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ON THE DIMENSION OF A CERTAIN MEASURE ARISING FROM A
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We study the Hausdor↵ dimension of a certain Borel measure associated to a pos-
itive weak solution of a quasilinear elliptic partial di↵erential equation in a simply
connected domain. We also assume that the solution vanishes on the boundary of
the domain. Then it is shown that the Hausdor↵ dimension of this measure is less
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function. This work generalizes the work of Makarov when the partial di↵erential
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Chapter 1 Introduction

In this dissertation we study the Hausdor↵ dimension of a finite positive Borel mea-
sure associated to a positive weak solution of a certain quasi linear elliptic partial
di↵erential equations with certain boundary conditions. To explain the problem we
shall give some definitions.

1.1 Definitions

Let ⌦0 denote a bounded region in the complex plane C. Given p, 1 < p < 1,
let z = z

1

+ iz
2

denote points in C and let W 1,p(⌦0) denote equivalence classes of
functions h : C ! R with distributional gradient rh = hz1 + ihz2 and Sobolev norm

khkW 1,p
(⌦

0
)

=

0

@
ˆ
⌦

0

(|h|p + |rh|p)d⌫

1

A

1
p

< 1 (1.1)

where d⌫ denotes two dimensional Lebesgue measure. The space W 1,p
loc

(⌦0) is defined
in the obvious manner; h 2 W 1,p

loc

(⌦0) if and only if h 2 W 1,p(U) for every open
U b ⌦0, i.e compactly conatined in ⌦0.

Let C1
0

(⌦0) denote infinitely di↵erentiable functions with compact support in ⌦0

and let W 1,p
0

(⌦0) denote the closure of C1
0

(⌦0) in the norm of W 1,p(⌦0). Let h·, ·i
denote the standard inner product on C.

Fix p, 1 < p < 1 and let f : C \ {0} ! (0,1) be homogeneous of degree p on
C \ {0}. That is,

f(⌘) = |⌘|pf( ⌘|⌘|) > 0 when ⌘ 2 C \ {0}. (1.2)

We also assume that rf is ��monotone on C for some 0 < �  1. By definition,
this means that f 2 W 1,1(B(0, R)) for each R > 0 and for almost every ⌘, ⌘0 2 C
(with respect to two dimensional Lebesgue measure)

hrf(⌘)�rf(⌘0), ⌘ � ⌘0i � �|rf(⌘)�rf(⌘0)||⌘ � ⌘0|. (1.3)

Next we give an example.

Example 1.1.1.

f(⌘
1

, ⌘
2

) = |⌘|p(1 + "
⌘
1

|⌘|) = |⌘|p + "⌘
1

|⌘|p�1

is homogeneous of degree p on C\{0} and ��monotone on C for some � > 0 provided
" is small enough. Homogeneity of f and f 2 W 1,1(B(0, R)) for R > 0 are easily

1



checked. Also if ⌘ 2 C \ {0} and ⇠ 2 C,

pmin(p� 1, 1)|⌘|p�2 |⇠|2 
2X

j,k=1

(|⌘|p)⌘j⌘k⇠j⇠k  pmax(p� 1, 1)|⌘|p�2|⇠|2. (1.4)

Now second derivatives of f are clearly continuous when |⌘| = 1 and homogeneous of
degree p � 2. Using this observation and (1.4) we deduce for " > 0 small that there
exists M = M(p), 1  M < 1, with

1

M |⌘|p�2|⇠|2 
2X

j,k=1

f⌘j⌘k(⌘)⇠j⇠k  M |⌘|p�2|⇠|2. (1.5)

(1.5) implies (1.3). In fact (1.3) for a degree p homogeneous f locally in W 1,1 and
(1.5) are equivalent as we show in Chapter 2.

Next, given h 2 W 1,p(⌦0) let A = {h + � : � 2 W 1,p
0

(⌦0)}. It is well known from
[17, Chapter 5] that there is u0 2 A satisfying

inf
w2A

ˆ
⌦

0

f(rw)d⌫ =

ˆ
⌦

0

f(ru0)d⌫ for some u0 2 A. (1.6)

Also u0 is a weak solution at z 2 ⌦0 to the Euler-Lagrange equation,

0 = r · (rf(ru0(z))) =
2X

k=1

@

@zk

✓
@f

@⌘k
(ru0(z))

◆

=
2X

k,j=1

f⌘k⌘j(ru0(z)) u0
zkzj

(z)

(1.7)

That is, u0 2 W 1,p(⌦0) and

ˆ
⌦

0

hrf(ru0(z)),r�(z)id⌫ = 0 whenever � 2 W 1,p
0

(⌦0). (1.8)

Next, suppose ⌦ ⇢ C is a bounded simply connected domain, N is a neighborhood
of @⌦, and u > 0 is a weak solution to the Euler Lagrange equation in (1.7) with
⌦0 = ⌦ \N , u0 = u. Also assume that u = 0 on @⌦ in the W 1,p(⌦ \N) sense. More
specifically, let u ⌘ 0 on N \ ⌦. Then u⇣ 2 W 1,p

0

(⌦) whenever ⇣ 2 C1
0

(⌦). Under
this scenario it follows from [17, Chapter 21] that there exists a unique finite positive
Borel measure µ with support on @⌦ satisfying

ˆ
C

hrf(ru(z)),r�id⌫ = �
ˆ
@⌦

�dµ (1.9)

2



whenever � 2 C1
0

(N) and � � 0.
In case u has a continuous extension to ⌦ \ N , to prove the existence of µ, it is

enough to show the map,

�! �
ˆ
C

hrf(ru(z)),r�id⌫ � 0. (1.10)

for every nonnegative admissible function �. Then it follows from the Riesz represen-
tation theorem and basic Caccioppoli inequalities that the integral can be represented
by a measure.

A proof of (1.10) is based on choosing the right admissible function. To this end,
let � 2 C1

0

(B(z, r)), � = 1 on B(z, r/2) with the support of � ⇢ B(z, r) for some
z 2 @⌦. Define

 = (("+max(u� ", 0))� � "�)� for small �, " � 0.

Then the support of  ⇢ @⌦ and  is an admissible function so we obtain

0 =

ˆ
C

hrf(ru(z)),r id⌫

=

ˆ
C

hrf(ru(z)),r((("+max(u� ", 0))� � "�)�)id⌫

=

ˆ
C

(("+max(u� ", 0))� � "�)hrf(ru(z)),r�id⌫

+

ˆ

{z: u(z)�"}

��("+max(u� "))��1hrf(ru(z)),ruid⌫

= I + II

By homogeneity of f we have

II =

ˆ

{z: u(z)�"}

��("+max(u� "))��1hrf(ru(z)),ruid⌫

= p

ˆ

{z: u(z)�"}

��("+max((u� "), 0))��1f(ru)d⌫

� 0

Hence I  0. Moreover, we show in the Chapter 3 that |rf(ru)|  c|ru|p�1. Using
this, we have

(("+max(u� ", 0))� � "�)hrf(ru(z)),r⌘i  ckr⌘kL1 |ru|p�1.

3



As |ru| 2 Lp�1(⌦ \ N) we can first send � ! 0 then " ! 0 and after that use the
dominated convergence theorem to interchange the order of limits and integration.
We get

�! �
ˆ
C

hrf(ru(z)),r�id⌫ � 0.

Remark 1.1.2. We remark from (1.9) that if @⌦ and ru are smooth enough then

dµ = p
f(ru)

|ru| dH1|@⌦.

We next introduce the notions of Hausdor↵ measure and Hausdor↵ dimension of
µ associated with a positive weak solution u to (1.7) in ⌦ \N .

Let � > 0 be defined on (0, r
0

) with lim
r!0

�(r) = 0 for some fixed r
0

. We define the

H� measure of a set E ⇢ C as follows;
For fixed 0 < � < r

0

, let {B(zi, ri)} be a cover of E with 0 < ri < �, i = 1, 2, . . .,
and set

��
� (E) = inf

X

i

�(ri).

where the infimum is taken over all possible covers of E.
Then the Hausdor↵ measure of E, denoted by H�(E), is

H�(E) = lim
�!0

��
� (E).

When �(r) = r↵ we write H↵ for H�. Next we define the Hausdor↵ dimension of the
measure µ obtained in (1.9) as

H-dim µ = inf{↵ : 9Borel set E ⇢ @⌦ with H↵(E) = 0 and µ(E \ @⌦) = 0}.

1.2 History on the study of Hausdor↵ dimension measures

When f(⌘) = |⌘|2 then it turns out that the pde in (1.7) becomes the usual Laplace
equation. In this case, if u is the Greens function for Laplaces equation with pole at
some z

0

2 ⌦, then the measure associated to this function u as in (1.9) is harmonic
measure relative to z

0

and will be denoted by !.
The Hausdor↵ dimension of ! has been extensively studied in the last 30 years in

planar domains. In particular, Carleson showed in [7] that

Theorem 1.2.1. H-dim ! = 1 when @⌦ is a snowflake and H-dim !  1 when ⌦ is
any self similar cantor set.

In [26], Makarov proved that

Theorem 1.2.2. Let ⌦ be simply connected and µ = ! in (1.9) be harmonic measure
with respect to a point in ⌦, and let

�(r) = r exp{A
r

log
1

r
log log log

1

r
}, 0 < r < 10�6

then

4



a) There exists an absolute constant A > 0 such that harmonic measure ! is
absolutely continuous with respect to the H� measure.

b) ! is concentrated on a set of ��finite H1 measure.

In [18], Jones and Wol↵ proved that

Theorem 1.2.3. H-dim !  1 for an arbitrary domain ⌦ in the plane when ! exists.

Later Wol↵ in [29] proved that

Theorem 1.2.4. Harmonic measure ! is concentrated on a set of ��finite H1 mea-
sure.

Batakis in [4], Kaufmann and Wu in [19], and Volberg in [28] independently
showed that

Theorem 1.2.5. For certain fractal domains and domains whose complements are
Cantor sets,

Hausdor↵ dimension of @⌦ = inf{↵ : H↵(@⌦) = 0} > H-dim !

In [5], Bennewitz and Lewis obtained the following result for µ defined as in (1.9)
for fixed p, 1 < p < 1, relative to f(ru) = |ru|p. In this case the corresponding
pde in (1.7) becomes

r · (|ru|p�2ru) = 0, (1.11)

which is called the p�Laplace equation. Moreover a positive weak solution of (1.11)
is called a p�harmonic function.

Theorem 1.2.6. Let ⌦ ⇢ C be a domain bounded by a quasi circle and let N be
a neighborhood of @⌦. Fix p 6= 2, 1 < p < 1, and suppose u is p-harmonic in
⌦ \N with boundary value 0 in the W 1,p(⌦ \N) Sobolev sense. If µ is the measure
corresponding to u as in (1.9) relative to f(ru) = |ru|p, then H-dim µ  1 for
2 < p < 1 while H-dim µ � 1 for 1 < p < 2. Moreover, if @⌦ is the von Koch
snowflake then strict inequality holds for H-dim µ.

In [25], Lewis, Nyström, and Poggi-Corradini proved that

Theorem 1.2.7. Let ⌦ ⇢ C be a bounded simply connected domain and N a neigh-
borhood of @⌦. Fix p 6= 2, 1 < p < 1, and let u be p harmonic in ⌦\N with boundary
value 0 on @⌦ in the W 1,p(⌦\N) Sobolev sense. Let µ be the measure corresponding
to u as in (1.9), relative to f(ru) = |ru|p and put

�(r) = r exp

"
A

r
log

1

r
log log

1

r

#
for 0 < r < 10�6.

a) If p > 2, there exists A = A(p)  �1 such that µ is concentrated on a set of
��finite H� measure.

5



b) If 1 < p < 2, there exists A = A(p) � 1, such that µ is absolutely continuous
with respect to H� measure.

In the recent paper [24], Lewis proved that

Theorem 1.2.8. Let ⌦ ⇢ C be a bounded simply connected domain and N be a
neighborhood of @⌦. Fix p 6= 2, 1 < p < 1, and let u be p�harmonic in ⌦ \N with
boundary value 0 on @⌦ in the W 1,p(⌦ \ N) Sobolev sense. Let µ be the measure
corresponding to u as in (1.9), relative to f(ru) = |ru|p and put

�̃(r) = r exp

"
A

r
log

1

r
log log log

1

r

#
for 0 < r < 10�6.

a) If p > 2, then µ is concentrated on a set of ��finite H1 measure.

b) If 1 < p < 2, there exists A = A(p) � 1, such that µ is absolutely continuous

with respect to H
˜� measure. Moreover A(p) is bounded on (3/2, 2).

This theorem is the complete extension of Makarov’s theorem to the p-harmonic
setting.

In [17], it was shown that the measure associated to a positive weak solution u
with 0 boundary values as in (1.9) exists for a large class of quasilinear elliptic PDE.
In [5][Closing remarks 10], the authors pointed out this fact and asked for what PDE
can one obtain dimension estimates on the associated measure.

In this dissertation we try to give an answer to this problem. More specifically,
we show that

Main Theorem 1.2.9. Let ⌦ ⇢ C be a bounded simply connected domain and N
be a neighborhood of @⌦. Fix p, 1 < p < 1, let f be homogeneous of degree p and
let rf be � monotone for some 0 < �  1. Let u > 0 be a weak solution to (1.7) in
⌦ \N with boundary value 0 on @⌦ in the W 1,p(⌦ \N) Sobolev sense. Let µ be the
measure corresponding to u as in (1.9) and put

�(r) = r exp

"
A

r
log

1

r
log log

1

r

#
for 0 < r < 10�6.

a) If p � 2, there exists A = A(p)  �1 such that µ is concentrated on a set of
��finite H� measure.

b) If 1 < p  2, there exists A = A(p) � 1, such that µ is absolutely continuous
with respect to H� measure.

Note that the Main Theorem 1.2.9 and the definition of H-dim µ imply the fol-
lowing corollary.

Corollary 1.2.10. Given p, 1 < p < 1, let u, µ be as in the Main Theorem 1.2.9,
and suppose ⌦ ⇢ C is a simply connected domain. Then H-dim µ  1 for 2  p < 1,
while H-dim µ � 1 for 1 < p  2.

6



The pde (1.7) we consider is more complicated and has less regularity than the
p-Laplacian. Thus one has to overcome numerous procedural di�culties not encoun-
tered in p-harmonic setting.

This thesis is organized as follows. In chapter 2 we first introduce some notation
which we use throughout this thesis and state some well known theorems: Sobolev’s
theorem and standard theorems on quasiregularity, (regularity properties of a quasi-
regular function, Stoilow factorization theorem). Second we derive some regularity
properties of f satisfying (1.2) and (1.3) suitable for use in elliptic regularity theory.

In chapter 3 we study a variational problem and indicate some properties of weak
solutions to the corresponding Euler Lagrange equation: maximum principle, Harnack
inequality, interior Hölder continuity of a solution, and Hölder continuity near the
boundary of ⌦. After that we study the behavior of u near @⌦ and the relationship
between u and µ as in (1.9). Using this relationship we obtain that H-dim µ is
independent of the corresponding u. Moreover, we use elliptic and quasiregularity
theory to derive more advanced regularity properties of u: quasiregulariy of uz, Hölder
continuity of ru, and ru locally in W 1,2, so u is almost everywhere a pointwise
solution to (1.7). We also show for a certain u that ru 6= 0 near @⌦.

In chapter 4 we outline a proof in [25] which shows in our situation that for a
certain u as in Theorem (1.2.9) ru satisfies a certain inequality. Using this inequality
and results from chapters 2, 3, 4 we obtain first that u and ru are weak solutions to
a certain pde and then that log f(ru) is a weak sub, super or solution to this pde,
depending on whether p > 2, < 2, or = 2.

In chapter 5 we give a proof for Theorem 1.2.9.

Copyright c� Murat Akman, 2014.
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Chapter 2 K Quasiregularity and � Monotonicity

2.1 Notation and Terminology

Throughout this thesis various positive constants are denoted by c and they may di↵er
even on the same line. The dependence on parameters is expressed, for example, by
c = c(p, f). We use ⇡ symbols for example g ⇡ h to mean that there is constant c
such that

1

ch  g  c h.

If ⌘ =


⌘
1

⌘
2

�
is a 2 x 1 column matrix, let ⌘T =

⇥
⌘
1

⌘
2

⇤
denote the transpose of ⌘.

Let B(z, r) denote the disk in R2 or C with center z and radius r and let ⌫ be two
dimensional Lebesgue measure. We specifically denote the unit disk, B(0, 1), by D.
⌦ will always denote an open set and often ⌦ is a simply connected domain. That is
⌦ is an open connected domain whose complement is connected.

We are now ready to define quasiregular mappings.

Definition 2.1.1. A mapping h : ⌦ ! C is called K-quasiregular in ⌦ if h 2
W 1,2

loc

(⌦) and
����

∂h
∂z̄

����  k

����
∂h
∂z

���� ⌫ a.e. in ⌦ (2.1)

where we use complex derivatives

∂
∂z

=
1

2

✓
∂

∂x
� i

∂
∂y

◆
and

∂
∂z̄

=
1

2

✓
∂

∂x
+ i

∂
∂y

◆
,

and

k =
K � 1

K + 1
.

Next regarding h = h
1

+ ih
2

as a mapping from ⌦ ! R2 we let Dh(z) be the

matrix whose jk entry is defined by Dh(z) =
⇣

∂hj

∂zk

⌘
, 1  j, k  2, and Jacobian

determinant Jh(z) = detDh(z) at the points z = z
1

+ iz
2

in ⌦ where all partials of
h
1

, h
2

exist. Then a second equivalent definition of K�quasiregularity is to require
that h 2 W 1,2

loc

(⌦) is sense preserving and for a.e z = z
1

+ iz
2

2 ⌦

kDh(z)k2 = max
|⇠|=1

|Dh(z)⇠|2  K Jh(z), (2.2)

where ⇠ is regarded as a column matrix.
A third equivalent definition of K�quasiregularity is to require that h 2 W 1,2

loc

(⌦),
is sense preserving and

kDh(z)k  K min
|⇠|=1

|Dh(z)⇠| ⌫ a.e in ⌦. (2.3)

8



To see why the definitions are equivalent suppose h(z) = Az+Bz̄ with |A| > |B|.
Then it is easily checked that

∂h
∂z

= A,
∂h
∂z̄

= B, and min
|⇠|=1

|Dh(0)⇠| = |A|� |B|.

Also
Jh(0) = |A|2 � |B|2 and kDh(0)k = |A|+ |B|.

Thus

kDh(0)k2 = (|A|+ |B|)2 = |A|+ |B|
|A|� |B|Jh(0) = K Jh(0)

and

kDh(0)k = K min
|⇠|=1

|Dh(0)⇠| while
����

∂h
∂z̄

���� = k

����
∂h
∂z

���� .

h is said to be quasiregular if h is K�quasiregular for some K. We now give the
definition of a quasiconformal mapping.

Definition 2.1.2. A mapping � : ⌦ ! R2 is called a quasiconformal mapping if �
is a quasiregular homeomorphism onto �(⌦).

In the next theorem, we see that in the plane quasiregular mappings are not more
general than analytic functions.

Theorem 2.1.3 (Stöılov’s Decomposition Theorem). Suppose that h : ⌦ ! R2 is a
K�quasiregular mapping. Then h = g � � where � is a K�quasiconformal mapping
and g is an analytic function in �(⌦).

A proof of this theorem is in [22, Chapter VI]. An immediate consequence of the
Stöılov’s decomposition theorem and well-known fact that the zeros of an analytic
function are isolated is the following corollary.

Corollary 2.1.4. The zeros of a nonconstant quasiregular mapping are isolated.

Next we recall the definition of ��monotonicity of a function.

Definition 2.1.5 (�-Monotone). A mapping h : ⌦̃ ! C is called ��monotone if

hh(⌘̃)� h(⌘̂), ⌘̃ � ⌘̂i � �|h(⌘̃)� h(⌘̂)||⌘̃ � ⌘̂| (2.4)

holds for all ⌘̃, ⌘̂ 2 ⌦̃ and for some � 2 (0, 1].

��Monotonicity has been studied by Kovalev in [20] in Hilbert space. See also
the book [3, Chapter 3.11] for more details about ��monotonicity.

Geometrically ��monotonicity of a function h means that the angle between ⌘̃� ⌘̂
and rh(⌘̃)�rh(⌘̂) is at most cos�1(�) < ⇡/2. Following [20] we see that every non-
constant �-monotone function in the domain ⌦̃ is indeed K�quasiconformal where

K =
1 +

p
1� �2

1�
p
1� �2

.

9



We first give a sketch of Kovalev’s proof for ��monotonicity impliesK-quasiconformality
in ⌦̃ To this end, let h be �-monotone in ⌦̃ and let ⌘̃, ⌘̂, ⇣ be distinct points in ⌦̃ with

h⇣ � ⌘̃, ⌘̂ � ⌘̃i � �|⇣ � ⌘̃||⇣ � ⌘̂| and h⇣ � ⌘̂, ⌘̃ � ⌘̂i � �|⇣ � ⌘̃||⇣ � ⌘̂|.

Using ��monotonicity of h one can show that

|h(⇣)� h(⌘̃)|+ |h(⇣)� h(⌘̂)|  2

�
|h(⌘̃)� h(⌘̂)|

where � = 1 � �2/8. Thus if h(⌘̃) = h(⌘̂) then h(⇣) = h(⌘̃) for all ⇣ in the above
sectorial type region. Continuing this argument throughout ⌦̃ one gets that h ⌘ h(⌘̃).
We conclude that h is either a homeomorphism of ⌦̃ or identically constant. Using
the above inequality Kovalev also shows that a non-constant ��monotone mapping
h satisfies for some 1  H = H(�) < 1

|h(⇣)� h(⌘̃)|  H|h(⇣)� h(⌘̂)| ⌘̃, ⌘̂, ⇣ 2 B(w, r), |⇣ � ⌘̃|  |⇣ � ⌘̂|, (2.5)

whenever B(w, 2r) ⇢ ⌦̃.
Then using injectivity, (2.5) and [15, Theorem 11.14] Kovalev obtains that h is

K�quasiconformal.

2.2 Basic Regularity Results for f

Let f be as in (1.2), (1.3). Then rf has a representative in L1(C) (also denoted
by rf) that is ��monotone on C. From homogeneity of f and Kovalev’s theorem
in [20] we see that rf is in fact a K�quasiconformal mapping. In this section we
give an alternate proof for K�quasiregularity of rf and in the process we obtain
some elliptic type inequalities which will be useful in our study of regularity for weak
solutions to (1.7).

Let ✓(z) be the standard mollifier, i.e;

✓(z) =

⇢
c exp( 1

|z|2�1

) if |z| < 1

0 if |z| � 1

and the constant c is selected so thatˆ
C

✓(z)d⌫ = 1.

Moreover, we define
✓"(z) :=

1

"2 ✓(
z
" ).

Then ✓"(z) 2 C1(C),
ˆ
C

✓"(z)d⌫ = 1 and support of ✓" ⇢ B(0, ").

10



We first define f" = f ⇤ ✓" by

f"(z) =

ˆ
C

✓"(z � w)f(w)dw =

ˆ

B(0,")

✓"(w)f(z � w)dw (2.6)

for z 2 C. Next we show that rf" is also ��monotone.
Since rf is �-monotone we see that

hrf"(⌘̃)�rf"(⌘̂), ⌘̃ � ⌘̂i = h
ˆ

r (f(⌘̃ � z)� f(⌘̂ � z)) ✓"(z)d⌫, ⌘̃ � ⌘̂i

=

ˆ
hr(f(⌘̃ � z)� f(⌘̂ � z)), (⌘̃ � z)� (⌘̂ � z)i✓"(z)d⌫

� �

ˆ
|r(f(⌘̃ � z)� f(⌘̂ � z))| |⌘̃ � ⌘̂|✓"(z)d⌫

� �|
ˆ

r(f(⌘̃ � z)� f(⌘̂ � z))✓"(z)d⌫||⌘̃ � ⌘̂|

= �|rf"(⌘̃)�rf"(⌘̂)| |⌘̃ � ⌘̂|.
(2.7)

Using smoothness of f" and ��monotonicity of rf" we have

hrf"(z + t⌘)�rf"(z)

t
, ⌘i � �|rf"(z + t⌘)�rf"(z)

t
| (2.8)

where ⌘ 2 R2 with |⌘| = 1 and t 2 (0,1). If we let t ! 0 we obtain in the matrix
notation that

⌘T D2f"(z) ⌘ � � |D2f"(z) ⌘| (2.9)

where D2f"(z) is 2 x 2 matrix whose jk entry is ∂2
f"

∂zj∂zk (z) and ⌘ is column matrix.

Let ⌘T = ⌘
1

, ⌘
2

with ⌘
1

= cos(✓) and ⌘
2

= sin(✓), and let O be an orthonormal
matrix such that OT D2f"(z)O is a diagonal matrix, with diagonals �

1

,�
2

. As O is
orthonormal we see that

hOT D2f"(z)O⌘, ⌘i � �|D2f"(z) ⌘|. (2.10)

Then we see that (2.10) is indeed equivalent to

�
1

⌘2
1

+ �
2

⌘2
2

� �
�
�2
1

⌘2
1

+ �2
2

⌘2
2

� 1
2 . (2.11)

Suppose first that we have �
1

= 0. Then (2.11) becomes �
2

⌘2
2

� �|�
2

||⌘
2

|. But
for ✓ near zero we have ✓ � � which is contradiction unless �

2

= 0 in which case
D2f"(z) ⌘ 0. Otherwise suppose 0 < �

1

 �
2

. Dividing both sides of (2.10) by �
1

we
may assume that �

1

= 1, �
2

= � � 1, and D2f"(z) is a diagonal matrix with entries
1 and � on the diagonal. Then

D2f"(z)⌘ =

✓
⌘
1

�⌘
2

◆
= ⌘

1

+ i�⌘
2

= 1

2

(1 + �)ei✓ + 1

2

(1� �)e�i✓
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in complex notation. Moreover

⌘T D2f"(z) ⌘ = Re 1

2

(1 + �) + 1

2

(1� �)e�2i✓,

|D2f"(z) ⌘| = |1
2

(1 + �) + 1

2

(1� �)e�2i✓|.
(2.12)

If � > 1 we put

A =
�+ 1

�� 1
, ⇣ = A� e�2i✓

and use (2.12) to rewrite (2.10) after division by �� 1 as

Re ⇣ � �|⇣|. (2.13)

Letting ✓ vary from 0 to ⇡ we see that ⇣ describes a circle, say C of radius 1 with
center at A. From high school geometry it is easily seen that Re ⇣/|⇣|, ⇣ 2 C has a
minimum at a point ⇣̃ on C with the property that the line from the origin to ⇣̃ is
tangent to C.

Using this fact it follows that equality holds in (2.13) when ⇣̃ = (�+i
p
1� �2)(A2�

1)1/2. Since ⇣̃ � A = �
p
1� �2 + i� we conclude that

�p
1� �2

=
p
A2 � 1 or A =

1p
1� �2

Solving for � it follows that

�  1 +
p
1� �2

1�
p
1� �2

= K. (2.14)

We conclude for K as in (2.14) that rf" is K�quasiregular mapping in C.
FromK�quasiregularity ofrf" and f 2 W 1,1B(0, R) we see thatrf" 2 W 1,2

loc

(B(0, R))
for each R > 0 with norm bounds that are independent of ". Using these facts,
f" ! f in W 1,1B(0, R), and taking a weak limit of second derivatives of f" we see
that rf 2 W 1,2B(0, R) for each R > 0. From properties of mollifiers it follows first
that

∂2f"
∂zj∂zk

= ✓" ⇤
∂2f

∂zj∂zk
for 1  j, k  2

and thereupon from the Lebesgue di↵erentiation theorem that second derivatives of
f" converge pointwise to second derivatives of f . Using this fact and (2.9) we get for
a.e z 2 C,

f⌘⌘ = hD2f(z)⌘, ⌘i = �|D2f(z)⌘|. (2.15)

We can now use rf 2 W 1,2B(0, R) for each R > 0 and repeat the argument after
(2.9) in order to conclude that rf is K�quasiregular where K is as (2.14). So the
eigenvalues of the Hessian matrix of rf either both exist and are zero or have ratios
bounded above by K and below by 1/K.

As f is homogeneous of degree p, i.e f(⌘) = |⌘|pf(⌘/|⌘|), if we introduce polar
coordinates; r = |⌘|, tan(✓) = ⌘

2

/⌘
1

, then

f(r, ✓) = rpf(cos(✓), sin(✓)).
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Hence first and second derivatives of f along rays through the origin are

fr = prp�1f(cos(✓), sin(✓)) and frr = p(p� 1)rp�2f(cos(✓), sin(✓)). (2.16)

From K�quasiregularity of rf we see that f is continuous in C. Since f > 0 it
follows that f(cos(✓), sin(✓)) is bounded above and below by constants 1  M and
1/M respectively. We conclude from this fact and (2.16) that

1

M p(p� 1)rp�2  frr  M p(p� 1)rp�2. (2.17)

From K�quasiregularity of rf we find for a.e ⌘ 2 C and all ⇠ with |⇠| = 1 that

1

MKp(p� 1)|⌘|p�2  f⇠⇠(⌘) = ⇠T D2f ⇠  MK p(p� 1)|⌘|p�2. (2.18)

Using homogeneity of f and (2.18) we also have for some M 0 � 1 that

1

M 0 |⌘|p  min{f(⌘), |⌘||rf(⌘)|}  max{f(⌘), |⌘||rf(⌘)|}  M 0|⌘|p. (2.19)

We next prove various inequalities that we need later. We first see that

hrf(⌘)�rf(⌘0), ⌘ � ⌘0i =
1ˆ

0

h d
dt

(rf(⌘0 + t(⌘ � ⌘0))) , (⌘ � ⌘0)idt

=

1ˆ
0

hD2f(⌘0 + t(⌘ � ⌘0))(⌘ � ⌘0), (⌘ � ⌘0)idt

=

1ˆ
0

h(⌘ � ⌘0)TD2f(⌘0 + t(⌘ � ⌘0))(⌘ � ⌘0)idt

(2.20)

Then using (2.18) we get for a.e ⌘, ⌘0 2 R2,

1

MK |⌘ � ⌘0|2
1ˆ

0

|⌘0 + t(⌘ � ⌘0)|p�2dt 
1ˆ

0

hD2f(⌘0 + t(⌘ � ⌘0))(⌘ � ⌘0), (⌘ � ⌘0)idt

 MK|⌘ � ⌘0|2
1ˆ

0

|⌘0 + t(⌘ � ⌘0)|p�2dt.

(2.21)

It follows from [6] that

1

c (|⌘|+ |⌘0|)p�2 
1ˆ

0

|⌘0 + t(⌘ � ⌘0)|p�2dt  c(|⌘|+ |⌘0|)p�2. (2.22)
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We then conclude from (2.20)-(2.22) that

1

c (|⌘|+ |⌘0|)p�2|⌘ � ⌘0|2  hrf(⌘)�rf(⌘0), ⌘ � ⌘0i  c(|⌘|+ |⌘0|)p�2|⌘ � ⌘0|2.
(2.23)

For later use we note that (2.23) easily implies

1

c (|⌘|+ |⌘0|+ ")p�2|⌘ � ⌘0|2  hrf"(⌘)�rf"(⌘
0), ⌘ � ⌘0i  c (|⌘|+ |⌘0|+ ")p�2|⌘ � ⌘0|2.

(2.24)

Indeed if |⌘|+ |⌘0| � 2" then (2.24) follows easily from (2.23) and the definition of f".
Otherwise, using (2.23) we deduce

hrf"(⌘)�rf"(⌘
0), ⌘ � ⌘0i =

ˆ
C

hrf"(⌘ � z)�rf"(⌘
0 � z), ⌘ � z � ⌘0 + zi✓"(z)dz

� 1

c |⌘ � ⌘0|2
ˆ
C

(|⌘ � z|+ |⌘0 � z|)p�2 ✓"(z)dz

� 1

c2 "
p�2|⌘ � ⌘0|2

� 1

c3 (|⌘|+ |⌘0|+ ")p�2 |⌘ � ⌘0|2
(2.25)

for some c � 1. Here we used the fact that for some c0 � 1,

min{|⌘ � z|, |⌘0 � z|} � "
c0 and ✓"(z) �

1

(c0")2

on a disk of radius "/4.
Note that we have used (2.18) to show that (2.23) holds for a.e ⌘, ⌘0 2 R2 and

(2.23) clearly implies ��monotonicity of rf when f 2 W 1,1(B(0, R)) for each R > 0.
Also we have shown that ��monotonicity of a homogeneous degree p function implies
(2.18). Thus ��monotonicity and (2.18) are equivalent under the scenario mentioned
in the introduction.

Copyright c� Murat Akman, 2014.
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Chapter 3 Advanced Regularity Results

3.1 Variational Problem

In this chapter we study the variational problem (1.6) and indicate some properties
of weak solutions to the corresponding Euler-Lagrange equation. To this end, let f̃
be homogenous of degree p on C \ {0} and suppose that rf̃ is ��monotone on C
for some 0 < �  1. We also put f̃(0) = 0. Then (2.18) and (2.19) hold for f̃ .
Using these inequalities we see that f̃ satisfies the hypothesis in [17, Chapter 5] or
[8, Theorem 3.13] which guarantee that the problem of finding a minimizer;

inf
w2A

8
<

:

ˆ
˜

⌦

f̃(rw)d⌫

9
=

; (3.1)

has a solution when h 2 W 1,p(⌦̃) and

A = {h+ � : � 2 W 1,p
0

(⌦̃)}.
That is, there is ũ 2 A satisfying

inf
w2A

ˆ
˜

⌦

f̃(rw)d⌫ =

ˆ
˜

⌦

f̃(rũ)d⌫ for some ũ 2 A. (3.2)

Also ũ is a weak solution to the following Euler-Lagrange equation in ⌦̃,

0 = r · (rf̃(rũ)) =
2X

k=1

∂
∂zk

 
∂f̃
∂⌘k

(rũ)

!

=
2X

k,j=1

f̃⌘k⌘j(rũ) ũzkzj .

(3.3)

More specifically, ˆ
˜

⌦

hrf̃(rũ),r�id⌫ = 0 whenever � 2 W 1,p
0

(⌦̃). (3.4)

Lemma 3.1.1 (Weak Maximum Principle). Let ũ, û be weak solutions to (3.3) in ⌦̃
with ũ = û on @⌦̃ in the Sobolev sense. Then û = ũ a.e in ⌦̃.

Proof. Since ũ, û are solutions and û� ũ 2 W 1,p
0

(⌦̃), and (2.23) holds we see that

0 =

ˆ
˜

⌦

hrf(rû)�rf(rũ),rû�rũid⌫

� 1

c

ˆ
˜

⌦

(|rû|+ |rũ|)p�2 |rû�rũ|2d⌫

� 0.

(3.5)
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Then rû�rũ = 0 a.e in ⌦̃. As û = ũ on @⌦̃ in the W 1,p
0

(⌦̃) Sobolev sense we have
û = ũ a.e in ⌦̃.

Remark 3.1.2 (Variational Problem has a unique solution). Using Lemma 3.1.1 we
remark that the variational problem (3.1) has a unique solution. That is,

inf
w2A

ˆ
˜

⌦

f̃(rw)d⌫ =

ˆ
˜

⌦

f̃(rũ)d⌫ for some unique ũ 2 A.

Some Well-Known Theorems

In this subsection we first give some well known theorems that will be useful in our
proof of the Main Theorem 1.2.9. To do so we shall need some notation.

If � is integrable on B(z, r) let

�B = �
ˆ
B(z,r)

� d⌫ =
1

⌫(B(z, r))

ˆ

B(z,r)

� d⌫.

The Oscillation of a function h on a set D is defined as

osc
D

h = ess sup
z̃,ẑ2D

|h(z̃)� h(ẑ)| = ess sup
D

h� ess inf
D

h.

Theorem 3.1.3 (Sobolev’s Inequality). Fix p, 1 < p < 1. Then there is a constant
⌧ > 1 and c = c(p) > 0 such that

✓
�
ˆ
B(z,r)

|�� �B|⌧pd⌫
◆ 1

⌧p

 r

✓
�
ˆ
B(z,r)

|r�|pd⌫
◆ 1

p

(3.6)

whenever �� �B 2 W 1,p(B(z, r)) and where

⌧ =

⇢
2

2�p if 1 < p < 2
2 if 2  p < 1.

A proof of Sobolev’s Inequality can be found in [10, Chapter 5.6].

Theorem 3.1.4 (Morrey’s Inequality). Let � 2 W 1,p(R2) and p > 2. Then there is
a constant c = c(n) such that for a.e z, z0 2 R2 ,

|�(z)� �(z0)|  c r
1�n

p

0

B@
ˆ

B(z,2r)

|r�(z)|pd⌫

1

CA

1
p

(3.7)

where r = |z � z0|.

A proof of Morrey’s Inequality can be found in [21, Chapter 18].
We next give the Poincaré inequality.
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Theorem 3.1.5 (Poincaré’s Inequality). There is a constant c = c(p) > 0 such that

ˆ

B(z,r)

|�� �B|pd⌫  crp
ˆ

B(z,r)

|r�|pd⌫ (3.8)

whenever � 2 W 1,p(B(z, r)).

A proof of the Poincare inequality can be found in [10, Chapter 5.8].

Theorem 3.1.6 (Coarea Formula). Let w : R2 ! R be Lipschitz continuous and
suppose that h : R2 ! R is integrable. Then

ˆ

R2

h|rw| d⌫ =

1̂

�1

0

B@
ˆ

{t:w(z)=t}

h dH1

1

CA dt.

For a proof of and more on the coarea formula see [11, Chapter 3].
We next define capacity of a set as it is given in [17, Chapter 2].

Definition 3.1.7 (p capacity of a set). Let K be a compact subset of ⌦̃ and let

W(K, ⌦̃) = {h 2 C1
0

(⌦̃); h � 1 on K}.

Define

capp(K, ⌦̃) = inf
h2W(K,˜⌦)

ˆ
˜

⌦

|rh|pd⌫.

If U is an open subset of ⌦̃ then

capp(U, ⌦̃) = sup
K⇢U

K is compact

capp(K, ⌦̃),

and for an arbitrary set E ⇢ ⌦̃, we define p capacity of E as

capp(E, ⌦̃) = inf
E⇢U⇢˜

⌦

U is open

capp(U, ⌦̃).

Following [17, Chapter 6] we give the definition of p ”thickness” of a set E.

Definition 3.1.8 (p thickness, Wiener Criterion). A set E is called p�thick at z if

1ˆ
0

✓
capp(E \ B(z, t), B(z, 2t))

capp(B(z, t), B(z, 2t))

◆
dt

t
= 1. (3.9)

Finally we state a lemma which is a direct consequence of (2.18) and (2.19) for
ũ 2 W 1,1(⌦̃).
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Lemma 3.1.9. For some constants c, c0, c00 � 1 depending only on f̃ , we have for a.e
z 2 ⌦̃,

1

c
|rũ|p  f̃(rũ)  c|rũ|p, (3.10)

1

c0
|rũ|p�1  |rf̃(rũ)|  c0|rũ|p�1, (3.11)

1

c00
|rũ|p�2  kD2f̃(rũ)k  c00|rũ|p�2. (3.12)

We are now ready to begin our study of regularity for weak solutions to (3.3). In
Lemmas 3.1.10-3.1.14 we suppose 0 < r < diam @⌦̃ < 1, and that ũ � 0 is a weak
solution to (3.3) in B(w, 4r) \ ⌦̃ with ũ ⌘ 0 on @⌦̃ \ B(w, 4r) in the Sobolev sense.
Let ũ = 0 on B(w, 4r) \ ⌦̃.

Lemma 3.1.10. For fixed p, 1 < p < 1, let ũ, f̃ , ⌦̃, w, r be defined as above. Then

1

cr
p�2

ˆ

B(w, r2 )

f̃(rũ)d⌫  ess sup
B(w,r)

ũp  c
1

r2

ˆ

B(w,r)

ũpd⌫. (3.13)

Proof. The first part in the lemma follows by a sub solution type argument. To this
end, let ⌘ 2 C1

0

(B(w, 2r)), 0  ⌘  1, with ⌘ = 1 in B(w, r) and |r⌘|  c/r. Then
one can easily show that ũ⌘p 2 W 1,p

0

(⌦̃ \ B(w, 4r)). Thus by (3.4) with ⌦̃ replaced
by ⌦̃ \ B(w, 4r),

0 =

ˆ
˜

⌦\B(w,4r)

hrf̃(rũ),r(ũ⌘p)id⌫

=

ˆ

B(w,2r)

⌘phrf̃(rũ),rũid⌫ + p

ˆ

B(w,2r)

ũ⌘p�1hrf̃(rũ),r⌘id⌫.
(3.14)

By homogeneity of f̃ and Euler’s identity we have hrf̃(rũ),rũi = pf̃(rũ). Using
this equality and rearranging (3.14) we see that

p

ˆ

B(w,2r)

⌘pf̃(rũ)d⌫ =

ˆ

B(w,2r)

⌘phrf̃(rũ),rũid⌫

= �p

ˆ

B(w,2r)

ũ⌘p�1hrf̃(rũ),r⌘id⌫

 p

ˆ

B(w,2r)

ũ⌘p�1|rf̃(rũ)||r⌘|d⌫.

(3.15)

18



Then using (3.10), (3.11) and Hölder’s inequality in (3.15) we get that

ˆ

B(w,2r)

⌘pf̃(rũ)d⌫ 
ˆ

B(w,2r)

ũ⌘p�1|rf̃(rũ)||r⌘|d⌫

 c

ˆ

B(w,2r)

ũ⌘p�1|rũ|p�1|r⌘|d⌫

 c

0

B@
ˆ

B(w,2r)

ũp|r⌘|pd⌫

1

CA

1
p
0

B@
ˆ

B(w,2r)

⌘p|rũ|pd⌫

1

CA

p�1
p

 c

0

B@
ˆ

B(w,2r)

ũp|r⌘|pd⌫

1

CA

1
p
0

B@
ˆ

B(w,2r)

⌘pf̃(rũ)d⌫

1

CA

p�1
p

.

(3.16)

Then it follows from (3.16) that

ˆ

B(w,2r)

⌘pf̃(rũ)d⌫  c

ˆ

B(w,2r)

ũp|r⌘|pd⌫ (3.17)

From (3.17) we obtain the left hand inequality of Lemma 3.1.10,

ˆ

B(w,r)

f̃(rũ)d⌫ 
ˆ

B(w,2r)

⌘pf̃(rũ)d⌫  c

ˆ

B(w,2r)

|r⌘|pũpd⌫

 c r2�p ess sup
B(w,r)

ũp.

(3.18)

For the second display, we first need to obtain (3.19) and then we employ Moser
iteration to get the desired estimate.

For q � 0 and ⌘ 2 C1
0

(⌦̃) there exists c = c(f̃ , p) such that

ˆ
˜

⌦

ũqf̃(rũ)⌘pd⌫  c

ˆ
˜

⌦

ũp+q|r⌘|pd⌫. (3.19)

The case q = 0 follows as in (3.18). Also for a positive �-measurable function ũ and
for 0 < q < 1 we have

ˆ
˜

⌦

ũqd⌫ = q

1̂

0

tq�1�{z : ũ(z) > t}dt. (3.20)

19



Using (3.20), Lemma 3.1.9, as well as (3.19) with q = 0 and ũ replaced by max(ũ�t, 0),
we obtain that

ˆ
˜

⌦

ũqf̃(rũ)⌘pd⌫  c q

1̂

0

tq�1

ˆ

{z: ũ(z)>t}

|rũ|p⌘pd⌫dt

= c q

1̂

0

tq�1

ˆ

{z: ũ(z)>t}

|r(ũ� t)|p⌘pd⌫dt

 c2
1̂

0

tq�1

ˆ

{z: ũ(z)>t}

|ũ� t|p|r⌘|pd⌫dt

 c2
1̂

0

tq�1

ˆ

{z: ũ(z)>t}

ũp|r⌘|pd⌫dt

= c3
ˆ
˜

⌦

ũp+q|r⌘|pd⌫.

Therefore we have (3.19). Next we employ Moser iteration in (3.19) to get the desired
result.

Define ri =
1

2

+ 2�i�1 for i = 0, 1, 2, . . .. Let 0  �i  1 such that

�i 2 C1
0

(B(w, rir)), �i = 1 in B(w, ri+1

r), and |r�i| 
2i+3

r
.

Fixed t � 0 and set

hi =
⇣
ũ1+

t
p

⌘
�i.

Using (3.10), (3.19) and the estimate for |r�| we have that

0

B@
ˆ

B(w,rir)

|rhi|pd⌫

1

CA

1
p

 c

0

B@
ˆ

B(w,rir)

ũt|rũ|p�p
id⌫

1

CA

1
p

+

0

B@
ˆ

B(w,rir)

ũp+t|r�i|pd⌫

1

CA

1
p

 c

0

B@
ˆ

B(w,rir)

f̃(rũ)ũt�p
id⌫

1

CA

1
p

+

0

B@
ˆ

B(w,rir)

ũp+t|r�i|pd⌫

1

CA

1
p

 c2

0

B@
ˆ

B(w,rir)

ũp+t|r�i|pd⌫

1

CA

1
p

 c3
2i+1

r

0

B@
ˆ

B(w,rir)

ũp+td⌫

1

CA

1
p

.

(3.21)
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Using Sobolev’s inequality 3.1.3 and (3.21) we obtain

✓
�
ˆ
B(w,rir)

|hi|⌧pd⌫
◆ 1

⌧p

 crir

✓
�
ˆ
B(w,rir)

|rhi|pd⌫
◆ 1

p

 c (2i + 1)

✓
�
ˆ
B(w,rir)

ũp+td⌫

◆ 1
p

(3.22)

where ⌧ is the constant defined in Sobolev’s inequality 3.1.3. (3.21) and (3.22) yield

✓
�
ˆ
B(w,ri+1r)

ũ⌧(p+t)d⌫

◆ 1
⌧(p+t)

 c 2�
p

p+t2
pi
p+t (p+ t)

p
p+t

✓
�
ˆ
B(w,rir)

ũp+td⌫

◆ 1
(p+t)

. (3.23)

As (3.23) holds for every exponent p + t > p we can apply it to p⌧ i for i = 0, 1, . . ..
Iterating (3.23) we finally obtain the desired estimate,

ess sup
B(w, r2 )

ũ  lim
i!1

✓
�
ˆ
B(w,rir)

ũp⌧ i+1
d⌫

◆ 1
p⌧i+1

 c

✓
�
ˆ
B(w,r)

ũpd⌫

◆ 1
p

.

(3.24)

Hence if follows from (3.24) that

ess sup
B(w, r2 )

ũp  cr�2

ˆ

B(w,r)

ũpd⌫

which finishes the proof for the right hand inequality of Lemma 3.1.10.

Lemma 3.1.11 (Harnack’s Inequality). Let ũ, ⌦̃, r, w be as in Lemma 3.1.10. Then
there is a constant c = c(p, f) such that

ess sup
B(w̃,s)

ũ  c ess inf
B(w̃,s)

ũ. (3.25)

whenever B(w̃, 2s) ⇢ B(w, 4r) \ ⌦̃.

Proof. We may assume that ũ > 0 in B(w, 4r) \ ⌦̃ (otherwise we can consider ũ+ "
for small " > 0). First assume that B(w̃, 4s) ⇢ B(w, 4r) \ ⌦̃. Then by (3.24) and
[17, Theorem 3.41] we see for small t > 0

ess sup
B(w̃,s)

ũ  c

✓
�
ˆ
B(w̃,2s)

ũtd⌫

◆ 1
t

 c ess inf
B(w̃,s)

ũ. (3.26)

To finish the proof when B(w̃, 2s) ⇢ B(w, 4r) \ ⌦̃, we use the fact that for any two
points ŵ0, ŵ00 2 B(w̃, s) there is a chain of finitely many balls B(w̃

1

, s
1

), . . . , B(w̃n, sn)
such that ŵ0 2 B(z

1

, s
1

), ŵ00 2 B(w̃n, sn), B(w̃i, 4si) ⇢ B(w, 4r) \ ⌦̃ for i = 1, . . . , n
and B(w̃i, si) \ B(w̃i+1

, si+1

) 6= ; for i = 1, . . . , n� 1. Then a repeated use of (3.26)
proves Lemma 3.1.11.
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Next we show local Hölder continuity which follows from an iteration argument
using Harnack’s inequality.

Lemma 3.1.12. Let ũ, ⌦̃, w, r be as in Lemma 3.1.10. Let 0 < s
0

< 1 and suppose
that B(w

0

, s
0

) ⇢ B(w, 4r) \ ⌦̃. Then for 0 < s < s
0

there is a constant 0 < ↵ =
↵(p, f)  1 such that

osc
B(w0,s)

ũ  2↵
⇣

s
s0

⌘↵
osc

B(w0,s0)
ũ. (3.27)

Note that Lemma 3.1.12 implies for every w̃, ŵ 2 B(w
0

, s) that

|ũ(w̃)� ũ(ŵ)|  osc
B(w0,s)

ũ  2↵
⇣

s
s0

⌘↵
osc

B(w0,s0)
ũ  c| w̃�ŵ

s |↵ ess sup
B(w0,s0)

ũ.

Thus,

Corollary 3.1.13 (Interior Hölder Continuity). For fixed p, 1 < p < 1, let ũ, ⌦̃, w, r
be as in Lemma 3.1.10. Then ũ has an ↵�Hölder continuous representative in
B(w

0

, s) for every 0 < s < s
0

< 1 whenever B(w
0

, s
0

) ⇢ B(w, 4r) \ ⌦̃.

Proof of Lemma 3.1.12. Let 0 < s < s
0

. As

✓
ũ� ess inf

B(w0,s)
ũ

◆
is a non-negative weak

solution to (3.3), we can apply Harnack’s inequality to this function on B(w
0

, s/2) to
get

ess sup
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ  c

 
ess inf
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ

!
. (3.28)

Assume we have

ess inf
B(w0,

s
2 )

ũ� ess inf
B(w0,s)

ũ  1

c

 
ess sup
B(w0,

s
2 )

ũ� ess inf
B(w0,s)

ũ

!
. (3.29)

Then using (3.28) we have

osc
B(w0,

s
2

)

ũ = ess sup
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ+ ess inf
B(w0,s)

ũ� ess inf
B(w0,

s
2

)

ũ

 (c� 1)

 
ess inf
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ

!

 c�1

c

 
ess sup
B(w0,s)

ũ� ess inf
B(w0,s)

ũ

!

 c�1

c osc
B(w0,s)

ũ.
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If (3.29) is false, then we have

ess inf
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ > 1

c

0

@ess sup
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ

1

A . (3.30)

Using (3.28) we see that

osc
B(w0,

s
2

)

ũ = ess sup
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ�
 
ess inf
B(w0,

s
2

)

ũ� ess inf
B(w0,s)

ũ

!

< (1� 1

c
)

 
ess sup
B(w0,s)

ũ� ess inf
B(w0,s)

ũ

!

 c�1

c osc
B(w0,s)

ũ.

In both cases (3.29), (3.30) we have

osc
B(w0,

s
2

)

ũ  c�1

c osc
B(w0,s)

ũ. (3.31)

If we iterate (3.31) we see that

osc
B(w0,s)

ũ  ( c�1

c )m�1 osc
B(w0,2m�1s)

ũ

 ( c�1

c )m�1 osc
B(w0,s0)

ũ
(3.32)

where m is an integer � 1 with 2m�1  s
0

/s  2m. Then for some ↵ we have the
desired result.

Next we show Hölder continuity of ũ near B(w, 4r) \ @⌦̃.

Lemma 3.1.14 (Behavior of ũ near the boundary). Let ũ be as in Lemma 3.1.10
and w 2 @⌦̃. Then there is ↵ = ↵(p, f) > 0 such that ũ has a Hölder continuous
representative in B(w, r) and if w̃, ŵ 2 B(w, r) then

|ũ(w̃)� ũ(ŵ)|  c

✓
|w̃ � ŵ|

r

◆↵

ess sup
B(w,2r)

ũ. (3.33)

Proof. The proof for p > 2 follows from Lemma 3.1.10 and Morrey’s Theorem 3.1.4.
For 1 < p  2 we note that there is a continuum⇢ B(w, t) \ ⌦̃ connecting w to

@B(w, t) as follows from simply connectivity of ⌦̃. We also note that this continuum
is uniformly fat in the sense of p�capacity (see [23] for the definition of uniformly
fat set). That is, the p�capacity of this continuum is � c�1 times the p�capacity of
B(w, r).
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We can find h 2 W 1,p(B(w, 2r) \ C(B(w, 2r)) with h = 0 on @⌦̃ \ B(w, r) and
h = 1 in ⌦ \ B(w, 2r). Then using this in the Wiener integral in [17][Theorem 6.18]
we obtain for 0 < ⇢  r/2

osc
B(w,⇢)\˜

⌦

u  osc
@ ˜⌦\B(w,2⇢)

 
ess sup
B(w,2r)

ũ

!
h

+ osc
@ ˜⌦

 
ess sup
B(w,2⇢)

ũ

!
h exp

2

64�c

2⇢ˆ
⇢

 
capp((C \ ⌦̃) \B(w, t), B(w, 2t))

capp(B(w, t), B(w, 2t))

! 1

p�1 dt

t

3

75

 2�c ess sup
B(w,2⇢)

ũ

(3.34)

for some c = c(p, f, ⌦̃) > 0. Then using (3.34) we have

ess sup
B(w,⇢)

ũ  c ess sup
B(w,2⇢)

ũ (3.35)

for some 0 < c = c(f, p) < 1 and 0 < 4⇢ < r. Then iterating (3.35) we obtain Lemma
3.1.14 for 1 < p  2 when w̃ or ŵ in B(w, 4r) \ @̃⌦. Other values of w̃, ŵ in (3.33)
are handled by using this estimate and the interior estimate in Lemma 3.1.12

Lemma 3.1.15. For fixed p, 1 < p < 1, and let ũ, ⌦̃, w, r be as in Lemma 3.1.10.
Let µ be the measure corresponding to ũ as in (1.9).

Then

1

c r
p�2µ(B(w, r

2

))  ess sup
B(w,r)

ũp�1  c rp�2µ(B(w, 2r)). (3.36)

Proof. Let 0 < s < t < 10⇢, and � 2 C1
0

(B(w, t)) with � = 1 on B(w, s) and
|r�|  c/(t� s). Then as in (3.18)

ˆ

B(w,s)

f̃(rũ)d⌫  c

ˆ

B(w,t)

ũp|r�|pd⌫

 c t2

(t�s)p (ess sup
B(w,t)

ũ)p
(3.37)

Using (1.9) and (3.37) with s = ⇢, t = 3

2

⇢, as well as Lemma 3.1.9 and Lemma 3.1.10
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we obtain that

µ(B(w, ⇢)) 
ˆ

B(w,
3

2

⇢)

� dµ = �
ˆ

B(w,
3

2

⇢)

hrf̃(rũ),r�id⌫

 c

ˆ

B(w,
3

2

⇢)

|rũ|p�1|r�|d⌫

 c

0

BB@

ˆ

B(w,
3

2

⇢)

f̃(rũ)d⌫

1

CCA

p�1
p 0

B@
ˆ

B(w, 32⇢)

|r�|pd⌫

1

CA

1
p

 c

0

BB@

ˆ

B(w,
3

2

⇢)

f̃(rũ)d⌫

1

CCA

p�1
p

⇢
2
p�1

 c⇢2�p

 
ess sup
B(w,2⇢)

ũ

!p�1

(3.38)

Since this estimate holds with ⇢ = r/2, we obtain the left inequality of Lemma 3.1.15.
To obtain the right hand inequality of the Lemma 3.1.15 we will divide the proof

into two parts, we first prove it for p � 2 and then for 1 < p < 2.
For p � 2, let h be a weak solution to (3.3) in ⌦0 = B(w, 2r) with h = ũ on

@B(w, 2r) in the Sobolev sense. That is h � ũ 2 W 1,p
0

(B(w, 2r)). Then by the
maximum principle 3.1.1 we have 0  ũ  h (for details see [16]). Then using once
again Harnack’s inequality for h we have

ess sup
B(w,r)

ũ  ess sup
B(w,r)

h  ch(w
1

)  c2h(w) (3.39)

whenever w
1

2 B(w, r).
It follows from boundary Hölder continuity of ũ in Lemma 3.1.14 that

ess sup
B(w,r1)

ũ  c

✓
r
1

r
2

◆↵

ess sup
B(w,r2)

ũ whenever 0 < r
1

< r
2

< 2r (3.40)

for some 0 < ↵ = ↵(f, p) < 1. Hence

ess sup
B(w,c1r)

ũ  1

2

min
B(w,r)

h. (3.41)

for some c
1

= c
1

(f, p) > 0. From (3.41) we conclude that there are constants c
2

, c
3

depending on f, p and for every w
1

2 B(w, c
1

r) that

c
2

h(w)  (h� ũ)(w
1

)  c
3

h(w). (3.42)
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We are now ready to prove the right hand inequality for p � 2 using Poincaré’s
inequality, (1.9), that h is a weak solution to (1.8), and Lemma 3.1.9. Let � =
min{h� ũ, c

3

h(w)} and let D be the set where r� exists and is nonzero. We have

(c
2

h(w))p(c
1

r)2  c

ˆ
D

�pd⌫

 crp
ˆ
D

|r�|pd⌫

 crp
ˆ
D

(|rh|+ |rũ|)p�2|rh�rũ|2d⌫

 crp
ˆ
D

h(rf̃(rh)�rf(rũ)), (rh�rũ)id⌫

= �crp
ˆ
D

hrf̃(rũ),r�id⌫

= crp
ˆ
�dµ

 c
3

h(w)rpµ(B(w, 2r)).

(3.43)

To prove the right hand inequality for 1 < p < 2 let r  s  2r, and h(w, s) be a
weak solution to (3.3) in ⌦̃ = B(w, s) and h� ũ 2 W 1,p

0

(B(w, s)). Then as in (3.39)
for 0 < s

1

< s we obtain that

ess sup
B(w,s1)

ũ  c

✓
s
1

s� s
1

◆↵

h(w
1

, s) for w
1

2 B(w, s
1

). (3.44)

For large enough c, we can choose s
1

= �s (� small enough) so that

c
4

h(w, s)  (h(w
1

, s)� ũ(w
1

))  c
5

h(w, s) for w
1

2 B(w, s
1

) (3.45)

where c
4

, c
5

depend only on f and p. Once again set � = min{h � ũ, c
5

h(w, s)} and
let D be the the set where r� is nonzero and exists. Using Poincaré’s inequality,
Lemma 3.1.9, and that h is a weak solution to (3.3) in ⌦0 = B(w, s) we find

(c
2

h(w, s))p(d
1

s
1

)2  c

ˆ
D

�pd⌫

 csp
ˆ
D

|r�|pd⌫

 csp A ⇥ B

(3.46)

where

A =

0

@
ˆ
D

(|rh|+ |rũ|)p�2|rh�rũ|2d⌫

1

A

p
2
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and

B =

0

@
ˆ
D

(|rh|+ |rũ|)p d⌫

1

A

2�p
p

.

As in the proof of the p > 2 case,
ˆ
D

(|rh|+ |rũ|)p�2|rh�rũ|2d⌫  c

ˆ
h(rf̃(rh)�rf̃(rũ)), (rh�rũ)id⌫

= c

ˆ
� dµ

 c
5

h(w, s)µ(B(w, s)).
(3.47)

To finish the proof we need to obtain a similar estimate for the second part of (3.46).
To this end we use the fact that h is a weak solution to (3.3), h� u is an admissible
function, (3.2), and Lemma 3.1.9 to obtain

ˆ

B(w,s)

|rh|pd⌫  c

ˆ

B(w,s)

|rũ|pd⌫ (3.48)

Using (3.46)-(3.48), and an iteration argument (a more general argument can be
found in [9]) we obtain the desired result.

3.2 Relation Between Measures

Using Lemma 3.1.15 we prove that H-dim µ is independent of the corresponding u.
Indeed, we show that µ̃, µ̂ corresponding to ũ, û respectively as in (1.9) are mutually
absolutely continuous. Hence H-dim µ̃ = H-dim µ̂. We also conclude from mutual
absolute continuity of µ̃, µ̂ that our Main Theorem 1.2.9 holds for a measure µ̃ if and
only if it holds for µ̂.

To this end, let ⌫ be a compactly supported finite Borel measure, not identically
zero and suppose that there is a Borel set E ⇢ C with ⌫(E) > 0. Suppose also for
z 2 E that there exists r

0

depending on z such that

⌫(B(z, r))  �⌫(B(z, 100r)) for 0 < r < r
0

. (3.49)

Then iterating (3.49) we obtain for � small enough and some M < 1 that

⌫(B(z, r))  Mr4, 0 < r < r
0

. (3.50)

Then (3.50) implies that

lim
r!0

⌫(B(z, r))

r3
= 0 whenever z 2 E. (3.51)
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From a covering argument it then follows that ⌫(E)  cH3(E) = 0 which is a
contradiction. Therefore we have that for every compactly supported finite Borel
measure ⌫, not identically zero, on C, there is a c < 1 which is independent of w, r
so that if

� =

⇢
z 2 support of ⌫ : lim inf

r!0

⌫(B(z, 100r))

⌫(B(z, r))
 c

�
. (3.52)

then ⌫(C \ �) = 0.
To compare dimension of measures we first define the capacitary function relative

to a point. That is choose a point z̃ 2 ⌦̃ and define D̃ := ⌦̃ \ B(z̃, d(z̃, @⌦̃)/2). h
is called a capacitary function if h is a weak solution to (3.3) in D̃ with boundary
values h ⌘ 0 on @⌦̃ and h ⌘ 1 on @B(z̃, d(z̃, @⌦̃)/2). Then again there is a finite
Borel measure ⌫ with support on @⌦̃ satisfying (1.9).

Lemma 3.2.1. Let ũ be as in non-negative weak solution to (3.3) with ũ = 0 on @⌦̃
in the W 1,p(⌦̃) Sobolev sense and let û be a capacitary function defined as above. Let
µ̃, µ̂ be the measures corresponding to ũ, û, respectively as in (1.9). Then µ̃, µ̂ are
mutually absolutely continuous.

Proof. Let N be a neighborhood of @⌦̃ with @⌦̃ ⇢ N ⇢ N . Since both ũ and û are
continuous we can find c < 1 with

ũ  cû  c2ũ on @N \ ⌦̃. (3.53)

Then by the maximum principle, Lemma 3.1.1 and compactness we have

ũ  cû  c2ũ in N \ ⌦̃. (3.54)

Observe also that support of µ̃, µ̂ = @⌦̃ by (3.36). Then by (3.36) and (3.54) there is
r
0

and c
2

< 1 such that

µ̃(B(z, r))  c
2

µ̂(B(z, 2r))  c2
2

µ̃(B(z, 4r)) (3.55)

whenever z 2 @⌦̃ and 0 < r < r
0

.
Suppose that there is a Borel set K

1

⇢ @⌦̃ with µ̃(K
1

) = 0 and µ̂(K
1

) > 0.
Then by the observation in (3.52) for ⌫ = µ̂ there is � and a compact set K

2

with
K

2

⇢ K
1

\ � and µ̂(K
2

) > 0. On the other hand, given " > 0 we can find an open
set K

3

with K
1

⇢ K
3

and µ̃(K
3

) < ".
By Vitalli’s covering argument we can find {zi, ri} with zi 2 @⌦̃ satisfying K

2

⇢S
i
B(zi, 100ri)} ⇢ K

3

, and {B(zi, 10ri)} are pairwise disjoint. Using (3.52) for ⌫ = µ̂

we may also assume
µ̂(B(zi, 100ri))  c

3

µ̂(B(zi, ri)).

With these observations and (3.55) we see that

µ̂(K
1

)  µ̂(
[

i

B(zi, 100ri)) 
X

i

µ̂(B(zi, 100ri))

 c
3

X

i

µ̂(B(zi, ri))  c
X

i

µ̃(B(zi, 10ri))

 cµ̃(K
3

)  c"

(3.56)
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where c = c(c
2

, c
3

) is independent of ". Since " is arbitrary we have that µ̂(K
1

) = 0
which is a contradiction. Therefore for every Borel set E if µ̃(E) = 0 then µ̂(E) = 0.
Thus µ̂ is absolutely continuous with respect to µ̃. Reversing the role of µ̃ and µ̂ we
obtain µ̃ is absolutely continuous with respect to µ̂.

3.3 More Advanced Regularity Results

In this section we study more advanced regularity properties of a weak solution u to
(3.3).

We first obtain regularity results for ru. To this end, assume that B(w, 4r) ⇢ ⌦̃
and let u" be a weak solution to

0 = r · (rf"(ru"(w))) =
2X

k=1

∂
∂zk

✓
∂f"
∂⌘k

(ru"(w))

◆
(3.57)

in B(w, 2r) with u" � u 2 W 1,p
0

(B(w, 2r)) where f" = f ⇤ ✓" defined in chapter 2. Let
f "
kj = (f")⌘k⌘j(ru").
The De Giorgi method can be used to obtain that the directional derivative ⇣ =

(u")⇠ is in W 1,2(B(w, r)) and satisfies a uniformly elliptic equation in divergence form
(for more details see [14]). To find this equation recall that

0 =

ˆ

B(w,2r)

hrf"(ru"),r�id⌫. (3.58)

for every admissible function � 2 C1
0

(B(w, 2r)). Then taking (�)⇠ as an admissible
function and after an integration by parts, we get

0 =

ˆ

B(w,2r)

hrf"(ru"),r�⇠id⌫

= �
ˆ

B(w,2r)

hr⇠ (rf"(ru")) ,r�id⌫

= �
ˆ

B(w,2r)

2X

k,j=1

f "
kj ((u")⇠)zj�zk d⌫

=

ˆ

B(w,2r)

2X

k,j=1

∂
∂zk

�
f "
kj ((u")⇠)zj

�
� d⌫

(3.59)

It follows from (3.59) and pde theory that ⇣ = (u")⇠ is a weak solution to

0 =
2X

k,j=1

∂
∂zk

✓
f "
kj

∂⇣
∂zj

◆
. (3.60)
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in B(w, 2r). Here ellipticity constants and W 2,2 norm of u" depend on ".
On the other hand, u" also satisfies a nondivergence form equation (3.57) after

division by (|ru"|+ ")p�2. That is, ⇣ = u" is a weak solution to

0 =
1

(|ru"|+ ")p�2

2X

j,k=1

f "
kj⇣zjzk . (3.61)

in B(w, 2r). It follows from (2.24) that ellipticity constants are independent of ".
Now we argue as in [13, Chapter 5] to get that ru" is a K�quasiregular mapping

where K is independent of ". To this end, let

h" = h(u")z1 ,�(u")z2i

a" =
(f")⌘1⌘1(ru")

(|ru"|+ ")p�2

, b" =
(f")⌘1⌘2(ru")

(|ru"|+ ")p�2

, c" =
(f")⌘2⌘2(ru")

(|ru"|+ ")p�2

,

p" = (u")z1 , q" = (u")z2 .

We show that h" satisfies (2.2) for some finite constant K. We can write (3.57) for ⌫
a.e in B(w, 2r) as

0 =
a"

c"
p"z1 +

2b"

c"
p"z2 + q"z2 , (3.62)

and

0 = p"z1 +
2b"

c"
q"z1 +

c"

a"
q"z2 . (3.63)

Then p" = (u")z1 is a weak solution to a uniformly elliptic partial di↵erential equation
in divergence form,

0 = (
a"

c"
p"z1 +

2b"

c"
p"z2)z1 + (q"z2)z1

= (
a"

c"
p"z1 +

2b"

c"
p"z2)z1 + (p"z1)z2 .

Similarly q" is a weak solution to

0 = q"z1 + (
2b"

a"
q"z1 +

c"

a"
q"z2)z2 .

Multiplying (3.62) by c"p"z1 and using p"z2 = q"z1 we obtain for ⌫ a.e in B(w, 2r),

1

c

�
(p"z1)

2 + (p"z2)
2

�
 1

c

�
a"(p"z1)

2 + 2b"(p"z1)(p
"
z2) + c"(p"z2)

2

�

=
1

c

�
a"(p"z1)

2 + 2b"(p"z1)(p
"
z2) + c"(p"z2)

2 + c"p"z1q
"
z2 � c"p"z1q

"
z2

�

=
1

c

�⇥
a"(p"z1)

2 + 2b"(p"z1)(p
"
z2) + c"p"z1q

"
z2

⇤
+ c"

⇥
(p"z2)

2 � p"z1q
"
z2

⇤�

=
1

c
(0 + c"Jh") =

c"

c
Jh" .

(3.64)
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where Jh" = p"z2q
"
z1 � p"z1q

"
z2 is the Jacobian determinant of h". Similarly we have,

1

c

�
(q"z1)

2 + (q"z2)
2

�
 a"

c
Jh" for ⌫ a.e in B(w, 2r). (3.65)

Then adding (3.64) and (3.65) we deduce

kDh"k2  K Jh"(z), ⌫ a.e in B(w, 2r), (3.66)

for some constant K which depends on the constant c in (2.24).
Therefore h" is a K�quasiregular mapping. Then u" 2 W 2,2(B(w, 2r)) with norm

independent of ". Also ru" is ↵�Hölder continuous where ↵ = K �
p
K2 � 1 with

constant independent of " (see [22]).
Since ru" ! ru in W 1,p(B(w, 2r)), then for some subsequence, "i ! 0 we have

ru"i ! ru a.e in B(w, 2r). {ru"i} is equicontinuous as {ru"i} is uniformly Hölder
continuous with constant independent of ". We may redefine ru in a set of measure
zero if needed, ru"ik

! ru on compact subsets of B(w, 2r). Then it follows from
[22] that ru is a K�quasiregular mapping. From quasiregularity we also have

krukW 1,2
(B(w,r)\˜

⌦)

 ckruk
L2

(B(w,
3r
2

)\˜

⌦)

(3.67)

where c = c(p), and ru is ↵�Hölder continuous. Using these facts and basic Cac-
ciopoli type estimates for u⇠ we deduce the following lemma,

Lemma 3.3.1 (Local interior regularity for ru). Let u, f, ⌦̃ be as in Lemma 3.1.10
with ũ, f̃ replaced by u, f respectively. If B(w̃, 4s) ⇢ B(w, 4r)\ ⌦̃, then u has a repre-
sentative with Hölder continuous derivatives in B(w̃, 2s) (also denoted u). Moreover
there exists �, 0 < � < 1, and c � 1, depending only on f and p, with

|ru(z̃)�ru(ẑ)|  c

✓
|z̃ � ẑ|

s

◆�

ess sup
B(w̃,s)

|ru|  c

s

✓
|z̃ � ẑ|

s

◆�

ess sup
B(w̃,s)

u. (3.68)

Also if ru 6= 0 in B(w̃, 2s), then

ˆ

B(w̃,s)

|ru|p�2

2X

k,j=1

(uzkzj)
2d⌫  c

(t� s)2

ˆ

B(w̃,t)

|ru|pd⌫ (3.69)

for s < t < 2s.

Lemma 3.3.2. Let u, f, ⌦̃, w, r be as in Lemma 3.1.10 with u, f replaced by ũ, f̃
respectively. Let ru 6= 0 in B(w̃, 4s) ⇢ B(w, 4r) \ ⌦̃.

Then h(z) = log |ru|(z) is a weak solution to a uniformly elliptic divergence form
partial di↵erential equation for which a Harnack inequality holds.

Proof. As ru is a K�quasiregular mapping and by assumption ru 6= 0 in B(w̃, 4s)
then h(z) is well-defined in B(w̃, 4s) and is a weak solution to

2X

i,j=1

@

@zi

�
Aijhzj

�
= 0 in B(w̃, 4s) (3.70)
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where (Aij) = A, D2u = ( ∂2
u

∂zj∂zi ), and

A =

⇢
detD2u

�
D2uT D2u

��1

if D2u is invertible,
Identity matrix otherwise

(for more details see [17, Chapter 14]). It follows from an observation in [17, Theorem
14.61] and K�quasiregularity of ru that

1

c |⌘|
2  A⌘ · ⌘  c|⌘|2 a.e in B(w̃, 4s) and for all ⌘ 2 R2.

Therefore h = log |ru| is a weak solution to a uniformly elliptic partial di↵erential
equation in divergence form in B(w̃, 4s) from which we conclude Harnack’s inequality
can be applied to h in B(w̃, 4s) when h > 0.

3.4 A Proof of ru 6= 0 in D using the Principle of the Arguments

In this section, using the principle of the argument we give a proof that ru 6= 0 in
D. Indeed, we use the principle of the argument for a K�quasiregular mapping.

Let u be the capacitary function and ⌦ as in Lemma 3.4 where ũ, ⌦̃ replaced u,⌦
respectively. Since (1.7) is invariant under dilation and translation we may assume
that 0 2 ⌦, D = ⌦ \ B(0, 1), and d(0, @⌦) = 4. Let uz = uz1 � iuz2 . Then from
section 3.3 we have uz is a K�quasiregular mapping and therefore the zeros of uz

are isolated and countable in D. Therefore, there exist 0 < t
0

< t
1

< 1 with t
0

is
arbitrarily close to 0 and t

1

is arbitrarily close to 1. Moreover, we have uz 6= 0 on
�j = {z 2 D; u(z) = tj} for j = 0, 1. K�quasiregularity of uz implies that uz is
↵�Hölder continuous for some 0 < ↵ < 1. Then �j, j = 0, 1, is a C1,↵ Jordan curve
and without loss of generality we can assume that �j is oriented counterclockwise for
j = 0, 1.

Let �j = uz(�j) for j = 0, 1. We claim that

1

2⇡i

0

@
ˆ
�0

dw

w
�
ˆ
�1

dw

w

1

A = #of zeros of uz in {z 2 D; t
0

< uz < t
1

} (3.71)

Indeed, (3.71) is well-known if uz is analytic as follows from the ”principle of the
argument”.

We prove (3.71) using this idea and the Stöılov factorization theorem 2.1.3, that
is

uz(z) = h � g(z), z 2 D (3.72)

where h is an analytic function in g(D) and g is a K�quasiconformal mapping of D.
Then

@g({z 2 D; t
0

< u(z) < t
1

}) = ⌧
0

[ ⌧
1

= (g � �
0

) [ (g � �
1

) (3.73)
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where ⌧j = g � �j is a C� Jordan curve for some 0 < � < 1, oriented counterclockwise
for j = 0, 1. Applying the principle of the argument to h as in (3.71) we claim that

1

2⇡i
[4 arg (h � ⌧

0

)�4 arg (h � ⌧
1

)] = #of zeros of h in g({z 2 D; t
0

< |z| < t
1

}).
(3.74)

Here 4 arg (h � ⌧j), j = 0, 1, denotes the change in the argument of h � ⌧j as ⌧j is
traversed counterclockwise.

To prove claim (3.74) we first show that 4 arg h(⌧j) = 4 arg h(�j) for j = 0, 1
where �j is a Jordan curve. That is homotopic to ⌧j by a deformation which does
not pass through the zeros of uz. Choosing �j su�ciently smooth we get (3.74) from
this observation and the principle of the argument in [1]. (3.71) follows from the fact
that g�1 is a homeomorphism of C onto C and (3.74).

Moreover, let zj(s), 0  s  1 be a parametrization of �j for j = 0, 1. Since �j is
C1,↵ we have

0 =
d

ds
(tj) =

d

ds
(u(zj(s)))

= uz
dzj(s)

ds
+ uz

dzj(s)

ds

= 2Re[uz
dzj(s)

ds
].

(3.75)

Therefore, uz
dzj(s)
ds is always pure imaginary on �j, j = 0, 1, and so

0 = 4 arg [uz
dzj(s)

ds
]

= 4 arg uz(�j) +4 arg
dzj(s)

ds
.

(3.76)

From (3.76) we see that

4 arg uz(�j) = �4 arg
dzj(s)

ds
(3.77)

Finally, as �j, j = 0, 1 is a Jordan curve oriented counterclockwise, it follows from
the Gauss-Bonnet Theorem that

1

2⇡
4 arg

dzj
ds

= 1 for j = 1, 2. (3.78)

One way to prove (3.78) using analytic function theory is to use the Riemann mapping
theorem to first get  j mapping {z |z| < 1} onto Gj =: inside of �j, j = 0, 1. As
in [27] it follows that  j extends to a C1,� homeomorphism of {z |z|  1} onto Gj.
Then we can put

zj(s) =  j(e
2⇡is), 0  s  1, (3.79)
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and observe that

dzj(s)

ds
= 2⇡i 0

j(e
2⇡is)e2⇡is. (3.80)

Then on {z; |z| = 1} we have

4 arg
dz

ds
= 4 arg 0

j(z) +4 arg z

= 0 + 2⇡ = 2⇡.
(3.81)

In view of (3.77), (3.78), (3.72), and (3.74) we conclude uz 6= 0 in G
1

\G
0

, i.e between
the level sets �

0

and �
1

. Using this observation and letting t
0

! 0, and t
1

! 1 in
(3.71) we have the desired result, uz 6= 0 in D.

Copyright c� Murat Akman, 2014.
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Chapter 4 A Pointwise Estimate and A Weak Solution Argument

4.1 Fundamental Inequality

In this section we prove the so called fundamental inequality. We mimic the proof
given in [25] and modify it to our case.

We first give the definitions of the hyperbolic metric and the quasi-hyperbolic
metric.

Definition 4.1.1 (The Hyperbolic Distance). Let z
1

, z
2

2 D and let � be the set of
all arcs in D connecting z

1

to z
2

.
The hyperbolic distance ⇢D(z1, z2) from z

1

to z
2

is

⇢D(z1, z2) = inf
�2�

ˆ
�

|dz|
1� |z|2 . (4.1)

As the hyperbolic distance is conformally invariant, it can be defined in a simply
connected domain ⌦ 6= C by moving back to D via a conformal map � : D ! ⌦.
That is

⇢
⌦

(w
1

, w
2

) = ⇢D(z1, z2)

when wi = �(zi), for i = 1, 2. Moreover, ⇢
⌦

(w
1

, w
2

) is independent of the choice of
the conformal map �.

Definition 4.1.2 (Quasi-hyperbolic Distance). Let w
1

, w
2

2 ⌦ and let �0 be the set
of all arcs in ⌦ connecting w

1

to w
2

.
The Quasi-hyperbolic distance Q

⌦

(w
1

, w
2

) between w
1

and w
2

is

Q
⌦

(w
1

, w
2

) = inf
�2�0

ˆ
�

|dw|
dist(w, @⌦)

. (4.2)

We next give two estimates of Koebe (A proof of these estimates can be found in
[12, Theorem 4.3 and Theorem 4.5]).

Theorem 4.1.3 (Koebe’s estimate). Let h(z) be a conformal mapping from the unit
disc D onto a simply connected domain ⌦. Then for all z 2 D

1

4

|h0(z)|(1� |z|2)  dist(h(z), @⌦)  |h0(z)|(1� |z|2). (4.3)

It follows from Koebe’s estimate that the hyperbolic distance is comparable to
the quasi-hyperbolic distance. That is, if we let w = h(z) then (4.3) can be written
as

4|dz|
1� |z|2 � |h0(z)||dz|

d(h(z), @⌦)
=

|dw|
d(w, @⌦)

� |dz|
1� |z|2 (4.4)

Then from (4.4) we see

⇢
⌦

 Q
⌦

 4⇢
⌦

. (4.5)
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Theorem 4.1.4 (Koebe’s Theorem). Let h(z) be a univalent function, that is h is
analytic and one-to-one in D. Assume also that h(0) = 0 and h0(0) = 1. Then

1� |z|
(1 + |z|)3  |h0(z)|  1 + |z|

(1� |z|)3 . (4.6)

We give a distortion estimate which is an application of Koebe’s Theorem 4.1.4.
That is, for every conformal mapping h : B(0, 1) ! C, and for every z

1

, z
2

2 ⌦ \
B(z

0

, r), where 2r = d(z
0

, @⌦), then

⇢
⌦

(z
1

, z
2

)  c
1

=) |h0(h�1(z
2

))|  c
2

|h0(h�1(z
1

))| (4.7)

for some c
2

= c
2

(c
1

).
Next we give the so called fundamental inequality.

Fundamental Inequality 4.1.5. Fix p, 1 < p < 1, let u be a capacitary function
defined before Lemma 3.2.1 for D = ⌦ \B(z

0

, d(z
0

, @⌦)/4). Then there is a constant
c = c(f, p) such that

1

c

u(z)

d(z, @⌦)
 |ru(z)|  c

u(z)

d(z, @⌦)
(4.8)

whenever z 2 D and d(z, @⌦) � d(z0,@⌦)

2

.

Proof. As u is a capacitary function then by subsection 3.4 we have ru 6= 0 in D.
To prove (4.8) we show that for z̃ 2 D \B(z

0

, d(z
0

, @⌦)/2) there is z? 2 D such that

u(z?) =
u(z̃)

2
with ⇢

⌦

(z̃, z?)  c for some c = c(p, f). (4.9)

We postpone the proof of existence of such a point z? in (4.9)to the next subsec-
tion. At the moment, suppose that we have such a z?, and let � be the hyperbolic
geodesic connecting z̃ to z?.

Define

� =

⇢
� if � \B(z

0

, 3d(z
0

, @⌦)/8) = ;
�
1

+ �
2

+ �
3

otherwise
(4.10)

where �
1

is the subarc of � joining z̃ to the first point, P
1

on @⌦(z
0

, 3d(z
0

, @⌦)/8),
and �

2

is the shortest arc of @B(z
0

, 3d(z
0

, @⌦)/8) joining P
1

to P
2

where P
2

is the last
point of intersection of @B(z

0

, 3d(z
0

, @⌦)/8) and �. �
3

is the subarc of � joining P
2

to z?(see figure 4.1).
Using Koebe’s distortion theorem 4.1.4 there is c = c(f, p) such that

H1(�)  cd(z̃, @⌦) and 1

cd(z̃, @⌦)  d(�, @⌦). (4.11)
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P
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P
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z̃

z
0

@⌦

�
1

�
2

�
3

Figure 4.1: The hyperbolic geodesic � from z̃ to z? when �\B(z
0

, 3d(z
0

, @⌦)/8) 6= ;

Using (4.11) we see

1

2

u(z̃) = u(z̃)� u(z?)


ˆ
�

|ru(z)||dz|

 cH1(�) ess sup
�

|ru|

 c d(z̃, @⌦) ess sup
�

|ru|.

(4.12)

Thus for some ẑ 2 � we have

1

c

u(z̃)

d(z̃, @⌦)
 |ru(ẑ)|. (4.13)

where c = c(c, p) > 1. Moreover, it follows from Vitali’s covering argument and (4.11)
that there is {zi, ri}ni=1

with zi 2 � such that

� ⇢
n[

i

B(zi, ri),

B(zi, ri)
\

B(zi+1

, ri+1

) 6= ; for i = 1 . . . , n� 1, and

ri ⇡ d(B(zi, 4ri), @⌦) ⇡ d(z̃, @⌦)

(4.14)
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where n = n(f, p) is an absolute constant. By Harnack’s inequality applied to u, we
get u(z) ⇡ u(z̃) for z 2 [n

i=1

B(zi, 4ri). Using Lemma 3.3.1 and (4.14) we see

|ru(z)|  c
u(z̃)

d(z̃, @⌦)
for z 2

n[

i=1

B(zi, 2ri). (4.15)

Then for large c = c(p, f) � 1 we have

h(z) = log

✓
cu(z̃)

d(z̃, @⌦)|ru(z)|

◆
> 0 whenever z 2 [n

i=1

B(zi, 2ri). (4.16)

Choose j 2 {1, . . . , n} such that ẑ 2 B(zj, 2rj). Then from (4.13) we have h(z̃)  c.
Also from Lemma 3.3.2 and (4.16) it follows that h is a positive weak solution to a
uniformly elliptic divergence form partial di↵erential equation for which a Harnack’s
inequality holds. Therefore we can apply Harnack’s inequality in B(zj, 2rj) to get

h(z)  ess sup
B(zj ,rj)

h(z)

 c̃ ess inf
B(zj ,rj)

h

 ĉ

(4.17)

From (4.17) we have

u(z̃)

d(z̃, @⌦)
 c|ru(z)| for every z 2 B(zj, rj). (4.18)

It follows from (4.14) and finitely many repeated use of (4.18) the Harnack’s inequality
as in (4.17) to z̃ that we have (4.8) for z̃ 2 D \B(z

0

, d(z
0

, @⌦)/2).
To finish the proof of Lemma 4.1.5 , it remains to show that such a z? defined in

(4.9) exists.

Existence of z?

We can approximate ⌦ by a sequence of domains {⌦n} with ⌦
1

⇢ ⌦
2

. . . ⇢ ⌦n ⇢
. . . ⇢ ⌦ such that @⌦i is Jordan curve for i = 1, 2, . . . ,. Moreover, if we define un

as the capacitary function for Dn = ⌦n \ B(z
0

, r) where 2r = d(z
0

, @⌦). If we let
n ! 1 then it follows from the Hölder continuity of un that there are subsequences
unk

! u and runk
! ru uniformly on compact subsets of ⌦. Therefore, without

loss of generality we can assume that @⌦ is an analytic Jordan curve.
Let h : H ! ⌦ be a Riemann mapping which has a continuous extension from H

to ⌦. We can choose h so that for some s, 0 < s < 1, h(is) = z̃ and h(i) = z
0

. If
U = u � h then U satisfies a maximum principle and Harnack’s inequality since u has
these properties.

Define the box

B(is) = {z = w
1

+ iw
2

: �s  w
1

 s, and 0 < w
2

< s}. (4.19)
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In [25] it is shown that B(is) can be shifted to a nearby box B̃(is) with some nice
properties. To outline these properties let the boundary of B̃(is) on the upper half
plane be ⌥ which consists of line segment from w

1

+ is to w
2

+ is and line segments
from w

1

+ is to w
1

and w
2

+ is to w
2

for some �s < w
1

< �s/2 and s/2 < w
2

< s
(see Figure 4.2).

�s s

is

B(s)
H

w1�s �s
2

s
2

sw2

is

B̃(is)
H

Figure 4.2: The Boxes B(s) and B̃(is).

In [25] the authors show that U  cU(is) on ⌥. Then by the maximum principle
we see that U  cU(is) in B̃(is) for some c = c(p, f). It follows from this observation
that

u  C u(z̃) in Q(s). (4.20)

where Q(s) = h(B̃(is)). Also if � = h(⌥), then proceeding as in [25], we deduce that
there is an absolute constant c

1

such that

H1(�)  c
1

d(z̃, @⌦). (4.21)

and there is also c
2

and w
0

such that �s/4 < w
0

< s/4 satisfying

|h(w
0

)� z̃|  c
2

d(z̃, @⌦) and 1

c2
d(z̃, @⌦)  d(h(w

0

),�). (4.22)

Finally, there is a Lipschitz curve ⇤ : [0, 1] ! Q(s) and c
3

with ⇤(0) = z̃ and
⇤(1) = h(w

0

) satisfying

min{H1(⇤[0, t]), H1(⇤[t, 1])}  c
3

min{d(z̃, @⌦), d(⇤(t), @⌦)}. (4.23)

Let � be parametrized by [0, 1] with �(0) = is and �(1) = w
0

(see figure 4.3). If
we set

t? = max{t : U(�(t)) = 1

2

U(is)} (4.24)

then z? = h(�(t?)). By definition, we get u(z?) = u(z̃)/2.
It remains to show that ⇢

⌦

(z̃, z?)  c for some absolute constant c = c(p). To
this end, set r̃ = d(h(w

0

),�). Then by definition of � we have B(h(w
0

), r̃) \ ⌦ ⇢ �.
Using Hölder continuity of u restricted to � (see Corollary 3.1.13) and (4.21)-(4.23)
we obtain

1

2

u(z̃) = u(z?)  c

✓
d(z?, @⌦)

r̃

◆↵

ess sup
B(h(w0),r̃))\⌦

u

 c̃

✓
d(z?, @⌦)

d(z̃, @⌦)

◆↵

u(z̃).

(4.25)
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From (4.25) for some constant c = c(p) we see that

d(z̃, @⌦)  c d(z?, @⌦). (4.26)

It follows from (4.23) and (4.26) that there is a chain of at most c = c(p, f) balls
connecting z̃ to z?. Using this observation and (4.5) we obtain ⇢

⌦

(z̃, z?)  c.
We next give a proof for (4.20) by a contradiction argument. That is, suppose

for suitably large C̃ = C̃(p) that u(z̃) < C̃ u on �. Let B̃(is) be the shifted box and
set b

1,1 = b
1,1(s) = w

1

+ i�?s and b
2,1 = b

2,1(s) = w
2

+ i�?s for some fixed constant �?
depending on p. Observe that bi,1 is on the vertical side of � for i = 1, 2. There exist
B̃(bi,1) generated by bi,1 for i = 1, 2. Then these boxes B̃(bi,1) will generate one more
box B̃(bi,2) for i = 1, 2, and so on.

We choose a polygonal path �
1,1 from b

1,1 to some point in w
11

2 [Re b
1,1 �

Im b
1,1,Re b1,1 + Im b

1,1] in a way that the path �
1,1 is in the left half plane {Re z <

Re b
1,1}.
Similarly, we choose a polygonal path �

2,1 from b
2,1 to some point in w

21

2
[Re b

2,1 � Im b
2,1,Re b2,1 + Im b

2,1] in a way that the path �
2,1 is in the plane {Re z >

Re b
2,1} (See figure 4.3 for the construction).

b1,2
b2,2

b
1,1

w
1

H � � B̃(is)

w
0

w
11

w
21

�
1,1 �

2,1

�
1,1 �

2,1

b
2,1

w
2

is

w
12

w
22

�
1,2 �

2,2

Figure 4.3: Recursive Construction of the Boxes

It follows from Harnack’s inequality that there is a constant c0 depending only on
p and f such that

c0u(h(is))  u(h(z)) whenever z 2 � and �? s  Im z. (4.27)

The constant C̃ is assumed to be so large that C̃ > c0. Therefore we have C U(is) <
U(z) for some z 2 �

1,1 [ �
2,1.

Without loss of generality assume that z 2 �
1,1 (proof for z 2 �

2,1 is exactly the
same). We see that when C̃ gets larger, then z gets closer to the real axis. That is,
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if Kn < C̃ for some su�ciently large K and integer n we have Im z  �n? . Now it
follows from the construction of �

1,1 as in [25] that there a is � depending only on p,
such that if �? = e�

c
� for some constant c, then

|h(z)� h(w
11

)|  c̃�k�1d(h(b
1,1), @⌦).

Proceeding as in finding z?, let �
1,1 be the boundary of B̃(b

1,1) which stays in H
and if we set r̃

1,1 = d(f(w
11

), f(�
1,1)) then B(f(w

1,1), r̃1,1) \⌦ ⇢ f(B̃(b
1,1)). Then it

follows from Hölder continuity of u on �
1,1 (see Lemma 3.1.13) that

(u � h) (z)  C̃�↵n ess sup
˜B(b1,1)

(u � h) .

Choose n
0

to be the least positive integer satisfying C̃�↵n < K�1. For this choice of
C̃ > Kn0 we see

C̃K U(is) < KU(z) < ess sup
�1,1

U. (4.28)

It follows from (4.28) and U(b
1,1)  KU(is) that we can repeat the same argument

replacing B̃(is) with B̃(b
1,1). So we find b

1,2 on the vertical side of �
1,1 in H with

Im b
1,2 = �2? s and a box B̃(b

1,2) with boundary �
1,2 satisfying

C̃ U(b
1,2)  K2C̃ U(is)  ess sup

�1,2

U. (4.29)

If we recursively continue then we get a contradiction as U = 0 continuously on R.
Therefore (4.20) holds.

4.2 log f(ru) is a weak sub solution, solution or super solution to L

We first need some definitions.
Let A be a elliptic equations of the form

r · A(ru) = 0 (4.30)

where A : R2 ! R2 is a mapping satisfying certain structural assumptions.

Definition 4.2.1 (Weak Solution). A function u 2 W 1,p
loc

(⌦) is called a weak solu-
tion of (4.30) in ⌦ if

�
ˆ
⌦

hA(ru),r�id⌫ = 0

whenever � 2 W 1,p
0

(⌦).

Definition 4.2.2 (Weak sub solution). A function u 2 W 1,p
loc

(⌦) is called a weak
sub solution of (4.30) in ⌦ if

r · A(ru) � 0
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weakly in ⌦, i.e

�
ˆ
⌦

hA(ru),r�id⌫ � 0.

for every nonnegative � 2 W 1,p
0

(⌦).

Definition 4.2.3 (Weak super solution). A function u 2 W 1,p
loc

(⌦) is called a weak
super solution of (4.30) in ⌦ if

r · A(ru)  0

weakly in ⌦, i.e

�
ˆ
⌦

hA(ru),r�id⌫  0.

for every nonnegative � 2 W 1,p
0

(⌦).

When f in (1.2) is smooth enough and homogeneous of degree p in C \ {0} and
u is smooth enough as well as pointwise solution to (4.31), then in [2, Theorem 1]
it is shown that log f(ru) is a sub solution, solution or super solution to a partial
di↵erential equation respectively when 2 < p < 1, p = 2 or 1 < p < 2. In this
section we show that log f(ru) is a weak sub solution, solution or super solution to
a partial di↵erential equation L⇣ = 0 when

L⇣ =
2X

k,j=1

∂
∂zk

✓
f⌘j⌘k(ru)

∂⇣
∂zj

◆
. (4.31)

and u as in Theorem 3.2.1 is a p capacitary function. Using Lemmas 3.1.9, 3.3.1 as
well as the fundamental inequality 4.1.5 we obtain

0 =

ˆ
⌦

hrf(ru),r�zlid⌫

= �
ˆ
⌦

2X

k=1

∂(f⌘k(ru))

∂zl
�zkd⌫

= �
ˆ
⌦

2X

k,j=1

f⌘k⌘j(ru))(uzl)zj�zkd⌫.

(4.32)

From (4.32) we see that for l = 1, 2, ⇣ = uzl is a weak solution to L⇣ = 0.
We next show that ⇣ = u is also a weak solution to L⇣ = 0. To this end, by

homogeneity of f and Euler’s formula we have

2X

j=1

⌘jf⌘k⌘j(⌘) = (p� 1)f⌘k(⌘) and
2X

j=1

⌘jf⌘j(⌘) = pf(⌘) (4.33)
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for k = 1, 2 and for a.e. ⌘. Then it follows from (4.32) and (4.33) that

ˆ
⌦

2X

k,j=1

f⌘j⌘k(ru)uzj�zk d⌫ = (p� 1)

ˆ
⌦

2X

k=1

f⌘k(ru)�zkd⌫ = 0. (4.34)

Therefore ⇣ = u is also a weak solution to L⇣ = 0. We note also that since u, f 2
W 2,2

loc

(D) thanks to Lemmas 3.1.9, 3.3.1, and the fundamental inequality 4.1.5

0 =

ˆ
⌦

2X

k=1

f⌘k(ru)�zkd⌫

= �
ˆ
⌦

2X

k,l=1

f⌘k⌘l(ru)uzkzl�d⌫

(4.35)

As (4.35) holds for every � 2 W 1,p
0

(⌦), for ⌫ a.e z 2 ⌦ we have

0 =
2X

k,l=1

f⌘k⌘l(ru(z))uzkzl(z). (4.36)

Using both u and uzl for l = 1, 2 are weak solutions to L⇣ = 0 we show that
⇣ = log f(ru) is a weak sub solution, solution or super solution to L⇣ = 0 in (4.31)
respectively when p > 2, p = 2, p < 2. To this end, let v = log f(ru), bij = f⌘i⌘j(ru)
and observe that

bkjvzj =
1

f(ru)

2X

n=1

f⌘n(ru)bkjuznzj . (4.37)

Using (4.37) we see

ˆ
⌦

2X

k,j=1

bkjvzj�zk d⌫ =

ˆ
⌦

2X

k,j=1

1

f(ru)

2X

n=1

bkjf⌘n(ru)uznzj�zk d⌫

= �
ˆ
⌦

2X

n,k,j=1

∂
∂zk

✓
f⌘n(ru)

f(ru)

◆
bkjuznzj � d⌫

(4.38)

where to get the last line in (4.38) we have used

0 =

ˆ
⌦

2X

n,k,j=1

bkjuznzj

∂
∂zk

✓
f⌘n(ru)

f(ru)
�

◆
d⌫. (4.39)

(4.39) is a consequence of (4.32) and the fact that

f⌘k(ru)

f(ru)
2 W 1,2

loc

(⌦),
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thanks to Lemmas 3.1.9, 3.3.1, and the fundamental inequality 4.1.5.
From (4.38) we have

ˆ
⌦

2X

k,j=1

bkjvzj�zk d⌫ = �
ˆ
⌦

2X

n,k,j=1

∂
∂zk

✓
f⌘n(ru)

f(ru)

◆
bkjuznzj � d⌫

= �
ˆ
⌦

(I 0 + I 00)�d⌫

(4.40)

where

I 0 =
2X

n,j,k,l=1

1

f(ru)
bnlbkjuzlzkuznzj (4.41)

and

I 00 = � 1

f 2(ru)

2X

n,j,k,l=1

bkjf⌘n(ru)f⌘l(ru)uzlzkuznzj . (4.42)

We can rewrite (4.41) and (4.42) using matrix notation. Let

D2f = D2f(ru(z)) =


f⌘1⌘1 f⌘1⌘2
f⌘2⌘1 f⌘2⌘2

�
=


b
11

b
12

b
21

b
22

�

and

D2u = D2u(z) =


uz1z1 uz1z2

uz2z1 uz2z2

�
.

Let

ru = ru(z) =


uz1

uz2

�
and Df = Df(ru) =


f⌘1
f⌘2

�

be column vectors and set f = f(ru). The homogeneity conditions (4.33) can be
written in the following form

D2f ·ru = (p� 1)Df and p(p� 1)f = (ru)T ·D2f ·ru. (4.43)

Then (4.36) becomes

tr
�
D2f ·D2u

�
= 0 for ⌫ a.e z in ⌦. (4.44)

It follows from (4.44) that there exists m, n, l such that

D2f ·D2u =


m n
l �m

�
for ⌫ a.e z in ⌦. (4.45)
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Squaring both sides of (4.45) gives that

(D2f ·D2u)2 = (m2 + nl)


1 0
0 1

�
= � det(D2f ·D2u)I for ⌫ a.e z in ⌦. (4.46)

Using (4.45), we can write (4.41) as

I 0 =
1

f
tr
�
(D2f ·D2u)2

�

= �det(D2f ·D2u)

f
tr(I)

= �2
det(D2f ·D2u)

f
.

(4.47)

To handle (4.42) note from symmetry of D2u and D2f that

2X

k,j=1

bkjuzlzkuznzj

is the ln element of D2u ·D2f ·D2u.
So using (4.43) for ⌫ a.e z in ⌦ we obtain

I 00 = � 1

f 2

tr
�
Df · (Df)T ·D2u ·D2f ·D2u

�

= � 1

f 2

tr
⇣

1

(p�1)

2 D
2f ·ru · (D2f ·ru)T ·D2u ·D2f ·D2u

⌘

= � 1

f 2

tr
⇣

1

(p�1)

2D
2f ·ru · (ru)T ·

�
D2f ·D2u

�
2

⌘

= 1

(p�1)

2

det(D2f ·D2u)

f 2

tr
�
D2f ·ru · (ru)T

�

= 1

(p�1)

2

det(D2f ·D2u)

f 2

(ru)T ·D2f ·ru

= p(p�1)

(p�1)

2

f det(D2f ·D2u)

f 2

= p
(p�1)

det(D2f ·D2u)

f

(4.48)

where we have used

tr(D2f ·ru · (ru)T) =
2X

l,k=1

blkuzluzk = (ru)T ·D2f ·ru (4.49)

Note that (4.47) and (4.48) imply for ⌫ a.e z in ⌦

I 0 + I 00 = �2
det(D2f ·D2u)

f
+

p

(p� 1)

det(D2f ·D2u)

f

= �
✓
p� 2

p� 1

◆
det(D2f ·D2u)

f
.

(4.50)
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It follows from (2.23) that det(D2f) is positive for ⌫ a.e. z in ⌦. Moreover, since
b
11

= f⌘1⌘1 is positive and by (3.12) b11
|ru|p�2 ⇡ c00 for ⌫ a.e z in ⌦, consider

b
11

|ru|p�2

det(D2u) =
1

|ru|p�2

�
b
11

uz1z1uz2z2 � b
11

u2

z1z2

�
. (4.51)

We can rewrite (4.36) as

0 = tr(D2f ·D2u)

= b
11

uz1z1 + 2b
12

uz1z2 + b
22

uz2z2

(4.52)

for ⌫ a.e z in ⌦. Rearranging (4.52) for ⌫ a.e z in ⌦ we have

b
11

|ru|p�2

det(D2u) = � 1

|ru|p�2

�
(2b

12

uz1z2 + b
22

uz2z2)uz2z2 � b
11

u2

z1z2

�

= � 1

|ru|p�2

(ruz2)
T ·D2f ·ruz2 .

(4.53)

Likewise,

b
22

|ru|p�2

det(D2u) = � 1

|ru|p�2

�
(ruz1)

T ·D2f ·ruz1

�
. (4.54)

It follows once again from (2.23) that for ⌫ a.e z in ⌦

� b
11

|ru|p�2

det(D2u) � 0 and � b
22

|ru|p�2

det(D2u) � 0. (4.55)

Now from (4.40) and (4.50) we see that

ˆ
⌦

2X

k,j=1

bkjvzj�zk d⌫ =

✓
p� 2

p� 1

◆ˆ
⌦

det(D2u ·D2f)

f
� d⌫

⇡ �
✓
p� 2

p� 1

◆ˆ
⌦

�b
11

det(D2u)

|ru|p�2

det(D2f)

f
� d⌫.

(4.56)

From (4.56) for p = 2 we have ⇣ = v = log(f(ru)) is a weak solution to (4.31), L⇣ = 0.
Similarly, ⇣ = v is a weak sub solution or super solution to L⇣ = 0 respectively when
2 < p < 1 or 1 < p < 2.

Moreover, we note, for later use, that combining (4.53), (4.54) and using Lemma
3.1.9 we have

Lv = (p� 2)F weakly (4.57)

where F ⇡ |ru|p�4

2P
i,j=1

(uzizj)
2.

Copyright c� Murat Akman, 2014.
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Chapter 5 Proof of The Main Theorem 1.2.9

In this chapter, we first obtain Lemma 5.1.1, and then using this lemma we prove
Main Theorem 1.2.9 for fix p when 1 < p  2 and 2  p < 1 separately. To this
end, we shall give the definitions of u, û, r,⌦, z

0

, w again.
Let ⌦ be a bounded simply connected domain in the plane. Let w 2 @⌦, and

0 < r < diam @⌦. Let û be a positive weak solution to (3.3) in B(w, 4r)\⌦ with û = 0
in the Sobolev sense on B(w, 4r) \ @⌦. Extend û by putting û ⌘ 0 on B(w, 4r) \ ⌦.
Let µ̂ be the corresponding finite positive Borel measure in (1.9).

Moreover, we choose z
0

2 ⌦ and let D = ⌦ \ B(z
0

, d(z
0

, @⌦)/2). Let u be a
capacitary function for D. That is, u is a positive weak solution to (3.3) in D with
continuous boundary values, u ⌘ 0 on @⌦ and u ⌘ 1 on @B(z

0

, d(z
0

, @⌦)/2).
From section 3.2 we have H-dim µ = H-dim µ̂. Therefore, it su�ces to prove Main

Theorem 1.2.9 when u is a capacitary function and µ is the measure corresponding
to u as in (1.9).

Let D be as above and let 2s̃ = d(z
0

, @⌦) and set ⌅(z) = z
0

+ ŝz. Then it follows
from the fact that (3.3) is invariant under translation and dilation that ũ = u(⌅(z))
for ⌅(z) 2 D is also a weak solution to (3.3) in ⌅�1(D). Let µ̃ be the measure
corresponding to ũ in (1.9). It can be easily shown from (3.3) that

µ̃(E) = ŝp�2µ(⌅(E)) whenever E ⇢ R2 is a Borel set. (5.1)

Clearly, (5.1) implies that H-dim µ̃ = H-dim µ. Therefore without loss of generality
we can assume that z

0

= 0 and d(z
0

, @⌦) = 4, and D = ⌦ \B(0, 1).
We first need a lemma.

5.1 A Lemma

Let u be a capacitary function for D = ⌦ \ B(0, 1) corresponding to f , and let µ be
the corresponding Borel measure. Define

w(z) =

⇢
max(v(z), 0) when 1 < p < 2
max(�v(z), 0) when 2 < p < 1

for z 2 D where v(z) = log(f(ru)(z)) as defined in section 4.2.

Lemma 5.1.1. Let m be a non negative integer. There exists c = c(f, p) � 1 such
that for 0 < t < 1/2,

ˆ

{z:u(z)=t}

f(ru)

|ru| w2mdH1(z)  cm+1m![log
1

t
]m. (5.2)

Proof. Define g(z) = max(w(z)� c0, 0), z 2 D where c0 is large enough so that g ⌘ 0
in B(0, 2) \D. Since u is continuous in D, there is such a c0.
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Set g ⌘ 0 in B(0, 1), so that g is continuously defined in ⌦. Set bij = f⌘i⌘j(ru)
and let L be as in section 4.2.

Let ⌦(t) = {z 2 D : u(z) > t} for 0 < t < 1/2 and let ũ = max(u � t, 0). Note
that g2 2 W 2,1(⌦(t)).

Fix p, 1 < p  2 until further notices. From section 4.2 ⇣ = v = log f(ru) is a
weak super solution to (4.31), L⇣ = 0 in D. Using g2m�1ũ � 0 as a test function in
(4.31) for ⇣ = g and the fact that g ⌘ 0 in B(0, 1), we get

0  2m

ˆ

⌦(t)

2X

k,j=1

bkj
∂

∂zj
(log f(ru))

∂
∂zk

�
g2m�1u

�
d⌫

= 2m

ˆ

⌦(t)

2X

k,j=1

bkjgzj
∂

∂zk

�
g2m�1ũ

�
d⌫

= 2m(2m� 1)

ˆ

⌦(t)

2X

k,j=1

bkjgzjgzkg
2m�2ũd⌫ + 2m

ˆ

⌦(t)

2X

k,j=1

bkjgzjg
2m�1ũzkd⌫

= II 0 + II 00.

(5.3)

We first handle II 00. To this end, let  2 C1
0

({z : u(z) > t�"}) with  = 1 on ⌦(t).
Then since ⇣ = u is a weak solution to (4.31) and using g2m as a test function, we
obtain

0 =

ˆ

⌦(t�")

2X

k,j=1

bkjũzk

∂
∂zj

�
 g2m

�
d⌫

= 2m

ˆ

⌦(t�")

2X

k,j=1

bkjũzkg
2m�1gzj d⌫ +

ˆ

⌦(t�")

2X

k,j=1

bkjũzkg
2m zjd⌫

= II 00
1

+ II 00
2

.

(5.4)

Letting " ! 0 and using the Lebesgue dominated convergence give II 00
1

! II 00. We
now show that for H1 a.e t and properly chosen  that

II 00
2

!
ˆ

{z: u(z)=t}

2X

k,j=1

bkjg
2mũzk

ũzj

|rũ| as "! 0. (5.5)

To this end let � : R ! R be a C1 function satisfying 0  �  1, and |�0|  c/" such
that

�(s) =

⇢
1 when s � 1
0 when s  1� "
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If we set  = �(u(z)/t) in II 00
2

and use the coarea formula (Theorem 3.1.6) we see
that

II 00
2

=

ˆ

⌦(t�")

2X

k,j=1

bkjũzkg
2m zjd⌫

=

ˆ

⌦(t(1�"))

2X

k,j=1

bkjũzkg
2m

✓
�

✓
u(z)

t

◆◆

zj

d⌫

=
1

t

ˆ

⌦(t(1�"))

2X

k,j=1

bkjũzkg
2m�0

✓
u(z)

t

◆
uzjd⌫

=
1

t

tˆ

t(1�")

�0(
⌧

t
)

0

B@
ˆ

{z:u(z)=⌧}

2X

k,j=1

bkjũzkg
2m uzj

|ru|dH
1

1

CA d⌧.

(5.6)

Let

⇥(⌧) =

ˆ

{z:u(z)=⌧}

2X

k,j=1

bkjũzkg
2m uzj

|ru|dH
1.

Then using

1

t

tˆ

t(1�")

�0
⇣⌧
t

⌘
d⌧ = �(1)� �(1� ") = 1

we have

II 00
2

=
1

t

tˆ

t(1�")

�0(
⌧

t
) (⇥(⌧)�⇥(t)) d⌧ +⇥(t) (5.7)

for almost every t 2 (0, 1/2). If we let " ! 0 it follows from the strong form of the
Lebesgue Di↵erentiation theorem that

lim
"!0

|1
t

tˆ

t(1�")

�0(
⌧

t
) (⇥(⌧)�⇥(t)) d⌧ |  lim

"!0

1

t"

tˆ

t(1�")

|⇥(⌧)�⇥(t)|d⌧ = 0 (5.8)

for H1 a.e t 2 (0, 1/2). From (5.8) and (5.6) for H1 a.e t 2 (0, 1/2) we have

II 00
2

! ⇥(t) as "! 0. (5.9)

Thus (5.5) is true. Hence using (5.9) in (5.5) and then (5.5) and (5.4) in (5.3) we see
thatˆ

{t: u(z)=t}

2X

k,j=1

bkjg
2muzk

uzj

|ru|dH
1(z)  2m(2m� 1)

ˆ

⌦(t)

2X

k,j=1

bkjgzjgzkg
2m�2(u� t)d⌫

(5.10)
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Similarly, for fixed p, 2 < p < 1 from section 4.2, ⇣ = v = log f(ru) is a weak
sub solution to (4.31), L⇣ = 0 in D. Using this observation and g2m�1ũ � 0 as a test
function and the fact that g ⌘ 0 on B(0, 1), we have

0 � 2m

ˆ

⌦(t)

2X

k,j=1

bkj
∂

∂zj
(log f(ru))

∂
∂zk

�
g2m�1u

�
d⌫

= �2m

ˆ

⌦(t)

2X

k,j=1

bkjgzj
∂

∂zk

�
g2m�1ũ

�
d⌫

= �2m(2m� 1)

ˆ

⌦(t)

2X

k,j=1

bkjgzjgzkg
2m�2ũd⌫ + 2m

ˆ

⌦(t)

2X

k,j=1

bkjgzjg
2m�1ũzkd⌫

= �(III 0 + III 00).

(5.11)

Arguing as in the previous case we have (5.10) when p > 2. Therefore, for fixed p,
1 < p < 1, (5.10), Lemma 3.1.9, and Euler’s formula for a homogenous function
yield

p(p� 1)

ˆ

{z:u(z)=t}

g2m
f(ru)

|ru| dH1(z) =

ˆ

{z:u(z)=t}

2X

k,j=1

bkj
uzkuzj

|ru| g
2mdH1(z)

 2m(2m� 1)

ˆ

⌦(t)

2X

k,j=1

bkjgzjgzkg
2m�2(u� t)d⌫

 c 2m(2m� 1)

ˆ

⌦(t)

|ru|p�2|rg|2g2m�2u d⌫.

(5.12)

Let {Qi} be a closed Whitney cube decomposition of ⌦(t) and let zi be the center
of Qi for i = 1, . . .. Let Ri be the union of cubes that have a common point in the
boundary with Qi.

Note that the definition of g and Lemma 3.1.9 yield for a.e z 2 ⌦

|rg|  c
|rf(ru)||D2u|

f(ru)
⇡ |D2u|

|ru
. (5.13)

Moreover, it can be easily deduce from Lemma 3.3.1 that

ˆ
Qi

|ru|p�2

X

k,j

�
uzkzj

�
2

d⌫  c

ˆ
Ri

|ru|p

d(z, @⌦(t))
d⌫ (5.14)

for every i = 1, . . ..
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Using (5.13), (5.14), Lemma 3.1.9, and Fundamental Inequality 4.1.5 in (5.12) on
the Whitney cubes Qi we see that

ˆ

{z:u(z)=t}

g2m
f(ru)

|ru| dH1  c0 m2

ˆ

⌦(t)

u|ru|p�2|rg|2g2m�2d⌫

 c0 m2

X

i

ess sup
Qi

✓
u

|ru|2 g
2m�2

◆ˆ
Qi

|ru|p|rg|2d⌫

 c0 m2

X

i

ess sup
Qi

✓
u

|ru|2 g
2m�2

◆ˆ
Qi

|ru|p |D
2u|2

|ru|2 d⌫

 c0 m2

X

i

ess sup
Qi

✓
u

|ru|2 g
2m�2

◆ˆ
Qi

|ru|p�2|D2u|2d⌫

 c0 m2

X

i

ess sup
Qi

✓
u

|ru|2 g
2m�2

◆ˆ
Ri

|ru|p

(d(z, @⌦))2
d⌫

 c0 m2

X

i

ess sup
Qi

�
g2m�2

� ˆ
Ri

u|ru|p�2

1

(d(z, @⌦))2
d⌫

 c 2m(2m�1)

p(p�1)

X

i

ess sup
Qi

�
g2m�2

� ˆ
Ri

u|ru|p�2

|ru|2

u2

d⌫

 c 2m(2m�1)

p(p�1)

X

i

ess sup
Qi

�
g2m�2

� ˆ
Ri

|ru|p

u
d⌫

 c 2m(2m�1)

p(p�1)

ˆ

⌦(t)

(g + c0)2m�2

f(ru)

u
d⌫.

(5.15)

Here we have used the fact that Qi intersects with finitely many Ri which allows us
to interchange freely Ri and Qi.

Moreover, the fundamental inequality 4.1.5 and Lemma 3.1.13 yield

log f(ru) ⇡ log |ru| ⇡ log(
u(z)

d(z, @⌦(z))
)  log(u

1
↵�1)  (1� 1

↵) log(
1

t
) (5.16)

whenever z 2 {z̃; u(z̃) = t} and 0 < t < 1/2. Therefore, for z 2 {z̃; u(z̃) = t} and
0 < t < 1/2 we see from the fundamental inequality 4.1.5 and Lemma 3.1.11 that

(g + c̃)2m�2 = (g2 + 2gc̃+ c̃2)m�1  (g2 + c log 1/t)m�1. (5.17)

whenever 0 < t < 1/2. Using the Binomial theorem and (5.17) we can write

(g2 + c log 1/t)m�1 =
m�1X

k=0

(m�1)!

k!(m�k�1)!

g2k(c log
1

t
)m�1�k. (5.18)
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Let

Im(t) =

ˆ

{z:u(z)=t}

g2m
f(ru)

|ru| dH1(z) for 0 < t <
1

2
.

Then using the Coarea formula (Theorem 3.1.6), (5.12), (5.15) and (5.18) we obtain

Im(t) =

ˆ

{z:u(z)=t}

g2m
f(ru)

|ru| dH1(z)

 c0 m2

ˆ

⌦(t)

(g + c)2m�2

f(ru)

u
d⌫

= c0 m2

1ˆ
t

1

⌧

0

B@
ˆ

{z:u(z)=⌧}

(g + c)2m�2

f(ru)

|ru| dH1(z)

1

CA d⌧

 c0 m2

1ˆ
t

1

⌧

0

B@
ˆ

{z:u(z)=⌧}

m�1X

k=0

(m�1)!

k!(m�k�1)!

g2k(c log
1

⌧
)m�1�k f(ru)

|ru| dH1(z)

1

CA d⌧

 c0 m2

2

64
m�1X

k=0

(m�1)!

k!(m�k�1)!

1ˆ
t

(c log 1

⌧ )
m�1�k

⌧

0

B@
ˆ

{z:u(z)=⌧}

g2k
f(ru)

|ru| dH1(z)

1

CA d⌧

3

75

 c0 m2

m�1X

k=0

(m�1)!

k!(m�k�1)!

2

4
1ˆ

t

(c log 1

⌧ )
m�1�k

⌧
Ikd⌧

3

5 .

(5.19)

It easily follows from r ·rf(ru(z)) = 0 for a.e z in ⌦ and the divergence theorem
that

I
0

(t) =

ˆ

{z:u(z)=t}

f(ru)

|ru| dH1(z) = constant = c(p, f) for 0 < t < 1. (5.20)

In fact, using the divergence theorem we have

ˆ

{z:u(z)=t0}

f(ru)

|ru| dH1(z) =

ˆ

{z:u(z)=t1}

f(ru)

|ru| dH1(z) for 0 < t
0

, t
1

< 1. (5.21)

One can use an induction argument on m in the following way; by (5.20) we have
I
0

 c0 for 0 < t < 1, and next assume that we have

Ik  ck+1

⇤ k![log
1

t
]k when 0 < t <

1

2
and for every 1  k  m� 1, (5.22)
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where 1  c⇤, then for k = m we have

Im(t)  c
2m(2m� 1)

p(p� 1)

m�1X

k=0

(m� 1)!

k!(m� k � 1)!

2

4
1ˆ

t

(c
0

log 1

⌧ )
m�1�k

⌧
Ikd⌧

3

5

 c
2m(2m� 1)

p(p� 1)

m�1X

k=0

(m� 1)!

k!(m� k � 1)!

2

4
1ˆ

t

(c
0

log 1

⌧ )
m�1�k

⌧
ck+1

⇤ k!(log(
1

⌧
))kd⌧

3

5

 c
2m(2m� 1)

p(p� 1)

m�1X

k=0

(m� 1)!

k!(m� k � 1)!
cm�k�1

0

ck+1

⇤ k!

2

4
1ˆ

t

(log 1

⌧ )
m�1

⌧
d⌧

3

5

 c
2m(2m� 1)

p(p� 1)

m�1X

k=0

(m� 1)!

k!(m� k � 1)!
cm�k�1

0

ck+1

⇤ k!
(log(1t ))

m

m

 4c
1

p(p� 1)
cm⇤ m!(log

1

t
)m
 

m�1X

k=0

1

(m� k � 1)!

!

 cm+1

⇤⇤ m!(log
1

t
)m.

(5.23)

for 0 < t < 1/2.
Hence by (5.23), Lemma 5.1.1 is true for w replaced by h. It follows from w  h+c0

that Lemma 5.1.1 is true for w.

By Lemma 5.1.1 we get for 0 < t < 1/2

ˆ

{z:u(z)=t}

f(ru)

|ru|
w2m

(2c⇤⇤)mm![log 1

t ]
m
dH1(z)  2�mc⇤⇤. (5.24)

Summing over m in (5.24) yields for 0 < t < 1/2

ˆ

{z:u(z)=t}

f(ru)

|ru| exp


w2

2c⇤⇤ log
1

t

�
dH1(z)  2c⇤⇤. (5.25)

Define

↵(t) =

s

4c⇤⇤

✓
log

1

t

◆✓
log log

1

t

◆
for 0 < t < e�2, (5.26)

and

�(t) = {z; u(z) = t and w(z) � ↵(t)}. (5.27)
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Then by (5.25) we have

2c⇤⇤ �
ˆ

{z:u(z)=t}

f(ru)

|ru| exp


w2

2c⇤⇤ log
1

t

�
dH1(z)

�
ˆ

�(t)

f(ru)

|ru| exp


w2

2c⇤⇤ log
1

t

�
dH1(z)

�
ˆ

�(t)

f(ru)

|ru| exp


↵2

2c⇤⇤ log
1

t

�
dH1(z)

=

ˆ

�(t)

f(ru)

|ru| (� log t)2dH1(z).

(5.28)

We conclude from (5.28) that

ˆ

�(t)

f(ru)

|ru| dH1(z)  2c⇤⇤�
log 1

t

�
2

. (5.29)

For a fixed and large a, we define the Hausdor↵ measure H� as follows;
Let

�(r) =

⇢
rea↵(r) when 1 < p  2 for section 5.2
re�a↵(r) when 2  p < 1 for section 5.3.

(5.30)

Let H� be Hausdor↵ measure and Hausdor↵ dimension of a measure be as defined
before Theorem 1.2.1 relative � as in (5.30).

In the following subsections 5.2 and 5.3 we shall follow closely the argument in
[25, Section 3].

5.2 Proof of The Main Theorem 1.2.9 for 1 < p  2

In this subsection we show that for a large a,

µ is absolutely continuous with respect to H� measure when 1 < p  2. (5.31)

Proof of (5.31). Fix p, 1 < p  2, let E ⇢ @⌦ be a Borel set with H�(E) = 0. Let
E = E

1

[ E
2

where

E
1

:= {z 2 E; lim sup
r!0

µ(B(z, r))

�(r)
< 1}, (5.32)

and

E
2

:= {z 2 E; lim sup
r!0

µ(B(z, r))

�(r)
= 1}. (5.33)
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Note that E
2

= E \ E
1

for µ a.e z in @⌦. We first show that µ(E
1

) = 0. It easily
follows from the definition of H� measure and a covering argument that µ(E

1

) = 0.
We next show that µ(E

2

) = 0. To this end, given 0 < r
0

< 10�100 we show that
for every z 2 E

2

there is s = s(z) with 0 < s/100 < r
0

such that

µ(B(z, 100s))  109µ(B(z, s)) and �(100s)  µ(B(z, s)). (5.34)

Let s be the last point on the interval (0, r
0

) satisfying

1020 min{1, µ(B(z, r
0

))

�(r
0

)
}  µ(B(z, s))

�(s)
. (5.35)

Existence of s follows from (5.33). Moreover,

�(100r)  200�(r) for 0 < r < r
0

/100 (5.36)

as we see from the definition of �. It follows from (5.35) and (5.36) that there is such
s satisfying (5.34).

Observe that by Vitali’s covering argument we can find {ri < �, zi 2 E
2

} such
that

B(zi, 10ri) are disjoint balls,

{B(zi, 100ri)} covers E
2

,

(5.34) holds for z = zi and s = ri for every i.

(5.37)

Choose ⇣i 2 @B(zi, 2ri) such that u(⇣i) = max u on B(zi, 2ri). From (5.34) and
Lemma 3.1.15 we know that the maximum of u on B(zi, 2ri) and the maximum of u
on B(zi, 5ri) are proportional. Therefore, u(⇣i) can not be too small in comparison
to the maximum of u on B(zi, 5ri). Thus, these observations and Lemma 3.1.13 yiled
d(⇣i, @⌦) ⇡ ri.

Moreover, using d(⇣i, @⌦) ⇡ ri and Lemma 3.1.15 we see for fixed i that

µ(B(zi, 10ri))

ri
⇡
✓

u(⇣i)

d(⇣i, @⌦)

◆p�1

⇡ f(ru(z))

|ru(z)| (5.38)

whenever z 2 B(⇣i, d(⇣i, @⌦)/2). Choose m so that 2�m  u(⇣i)  2�m+1, and let
⌘i be the first point on the line segment from ⇣i to a point on @⌦ \ @B(⇣i, d(⇣i, @⌦))
satisfying u(⌘i) = 2�m. Then we see that (5.38) holds with ⇣i replaced by ⌘i. That
is,

u(⌘i) = 2�m and d(⌘i, @⌦) ⇡ ri,

µ(B(zi, 10ri))

ri
⇡
✓

u(⌘i)

d(⌘i, @⌦)

◆p�1

⇡ f(ru(z))

|ru(z)| ⇡ |ru(z)|p�1

(5.39)

whenever z 2 B(⌘i, d(⌘i, @⌦)/2).
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From (5.37) and (5.39) for z 2 B(⌘i, d(⌘i, @⌦)/2) we have

a↵(100ri) = log

✓
�(100ri)

100ri

◆

 log

✓
µ(B(zi, ri))

100ri

◆

 c log

✓
µ(B(zi, 10ri))

ri

◆

 c log |ru|p�1 ⇡ log f(ru) = w(z).

(5.40)

where a is as in (5.30) and c = c(p, f) � 1. It follows from the maximum principle
and geometry of level sets of u, {z; u(z) = t}, and a connectivity argument that

H1[B(⌘i, d(⌘i, @⌦)/2) \ {z : u(z) = 2�m}] � d(⌘i, @⌦)

2
. (5.41)

Using Lemma 3.1.13 we can estimate 2�m above in terms of ri. We can also estimate
2�m below in terms of ri using the first line in (5.37). That is, there exist c0 = c(p, f)
and � = �(p, f) < 1 such that

ri  c0(2�m)� and 2�m  c0r�i . (5.42)

From (5.29), (5.40)-(5.42) we have,

µ[B(zi, 10ri)]  c

ˆ

�(2�m
)\B(zi,10ri)

f(ru)

|ru| dH1(z) (5.43)

For large a, (5.42), (5.43), and (5.29) yield

µ(E
2

)  µ

 
[

i

(B(zi, 100ri)

!

 109
X

i

µ(B(zi, 10ri))

 c
X

m=m0

ˆ

�(2�m
)

f(ru)

|ru| dH1(z)

 c2
X

m=m0

m�2  c3

m
0

.

(5.44)

where 2�m0� = cr�
2

0

. As r
0

! 0 we have µ(E
2

) ! 0. So we have (5.31).

5.3 Proof of The Main Theorem 1.2.9 for 2  p < 1

To finish the proof of the Main Theorem 1.2.9, it remains to show that for 2  p < 1,
µ is concentrated on a set of ��finite H� measure. To obtain this, by definition,
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we show that there is a Borel set K ⇢ @⌦ having ��finite H� measure satisfying
µ(K) = µ(@⌦).

We first show that µ(K 0) = 0 where

K 0 := {z 2 @⌦; lim
r!0

µ(B(z, r)

�(r)
= 0}. (5.45)

Then we show that µ(K) = µ(@⌦) where

K = {z 2 @⌦; lim sup
r!0

µ(B(z, r)

�(r)
> 0}.

Let r
0

be su�ciently small. We can argue as in the proof of (3.52) to get that for
each z 2 K 0 there is r = r(z) with 0 < r/100 < r

0

satisfying

µ(B(z, 100r))  cµ(B(z, r)) and µ(B(z, 100r))  �(r) (5.46)

where the constant is independent of z and r.
Observe once again that by Vitali’s covering argument we can find {ri < �, zi 2

K 0} such that

B(zi, 10ri) are disjoint balls,

{B(zi, 100ri)} covers K 0,

(5.46) holds for z = zi and r = ri for every i.

(5.47)

Let I 0 be the set of all indexes i for which r3i  µ(B(zi, 100ri)) and let I 00 be the
indexes where this inequality does not hold. By (5.47) and (5.46) we see that

µ(K 0)  µ(
[

i2I0
B(zi, 100ri))

+ µ(
[

i2I0
B(zi, 100ri)) + µ(

[

i2I00
B(zi, 100ri))

 µ(
[

i2I0
B(zi, 100ri)) +

X

i2I00
r3i

 µ(
[

i2I0
B(zi, 100ri)) + c0r

0

H2(⌦).

(5.48)

When i 2 I 0 we can repeat the argument for 1 < p  2 to get first (5.38) and then
(5.39), (5.40). As i 2 I 0, we get the left hand inequality. Once again the right hand
inequality follows from Lemma 3.1.13. From these observations we see (5.43) holds
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for su�ciently large a as in (5.30) and

µ(K 0)� c0r
0

H2(⌦)  µ(
[

i2I0
B(zi, 100ri))

 c
X

i2I0
µ(B(zi, 10ri))

 c
X

m=m0

ˆ

�(2�m
)

f(ru)

|ru| dH1

 c2
X

m=m0

m�2  c3

m
0

.

(5.49)

Hence 2�m0� = cr�
2

0

. Since r
0

can be arbitrarily small, we can let r
0

! 0 from which
we conclude that µ(K 0) = 0.

It remains to show that µ(K) = µ(@⌦) and K has � finite H� measure. To this
end let Ki, for positive integer i, be the set of points in K with the property that

Ki = {z 2 @⌦; lim sup
r!0

µ(B(z, r)

�(r)
} � 1

i
.

From a covering argument it follows that

H�(Ki)  100iµ(Ki)

from which we can conclude that Ki has finite H� measure. Since
S
i
Ki = K, we

conclude that K has ��finite H� measure. which finishes the proof for p > 2.

The proof of Main Theorem 1.2.9 is now complete.

Copyright c� Murat Akman, 2014.
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