dτ

+

∫

Γ

‖(1− µ−1
h )uℓh,τ‖H−1(Γ)‖û− u‖H1(Γ) dτ

≤1

2

∫ t

0

{

‖(û− uℓh)τ‖2H−1(Γ) + ‖(1− µ−1
h )uℓh,τ‖2H−1(Γ)

}

+

∫

Γ

‖û− u‖2H1(Γ) dτ.

(4.25)

The result follows after simplification and reordering, and noting that
∫ t

0
‖û−u‖2H1(Γ) ≥

0.

Lemma 4.3.2 Let û be the elliptic reconstruction of uh given by (4.13), m = 2 for
deg(Sh) = 1 and m = 3 for deg(Sh) ≥ 2, and define

EH−1(τ) :=‖([P −Aℓ
h]∇Γu

ℓ
h)τ‖L2(Γ) +

(

∑

T∈T

{

h2mT ‖(µhg
ℓ +△Γh

uh)τ‖2L2(T )

+ ‖(µhf
ℓ − fh)τ‖2L2(T ) + h2m−1

T ‖J∇Γh
uh,τK‖2L2(∂T )

}

)1/2

.

(4.26)

Then the following inequality holds for all τ ∈ [0, T ]

‖(û−uℓh)τ‖H−1(Γ) . EH−1(τ). (4.27)
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Proof By definition

‖(û− uℓh)τ‖H−1(Γ) := sup
Ψ∈H1(Γ)

{

((û− uℓh)τ ,Ψ)

‖Ψ‖H1(Γ)

}

. (4.28)

Let Ψ ∈ H1(Γ), and consider v such that

−△Γv = Ψ. (4.29)

Applying (4.29) and integration by parts to (4.28), we get

((û− uℓh)τ ,Ψ)

‖Ψ‖H1(Γ)

=
(∇Γ(û− uℓh)τ ,∇Γv)

‖Ψ‖H1(Γ)

.

We use equations (4.17) and (3.14) to get

((û− uℓh)τ ,Ψ) =

∫

Γh

(µhg
ℓ +△Γh

uh)τ (v
ℓ − vh) dσh

−
∫

Γ

([P −Aℓ
h]∇Γu

ℓ
h)τ∇Γv dσ

+

∫

Γh

(µhg
ℓ − gh)τvh dσh

− 1

2

∑

T∈T

∫

∂T

J∇Γh
uhKτ (v

ℓ − vh) ds,

=I + II + III + IV.

(4.30)

We apply a similar argument to the one used to get the inequalities (3.18) through
(3.22), with the difference that now deg(Sh) ∈ {1, 2}. The corresponding bounds for
I, II, III and IV are

Bound for I. We repeat the argument used on (3.16) and (3.17) with the difference
that now we use (2.32b) with p = s = 2, m = 2 for deg(Sh) = 1 and m = 3 for
deg(Sh) = 2. This yields

I .

(

∑

T∈T
h2mT ‖(µhg

ℓ +△Γh
uh)τ‖L2(T )

)1/2

‖v‖Hm(Γ). (4.31)

Bound for II. We repeat the argument used to derive the bound (3.19), but ex-
changing ‖v‖H2(Γ) for ‖v‖Hm(Γ), to obtain

II .

{

∑

T∈T
‖[(P−Aℓ

h)△Γu
ℓ
h]τ‖2L2(a(T ))

}1/2

‖v‖Hm(Γ). (4.32)
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Bound for III. By the same argument used in (3.22) we write

III .

(

∑

T∈T
‖(µhg

ℓ − gh)τ‖2L2(T )

)1/2

‖v‖Hm(Γ). (4.33)

Bound for IV. We repeat the argument used in (3.20), except that when we apply
(2.32a) we pick p = s = 2, m = 2 for deg(Sh) = 1 and m = 3 for deg(Sh) = 2 to
obtain

IV .

(

∑

T∈T
h2m−1
T ‖J∇Γh

uhKτ‖2L2(∂T )

)1/2

‖v‖Hm(Γ). (4.34)

After combining equations (4.30) through (4.34) and using (4.16) it follows that

((û− uℓh)τ ,Ψ) .

(

‖[P −Aℓ
h]∇Γu

ℓ
h,τ‖L2(Γ)

+

√

∑

T∈T
h2mT ‖µhgℓτ +△Γh

uh,τ‖2L2(T )

+

√

∑

T∈T
‖µhf ℓ

τ − fh,τ‖2L2(T )

+

√

∑

T∈T
h2m−1
T ‖J∇Γh

uhKτ‖2L2(∂T )

)

‖v‖Hm(Γ).

(4.35)

Equation (4.27) follows from (4.35) after observing that
√

∑

i a
2
i+
√

∑

i b
2
i+
√

∑

i c
2
i ≤√

2
√

∑

i{a2i + b2i + c2i }, and using a shift lemma ‖v‖H3(Γ) ≤ C‖Ψ‖H1(Γ).

Lemma 4.3.3 Let u(x; t) be the solution to (4.2) and let û be the elliptic reconstruc-
tion defined by (4.13), and let EH−1(τ) be defined as in (4.26). Then the following
inequality holds for all t ∈ [0, T ]

‖(u− û)(t)‖2L2(Γ) ≤‖(û− u)(0)‖2L2(Γ)

+

∫ t

0

{

E2
H−1(τ) + ‖(1− µ−1

h )uℓh,τ‖2L2(Γ)

}

dτ
(4.36)

Proof The proof follows from Lemmas 4.3.1, 4.3.2, and the fact that L2(Γ) ⊂
H−1(Γ).

Theorem 4.3.4 Let u ∈ H1(Γ) be the solution of (4.2), let uh ∈ Sh be the finite
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element solution of (4.2), take EH−1(τ) to be given by (4.26), and define1

EL2(τ) :=

(

∑

T∈T

{

‖[P −Aℓ
h]∇Γu

ℓ
h(t)‖2L2(a(T )) + h4T‖µhg

ℓ(t) +△Γh
uh(t)‖2L2(T )

+ ‖µhf
ℓ(t)− fh(t)‖2L2(T ) + h3T‖J∇Γh

uh(t)K‖2L2(∂T )

}

)1/2

,

(4.37)

Then the following bound holds for all t ∈ [0, T ]

‖(u− uℓh)(t)‖L2(Γ) .‖(u− uℓh)(0)‖L2(Γ) +

(
∫ t

0

‖(1− µ−1
h )uℓh,τ‖2L2(Γ) dτ

)1/2

+ EL2(t) + EL2(0) +

(
∫ t

0

E2
H−1(τ) dτ

)1/2

.

(4.38)

Proof We use the triangle inequality to write

‖u− uℓh‖L2(Γ) ≤ ‖u− û‖L2(Γ) + ‖û− uℓh‖L2(Γ). (4.39)

Because, modulo a geometric term, û is the Ritz projection of the finite element
solution of the elliptic problem (4.19) we use the bounds proved in Section 3.2, and
(4.16) to find

‖û− uℓh‖L2(Γ)(t) .

(

∑

T∈T

{

‖[P −Aℓ
h]∇Γu

ℓ
h(t)‖2L2(a(T ))

+ h4T‖µhg
ℓ(t) +△Γh

uh(t)‖2L2(T )

+ ‖µhf
ℓ(t)− fh(t)‖2L2(T )

+ h3T‖J∇Γh
uh(t)K‖2L2(∂T )

}

)1/2

,

=EL2(t).

(4.40)

It follows from (4.36) and
√

∑

i a
2
i ≤

∑

i |ai| that

‖(û− u)(t)‖L2(Γ) ≤‖(û− u)(0)‖L2(Γ) +

∫ t

0

{

EH−1(τ) + ‖(1− µ−1
h )uℓh,τ‖L2(Γ)

}

dτ.

(4.41)
By the triangle inequality and (4.40) we get

‖(û− u)(0)‖L2(Γ) ≤ ‖(u− uℓh)(0)‖L2(Γ) + EL2(0). (4.42)

1In contrast with (4.26) we use m = 2 to bound ‖û− u
ℓ

h
‖L2 .
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The result follows after combining (4.39), (4.40), (4.41), and (4.42).

Corollary 4.3.5 Since (4.38) holds for all t ∈ [0, T ] it follows that

max
0≤t≤T

‖(u− uℓh)(t)‖L2(Γ) .‖(u− uℓh)(0)‖L2(Γ)

+

(
∫ T

0

‖(1− µ−1
h )uℓh,τ‖2L2(Γ) dτ

)1/2

+ 2 max
0≤t≤T

EL2(t) +

(
∫ t

0

E2
H−1(τ) dτ

)1/2

.

(4.43)

Comparing equations (4.1) and (4.43) we see that they posses the same structure. The
differences between flat and general surfaces are captured in the elliptic estimators

EL2, EH−1, and the extra geometric term
(

∫ T

0
‖(1− µ−1

h )uℓh,τ‖2L2(Γ) dτ
)1/2

.

4.3.1 Future work

The error estimate (4.38) is only discrete in space. To implement the results in this
section one must carry out a time stepping procedure. The most immediate goal that
we have is to use the preliminary results of this section to implement a fully discrete
scheme solving (4.2).

We plan to carry out spatial adptivity every “few” steps using the results of
this chapter. For the time marching scheme we propose to use Crank-Nicolson. An
advantage of using Crank-Nicolson is that the time marching scheme obtained is
unconditionally stable. Crank-Nicolson applied to (4.11) yields

Ut ≈
U(n+1) −U(n)

k
=

−B−1AU(n+1) +B−1Fh
(n+1) −B−1AU(n) +B−1Fh

(n)

2
,

here k is the size of the time step. The super indexes (n+1) and (n) denote the time
steps n+ 1 and n respectively. Rearrangement of the previous expression gives

[

B+
k

2
A

]

U(n+1) =

[

B− k

2
A

]

U(n) +
k

2
[Fh

(n+1) + Fh
(n)]. (4.44)

Observe that at step (n + 1) the right hand side of (4.44) is a known quantity. It
depends solely on the solution U(n) of the previous time step and the known load
vector Fh(t). Thus (4.44) provides a, fully discrete, marching scheme that can be used
to compute the numerical solution. We also point out that the matrix

[

B+ k
2
A
]

is
sparse symmetric positive definite; and the number of operations required to assemble
the right hand side of (4.44) is O(N). We note that there are “fast” numerical
algorithms available to solve (4.44).

Another goal that we have already discussed is to work with evolving surfaces,
and applications to membranes (cf. [7], [31]) among others.

c©Fernando Camacho MMXIV. All rights reserved.
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