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GRÖBNER BASIS PERSPECTIVE

This dissertation presents several new aspects of list decoding evaluation codes beyond
the Guruswami-Sudan error-correction radius, 1 −

√
κ. We present an overview of

the development of list decoding from Sudan’s archetypal interpolation-factorization
algorithm up to cutting edge results on capacity achieving codes. A recent result in
this field is an interpolation algorithm ([25]) that efficiently computes a Gröbner ba-
sis. Another important result is a multivariate interpolation algorithm [18] that yields
codes with error rates approaching list decoding capacity. Our primary contribution is
producing a hybrid of the two methods and obtaining an explicit multivariate interpo-
lation algorithm with proven complexity for list decoding folded Reed-Solomon codes.
It was known that the multivariate interpolation step in w variables for a v-folded
Reed-Solomon code of block length N could be performed in time (Nv)O(w) ([17]),
but an explicit algorithm for which precise complexity bounds could be measured was
lacking. Our work establishes constructively that multivariate list decoding can be
performed using O((Nv)2m`(e`)3w) field operations, where m is the chosen multiplic-
ity for the interpolation step, κ is the rate of the code, and ` ∈ O((m+w)κ−1/(w+1))
is a y-degree bound on the interpolation polynomial. This is the most specific com-
plexity estimate given so far on the interpolation problem. Thus, our algorithm sets
a benchmark on the complexity of multivariate list decoding for Reed-Solomon-based
evaluation codes.
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4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Folded Reed-Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Multivariate Based List Decoding . . . . . . . . . . . . . . . . . . . . 64
4.4 Folded Root-Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



4.5 The Ideal Associated to a Code . . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1
Introduction

The intent of this disquisition is to combine some of the recent results on the problem
of list decoding evaluation codes in order to enhance and clarify the progress that
these ideas have begotten. A secondary objective will be to ameliorate the practical
aspects of these results by providing an explicit framework for implementing them.

1.1 List Decoding Synopsis

List decoding differs from conventional minimum distance decoding in that the de-
coder does not need to return a unique closest code word to a given received word.
Rather, it returns a list of all codewords within some bounded distance. Indeed, for
a code of minimum distance d, a minimum distance decoder will always fail to cor-
rect some error of weight dd/2e for some codeword, limiting the fraction of errors a
decoder can correct in codes of rate κ to approximately 1−κ

2
errors. A list decoder, on

the other hand, is not bounded by the unique decoding radius of the code because an
output of several codewords is still considered correct as long as the codeword that
was sent is among them. The limitations on list decoding derive instead from the
time complexity of producing the list of codewords within distance τ of the received
word. It is known that for codes of rate κ, the length of the worst-case list size
grows exponentially in the length n of the code for any decoding radius τ > n(1−κ).
Conversely, the list-size is polynomially bounded for τ < n(1 − κ). For this reason,
1− κ is deemed the list decoding capacity for the fraction of errors that we can hope
to ‘correct’ (list-wise) up to in codes of rate κ. The capacity is only attainable in
the limit of large alphabets. For a fixed alphabet size, there exist codes of any rate
κ < 1 −Hq(p) (where Hq(p) is the q-ary entropy function) for which we can list de-
code up to an error rate of p. It is interesting that this capacity, which is essentially
a complexity bound, corresponds to the channel capacity, which is a probabilistic
bound, for a q-ary channel where the probability of error on any given symbol is p.
There is some equivocation retained in the output of a list decoder since, in general,
it returns a list and not a single codeword. However, based on the way that Hamming
spheres pack in n-dimensional space for radii up to n(1− κ), it has been shown that
there exist codes of rate κ (Reed-Solomon codes among them) for which most errors
of weight less than n(1 − κ) yield a received word with a unique codeword within
distance n(1−κ). For such codes a list decoder will output a unique closest codeword
within radius τ < n(1−κ) of the received word with high probability, which suggests
that list decoding has the potential to elicit real coding schemes approaching the
Shannon limit for channel capacity.

1



1.2 Previous Results

A crucial ingredient for list decoding is having the means to decode a received word
in a runtime that is polynomial in the length of the code. List decoding was first used
for theoretical purposes by Peter Elias and Reiffen Wozenkraft (separately) in the late
1950’s to prove matching upper and lower bounds on the probability of a decoding
error occurring over a binary symmetric channel. However, no practical method for
performing it was given until 1996 when Madhu Sudan proposed a two-step algo-
rithm for list decoding Reed-Solomon codes. The first step involved interpolating a
bivariate polynomial through points determined by the received word and the code
locators of the RS code. The second step was to factorize the interpolated polynomial
and obtain the list of nearest codewords from its roots (corresponding to polynomials
in one variable). The algorithm ran efficiently in time O(n3) and could correct a
fraction of up to 1−

√
2κ errors. A few years later, Sudan and his student, Venkate-

san Guruswami, improved the error rate to 1−
√
κ errors by interpolating the same

points as before but with some positive multiplicity. The next asymptotic leap in list
decoding performance came in 2005 when Alexander Vardy and his student, Farzad
Parvaresh, gave a trivariate interpolation-based algorithm for so-called ‘interleaved’
Reed-Solomon codes in which the codewords near the received word corresponded to
algebraically related roots of the interpolation polynomial Q(x, y, z) that were poly-
nomials in x. More specifically, the messages were pairs (f(x), g(x)) that satisfied
a certain algebraic constraint, such as f(x)d = g(x) mod h(x), and the root-finding
step was to find pairs (f(x), g(x)) satisfying the algebraic constraint and also the
constraint Q(x, f(x), g(x)) = 0. This improved the best-known list decoding error
rates for low rate codes (κ < 1/16), but the modification of sending two polynomi-
als necessitates sending twice as much information and precludes the possibility of
constructing codes with an information rate of more than one half in this scheme.
However, the idea of raising the number of interpolation variables was novel and if
the code and the message pairs are chosen more carefully (namely, the message poly-
nomials are chosen to be horizontal stretches of each other, so their evaluations are
cyclic shifts of each other) then the loss in information rate can be avoided.

A recent result that we will build upon is an explicit construction of codes that
allow for error rates that asymptotically approach the list decoding capacity. These
codes are known as folded Reed-Solomon codes and a polynomial time algorithm for
list decoding them was presented by Guruswami and his student, Atri Rudra, in 2007
that was based on the trivariate interpolation algorithm of Parvaresh and Vardy but
avoided the rate-loss factor mentioned in the previous paragraph. The key idea they
came up with was to use the fact that for a primitive element a ∈ Fq, any polynomial
f ∈ Fq[x] of degree less than q− 1 satisfies f(ax) = f(x)q mod xq−1− a and have the
algebraic constraint of the Parvaresh and Vardy method be f(x)q = g(x) mod xq−1−a.
Then a message may take the form (f(x), f(ax)). If a is used to define the code
locators of the underlying RS code, then the codeword given by f(ax) is just the
cyclic shift left of the codeword produced by f(x). The additional information needed
for the trivariate interpolation problem is therefore inherent within the codeword of
the first polynomial. Thus the information rate loss factor is redressed.

2



Another result that we will utilize is a Gröbner basis based algorithm for perform-
ing the interpolation step of Sudan’s list decoding method for Reed-Solomon codes.
The algorithm, presented by Kwankyu Lee and Michael O’Sullivan in 2006, looks at
the interpolation step as a problem of finding a polynomial in an ideal of small degree
(the conventional approach is to solve a linear system of homogeneous equations) by
computing a Gröbner basis. Computing such a basis can be a costly task in general
but Lee and O’Sullivan were able to polynomially bound the complexity by restrict-
ing the ideal to a finitely generated submodule and computing a Gröbner basis there.
Lee and O’Sullivan furthermore showed that their algorithm was an efficient general-
ization of the Berlekamp-Massey algorithm, which has been the preeminent method
for minimum-distance decoding of Reed-Solomon codes since its inception in 1969.

1.3 Contribution of this Dissertation

The goal of this dissertation was to see how Lee and O’Sullivan’s Gröbner basis
based interpolation algorithm could be adapted to list decode folded Reed-Solomon
codes and other extensions of RS codes. Particularly for the folded version of RS
codes, but also for the other kinds, it was desirable to modify the algorithm to
solve a multivariate interpolation algorithm. Multivariate interpolation seems to
be necessary at this point in order to achieve error rates beyond the Guruswami-
Sudan bound of 1 −

√
κ and, moreover, in order to approach list decoding capacity.

The Gröbner basis algorithm was successfully adapted to this end by following the
method of Guruswami and Rudra. It may be noted that in their presentation they
only give the trivariate formulation of the interpolation problem and then observe at
the end that it can be extended to more variables. We, on the other hand, present
the multivariate interpolation problem in its most general form. Furthermore, we
provide new and more explicit algorithms for performing both the interpolation and
the root-finding steps of Guruswami and Rudra’s algorithm, and so we are able to
obtain more specific complexity bounds on the procedures. These new results are
developed in Chapter 4, the zenith of this thesis. The chapter covers most of what
is new in this work and is highlighted by a new algorithm for list decoding capacity-
achieving codes and a precise complexity analysis of the algorithm. Source code for
an implementation of the algorithm on the SINGULAR Computer Algebra System
platform in all of its glorious generality is provided in the appendix.

1.4 Structure of the Discourse

There are three chapters partitioning the content of this dissertation. The first chap-
ter naturally reviews the background topics that are germane to our multivariate list
decoding algorithm. First and foremost, a short survey of coding theory is under-
taken to establish important definitions and prepare some motivation for list decoding.
With the exception of folded Reed-Solomon codes (introduced in Chapter 4) all of
the codes that will be relevant to this paper are introduced in Section 2.1.2, including
Reed-Solomon codes, alternant codes (which, for simplicity, we define a little differ-
ently than usual), and BCH codes. For BCH codes, we present in Lemma 2.1.6 an

3



explicit representation for them as alternant codes which will be crucial for applying
our decoding algorithm to them. Chapter 2 also covers the fundamentals of Gröbner
bases - monomial orders, division algorithms, S-polynomials, Buchberger’s Criterion,
and Buchberger’s Algorithm - to establish a base for the algebraic side of the Gröbner
basis-based interpolation algorithm. Gröbner bases here are presented in the more
general context of submodules rather than the more specific setting of polynomial
ideals because we will actually be seeking a Gröbner basis of a module, not a ring.
Lastly for background, we present in Section 2.3 a bivariate root-finding algorithm
based on the one in [33] but modified slightly to suit the root-finding problem for
multivariate interpolation.

Chapter 3 lays the groundwork for list decoding. The introduction gives some
motivation for it and sets some definitions peculiar to the field. Section 3.2 thoroughly
analyzes the asymptotic complexity bounds of list decoding and establishes the list
decoding capacity as the bound on rates of codes that are to be efficiently list decoded
up to a certain radius. Section 3.3 presents Sudan’s original list decoding algorithm
and the following two sections analyze its performance. A discussion ensues regarding
the concept of multiplicity. It is followed by a description and short analysis of the
Guruswami-Sudan algorithm.

The last and most important chapter, Chapter 4, begins with an introduction
to folded Reed-Solomon codes, which are really the same as Reed-Solomon codes
except that they are viewed over a larger alphabet. In Section 4.3, multi-degree
definitions and notations are established and some preparatory analysis is done for
the multivariate interpolation algorithm. The actual algorithm is presented at the
end of the section. In the following section, 4.4, an algebraic relation between the
polynomials corresponding to the roots of the interpolation polynomial is shown and
a simple algorithm is given for finding them that utilizes the root-finding algorithm
of Section 2.3. The heart of our work culminates in Section 4.5. Here we take a more
specific approach to the interpolation step by viewing it as a problem of locating
a small polynomial of a particular ideal. We then restrict this ideal (a la Lee and
O’Sullivan) to a submodule of the polynomial ring where all variables except x have
some bounded degree. In order to find a Gröbner basis of this submodule, we need
an initial basis. We start with a basis of the ideal, derived in Proposition 4.5.2, and
from this we derive several generating sets for the submodule, analyzing each one’s
size and usefulness along the way. In Section 4.6, we present an algorithm (based on
Buchberger’s and Lee and O’Sullivan’s algorithms) for computing a Gröbner basis of
the submodule from some of the initial bases we found. To top it off, the correctness
and complexity of the algorithm are proved in the final two subsections.

For the interested reader, the appendix contains source code for performing our
multivariate list decoding algorithm in the SINGULAR Computer Algebra System.
The code can easily be modified to operate on any generalized Reed Solomon code.
The running time is polynomial but it is not ‘small’ polynomial so the performance is
very slow even for normal size codes (unless done with only two variables). Nonethe-
less, the program is available and several small libraries (for fast multi-point interpo-
lation, bivariate root-finding, and miscellaneous tools) are also included.
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Chapter 2
Basic Tools and Concepts

2.1 Error-Correcting Codes

Data are abundant in the age of the information superhighway. The reliability of a
datum can be no greater than that of the source who produced it. Moreover, for an
electronic datum, its reliability cannot exceed that of the wires that transport it or
the semiconductors, optical disks, or magnetic tapes that store it. Or can it?... By
itself, a bit of information is what it is, and no further determination can be made
as to the reliability of its content beyond what is known about the reliability of its
source. In many systems, though, the whole is greater than the sum of the parts.
So it is with information when we judiciously choose what sets of information are
to be considered valid. If we frivolously say that all patterns of information may
be transmitted or stored then we can make no determination that any information
has been corrupted. But if we restrict the set of valid information patterns, which
collectively we call a code, then we will be able to make a judgment upon seeing an
invalid pattern that the data is valid or that it has somehow been corrupted and is
not to be trusted. If the data pattern is unblemished, on the other hand, it will be
seen as valid and its authenticity can be confirmed to some degree. Admittedly, it
is possible that a valid pattern may be corrupted to another valid pattern and evade
the check system we have established. This problem would be particularly relevant
in a scenario where an opponent was attempting to corrupt our information. But we
will refrain from dealing with the realm of adversarial attacks and focus our attention
on more natural errors, such as a scratch on a CD or a short burst of electromagnetic
interference. Our interest will lie in detecting when errors are sure to have occurred.
What is more, using well-designed codes called error-correcting codes, we will look
for ways to not only detect that the pattern is invalid, but to actually correct the
mistake by systematically searching for the valid pattern (or patterns) that most likely
corresponds to what the information we witnessed was before it became corrupted.

Over the last 60 years, check systems for various data transmission and storage
channels have been studied extensively in the field of information theory. Basic sys-
tems for improving information reliability, such as check digit codes (e.g. ISBN and
UPC) have been around for some time. But the advent of the modern incarnation
of this field, which has developed almost synchronously with microprocessing, was
marked by the publication in 1948 of the influential paper of Claude Shannon [35]
in which he laid out the mathematical foundations of reliable communication. In it,
he showed that for any reasonable (though not necessarily perfect) channel, there
exists error-correcting codes which can be use to transmit data over the channel with
arbitrarily high reliability. This is not to say errors will not happen, for they are
inevitable on most channels. What this does say is that although errors may occur,
our code, if wisely chosen (and a good choice always exists), will allow us to cor-
rect all but less than epsilon percent of the errors we encounter. The construction,
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Figure 2.1: A standard model of a noisy channel

analysis, and implementation of these codes falls under the category of what is now
called coding theory, which may be considered a branch of information theory. While
information theory also encompasses other pursuits such as data compression (source
coding) and quantification, coding theory focuses specifically on what is known as
channel coding : efficiently correcting (or at least detecting) errors in data that are
received from across a noisy (that is, error-prone) channel. In its early days, coding
theory also incorporated the task of information security: making sure that a male-
factor cannot read or alter your data. But problems related to information secrecy
and authentication protocols now fall under the scope of cryptography (a fascinating
field that is intimately related to coding theory but not especially pertinent to the
task at hand).

The noisy channel scenario that we just described is illustrated in Figure 2.1.
There are typically four components to communicating over a noisy channel, three
of which are based on the main branches of information theory that were already
touched upon. The first stage in data transmission (before the message is sent) is
source encoding, where the data is compressed so that it can be sent using as few sym-
bols as possible. The second stage is encryption, where the source encoded message
is reversibly altered so that (hopefully) no one without sufficient knowledge of the
cryptographic scheme can decipher its meaning. The third stage is channel encoding,
where redundancy is added to the encrypted message (sort of the opposite of the first
stage, but necessary) to ensure that the information can still be determined even if
a small number of the symbols should be altered. The fourth stage is modulation,
where the channel encoded message is reshaped (for example, from digital to analog
waveform) into a form that can be conveyed by the channel. The message is then
relayed through the noisy channel or storage medium and during this time errors may
be introduced to the data. At the receiving end, the operations applied in each of
the four stages are undone in reverse order and, ideally, the message that was sent
is received. The first two stages and their reversions are omitted from Figure 2.1
because we will not be concerned with their applications in this study, nor those of
the modulation stage, which is left in the figure only because it lies between chan-
nel encoding and decoding in the communication process. For now, we continue our
discourse on coding theory by formalizing the notion of error-correcting codes.
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2.1.1 Basic Definitions for Block Coding

A probabilistic channel S is a pair (Σ,Pr) where Σ is the alphabet of symbols
that are ostensibly transmitted trough the channel and Pr is a conditional probability
distribution Pr(y is received | x is sent) for all pairs (x,y) ∈ Σn×Σn for any n ∈ N.
We assume here that the channel never deletes or inserts symbols into a message
(thereby altering its length), but only changes what symbols are present. An error
correcting code is a subset C ⊆

⋃
n≥0 Σn of permissible patterns which we allow

to be sent across our noisy channel. An element c ∈ C is generally referred to as a
codeword. The channel encoder is an injective mapping E : M → C from the
message space M of information words (or message words) to the code C. The
channel decoder is a surjective mapping D : Σn → M from the set of possible
received words back to the message space. The duty of the channel decoder is two-
fold. When the channel outputs an n-tuple, the decoder must first determine which
codeword was most likely input to the channel and then it must invert the encoding
to determine which message in M corresponds (uniquely) to this codeword. If each
codeword in C has the same length n, then we say that C is a block code of length
n. If |Σ| is finite then the alphabet size is q = |Σ|. Henceforth we will assume that
C ⊆ Σn is a block code of length n and q = |Σ| is finite. In this case we say that C is
a q-ary (error-correcting) code. The dimension of C is k = logq |C| (the reason
for this name will be more evident shortly). The information rate (or sometimes

just rate) of the code C is κ =
logq |M|

n
. Since |M| = |C| ≤ qn, κ ≤ 1.

It is often helpful to assume that Σ is an Abelian group (for example, Zq), in
which case we say that S is an additive channel and C is an additive code.
When a codeword c ∈ C is sent, the noise of the channel can then be associated
to a particular error vector e ∈ Σn where the received word r ∈ Σn is the sum
of the codeword and the error vector, as depicted in Figure 2.2. The (Hamming)

c −→

e

↓
⊕−→ r = c+ e

Figure 2.2: Symbolic representation of a noisy additive channel

weight of an n-tuple x = (x1, . . . , xn) over an additive group Σ is the number of
nonzero components of x, denoted wt(x) = |{i ∈ [n] | xi 6= 0}|. The (Hamming)
distance dist : Σn×Σn → N0 is the metric given by dist(x,y) = |{i ∈ [n] | xi 6= yi}|,
which counts the number of distinct components between any two n-tuples. The
distance of the code C is the minimum distance between two distinct codewords
of C, denoted dist(C) = min

c,c′∈C
dist(c, c′). Letting ` =

⌈
logq |C|

⌉
− 1, we have that

q` < |C|, so on the basis of the pigeonhole principle there must be at least two
codewords with the same first ` symbols. Thus, dist(C) can be no greater than n− `,
so dist(C) ≤ n −

⌈
logq |C|

⌉
+ 1 ≤ n − k + 1. This bound on the dist(C) is called

the Singleton bound. A code whose distance achieves the Singleton bound is called a
maximum distance separable (or MDS) code.
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An error is any instance where the output of the channel differs from the input of
the channel. The term error also is used to refer to the error vector that is introduced
during a transmission, even if it happens to be the zero vector (and hence there is no
actual error). We say that a channel decoder corrects an error vector e if for any
codeword c ∈ C, upon input r = c+ e the decoder correctly outputs the message in
M corresponding to c. We then say that a decoder corrects up to τ errors (or is
τ-error correcting) if it corrects all error vectors e whose weight satisfies wt(e) ≤ τ .
If τ ∈ N0 is the largest integer such that the decoder is τ -error correcting, then p = τ

n

is called the error rate (of the decoder). When the decoder returns a message other
than the one corresponding to the sent codeword, we call it a decoding failure.

Some popular decoding strategies are maximum-likelihood decoding,
minimum-distance decoding, and list decoding. A maximum-likelihood decoder
DMLD decodes a received word r ∈ Σn to the message corresponding to the code-
word c ∈ C that maximizes the probability Pr(r is received | c is sent). A minimum-
distance decoder DMDD returns the message corresponding to the codeword c that
minimizes dist(c, r). Each of these decoders faces the possibility of there not being
a unique codeword optimizing their objective function, in which case a tiebreaker is
necessary (perhaps choosing the smallest codeword lexicographically). A list decoder
DLD is a function that returns a list of all codewords within a prescribed distance
to r. Such a map is technically not a channel decoder because it returns a list of code-
words instead of a unique unencoded message. However, DLD can be thought of as a
component of a channel decoder which finds all close codewords to r and from this
(generally short) list a codeword of minimal distance away from the received word
can be selected and its corresponding message returned to complete the decoding
process. So list decoding is in some sense the same as minimum distance decoding,
but there more methods available and more problems that may be solved when we
take this more dynamic approach. We will focus extensively on list decoding starting
in Chapter 3. For now, we consider the limitations of minimum-distance decoding.

The (Hamming) sphere of radius τ centered at r ∈ Σn is the set of words within
distance τ of r, denoted Bτ (r) = {y ∈ Σn | dist(r,y) ≤ τ}. Let d = dist(C). If the
decoder DMDD can correct up to τ errors, then it must be that the spheres {Bτ (c)}c∈C
are disjoint, for if r ∈ Bτ (c1)∩Bτ (c2) then there exist error vectors e1 = r−c1 and
e2 = r − c2 of weight at most τ that corrupt two different codewords to the same
received word, so the decoder cannot possibly correct both error vectors. Moreover,
if c1, c2 ∈ C are distance d apart, then changing bd/2c of the coordinates where
they differ in c1 to the corresponding entries in c2 yields an n-tuple that lies in
Bτ (c1) ∩ Bτ (c2). It follows that any minimum distance decoder may correct up to
τ =

⌊
d−1
2

⌋
≤ n−k

2
errors, but not beyond (it may correct some larger error vectors,

but it will fail on some errors of weight as small as bd/2c). Since every vector in
Bb(d−1)/2c(c) ⊆ Σn is strictly closer to c ∈ C than to any other codeword, it follows
that the Hamming spheres of radius

⌊
d−1
2

⌋
centered about all of the codewords in C

are disjoint. Taking into account that |Bb(d−1)/2c(c)| =
∑b(d−1)/2c

i=0

(
b(d−1)/2c

i

)
(q − 1)i
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it follows that

|C| ≤ qn∑b(d−1)/2c
i=0

(
b(d−1)/2c

i

)
(q − 1)i

.

This inequality is called the sphere-packing bound (or the Hamming bound) for a code
C of distance d over an alphabet of size q. It restricts the size of the code according
to the alphabet size and the code’s distance. Codes that meet this bound are called
perfect.

2.1.2 Special Types of Codes

For most commonly studied codes, the alphabet is taken to be a finite field Fq. The
code C ⊆ Fnq is then a subset of an n-dimensional vector space over Fq. When it
is moreover a subspace of Fnq , we say that C is a linear q-ary code. In this case,
the dimension k = logq |C| of the code agrees with its vector space dimension as an
Fq-subspace of Fnq . A linear code of length n and dimension k is often called an [n, k]
code (or an [n, k, d] code, if one wishes to specify the distance, too). Such a code C
can be described by a generator matrix G, which is any (full rank) k × n matrix
over Fq whose rows form a basis of C. The message space is usually presumed to be
Fkq and the channel encoder is an isomorphism E : Fkq → C. Encoding can then be
described by matrix multiplication. Letting B = {e1, . . . , ek} be the standard basis of
Fkq and B′ = {E(e1), . . . , E(ek)} the image of B under E, which is a basis of C (since
E is an isomorphism), we have that the transpose of the generator matrix

GE =

 −E(e1)−
...

−E(ek)−


of C is a matrix representation of E and we can encode a message m ∈ Fkq simply as
E(m) = mGE. The (right) nullspace of GE is an (n − k)-dimensional subspace of
Fnq , which can also be thought of as q-ary code of length n. This code is called the
dual code of C, denoted C⊥ (note: this is different from the dual space of C). If we
take an (n− k)× n generator matrix H of C⊥, then C is a subspace of the nullspace
of H, but both spaces have dimension k, so C = ker(H). Thus, C = (C⊥)⊥. We have
now that GH t = 0 = HGt. Since r ∈ C = ker(H) ⇐⇒ Hrt = 0, computing Hrt

gives us an efficient means of checking weather r is a codeword not. This motivates
us to call H (or any generator matrix of the dual code) a parity check matrix for
C. G is likewise a parity check matrix for C⊥. One important property of linear codes
derives from the fact that if c1, c2 ∈ C are two codewords of distance d = dist(C)
apart, then c1 − c2 ∈ C is a codeword of weight d. Moreover, if c ∈ C has weight
less than d, then dist(0, c) < d implies c = 0 (since 0 ∈ C). Thus, the distance of a
linear code is equal to the minimum weight of any nonzero codeword.

There are many popular families of linear codes that are studied, but we refer the
reader to [1], [28], or [32] for a wider array and more thorough treatment of families
of error-correcting codes. For our purposes we will focus on a broad class of codes
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that fall under the category of evaluation codes. The constitutional class of codes
among the families that the results herein will pertain to is the ubiquitous family of
Reed-Solomon codes.

Definition 2.1.1 (RS Codes) Let α = (α1, . . . , αn) ∈ Fnq where α1, . . . , αn are dis-
tinct. The Reed-Solomon code of length n and dimension k generated by α is the
vector space obtained by evaluating all polynomials over F = Fq of degree less than k
at α1, . . . , αn. It is denoted

RSq(n, k,α) = {(f(α1), . . . , f(αn)) | f ∈ Fq[x]k}.

The values α1, . . . , αn are called the code locators. The message space is regarded
as F[x]k ∼= Fkq . We call f ∈ F[x]k a message polynomial and it is encoded as
the codeword cf = (f(α1), . . . , f(αn)). RSq(n, k,α) is the image of the evaluation
transformation (which is also the channel encoder) evα : F[x]n → Fn restricted to
F[x]k, where evα(f) = (f(α1), . . . , f(αn)). The map evα is an isomorphism whose
inverse is given by the interpolation map hα : Fn → F[x]n, where hα(r1, . . . , rn) is
the unique polynomial of degree less than n passing through (αi, ri) for i = 1, . . . , n.
We denote the polynomial hα(r1, . . . , rn) by hα,r or just hr when α is understood. As
the image of a k-dimensional vector space under an isomorphism, RSq(n, k, α) is also
a k-dimensional vector space. Also, since a nonzero polynomial of degree less than k
can have at most k − 1 zeros, every nonzero codeword will have at least n − k + 1
nonzero components. Thus, dist(RSq(n, k,α)) = n − k + 1, so Reed-Solomon codes
are maximum distance separable. Taking the basis {1, x, x2, . . . , xk−1} of F[x]k and
applying evα we see that

GRS =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2

1 α2
2 α2

3 · · · α2
n

...
...

...
. . .

...
αk−1

1 αk−1
2 αk−1

3 · · · αk−1
n


is a generator matrix for RSq(n, k,α).

Generalizing Definition 2.1.1 a little bit yields a broad class of codes whose sub-
codes have been well studied.

Definition 2.1.2 (GRS Codes) Let α = (α1, . . . , αn),v = (v1, . . . , vn) ∈ Fnq where
α1, . . . , αn are distinct and each vi is nonzero. The generalized Reed-Solomon
code of length n and dimension k generated by α and twisted by v is the image of
evα|F[x]k multiplied by v (that is, all vectors are multiplied componentwise by v). It
is denoted

GRSq(n, k,α,v) = {(f(α1) · v1, . . . , f(αn) · vn) | f ∈ Fq[x]k}.

We obtain GRSq(n, k,α,v) from RSq(n, k,α) by multiplying each codeword compo-
nentwise by v, which is called the multiplier of the code and its components are
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called the column multipliers. It is then easily seen to be linear with dimension k
and distance n− k + 1. A generator matrix for it is given by

GGRS =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2

1 α2
2 α2

3 · · · α2
n

...
...

...
. . .

...
αk−1

1 αk−1
2 αk−1

3 · · · αk−1
n




v1

v2
0

0
. . .

vn

 . (2.1)

There are several special categories of GRS codes that we make note of here. When
n = q − 1 the code is called primitive. When v is the all-1 vector, it is said to be
normalized. Lastly, if each code locator is equal to its respective column multiplier
(each αi = vi) then it is called a narrow sense GRS code.

An important property of a GRS code is that its dual is also a GRS code. In fact,
the dual can be defined using the same code locators.

Proposition 2.1.3 ([28], [32]) Let C = GRSq(n, k,α,v) (as in Definition 2.1.2).
Then C⊥ = GRSq(n, n− k,α,v′) for some multiplier v′ ∈ Fnq .

Proof: Let G = GGRS from equation (2.1). Consider the matrix

H =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2

1 α2
2 α2

3 · · · α2
n

...
...

...
. . .

...
αn−k−1

1 αn−k−1
2 αn−k−1

3 · · · αn−k−1
n




x1

x2
0

0
. . .

xn

 . (2.2)

We claim that for a suitable choice of x = (x1 . . . , xn), H is a parity check matrix
for C. To justify this, we just have to show that each entry of GH t is zero since
H is clearly a full rank matrix (since it is a (columnwise) scaled submatrix of the
representation matrix for evα, which is invertible). We need to find x such that for
1 ≤ i ≤ k and 1 ≤ j ≤ n− k,

(GH t)ij =
n∑

m=1

vmα
i+j−2
m xm = 0.

Since i+ j ranges from 2 to n, all we need is a nonzero (componentwise) solution to
the system

G′V xt =


1 1 1 · · · 1
α1 α2 α3 · · · αn
α2

1 α2
2 α2

3 · · · α2
n

...
...

...
. . .

...
αn−2

1 αn−2
2 αn−2

3 · · · αn−2
n




v1

v2
0

0
. . .

vn



x1

x2

x3
...
xn

 = 0,

(2.3)
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where G′, V , and xt are defined as the three matrices shown. Since V is invertible, this
is equivalent to the system G′xt = 0. Since it has more unknowns that constraints,
it must have a nonzero solution v′ = (v′1, . . . , v

′
n). If any component v′i is zero, then

taking the constraints of G′xt = 0 corresponding to the other n−1 coordinates yields
a homogeneous system of equations satisfied by x = v′. But the coefficient matrix
of this is Vandermonde and hence nonsingular (see [28, Ch. 4 Lemma 17]) so the
system has no nonzero solution, a contradiction. Thus, v′ has no zero components
and setting x = V −1v′ makes H a parity check matrix for C and a generator matrix
for GRSq(n, n− k,α,v′), which is therefore the dual of C. 2

From the proof of Proposition 2.1.3, we see that we can find a multiplier v′ for the
dual code of GRSq(n, n−k,α,v) by solving the system of equations in (2.3). Writing
down an explicit formula for v′, however, seems to be beyond our grasp. It turns out,
though, that for BCH codes, which we will define shortly, writing an explicit formula
for the multiplier is pretty easy. But before we consider these codes we examine an
even broader class of codes.

Definition 2.1.4 (Alternant Codes) Let α = (α1, . . . , αn),v = (v1, . . . , vn) ∈ Fnq
where α1, . . . , αn are distinct and v1, . . . , vn 6= 0 and consider the field extension
Fqm over Fq of degree m. The alternant code of designed distance δ and length n
generated by α and twisted by v is the restriction of GRSqm(n, n− δ+ 1,α,v) to Fnq .
It is denoted

Aqm(n, δ,α,v) = {(f(α1) · v1, . . . , f(αn) · vn) | f ∈ Fqm [x]n−δ+1}
⋂

Fnq .

It should be noted that in older sources (like [28]), an alternant code is defined
according the code locators of the dual of its defining GRS code. We have presented
the alternant code in this more direct form because our interest in it will lie in its
presentation as an evaluation code, in which case it is easier to have it defined by its
generator matrix than by its parity check matrix. There are other sources (such as
[32]) that define alternate codes as we do. The difference does not change the class
because by Proposition 2.1.3 both a GRSFqm code and its dual are GRS codes, hence
both of their restrictions to Fnq are alternant codes by either definition.

An alternant code is referred to as a subfield subcode of a generalized Reed-Solomon
code. Because it is a subset of a GRS code whose distance is δ, its minimum distance
must be at least as great as δ. Its dimension (as an Fq-vector space) can be no higher
than n− δ + 1 by the Singleton bound, but in general it will be less than that. One
particularly popular group of alternant codes are the Bose-Chaudhuri-Hocquenghem
(BCH) codes. That these are alternant codes, however, will not quite be clear from
their definition.

Definition 2.1.5 (BCH Codes) Let m be the smallest integer such that n|qm − 1,
let β be a primitive nth root of unity in Fqm, and let b ≥ 0. The BCH code of
designed distance δ and length n is the set of coefficient vectors of the polynomials in
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Fq[x]/(xn − 1) that have roots at βb, βb+1, . . . , βb+δ−2. It is denoted

BCHqm(n, δ, β, b) =

{
(c0, . . . , cn−1)

∣∣∣∣ n−1∑
i=0

cix
i−1 = 0 for x = βi, b ≤ i ≤ b+ δ − 2

}
.

By its definition (see also [28, Ch. 7, equation (19)]), a parity check matrix of
C = BCHqm(n, δ, β, b) is given by

HBCH =


1 βb βb·2 · · · βb(n−1)

1 βb+1 β(b+1)·2 · · · β(b+1)(n−1)

1 βb+2 β(b+2)·2 · · · β(b+2)(n−1)

...
...

...
. . .

...
1 βb+δ−2 β(b+δ−2)·2 · · · β(b+δ−2)(n−1)

 (2.4)

=


1 1 1 · · · 1
1 β β2 · · · βn−1

1 β2 β4 · · · β2(n−1)

...
...

...
. . .

...
1 βδ−2 β(δ−2)·2 · · · β(δ−2)(n−1)




1

βb

βb·2
0

0
. . .

βb(n−1)


Notice that HBCH is a generator matrix for the code GRSqm(n, δ − 1,β,v) where
β = (1, β, β2, . . . , βn−1) and v = (1, βb, βb·2, . . . , βb(n−1)). By Proposition 2.1.3, the
dual of GRSqm(n, δ − 1,β,v) is another GRS code, GRSqm(n, n− δ + 1,β,v′) which
has HBCH as a parity check matrix. HBCH is therefore a parity check matrix for the
alternant code Aqm(n, δ,β,v′), too, which is thus the same as C. The question that
remains is what is the vector v′ that defines GRSqm(n, n − δ + 1,β,v′), the parent
GRS code of the BCH code C?

Lemma 2.1.6 The BCH code BCHqm(n, δ,β, b) is identical to Aqm(n, δ,β,v′) where
β = (1, β, . . . , βn−1) and v′ = (1, β1−b, β(1−b)·2, . . . , β(1−b)·(n−1)).

Proof: Consider GRSqm(n, n− δ + 1,β,v′). A generator matrix for it is given by

G′ =


1 βl βl·2 · · · βl(n−1)

1 βl+1 β(l+1)·2 · · · β(l+1)(n−1)

1 βl+2 β(l+2)·2 · · · β(l+2)(n−1)

...
...

...
. . .

...
1 βl+n−δ β(1+n−δ)·2 · · · β(l+n−δ)(n−1)

 . (2.5)

The (i, j)th entry in G′H t
BCH for 1 ≤ i ≤ n − δ + 1 and 1 ≤ j ≤ δ − 1 (note:

2 ≤ i+ j ≤ n) is

(GH t
BCH)ij =

n∑
k=1

(βb+1−b+i+j−2)k−1
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=
n∑
k=1

(βi+j−1)k−1

=
(βi+j−1)n − 1

βi+j−1 − 1
= 0.

The second to last equality is justified because βi+j−1 6= 1 for 1 ≤ i + j − 1 ≤
n − 1. Thus, G′H t

BCH = 0. Since HBCH has full (column) rank it follows that HBCH

is a parity check matrix for GRSqm(n, n − δ + 1,β,v′). Likewise, G′ is a parity
check matrix for GRSqm(n, n − δ + 1,β,v). Hence, GRSqm(n, n − δ + 1,β,v′) =
GRSqm(n, n− δ + 1,β,v)⊥. So the vector v we sought (or at least one choice for it)
is v = (1, β1−b, β(1−b)·2, . . . , β(1−b)·(n−1)). 2

2.2 Gröbner Bases

The presence of this section is warranted by our need to locate a particular element
of a polynomial submodule in Chapter 4. Let R = F[x, . . . , xn]. The (polynomial)
ideal membership problem can be stated like this:

Given a polynomial f ∈ R and a generating set {g1, . . . , gr} of an ideal I ⊆
R, determine whether f ∈ I or not. That is, determine if f =

∑r
i=1 higi

for some h1, . . . , hr ∈ R.

The solution to the membership problem in the 1-variable case is easily obtained via
the division algorithm and the fact that F[x] is a principal ideal domain.

Theorem 2.2.1 ((Univariate) Division Algorithm) Let f and g be polynomials
in F[x]. Then there exist unique polynomials q, r ∈ F[x] (called the quotient and
remainder, respectively) such that

f = q · g + r,

where either r = 0 or deg(r) < deg(g).

It follows that f(x) is an element of the ideal I = 〈g(x)〉 ⊆ F[x] if and only if the
remainder of f is zero upon division by g. However, R is not a principal ideal ring
in general and the remainder in the multivariate division algorithm (which we de-
scribe later) is not uniquely determined. So the problem of determining when an
arbitrary polynomial is an element of an ideal remained unsolved until 1965, when
Bruno Buchberger firmly established the notion of Gröbner bases (named after his
thesis adviser, Wolfgang Gröbner, who had previously studied them). Since their
inception, Gröbner bases have become the workhorse of computational algebra with
an extensive range of applications in mathematics, engineering, and science. Some
examples include applications to elimination theory, robotics, geometric proof sys-
tems, solving systems of polynomial equations, reverse-engineering gene networks in
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computational biology, and most importantly, solving the ideal membership problem.
Our treatment of Gröbner bases shall be relatively brief; just enough to get us what
we need to find an element of small degree within a submodule. For the interested
reader, we refer to [5], [8], or [12] for comprehensive treatments of the subject.

To begin with, we need to define an ordering on the monomials of R, during
the course of which we also define an ordering on Nn

0 . For any a ∈ Nn
0 , we de-

note by |a| the 1-norm of a = (a1, . . . , an); that is, |a| =
∑n

i=1 ai. Let [x] =
[x1, . . . , xn] = {xa1 · · · xan | (a1, . . . , an) ∈ Nn

0} denote the set of monomials in the
variables x1, . . . , xn. Using multiindices, we will denote the monomial xa1 · · ·xan by
xa. When we mention here the degree of a monomial xa, we will mean its total
degree (in Chapter 4, we will make sundry definitions for degree, but for now we only
use this one). We denote it deg(xa) = |a|. Naturally, for f ∈ R, deg(f) denotes the
maximum degree of any (nonzero) term of f . Since our use of Gröbner bases will
involve finding them for modules over a univariate polynomial ring, we will actually
define them a bit more abstractly than is often done. Throughout this section, we
let M be a finitely generated free R-module with basis {ei}. A monomial in M is
an element of the form m = xaei. A term in M is a monomial in M multiplied by
an element in F. We say that the term amei divides the term bnej if i = j and m
divides n in R.

Definition 2.2.2 Let M be a free R-module with basis {ei}. A monomial ordering
< on M is a relation on M that satisfies the following properties.

(1) < is a total order. That is, for any m1,m2 ∈ M , either m1 < m2, m1 > m2,
or m1 = m2.

(2) < is preserved under multiplication. That is, for all m1,m2,m3 ∈ M , if m1 <
m2 then m1m3 < m2m3.

(3) Every nonempty subset of M has a minimum element with respect to <.

If M = R, then the monomial order < on R yields a corresponding order on Nn
0 , which

we denote as ≺, that is given by a ≺ b if and only if xa < xb. Conditions (1) and
(3) of Definition 2.2.2 are equivalent to saying that < is a well-ordering. Moreover,
condition (3) in itself is equivalent to the condition that every strictly decreasing
sequence of monomials in [x] terminates. Also, conditions (2) and (3) together force
the identity 1 to be the minimum monomial with respect to any monomial order.
Interestingly, if we assume that 1 is the minimum monomial with respect to some
order <, then conditions (1) and (2) are sufficient to imply (3).

Example 2.2.3 (lex & rlex Orders) If M = R, then the lexicographic order
on R is defined by xa >lex x

b if the left-most nonzero entry of a− b ∈ Zn is positive.
The (graded) reverse-lexicographic order on R is defined by xa >rlex x

b if
either deg(xa) > deg(xb) or deg(xa) = deg(xb) and the right-most nonzero entry of
a−b ∈ Zn is negative. >lex and >rlex are monomial orders on R. Their corresponding
orders on Nn

0 are denoted �lex and �rlex.
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We will use a weighted version of <rlex later on. For now, we fix more notation. For
any f ∈M , the leading term of f is defined to be the greatest term of f with respect
to the order <, denoted lt<(f) (or just lt(f) if the order is clear). If lt<(f) = am
where a ∈ F and m is a monomial of M , then we call a the leading coefficient of f
and m the leading monomial of f , denoted lc<(f) and lm<(f), respectively. For a
submodule L ⊆M , the initial submodule of L is the submodule given by all of the
leading terms of L, denoted lt<(L) = {lt<(f) | f ∈ L}.

Algorithm 2.2.4 ((Multivariate) Division Algorithm) Let M be a free module
over R with basis ei and monomial order <. For any f, g1, . . . , gt ∈ M , there exist
q1, . . . , qt ∈ R and r ∈M such that

f =
∑

qigi + r, (2.6)

where none of the monomials in r is divisible by lm(gi) and lt(f) ≥ lt(qigi) for
i = 1, . . . , t.

We may produce such an expression as (2.6) iteratively as follows. Having chosen
s1, . . . , sp and m1, . . . ,mp, if rp = f −

∑p
i=1migsi 6= 0 and m is the maximal term of

rp that is divisible by some lt(gk), then we choose sp+1 = k and mp+1 = m/lt(gk).
The algorithm terminates when either rp = 0 or no leading term of any gk divides a
monomial of r. The algorithm halts after a finite number of iterations because the
maximal term of rp that is divisible by some lt(gk) decreases each time and the set of
all these terms has a minimal element (by Definition 2.2.2(3)), which corresponds to
the final iteration. We get the expression (2.6) by taking r to be the last rp produced

and taking qi =
∑
j:sj=i

mj. The expression produced in (2.6) is far from unique as we

may have choices for which k to take for sp+1 in each step. However, the algorithm can
be made deterministic if we take, for example, the smallest k for which lt(gk) divides rp
each time. The element r produced by the Division Algorithm is called a remainder
of f with respect to G = {g1, . . . , gt}. Since the algorithm is nondeterministic, r is
not unique, in general. However, for Gröbner bases, the remainder upon division is
the key to solving the submodule (or ideal) membership problem.

Definition 2.2.5 (Gröbner Basis) Fix a monomial order < on a free module M .
A finite basis G = {g1, . . . , gt} of a submodule L ⊆M is called a Gröbner basis (or
standard basis) if

lt(L) = 〈lt(G)〉 = 〈lt(g1), . . . , lt(gt)〉.

Example 2.2.6 ([12]) In the case where L is an n-dimensional vector space over
F with basis {ei}, the elements of L can be identified by column vectors of height
n. The monomials of L are {ei}. Assume e1 > · · · > en. We can extend this to a
monomial ordering on M by saying xaei > x

bej if i < j or if i = j and xa > xb with
respect to a fixed monomial ordering on R (such as <lex). A subset G = {g1, . . . , gt}
of L corresponds to an n × t matrix over F. Then G is a Gröbner basis if and only
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if it contains a maximal independent set in ‘echelon form’, that is if some maximal
independent subset of the column vectors gi have their first nonzero entries in distinct
rows.

If M = R, then the fact that every ideal has a Gröbner basis follows from Hilbert’s
Basis Theorem (which states that every ideal of R is finitely generated) by successively
adding elements to the basis until its leading terms generate the whole initial ideal.
We can do this with a finite number of additions because the rising chain of ideals
formed by the initial ideals of the basis as we grow it must eventually stabilize since R
is Noetherian. An essential property of Gröbner bases is that they provide a solution
to the membership problem when applied in the Division Algorithm.

Lemma 2.2.7 Let G be a Gröbner basis (with respect to some order <) of the sub-
module L of M . Let f ∈ M . Then f ∈ L if and only if 0 is the remainder of f with
respect to G.

Proof: Suppose f ∈ L. Upon applying the Division Algorithm to f and G, we get an
expression like (2.6), where the remainder r =

∑
qigi − f has no monomial divisible

by a leading term of G. But r ∈ L (since f is) so lt(r) ∈ lt(L) = 〈g1, . . . , g2〉, therefore
lt(r) is divisible by some lt(gk), since any monomial in a monomial submodule is a
multiple of some generator. Thus we get a contradiction unless r = 0. The converse
of the lemma follows immediately from (2.6) when r = 0. 2

Buchberger gave a useful criterion for testing whether a basis G is a Gröbner
basis or not. Assuming yet that {ei} is a basis of our free module M , for each
g, h ∈ G whose leading terms involve the same basis element, say lt(g) = amei and
lt(h) = bnei, we define the S-polynomial of g and h by

S(g, h) =
`

lt(g)
· g − `

lt(h)
· h,

where the monomial ` ∈ M is the least common multiple of lt(g) and lt(h); that is,
` = lcm(m,n) ∈ R as monomials in R. For completeness, we will say that S(g, h) = 0
if the leading terms of g and h involve different basis elements of {ei}.

Theorem 2.2.8 (Buchberger’s Criterion) Let L be a submodule of M generated
by the finite basis G. G is a Gröbner basis of L if and only if 0 is the remainder of
S(g, h) with respect to G for all g, h ∈ G.

A proof of Theorem 2.2.8 can be found in [12].
The idea of Gröbner bases would not be nearly so useful if there was not a clear

method for finding them. In his thesis, Buchberger gave the following simple but
useful algorithm for computing a Gröbner basis.

Algorithm 2.2.9 (Buchberger’s Algorithm) Let G = {g1, . . . , gn} be a finite ba-
sis of the submodule L of M . Compute the remainder rij of S(gi, gj) with respect to
G for all gi, gj ∈ G. If some rij 6= 0 then adjoin rij to G, and repeat the process. If
all rij = 0, then G is a Gröbner basis of L.
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Since the submodule generated by the leading terms of G∪{rij} is strictly larger than
the one generated by the leading terms of G, the process of Buchberger’s Algorithm
must eventually stop. Its exact complexity is not really clear, but analysis of Gröbner
bases has shown that in worst-case situations the size of the Gröbner basis grows
exponentially in the size of the initial generating set, and the best known upper
bounds on the degrees of the generators of a Gröbner basis are doubly exponential
in the number of variables in R. To be more precise, these bounds are O(d2n) where
n is the number of variables and d is the degree bound for the initial generators.
Also, it has been shown that there are ideals for which every Gröbner basis contains
Ω(22n) elements and moreover contains elements whose degrees are of the same order.
So it seems computing Gröbner bases may not be the wisest course of action when
speed or space matter. However, in practice there are many applications where the
algorithm actually terminates fairly quickly and there are partial understandings for
why it does so. Our application for instance, will not see the size of the basis nor
the degrees of the generators grow at all, so the complexity will remain polynomially
bounded in both.

2.3 Root-Finding

One of the essential steps for list decoding evaluation codes will involve factoring
bivariate polynomials over a finite field. This step can actually be reduced from a
factoring problem to a more tractable root-finding problem. The results of these
areas are already well-established so we present them here with the other background
information and refer back to them later in the paper when needed.

2.3.1 Complexity of Bivariate Polynomial Factorization

The field of polynomial factorization has seen substantial growth during the past few
decades. Some of the highlights of this area’s progress include the LLL basis reduction
algorithm and Hensel lifting techniques. The LLL algorithm for finding short vectors
in a lattice was introduced by Lenstra, Lenstra, and Lovász in 1982 and it yielded
the first polynomial time univariate factorization algorithm for polynomials over Q.
Subsequently, it has become popular in many applications besides polynomial factor-
ization such as integer programming, diophantine approximation, and cryptanalysis
(using lattice approximation techniques to break cryptosystems). Hensel lifting is
an elegant and powerful generalization of the Newton-Raphson method which solves
polynomial congruences modulo a prime power. It has been shown that the aver-
age time for a bivariate polynomial factorization algorithm based on Hensel liftings
is almost linear. However, it has also been shown (in [15]) that there are infinitely
many polynomials that require exponential time to factor using Hensel liftings, so
other methods are necessary for constructing an absolute polynomial time bivariate
factoring algorithm. In [14], Shuhong Gao gave a polynomial time factorization algo-
rithm for polynomials over Q or a finite field of large characteristic that is based on
solving a system of linear equations derived from a partial differential equation. For
bivariate polynomials over Fq with degree bounds m and n and at most r absolutely
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irreducible factors (factors that are irreducible over the algebraic closure of Fq) his
algorithm finds all r factors using O(r(mn)2 log2(mn) + r2 log q) operations in Fq,
as long as the characteristic of Fq is greater than 6mn. This complexity is roughly
O(N2.5) (ignoring logarithmic factors) where N is the input size. Other polynomial
time factorization algorithms for bivariate polynomials over finite fields have been pre-
sented by Lenstra (O(N4) field operations, [26]) and by von zur Gathen and Kaltofen
(O(N6) field operations, [39]). For the purposes of list decoding, however, we will not
need to have a complete factorization of the polynomials we work with. Rather, for
an operative polynomial Q(x, y) ∈ F[x, y] it will be sufficient to know what the y-roots
of Q are, by which we mean the polynomials f(x) ∈ F[x] such that substituting f for
y in Q yields a polynomial in x that is uniformly 0, i.e. Q(x, f(x)) = 0. To this end
we utilize a root-finding algorithm that was first presented by Roth and Ruckenstein
in [33].

2.3.2 A Recursive Bivariate Root-Finding Algorithm

The bivariate root-finding problem, as it concerns us, may be formally stated the
following way.

Bivariate Root-Finding Problem: Given a polynomial Q(x, y) ∈
F[x, y], find all f(x) ∈ F[x] such that Q(x, f(x)) = 0.

Our method of solving this problem will rely on a recursive algorithm that reduces the
bivariate root-finding problem to a univariate root-finding problem. In [20], Kaltofen
and Shoup showed that a univariate polynomial over Fq of degree d could be fac-
tored probabilistically with O(d1.815 log q) arithmetic operations in Fq, so root-finding
should be manageable in sub-quadratic time, too. A simple way to find the roots in Fq
of a univariate polynomial f(x) ∈ Fq[x] of degree d is to compute g = gcd(f(x), xq−x)
and then use an equal-degree factorization algorithm1 to factor g. Such an algorithm
is described in [38, Algorithm 14.15], where probabilistic methods are used to find all
roots of f(x) in Fq using an expected number of O(d log2 d log log d log(dq)) operations
in Fq, or roughly O(d log q), ignoring small logarithmic factors. Deterministically,
though, by [27] we can still find the roots of f(x) using O((d2 log2 d) log q) operations
in Fq.

The bivariate root-finding algorithm of Roth and Ruckenstein ([33]) is based on
a simple lemma that retracts the problem to a univariate root-finding matter. In the
lemma, we wish to discard factors of x from the polynomials we produce so we make
the following definition.

Definition 2.3.1 For any nonzero f ∈ F[x, y], the reduction of f is f divided by
the largest power of x that is a factor of f . We denote this by

red(f) =
f

xmax{i : xi|f} .

1Equal-degree factorization algorithms have been studied as far back as Gauss, who studied the
simplest case where all the factors are linear.

20



Lemma 2.3.2 Suppose g(x) =
∑

i≥0 gix
i is a y-root of some nonzero polynomial

Q(x, y) ∈ F[x, y]. Iteratively define Qi, for i ≥ 0, as follows:

Q0 := red(Q)

Qi+1 := red(Qi(x, xy + gi)), for i ≥ 0.

Then for each i ≥ 0, Qi(x, g
[i](x)) = 0, where g[i] =

∑
s≥i gsx

s−i, and consequently
Qi(0, gi) = 0. Moreover, Qi(0, y) 6= 0 so gi is a nontrivial root of Qi(0, y).

Proof: To start with, since Q 6= 0 and it has a y-root, degy(Q) must be positive.
Let ` = degy(Q) > 0. Then inductively we have that degy(Qi) = ` > 0 for all
i ≥ 0 because Q0 is obtained from Q by removing x factors, which leaves the y-
degree unchanged, and from there each Qi+1 is obtained from Qi by substituting for
y an expression that is still linear in y and discarding x factors. So the y-degree
remains constant as we iteratively define these Qi’s. (For now, we only use this fact
to establish that each Qi is nonzero, but the constancy of the y-degree shall be more
important later on when we analyze the complexity of the root-finding algorithm.)
Since Qi 6= 0, Qi+1 is well-defined by Definition 2.3.1. This is sufficient to show that
Qi(0, y) 6= 0 for i ≥ 0 because Qi(0, y) = 0 if and only if x divides Qi but x cannot
divide Qi by the definition of Qi.

It remains to show that Qi(x, g
[i](x)) = 0. Notice that g[i](x) = xg[i+1](x) + gi

for i ≥ 0. To begin our main induction argument for the lemma, observe that since
Q0(x, y) = Q(x,y)

xs
for some s ≥ 0, Q0(x, g

[0](x)) = Q(x,g(x))
xs

= 0
xs

= 0. Assume that
Qi(x, g

[i](x)) = 0 for some i ≥ 0. Then for some s ≥ 0,

Qi+1(x, g
[i+1](x)) =

Qi(x, xg
[i+1](x) + gi)

xs
=
Qi(x, g

[i](x))

xs
=

0

xs
= 0.

Thus, for every i ≥ 0, Qi(x, g
[i](x)) = 0. Setting x = 0 in the this formula yields

Qi(0, gi) = 0 for all i ≥ 0. 2

By Lemma 2.3.2, which is a slightly condensed form of Lemma 5.1 in [33], the
coefficients of the y-roots ofQ(x, y) correspond to the roots of the nonzero polynomials
Qi(0, y) ∈ F[y], so by finding these we can reconstruct all of the y-roots of Q. We
now describe a recursive algorithm for doing just that.

Algorithm 2.3.3
Description: finds the y-roots of Q(x, y) that have degree less than d
Input: a nonzero, bivariate polynomial Q, a degree bound d on the y-roots sought,
and a recursive depth counter i that should be 0 for the initial call
Output: y-roots of Q of degree less than d
Global: an array g[0, . . . , d− 1] is maintained for storing the coefficients

Rootfind(Q(x, y), int d, int i)

R1. Qi := red(Q)
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R2. Find all distinct roots s of Qi(0, y) ∈ F[y]

R3. For each s do

R4. g[i] := s

R5. if (i = d− 1)

R6. output g(x) =
∑d−1

j=0 g[j]xj if Qi(x, s) = 0

R7. else

R8. Rootfind(Qi(x, xy + s), d, i+ 1)

Algorithm 2.3.3 is a slightly condensed version of the algorithm in [33, Figure 2].
There is a slight difference in our algorithm in that step R6 checks if the polynomial
found is in fact a y-root before outputting it, whereas the algorithm of [33] simply
outputs all sequences found when it gets to step R6, including (possibly) erroneous y-
roots. The input of the degree bound d is not essential to the algorithm’s functionality.
If the user simply wanted all of Q’s y-roots and did not care about their degrees the
algorithm could be modified to calculate an upper bound on the degree of any y-root
and use this value for d. However, for our purposes inputting a bound is handy
because we will only be interested in finding y-roots with sufficiently small degrees.
Also, specifying d will permit tighter complexity bounds in our application. First,
though, we verify the correctness of the algorithm.

Correctness

Throughout this and the next subsection we will use ` to denote degy(Q(x, y)). Then,
as discussed in the proof of Lemma 2.3.2, ` = degy(Qi) for all i ≥ 0.

Proposition 2.3.4 If Algorithm 2.3.3 is called with Q ∈ F[x, y], d ∈ N, and i = 0,
then it will eventually halt and correctly output exactly the y-roots of Q(x, y) of degree
less than d.

Proof: To see that Algorithm 2.3.3 halts properly, notice that the maximum number
of roots of Qi(0, y) is `, which is also a bound on the number of iterations of the
for loop (step R3) and since there are no other control loops there cannot be any
infinite loops. ` is also a bound here on the number of recursive calls to Rootfind.
Moreover, the recursive depth of the algorithm is bounded by d, so the recursion tree
for Rootfind is a rooted tree of depth d where each node has degree at most `. Hence
there are no more than

∑d−1
i=0 `

i = `d−1
`−1

recursive calls to Rootfind, so the algorithm
must terminate after a finite number of steps.

Now we have to prove that the algorithm outputs g(x) if and only if g(x) is a
y-root of Q(x, y) of degree less than d. If g(x) =

∑d−1
s=0 gsx

s is such a y-root, then by
Lemma 2.3.2 the algorithm will eventually reach a recursive depth level of d where
the roots s it has recursed on are the successive coefficients of g(x). At this point,
the coefficients of g(x) are in the array g[0, . . . , d−1] and Qi = Qd−1 in the algorithm
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has been defined the same as Qd−1 in the lemma. Let rj be the power of x such

that Qj = red(Qj−1(x, xy + gj−1)) =
Qj−1(x,xy+gj−1)

xrj
for j ≥ 1 and let r0 be such that

Q0 = Q(x,y)
xr−1 . Then

Qd − 1(x, g[d− 1]) = Qd−1(x, g
[d−1])

=
Qd−2(x, g

[d−2])

xrd−1

...

=
Q0(x, g

[0])

xrd−1+rd−2+···+r1

=
Q(x, g(x))

xrd−1+···+r0

= 0. (2.7)

Therefore, the algorithm will output g(x) in step R6. Now suppose, that the polyno-
mial g(x) defined by the array at some point when step R6 is executed is outputted by
the algorithm. In this case, equation 2.7 still holds and it must be that Q(x, g(x)) = 0,
so g(x) is a y-root of Q(x, y). 2

Complexity

In the proof of Proposition 2.3.4 we described the structure of the recursion tree for
Algorithm 2.3.3 and from this it is clear that the maximum number of recursive calls
from a depth level of i is `i and so the number of recursive descent paths the algorithm
may follow is `d−1. This is a power of d−1 more than the possible number of y-roots,
`, that Q(x, y) may have, so it seems the the algorithm may be doing a lot of hopeless
searching during its execution. However, it turns out that the number of recursive
calls to Rootfind is generally much less than the simple bound we stated before and
that the total number of recursive descent paths is actually at most `, so it is really
possible that all paths could be fruitful in producing a y-root at the end.

Lemma 2.3.5 Let Qi =
∑`

s=0 qs(x)ys ∈ F[x, y] be a nonzero bivariate polynomial,
let a ∈ F be a root of Qi(0, y) of multiplicity m, and let Qi+1 = red(Qi(x, xy + a)) =
Qi(x,xy+a)

xr
where r = max{i : xi | Qi(x, xy + a)}. Then deg(Qi+1(0, y)) ≤ m.

Proof: Let Q′ = Qi(x, y + a) =
∑`

s=0 q
′
s(x)ys. Since a is a root of Qi(0, y) of

multiplicity m, 0 is a root of Q′(0, y) of multiplicity m. Therefore, for 0 ≤ s < m,
q′s(0) = 0 and so q′s(x) is divisible by x but q′m(0) 6= 0 so q′m(x) is not divisible by
x. Now let Q′′ = Qi(x, xy + a) = Q′(x, xy) =

∑`
s=0 q

′
s(x)xsys. Then Q′′ is divisible

by x but not by xm+1, so 1 ≤ r ≤ m. Then Qi+1 = Q′′/xr =
∑r

s=0
q′s(x)x

s

xr
ys +∑`

s=r+1 q
′
s(x)xs−rys. From this expression we see that deg(Qi+1(0, y)) ≤ r ≤ m since

the terms in the second summand all become zero when x = 0. 2
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Notice that Lemma 2.3.5 bounds the number of recursive subbranches for each
recursive call in the algorithm by the multiplicity of the root that is recursed upon.
This bounds the overall number of descent paths in the recursion tree to at most
` = degy(Q).

Lemma 2.3.6 If Algorithm 2.3.3 is called with Q ∈ F[x, y], d ∈ N, and i = 0, then
the overall number of recursive calls made to Rootfind is at most `(d− 1).

Proof: At depth level i = 0, the degree of Q0(0, y) is at most ` and hence there
are at most ` recursive calls to Rootfind. By Lemma 2.3.5, the sum of the degrees
of the polynomials Qi(0, y) processed at depth level i is greater than or equal to the
sum of the degrees of the polynomials Qi+1(0, y) processed at depth level i + 1 for
i = 0, . . . , d − 2. Hence, inductively, there are at most ` recursive calls to Rootfind
at each depth level i for i = 0, . . . , d− 2 and no recursive calls at higher depth levels
because there the degree bound has been met. Thus, there are at most `(d − 1)
recursive calls made to Rootfind before the algorithm halts. 2

Proposition 2.3.7 If Algorithm 2.3.3 is called with Q ∈ Fq[x, y] where degx(Q) = m
and degy(Q) = `, d ∈ N, and i = 0, then the number of arithmetic operations in Fq
used during the execution of the algorithm to its full recursive depth is

O(`2(m+ d`) + d` log2 ` log log `(m+ d2`+ log q)), if ` < q

and it is
O(d`2(m+ d2`)), if ` ≥ q.

Proof: Step R1 would require a number of steps proportional to the number of terms
in Q to find the largest power of x that divides Q and subtract that power from x in
each term, but it does not require any operations in F = Fq. Step R2 requires finding
roots of univariate polynomials and by Lemma 2.3.5 the sum of the degrees of the
operating polynomials Qi(0, y) at recursive depth level i is at most `. By Corollary
14.16 in [38], the roots of a degree n univariate polynomial over F can be found us-
ing an expected number of O(n log2 n log log n log qn) operations in F. The greatest
complexity we can incur at the ith level in step R2 comes when there is just one poly-
nomial of degree `. In this case step R2 costs O(` log2 ` log log ` log q`) field operations
at level i and overall R2 requires an expected number of O(d` log2 ` log log ` log q`)
arithmetic operations in F during the entire recursive descent of the algorithm.

Let mi = m+ i(`− 1) for 0 ≤ i < d. Then mi is an upper bound on the x-degree
of Qi at depth level i in the recursive descent of the algorithm. The expense of step
R6 comes from evaluating Qd−1(x, y) at y = gd−1. The evaluation can be performed
by finding g2

d−1, . . . , g
`
d−i at a cost of `− 1 multiplications in F, then multiplying each

term of Qd−1 by the appropriate power of gd−1 and combining terms, which may
require up to (md−1 + 1)` multiplications and the same number of additions. Hence,
one execution of step R6 requires O(md−1`) operations in F[x]. By Lemma 2.3.5 step
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R6 can be run at most ` times so the cost of R6 through the entire recursive descent
is O(`2(m+ d`)).

In step R8, we must compute Qi(x, xy+s) for the recursive call to Rootfind. This
can be done in two steps: first we compute the shifted polynomial Qi(x, y + s), and
second we substitute xy for y. The second step simply requires increasing the x-
degree of every term by the value of its y-degree and does not require any operations
in Fq, so we only need to assess the cost of computing Qi(x, y + s). If ` < q, then
we can proceed as follows. Expressing Qi as Qi =

∑mi
t=0 rt(y)xt where rt ∈ F[y] and

deg(rt) ≤ `, we have that Qi(x, y+s) =
∑mi

t=0 rt(y+s)xt and we can compute rt(y+s)
by evaluating rt(y) at `+ 1 distinct values a0, . . . , a` ∈ F and then obtain rt(y+ s) by
interpolating through the ` points (aj− s, rt(aj)) for j = 0, . . . , t. By Corollaries 10.8
and 10.10 of [38], both the evaluation and interpolation steps take O(` log2 ` log log `)
operations in F. By Lemma 2.3.5, we may have to run step R8 up to ` times at
each recursive depth level i = 0, . . . , d − 2 (step R8 will never be executed when
i = d − 1), so the net cost of step R8 is O(d` log2 ` log log `(m + d2`)) operations in
F. If, however, ` ≥ q, then we will not have enough points to interpolate through to
find rt(y + s), so we must take another approach. Express Qi as Qi =

∑`
t=0 qt(x)yt,

where qt ∈ F[x] and deg(qt) ≤ mi. Then Qi(x, y + s) =
∑`

t=0 qt(x)(y + s)t. To

compute (y + s)t =
∑t

j=0

(
t
j

)
st−jyt for t = 0, . . . , ` requires finding s2, . . . , s`, which

can be done with ` − 1 multiplications in F, and then combining these values with
the appropriate binomial coefficients and powers of y (no additional operations in F
are needed here). Then we have to multiply qt(x) · (y+s)t for t = 0, . . . , `, which may
require as many as

∑`
t=0(mi + 1)(t + 1) = (m + 1)

(
`+1
2

)
∈ O(m`2) multiplications,

and then adding these products together may require up to (mi+1)(`+1)` additions
in F. So the cost of computing Qi(x, y + s) this way is O(mi`

2) operations in F
and the cost of step R8 throughout the entire recursive descent of the algorithm is
O(d`2(m+ d2`)) operations in F.

Combining the field arithmetic costs of steps R2, R6, and R8 we have that the
complexity of Algorithm 2.3.3 is O(`2(m+ d`) + d` log2 ` log log `(m+ d2`+ log q)) if
` < q and it is O(d`2(m+ d2`)) if ` ≥ q. 2

Ignoring most logarithmic factors, the cost of Algorithm 2.3.3 is O(`2(m + d`) +
d`(m + d2` + log q)) if ` < q and it is O(d`2(m + d2`)) if ` ≥ q. Our proof followed
most of the structure of the proof of Proposition 6.6 in [33] except their proof did not
consider the case where ` ≥ q and they made special assumptions on the weighted
degree of the polynomial Q according to their purpose for using the algorithm. We
now make a slight modification to the complexity analysis that will apply it more
specifically to our needs.

Corollary 2.3.8 Suppose n ≤ q− 1 and Q ∈ Fq[x, y] is a nonzero polynomial whose
y-degree is at most ` < q and whose (1, d)-weighted degree is at most N = m(n− τ)
(for some m, τ ∈ N). Then the number of field operations needed by Algorithm 2.3.3
to find all of the y-roots of Q is

O(` log2 ` log log `(d log q +N`)).
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Proof: Again, steps R2, R6, and R8 are the only ones that require operations in F.
Step R2 costs the same as in the proof of Proposition 2.3.7, which is
O(d` log2 ` log log ` log q`) arithmetic operations in F = Fq over the entire recursive
descent of the algorithm.

Let Nt = N − dt for t = 0, . . . , `. Then Nt is an upper bound on the maximum
x-degree of any term in Q with y-degree t. Because y is replaced by xy + s in Qi in
each recursive call to Rootfind, at recursive depth level i we have that the maximum
x-degree of any term with y-degree t in Qi is Ni,t := Nt+i(t−1) = N−(d−i)t−i ≤ N
since i < d throughout the algorithm. (Note: in the proof of Lemma 2.3.5 it was
shown that at least one factor of x is removed every time we reduce in step R2 when
i > 1.)

The cost of step R6 comes from evaluating Qd−1(x, y) at y = gd−1. The evaluation
can be performed by finding g2

d−1, . . . , g
`
d−i at a cost of `−1 multiplications in F, then

multiplying each term of Qd−1 by the appropriate power of gd−1 and combining terms,
which may require up to

∑`
t=1Nd−1,t = N`−

(
`
2

)
− (d−1)` multiplications and about

the same number of additions. Hence, one execution of step R6 requires O(N`)
operations in F[x]. By Lemma 2.3.5 step R6 can be run at most ` times so the cost
of R6 through the entire recursive descent is O(N`2).

Consider the polynomial Qi =
∑N

t=0 qt(y)xt. Let `t = deg(qt) for 0 ≤ t ≤ N . Then
`t ≤ `. Following the analysis of the proof of the cost of step R8 in Proposition 2.3.7,
we find that computing Qi(x, y + s) =

∑N
t=0 qt(y + s)xt by interpolating through the

values qt(aj + s) for `t + 1 distinct points aj ∈ F has a cost of O(`t log2 `t log log `t)
operations in F. By counting the number of terms of Qi two different ways, we see
that

N∑
t=0

`t ≤
∑̀
t=0

Ni,t ≤ (`+ 1)N.

Then each execution of step R8 takes at most O(N` log2 ` log log `) field operations.
Hence, the overall complexity of step R8 in Algorithm 2.3.3 is O(dN`2 log2 ` log log `)
on the specified input.

Combining the complexities of steps R2, R6, and R8, we have that the algorithm
requires O(d` log2 ` log log `(log q +N`)) operations in F. 2

The result of Corollary 2.3.8 is similar to the time complexity bound given by
Roth and Ruckenstein in Proposition 6.6 of [33] except that they had an additional
factor of ` in their cost analysis of step R2 (R3 in [33]) because they cited univariate
root-finding algorithms with such an extra factor. Also, they replaced N` by n in their
asymptotic bound with the aid of preconditions they had assumed on the relationship
of n, N , and `. We have not enforced the same constraints here because we will be
using the root-finding algorithm in a more general setting. Also, in [33] a space
complexity of O(n) is given for their algorithm. Our algorithm should achieve the
same space complexity as the only significant difference between the algorithms is that
ours checks whether the polynomial g(x) is actually a y-root of Q before outputting it
instead of always outputting the polynomial g(x) (and possibly producing erroneous
y-roots) when step R6 is reached. EvaluatingQd−1(x, s) in step R6 is no more complex
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than the evaluating and interpolating that occurs in step R8, so the test in R6 does
not increase the asymptotic space complexity of our algorithm. However, in the tasks
that we are about to undertake our attention will be focused on improving the time
complexity of the algorithms we utilize for list decoding, so we will not be concerned
about analyzing the space complexity of our algorithms.

2.3.3 Modular Extension of RootFind

Algorithm 2.3.3 will be useful for performing the root-finding step of the bivariate
list decoding algorithm that we present in Chapter 3, but for the multivariate list
decoding algorithm in Chapter 4, we will need to adapt the root-finding algorithm to
search for y-roots modulo a polynomial in F[x]. This modified root-finding problem
can be precisely stated as follows.

Bivariate Modular Root-Finding Problem: Given polynomialsQ(x, y) ∈
F[x, y] and h(x) ∈ F[x] such that Q is not a multiple of h, find all
f(x) ∈ F[x] such that Q(x, f(x)) mod h(x) = 0.

When we write Q(x, y) mod h(x) we shall be referring to the canonical representative
of the residue class of Q in F[x, y]/〈h(x)〉, not to the residue class itself (because x
may be a unit in the quotient ring and that would cause problems for our reduction
definition). We can easily adapt Lemma 2.3.2 to apply to this modular root-finding
problem.

Lemma 2.3.9 Suppose g(x) =
∑

i≥0 gix
i is a y-root of Q(x, y) modulo h(x) (that is,

Q(x, g(x)) mod h(x) = 0) of some polynomial Q(x, y) ∈ F[x, y] that is not divisible
by h(x), where h(x) is a reduced polynomial, meaning red(h) = h. Iteratively define
Qi, for i ≥ 0, as follows:

Q0 := red(Q mod h(x))

Qi+1 := red(Qi(x, xy + gi) mod h(x)), for i ≥ 0.

Then for each i ≥ 0, Qi(x, g
[i](x)) = 0, where g[i] =

∑
s≥i gsx

s−i, and consequently
Qi(0, gi) = 0 ∈ Fq[x, y]. Moreover, Qi(0, y) 6= 0 ∈ Fq[x, y] so gi is a nontrivial root of
Qi(0, y).

Proof: We first show the Qi’s all have the same y-degree. Let t = degy(Q mod h(x))
and let f(x)yt 6= 0 be the leading term of Q mod h(x). Then deg(f) < deg(h). The
leading term of Q0 is f(x)yt/xs 6= 0 for some s ∈ N0. Hence, the leading term of
Q0(x, xy + g0) mod h(x) is f(x)xtyt/xs 6= 0 (since deg(f) < deg(h) and h is not
divisible by x) and so the leading term of Q1 is f(x)xs1yt for some s1 ∈ N0. Then the
leading term of Q1(x, xy+ g1) mod h(x) is f(x)xs1+tyt and so the leading term of Q2

is f(x)xs2yt for some s2 ∈ N0. Repeating this argument we get that the leading term
of Qi is f(x)xsiyt for some si ∈ N0 for all i ≥ 0 and so Qi 6= 0 (we actually need this
fact, iteratively, to have Qi+1 be well-defined) and by its definition it is not divisible
by x so Qi(0, y) 6= 0.

Now, because g is a y-root of Q mod h(x) 6= 0 and deg(g) < deg(h), (y − g)
is a factor of Q mod h(x) and so also of Q0. Then, (xy + g0 − g) = x(y − g[1])
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is a factor of Q0(x, xy + g0) mod h(x) and so (y − g[1]) is a factor of Q1. Then,
(xy+ g1− g[1]) = x(y− g[2]) is a factor2 of Q1(x, xy+ g1) mod h(x) and so (y− g[2]) is
a factor of Q2. Repeating this argument, we get that (y− g[i]) is a factor of Qi for all
i ≥ 0. Since (y − g[i]) is a factor of Qi, Qi(x, g

[i](x)) = 0. Substituting 0 for x yields
Qi(0, gi) = 0. 2

We now modify Algorithm 2.3.3 to handle the modular root-finding problem.

Algorithm 2.3.10
Description: finds the y-roots of Q(x, y) modulo h(x) that have degree less than d
Input: a nonzero, bivariate polynomial Q, a degree bound d on the y-roots sought, a
recursive depth counter i that should be 0 for the initial call, and a reduced polynomial
h(x) (that is, red(h) = h)
Output: y-roots of Q of degree less than d
Global: an array g[0, . . . , d− 1] is maintained for storing the coefficients

ModRootfind(Q(x, y), int d, int i, h(x))

R1. Qi := red(Q mod h(x))

R2. Find all distinct roots s of Qi(0, y) ∈ F[y]

R3. For each s do

R4. g[i] := s

R5. if (i = d− 1)

R6. output g(x) =
∑
g[j]xj if Qi(x, g[i]) = 0

R7. else

R8. ModRootfind(Qi(x, xy + s), d, i+ 1, h(x))

Proposition 2.3.11 If Algorithm 2.3.10 is called with Q ∈ F[x, y] not equal to zero,
d ∈ N, i = 0, and a reduced polynomial h(x) ∈ F[x] of degree d or higher, then it
will eventually halt and correctly output exactly the y-roots of Q(x, y) modulo h(x) of
degree less than d.

Proof: To see that Algorithm 2.3.10 halts properly, notice that the maximum number
of roots of Qi(0, y) is degy(Q), which is a bound on the number of iterations of the for
loop (step R3) and since there are no other control loops there cannot be any infinite
loops. degy(Q) is also a bound here on the number of recursive calls to ModRootfind

for each call made. Moreover, the recursive depth of the algorithm is bounded by d,
so the recursion tree for ModRootfind is a rooted tree of depth d where each node has

2Actually, if deg(h) = 1 then x is not a factor of Q1(x, xy + g1) mod h(x), but this is inconse-
quential for what we are trying to show.
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degree at most degy(Q). Hence there are no more than
∑d−1

i=0 degy(Q)s <∞ recursive
calls to ModRootfind, so the algorithm must terminate after a finite number of steps.

Now we have to prove that the algorithm outputs g(x) if and only if g(x) is a
y-root of Q(x, y) modulo h(x) of degree less than d. If g(x) =

∑d−1
s=0 gsx

s is such a
y-root, then by Lemma 2.3.9 the algorithm will eventually reach a recursive depth
level of d where the roots s it has recursed on are the successive coefficients of g(x).
At this point, the coefficients of g(x) are in the array g[0, . . . , d − 1] and Qi = Qd−1

in the algorithm has been defined the same as Qd−1 in the lemma. Let rj be the

power of x such that Qj = red(Qj−1(x, xy + gj−1) mod h(x)) =
Qj−1(x,xy+gj−1) mod h(x)

xrj

for j ≥ 1 and let r0 be such that Q0 = Q(x,y)
xr0

. Then

Qi(x, g[i]) = Qd−1(x, gd−1) mod h(x)

=
Qd−2(x, xgd−1 + gd−2)

xrd−1
mod h(x)

...

=
Q0(x, x

d−1gd−1 + xd−2gd−2 + · · ·+ xg1 + g0)

xrd−1+rd−2+···+r1
mod h(x)

=
Q(x, g(x))

xrd−1+···+r0
mod h(x)

= 0 mod h(x). (2.8)

Therefore, the algorithm will output g(x) in step R6. Now suppose, that the poly-
nomial g(x) defined by the array at some point when step R6 is executed is out-
putted by the algorithm. In this case, equation 2.8 still holds and it must be that
Q(x, g(x)) = 0 mod h(x), so g(x) is a y-root of Q(x, y) modulo h(x). 2

Proposition 2.3.12 If Algorithm 2.3.10 is called with Q ∈ Fq[x, y] where degx(Q) =
m and degy(Q) = `, d ∈ N, and i = 0, then the number of arithmetic operations in
Fq used during the execution of the algorithm to its full recursive depth is

O(d` log2 ` log log `(m+ d2`+ log q)), if ` < q

and it is

O(d` log3 ` log log `+ d`2(m log2m log logm+ d2`)), if ` ≥ q.

Proof: The only difference between Algorithms 2.3.3 and 2.3.10 is the reduction
modulo h(x) in step R1 (and thereafter, Algorithm 2.3.10 may have fewer roots to
recurse on). Using a fast Euclidean algorithm (see, for example, [38, Ch. 11]) we can
perform this reduction using O(`m log2m log logm) operations in F. Overall, this
adds as many as O(d`2m log2m log logm) operations to the complexity of Algorithm
2.3.3 given in Proposition 2.3.7, which yields the complexity stated in this proposition.
2
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2.3.4 A Slight Generalization

We may find it advantageous to look at Algorithm 2.3.3 in slightly more general
settings. For example, suppose we have a multivariate polynomial Q(x, y1, . . . , yr) ∈
F[x, y1, . . . , yr] and we wish to find every yi-root of it, by which we mean every polyno-
mial g(x) ∈ F[x] such that Q(x, y1, . . . , yi−1, g(x), yi+1, . . . , yr) = 0. By division with
remainder we have that g(x) is a yi-root of Q if and only if yi − g(x) is a factor of
Q. In this case, Q = P (x, y1, . . . , yr)(yi− g(x)) for some nonzero P ∈ F[x, y1, . . . , yr].
For a sufficiently general choice of a ∈ Fr (that is, if we choose a so that it does
not correspond to a root of P ), P (x, a1, . . . , ai−1, yi, ai+1, . . . , ar) = P ′(x, yi) 6= 0, so
we can find g(x) by running Algorithm 2.3.3 on Q(x, a1, . . . , ai−1, yi, ai+1, . . . , ar) =
P ′(x, yi)(yi − g(x)) 6= 0.

Copyright c© Philip Busse, 2008.
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Chapter 3
List-Decoding Evaluation Codes

3.1 Introduction

The minimum distance decoding problem has been well-studied for Reed-Solomon,
BCH, and other popular algebraic geometry codes (see, for example, [1], [28], or
[32]). Efficient decoding algorithms, such as the Berlekamp-Massey algorithm, have
been devised that accurately correct up to

⌊
d−1
2

⌋
errors in a received word. This is

a significant achievement as it has allowed for quick and effective decoding of error-
correcting codes in many of our favorite devices, such as cd/dvd players and cell
phones. But what about those special cases when a word is received for which the
closest codeword is a distance of more than

⌊
d−1
2

⌋
away? Does this happen?

Example 3.1.1 (Correctable error beyond the unique decoding radius)
Consider the [5, 2] Reed-Solomon code over F5

C = {(f(0), f(1), f(2), f(3), f(4))|f ∈ F5[x], deg(f) < 2} .

The distance of C is d = 5−2+1 = 4, so a classical decoding algorithm can correct up
to
⌊

4−1
2

⌋
= 1 error in it. Suppose the codeword c = (2, 2, 2, 2, 2) ∈ C was transmitted

and the word r = (2, 2, 2, 0, 0) was received at the end of the channel. Since two
errors occurred, the Berlekamp-Massey algorithm (which only decodes errors up to
weight

⌊
d−1
2

⌋
) would fail to find the closest codeword, although it would at least detect

that some errors occurred. In theory, since d = 4 and our received word is distance 2
away from the sent codeword, it is possible that there are other codewords of distance
two away from r. However, by inspection we find that c is the unique closest codeword
to r and the next closest codewords (there are seven of them) are distance 3 away.

Example 3.1.1 demonstrates in a small MDS code that it is possible to receive a word
with no codeword within the standard error-correcting bound, which confounds most
classical decoding algorithms. We may wonder whether this is a phenomenon we will
encounter in other codes like, for example, the longer Reed-Solomon codes utilized in
practice.

Example 3.1.2 (Classical correction-bound spheres fail to cover space)
Consider a popular [255, 223] Reed-Solomon code over F28, C, whose distance is d =
33. The standard error-correcting radius of this code is 16. Now C is not close to
being a perfect code, but if it were perfect then the Hamming sphere of radius 16 about
each codeword would have to contain 256255

256223 = 25633 ≈ 1.1579× 1077 vectors. As it is,

each such sphere only contains
∑16

i=0 (255
i ) 255i ≈ 3.0209 × 1063 vectors, meaning the

vast majority of possible received words in Fn are outside the standard error-correcting
radius of any codeword in C. Indeed, one must take a radius of 20 before the number
of vectors covered (with multiplicity) by the codeword spheres (3.4951 × 1077 in this
case) exceeds the number of vectors in the whole space.
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In fact, the only general case where this cover shortage will not happen is in the
case of perfect codes because they achieve the sphere-packing bound. So it seems
there are many words out there that could have a unique closest codeword and would
be correctable except that they lie outside the classical

⌊
d−1
2

⌋
decoding radius. But

even if we encountered an isolated word that was uncorrectable by standard decoding
algorithms and did not have a unique closest codeword, it would be beneficial to at
least know what the nearest codewords were. Then we would have some idea of where
to start and could make an educated guess, perhaps with the aid of other probabilistic
information (such as the transmission frequency of individual codewords), as to which
codeword was most likely sent.

With this in mind, we are encouraged to alter the classical decoding problem of
finding the unique (if it exists) closest codeword to our received word. We instead
focus our effort on finding a list of all of the codewords within some prescribed distance
of the received word. More formally, the list decoding problem can be stated in two
ways, depending on whether you prefer to bound the length of the list or the decoding
radius. We begin with the latter, which is prevalent among the two definitions in our
work.

Definition 3.1.3 (List Decoding by Distance) Given a code C ⊆ Fn, a vector
r ∈ Fn, and a distance threshold τ ∈ N, the (bounded distance) list decoding
problem is to find the list

Lτ,r = {c ∈ C | dist(c, r) ≤ τ} = Bτ (r) ∩ C

of all codewords within the Hamming radius τ of r. A radius-τ decoder is an
algorithm for computing the function δτ : Fn → 2C such that δτ (r) = Lτ,r for all
r ∈ Fn. We refer to the function δτ itself as a radius-τ decoder when we are not
concerned with the actual method used to compute it.

Most classical decoding algorithms give rise to a radius-
⌊
d−1
2

⌋
decoder. As mentioned,

the only problem with these decoders is that generally the
⌊
d−1
2

⌋
-spheres about all

of the codewords do not come close to covering Fn, so there is much to be gained in
finding radius-τ decoders with τ >

⌊
d−1
2

⌋
. Ideally, we would like to find a radius-τ

decoder such that the τ -spheres about C cover Fn but overlap as little as possible.
This way, every τ -sphere in the space would contain a codeword so we could decode
any received word r ∈ Fn but the lists would not be so long as to make choosing
the best candidate a burden. Also, it is essential that this decoder can be computed
efficiently.

The other approach to list decoding is more concerned about the size of the lists.

Definition 3.1.4 (List Decoding by List Length) Given a code C ⊆ Fn, a vec-
tor r ∈ Fn, and a list length bound ` ∈ N, the list-` decoding problem is to find a
list L(r) ⊆ C, |L(r)| ≤ `, of no more than ` candidate codewords for decoding r. A
list-` decoder is a function δ` : Fn → 2C such that |δ`(r)| ≤ ` for all r ∈ Fn. The
decoding radius of δ`,

τ = max({t ∈ N0 | ∀r ∈ Fn : Lt,r ⊆ δl(r)} ∪ {−1})
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is the maximum radius t for which δ`(r) contains all codewords within Hamming
distance t for every vector r. If no such radius t exists then we say the decoding
radius is −1.

Most classical decoding algorithms do not quite yield a list-1 decoder because for
some words r they return the empty list. To improve upon the error rates of classical
decoding algorithms it will be necessary to consider list-` decoders with ` > 1.

We shall discuss the advantages of both approaches to the list decoding problem
as we go along. For now, the bounded distance list decoding approach will be awarded
slight preference because it lends itself toward comparisons with classical decoding
algorithms. Though, to be fair, we shall be keenly interested in both the list sizes
and the decoding radii of our decoders. But since the decoding radius is identical to
the number of errors it is possible to correct in the code we will tend to look at the
maximum list size as a function of the decoding radius or the corresponding error
rate, wherefore we make the following definitions.

Definition 3.1.5 Let C be a q-ary code of length n. For any p ∈ [0, 1] and ` ∈ N,
we say that C is (p, `)-decodable if

|Lpn,r| ≤ `, for all r ∈ Fnq .

For any p ∈ [0, 1] the decoding list length (up to radius pn) of C is ` = min{L |
C is (p, L)-decodable}. For any list size ` ∈ N the decoding radius (up to list
length `) of C is p = max{P | C is (P, `)-decodable}. For a function L : N → N,
we say that a family of codes is (p, L(n))-list decodable if each code in the family
is (p, L(n))-list decodable where n is the length of the code. If the function L(n) is a
constant `, then we say that the family is (p, `)-list decodable.

Equivalently, we could say that C is (p, `)-decodable if there exists a function δ : Fn →
2C that is both a radius-(pn) decoder and a list-` decoder.

3.2 Bounds on List Decoding

The bound we will be most interested in for list decoding will be for the relation-
ship between the error rate and information rate of codes. This bound is closely
related to the well-known theorem by Claude Shannon ([35], 1948) which shows (non-
constructively) that for every channel there exist codes that can be transmitted with
arbitrarily high reliability for all information rates up to the capacity of the channel.

Informally, the capacity of the channel is a measure of the maximum amount
of mutual information shared by the sent and received signals at either end of the
channel. It is based on the bit-wise reliability of the channel and the marginal dis-
tribution of messages that we choose to send over the channel. Mutual information
is the amount of information that can be obtained about one random variable by
observing another one. Explicitly, the mutual information of a joint probability dis-
tribution function p(x, y) : X × Y → [0, 1] for two discrete random variables X and

33



Y is

I(p) =
∑

x,y:p(x,y)6=0

p(x, y) log|X|

(
p(x, y)

p1(x)p2(y)

)
,

where p1(x) =
∑

y∈Y p(x, y) and p2(y) =
∑

x∈X p(x, y) are the marginal distribution
functions. In our context, X and Y will be the sets of messages sent and received,
respectively, at the two ends of the channel. We will assume that the conditional prob-
ability distribution p(y | x) is fixed according to the channel’s properties. The joint
distribution p(x, y) = p(y | x)p1(x) is then completely determined by the marginal
distribution p1(x) of messages we choose to send across the channel. The capacity of
a transmission channel T is formally defined as

cap(T ) = max
p1

I(p),

where the maximum is taken over all distributions p1 : X → [0, 1]. To have some
grasp of the uncertainty attenuating the mutual information of each distribution
scheme and restricting the capacity of the channel it is useful to talk about entropy,
which is a measure of the uncertainty associated to the value of a random variable.
Given a probability mass function p : X → [0, 1] for a discrete random variable X,
the entropy of X is

Hp(X) = −
∑

x∈X:p(x)6=0

p(x) log|X| p(x).

It is worth noting here that the entropy of X is maximized to 1 when X is uniformly
distributed (all values are equally likely so the outcome of a trial is as uncertain as
possible) and it is minimized to 0 when p(x) = 1 for some x ∈ X (X is always x in
this case, so there is no uncertainty).

Example & Definition 3.2.1 Let SCq be the memoryless q-ary symmetric channel
with crossover probability p. That means our message space has size |X| = q (note:
X = Y), each message is an independent, identically-distributed random variable X,
and the probability of error is p with all possible erroneous messages equally likely, so
the probability of observing y if x is sent is

p(y | x) =

{
1− p, if y = x,

p
q−1

, if y 6= x.

The entropy function in this case is formally known as the q-ary entropy function
and it is denoted as

Hq(p) = −p logq p− (1− p) logq(1− p) + p logq(q − 1). (3.1)

It is a well-known result that the capacity of this channel is cap(SCq) = 1 − Hq(p)
(see Example 1.11 of [32] for a proof).

In his seminal paper on information theory, Shannon introduced “the Fundamental
Theorem for a Discrete Channel with Noise” ([35], Theorem 11, it is now known more
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popularly as Shannon’s Coding Theorem), which related the channel capacity
directly to the highest rate attainable in codes that perform arbitrarily well in terms
of reliability. His theorem states that for a channel of capacity C, for any κ ≤ C
there exists codes (of sufficiently large length) with rates at least κ such that the
probability of error in block decoding over the channel is arbitrarily small. However,
for any κ > C, the probability of a decoding error for any code of rate κ or more
is at least κ − C (although for sufficiently large lengths, there exists codes of rate
at least κ for which the probability of error is arbitrarily close to κ − C). For the
q-ary symmetric channel, Shannon’s Theorem says that as long as p < q−1

q
one can

communicate over the channel with arbitrarily small probability of error using codes
with rates as high as 1−Hq(p), but not with codes with higher rates than 1−Hq(p).
The proof of this was nonconstructive and it remains an open challenge to find such
codes and their decoding algorithms. In the realm of list decoding, in turns out that
there is a similar bound on the rates of codes that can be decoded efficiently.

The maximum length of the codeword list Lτ,v over all v ∈ Fn is an a priori
lower bound on the complexity of any radius-τ decoding algorithm for C. In order
for a code C to admit a radius-τ decoder that is computable in polynomial time it is
therefore necessary that the number of codewords in every Hamming sphere of radius
τ in Fn be bounded by a polynomial in n. In other words, if a family of codes are
to be list decoded up to an error rate of p in time polynomial the code length n,
then the decoding list length alone must be bounded by some polynomial L(n). It
has been known since at least the early 1980’s that for any error rate p the minimum
decoding list length L(n) of any q-ary code with an information rate κ ≥ 1 −Hq(p)
is exponential in n. To see this, we first present a bound we will need on the volume
(number of vectors) inside a Hamming sphere in Fnq . These results and their proofs
are standard (see, for example, [32] or [34]).

Lemma 3.2.2 For q, n, t ∈ N with q ≥ 2 and n > t,(n
t

)
(q − 1)t > e−

19

150

√
2

πn
· qnHq(t/n).

Proof: By Stirling’s approximation ([7], equation (3.17)) we have

n! =
√

2πn
(n
e

)n(
1 + Θ

(
1

n

))
.

Equations (3.19) and (3.20) in [7] actually provide a more precise bound of

n! =
√

2πn
(n
e

)n
eαn , where

1

12n+ 1
< αn <

1

12n
. (3.2)

From this expression for n! we obtain(n
t

)
(q − 1)t =

n!

(n− t)!t!
(q − 1)t

=

√
2πn(n/e)neαn√

2π(n− t)((n− t)/e)n−teαn−t
√

2πt(t/e)teαt
(q − 1)t
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=

(√
n

2π(n− t)t

)(
nn

(n− t)(n− t)tt

)
eαn−αn−t−αt(q − 1)t

=

(√
n

2π(n− t)t

)(
qn logq n

q(n−t) logq(n−t)qt logq t

)
eαn−αn−t−αtqt logq(q−1)

=

(√
n

2π(n− t)t

)
eαn−αn−t−αtqn logq n−(n−t) logq(n−t)−t logq t+t logq(q−1)

=

(√
n

2π(n− t)t

)
eαn−αn−t−αtqn(−(1− t

n
) logq(1− t

n
)− t

n
logq

t
n

+ t
n

logq(q−1))

=

(√
n

2π(n− t)t

)
eαn−αn−t−αtqnHq(t/n). (3.3)

One can easily check that

αn − αn−t − αt >
1

12n+ 1
− 1

12(n− t)
− 1

12t
≥ − 12n2 − 11n + 12

12(12n2 − 11n− 1)
≥ − 19

150

since 1
12n+1

− 1
12(n−t) −

1
12t

(which is always negative) is minimized when t = 1 or

t = n − 1 to − 12n2−11n+12
12(12n2−11n−1)

, which is minimized when n = 2 to −19/150. On the
other side, it is even easier to see that

αn − αn−t − αt <
1

12n
− 1

12(n− t) + 1
− 1

12t+ 1
=

12nt− 12n2 − 12t2 − n+ 1
12

n(12n− 12t+ 1)(12t+ 1)
< 0

since the denominator of the last fraction is always positive while its numerator is
always negative. From this it follows that

0.88102 ≈ e−19/150 < eαn−αn−t−αt < e0 = 1.

As for
√

n
2π(n−t)t , this expression is minimized when t = n

2
to
√

2
πn

. Thus from

equation 3.3 we have that(n
t

)
(q − 1)t >

√
2

πn
e−19/150qnHq(t/n) >

7

10
√
n
· qnHq(t/n) ∈ Ω(n−0.5qnHq(t/n)).

2

Lemma 3.2.2 is slightly stronger than the bound of 1
n+1
· qnHq(t/n) given in [32,

Lemma 4.8] (although their bound works also in the cases of n = t1 and n = 0, but
these cases will not be very interesting to us). More importantly, the lemma gives us
a firm grasp of the number of vectors that are a distance of t away from a given point
in Fnq . We use this result now to get a lower bound on the volume of a sphere about
a point.

1For us, t will end up being the number of errors we want to correct (usually denoted τ).
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Corollary 3.2.3 (|Bt(v)| Lower Bound) For q, n, t ∈ N with q ≥ 2 and n > t, for
any v ∈ Fnq ,

|Bt(v)| > 7

10
√
n
· qnHq(t/n) ∈ ω(qn(Hq(t/n)−δ)),

for any δ > 0. In fact, for any constant c > 0, |Bt(v)| > cqn(Hq(t/n)−δ) whenever
n ≥ 1

δ
logq(10c/7).

Proof: The number of vectors in the Hamming sphere Bt(v) of radius t about v is

t∑
i=0

(n
i

)
(q − 1)i ≥

(n
t

)
(q − 1)t,

so the inequality follows immediately from Lemma 3.2.2. The asymptotic classifica-
tion follows because if n ≥ 1

δ
logq(10c/7), then c

qnδ
≤ 7

10
√
n

and from this it follows

that cqn(Hq(t/n)−δ) ≤ 7
10
√
n
· qnHq(t/n). 2

The bound of Corollary 3.2.3 is actually fairly tight when 0 < t/n ≤ q−1
q

. We

demonstrate this with a lower bound from [32, Lemma 4.7].

Lemma 3.2.4 (|Bt(v)| Upper Bound) For q, n, t ∈ N with q ≥ 2 and t
n
≤ q−1

q
,

for any v ∈ Fnq ,

|Bt(v)| < qnHq(t/n).

Proof: Since t/n ≤ 1 − 1/q, t/n
(1−t/n)(q−1)

≤ 1 < 1
(1/q)(q−1)

. Armed with this fact we
make the following computation.

|Bt(v)| =

(
t∑
i=0

(n
i

)
(q − 1)i

)(
qnHq(t/n)

qn(−(1−t/n) logq(1−t/n)−t/n logq t/n+t/n logq(q−1))

)

=

(
t∑
i=0

(n
i

)
(q − 1)i

)(
(1− t/n)n−t(t/n)t(q − 1)−t

)
qnHq(t/n)

>

(
n∑
i=0

(n
i

)
(q − 1)i

(
t/n

(1− t/n)(q − 1)

)i−t)
· (1− t/n)n−t(t/n)tqnHq(t/n)

(q − 1)t

=

(
n∑
i=0

(n
i

)
(t/n)i(1− t/n)n−i

)
qnHq(t/n)

= (t/n+ (1− t/n))nqnHq(t/n)

= qnHq(t/n).

2

We now present a couple of theorems which in some sense relate the limit of the
Shannon Coding Theorem to upper and lower bounds on list decoding by showing
that for codes with rates above the capacity of the channel, the decoding list length
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grows exponentially in the length of the code (in fact, not just the longest list length
but even the average list size grows exponentially in the code length) and, conversely,
codes with polynomial decoding list lengths exist for all rates up to the channel
capacity.

Theorem 3.2.5 (Efficient List Decoding Upper Bound) Let q ≥ 2. Fix an er-
ror rate p ∈ [0, 1]. Suppose C is a q-ary code with information rate κ = 1−Hq(p) + δ
for some δ > 0. Then the decoding list length up to radius pn of C is greater than qnδ.

Proof: Let ` be the decoding list length of C up to radius p. This means that no
Hamming sphere of radius pn in Fnq contains more than ` codewords of C. Since

|C| = qκn the density of C in Fnq is qκn

qn
= qn(κ−1). Therefore, the average number of

codewords in Bpn(v) over all v ∈ Fnq is

|Bpn(v)| · |C|
|Fn|

> qnHq(t/n) · qn(κ−1) = qnδ,

the inequality following from Corollary 3.2.3. Since the average is no larger than the
maximum number of codewords in any sphere of radius pn in Fn, we get that the
decoding list length of C is ` > qnδ. 2

Corollary 3.2.6 Let q ≥ 2. Fix an error rate p ∈ [0, 1]. Let δ > 0. If {Cn} is a
family of (p, L(n))-list decodable q-ary codes with arbitrarily long block lengths and
rates greater than 1−Hq(p) + δ, then

L(n) ∈ Ω(qnδ).

Theorem 3.2.5 is important to us because it tells us a limit to the potential de-
coding radius for list decoding. It says that the decoding list length (up to radius
pn) grows exponentially in the length of the code for codes of rates higher than the
capacity of the q-ary symmetric channel. This means that a radius-(pn) decoder
for the code would require an exponential amount of time just to output the list of
nearest codewords to a received (and of course it must somehow find the list first) so
there is no hope for efficiently decoding up to radius-pn in codes with rates higher
than the q-ary channel capacity. To put it another way, the theorem can be reformed
to say that there do not exist any q-ary, (p, L(n))-decodable codes of length n with
rates higher than 1−Hq(p) where L(n) is any sub-exponential function. More simply,
there are no codes that can be efficiently list decoded up to radius pn with rates above
1−Hq(p). A remarkable fact is that we can find codes that can be efficiently decoded
up to radius pn with rates arbitrarily close to 1−Hq(p).

Theorem 3.2.7 (Efficient List Decoding Lower Bound) For every q, ` ∈ N2

and p ∈ [0, 1 − 1/q], there exists a (p, `)-list decodable q-ary code with rate at least
1−Hq(p)− 1

`
.
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Proof: We follow a course similar to the proof given in [17, Theorem 3.5]. Other
proofs can be found in [34] or [11].

Pick a large code length n ≥ `(` + 1) and assume pn is an integer for simplicity.

Let C be a set of M = qn(1−Hq(p)− 1
`+1

) codewords chosen uniformly at random with
replacement from Fnq . For any v ∈ Fnq , the probability that an arbitrary subset of
`+ 1 codewords of C is contained in the the Hamming sphere Bpn(v) is(

|Bpn(v)|
qn

)`+1

< q−n(1−Hq(p))(`+1), (3.4)

the inequality following from Lemma 3.2.4. Hence, the probability that some subset
of `+ 1 codewords is contained in Bpn(v) for some v ∈ Fnq is less than(

M

`+ 1

)
· qn · q−n(1−Hq(p))(`+1) ≤ M

(`+ 1)!
· q−n(1−Hq(p)− 1

`+1
) <

1

3
.

So the probability that C is (p, `)-decodable is greater than 2/3. Moreover, the prob-
ability that there are at least M/2 distinct codewords in C is(

qn

M/2

)((
qn

M/2

))
((
qn

M

)) >
1

2
.

Therefore, it must be that at least 1/3 of the possible codes we could have chosen for
C are (p, `)-decodable and have M/2 or more distinct codewords. Since n ≥ `(`+ 1)
we have q−n/(`+1) ≥ 2q−n/` which implies

M/2 = qn(1−Hq(p)− 1
`+1

)/2 ≥ qn(1−Hq(p)− 1
`
).

Thus, there exists a q-ary code of rate at least logq

(
M/2
qn

)
= (1−Hq(p)− 1

`
) that is

(p, `)-decodable. 2

Corollary 3.2.8 ([17]) For every q, ` ∈ N2 and p ∈ [0, 1−1/q], there exists a family
of (p, `)-list decodable q-ary codes with rates of at least 1−Hq(p)− 1

`
.

Theorems 3.2.5 and 3.2.7 establish 1 − Hq(p) as the benchmark for information
rates in codes that we would like to list decode up to radius p. For this reason we
may call 1 −Hq(p) the list decoding capacity (of a q-ary channel). It represents the
amount of information (as opposed to redundancy) we may transmit per symbol in a
code and still have a code that is sparse enough that the number of codewords within
distance pn (which is the amount of misinformation we would expect at the receiving
end of a q-ary channel with crossover probability p) of any particular codeword is
polynomially bounded (by Theorem 3.2.7). The list decoding capacity is not entirely
the same as the channel capacity in the Shannon-theoretic sense. For one thing, the
concept of decoding failure is different. In Shannon’s theorem, which is based on
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minimum distance decoding, the notion of a decoding error is an instance where the
codeword that was sent over the channel is not the unique closest codeword to the
word that was received. The actual time it takes to find the nearest codeword is of no
concern in this case. For list decoding, we view decoding failure as an instance where
the decoder cannot determine all of the codewords within a prescribed distance from
the received word in polynomial time. Theorem 3.2.5 precludes the possibility of
producing such a list in codes with rates above the channel capacity because the list
sizes grow exponentially long. Theorem 3.2.7, on the other hand, tells us that codes
do exist with rates arbitrarily close to the capacity whose list lengths are polynomially
small, yet it gives no assurance that there is any means of computing one of these lists
in polynomial time. The question remains whether we can find a polynomial time
decoding algorithm for the codes with rates approaching the list decoding capacity.
In pursuit of the answer it is interesting to look at the asymptotic nature of the list
decoding capacity in the limit of increasing alphabet size. Observe that as q goes to
infinity, the capacity approaches a simple limit,

1−Hq(p) = 1 + p logq p+ (1− p) logq(1− p)− p logq(q − 1)
q→∞−→ 1− p.

The following proposition provides a better understanding of how quickly the capacity
approaches 1− p.

Proposition 3.2.9 For any rate κ ∈ (0, 1) and any real δ ∈ (0, 1− p), there exists a
q-ary code of rate at least κ that is (1−κ−δ, `)-list decodable with ` < 1

δ
and q < 21/δ.

Proof: From the assumptions of the proposition, we have

1−Hq(p) = 1 +
p log p+ (1− p) log(1− p)

log q
− p+ p logq

(
q

q − 1

)
= 1− H2(p)

log q
− p+ p logq

(
q

q − 1

)
≥ 1− p− 1

log q
> 1− p− δ

since q > 21/δ. The statement then follows from Theorem 3.2.7. 2

From the proposition it is clear that for any κ we can find codes of rate no less
than κ in which we can correct arbitrarily close to a fraction of 1− κ errors through
list decoding. One caveat is that in order to approach the capacity of 1 − κ, the
alphabet size of the codes in point must grow unbounded.

The bounds given here on the capacity of list decoding may be theoretically satis-
fying, although some questions remain about what exactly happens at the boundaries
- what can be said of codes with rates equal to the capacity 1 − Hq(p)? Moreover,
from a practical point of view there are two important unfulfilled components to these
capacity results: (1) an explicit description of codes that achieve (at least asymptot-
ically) the list decoding capacity, and (2) an explicit and efficient algorithm for list
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decoding such codes. Guruswami and Rudra settled task (1) by utilizing folded Reed-
Solomon Codes (which we will describe in Chapter 4). They did give a description of
an algorithm that works in a special case but no explicit description of the algorithm
is given that works for the actual codes that approach capacity. We endeavor to
provide a concrete description and analysis in Chapter 4 and hope to improve upon
the complexity bound estimates given in [17]. First, though, we cover an essential
list decoding algorithm upon which the algorithm we present in the next chapter is
based.

3.3 Sudan’s Algorithm

The idea of bounded-distance list decoding was first studied by Peter Elias [10] in
1957 when he utilized the notion to investigate the upper and lower bounds on the
average probability of error for binary symmetric channels, specifically in relation to
Shannon’s Coding Theorem for those channels. He showed that the method could
produce codes with low average error probabilities for all rates. However, he made
no attempt to determine how this method could be implemented efficiently. Indeed,
there were no significant results to this end until forty years later when Madhu Sudan
published a seminal paper [37] describing the first polynomial time list decoding algo-
rithm that achieved error rates asymptotically better (albeit only for low information
rates) than classical decoding algorithms.

Sudan’s algorithm consists of two stages; the first stage is interpolating a certain
bivariate polynomial and the second is factoring it. The implementation of his algo-
rithm is conceptually quite simple but certain degree constraints on the interpolation
polynomial require some care to ascertain. The algorithm itself applies specifically to
Reed-Solomon codes and arose in the context of finding all univariate polynomials of
bounded degree that passed through some sufficiently large subset of n points in the
plane so let us begin there.

First, recall from Section 2.1.2 that the Reed-Solomon code RS(n, k,α) is the im-
age of all polynomials of degree less than k evaluated at some distinct α1, . . . , αn ∈ F.
We will assume henceforth that n, k > 1. Recall, the bounded distance-τ list decoding
problem for RS(n, k,α) for a given vector r ∈ Fn is to find all c ∈ RS(n, k,α) within
distance τ of r; that is, all codewords that agree with r in at least n− τ components.
Equivalently, if we can find all polynomials of degree less than k that interpolate at
least n− τ of the points Pi = (αi, ri) for i = 1, . . . , n then by simply evaluating these
polynomials at α1, . . . , αn we can construct the list of codewords that agree with r
in at least n− τ places. By doing this we obtain a radius-τ decoder for RS(n, k,α).

To construct this list of polynomials, it turns out to be beneficial to broaden our
scope to bivariate polynomials. When we speak of a y-root of h(x, y) ∈ F[x, y] we
will mean a polynomial s(x) ∈ F[x] such that h(x, s(x)) = 0. It is important here
to recognize that y-roots of a bivariate polynomial behave in much the same way as
roots of a univariate polynomial do. Namely, they correspond to certain linear factors
of the polynomial (in this case y-linear).
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Lemma 3.3.1 Let h ∈ F[x, y]. Then f ∈ F[x] is a y-root of h if and only if y− f(x)
is a factor of h.

Proof: The converse of the lemma is obvious so all that needs to be shown is that
y−f(x) divides h if f is a y-root. Assume h(x, f(x)) = 0. By the Division Algorithm,
we may write h(x, y) = q(x, y)(y − f(x)) + r(x, y) where q, r ∈ F[x, y] and degy(r) <
degy(y − f(x)) = 1, so r(x, y) is a constant with respect to y. That is, r = r(x, 0) ∈
F[x]. Then h(x, f(x)) = 0 implies q(x, f(x))(f(x) − f(x)) + r(x, f(x)) = r(x, 0) = 0
for every value of x. Hence, r = 0 and h = q · (y − f(x)). 2

Next, we will look for a nonzero polynomial Q ∈ F[x, y] of small degree that
passes through all of the points P1, . . . , Pn. If its degree is sufficiently small, then its
roots (and (y − f(x))-form factors) will correspond to the polynomials in Fk[x] we
seek – those interpolating n− τ of the points Pi. We will often want to consider the
(1, k − 1)-weighted degree of bivariate polynomials. Therefore, we will denote this
weighted degree for Q(x, y) =

∑
qijx

iyj ∈ F[x, y] by degk−1(Q) = max{i+ (k − 1)j |
i, j : qij 6= 0}.

Proposition 3.3.2 Suppose that Q ∈ F[x, y] passes through the points P1, . . . , Pn
and that degk−1(Q) < n− τ . If f ∈ Fk[x] is a polynomial interpolating at least n− τ
of the points Pi, then f is a y-root of Q.

Proof: Consider the polynomial Q(x, f(x)) ∈ F[x]. The degree constraint for Q
means that every term axiyj of Q satisfies i+ (k − 1)j < n− τ . Therefore, when we
substitute f(x) for y in each term axiyj of Q, the resulting polynomial axi(f(x))j has
degree at most i+ (k− 1)j < n− τ since deg(f) ≤ k− 1. So degQ(x, f(x)) < n− τ .

Now, Q(αi, ri) = 0 for i = 1, . . . , n. Since f(αi) = ri for at least n−τ points αi we
have at these points that Q(αi, f(αi)) = Q(αi, ri) = 0. So Q(x, f(x)) is a polynomial
of degree less than n− τ with at least n− τ roots. Therefore, Q(x, f(x)) is uniformly
0 so f is a y-root of Q. 2

We could easily find a nonzero polynomial Q that vanishes on all n of the points
Pi (take, for example,

∏n
i=1(x − αi)). However, for Q to be useful to us it should

satisfy the weighted degree bound of Proposition 3.3.2. Our next step is to determine
how large this bound n − τ has to be in order for a nonzero polynomial satisfying
the premise of the proposition to exist. While the previous proposition told us how
small degk−1(Q) has to be in order to possess the polynomials we seek as roots, the
following proposition will tell us how large it should be if it is to interpolate our n
points Pi. The balance between these two opposing constraints will be an important
and delicate issue in constructing an algorithm that extends the error rate beyond
classical bounds. We will exert considerable effort on finding a modus vivendi for
them.
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Proposition 3.3.3 For any ` ∈ N0, there exists a nonzero polynomial Q ∈ F[x, y]
with y-degree at most ` that vanishes at P1, . . . , Pn and satisfies

degk−1(Q) ≤

⌈
n+ 1 + (k − 1)

(
`+1
2

)
`+ 1

⌉
− 1

Proof: Fix ` ∈ N0. Let d =
n+1+(k−1)( `+1

2 )
`+1

. We must show that there is a polynomial
Q with degy(Q) ≤ ` and degk−1(Q) < d that is zero at each Pi. So we want Q(αi, ri) =
0 for i = 1, . . . , n. This condition gives us n homogeneous linear equations where the
unknowns are the coefficients of Q. The number of possible nonzero coefficients in
Q, whose (1, k − 1)-degree is strictly bounded above by d, is

∑̀
i=0

(d− i(k − 1)) = d(`+ 1)− (k − 1)

(
`+ 1

2

)
=

n+ 1 + (k − 1)
(
`+1
2

)
`+ 1

(`+ 1)− (k − 1)

(
`+ 1

2

)
= n+ 1.

Since the system of equations under consideration has more unknowns than con-
straints, we are assured of a nontrivial solution which supplies the polynomial Q we
desire and concludes the proof. 2

At this point, we assume no control over the values of n and k but we may choose
` however we like. Viewing the degree bound for Q above as a function of ` we have
d(`) = n+1

`+1
+ k−1

2
· `. In Proposition 3.3.2 we want the degree of Q to be low, so we

seek to minimize d(`). Viewing it as a real-valued function, d(`) is always positive

and its second derivative, d′′(`) = 2(n+1)
(`+1)3

, shows that it is concave up. Therefore

` =
√

2(n+1)
k−1

− 1, which is the only zero of its first derivative, d′(`) = −(n+1)
(`+1)2

+ k−1
2

,

minimizes the function d to the value

d

(√
2(n+ 1)

k − 1
− 1

)
=

n+ 1√
2(n+1)
k−1

+
k − 1

2

(√
2(n+ 1)

k − 1
− 1

)

=
√

2(k − 1)(n+ 1)− k − 1

2
. (3.5)

Of course, when we perform the algorithm we will need to choose an integer value
for `. The critical point we found for d(`) above is the absolute and only minimum

point of d so either b`0c or d`0e for `0 =
√

2(n+1)
k−1

− 1 will yield the minimal output

of d(`) for an integer input value of `. Which of the two choices is better will depend
on the parameters n and k, though, as Table 3.1 shows. In fact, considering the row
for k = 43 in the table, we cannot even say in general that rounding `0 produces the
minimal value of d on integral inputs. So we will leave this dilemma open to case by
case examination for now.
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n k `0 =
√

2(n+1)
k−1

− 1 d(`0) d(b`0c) d(d`0e)
255 31 3.131 108.935 109 111.2
255 33 3 112 112 112
255 35 2.881 114.939 119.3̄ 115
255 43 2.491 125.642 127.3̄ 127
255 45 2.411 128.093 129.3̄ 130
255 47 2.336 130.466 131.3̄ 133

Table 3.1: Minimizing values of d(`) for some typical parameters n and k

One other interesting fact regarding the minimizing value `0 of the degree bound
function d(`) is that there are infinitely many code parameters [n, k] for which b`0c
and d`0e produce the same value of d. The proof of this fact uses a simple lemma
which we prove first.

Lemma 3.3.4 If x is an odd integer, then x2 − 9 is divisible by 8.

Proof: Since x is odd, both x + 3 and x − 3 are even and, moreover, because they
differ by 6 exactly one of them is divisible by four. Therefore, their product, x2 − 9,
is divisible by 8. 2

Proposition 3.3.5 For any code dimension k ≥ 2, there are infinitely many code
lengths n for which the degree bound function d(`) satisfies d(b`0c) = d(d`0e) where
`0 is the critical number of d(`).

Proof: We look for integers ` such that d(`) = d(` + 1). Since d(`) is concave up,
there may be at most one such ` for any fixed [n, k] and this ` is necessarily b`0c.

d(`) = d(`+ 1) ⇐⇒ n+ 1

`+ 1
+
k − 1

2
· ` =

n+ 1

`+ 2
+
k − 1

2
(`+ 1)

⇐⇒ (n+ 1)(−1) +
k − 1

2
(`+ 1)(`+ 2)(−1) = 0

⇐⇒ `2 + 3`+ 2 +
2(n+ 1)

k − 1
= 0 (3.6)

the solutions to equation (3.6) are

` =
−3±

√
9− 8k−8n−16

k−1

2
,

of which we care only about the positive possibility (since negative degree bounds are

useless to us). To have ` be a positive integer, we need x :=
√

9− 8k−8n−16
k−1

to be an

odd integer greater than 3. After choosing such a value for x, we have

x2 = 9− 8k − 8n− 16

k − 1
=⇒ n =

(x2 − 9)(k − 1)

8
+ k − 2.
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Since x is odd, n is an integer by Lemma 3.3.4 and we obtain a pair [n, k] for which
d(`) = d(`+ 1). It may be noted that ` = x−3

2
here. Since `0 is the critical number of

d(`), it must lie between ` and `+ 1. Therefore, ` = b`0c and `+ 1 = d`0e. Thus, for
any code dimension k ≥ 2, the lengths n for which the degree bound d(`) is minimized
at two consecutive integers b`0c and d`0e are{

n =
(x2 − 9)(k − 1)

8
+ k − 2 ∈ N

∣∣∣∣ x ≥ 5 is an odd integer

}
,

which is clearly an infinite set. 2

Example 3.3.6 Take dimension k = 17. Letting x = 11, we have n = (112−9)(17−1)
8

+
17 − 2 = 239 and ` = b`0c = 11−3

2
= 4. Thus, for a [239, 17] Reed-Solomon code

the minimal degree bound for Q will be d(4) = d(5) = 80, which is obtained with a
y-degree bound of 4 or 5.

We will conclude this section with a formal description of Sudan’s Algorithm. The
coding gains of this algorithm over classical achievements as well as optimal choices
of the parameter ` will be examined more in the following sections. The algorithm is
similar to the original one given by Sudan in [37] except that Sudan had an additional
parameter m incorporated into the degree bound d(`) that is unnecessary and his
algorithm output the polynomials corresponding to the codewords that were within
the prescribed distance to the received word rather than the codewords themselves.

Algorithm 3.3.7 (Sudan’s List Decoding Algorithm for RS(n, k,α))
Input: r = (r1, . . . , rn), τ
Output: list of codewords, Lτ,r, within Hamming distance τ of r if d(`) ≤ n − τ for
` as computed in the algorithm

S1. Precompute `0 =
√

2(n+1)
k−1

− 1. Let ` be whichever of {b`0c, d`0e} minimizes

d(s) = n+1
s+1

+ k−1
2
·s. If n−τ < d(`), display ”Warning: list may be incomplete!”.

S2. Find a nonzero polynomial Q ∈ F[x, y] satisfying

(a) Q(αi, ri) = 0 for i = 1, . . . , n

(b) degk−1(Q) < d(`).

This step can be done by solving the system of equations given by condition (a)
where the unknowns are the coefficients of Q for terms with (1, k− 1)-weighted
degree less than d(`).

S3. Find all y-roots of Q(x, y) of degree less than k using Algorithm 2.3.3.

S4. For each y-root f(x) of Q from step S3, output the codeword (f(α1), . . . , f(αn))
if its Hamming distance from r is no more than τ .
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3.4 Selecting an Optimal List Size

The most crucial step of Algorithm 3.3.7 is the interpolation step: finding a poly-
nomial Q interpolating the points Pi whose (1, k − 1)-weighted degree is less than
the degree bound d(`) given in Proposition 3.3.3. Here, ` ∈ N represents an upper
bound on the y-degree of the polynomial Q(x, y) that we seek and if an interpolation
polynomial Q exists satisfying the degree constraints when ` = `0, then certainly
one exists with no greater weighted degree for every ` ≥ `0. To increase the error
rate, we want degk−1(Q) as small as possible and while conceivably we might find
better interpolation polynomials if we relaxed the y-degree constraint on Q, the fact
is that the larger we allow the y-degree to be the greater the time complexity of the
algorithm will be and, generally, the greater degk−1(Q) will be. It behooves us to
know what ` minimizes the degree bound d(`) and thereby maximizes the number of
errors, τ , we can correct.

Now Propositions 3.3.2 and 3.3.3 told us that Algorithm 3.3.7 will correct τ errors
if we can find a polynomial Q ∈ F[x, y] such that degk−1(Q) < n − τ and that such
a polynomial exists if d(`) ≤ n − τ for some ` ∈ N. So we can correct up to
τ = n−min{d(`) | ` ∈ N} errors, which means the algorithm attains an error rate of

p = τ
n

= 1− min{d(`)}
n

. However, to understand this error rate we need to know which

value `0 ∈ N of ` minimizes d(`)
n

. We discussed how to find `0 in Section 3.3 and saw
that its value will vary according to the values of n and k. In fact, even for fixed rates
κ = k

n
, the minimizing value of ` will change as k and n vary, as shown in Table 3.2.

However, asymptotically, the minimizing value of ` depends only on the rate κ = k
n
.

Lemma 3.4.1 For a fixed rate κ = k
n

define `0 as the unique integer such that

κ ∈

((
`0 + 2

2

)−1

,

(
`0 + 1

2

)−1
]
.

Let d`(n) = n+1
`+1

+ k−1
2
· ` for all ` ∈ N. Then the minimum of{

lim
n→∞

d`(n)

n

∣∣∣∣ ` ∈ N
}

is attained when ` = `0.

n k min{d(`) | ` ∈ N} `0 ∈ N minimizing d(`)
18 2 5.6̄ 5
90 10 36.2 4
180 20 73.75 3
→∞ = 1

9
n →∞ → 3

Table 3.2: Minimizing values `0 of d(`) for κ = 1
9
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Proof: To begin with, we note that
{(

i+1
2

)−1
}
i=1,2,...

is a strictly decreasing sequence

in (0, 1] and so the intervals
((

`0+2
2

)−1
,
(
`0+1

2

)−1
]

in the statement form a partition

of the positive unit interval.
Analyzing d`(n)

n
as n→∞, we have

d`(n)

n
=

n+ 1

n(`+ 1)
+
k − 1

2n
· ` =

1

`+ 1
+
`κ

2
+

1

n(`+ 1)
− `

2n
→ 1

`+ 1
+
`κ

2
.

Let f`(κ) = 1
`+1

+ `κ
2

for ` ∈ N. Then f`(κ) is the asymptotic value of d`(n)
n

for the

fixed rate κ and so we must show that for any κ ∈
((

`0+2
2

)−1
,
(
`0+1

2

)−1
]
, f`0(κ) is

minimal amongst all f`(κ). Now {f`(κ)}`=1,2,... is a sequence of functions on (0, 1]
with increasing slopes and decreasing y-intercepts. To find which f` is minimal at
each κ ∈ (0, 1] we start by comparing consecutive functions. For any ` ∈ N0, the lines

f`(κ) = 1
`+2

+ `κ
2

and f`+1(κ) = 1
`+2

+ (`+1)κ
2

intersect when

1

`+ 1
+
`κ

2
=

1

`+ 2
+

(`+ 1)κ

2
2(`+ 2) + `(`+ 1)(`+ 2)κ = 2(`+ 1)(`+ 2)κ

κ =
2(`+ 1)− 2(`+ 2)

`(`+ 1)(`+ 2)− (`+ 1)2(`+ 2)
=

2

(`+ 1)(`+ 2)

κ =

(
`+ 2

2

)−1

at the point X :=
((

`+2
2

)−1
, 2
`+2

)
. Since f`+1 has the greater slope, it is less than

f` everywhere before X and more than f` after X. Inductively, we can see now
that f1 is minimal amongst {f`} on the interval

(
1
3
, 1
]

(actually, f1 is minimal for
all κ ∈

(
1
3
,∞
)
, but rates beyond 1 are irrelevant to us) and that, in general, f`0 is

minimal on the interval
((

`0+2
2

)−1
,
(
`0+1

2

)−1
]

(see Figure 3.1). Thus, `0 minimizes

d`(n)
n

as n→∞ for any κ ∈
((

`0+2
2

)−1
,
(
`0+1

2

)−1
]
. 2

Theorem 3.4.2 For any fixed information rate κ = k
n
∈ (0, 1], the integer

`0 =

⌊
−1

2
+

1

2

√
1 +

8

κ

⌋

maximizes the error rate p = 1− dmin{d`(n)|`∈N}e−1
n

asymptotically.

Proof: Recall from the proof of Lemma 3.4.1 that f`(κ) is just limn→∞
d`(n)
n

for
a fixed rate κ. The value of ` for which f`(κ) is minimal is therefore the same

value that maximizes 1 − d`(n)
n

asymptotically. This value is the integer ` such that
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Figure 3.1: Sequence of lines f`(κ) = 1
`+1

+ `
2
κ for ` = 1, . . . , 50.

(
`+2
2

)−1
< κ ≤

(
`+1
2

)−1
. To compute this ` from κ, we have that ` is the largest

integer such that κ ≤ 2
`(`+1)

, or equivalently

`2 + `− 2

κ
≤ 0. (3.7)

The roots of the quadratic expression on the left side of the inequality are ` =
−1±
√

1+ 8
κ

2
. Hence

` =

−1 +
√

1 + 8
κ

2


is the largest integer that satisfies inequality (3.7).

Now we know for all κ ∈ (0, 1] which ` ∈ N asymptotically minimizes d(`)
n

as

n → ∞. This same value, ` =
⌊
−1

2
+ 1

2

√
1 + 8

κ

⌋
, therefore maximizes the error rate

p = 1− dmin{d(`)}e−1
n

as n→∞ for a fixed information rate, κ. 2

Corollary 3.4.3 For a fixed information rate κ = k
n
∈ (0, 1], we have

lim
n→∞

inf
`∈N

{
d`(n)

n

}
= inf

`∈N

{
lim
n→∞

d`(n)

n

}
.
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Proof: By Lemma 3.4.1,

inf
`∈N

{
lim
n→∞

d`(n)

n

}
= lim

n→∞

d`0(n)

n
=

1

`0 + 1
+
`0κ

2

where `0 ∈ N is such that
(
`0+2

2

)−1
< κ ≤

(
`0+1

2

)−1
. If ` > 4

κ
, then

d`(n)

n
=

1

`+ 1
+
`κ

2
+

1

n(`+ 1)
− `

2n
> 2− 2

κn
≥ 1

if we assume k ≥ 2, which we must. Observe, however, that

d1(n)

n
=

1

2
+
κ

2
+

1

2n
− 1

2n
≤ 1.

It follows that inf`∈N

{
d`(n)
n

}
= min`∈N:`≤4κ−1

{
d`(n)
n

}
. Hence,

lim
n→∞

inf
`∈N

{
d`(n)

n

}
= lim

n→∞
min

`∈N:`≤4κ−1

{
d`(n)

n

}
= min

`∈N:`≤4κ−1

{
lim
n→∞

d`(n)

n

}
since each limit in the last expression is well-defined. Moreover, by Lemma 3.4.1 this
last expression is equal to 1

`0+1
+ `0κ

2
because `0 <

4
κ

by Theorem 3.4.2, which shows
the claim. 2

In conclusion, we know that for list decoding RS(n, k,α), the optimal choice
for the y-degree bound ` of the interpolation polynomial Q in Algorithm 3.3.7 is

whichever of

⌊√
2(n+1)
k−1

− 1

⌋
and

⌈√
2(n+1)
k−1

− 1

⌉
minimizes d(`) = n+1

`+1
+ k−1

2
·`. While

there is a slight taste of unsavory ambiguity in this solution, at least we have narrowed
down the best value of l to only two possibilities, which are easy to check. Moreover,
we also know that for a fixed rate κ = k

n
, as n → ∞, the asymptotic optimal value

of ` is
⌊
−1

2
+ 1

2

√
1 + 8

κ

⌋
. Next we will examine closely the error rates the algorithm

achieves and compare those to the error rates of classical decoding algorithms.

3.5 Improvement in Error Rate over Minimum Distance Decoding

Our main objective in the pursuit of list decoding is to handle decoding cases where
the nearest codeword to the received word is equal to or more than half the distance
of the code away. In these cases, there may or may not be a unique closest codeword
so our algorithm might return multiple candidates from which we must choose one
to decode the received word as. Therefore, we are not assured of decoding a word
correctly even if few enough errors occurred so that the sent word appears in the list
of closest codewords. However, we will still call such an error correctable because
we can determine as much information as possible about the received word to make
an informed decision in the decoding process. This is a much looser notion of error-
correction than what it meant before list decoding, where a correctable error, e, was
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one for which a decoding algorithm always returned the correct codeword c if it was
given the received word c + e. To distinguish between these ideas we shall say that
the error e is absolutely correctable for a codeword c if c is the unique closest
codeword to c + e among those on the list returned by the algorithm given input
c+ e.

Note that whether an error is correctable or not depends on both the error and
the codeword to which it is applied. When counting the total number errors that
can be corrected, it is convenient to group errors according to weight and not worry
about which coordinates are affected or which codeword is being corrupted. If an
algorithm (absolutely) corrects all error vectors e with wt(e) ≤ τ applied to any
codeword, then we say it (absolutely) corrects up to τ errors or is (absolutely)
τ-error correcting. Classical decoding algorithms absolutely correct up to

⌊
d−1
2

⌋
.

List decoding algorithms do that and more, though not all of the errors they correct
will be absolutely correctable.

When comparing two decoding algorithms, one naturally looks for which algorithm
corrects the most errors. This could be done case by case for varying code lengths
and dimensions. However, when doing asymptotic analysis, we usually find that the
error rate of an algorithm is determined just by the information rate of the code. So
if we fix a rate κ = k

n
and let n go to infinity we get a well-defined value for the

limit of the corresponding error rates of the algorithm. For example, the Berlekamp-
Massey algorithm for decoding an [n, k] Reed-Solomon code absolutely corrects up
to
⌊
n−k

2

⌋
=
⌊
n1−κ

2

⌋
errors. When we fix the rate and let n → ∞ we see it has an

asymptotic error rate of

lim
n→∞

⌊
n1−κ

2

⌋
n

=
1− κ

2
.

By the Singleton bound, this is the best error rate one can achieve when considering
how many errors are absolutely corrected. But counting non-absolutely corrected
errors as well, Algorithm 3.3.7 asymptotically attains larger error rates than the
Berlekamp-Massey algorithm for all information rates less than 1

3
. The proof of this

fact uses the following simple lemma.

Lemma 3.5.1 Let f(x) be a function of x. Then limx→∞

∣∣∣ df(x)e
x
− f(x)

x

∣∣∣ = 0. There-

fore, if either limit exists,

lim
x→∞

df(x)e
x

= lim
x→∞

f(x)

x
.

Proof: Let ε > 0. Then for any x > 1
ε
,∣∣∣∣df(x)e

x
− f(x)

x

∣∣∣∣ =

∣∣∣∣df(x)e − f(x)

x

∣∣∣∣ < 1

x
< ε.

This shows the first claim. Since the limit of the difference of the two expressions is
zero, the individual limits of the expressions must be equal if either exists. 2
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Figure 3.2: Error rate improvement of Sudan over Berlekamp-Massey

Proposition 3.5.2 For any fixed information rate κ = k
n
∈ (0, 1], the asymptotic

error rate achieved by Algorithm 3.3.7 is

p(κ) = 1− 1

`0 + 1
− `0

2
κ

where `0 is as in Theorem 3.4.2.

Proof: Theorem 3.4.2 tells us the y-degree bound `0 that maximizes p(κ) as n→∞.
To determine what value it is maximized to, recall that Algorithm 3.3.7 can correct
up to τ = n − dmin{d`(n) | ` ∈ N}e + 1 errors. Hence, the asymptotic error rate it
attains is

lim
n→∞

n− dmin{d`(n) | ` ∈ N}e+ 1

n
= lim

n→∞

n− dd`0(n)e+ 1

n

= lim
n→∞

n−
⌈
n+1
`0+1

+ κn−1
2
· `0
⌉

+ 1

n

= lim
n→∞

1−
(

1 + 1/n

`0 + 1
+
κ− 1/n

2
· `0
)

+ 1/n

= 1−
(

1

`0 + 1
+
`0
2
κ

)
.

Dropping the ceiling function after the second line is justified by Lemma 3.5.1 and

the fact that d`0(n) is a linear function in n and so limn→∞
d`0 (n)

n
exists (we examined

it before in Lemma 3.4.1). Thus we obtain our error rate p(κ) = 1− 1
`0+1
− `0

2
κ. 2

It is evident from Proposition 3.3.3 that in our choice for the threshold τ of the
number of errors we may allow and still be able to reconstruct the list Lτ,r, we need
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to make it small enough so that n−τ ≥ min {d(b`0c), d(d`0e)} where `0 =
√

2(n+1)
k−1
−1

and d(`) = n+1
`+1

+ k−1
2
· `. Hence, we choose τ ≤ n−min {d(b`0c), d(d`0e)}. Analyzing

the value of d(`) when its input is floored or ceilinged is complicated. Figure 3.2
depicts the asymptotic error rate p(κ) attained by Sudan’s algorithm by Proposition
3.5.2. A simple lower bound of 1−

√
2κ is often stated to summarize this error rate,

but as the dashed and dotted lines of the figure indicate, the expression 1−
√

2κ+ κ
2

is
actually a much closer bound (albeit, an upper bound) on p(κ) and is a particularly
good approximation of the error rate of Sudan’s algorithm for information rates below
1/2.

3.6 Modifying the Multiplicities of the Interpolation Polynomial

We saw in Figure 3.2 (based on Proposition 3.5.2) of the previous section that Su-
dan’s Algorithm for decoding Reed-Solomon codes attains a higher asymptotic error
rate than the Berlekamp-Massey algorithm for information rates less than one-third.
However, for higher rates the algorithm performs no better than classical ones with
respect to its asymptotic error rate. This is a somewhat unsatisfying result, especially
considering that codes with higher information rates are typically more popular in
practice. We know that the theoretical capacity remains much higher than what we
have thus far achieved, which begs the question: how can we do better?

The idea of Sudan’s algorithm is to look for a polynomial Q(x, y) interpolating
the points (αi, ri) and to compare it with factors of the form y − f(x). If Q and
y − f(x) have enough points in common then the latter will divide the former. If we
increase the number of points we have at which to compare these two polynomials
then there will be more flexibility in which ones they can actually meet at and still
necessarily have a common factor. This will potentially help us find more factors of
the form y− f(x) and thus correct more errors. Now, we do not want to constrain Q
by forcing it to pass through arbitrary points that have no probabilistic connection
to the factors corresponding to codewords near r ∈ Fn. However, we can constrain Q
further by specifying that it pass through each point (αi, ri) with some multiplicity

list decoding capacity
Guruswami-Sudan
Sudan
Berlekamp-Massey

k
0 0.2 0.4 0.6 0.8 1.0
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0.4

0.6

0.8
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Figure 3.3: Error rates of RS decoding algorithms
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mi ∈ N. This will increase the degree of Q and the complexity of the algorithm
some but it will also increase the number of times y − f(x) and Q intersect, causing
them to have a common factor without y − f(x) having to pass through as many
of the interpolation points as it did when all of the multiplicities were implicitly
1. Guruswami and Sudan first proposed this modification in [19] and showed that
it significantly improved the error rate when list decoding Reed-Solomon and other
algebraic geometry codes.

3.6.1 Multiplicity of Bivariate Polynomials

There are different ways we can define the multiplicity of a polynomial at a point. If
one is working over the real numbers, one typically begins in the realm of univariate
polynomials by saying c ∈ R is a root of f(x) =

∑t
i=0 fix

i ∈ R[x] with multiplicity
m ∈ N if one of the following equivalent conditions holds:

• f(c) = 0 and limx→c
f(x)

(x−c)m exists and is nonzero,

• the derivatives of f(x) satisfy the conditions f (i)(c) = 0 for 0 ≤ i < m and
f (m)(c) 6= 0,

• m is the largest power of (x− c) that divides f(x),

• the smallest nonzero term of the polynomial f(x+c) =
∑t

i=0

(∑t
j=i fj

(
j
i

)
cj−i
)
xi

has degree m.

The last two are equally valid for defining multiplicity of roots of univariate poly-
nomials over an arbitrary field K, and the second condition is too as long as the
derivative is understood to be the Hasse derivative. The first condition, however,
does not extend so well because we have no clear notion of a limit in arbitrary fields.

We can extend these definitions to bivariate polynomials as follows. Let T<(m) =
{(s, t) ∈ N2

0 | s+ t < m} and T=(m) = {(s, t) ∈ N2
0 | s+ t = m}. We say that a point

(a, b) ∈ R2 is a zero of f(x, y) =
∑

i,j fi,jx
iyj ∈ R[x, y]\{0} (or f vanishes at (a, b))

with multiplicity m > 0 if one of the following conditions holds:

(a) m is the smallest number for which all partial derivatives of f of order less than
m vanish at (a, b); that is, f (s,t)(a, b) = 0 for all (s, t) ∈ T<(m) but not for all
(s, t) ∈ T=(m),

(b) f(a, b) = 0 and f can be written as f =
∑

(s,t)∈T=(m) gs,t, where each gs,t ∈
R[x, y] and for each (s, t) ∈ T=(m),

lim
(x,y)→(a,b)

gs,t(x, y)

(x− a)s(y − b)t

exists and at least one gs,t is nonzero.

(c) m is the largest integer such that f can be written as f =
∑

(s,t)∈T=(m) gs,t,

gs,t ∈ R[x, y], where (x− a)s(y − b)t divides gs,t for each (s, t) ∈ T=(m),
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(d) the smallest nonzero term of the shifted polynomial

f(x+ a, y + b) =
∑
s,t≥0

( ∑
i≥s,j≥t

fi,j

(
i

s

)(
j

t

)
ai−sbj−t

)
xsyt

has total degree m.

Lemma 3.6.1 Conditions (a) through (d) above are equivalent.

Proof: (a)⇒(b)
Assume f (s,t)(a, b) = 0 for all (s, t) ∈ T<(m) but f (s′,t′)(a, b) 6= 0 for some (s′, t′) ∈
T=(m). Since m > 0, f(a, b) = f (0,0)(a, b) = 0. Applying multivariate division with
remainder (say with the order <rlex), we can write f as

f =
∑

(s,t)∈T=(m)

qs,t(x− a)s(y − b)t + r

where qs,t, r ∈ R[x, y] and no term of r is divisible by lt((x− a)s(y − b)t) = xsyt. Let
gs,t = qs,t(x − a)s(y − b)t for each (s, t) ∈ T=(m). Now fix (s, t) ∈ T=(m). For any
(u, v) ∈ T<(m), after repeated applications of the product rule for differentiation, we
obtain

g
(u,v)
s,t =

∑
0≤i≤u
0≤j≤v

(u
i

)(v
j

)
q
(i,j)
s,t (x− a)s−i(y − b)t−j.

Then, since either u < s or v < t (or both) it is clear that g
(i,j)
s,t (a, b) = 0. This

holds for every (s, t) ∈ T=(m) and (u, v) ∈ T<(m). Therefore, since r = f −
∑
gs,t

it follows that r(u,v) = f (u,v) −
∑
g

(u,v)
s,t = 0 for all (u, v) ∈ T<(m). But since r

has no term of total degree greater than or equal to m, r must be 0 (otherwise, for
example, if lt(r) = cxuyv where c ∈ R\{0} and (u, v) ∈ T<(m), then we would have
r(u,v) = c ⇒ r(u,v)(a, b) = c 6= 0). Thus, f =

∑
(s,t)∈T=(m) gs,t. Since f (s′,t′)(a, b) 6= 0,

we must have

∑
(s,t)∈T=(m)

g
(s′,t′)
s,t (a, b) =

∑
(s,t)∈T=(m)

 ∑
0≤i≤s′
0≤j≤t′

(
s′

i

)(
t′

j

)
q
(i,j)
s,t (x− a)s−i(y − b)t−j

∣∣∣∣
(a,b)

= qs′,t′(a, b)

6= 0.

It follows that

lim
(x,y)→(a,b)

gs′,t′(x, y)

(x− a)s′(y − b)t′
= lim

(x,y)→(a,b)
qs′,t′(x, y) = qs′,t′(a, b) 6= 0,

which shows that condition (b) holds.
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(b)⇒(c)
Assume f(a, b) = 0 and f =

∑
(s,t)∈T=(m) gs,t for some gs,t ∈ R[x, y] and

lim
(x,y)→(a,b)

gs,t(x, y)

(x− a)s(y − b)t

exists for all (s, t) ∈ T=(m) and it is nonzero for some (s′, t′) ∈ T=(m). By Corol-
lary 3.6.3, which follows this lemma2, gs,t is divisible by (x − a)s(y − b)t for each
(s, t) ∈ T=(m). Thus, f is written in the form dictated by condition (c). To show
that m is maximal for writing f this way, observe that gs,t = (x − a)s(y − b)tqs,t for
some qs,t ∈ R[x, y]. Additionally, we know that qs′,t′(a, b) = lim(x,y)→(a,b)

gs′,t′

(x−a)s′ (y−b)t′ is

not zero. Hence, the constant term of qs′,t′(x+a, y+b) is nonzero, so f(x+a, y+b) =∑
(s,t)∈T=(m) x

sytqs,t(x + a, y + b) has a nonzero term with variable part xs
′
yt
′

and

total degree m. Now, suppose f =
∑

(s,t)∈T=(m′) hs,t for some m′ > m where each

hs,t ∈ R[x, y] is divisible by (x − a)s(y − b)t. Say hs,t = (x − a)s(y − b)trs,t, where
rs,t ∈ R[x, y]. Then every term of f(x+a, y+b) =

∑
(s,t)∈T=(m′) x

sytrs,t(x, y) has total
degree at least m′ > m, a contradiction. Thus, m is the largest integer for which f
can be expressed in the desired form.

(c)⇒(d)
Suppose m is the largest integer such that f can be written as f =

∑
(s,t)∈T=(m) gs,t,

gs,t ∈ R[x, y], where (x − a)s(y − b)t divides gs,t for each (s, t) ∈ T=(m). Since
(x − a)s(y − b)t divides gs,t, shifting x to x + a and y to y + b provides xsyt divides
gs,t(x + a, y + b) for each (s, t) ∈ T=(m). Therefore, each term of f(x + a, y + b) =∑
gs,t(x+a, y+ b) is divisible by xsyt for some (s, t) ∈ T=(m), so its smallest nonzero

term has degree at least m. If the degree d of f(x+a, y+ b)’s smallest term is greater
than m, then every term in f is divisible by (x − a)s(y − b)t for some (s, t) ∈ T=(d)
and therefore f can be written f =

∑
(s,t)∈T=(d) gs,t, which contradicts the supposition.

Thus, the smallest degree of any term in f is m.

(d)⇒(a)
Suppose the smallest degree of a nonzero term of f(x + a, y + b) is m. Then
f(x + a, y + b) =

∑
(s,t)∈T≥(m) cs,tx

syt for some cs,t ∈ R. For any (i, j) ∈ T<(m),

f (i,j)(x + a, y + b) =
∑

(s,t)∈T≥(m)(s)i(t)jcs,tx
syt where (s)i =

∏i−1
k=0(s − i) and (t)j is

likewise a falling factorial. Notice that (s)i = 0 if i > s and (t)j = 0 if j > t. Since
either i < s or j < t, it follows that every nonzero term of f (i,j)(x + a, y + b) has
positive total degree and so f (i,j)(a, b) = f (i,j)(0 + a, 0 + b) = 0. Thus every partial
derivative of f of order less than m vanishes at (a, b). On the other hand, there is
some cs′,t′ 6= 0, so f (s′,t′)(a, b) = f (s′,t′)(0 + a, 0 + b) = s!t!cs,t 6= 0. Hence, m is the
smallest integer for which all lesser order partial derivatives of f vanish at (a, b). 2

2Corollary 3.6.3 follows from Lemma 3.6.2, but neither of them is based upon Lemma 3.6.1, so
we are not committing a circular reasoning error.
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Figure 3.4: Feasible region and objective function for ILP

Lemma 3.6.2 Let f(x, y) =
∑

i,j≥0 fi,jx
iyj ∈ R[x, y]. If lim(x,y)→(0,0)

f
xsyt

= L ∈ R
for some (s, t) ∈ T=(m) (m ≥ 1), then fi,j = 0 whenever i < s or j < t.

Proof: We proceed by double induction on i and j with i < t and j unbounded.
Since lim(x,y)→(0,0)

f
xsyt

exists and is real, lim(x,y)→(0,0) f = f(0, 0) = f0,0 must be
zero, otherwise the previous limit would blow up and could not be finite.

Suppose for some ` < t and p, fi,j = 0 whenever i < ` or when i = ` and j < p.
We need to show f`,p = 0.

Letting (x, y) approach (0, 0) along the line x = za, y = zb, where a and b are
positive constants and z is a real variable, we obtain a univariate limit

lim
x=za,y=zb

z→0

f(za, zb)

zas+bt
= lim

z→0

∑
i,j:i>` or
i=` and j≥p

fi,jz
ai+bj

zas+bt
= L.

Now we will try to choose a and b so as to minimize a` + bp and thereby isolate
the coefficient f`,p. We want (`, p) to be the solution to the following integer linear
program.

minimize ax1 + bx2 (ILP)
subject to x1 ≥ ` (I1)

px1 + x2 ≥ p(`+ 1) (I2)
x1, x2 ∈ N0

In order for (`, p) to be the unique optimal solution the objective function must
lie between (I1) and (I2). Hence, a and b must satisfy −∞ < −a

b
< −p. We may

therefore choose b = 1 and a = 2p. Then a`+bp = 2p`+p is less than ai+bj = 2pi+j
whenever i > ` or i = ` and j > p.
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Now, multiplying the function in the limit above by zas+bt−a`−bp we have

0 = (0)(L)

=
(

lim
z→0

zas+bt−a`−bp
)(

lim
z→0

f(za, zb)

zas+bt

)
= lim

z→0

f(za, zb)

za`−bp)

= lim
z→0

∑
i,j:i>` or
i=` and j≥p

fi,jz
ai+bj−(a`+bp))

= lim
z→0

f`,p +
∑

i,j:i>` or
i=` and j>p

fi,jz
ai+bj−(a`+bp))


= f`,p.

(3.8)

Thus, f`,p = 0 and by induction on j we get f`,j = 0 for all j ≥ 0.
Now we show that f`+1,0 = 0 if ` + 1 < t. Letting a = b = 1 in the directional

limit we used above we obtain

0 = (0)(L)

=
(

lim
z→0

zs+t−(`+1)
)(

lim
z→0

f(z, z)

zs+t

)
= lim

z→0

f(z, z)

z`+1)

= lim
z→0

∑
i≥`+1,j≥0

fi,jz
i+j−(`+1))

= lim
z→0

f`+1,0 +
∑

i,j:i≥`+1 and j≥0
or i=`+1 and j>0

fi,jz
i+j−(`+1))


= f`,p.

(3.9)

Now, by double induction on i and j we see that fi,j = 0 for all i < t. By
symmetry, we also get that fi,j = 0 whenever j < s, which concludes the proof. 2

Corollary 3.6.3 If lim(x,y)→(a,b)
f

(x−a)s(y−b)t = L ∈ R for some f ∈ R[x, y] then f is

divisible by (x− a)s(y − b)t.

Proof: Let F (x, y) = f(x+ a, y + b) =
∑

i,j≥0 Fi,jx
iyj ∈ R[x, y]. Then

lim
(x,y)→(0,0)

F

xsyt
= lim

(x,y)→(a,b)

f

(x− a)s(y − b)t
= L.
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Therefore, by Lemma 3.6.2 Fi,j = 0 whenever i < s or j < t so every term of F has
x-degree greater than or equal to s and y-degree greater than or equal to t. Thus,
since F (x, y) = f(x+a, y+b) is divisible by xsyt, f(x, y) is divisible by (x−a)s(y−b)t.
2

Conditions (c) and (d) can be easily adapted to define the multiplicity at a point
of a bivariate polynomial over a finite field. However, conditions (a) and (b) are not
so adaptable because the partial derivatives of polynomials over finite fields are not as
well-behaved as those over fields of characteristic 0 and limits simply have no adequate
conception in the finite field setting. However, one can adapt condition (a) to properly
define multiplicity if Hasse derivatives are used in lieu of formal partial derivatives.
The (s, t)th Hasse derivative of the bivariate polynomial f(x, y) =

∑
fi,jx

iyj is defined
as

f [s,t](x, y) =
∑

i≥s,j≥t

(
i

s

)(
j

t

)
fi,jx

i−syj−t.

Roth took such an approach in [32]. Note that the evaluation f [s,t](x, y) at the point
(a, b) is identical to the coefficient of xsyt in the shifted polynomial f(x + a, y + b),
which yields what seems to be a preferable definition for multiplicity among list
decoding researchers. To name a couple, Guruswami and Sudan in [19] as well as
Lee and O’Sullivan in [24] used a change of coordinates to define multiplicity. They
adapted condition (d) by defining the multiplicity of f(x, y) 6= 0 at the origin to be the
smallest m such that f has a nonzero term of total degree m. Then the multiplicity
of f at (a, b) is defined as the multiplicity of f(a,b) = f(x+ a, y+ b) at the origin. We
will take an equivalent approach.

Definition 3.6.4 For a nonzero polynomial f ∈ F[x, y], the multiplicity of f at
the point (a, b) ∈ F2 is the smallest total degree m of any nonzero term of the shifted
polynomial f(x+ a, y + b).

3.7 The Guruswami-Sudan Algorithm

Next we will examine the consequences of strengthening the interpolation constraints
in Sudan’s algorithm by requiring the interpolation polynomial to vanish with some
multiplicity at each point. We will see that although doing so increases the complexity
of the algorithm, it also increases the error rate that we can achieve. The results of
this section were first presented by Guruswami and Sudan in [19] and have since been
studied extensively by many people.

Algorithm 3.7.1 (Guruswami-Sudan List Decoding for RS(n, k,α))
Input: received word r = (r1, . . . , rn), multiplicity parameter m, error threshold τ <
n−
√
kn

Output: list of codewords, Lτ,r, within Hamming distance τ of r
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G1. Compute m = 1 +

⌊
kn+

√
k2n2 + 4((n− τ)2 − kn)

2((n− τ)2 − kn)

⌋
and d = m(n− τ)− 1.

G2. Find a nonzero polynomial Q ∈ F[x, y] satisfying:

a) Q(αi, ri) = 0 with multiplicity m for i = 1, . . . , n,

b) degk−1(Q) ≤ d.

G3. Find all polynomials f ∈ F[x]k such that Q(x, f(x)) is uniformly 0.

G4. For each polynomial f found in G3, if dist(evα(f), r) ≤ τ then output the
codeword evα(f) = (f(α1), . . . , f(αn)).

3.7.1 Correctness

We assume henceforth that τ < n −
√
kn. The parameters m and d in step G1 are

selected so that the two inequalities

n

(
m+ 1

2

)
<
d(d+ 2)

2k
(3.10)

and
m(n− τ) > d (3.11)

will both be satisfied. The reason this is desirable will become more apparent during
the course of proving the algorithm’s correctness (which will consist of several lemmas
and propositions similar to those in Section 3.3), but to summarize the reasons: the
first inequality assures us that an interpolation polynomial Q such as what we seek in
Algorithm 3.7.1 exists and the second inequality forces the polynomials corresponding
to close codewords to r to be y-roots of Q. From the assignments of m and d in step
G1, it is clear that (3.11) holds. To see that the other does as well, we use that fact

that d = m(n − τ) − 1 to simplify the right-hand side of (3.10) to m2(n−τ)2−1
2k

. From
there the inequality reduces to a quadratic inequality (in m)

m2((n− τ)2 − kn)− knm− 1 > 0,

which will be positive for all values of m greater than its largest root, which is

γ =
kn+

√
k2n2 + 4((n− τ)2 − kn)

2((n− τ)2 − kn)

since (n − τ)2 > kn by the assumption on τ . Then, because we want m to be an
integer greater than γ, we set it to bγc+ 1 and thus both inequalities are satisfied.

We now show how the two inequalities (3.10) and (3.11) are useful to establish the
correctness of the algorithm. Here we retain the notation Pi = (αi, ri) for 1 ≤ i ≤ n.

Proposition 3.7.2 Suppose Q ∈ F[x, y] passes through each of the points P1, . . . , Pn
with multiplicity m and degk−1(Q) ≤ d = m(n− τ)− 1. If f ∈ F[x]k is a polynomial
interpolating at least n− τ of the points Pi, then f is a y-root of Q.
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Proof: Consider the polynomial Q(x, f(x)) ∈ F[x]. The degree constraint for Q
means that every term axiyj of Q satisfies i+ (k− 1)j < m(n− τ). Therefore, when
we substitute f(x) for y in each term axiyj of Q, the resulting polynomial axi(f(x))j

has degree at most i+(k−1)j < m(n−τ) since deg(f) ≤ k−1. So degQ(x, f(x)) ≤ d.
Now, Q(αi, ri) = 0 for i = 1, . . . , n with multiplicity m. Since f(αi) = ri for at

least n − τ points αi we have at these points that Q(αi, f(αi)) = Q(αi, ri) = 0 with
multiplicity m (note that since Q(x + αi, y + ri) has no term with total degree less
than m, Q(x+αi, f(x+αi) + ri) also has no term of degree less than m and so it has
multiplicity m at αi in the univariate sense). So Q(x, f(x)) is a polynomial of degree
less than m(n − τ) with at least m(n − τ) roots (counting multiplicity). Therefore,
Q(x, f(x)) is uniformly 0 so f is a y-root of Q. 2

Proposition 3.7.3 ([19]) Let d and m be defined as in step G1. If n
(
m+1

2

)
<

d(d+2)
2k

then there exists a nonzero polynomial Q ∈ F[x, y] that vanishes at each point
P1, . . . , Pn with multiplicity m and satisfies degk−1(Q) ≤ d.

Proof: If we consider the Hasse derivative definition of multiplicity for a moment,
then the condition that each Pi is a root of Q with multiplicity m means that
Q[s,t](αi, ri) = 0 for all (s, t) ∈ T<(m) = {(s, t) | s, t ∈ N0 and s + t < m} for
i = 1, . . . , n. This gives us a homogeneous system of n

(
m+1

2

)
= n|T<(m)| equations

in the variables corresponding to the coefficients of Q, a nontrivial solution to which is
assured provided the number of equations is less than the number of unknowns, which
we now count. The number of unknown coefficients in Q, whose (1, k − 1)-weighted
degree is strictly bounded above by d = m(n− τ), is

bd/kc∑
t=0

d−kt∑
s=0

1 =

bd/kc∑
t=0

(d− kt+ 1)

= (d+ 1)

(⌊
d

k

⌋
+ 1

)
− k

2
·
(⌊

d

k

⌋)(⌊
d

k

⌋
+ 1

)
≥

(
d+ 1− d

2

)(⌊
d

k

⌋
+ 1

)
≥

(
d+ 2

2

)(
d

k

)
.

Therefore, from the proposition’s assumption, a nonzero polynomial Q interpolating
the n points with the multiplicity m exists. 2

Theorem 3.7.4 ([19]) Assuming τ < n −
√
kn, Algorithm 3.7.1 correctly outputs

all of the codewords in RS(n, k,α) that are up to Hamming distance τ away from r.

Proof: The theorem follows from Propositions 3.7.2 and 3.7.3 and the fact that the
assignments to m and d in step G1 satisfy the inequalities (3.10) and (3.11). 2
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The complexity of Algorithm 3.7.1 can be seen to be polynomial in n if we look
at it in terms of the number of field operations required during execution. Step
G1 requires no field arithmetic. Step G2 can be reduced to solving a system of
homogeneous linear equations in at most d(d+2)

2k
variables, which can be solved by

using Gaussian elimination with O(d6/k3) field operations. Step G3 has us find the
y-roots of Q. To get a complexity bound on this step we need to consider the bound
on degy(Q) - the possible number of y-roots of Q. Since degk−1(Q) ≤ d, we have

` = degy(Q) ≤
⌊

d
k−1

⌋
. Thus, by Corollary 2.3.8, step G3 can be done using

O(` log2 ` log log `(k log q + d`)) = O(d log q +
d3

k2
(log2(d/k) log log(d/k))).

Lastly, step G4 can be performed efficiently with fast multipoint evaluation ([38,
Chapter 10]) using O(n2) operations in Fq.

From the choice m and d made in step G1, we have m ∈ O(kn) and d < mn ∈
O(n2k), so Algorithm 3.7.1 can be done using O(n12k3). This is bound is excessively
high but it is sufficient to verify that the algorithm correctly outputs a list of close
codewords to r in a time that is polynomial in the code length n.

The best known bound for solving the radius-τ list decoding problem for τ <
n −
√
kn is O(n2m4). This bound is achieved by Gaborit and Ruatta in [13]. We

will hold off on a more thorough complexity analysis until Chapter 4, when we do a
careful analysis of a more general algorithm that reduces to the Guruswami-Sudan
algorithm as a special case.

Remark 3.7.5 The Guruswami-Sudan list decoding algorithm is presented as a de-
coding algorithm for Reed-Solomon codes in the ungeneralized sense, but it is easily
adapted to list decoding generalized Reed-Solomon codes by rescaling a couple of the
computations. Specifically, it works for GRSq(n, k,α,v) just by changing the inter-
polation points from Pi = (αi, ri) to Pi = (αi, ri/vi) and keeping in mind that the
polynomials in x obtained in step G4 should be multiplied (compentwise) by v in step
G4 when evaluating the polynomials to produce the codewords. From here, the algo-
rithm immediately becomes serviceable as a list decoding algorithm for the alternant
code C = Aqt(n, δ,α,v). To operate it as such, when a received word is given one de-
codes it as if it is in the parent GRS code GRSqt(n, n− δ+ 1,α,v) and then restricts
the list it returns to those words whose components lie exclusively in the base field
F. The algorithm still corrects up to τ < n −

√
kn errors and the time complexity

is the same as before. The catch is that the complexity measures operations in the
extension field Fqt and not the base field Fq where the alternant code actually lives.
An arithmetic operation in Fqt can be carried out using O(t log t log log t) operations
in Fq via Schönhage and Strassen’s multiplication algorithm [38, section 8.3]. This
means the complexity of the Guruswami-Sudan algorithm adapted for alternant codes
will be O(n2m4 · t log t log log t) operations in Fq (using Gaborit and Ruatta’s bound)
where t is the degree of the field extension used to get the defining GRS code.

Copyright c© Philip Busse, 2008.
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Chapter 4
List-Decoding via Multivariate Interpolation and Gröbner Bases

4.1 Introduction

From around 1999 through 2005, the asymptotic error rate of 1 −
√
κ stood as the

benchmark in list decoding performance for Reed-Solomon codes. However, as we saw
in Section 3.2, the upper bound on efficiently list decoding up to radius p is p = 1−κ,
for beyond that error rate all codes would require an exponential amount of time to
simply output the average-case list, let alone to find it. It could be possible, however,
to efficiently list decode some codes at an error rate arbitrarily close to 1− κ, for we
know that codes of length n (over large alphabets) which are (1− κ− δ, 1/δ)-list de-
codable exist. However, we have not yet seen what these codes are, nor have we seen
how (or even whether) it is possible to list decode them in polynomial time. A ma-
jor breakthrough came in 2005 when Parvaresh and Vardy ([30]) made two essential
changes to the foundation of the Guruswami-Sudan Algorithm. First, they branched
off from the idea of decoding Reed-Solomon codes (for which numerous attempts to
break the 1 − O(

√
κ)-radius decoding barrier had failed) to a more general form of

evaluation codes. Second, they extended the interpolation problem to a multivariate
one. It has long been understood that decoding Reed-Solomon codes amounts to
interpolating a univariate polynomial of small degree through as many of n given
points as possible with the hope that it will match the generating polynomial f(x)
for the sent codeword (interpolating all n of the points with a polynomial of small
degree, in general, will not be possible due to noise on the channel). Sudan’s remark-
able contribution (Section 3.3) to list decoding was to recognize that this matching
could be extended to a bivariate interpolation problem wherein good candidates for
the solution to the univariate problem will correspond to irreducible factors of the
bivariate interpolation polynomial. Parvaresh and Vardy’s clever idea was to generate
related polynomials g1(x), . . . , gw−1(x) from f(x) and send a codeword corresponding
to the evaluation of all of these polynomials, instead of just f (a protraction of the
Reed-Solomon code). The decoder is thereby provided extra information about the
sent word by the way that the correlation of the gi’s to f is judiciously ingrained into
the encoder. Their method yielded a new class of codes and an efficient algorithm
for list decoding those codes with an error rate of 1 − O(κ log 1

κ
), which yielded an

asymptotic improvement over the 1−
√
κ bound of the Guruswami-Sudan algorithm

for all rates κ < 1
16

. Subsequently, Guruswami and Rudra ([18]) were able to adapt
the scheme of Parvaresh and Vardy to achieve error rates near the list decoding chan-
nel capacity for all information rates by strengthening the algebraic correlation of the
gi polynomials to f in such a way that the codes of Parvaresh and Vardy could be
sent with the same amount of information in basically a compressed form. The codes
that Guruswami and Rudra utilized are called folded (or interleaved) Reed-Solomon
codes, and we present an overview of them and a multivariate list decoding algorithm
for them in this chapter.
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(f(α1), . . . , f(αv)) (f(αv+1), . . . , f(α2v)) · · · (f(αn−v+1), . . . , f(αn))

Table 4.1: 1-1 correspondence between codewords in the FRS code and the RS code

4.2 Folded Reed-Solomon Codes

The term “folded” Reed-Solomon code was first used in [23], where they were uti-
lized in the pursuit of correcting phase bursts, which are error patterns in which the
error positions are not random or uniform but instead come consecutively in periodic
bursts. These codes are obtained directly from Reed-Solomon codes by simply batch-
ing together groups of symbols to obtain a code with the same rate but a fraction of
the length. Essentially nothing is changed but the size of the alphabet and the length
of the code; we transition from a small alphabet to a large one and from a long code
length to a short one.

For simplicity, we will assume in this definition (and henceforth) that the folding
factor v divides the underlying code length n. Also, we will need our underlying
Reed-Solomon code to be a primitive code so we will assume the code evaluators are
α, . . . , αn for some primitive element α ∈ Fq, so we let α = (α, . . . , αn) throughout
this chapter.

Definition 4.2.1 The v-folded Reed-Solomon code of length N = n/v and di-
mension K = k/v over Fvq , denoted FRSq(n, k, v,α), is the set

{([f(α), . . . , f(αv)], [f(αv+1), . . . , f(α2v)], . . . , [f(αn−v+1), . . . , f(αn)]) | f ∈ Fq[x]k}.

The v-folded Reed-Solomon code FRSq(n, k, v,α) is almost identical to the ordinary
Reed Solomon code RSq(n, k,α), the only difference being our interpretation of a
symbol as a v-tuple over Fq rather than an element of Fq. This decreases the length
and dimension by a factor of v. The distance D of the folded code is at least dd/ve,
where d = n − k + 1 is the distance of the original Reed-Solomon code. The rate
κ of the folded code is the same as that of the original and the relative distance δ
is greater than 1 − κ. To encode a message polynomial f ∈ F[x]k, we just evaluate
it at the coordinates of α as we would for RSq(n, k,α), but we take the codeword
symbols to be blocks of v consecutive evaluations of f rather than each individual
one. The key difference to bear in mind here is that the jth symbol of the codeword
generated by f in RSq(n, k,α) is f(αj), whereas in FRSq(n, k, v,α), the jth symbol
is [f(α(j−1)v+1), . . . , f(αjv)].

The main benefit of folding codes is that it reduces the number of error patterns
that we have to correct in order to achieve a given error rate. For example, if we
receive a word using RSq(n, k,α) where a fraction p = τ/n of the symbols have been
corrupted by some error pattern, then to decode up to radius-p we would have to
correctly decode the received word regardless of the distribution of the errors in the
pattern. In the v-folded code, if the τ errors occurred within pn/v of the v-tuples,
then we would still have to correct this error. If, on the other hand, the errors were
spread throughout more than pn/v of the v-tuples, then even though only a fraction
p of the individual symbols were corrupted, this error pattern would not have to
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Figure 4.1: Error patterns

be corrected by a radius-(pN) decoder because more than pN of the v-tuples were
corrupted. Figure 4.1 illustrates this scenario with three error patterns (with crossed-
out boxes indicating nonzero error component) for a length 20 code and its 4-folded
counterpart. A decoder achieving an error rate of 1/2 would have to correct all three
patterns in the unfolded code, but only the first pattern in the folded code. It seems
like we are cheating by negating certain error patterns from our purview for being
too evenly-distributed, but it is indeed a fair reinterpretation of the code and channel
and it works very much to our favor. However, this abatement in error-correcting
work comes at a cost. For a constant folding factor v, the alphabet size remains
polynomial in the block length since we assume n = q − 1 for these folded codes.
However, constructing a family of codes with error rates that approach capacity will
call for raising the folding factor beyond a constant bound. At that point, extra care
will be needed to reduce the alphabets to sizes polynomial in n.

4.3 Multivariate Based List Decoding

For the most part, multivariate interpolation-based list decoding will be a natural
extension of the bivariate case. The key difference will be in the interpolation poly-
nomial having roots that are algebraically related to each other. Before we begin, we
need to make many simple definitions.

Definition 4.3.1 (Monomial/polynomial notation) Let w ∈ N. We denote the
polynomial ring in w + 1 variables over F by F[x,y] = F[x, y1, . . . , yw]. A mono-
mial m = xρ0yρ11 · · · yρww in [x,y] is written simply as xρ0yρ where ρ = (ρ1, . . . , ρw).
We denote by |ρ| the 1-norm of ρ, so |ρ| =

∑w
i=1 ρi. For any real (w + 1)-tuple

u = (u0, u1, . . . , uw), the u-weighted degree of the monomial m is degu(xρ0yρ) :=∑w
i=0 uiρi. The x-part of m is xρ0 and the y-part of m is yρ. The x-degree of m

is degx(m) = ρ0 and the y-degree of m is degy(m) = ρ. The total degree of m is
deg1(m) where 1 ∈ Rw+1 is the all-1 vector. The total y-degree of m is deg0,1(m) =
deg(0,1,...,1)(m). The degree or the exponent of m is degxy(m) = (ρ0, ρ1, . . . , ρw).
The u-weighted degree of a polynomial f =

∑
ρ0,ρ

fρ0,ρx
ρ0yρ ∈ F[x,y] is degu(f) =

max(ρ0,ρ){degu(xρ0yρ)}. Likewise we extend the definitions of x-degree, total degree,
and total y-degree to the polynomial f in the natural way. Lastly, for any a ∈ R and
f ∈ F[x,y], we define dega(f) := deg(1,a,...,a)(f).
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Definition 4.3.2 (Multivariate multiplicity and y-roots) A root (or zero) of
a polynomial f ∈ F[x,y] is a point P ∈ Fw+1 such that f(P ) = 0. The multiplicity
of f at P = (p0, . . . , pw) is the smallest total degree of any nonzero term of the shifted
polynomial f(x + p0, y1 + p1, . . . , yw + pw). A y-root of f ∈ F[x,y] is a w-tuple
(g1, . . . , gw) ∈ F[x]w such that f(x, g1, . . . , gw) = 0.

Sometimes we say f vanishes at P or f passes through P or f interpolates P if P
is a root of f . If the multiplicity of f at P is greater than m, we generally consider
f to still qualify as having multiplicity m. So when we refer to “all polynomials with
multiplicity m at P ,” we really mean “all polynomials with multiplicity greater than
or equal to m at P .” We will wait to define the y-degree of a polynomial in F[x,y]
until later when we fix our monomial order. Throughout this chapter we will use the
degree weight vector k = (1, k − 1, . . . , k − 1) ∈ Nw+1 to weigh our polynomials.

We proceed with generalizations of Propositions 3.7.2 and 3.7.3 that will be nec-
essary to establish the correctness of the multivariate interpolation-based algorithm.
In the following two propositions, we assume Pi = (xi, yi1 , . . . , yiw) for 1 ≤ i ≤ n
are n points in Fw+1 with x1, . . . , xn distinct. These propositions are extensions of
trivariate-based formulations given in [17] and [18] to the multivariate case.

Proposition 4.3.3 (y-roots of a multivariate polynomial) Suppose that Q ∈
F[x,y] passes through each of the points P1, . . . , Pn with multiplicity m and degk(Q) ≤
d = mt − 1 for some t ∈ N. If f1, . . . , fw ∈ F[x]k are polynomials such that each
fj(xi) = yij for j = 1, . . . , w for at least t of the indices i ∈ [n], then (f1, . . . , fw) is a
y-root of Q.

Proof: Consider the polynomial Q(x, f1(x), . . . , fw(x)) ∈ F[x]. Since degk(Q) < mt,
that means that every term axρ0yρ of Q satisfies ρi + (k − 1)|ρ| < mt. Therefore,
when we substitute fj(x) for yj in each term axρ0yρ of Q, the resulting polyno-
mial axρifj(x)ρ1 · · · f(x)ρw has degree at most ρi + (k − 1)|ρ| < m(n − τ) because
deg(fj(x)) ≤ k − 1. Thus we have that degQ(x, f1(x), . . . , fw(x)) ≤ d.

By assumption, Q(xi, yi1 , . . . , yiw) = 0 for i = 1, . . . , n with multiplicity m. Since
(f1(x1), . . . , fw(xi)) = (yi1 , . . . , yiw) for at least t values of i we have at the cor-
responding points Pi that Q(xi, f1(xi), . . . , fw(xi)) = Q(Pi) = 0 with multiplicity m
(note that since Q(x+xi, y1+yi1 , . . . , yw+yiw) has no term with total degree less than
m, Q(x+xi, f1(x+xi)+yi1 , . . . , fw(x+xi)+yiw) also has no term of degree less than m
and so it has multiplicity m at xi in the univariate sense). So Q(x, f1(x), . . . , fw(x))
is a polynomial of degree less than mt with at least mt roots (counting multiplicity).
Therefore, Q(x, f(x)) is uniformly 0 so (f1, . . . , fw) is a y-root of Q. 2

Proposition 4.3.4 (Existence of Q(x,y)) Let d,m ∈ N. If

d > w+1
√

(k − 1)wn(m+ w)w+1,

where (m+w)w+1 denotes the falling factorial (m+w)(m+w−1) · · · (m+ 1)m, then
there exists a nonzero polynomial Q ∈ F[x,y] that vanishes at each point P1, . . . , Pn
with multiplicity m and satisfies degk(Q) ≤ d.
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Proof: The condition that each Pi is a root of Q with multiplicity m means that no
term of the shifted polynomial Q(x+xi, y1+yi1 , . . . , yw+yiw) has total degree less than
m. Then each term of the shifted polynomial with total degree less than m is a linear
combination of the coefficients of Q. Since there are

((
w+2
m−1

))
=
(
m+w
w+1

)
monomials

in [x,y] of total degree less than m, this yields a homogeneous system of n
(
m+w
w+1

)
equations in the variables corresponding to the coefficients of Q, a nontrivial solution
to which is assured provided the number of equations is less than the number of
unknowns, which we now count. Say the number of coefficients inQ, whose k-degree is
bounded above by d, is N = |{(ρ0, . . . , ρw) ∈ N0) | ρ0+(k−1)ρ1+· · ·+(k−1)ρw ≤ d}.
Geometrically, N is at least the volume of the (w+1)-dimensional simplex R in Rw+1

≥0

bounded by the plane x + (k − 1)y1 + · · · + (k − 1)yw = d. To justify this, observe
that R is contained within the collection of (w + 1)-dimensional unit cubes in Rw+1

≥0

with integral vertices, at least 1 of which lies within R; there are exactly N of these.
The volume of the (w + 1)-simplex R is

dw+1

(w + 1)!(k − 1)w
. (4.1)

This can be seen by starting with the edge of length d along the x-axis; call this the 1st

shape. Extending it as the base to the point d
k−1

on the y1-axis forms a 2-dimensional

cone (a triangle, to be conventional) of area d2

2(k−1)
; call this the 2nd shape. Now,

repeatedly extending the ith shape into a new cone with its peak at d
k−1

on the yi-axis
to get the (i + 1)st shape up to i = w + 1, we get inductively that the i-dimensional

volume of the ith shape is di

i!(k−1)i−1 because the volume of an i-dimensional cone is

just 1
i

times the product of its height and the (i− 1)-dimensional volume of its base.
The volume of R then follows because R is the (w + 1)st shape. Alternatively, one
could find the volume of R analytically by evaluating the integral

d
u∫

0

· · ·

d
u
−y3−···−yw∫

0

d
u
−y2−···−yw∫

0

(d− uy1 − uy2 − · · · − uyw)dy1dy2 · · · dyw,

where u = k−1. Either way, if equation (4.1) is more than the number of unknowns,
n
(
m+w
w+1

)
, then a nonzero solution to the aforementioned system of equations, which

corresponds to a nonzero polynomial Q interpolating each of the n points Pi with the
multiplicity m, exists. Solving the inequality

dw+1

(w + 1)!(k − 1)w
> n

(
m+ w

w + 1

)
for d, we have d > w+1

√
(k − 1)wn (m+w)!

(m−1)!
. 2

Propositions 4.3.3 and 4.3.4 tell us that if we find a multivariate polynomial of
small weighted degree interpolating the n points with multiplicity m, then it will
have y-roots corresponding to polynomials in F[x]k that also interpolate many (but
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not all) of the points we choose. The question now is how do we most effectively
choose those points so that we get the most out of the root-finding process in our
effort to find all close codewords in FRSq(n, k, v,α) to a received word r ∈ (Fvq)N?
The answer to this lies in selecting the points so that the components of the y-roots
(polynomials in x) will be closely related. Parvaresh and Vardy ([30]) were among
the pioneers of multivariate list decoding (others included Bleichenbacher, Kiayias,
and Yung ([2]) as well as Coppersmith and Sudan ([6])) and were the first to enforce
certain algebraic dependencies on the components of the y-roots. Previous efforts
had simply left off assumptions on their relations and attempted to use each variable
as a means of running another instance of the decoder on a different codeword, but
this yielded no improvement over the performance of previous decoding algorithms as
there was a wide range in the possible values of the root components f1(x), . . . , fw(x).
The only algebraic relation that was provided inherently through interpolation was
Q(f1, . . . , fw) = 0, but this was insufficient to make new coding gains. The key notion
that Parvaresh and Vardy supplied that improved the 1−

√
κ decoding radius for rates

below 1/16 was to restrict the possibilities by enforcing that extra algebraic conditions
be satisfied by the roots. Rather than having f1(x), . . . , fw(x) be w independent
polynomials of degree less than k, they insisted that each fi(x) = f1(x)ji mod h(x)
for some irreducible polynomial h ∈ Fq[x]. Then, after the interpolation polynomial
is procured it is reduced modulo h(x), producing a polynomial R(y) in y1, . . . , yw
with coefficients from the field Fq[x]/(h). The roots are then sought through the
polynomial R(z, zj2 , . . . , zjw) via a univariate root-finding algorithm. The catch here
is that with this technique, one must send w times as much information as was
necessary for the underlying Reed-Solomon code, so a factor of w is lost from the rate
of the original code and we cannot even construct codes with rates over 1

w
this way

(that is why Parvaresh and Vardy only yielded better error rates for low information
rates). Guruswami and Rudra ([18]) overcame this rate loss by strengthening the
root relations so that fi(x) = f1(α

i−1x). We make the following definition in light of
these relations.

Definition 4.3.5 Fix a primitive element α ∈ Fq. We say that a polynomial f(x) ∈
Fq[x] is a folded root (with respect to α) of the polynomial Q ∈ Fq[x,y] if

Q(x, f(x), f(α), . . . , f(αw−1x)) = 0.

By our particular code selection, it will be shown that each root coordinate is now
just a cyclic shift of the previous one, so the evaluations of the fi are almost identical
and we no longer need to incorporate extra information for each root component into
the code. Because the root components are to be cyclic shifts of each other, the
prudent choice for our n points is to make Pi = (αi, ri, ri+1, . . . , ri+w−1) for 1 ≤ i ≤ n,
where the subscripts of r are taken modulo n and r = (r1, . . . , rn) ∈ (Fvq)N ∼= Fnq
is an element (ostensibly a received word) of the ambient space of FRSq(n, k, v,α),
although for simplicity we index it as an element of Fnq . Going forward, we take r and
Pi to be so defined. Also, when we want to identify the folded symbols (the v-tuples
that it is composed of as a folded codeword), we will refer to the jth symbol as rj. That
is, r = (r1, . . . , rN) = (r1, . . . , rn) where N = n/v, so rj = (r(j−1)v+1, . . . , rjv) ∈ Fvq .
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We now look at how low the degree of the interpolation polynomial Q must be to
make the close codewords to r correspond to the folded roots of Q.

Lemma 4.3.6 ([17]) Let Q ∈ Fq[x,y] be a nonzero polynomial that interpolates each
of the points Pi, 1 ≤ i ≤ n, with multiplicity m. Let τ ∈ N0 and let d = degk(Q).
If d < m(v − w + 1)(N − τ) then any f(x) ∈ Fq[x]k that evaluates to a codeword
cf ∈ FRSq(n, k, v,α) which agrees with r on at least N − τ of the N locations is a
folded root of Q.

Proof: An essential point here is that since r and cf agree on their ith symbols,

(r(i−1)v+1, . . . , riv) = (f(α(i−1)v+1), . . . , f(αiv))

for at least N − τ positions i. Hence, f(αi+j) = ri+j for j = 0, . . . , w − 1 for at least
(v−w+ 1)(N − τ) values of i ∈ [n]. Taking fj(x) = (αj−1x) for j = 1, . . . , w, we get
by Proposition 4.3.3 that Q(x, f(x), f(αx), . . . , f(αw−1x)) = 0. Thus, f is a folded
root of Q. 2

Combining Lemma 4.3.6 with Proposition 4.3.4 we get a lower bound on the list
decoding radius we can achieve with multivariate interpolation.

Proposition 4.3.7 (Multivariate List Decoding Radius) For any error thresh-
old τ ∈ N0 and multiplicity parameter m ∈ N, there exists a polynomial Q ∈ Fq[x,y]
with folded roots corresponding to all codewords in FRSq(n, k, v,α) within distance τ
of r if

τ ≤ N −

⌊
N

v

v − w + 1
w+1

√
(k − 1)w

nw

(
1 +

w

m

)
· · ·
(

1 +
1

m

)⌋
− 2. (4.2)

Proof: By Proposition 4.3.4, we can find an interpolation polynomialQ of k-weighted
degree at most d ∈ N for d as small as⌊

m+1
√

(k − 1)wn(m+ w)w+1

⌋
+ 1.

By Lemma 4.3.6, such a Q has the desired folded roots (polynomials corresponding
to codewords within distance τ of r) as long as N − τ > d

m(v−w+1)
. Given our bound

on d and using the fact that n = Nv, we have

d

m(v − w + 1)
≤

w+1
√

(k − 1)wn(m+ w)w+1 + 1

m(v − w + 1)

=
Nv w+1

√
(k−1)w

nw
(1 + w

m
) · · · (1 + 1

m
)

v − w + 1
+

1

m(v − w + 1)

<

Nv w+1

√
(k−1)w

nw

(
1 + w

m

)
· · ·
(
1 + 1

m

)
v − w + 1

+ 1 +
1

m(v − w + 1)
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Hence, the desired polynomial Q exists when

N − τ ≥

⌊
N

v

v − w + 1
w+1

√
(k − 1)w

nw

(
1 +

w

m

)
· · ·
(

1 +
1

m

)⌋
+ 2,

which is equivalent to equation (4.2). 2

From Proposition 4.3.7, we have that multivariate list decoding of [N,K] v-folded
Reed-Solomon codes will yield an error rate of at least

p =

N −
⌊
N v

v−w+1
w+1

√
(k−1)w

nw

(
1 + w

m

)
· · ·
(
1 + 1

m

)⌋
− 2

N

≥ 1− v

v − w + 1
· m+ w

m
·
(
k − 1

n

) w
w+1

− 2

N
. (4.3)

Fixing the information rate κ = k
n

= K
N

and taking the limit of p as N and w grow
unbounded and v and m grow super-linear in w, say v = m = w2, we find that

lim
N,w→∞
v=m=w2

p = 1− κ.

Thus, in the limit of many variables and long folded lengths (and large alphabets,
qv = qw

2
in this case) folded Reed Solomon codes offer the potential to decode a

fraction of errors that approaches list decoding capacity. Of course, we need to have
a way to efficiently decode them for this to be very useful.

We now present a multivariate list decoding algorithm for folded Reed-Solomon
codes. The correctness of the algorithm has been established by the preceding dis-
cussion. Some more machinery is needed for actually performing the interpolation
and root-finding steps, but these aspects will be treated thoroughly afterward.

Algorithm 4.3.8 (Multivariate List Decoding of FRSq(n, k, v,α))
Input: received word r = (r1, . . . , rn), error threshold τ ∈ N0 satisfying equation (4.2),
number of variables w + 1, and multiplicity value m
Output: list of codewords, Lτ,r ⊆ FRSq(n, k, v,α), within Hamming distance τ of r

M1. Compute the degree bound d =
⌊
w+1
√

(k − 1)wn(m+ w)w+1

⌋
+ 1 for Q.

M2. Find a nonzero polynomial Q ∈ F[x,y] satisfying:

a) Q(αi, ri, . . . , ri+w−1) = 0 with multiplicity m for i = 1, . . . , n,

b) degk(Q) ≤ d.

M3. Find all folded roots f ∈ F[x]k of Q.

M4. For each polynomial f found in step M3, if dist(cf , r) ≤ τ then output the
codeword cf .
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4.4 Folded Root-Finding

As we suggested before, the problem of finding y-roots of the multivariate interpola-
tion polynomial Q can be simplified by reducing Q modulo an irreducible h ∈ Fq[x]
for which the coordinates of the y-roots we seek are powers of each other (mod h).
Then we can reduce the problem to a univariate root-finding problem by replacing the
yi variables of Q with appropriate powers of a single variable. The following lemma
is from [17] and it indicates how we can make a prudent choice for h(x).

Lemma 4.4.1 Assuming α ∈ Fq is a primitive element, the following hold:

1. h(x) = xq−1 − α ∈ Fq[x] is irreducible over Fq.

2. If f(x) ∈ Fq[x] has degree less than q − 1, then f(x)q mod h(x) = f(αx).

Proof: See [17, Lemma 6.4]. 2

We now show how to reduce the folded root-finding problem for Q down to a
univariate root-finding problem which can be solved in time polynomial in q. The
reduction hinges, however, on Q not having degree larger than q−1 in any yi variable.
For 1 ≤ i ≤ w, degyi(Q) can be at most degk(Q)/(k− 1). By step M1, degk(Q)/(k−

1) ≤
w+1
√

(k−1)wn(m+w)w+1+1

k−1
< (m + w) w+1

√
n/(k − 1) + 1 < (m + w) w+1

√
q + 1, since

n < q. For this reduction to work, then, we should choose m and w so that m+w <
(q)w/(w+1). This will probably not pose much of a hindrance.

Since h(x) = xq−1−α is irreducible, the quotient ring Fq[x]/(h(x)) is a field which
we will denote by F ∼= Fqq−1 . The following lemma reduces the folded root-finding
problem down to a univariate root-finding problem for polynomials over the quotient
field F .

Lemma 4.4.2 Let Q ∈ Fq[x,y] such that degyi(Q) < q for i = 1, . . . , w and suppose
f(x) ∈ Fq[x]k is a folded root of Q (with respect to α ∈ Fq). Let b be the largest power

of h(x) = xq−1 − α that divides Q and set Q′(x,y) = Q(x,y)
h(x)b

∈ Fq[x,y]. Then

R(z) := Q′(x, z, zq, zq
2

, . . . , zq
w−1

) mod h(x) ∈ F [z]

is nonzero and f(x) is a root of R(z).

Proof: Since f is a folded root of Q,

Q(x, f(x), f(αx), . . . , f(αw−1x)) = h(x)bQ′(x, f(x), f(αx), . . . , f(αw−1x)) = 0,

so f is also a folded root of Q′. Now, Q′(x,y) mod h(x) 6= 0 since Q′ is not divisible
by h(x) (by its definition). Let R(z) = Q′(x, z, zq, . . . , zq

w−1
) mod h(x) ∈ F [z]. Since

no variable yi in Q has power greater than q in any term of Q, the same is true in Q′

and so there can be no cancellation or combining of terms when we substitute zq
i−1

for yi. Hence, R(z) = 0 if and only if Q′(x, z, zq, . . . , zq
w−1

) is divisible by h(x) if and
only if Q′(x,y) is divisible by h(x), so R(z) 6= 0.
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By Lemma 4.4.1,

R(f(x)) = Q′(x, f(x), f(x)q, . . . , f(x)q
w−1

) mod h(x)

= Q′(x, f(x), f(αx), . . . , f(αw−1x)) mod h(x) = 0, (4.4)

which shows f is a y-root of R. 2

The folded root-finding problem can similarly be reduced to a bivariate root-
finding problem, which allows us to complete the task using Algorithm 2.3.3. To
guarantee success we must again assume that Q does not have yi-degree as large as
q in any yi variable (1 ≤ i ≤ w).

Corollary 4.4.3 Let Q ∈ Fq[x,y] such that degyi(Q) < q for i = 1, . . . , w and
suppose f(x) ∈ Fq[x]k is a folded root of Q (with respect to α ∈ Fq). Let b be the largest

power of h(x) = xq−1 − α that divides Q and set Q′(x,y) = Q(x,y)
h(x)b

∈ Fq[x,y]. Then

f(x) is a y-root of the nonzero polynomial R′(x, y) := Q′(x, y, yq, . . . , yq
w−1

) mod h(x)
in Fq[x, y]/(h(x)).

Proof: As in Lemma 4.4.2, as f is a folded root of Q it is also a folded root of Q′.
By the yi-degree constraints on Q there cannot be cancellation or combining of terms
when we substitute yq

i−1
for yi. Hence, R′(x, y) = 0 if and only if Q′(x,y) is divisible

by h(x), which it is not. So R′ is nonzero and has f as a y-root by equation (4.4)
since R′(x, z) = R(z) in that equation. 2

With these results in hand, we may now give a more precise description of step
M3 in Algorithm 4.3.8

Algorithm 4.4.4 (Folded Root Finding for Multivariate List Decoding)
Input: A polynomial Q ∈ Fq[x,y] with degyi(Q) < q for i = 1, . . . , w, integer k < q−1,
primitive element α ∈ Fq.
Output: a list of folded roots f(x) ∈ Fq[x]k of Q.

FoldedRootFind(Q, k, α,)

F1. compute h(x) = xq−1 − α ∈ Fq[x] and set Q′ = Q

F2. while h(x) divides Q′(x, y) in Fq[x,y]

F3. set Q′ = Q′/h

F4. set R(x, y) = Q′(x, y, yq, . . . , yq
w−1

) mod h(x)

F5. return the results of the call ModRootFind(R, k − 1, 0, h(x)) to

Algorithm 2.3.10
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4.5 The Ideal Associated to a Code

The interpolation step of Guruswami and Rudra’s v-folded Reed-Solomon list decod-
ing algorithm calls for interpolating a nonzero polynomial of some bounded degree
through each of the n points Pi = (αi, ri, ri + 1, . . . , ri+w−1), where subscripts of r are
to be taken modulo n, with multiplicity m > 1. Such a polynomial (if one exists) is
in the ideal

Ir,m = {f ∈ F[x,y] | f vanishes with multiplicity m at each Pi}.

By Proposition 4.3.3, our list decoding potential is maximized when the k-weighted
degree of the interpolation polynomial is minimized. Finding a solution then be-
comes a matter of finding a minimal polynomial of Ir,m with respect to some graded
monomial order <. For our order, we will take <:=<k−1, which we define next.

Definition 4.5.1 For any d ∈ N, let d = (1, d, . . . , d) ∈ Nw+1 and for any ρ ∈ Nw+1

let |ρ|d denote
∑w

i=0 diρi. Define the relation ≺d on Nw+1
0 by ρ ≺d λ, for any ρ =

(ρ0, . . . , ρw) 6= λ = (λ0, . . . , λw) ∈ Nw+1
0 , if

|ρ|d < |λ|d, or |ρ|d = |λ|d and the right-most nonzero entry in (ρ1, . . . , ρw, ρ0)−
(λ1, . . . , λw, λ0) ∈ Zw+1 is positive.1

Define the relation <d on the monomials of F[x,y] by xρ0yρ1 · · · yρw <d x
λ0yλ1 · · · yλw

if and only if ρ ≺d λ.

In this chapter it shall often be the case that we wish to compare monomials or
their exponent vectors with the x variable or component omitted. For these instances
we make the following convention: the relation ≺d on Nw

0 is defined to be the natural
truncation of ≺d in Definition 4.5.1, given by ρ ≺d λ, for any ρ = (ρ1, . . . , ρw),λ =
(λ1, . . . , λ1) ∈ Nw

0 , if (0, ρ1, . . . , ρw) ≺d (0, λ1, . . . , λw). To abbreviate notation we will
use yρ to denote yρ1 · · · yρw , even in the case where ρ is a (w + 1)-tuple (the first
coordinate, ρ0, is disregarded in that case).

The orders ≺d and <d above are just the graded, weighted reverse lexicographic
orders with the first coordinate (corresponding to x) moved to the end of the alphabet.
We selected these orders so that for two monomials of F[x,y] with equal weighted
degrees, the one with larger total y-degree will be the larger monomial with respect
to <d. This will be important when we verify the correctness and compute the
complexity of the Algorithm 4.6.3, which will be presented later on. For now, we
continue our discussion of Ir,m.

The minimal polynomial is necessarily an element in any Gröbner basis of Ir,m.
Unfortunately, finding a Gröbner basis is generally a task of exponential complexity.
For ideals in F[x, y], Buchberger showed in [3] and [4] that suitable adjustments could
be made to his algorithm that ensured it finished in polynomial time. For ideals in
F[x, y, z] the upper bound on run-time is singly-exponential in the input size and for
more variables, with the exception of certain specialized cases, the best known bound

1|a|d here denotes the d-weighted 1-norm of a ∈ Nw+1
0 ; that is |a|d =

∑w+1
i=1 diai.
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is doubly exponential in input size. However, by restricting the ideal Ir,m to a certain
submodule that retains the minimal polynomial we seek, we can hope to compute a
Gröbner basis in considerably less than doubly exponential time (polynomial time,
in fact), and thereby efficiently obtain our interpolation polynomial. This method
was cleverly devised by Kwankyu Lee and Michael O’Sullivan in 2006 ([24]). They
showed that it was an efficient generalization of the Berlekamp-Massey algorithm and
it improved the time complexity of the bivariate interpolation step of the Guruswami-
Sudan list decoding algorithm for Reed-Solomon codes from cubic to near-quadratic
in the code length. We will adapt their method to the multivariate interpolation step
for folded Reed-Solomon codes.

Let ` ≥ m be an upper bound on the total y-degree of the minimal polynomial of
Ir,m (recall this means that ` is a bound on the maximum total degree of the y-part
of any term in the minimal polynomial). Define the F[x]-module F[x,y]` to be the
restriction of F[x,y] to those polynomials f satisfying deg0,1(f) ≤ `. Then we define
Ir,m,` to be the submodule

Ir,m,` = Ir,m ∩ F[x,y]`.

Our first task with Ir,m,` is identifying a generating set. We obtain one by starting
with a generating set of Ir,m. For several of the proofs that follow we use the notation
|a| =

∑w
i=1 ai to denote the 1-norm of a ∈ Nw

0 and W=(m) := {γ ∈ Nw
0 : |γ| = m} to

denote the set of w-tuples that sum to m.

Proposition 4.5.2 The ideal Ir,m is generated by

B = {ηi
w∏
s=1

(yk − hσs−1(r))
js | i, j1, . . . , jw ∈ N0, i+ j1 + · · ·+ jw = m},

where η =
∏n

s=1(x−αs), σ ∈ Sn is the cyclic shift left permutation, and hσs−1(r) ∈ F[x]
is the polynomial interpolated through the points (αi, σs−1(ri)) for 1 ≤ i ≤ n. By σj(r)
then we mean the n-tuple obtained by cyclically shifting the coordinates of r to the
left j spaces (so σj(r)i = ri+j mod n).

Proof: To begin with, we note that 〈B〉 = 〈η, y1 − hr, . . . , yw − hσw−1(r)〉m.
For each γ ∈ W≤(m), let gγ = ηm−|γ|

∏w
s=1(ys − hσs−1(r))

γs ∈ B. Since g has m
factors that are zero at each point Pi it follows that g passes through each Pi with
multiplicity m. Hence, 〈B〉 ⊆ Ir,m. It remains to show that 〈B〉 ⊇ Ir,m

Let f ∈ Ir,m. Using multivariate division with remainder, we can write

f =
∑

γ∈W≤(m)

qγgγ +R

where no term of R is divisible by the leading term of any generator in B. The
leading terms of B are {xinyj11 · · · yjww | i + j1 + · · · + jw = m}. Hence, no term
of R has (1/n, 1, . . . , 1)-weighted degree as large as m. On the other hand, R =
f −

∑
γ∈W≤(m) qγgγ is an element of Ir,m since f ∈ Ir,m and B ⊆ Ir,m. So R vanishes

with multiplicity m at each Pi, meaning R(i) := R(x+αi, y1 + ri, . . . , y1 + ri+w−1) has
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no term with total degree less than m. It must be then that R(i) is divisible by x, so R
is divisible by x−αi. This is for 1 ≤ i ≤ n, therefore η divides R. Then R = ηR1 for
some R1 ∈ F[x, y1, . . . , yw] which has no term with (1/n, 1, . . . , 1)-weighted degree as
large as m− 1. Moreover, since η has multiplicity 1 at Pi, R1 must have multiplicity
m − 1 at Pi. So R

(i)
1 := R1(x + αi, y1 + ri, . . . , y1 + ri+w−1) has no term with total

degree less than m− 1. This implies now that x divides R
(i)
1 , so R1 is divisible by η

and hence R is divisible by η2. Iterating this argument, we eventually obtain that R
is divisible by ηm. But then lt(R) is divisible by lt(ηm) = xmn unless R = 0 (and has
no leading term). Therefore, since η ∈ B we must have R = 0 and so f ∈ 〈B〉. Thus,
Ir,m = 〈B〉. 2

A point worth noting is that the number of generators in the basis from Propo-
sition 4.5.2 is

((
w+1
m

))
=
(
m+w
m

)
. An interesting observation here is that the number

of generators of Ir,m = ∩ni=1〈x− αi, y1 − ri, . . . , ym − ri+m−1〉m, is independent of the
number of points we interpolate through. This feature is probably unique to the affine
case. If we were considering a projective ideal for this problem, we would expect that
the number of basis generators would have to grow with the number of interpolation
points.

From this basis B just described, we derive a generating set for Ir,m,`.

Corollary 4.5.3 A generating set for Ir,m,` as an F[x]-submodule of F[x,y]` is

G =

{
ηi

w∏
s=1

(yk − hσs−1(r))
js

∣∣∣∣ i, js ∈ N0, i+ j1 + · · ·+ jw = m

}
∪{

w∏
s=1

[
(ys − hσs−1(r))

jsyJss
] ∣∣∣∣ js, Js ∈ N0,Σjs = m,ΣJs ≤ `−m

}
. (4.5)

Proof: The condition f ∈ Ir,m,` is equivalent to being able to write f =
∑

γ∈W≤(m) hγgγ
as a sum of the generators of Ir,m and deg0,1(f) being no more than `. The latter
condition just forces deg0,1(hγ) to be no more than d = `− deg0,1(gγ) = `−

∑w
i=1 γi.

Writing

hγ =
∑

i∈N,a∈Nw
|a|≤d

hi,ax
iya,

we see that f =
∑

γ,i,a hγ,i,ax
iyagγ is an F[x]-linear combination of the elements of G.

2

The basis G in Corollary 4.5.3 is handy for writing down an initial set of generators
of Ir,m,` but its size is a bit excessive. Fortunately, it can easily be reduced.

Corollary 4.5.4 Another basis for Ir,m,` as an F[x]-submodule of F[x,y]` is

G′ =

{
ηi

w∏
s=1

(ys − hσs−1(r))
js

∣∣∣∣ i, js ∈ N0, i+ j1 + · · ·+ jw = m

}
∪
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{
w∏
s=1

(ys − hσs−1(r))
js

∣∣∣∣ js ∈ N0,m < j1 + · · ·+ jw ≤ `

}
. (4.6)

Proof: Each polynomial of the form g′ =
∏w

s=1(ys − hσs−1(r))
js (for some js ∈ N

where m <
∑
js ≤ `) in G′ can be written as an F[x]-linear combination of el-

ements of G because of Corollary 4.5.3 and the fact that G′ ⊆ Ir,m ∩ F[x,y]`.
Moreover, in this linear combination we may take the coefficient of the generator

g =
∏w

s=1

[
(ys − hσs−1(r))

j′sy
js−j′s
s

]
(where j′s ∈ N satisfy

∑
j′s = m and j′s ≤ js for all

s) to be 1:

g′ =
w∏
s=1

(ys − hσs−1(r))
js

=
w∏
s=1

(ys − hσs−1(r))
j′s ·

w∏
s=1

(ys − hσs−1(r))
js−j′s

=
w∏
s=1

(ys − hσs−1(r))
j′s ·

(
w∏
s=1

yjs−j
′
s

s +
lower order terms from the

product of binomial expansions

)
= g + F[x]-multiples of other elements of G. (4.7)

Therefore, these generators, g and g′ may be swapped. (Note that g′ can replace
all g for any choice of j′s’s such that

∑
j′s = m and j′s ≤ js for all s.) 2

The basis G′ has the advantage of having fewer generators than G. The size of G
is ((

w + 1

m

))
+
((w
m

))(`−m∑
i=1

((w
i

)))

=

((
w + 1

m

))
+
((w
m

))(((w + 1

`−m

))
− 1

)
=

(
w +m− 1

m− 1

)
+

(
m+ w − 1

m

)(
w + `−m
`−m

)
, (4.8)

whereas the set G′ only has((
w + 1

m

))
+
∑̀
i=m+1

((w
i

))
=

((
w + 1

m

))
+

((
w + 1

`

))
−
((
w + 1

m

))
=

(
w + `

`

)
(4.9)

generators. It may not be obvious that the expression in (4.9) is no larger than the
one in (4.8), but in Corollary 4.6.9 we will see that G′ has the same cardinality as
a subset of G, making the point (that its size is smaller) clear. So it seems that G′

will be the easier basis to manage at this time. For now, let us return to the task
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of finding a Gröbner basis of Ir,m,`. The standard technique of testing whether a
basis is a Gröbner basis is by Buchberger’s S-pair criterion. However, under special
circumstances there are other criteria we may use as well. The following proposition
is a generalization of Proposition 12 in [24] from the bivariate to the multivariate
case.

Proposition 4.5.5 Let < be a monomial order for F[x,y] and let S ⊆ F[x,y]` be an
F[x]-submodule generated by G = g1, . . . , gt. If degy(lt<(gi)) for i = 1, . . . , t are all
distinct then G is a Gröbner basis of S with respect to <.

Proof: Assume the premise of the proposition is true. Since there is no chance of
confusion, we will denote lt<(g) by lt(g). Let f = f1g1+· · ·+ftgt ∈ S, with f1, . . . , ft ∈
F[x]. Let aj = deg fj and (bj0, . . . , bjw) = degxy lt(gj) for all j ∈ [t]. We have that
for some j ∈ [t], lt(fjgj) ≥ lt(figi) for all i ∈ [t]. Suppose lt(fjgj) = lt(figi) for some
i 6= j (note: this just means the leading monomials are equal, not necessarily the
leading coefficients). Then (aj+bj0, bj1, . . . , bjw) = degxy(lt(fjgj)) = degxy(lt(figi)) =
(ai+bi0, bi1, . . . , biw), so degy(lt<(gj)) = (bj1, . . . , bjw) = (bi1, . . . , biw) = degy(lt<(gi)),
a contradiction of the premise that the generators’ leading terms’ y-parts are distinct.
Hence, lt(fjgj) > lt(figi) for all i 6= j. Therefore, lt(f) = lt(fjgj) = lt(fj) · lt(gj). So
the leading term of f is divisible by a leading term of one of the generators. Thus, G
is a Gröbner basis of S. 2

Let us denote each generator of G′ in (4.6) by gρ = ηρ0
∏w

s=1(ys−hσs−1(r))
ρs where∑w

i=1 ρi ≤ ` and ρ0 = max (0,m−
∑w

s=1 ρs). Notice that gρ has a term of the form
yρ11 · · · yρww = yρ which would be the leading term if we had given the ys variables
weight n − 1 instead of k − 1. However, since hσs−1(r) has degree as large as n − 1
in general, the leading term of gρ will generally be more x heavy than y heavy. Our
goal, in order to obtain a Gröbner basis, will be to manipulate each gρ so that its
leading term becomes yρ. Our strategy for achieving this shall have the flavor of a
Euclidean algorithm. We will systematically take each gρ and subtract off multiples
of an appropriate generator repeatedly to kill the leading term until it has y-part yρ.

4.6 Gröbner Basis Algorithm

The algorithm in this subsection will rely on being given an F[x] submodule basis of
F[x,y]` with the precondition that its generators can be ordered so that their leading
y-parts are strictly increasing. In this case, we could represent the basis with a row
echelon form matrix over F[x] where the rows represent the generators (in descending
order), the columns represent the different y-parts present in the basis (again, in
descending order), and the entries represent the corresponding F[x]-coefficient of the
y-part of the generator. Given such a basis the algorithm will produce another basis
satisfying the condition of Proposition 4.5.5, namely the y-degrees of the leading
terms will all be distinct. We will formalize these two basis conditions with the
following definitions.
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Definition 4.6.1 Let G be a basis of an F[x]-submodule of F[x,y]`. If degy lt(g(1,y))
is different for each g ∈ G, then we say that it is an echelon (or pre-diagonal) basis.
If degy lt(g(x,y)) is different for each g ∈ G, then we say that the basis is diagonal.

Remark 4.6.2 The basis G′ in equation (4.6) is an echelon basis. However, the basis
G in equation (4.5) is not echelon if w > 1, ` ≥ m + 2, and w ≥ 2. In this case we
could find j1, . . . , jw, J1, . . . , Jw ∈ N0 such that

∑
js = m,

∑
(jk + Jk) ≤ `, j1 < m,

j2 > 0, J1 = 1, and J2 = 0. Then
∏w

s=1[(ys − hσs−1(r))
jsyJss ] and (y1 − hr)j1+1(y2 −

hσ(r))
j2−1y2

∏w
s=3[(ys − hσs−1(r))

jsyJss ] are two different generators in G with the same
maximal y-part.

The essence of the Gröbner basis computing algorithm is to do repeated S-
polynomial-like computations, but we intentionally choose our S-pairs so that one
of them will have a unit coefficient in the S-polynomial expression and can therefore
be directly replaced by the S-polynomial, so we never have to increase the size of the
basis. This algorithm is a generalization of Algorithm G in [25] from the bivariate to
the multivariate case.

Algorithm 4.6.3 (Gröbner Basis Algorithm)
Description: converts a pre-conditioned basis to a Gröbner basis with the same number
of generators.
Input: w (integer), ` (integer), and an echelon basis

G = {gρ | ρ ∈ Nw
0 , |ρ| < `} ⊆ F[x,y]`.

of a submodule of F[x,y]` of rank
(
w+`
`

)
such that degy lt(gρ(1,y)) = ρ for all ρ ∈ Nw

0

with |ρ| < `.
Output: a Gröbner basis of 〈G〉 with respect to <=<k−1.

GröbnerBasis(w, `, G)

1. Let P = {ρ | ρ ∈ Nw
0 , |ρ| < `} and p = |P | =

(
w+`
`

)
.

2. Enumerate ρ1, . . . ,ρp ∈ P so that yρ1 < · · · < yρp.

3. for i from 2 to p

4. while (degy(lt<(gρi)) 6= ρi)

5. φ := degy(lt<(gρi))
Let a(x) and b(x) be the coefficients of the monomial

yφ in gρi and gφ, respectively.

d := degx(a(x))− degx(b(x))

c := lc<(a(x))
lc<(b(x))

6. if (d ≥ 0) then

7. gρi := gρi − cxdgφ
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8. else

9. swap gρi ←→ gφ

10. gρi := gρi − c−1x−dgφ

11. return {gρ}ρ∈P.

4.6.1 Correctness

To prove the correctness of Algorithm 4.6.3 we must show two things: (1) the algo-
rithm halts and (2) the set returned is a Gröbner Basis of the submodule generated
by the input basis. To show the second part, we verify that the submodule generated
by G = {gρ} remains the same as we update the generators during the course of the
algorithm and that at the end the y-degrees of the leading terms of the generators
are distinct. To see that the algorithm terminates one simply needs to observe that
each iteration of the while loop kills the leading term of gρi so that its new leading
term is smaller than before in terms of the monomial order <. Since this can only
happen finitely many times, termination follows. With this synopsis in mind, we
proceed to prove the correctness with some invariants that will help our conceptual
understanding of the algorithm.

Proposition 4.6.4 On the input specified by the algorithm description, Algorithm
4.6.3 terminates and returns a set of generators for the same submodule as the input,
but each of the returned generators gρ satisfies degy(lt(gρ)) = ρ. Thus, by Proposition
4.5.5, the algorithm returns a Gröbner basis of the submodule specified by the input.

Proof: Assume the input conditions set forth by Algorithm 4.6.3. First of all, we
verify that the basis returned by the algorithm generates the same submodule as the
basis given. To see this, simply note that the only times we change the generators
are in steps 7 and 10 and in either case the generator is only changed by subtracting
off an F[x]-multiple of another generator. Therefore, there is no change to the span
of the generating set. Now we show it returns a Gröbner basis.

After the ith iteration of the for loop, the following invariant holds for 1 ≤ i ≤ p:

(I1) degy(lt(gρ)) = ρ for ρ0 � ρ � ρi

We know that (I1) holds initially because ρ1 must be (0, . . . , 0) since (0, . . . , 0) ∈ P ,
< is a monomial order, and, by assumption, degy lt(gρ1(1, y1, . . . , yw)) = yρ1 = 1. It
follows that gρ1 is a polynomial in just x, so degy(lt(gρ1)) = (0, . . . , 0) = ρ1.

Suppose that (I1) holds after the ith iteration for some i with 0 ≤ i < p. During
the (i + 1)st iteration, the only time any generator gρ, ρ � ρi, changes is when it is
swapped with gρi+1

in step 9. But in that case, degy(lt<(gρ)) = degy(lt<(gρi+1
)), so

even then degy(lt(gρ)) remains unchanged, although the total degree of gρ decreases
since d < 0 (this will be important for showing termination). Hence, we still have
degy(lt(gρ)) = ρ for ρ1 ≤ ρ ≤ ρi after the (i+1)st iteration. As for gρi+1

, the (i+1)st
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iteration stops precisely when degy(lt<(gρi+1
)) = ρi+1. Therefore, (I1) holds after the

(i+ 1)st iteration too.
Finally, to show the algorithm halts we must show the while loop terminates

during each iteration i of the for loop. To see this, observe that gρi only changes
in steps 7, 9, and 10. In step 9, as mentioned above, the total degree of one of the
generators gρ, ρ ≺ ρi, strictly decreases and this is the only step where the generators
preceding gρi change so step 9 can only be executed a finite number of times. Step
10 can only run finitely many times, too, then. So after finitely many iterations, the
condition of step 6 must always be true and the algorithm only runs step 7 and never
steps 9 or 10. In step 7, gρi is replaced by a polynomial whose leading term either has
smaller k-weighted degree or has the same weighted degree but its leading term is
smaller with respect to <. Its weighted degree cannot increase because the weighted
degree of cxdgφ is the same as that of gρi (they have the same leading monomial), so it
can only decrease or remain the same when we take their difference. If it remains the
same, then the new leading monomial was also a monomial in either gρi or xdgφ and
so must have been smaller with respect to < than the old leading term. The leading
term can only decrease finitely many times before gρi becomes 0. But this cannot
happen since gρ1 , . . . , gρi form a rank i + 1 free F[x]-module (note the generators all
have distinct y-degrees to begin with). So the while loop must terminate before
that. 2

4.6.2 Complexity

The complexity bound we obtain in this section will depend on which particular basis
of the submodule we choose to start with when we call the procedure GröbnerBasis(w,
`, G). We will discuss the costs and benefits of the different bases we might choose
at the end of the section. In the meantime, the key to bounding the complexity of
Algorithm 4.6.3 will be determining the number of times that the while loop (step 4)
may be run during each iteration of the for loop (step 3). Proposition 4.6.4 showed
that step 4 can only be run a finite number of times but it did not indicate a precise
bound on that number. We know from the proof that the k-weighted degrees of
the generators never increase but during each iteration of the while loop either the
weighted degree of one generator decreases or the y-degree of the leading term of the
target generator, gρi during the ith iteration of the for loop, decreases with respect to
<. At the start of the algorithm, we have that degk gρ ≤ (n−1)max{m,|ρ|} ≤ (n−1)` for
all ρ ∈ P . The maximum number of times the leading term of the target polynomial
can jump before either the iteration terminates or the weighted degree of a generator
falls is i, the iteration number for step 3. The worst case would be if all of the jumping
occurred during the last (pth) iteration of step 3. In this case, we get as a crude upper
bound on the number of times step 4 is passed:

p(n− 1)` =

(
w + `

w

)
(n− 1)`. (4.10)
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We know from Proposition 4.3.4 that the minimal polynomial of Ir,m has k-weighted

degree at most d =
⌊
w+1
√

(k − 1)wn(m+ w)w+1

⌋
+ 1. Therefore, its total y-degree

bound ` satisfies the inequality

` ≤ d

k − 1
=

⌊
w+1
√

(k − 1)wn(m+ w)w+1

⌋
+ 1

k − 1

≤ (m+ w) w+1

√
n

k − 1
+ 1. (4.11)

Combining 4.11 with 4.10 we have that the algorithm’s while loop loops at most(
w + `

w

)
(n− 1)` ≤

(
w + w+1

√
n
k−1

(m+ w) + 1

w

)
(n− 1)(m+w) w+1

√
n
k−1

+1

∈ O
((

em

(
1 + w+1

√
n

k − 1

))w
n(m+w)/ w+1√κ+1

)
(4.12)

times. This could be exponential in n if k were fixed and n were growing (whereby
1/κ would grow linearly in n). But we can actually achieve a smaller complexity
than in (4.12). Obtaining a better grasp of the complexity requires establishing a
tighter bound on the number of times step 4 is executed in the algorithm. First, it
is important to notice that up through the ith iteration of step 3, amongst all of the
y-parts occurring in the monomials of gρ1 , . . . , gρi , y

ρi is maximal with respect to
<. This follows from the ordering we choose for gρ1 , ..., gρp . Furthermore, amongst
all possible monomials in gρ1 , ..., gρp of a fixed degree equal to degk(xuyρi) for some
u ≥ 0, xuyρi is maximal. Now we use this and the fact that the while loop closes the
gap between the weighted degree of the leading term of the target generator, gρi , and
that of the terms with the desired y-part, yρi , by repeatedly killing off the leading
term of gρi . This is expressed more formally in the next proposition whose proof
depends on the lemma that follows it (and the lemma is proved first).

Proposition 4.6.5 Consider the ith iteration of the for loop of Algorithm 4.6.3
(2 ≤ i ≤ p). After each run through the while loop, the difference between the k-
weighted degrees of the leading term of gρi and its maximum term (with respect to
<k−1) with y-part yρi either strictly decreases or the difference remains the same but
the y-part of the leading term strictly decreases (with respect to <k−1).

The proof of Proposition 4.6.5 relies on an interesting invariant of the algorithm
whose long, technical proof is encapsulated in the following lemma. The lemma and
its proof are based on Proposition 7 of [25], in which Lee and O’Sullivan proved the
result for the bivariate case (w = 1).

Lemma 4.6.6 Let gρs =
∑
ρ∈P aρsρy

ρ, 1 ≤ s ≤ p, aρsρ ∈ F[x], represent the basis

G in Algorithm 4.6.3 during the ith iteration of the for loop. Then before and after
each run through the while loop (steps 5-10) the following invariant condition holds
for any non-identity permutation π ∈ S(P ):
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(I2)
∑
ρ∈P

deg(aρρ) >
∑
ρ∈P

deg(aρπ(ρ)).

Proof: To start with, we must show that (I2) holds when the algorithm is initiated.
For any π ∈ S(P ) and basis state G = {gρ | ρ ∈ P} let DG(π) =

∑
ρ∈P deg(aρπ(ρ)).

Then condition (I2) just says that idP ∈ S(P ) maximizes DG(π) over all π ∈ S(P ).
Considering the left-hand side of (I2), initially we have deg(aρρ) ≥ 0 since the

basis G is echelon, which implies degy(gρ) = ρ, so aρρ 6= 0. So the left-hand side
of (I2) is non-negative. For the right-hand side of (I2), observe first that initially,
since G is echelon, aρλ = 0 for all λ � ρ. Since the permutation π considered in
(I2) is not the identity, there is necessarily some ρ ∈ P such that π(ρ) �k−1 ρ, in
which case deg(aρπ(ρ)) = −∞. This makes DG(π) = −∞, while DG(idP ) is strictly
non-negative, so (I2) is true initially.

It remains to show that after each run through the while loop (steps 5-10),
which is the only place the basis G changes, property (I2) is preserved. Let gρ =∑
φ∈P aρφy

φ and g′ρ =
∑
φ∈P a

′
ρφy

φ, where ρ ∈ P and aρφ, a
′
ρφ ∈ F[x], represent

the states of the basis G before and after, respectively, an execution of the while

loop during the ith iteration of the for loop. Also, to simplify notation, we will let
δρφ = deg(aρφ) and δ′ρφ = degk−1(a

′
ρφ) for all ρ,φ ∈ P .

First, consider the case when d ≥ 0 in step 6. Since (I2) holds before the gen-
erator replacement of step 7, when we take the transposition π′ = (ρi φ) we have
DG(π′) < DG(idP ), which implies δρiφ − δφφ + δφρi = d + δφρi < δρiρi . Hence,
δ′ρiρi = deg(aρiρi − cxdaφρi) = δρiρi . Since gρi is the only generator altered, it
follows that DG(idP ) = DG′(idP ). Now, δ′ρiπ(ρi)

= deg(aρiπ(ρi) − cxdaφπ(ρi)) ≤
max{δρiπ(ρi), d + δφπ(ρi)}. If δ′ρiπ(ρi)

≤ δρiπ(ρi) then DG′(idP ) = DG(idP ) > DG(π) ≥
DG′(π) for all π ∈ S(P )\{idP}, and (I2) still holds. Otherwise, δ′ρiπ(ρi)

= d + δφπ(ρi)

and we treat two subcases depending on whether ρi and φ are in the same cycle of
π or not.

Suppose ρi and φ are in the same cycle of π, say

π1 = (φ π(φ) . . . ρi π(ρi) . . . π−1(φ)).

Let ∆ρφ = degk−1(aρφy
φ) and ∆′ρφ = degk−1(a

′
ρφy

φ) for all ρ,φ ∈ P . From our
supposition on δ′ρiπ(ρi)

we have ∆′ρiπ(ρi)
= d+∆φπ(ρi) and by invariant (I1) ∆ρλ ≤ ∆ρρ

for ρ0 � ρ ≺ ρi and λ ∈ P . Lastly, let R = {π(ρi), π
2(ρi), . . . , π

−1(φ)} and let
τ ∈ S(P )\{idP} be the permutation

τ(ρ) =


ρ, if ρ ∈ R

π(ρ), if ρ /∈ R ∪ {ρi}
φ, if ρ = ρi

Then, using the facts here stated, we have∑
ρ∈P

(δ′ρτ(ρ) + degk(yρ))

=
∑
ρ∈P

∆′ρπ(ρ)
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=
∑
ρ∈P

∆ρπ(ρ) −∆ρiπ(ρi) + ∆′ρiπ(ρi)

=
∑
ρ∈P

∆ρπ(ρ) −∆ρiπ(ρi) + d+ ∆φπ(ρi)

=
∑
ρ∈R

∆ρπ(ρ) +
∑

ρ/∈R∪{φ,ρi}

∆ρπ(ρ) + ∆φπ(φ) + ∆ρiφ −∆φφ + ∆φπ(ρi)

≤
∑
ρ∈R

∆ρρ +
∑

ρ/∈R∪{φ,ρi}

∆ρπ(ρ) + ∆ρiφ + ∆φπ(φ)

=
∑
ρ∈P

∆ρτ(ρ)

=
∑
ρ∈P

(δρτ(ρ) + degk(yρ))

<
∑
ρ∈P

(δρρ + degk(yρ))

=
∑
ρ∈P

(δ′ρρ + degk(yρ)), (4.13)

which implies (I2) still holds. If, on the other hand, ρi and φ are in distinct cycles
of π, let π1 = (φ π(φ) . . . π−1(φ)) be the cycle of π containing φ. We use the
same notation as before, except that now we take R = {λ ∈ π1 | λ 6= φ} and
τ ∈ S(P )\{idP} to be the permutation

τ(ρ) =


ρ, if ρ ∈ R

π(ρ), if ρ /∈ R ∪ {φ,ρi}
π(ρi), if ρ = φ

φ, if ρ = ρi

Then, using the same reasons as before, we have∑
ρ∈P

(δ′ρτ(ρ) + degk(yρ))

=
∑
ρ∈P

∆′ρπ(ρ)

=
∑
ρ∈P

∆ρπ(ρ) −∆ρiπ(ρi) + ∆′ρiπ(ρi)

=
∑
ρ∈P

∆ρπ(ρ) −∆ρiπ(ρi) + d+ ∆φπ(ρi)

=
∑
ρ∈R

∆ρπ(ρ) +
∑

ρ/∈R∪{φ,ρi}

∆ρπ(ρ) + ∆φπ(φ) + ∆ρiφ −∆φφ + ∆φπ(ρi)

≤
∑
ρ∈R

∆ρρ +
∑

ρ/∈R∪{φ,ρi}

∆ρπ(ρ) + ∆ρiφ + ∆φπ(ρi)

=
∑
ρ∈P

∆ρτ(ρ)

82



=
∑
ρ∈P

(δρτ(ρ) + degk(yρ))

<
∑
ρ∈P

(δρρ + degk(yρ))

=
∑
ρ∈P

(δ′ρρ + degk(yρ)), (4.14)

so again, (I2) still holds after the replacement of gρi in step 7.
Next we use a similar treatment to handle the case when d < 0 in step 6. We

will reuse all of the before and after notation (before and after steps 9-10 in this
case) from the first case, but this time we will have that a′φρ = aρiρ and a′ρiρ =

aφρ − c−1x−daρiρ since g′φ = gρi and g′ρi = gφ − c−1x−dgρi . Because (I2) holds before
the generator replacements of steps 9-10, applying it to the transposition π′ = (ρi φ)
we have DG(π′) < DG(idP ), which implies δρiφ − δφφ + δφρi = d + δφρi < δρiρi .
Hence, δ′ρiρi = deg(aφρi − c−1x−daρiρi) = δρiρi − d. But the increase of (−d) in the
diagonal summand here is counterbalanced by the fact that δ′φφ = δρiφ = δφφ + d. It

follows now that DG(idP ) = DG′(idP ). Now, δ′ρiπ(ρi)
= deg(aφπ(ρi)−c−1x−daρiπ(ρi)) ≤

max{δφπ(ρi), δρiπ(ρi) − d} (strict inequality is possible only if both arguments are
equal). If δ′ρiπ(ρi)

≤ δφπ(ρi) then

DG′(π) = DG(π) + δ′φπ(φ) − δφπ(φ) + δ′ρiπ(ρi)
− δρiπ(ρi)

= DG(π) + δρiπ(φ) − δφπ(φ) + δ′ρiπ(ρi)
− δρiπ(ρi)

≤ DG(π) + δρiπ(φ) − δφπ(φ) + δφπ(ρi) − δρiπ(ρi)

= DG(π) ≥ DG′((ρi φ) ◦ π)

< DG(idP )

= DG′(idP ) (4.15)

for all π ∈ S(P )\{idP}, and (I2) still holds. Otherwise, δ′ρiπ(ρi)
= δρiπ(ρi) − d and we

again treat two subcases depending on whether ρi and φ are in the same cycle of π
or not.

Suppose ρi and φ are in the same cycle of π, say

π1 = (φ π(φ) . . . ρi π(ρi) . . . π−1(φ)).

Using the notation of the d ≥ 0 case, we have ∆′ρiπ(ρi)
= ∆ρiπ(ρi)−d and by invariant

(I1) ∆ρλ ≤ ∆ρρ for ρ0 � ρ ≺ ρi and λ ∈ P . Let R = {π(ρi), π
2(ρi), . . . , π

−1(φ)φ}
and let τ ∈ S(P )\{idP} be the permutation

τ(ρ) =


ρ, if ρ ∈ R

π(ρ), if ρ /∈ R ∪ {ρi}
π(φ), if ρ = ρi

Then, using the facts here stated, we have∑
ρ∈P

(δ′ρτ(ρ) + degk(yρ))
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=
∑
ρ∈P

∆′ρπ(ρ)

=
∑
ρ∈P

∆ρπ(ρ) −∆ρiπ(ρi) + ∆′ρiπ(ρi)
−∆φπ(φ) + ∆′φπ(φ)

=
∑
ρ∈P

∆ρπ(ρ) − d−∆φπ(φ) + ∆ρiπ(φ)

=
∑

ρ∈R\{φ}

∆ρπ(ρ) +
∑

ρ/∈R∪{ρi}

∆ρπ(ρ) + ∆φπ(φ) + ∆ρiπ(ρi) − d−∆φπ(φ) + ∆ρiπ(φ)

=
∑

ρ∈R\{φ}

∆ρπ(ρ) +
∑

ρ/∈R∪{ρi}

∆ρπ(ρ) + ∆ρiπ(ρi) −∆ρiφ + ∆φφ + ∆ρiπ(φ)

≤
∑
ρ∈R

∆ρ(ρ) +
∑

ρ/∈R∪{ρi}

∆ρπ(ρ) + ∆ρiπ(φ)

=
∑
ρ∈P

∆ρτ(ρ)

=
∑
ρ∈P

(δρτ(ρ) + degk(yρ))

<
∑
ρ∈P

(δρρ + degk(yρ))

=
∑
ρ∈P

(δ′ρρ + degk(yρ)), (4.16)

which implies (I2) still holds. If, on the other hand, ρi and φ are in distinct cycles
of π, let π1 = (φ π(φ) . . . π−1(φ)) be the cycle of π containing φ. We use the same
notation as before except now we let R = {λ | λ ∈ π1} and let τ ∈ S(P )\{idP} be
the permutation

τ(ρ) =

{
ρ, if ρ ∈ R

π(ρ), if ρ /∈ R
Then, by the same arguments as before, we have∑

ρ∈P

(δ′ρτ(ρ) + degk(yρ))

=
∑
ρ∈P

∆′ρπ(ρ)

=
∑
ρ∈P

∆ρπ(ρ) −∆ρiπ(ρi) + ∆′ρiπ(ρi)
−∆φπ(φ) + ∆′φπ(φ)

=
∑
ρ∈P

∆ρπ(ρ) − d−∆φπ(φ) + ∆ρiπ(φ)

=
∑

ρ∈R\{φ}

∆ρπ(ρ) +
∑
ρ/∈R

∆ρπ(ρ) + ∆φπ(φ) − d−∆φπ(φ) + ∆ρiπ(φ)

=
∑

ρ∈R\{φ}

∆ρπ(ρ) +
∑
ρ/∈R

∆ρπ(ρ) −∆ρiφ + ∆φφ + ∆ρiπ(φ)
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≤
∑
ρ∈R

∆ρπ(ρ) +
∑
ρ/∈R

∆ρπ(ρ)

=
∑
ρ∈P

∆ρτ(ρ)

=
∑
ρ∈P

(δρτ(ρ) + degk−1(y
ρ))

<
∑
ρ∈P

(δρρ + degk(yρ))

=
∑
ρ∈P

(δ′ρρ + degk(yρ)), (4.17)

so again, (I2) still holds after the replacement of gρi in steps 9 and 10. At last, we
have shown that in any case the condition (I2) – if it holds before an iteration of
the while loop – will still hold after executing steps 5 through 10. Thus (I2) is an
invariant of Algorithm 4.6.3. 2

Proof: [Proof of Proposition 4.6.5.] Let gρs =
∑
ρ∈P aρsρy

ρ and g′ρs =
∑
ρ∈P a

′
ρsρy

ρ,
with 1 ≤ s ≤ p and each aρsρ, a

′
ρsρ ∈ F[x], represent the basis G in Algorithm 4.6.3

before and after, respectively, a run through the while loop (steps 5–10) during the
ith iteration of the for loop. We treat two similar cases now, depending on the out-
come of step 6 (i.e. the sign of d).

Case I.
Suppose d = aρiφ − aφφ ≥ 0 in step 5. Then by step 7,

a′ρiρ = aρiρ − cxdaφρ (4.18)

for all ρ ∈ P . Taking π ∈ S(P ) to be the transposition of φ and ρi, (I2) reduces to
deg(aφφ)+deg(aρiρi) > deg(aφρi)+deg(aρiφ). Equivalently, deg(aρiρi) > deg(aφρi)+
deg(aρiφ)− deg(aφφ) = deg(aφρi) + d, which together with (4.18) implies

deg(a′ρiρi) = deg(aρiρi). (4.19)

By the definition of d, for each ρ ∈ P we have

degk(xdaφρy
ρ) = degk(aφρy

ρ) + d

= degk(aφρy
ρ) + degk(aρiφy

φ)− degk(aφφy
φ)

≤ degk(aρiφy
φ)

with strict inequality when ρ � φ since aφφy
φ, which contains the leading term of

gφ, must have no less weighted degree than aφρy
ρ and equality is only possible if

the later polynomial’s y-part is smaller with respect to <k−1. Also, degk(aρiρy
ρ) ≤

degk(aρiφy
φ) (since the later contains the leading term of gρi) with strict inequality

again holding for ρ � φ. Thus, by (4.18) we obtain

degk(a′ρiρy
ρ) ≤ degk(aρiφy

φ) (4.20)
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for all ρ ∈ P . Moreover the inequality is strict when ρ � φ due to the strictness of
the previous inequalities and the choice of c and d in step 5.

Case II.
Now suppose d = aρiφ − aφφ < 0. Then by steps 9 and 10,

a′ρiρ = aφρ − c−1x−daρiρ (4.21)

for all ρ ∈ P . By applying the transposition of ρi and φ to (I2) again we obtain
deg(aφρi) < deg(aρiρi) + deg(aφφ)− deg(aρiφ) = deg(aρiρi)− d, which together with
(4.21) implies

deg(a′ρiρi) = deg(aρiρi)− d. (4.22)

By the definition of d, for each ρ ∈ P we have

degk(x−daρiρy
ρ) = degk(aρiρy

ρ)− d
≤ degk(aρiφy

φ)− d

and

degk(aφρy
ρ) = degk(aφρy

ρ)− degk(aφφy
φ) + degk(aρiφy

φ)− d
≤ degk(aρiρy

φ)− d

with strict inequalities holding when ρ � φ. Thus, by (4.21) we obtain

degk(a′ρiρy
ρ) ≤ degk(aρiφy

φ)− d (4.23)

for all ρ ∈ P . Moreover the inequality is strict when ρ � φ due to the strictness of
the previous inequalities and the choice of c and d in step 5.

Now by (4.20) and (4.23), since degk(lt(gρi)) = degk(aρiφy
φ), we see that

degk(lt(g′ρi))− degk(a′ρiρiy
ρi) ≤ degk(lt(gρi))− degk(aρiρiy

ρi)

with equality holding only if degy(lt(g′ρi)) ≺ degy(lt(gρi)) = φ. Thus, following each
iteration of the while loop, the difference between the weighted degrees of the leading
term of gρi and its maximum term with y-part yρi either strictly decreases or the
difference remains the same but the y-part of the leading term strictly decreases with
respect to <k−1. 2

Remark 4.6.7 Proposition 4.6.5 says that after each basis update in the while loop
of Algorithm 4.6.3, the gap between the weighted degrees of the leading term of gρi
and its diagonal term is reduced with each iteration; either it strictly decreases or
the value does not change but the leading term’s y-degree goes down which can only
happen so many times before the value must decrease (at which point the y-degree
may jump up again). So every step in this algorithm makes progress toward the goal
of attaining a diagonal basis.
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Now, to bound Algorithm 4.6.3’s complexity we start with a bound on the number
of times step 4 loops during the ith iteration of step 3. Here, for all ρ = (ρ1, . . . , ρw) ∈
P we define ρ0 = max{0,m − |ρ|} to be the exponent of η in the generator gρ =
ηρ0
∏w

t=1(yt − hσt(r))ρt . Again, we use the notation gρ =
∑
φ∈P aρφy

φ, aρφ ∈ F[x], to
represent each generator in terms of the standard F[x]-basis {yρ | ρ ∈ P} of F[x,y]`.
At the start of the ith iteration of step 3, the difference between the weighted degree
of gρi and that of its target term is

degk(lt(gρi))− degk(aρiρiy
ρi)

= degk(x(n−1)ρi,0

w∏
t=1

lt(yt − hσt(r))ρi,t)− degk(x(n−1)ρi,0yρi)

≤ [(n− 1)ρi,0 + (n− 1)|ρi|]− [(n− 1)ρi,0 + (k − 1)|ρi|]
= (n− k)|ρi|. (4.24)

By Proposition 4.6.5 this difference either strictly decreases or the y-degree of gρi ’s
leading term strictly decreases. Because none of the generators have y-degree greater
than ρi up through the ith iteration, the leading term can jump at most i− 1 times
before the difference above must strictly decrease. Since the terms in gρi with y-
degree yρi are maximal amongst all terms of equal y-degree in gρi (at least through
the ith iteration), the ith iteration halts as soon as the aforementioned difference
becomes zero. Therefore, there are at most (n− k)|ρi|(i− 1) iterations of the while

loop during the ith iteration of the for loop.
The k-weighted degree of any generator gρ with ρ ≺ ρi is at most (n− 1)|ρi| and

the y-degree is at most ρi through the ith iteration of step 3. Therefore, the number
of possible terms in gρ is∑

φ�ρi

[(n− 1)|ρi| − (k − 1)|φ|+ 1] = i(n− 1)|ρi|+ i− (k − 1)
∑
φ�ρi

|φ|

≤ i((n− 1)|ρi|+ 1) (4.25)

The number of arithmetic operations in F needed for each iteration of step 4 is then

at most 2i((n − 1)|ρi| + 1) + 1. There is 1 division in step 5 to find c =
lc(gρi )

lc(gφ)
(we

count this operation for the inversion of c in step 10, too, since we could just wait
until after the test of the if statement to compute c or multiply gρi by c in step 10
instead of spending an extra inversion operation in the else block, but we chose to
present the algorithm as it is for symmetry reasons and because the alternatives make
little difference.) There are then i((n− 1)|ρi|+ 1) multiplications needed in step 7 or
10 to multiply gφ by the constant c±1 and i((n− 1)|ρi|+ 1) subtractions in the same
step to find the difference of gρi and c±1x±dgφ (multiplying gφ by x±d only requires
shifting the coefficients (or their degrees) in gφ so it incurs no arithmetic cost). It is
now a simple matter to calculate the cost of the Gröbner Basis algorithm.

Proposition 4.6.8 Algorithm 4.6.3 requires O(n2`2(e(` + w)/w)3w) arithmetic op-
erations in F to run given the basis G′ of Corollary 4.5.4.
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Proof: Since the only arithmetic operations occur inside the while loop, which may
loop up to (n− k)|ρi|(i− 1) times during the ith iteration of the for loop, the whole
algorithm takes no more than

p∑
i=2

(n− k)|ρi|(i− 1) · (2i((n− 1)|ρi|+ 1) + 1)

≤ (n− k)

p∑
i=2

`[i2(2(n− 1)`+ 2)− i(2(n− 1)`+ 2)− 1]

< (n− k)`

[
p(p+ 1)(2p+ 1)

6
(2(n− 1)`+ 2)− p(p+ 1)

2
(2(n− 1)`+ 2)− p

]
= (n− k)`

[
p(p+ 1)(p− 1)

3
(2(n− 1)`+ 2)− p

]
∈ O(n2`2p3) = O

(
n2`2

(
w + `

`

)3
)

(4.26)

arithmetic operations in F to execute. 2

In the bivariate case (w = 1), the complexity bound of Proposition 4.6.8 becomes
O(n2`5), which is slightly worse than the bound of O(n2m`4) achieved in [24]. The
reason for this discrepancy is the basis G′ is not quite a natural extension of the basis
used by Lee and O’Sullivan in [24]. The basis they use in handling the bivariate case
is {(y1 − hr)iηm−i, yi

′−m
1 (y1 − hr)m | 0 ≤ i ≤ m,m < i′ ≤ `1}, which is equivalent to

the basis G in equation (4.5). So G is an extension of their basis, but recall that G
was not an echelon basis (Remark 4.6.2) and in general had more generators than G′.
So G′ reduced the size of our basis, but then the weighted degrees of the generators
grew to be larger than optimal. Fortunately, we can find an echelon basis to start
with that has the same number of generators as G′ and smaller weighted degrees like
G, so we get the best of both worlds. When we start with this basis instead of G′

the bound in the previous proposition can be reduced to O (n2m`(e(`+ w)/w)3w).
We obtain this basis by choosing some ρ′ ∈ Nw

0 for each ρ ∈ P such that ρ′t ≤ ρt for
1 ≤ t ≤ w and

∑w
t=1 ρ

′
t = min {m,

∑w
t=1 ρt} and defining ρ′0 = ρ0 = max{0,m− |ρ|}.

Then, as a corollary to Corollary 4.5.4 we can take for a basis of Ir,m,` the set

G′′ =

{
g′ρ := ηρ

′
0

w∏
t=1

[(yt − hσt−1(r))
ρ′ty

ρt−ρ′t
t

∣∣∣∣ ρ ∈ P
}
. (4.27)

Corollary 4.6.9 The set G′′ in equation (4.27) is an echelon basis of the F[x]-
submodule Ir,m,` ⊆ F[x,y]`.

Proof: For each ρ ∈ P , by our choice of ρ′ we may take g′ and g in equation (4.7)
to be gρ ∈ G′ and g′ρ ∈ G′′ ⊆ G, respectively. Then we see that g′ρ is an F[x]-linear
combination of generators gρ and generators of G with smaller y-degrees, which are
in turn linear combinations of generators in G′ (also, necessarily, having smaller y-
degrees than gρ and g′ρ) by Corollary 4.5.4. Since the coefficients of g and g′ in
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equation (4.7) are units, we may interchange them. Thus, swapping each g′ρ for gρ in
G′ yields a new basis for Ir,m,`. This new basis, G′′, is an echelon basis because G′ is
and the generators g′ρ and gρ have equal y-degrees, preserving the property. 2

At the beginning of the chapter, we introduced the basis G, which was convenient
for showing how the module Ir,m,` is generated. But G had too many generators, so
we found new basis G′ that reduced the size of G but at a price of replacing some
generators by polynomials with larger weighted degree. But now with G′′, we have
preserved the size of G′ and regained the smaller degrees of G. Corollary 4.6.9 showed
that G′′ is obtained from G′ of (4.6) by switching back each generator gρ with |ρ| > m
to a generator gρ′ from G of (4.5) with a unit coefficient in the basis expansion of
equation (4.7). Using the notation g′ρ =

∑
φ∈P a

′
ρφy

φ this generator has smaller

weighted degree than gρ so we will now have that at the start of the ith iteration of
step 3, the difference between the weighted degree of g′ρi and that of its target term
is

degk(lt(g′ρi))− degk(aρ′iρiy
ρi)

= degk(x(n−1)ρ′i,0

w∏
t=1

lt(yt − hσt(r))ρ
′
i,ty

ρt−ρ′t
t )− degk(x(n−1)ρ′i,0yρi)

≤ [(n− 1)ρ′i,0 + (n− 1)|ρ′i|+ (k − 1)(|ρi| − |ρ′i|)]− [(n− 1)ρ′i,0 + (k − 1)|ρi|]
= (n− k)|ρ′i|
≤ (n− k)m. (4.28)

It follows that there are at most (n− k)m(i− 1) iterations of the while loop during
the ith iteration of the for loop. The k-weighted degree of any generator g′ρ with
ρ ≺ ρi is at most (n−1)m+ (k−1)(|ρi|−m) and the y-degree is at most ρi through
the ith iteration of step 3. Therefore, the number of possible terms in g′ρ is∑

φ�ρi

[(n− 1)m+ (k − 1)(|ρi| −m− |φ|) + 1]

= i(n− 1)m+ i+ (k − 1)
∑
φ�ρi

(|ρi| −m− |φ|)

≤ i((n− 1)|ρi|+ 1) (4.29)

The number of arithmetic operations in F needed for each iteration of step 4 is hence
again no more than 2i((n − 1)|ρi| + 1) + 1. With these bounds on the number of
terms in each generator and the initial gap between the weighted degrees of the leading
term and target term of each generator, we get the following improved bound on the
complexity of the algorithm by doing, otherwise, the same analysis as for Proposition
4.6.8.

Proposition 4.6.10 Algorithm 4.6.3 requires O(n2m`3w+1e3w) arithmetic operations
in F to run given the basis G′′ of equation (4.27).
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Proof: Similar to the proof of Proposition 4.6.8, we have that the whole algorithm
takes no more than

p∑
i=2

(n− k)m(i− 1) · (2i((n− 1)|ρi|+ 1) + 1)

≤ (n− k)m

p∑
i=2

[i2(2(n− 1)`+ 2)− i(2(n− 1)`+ 2)− 1]

< (n− k)m

[
p(p+ 1)(2p+ 1)

6
(2(n− 1)`+ 2)− p(p+ 1)

2
(2(n− 1)`+ 2)− p

]
= (n− k)m

[
p(p+ 1)(p− 1)

3
(2(n− 1)`+ 2)− p

]
∈ O(n2m`p3) (4.30)

arithmetic operations in F. Eliminating p from equation (4.30), we get

O(n2m`p3) = O

(
n2m`

(
w + `

`

)3
)

= O(n2m`(e(`/w + 1))3w) ⊆ O(n2m`3w+1e3w)

using the fact that
(
w+`
w

)
≤
(
e(w+`)
w

)w
by Stirling’s approximation (see [7, eq. C.5]).

2

Remark 4.6.11 By Proposition 4.6.10, our Algorithm 4.6.3 can now be viewed as
an efficient generalization of Algorithm G in [24] to the multivariate case. In their
paper, Lee and O’Sullivan show that Algorithm G has a complexity of O(n2m`4)
multiplications in F, where n is the code length, m is the multiplicity requirement for
each interpolation point, and ` is the y-degree bound (there is only one y-variable in
their case) of the minimal polynomial of Ir,m ⊆ F[x, y]. Our algorithm reduces to
their algorithm in the case where w = 1, for then our complexity is just O(n2m`4)
like theirs and the basis G′′ we used is analogous the the basis Lee and O’Sullivan
described. The complexity of Algorithm 4.6.3 remains low when w = 1. However,
increasing the number of variables or folds in the code has the benefit of yielding a
family of codes whose error rates asymptotically achieve the capacity of the channel.
This benefit is computationally expensive but theoretically exciting.

4.7 Gröbner Basis-Based Multivariate List Decoding Algorithm

We now combine the Algorithms 4.6.3 and 4.4.4 to produce a more explicit formula-
tion of Algorithm 4.3.8 for list decoding FRSq(n, k, v,α).

Algorithm 4.7.1 (Gröbner Basis-Based Multivariate List Decoding)
Input: received word r = (r1, . . . , rn), error threshold τ ∈ N0 satisfying equation (4.2),
number of variables w + 1, and multiplicity value m
Output: list of codewords, Lτ,r ⊆ FRSq(n, k, v,α), within Hamming distance τ of r
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G1. Compute the weighted degree bound d =
⌊
w+1
√

(k − 1)wn(m+ w)w+1

⌋
+ 1

and the y-degree bound ` =
⌊

d
k−1

⌋
for Q,

and the number of generators of Ir,m,`, p =
(
w+`
w

)
.

G2. Enumerate {ρ1, . . . ,ρp} = {ρ ∈ Nw
0 | |ρ| ≤ `} =: P .

G3. For each ρ ∈ P ,

(a) if |ρ| ≤ m, compute gρ = ηρ0
∏w

j=1(yj − hσj−1(r))
ρj where ρ0 = m− |ρ|,

(b) if |ρ| > m, compute gρ = gρ′y
ρ−ρ′ where ρ′ is any ρ′ ∈ P such that |ρ′| = m

and ρ′i ≤ ρi for 1 ≤ i ≤ w.

G4. Set G = GröbnerBasis(w, `, {gρ1 , . . . , gρp}) (Algorithm 4.6.3).

G5. Let Q be the minimal element of G with respect to <k−1.

G6. Let L = φ be any empty list. Call FoldedRootFind(Q, k, 0, xq−1−α) (Algorithm
4.4.4) and for each polynomial f(x) that it returns, if dist(evα(f), r) ≤ τ , then
add the codeword evα(f) to L.

G7. Return the list L.

4.7.1 Final Complexity Analysis

Most of the complexity analysis for this algorithm has been done in Sections 2.3 and
4.6.2. For our analysis, we again only worry about operations in Fq. Step G1 is real
arithmetic so we do not need to worry about its cost. Step G2 also requires no field
operations. Step G3 requires some new analysis, but since step G4 will be the main
factor in complexity, we do not worry about cutting every corner to save operations
in G3.

We assess step G3 by first viewing the generators as polynomials in y1, . . . , yw
over F[x]; as such, none of the generators has more than T :=

(
m+w
w

)
terms. Start by

computing gρ1 = ηm. This can be done with less than m multiplications in F[x]. Next
we iteratively compute the other generators in G3(a) in order by ρ according to ≺k−1.
For |ρ| 6= 0, we find gρ by multiplying gρ′/η (note: η will divide gρ′ because |ρ′| < m)
by (yi − hσi−1(r)) where i ∈ [w] is such that ρi > 0 and letting ρ′ = ρ − ei (here
ei is the ith standard basis vector of Zw). This can be done with at most T apiece
of divisions, multiplications, and subtractions in F[x]. Since there are T generators
accounted for in G3(a) we need at most T 2 multiplications in F[x] to perform the
cumulative course of step G3(a). Step G3(b), on the other hand, can be conducted
by shifting the degrees of the generators computed in G3(a) appropriately and so
it requires no operations in F[x]. Since no monomial (in x, y1, . . . , yw) of the basis
we produce has x-degree larger than mn, the polynomials we operate on in F[x] can
be multiplied using O(mn log(mn) log log(mn)) multiplications in F ([38, Theorem
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8.23]). Divisions and subtractions in F[x] can be done with the same efficiency, so we
have that step G3 requires at most

O(mn log(mn) log log(mn)T 2) = O(nmw+1)

operations in Fq.
By Proposition 4.6.10, step G4 can be done usingO(n2m`3w+1e3w) field operations.

Step G5 requires no field operations. In G6, the y-degree of R is at most `qw−1

and its x degree is no more than mn. Therefore, by Proposition 2.3.12, the call to
FoldedRootFind will require no more than O(k3`3q3w−3) field operations if w > 1
and if w = 1 then it will take only O(nm`2) by Corollary 2.3.8. We know that
FoldedRootFind returns no more than O(`qw−1) folded roots of Q so using the fast
multi-point evaluation of [38, Algorithm 10.7], the second part of G6 can be done
using O(`qw−1n log n log log n) operations in Fq.

Combining the complexity bounds for each of the steps in Algorithm 4.7.1 yields
the following theorem.

Theorem 4.7.2 Let C be the folded Reed-Solomon code FRSq(n, k, v,α). Then for
any r ∈ Fnq and any m,w ∈ N, Algorithm 4.7.1 outputs the list of codewords in C

within Hamming distance τ of r for τ ≤ n
v
−
⌊

n
v−w+1

w+1

√
(k−1)w(m+w)w

mwnw

⌋
− 2 as long

as the degyi(Q) < q for 1 ≤ i ≤ w for the polynomial Q produced by step G5, which

holds if w+m < q−1/(k−1)
w+1
√
n/(k−1)

. The number of operations in Fq needed by the algorithm

is
O(n2m`3w+1e3w + (k`qw−1)3). (4.31)

Proof: The complexity of Algorithm 4.7.1 follows from the preceding analysis. That
the algorithm works correctly (when the specified conditions are met) follows from
Proposition 4.3.7 and Corollary 4.4.3 and the proofs of correctness for Algorithms
4.3.8, 4.6.3, and 4.4.4. That degyi(Q) < q for 1 ≤ i ≤ w when w + m < q−1/(k−1)

w+1
√
n/(k−1)

follows because

degyi(Q) ≤ `

≤
w+1
√

(k − 1)wn(m+ w)w+1 + 1

k − 1

≤ w+1

√
(k − 1)wn

(k − 1)w+1
· (m+ w)m+1 + 1/(k − 1)

≤ w+1

√
n

k − 1
· (m+ w) + 1/(k − 1)

< w+1

√
n

k − 1
· q − 1/(k − 1)

w+1
√
n/(k − 1)

+ 1/(k − 1)

= q.

2
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Remark 4.7.3 If the complexity of the call to FoldedRootFind in step G6 could be
better bounded, then the complexity of Algorithm 4.7.1 can be simplified to
O(n2m`3w+1e3w), which is the asymptotic cost of the interpolation step. It seems
likely that this is possible, as in practice the run-time of the root-finding step always
seems to be far less than that of the interpolation step.

Remark 4.7.4 (Berlekamp-Massey Algorithm Comparison) In [24], Lee and
O’Sullivan showed that their bivariate Gröbner basis-based interpolation algorithm is
equivalent to the Berlekamp-Massey algorithm in the case where the multiplicities m
and the list-size bound ` are both set to 1. Our multivariate interpolation algorithm
reduces exactly to the Lee-O’Sullivan algorithm in the bivariate case (where there is
no real folding and only one y-variable). In that case (m = ` = v = w = 1), the com-
plexity of our algorithm is just O(n2). This on par with standard implementations of
the Berlekamp-Massey for minimum distance decoding (which is what our list decoder
does in the case ` = 1).

Copyright c© Philip Busse, 2008.
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Chapter 5
Conclusion

5.1 Results

Our goals, to reiterate, were to illuminate and deepen the recent results on list de-
coding methods for Reed-Solomon codes and their derivatives in terms of both the
theoretical and practical aspects of these methods.

We established the necessary background on error-correcting codes, Gröbner basis
techniques for modules, and polynomial root-finding methods in Chapter 2. Most of
these results were already known and well-established, with the exception of the
modular bivariate root-finding algorithm, Algorithm 2.3.10. It was very similar to
the ordinary bivariate root-finding algorithm, but it required some care to ensure that
the recursively defined polynomials were congruent to zero on the appropriate part
of the y-root we were seeking but that they were not uniformly zero.

In Chapter 3, we examined some of the bounds on list decoding, notably the
matching upper and lower bounds for the asymptotic error rates attainable in error-
correcting codes with polynomial length lists, and expounded on the progression of
list decoding from Sudan’s pioneering two-step algorithm to the Guruswami-Sudan
algorithm which still yields the best known error rates for bivariate interpolation-
based list decoding. We took care to closely examine the asymptotic error rate of
Sudan’s original algorithm and observed that for rates κ < 1

2
, it actually achieves

error rates of approximately 1 −
√

2κ + κ/2, which is better than the commonly
stated error rate of 1−

√
2κ for the algorithm (but still not as good as the error rate

of 1−
√
κ achieved by the more general Guruswami-Sudan algorithm).

Finally, in Chapter 4, we extended the Gröbner basis-based interpolation algo-
rithm of Lee and O’Sullivan to many variables and from this produced an explicit
implementation of the algorithm suggested by Guruswami and Rudra for multivariate
list decoding of capacity achieving folded Reed-Solomon codes. The main challenges
in solving this lay in determining an initial echelon basis of the submodule Ir,m,`
that could be efficiently managed to produce the Gröbner basis and bounding the
complexity of the Gröbner basis algorithm. As a result of the complexity analysis of
this algorithm, we achieve a bound of O((Nv)2m(m+ w)(N/K)3(e(m+ w))3w) field
operations for the interpolation step in w-variable list decoding the v-folded Reed-
Solomon Code of length N and dimension K up to multiplicity m. This bound is the
lowest known for decoding these capacity achieving codes.

An actual implementation of this algorithm for SINGULAR is provided in Ap-
pendix 5.3. The code is intended to be clear and concise so that anyone who reads
this dissertation and has a little programming knowledge can experiment with the
program. It requires simply cutting and pasting to run in SINGULAR, but docu-
mentation is provided to try to expedite the process of porting the program should
someone desire to test it in another computer algebra environment.
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5.2 Loose Ends

There are no loose ends. That is what we would like to be able to say someday, but
today that is far from the truth. The diligent reader has probably already observed
several unanswered questions and it is doubtless that there have been missed oppor-
tunities for new theorems. In the course of time perhaps all of these shall be cleared
up. For now, here is a list of some of the issues, important or otherwise, that we feel
should be addressed.

• The size of the output list from the folded root-finding step is so far bounded
only by the y-degree of R, which is at most `qw−1. Trials of the algorithm
suggest that the number is actually at most `, but establishing a proof of this
or any other better bound is not a task that we have thoroughly pursued yet.
It would be nice to have a better handle on this component because then the
complexity of the Algorithm 4.7.1 could be reduced to O(n2m`3w+1e3w), which
is the complexity of the interpolation step. Indeed, in practice it seems clear
that the main loop of the interpolation step is the bottleneck and the complexity
of O(`qw−1n log n log log n)) from the folded root-finding step should be possible
to be done away with.

• The actual complexity of computing a Gröbner basis of Ir,m is still not under-
stood. However, SINGULAR’s built-in Gröbner basis finding routine performs
significantly faster at finding a Gröbner basis of Ir,m as an F[x,y]-ideal than
the implementation of Algorithm 4.7.1 does at finding a Gröbner basis of Ir,m,`
as an F[x]-submodule. One reason for this could be that the authors of SINGU-
LAR are better attuned to the functionality of their software and can therefore
achieve faster performance than we can even though the task their function
is performing may have equal or greater complexity. However, in comparison
tests (on small codes) of these two methods, the number of generators of the
Gröbner basis of Ir,m was always less than (but not less than half) the number
of generators in the basis of Ir,m,`. This indicates that a deeper investigation
into the problem of just finding a Gröbner basis of Ir,m may be quite fruitful.

• A basis reduction algorithm proposed by Koetter and Vardy in the context of
algebraic soft-decision decoding of Reed-Solomon codes was recently adapted
by Kwankyu Lee to his and O’Sullivan’s Gröbner basis based interpolation
algorithm. The algorithm works by selecting a handful of the interpolation
points, interpolating small degree polynomials through these, and then using
combinations of those polynomials as a basis {ei} of a supermodule of Ir,m,`
to express the initial generating set of Ir,m,` from which to compute a Gröbner
basis. The coefficients (polynomials in x) of the initial generating set will be
smaller than they are in our method (we essentially use the standard basis
{ei = yρi} of F[x,y]` to represent the generators), but then there is the added
cost of computing the basis {ei} in the first place and the cost of converting
the minimal element of the computed Gröbner basis back to its corresponding
form as a polynomial in F[x,y] so that its roots can be found. Lee reported
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a substantial cutback in the number of field multiplications required by the
algorithm using this reduced-basis technique but it has not been shown that
the technique actually produces any asymptotic complexity gains.1 Still, it
would be interesting to see if there is anything to be gained in the multivariate
extension of it (to our knowledge, it has so far only been implemented for the
bivariate interpolation algorithm).

• The probability of error for the multivariate list decoding algorithm, Algorithm
4.3.8, which is the probability that a received word has no codeword within
the multivariate list decoding radius (given by Proposition 4.3.7) should be
closely analyzed and compared to the probability of error for classical minimum
distance decoders, which is (generally) the probability that a received word has
no codeword within distance

⌊
d−1
2

⌋
. Each of these probabilities can be upper

bounded by taking into account that a sphere of radius
⌊
d−1
2

⌋
in Fnq about a

point contains close to qnHq(τ/n) vectors (Corollary 3.2.3), multiplying this by
the size of the code (qk), and subtracting the result from qn = |Fnq | to see
how many vectors could conceivably be outside the decoding radius of every
codeword. However, this bound does not take into account the structure of
Reed-Solomon codes, nor does it consider that the distance between words in a
v-folded code is determined by the number of blocks of size v that the two words
differ on. Also, one must bear in mind that the definition of a decoding error is
different in list decoding than in minimum distance decoding. To be consistent,
one should redefine a decoding error in list decoding as an instance where there
is not a unique closest codeword to the received word in the list returned. This
makes the counting task even more difficult, but it is an important question
that should be analyzed fully at some point.

• It seems likely that the process of ‘folding’ Reed-Solomon codes can be done for
any RS code and not just those whose code locators are defined as (α1, . . . , αn)
for some primitive α ∈ Fq. Adapting the multivariate list decoding algorithm
to this purpose will require care, though, as the codewords corresponding to
successive polynomials in the folded roots of the interpolation polynomial will
no longer be cyclic shifts of each other, but they will still be some permutation
of the same fixed set of coordinates. For this to be so, however, it is still
necessary that n = q − 1, otherwise if n < q − 1 the codewords may have
different coordinate values (regardless of order). There may still be a way
to properly formulate the multivariate list decoding problem for RS codes with
n < q−1. Also, it would be nice to modify the folding process to GRS codes and
create a multivariate list decoding algorithm for these and, consequently, folded
alternant (and BCH) codes. All these tasks seem possible if done carefully,
but the process of generalizing the multivariate list decoding algorithm to GRS
codes will not be quite as simple as generalizing the bivariate list decoding

1An implementation of the basis reduction algorithm was tested by the author but it turned out
to be much slower than the normal version of the algorithm that is presented herein.
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algorithm because of the dependency in the multivariate case on the consecutive
code evaluators being fixed multiples of each other.

5.3 Final Thoughts

We have already covered both what was done in this dissertation and what was left
undone. The primary result of the project is that we have an efficient implementation
of the multivariate list decoding algorithm and we know a specific upper bound on
the complexity of this implementation. The algorithm we give is interesting because
it takes an algebraic-geometry approach to the interpolation problem by finding the
minimal polynomial of a certain ideal, yet it generalizes the classical Berlekamp-
Massey algorithm, which (in its conventional form) takes a purely algebraic approach
to finding the minimal polynomial of a linearly recurrent sequence. The goal in future
work will be to find a faster implementation of the multivariate list decoding algorithm
that improves upon our complexity bound. In the end, it is hoped that multivariate
interpolation will yield practical list decoding algorithms that significantly improve
the decoding radius of present block coding schemes. Our algorithm is a step forward
along the path to this goal.

Copyright c© Philip Busse, 2008.
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Appendix: Source Code

The following source code is an implementation of Algorithm 4.7.1 for the SINGULAR
Computer Algebra System. It was tested in SINGULAR release version 3-0-4 and run
on both the UNIX-based T-machines of the University of Kentucky’s Mathematical
Sciences computing facilities and in Windows Vista on a personal computer through
the Cygwin terminal with similar results in both settings. The performance is fast for
the bivariate interpolation problem: list decoding a length 256 Reed-Solomon code
takes typically on the order of ten to twenty seconds. Raising the number of variables,
however, greatly reduces the efficiency of the algorithm. Even in only three variables,
list decoding a word in a length 10, twice-folded Reed-Solomon code can take nearly
10 minutes. The implementation is fairly robust. There are several libraries included
that the main program relies upon. There is also an example of an execution given
for those to follow who would like to test it themselves. The code is documented so
hopefully, with the aid of the content of this dissertation, it will be useful and easy
to follow for those who will venture to try it out.

SINGULAR Multivariate FRS List Decoding Implementation

This is the main list decoding program. It relies on three homemade libraries, FastIn-
terpolation.lib, RootDigger, and UsefulProcs.lib, the source code for which is provided
in the Section 5.3 of this appendix. These libraries should be saved to a directory in
SINGULAR’s SearchPath in order for the problem to function correctly. The pro-
gram also uses the standard SINGULAR library inout.lib to display a counter during
the execution of the main loop. To run the program, you can simply copy the entire
file and paste it into the SINGULAR console. It will output a list of polynomials
at the end that correspond to the codewords near the ‘received’ word it randomly
generates (it does not check the distance of the words it finds to the received one so it
may return ones further away than sought). The parameters of the code are specified
at the beginning of the program. One should be able to easily modify the program to
decode any folded Reed-Solomon code (although complexity becomes an issue even
for moderately sized codes).

//--- LIBRARY FILES ------------------------------------------------------------//
// These library files below should be stored within a directory in the SINGULAR
// SearchPath (or their path names may be given explicitly as an alternative).
//------------------------------------------------------------------------------//
LIB "FastInterpolation.lib";
LIB "RootFinder.lib";
LIB "inout.lib"; // used mainly for debugging
LIB "UsefulProcs.lib";
//------------------------------------------------------------------------------//

//--- PARAMETERS ---------------------------------------------------------------//
// The first set of parameters are defined by the user. The second set should be
// computed according to the first set (use Maple or something to do that).
//------------------------------------------------------------------------------//
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// USER-DEFINED PARAMETERS
int q=11; // base field size (of the Alternant Code)
int S=1; // degree of the field extension
int qs=q^S; // extension field size (of the GRS Code)
int b=1; // b=1 unless code is not a narrow sense BCH Code
int n=10; // length of the GRS code
int k=2; // dimension of the GRS code
int v=2; // fold number
int w=2; // number of y variables (doesn’t include x)
int m=2; // multiplicity number

// COMPUTED PARAMETERS (params D, tau, & l can be found with "maple worksheet"
int L=1-b; // multiplier exponent factor for wide-sense BCH codes
int N=n/v; // Length of the Folded GRS Code
int K=k/v; // Dimension of the Folded GRS Code
int D=10; // degree bound on the minimal polynomial of the ideal Irm
int tau=1; // error threshold bound
int l=10; // bound on y-degree of minimal polynomial
int p=binom(w+l,w); // # of monomials in y-degree < l (also, # of gens of Irml)

// MISCELLANEOUS VARIABLES
int d; int s; int t; int i; int j; int P; int bc; int bP;

// DEGREE WEIGHT VECTORS
// k-weight: 1,k-1,...,k-1
// y-degree vector: 0,1,...,1
// x-degree vector: 1,0,...,0
intvec kdeg=1; intvec ydeg=0; intvec xdeg=1;
for(i=1; i<=w; i++) { kdeg=k-1,kdeg; ydeg=1,ydeg; xdeg=1,xdeg; }

// RING DECLARATION
// the order is weighted reverse-lexicographic (with x at end of the alphabet)
ring R1=qs, (y(1..w),x), wp(kdeg); poly a=2; // a=primitive element of GF(qs)
poly h=x^(q-1)-a; // irreducible polynomial used for folded root-finding
ideal H=std(h); // standard basis of the ideal (h(x)) to mod out by h(x) later

// DEFINING A AND V FOR THE CODE GRS(A,V)
poly B=a^1;
vector A=0;
vector V=0;
for (i=1; i<=n; i++)
{
A=A+B^(i-1)*gen(i);
V=V+1/(B^(-L*(i-1)))*gen(i);

}

// OTHER MISCELLANEOUS VARIABLES
intvec lexp_gs; intvec lexp_gt;
list yroots; list yreval;
poly c; poly g_st; poly g_tt; poly Q; poly R;
vector g; poly hc; vector cw; vector e; vector r; vector ylist;

timer=1; // The time of each command is printed (if > 1 sec)
int time=timer; // initialize time by timer
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// COMPUTE POWERS OF eta=(x-A[1])*...*(x-A[n])
poly eta=1; for (i=1; i<=n; i++) { eta=eta*(x-A[i]); }
poly eta(0)=1; for(i=1; i<=m; i++) { poly eta(i)=eta(i-1)*eta; }
time=timer-time; time; // yields the time in ticks-per-sec (default 1)

// ENUMERATE THE INDICES OF THE GENERATORS (ordered by y-degree)
intvec rho(0)=0;
for(i=1;i<=w;i++){ intvec rho(i)=1; }
for(i=1;i<w;i++){ for(j=0;j<=w;j++)
{
if(i>=j) {rho(j)=0,rho(j);} else {rho(j)=rho(j),0;}}

}
P=w;
for(j=1; j<l; j++)
{
for(i=1; i<=w; i++)
{

bc=binom(w-i+j,j);
bP=binom(w+j,j)-bc-1;
for(t=1; t<=bc; t++) { intvec rho(P+t)=rho(bP+t) + rho(i); }
P=P+bc;

}
}
// ADD ETA POWER TO LAST POSITION OF rho(i)
for(j=0; j<p; j++){ rho(j)=rho(j), max(0,m-norm(rho(j))); }
//------------------------------------------------------------------------------//

//--- GENERATING A RANDOM CODEWORD TO FUDGE AND DECODE -------------------------//
hc=0; // initialize message polynomial
cw=0; // initialize corresponding codeword
e=0; // initialize error vector
for (i=1; i<=8; i++) { // make msg polynomial have ~8 terms
hc=hc+a^random(0,n)*x^random(0,k-1); // hc = msg polynomial (deg < k)

}
for (i=1; i<=n; i++) {
cw=cw+subst(hc, x, A[i])*gen(i); // pretend codeword cw~msg poly hc is sent

}
for (i=1; i<=tau; i++) { // tau~=number of errors
e=e+a^random(0,n)*gen(random(0,n)); // error vector e added to cw during send

}
r=cw+e; // r is our pretend received word
//------------------------------------------------------------------------------//

//--- BUILDING A BASIS FOR Irml ------------------------------------------------//
// COMPUTE hr(j)=h_{sigma^{j-1}(r)}’s
for(j=1; j<=w; j++)
{
ylist=0;
// the list of y-coords of the points is r shifted left j-1 times...
for(i=1; i<=n; i++) { ylist=ylist + r[(i+j-2)%n+1]/V[(i+j-2)%n+1]*gen(i); }
poly hr(j)=Interpolate(n, A, ylist);
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}

// COMPUTE THE POWERS OF (y(j)-hr(j))^i
for(j=1; j<=w; j++)
{
poly y_hr(j)(0)=1;
for(i=1; i<=l; i++)
{

poly y_hr(j)(i)=y_hr(j)(i-1)*(y(j)-hr(j));
}

}

// COMPUTE THE INITIAL GENERATING SET OF SUBMODULE Irml
g=0; // initialize basis
for (j=0; j<p; j++)
{
c=1; for(i=1; i<=w; i++) { c=c*y_hr(i)(rho(j)[i]); } c=c*eta(rho(j)[w+1]);
g=g+c*gen(j+1);

}
//------------------------------------------------------------------------------//

//--- MAIN LOOP ----------------------------------------------------------------//
// Computes a Groebner basis from the initial basis a la Algorithm 4.5.8
//------------------------------------------------------------------------------//

time=timer;
for (s=2; s<=p; s++)
{
printf(" s=%s.", s); // display progress (iteration #) during loop
lexp_gs=leadexp(g[s]);
// find which rho(t) matches g(s)’s leading exponent...
t=1; while(rho(t-1)[1..w] <> lexp_gs[1..w]) { t++; }
while (t!=s)
{
lexp_gt=leadexp(g[t]);
d=lexp_gs[w+1]-lexp_gt[w+1];
c=leadcoef(g[s])/leadcoef(g[t]);
if (d>=0)
{
g=g-c*x^d*g[t]*gen(s);

}
else
{
g=g+(g[s]-g[t])*gen(t) + (x^(-d)*g[s]-c*g[t]-g[s])*gen(s);

}
lexp_gs=leadexp(g[s]);
t=1; while(rho(t-1)[1..w] <> lexp_gs[1..w]) { t++; }

}
}
time=timer-time; time; // compute time elapsed during for loop

//------------------------------------------------------------------------------//
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//--- FINDING THE FOLDED ROOTS -------------------------------------------------//
// Basically like Algorithm 4.4.4
//------------------------------------------------------------------------------//
// FIND THE MINIMAL POLYNOMIAL Q OF THE GROEBNER BASIS
i=1;
for (j=2; j<=l+1; j++) { if (g[j] < g[i]) { i=j; } }
Q=g[i];

// COMPUTE R WHOSE y-ROOTS ARE THE FOLDED ROOTS OF Q
R=Q;
for(j=2; j<=w; j++) { R=subst(R, y(j), y(1)^(q^(j-1))); }
time=timer;
yroots=RootDig(R, k, h, x, y(1)); // Call to Algorithm 2.3.3
time=timer-time; time;
print(yroots);

// CONVERT LIST OF VECTORS FROM RootDig TO CORRESPONDING POLYNOMIALS AND CODEWORDS
d=size(yroots);
yreval=list();
for (i=1; i<=d; i++) {
c=0;
for (j=1; j<=k; j++) { c=c+yroots[i][j]*x^(j-1); }
yroots=delete(yroots, i);
yroots=insert(yroots, c);
yreval=insert(yreval,evalfc);

}
print(yroots);
//print(yreval); // print the codewords if desired, but output may be long
//--- THE END! -----------------------------------------------------------------//

Sample Execution

Here is a sample execution of the list decoding program. The code is the folded
Reed-Solomon code F11(10, 2, 2(2, 4, 8, 5, 10, 9, 7, 3, 6, 1)) (we use α ≡11 2 here). In-
terpolation is done in 3 variables (x, y1, y2) with an error vector of weight only 1.
The actual bound on the number of errors our algorithm can correct in this set-
ting is 0 by Proposition 4.3.7 but it actual does correct the error showing that the
bound we give is not tight (which is good - we can do better than expected), at
least on small codes. The message polynomial ‘sent’ in this example was −2x and
two polynomials were recovered: the actual one, −2x, corresponding to the codeword
[−2,−4, 3,−5, 1, 2, 4,−3, 5,−1], and −4x− 2, which corresponds to
[5, 1, 4,−1, 0, 2,−5, 3,−3,−4]. The later is nowhere close to the received word r =
[−2,−4, 3,−5, 0, 2, 4,−3, 5,−1], but it is a folded root of the minimal polynomial
Q = y1y

2
2 + y1y2x+ 2y2

2x− y1x
2 + 2y2x

2 − 2x3 + 2y1y2 − 3y1x+ 4y2x+ 5x2.

SINGULAR /
A Computer Algebra System for Polynomial Computations / version 3-0-4

0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007

FB Mathematik der Universitaet, D-67653 Kaiserslautern \
> // --- LIBRARY FILES --------------------------------------------------------
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//
. // These library files below should be stored within a directory in the SINGU
LAR SearchPath (or their path names may be given, alternatively)
. // --------------------------------------------------------------------------
//
. LIB "FastInterpolation.lib";
// ** loaded FastInterpolation.lib (1.10,2001/01/16)
> LIB "RootDigger2.lib";
// ** loaded RootDigger2.lib (3.0.2,2007/08/24)
> LIB "inout.lib"; // used mainly for debugging
// ** loaded /usr/share/Singular/LIB/inout.lib (1.28,2006/07/20)
> LIB "usefulprocs.lib";
// ** loaded usefulprocs.lib (1.28,2006/07/20)
// ** library usefulprocs.lib has old format. This format is still accepted,
// ** but for functionality you may wish to change to the new
// ** format. Please refer to the manual for further information.
> // --------------------------------------------------------------------------
//
.
.
. // --- PARAMETERS -----------------------------------------------------------
//
. // The first set of parameters are user defined. The second set should be co
mputed according to the first set (I use Maple for them).
. // --------------------------------------------------------------------------
//
. // USER-DEFINED PARAMETERS
. int q=11; // base field size (of the Alternant Code)
> int S=1; // degree of the field extension
> int qs=q^S; // extension field size (of the GRS Code)
> int b=1; // b=1 unless code is not a narrow sense BCH Code
> int n=10; // length of the GRS code
> int k=2; // dimension of the GRS code
> int v=2; // fold number
> int w=2; // number of y variables (doesn’t include x)
> int m=2; // multiplicity number
>
. // COMPUTED PARAMETERS (ones that aren’t computed here can be found using the
Maple program "Calc LD Parameters.mw"

. int L=1-b; // defining parameter for multiplier of non-narrow sens
e BCH Codes
> int N=n/v; // Length of the Folded GRS Code
> int K=k/v; // Dimension of the Folded GRS Code
> int D=10; // degree bound on the minimal polynomial of the ideal
Irm
> int tau=1; // error threshold bound
> int l=10; // bound on y-degree of minimal polynomial
> int p=binom(w+l,w); // # of monomials in y vars of degree < l (also, # of g
enerators of submodule Irml)
>
. // MISCELLANEOUS VARIABLES
. int d; int s; int t; int i; int j; int P; int bc; int bP;
>
. // DEGREE WEIGHT VECTORS
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. // k-weight: 1,k-1,...,k-1

. // y-degree vector: 0,1,...,1

. // x-degree vector: 1,0,...,0

. intvec kdeg=1; intvec ydeg=0; intvec xdeg=1;
> for(i=1; i<=w; i++) { kdeg=k-1,kdeg; ydeg=1,ydeg; xdeg=1,xdeg; }
>
. // RING DECLARATION
. // the monomial order is weighted reverse-lexicographic (with x at the end of
the alphabet)

. ring R1=qs, (y(1..w),x), wp(kdeg); poly a=2; // (a is a primitive element o
f the field GF(qs))
> poly h=x^(q-1)-a; // irreducible polynomial used for folded root-finding
> ideal H=std(h); // computes a standard basis of the ideal (h(x)) so we can
mod out by h(x) later

>
. // DEFINING A AND V FOR THE CODE GRS(A,V)
. poly B=a^1;
> vector A=0;
> vector V=0;
> for (i=1; i<=n; i++)
. {
. A=A+B^(i-1)*gen(i);
. V=V+1/(B^(-L*(i-1)))*gen(i);
. }
>
. // OTHER MISCELLANEOUS VARIABLES
. intvec lexp_gs; intvec lexp_gt;
> list yroots; list yreval;
> poly c; poly g_st; poly g_tt; poly Q; poly R;
> vector g; poly hc; vector cw; vector e; vector r; vector ylist;
>
. timer=1; // The time of each command is printed (if > 1 sec)
//used time: 0.58 sec
> int time=timer; // initialize time by timer
>
. // COMPUTE POWERS OF eta=(x-A[1])*...*(x-A[n])
. poly eta=1; for (i=1; i<=n; i++) { eta=eta*(x-A[i]); }
> poly eta(0)=1; for(i=1; i<=m; i++) { poly eta(i)=eta(i-1)*eta; } // precomp
ute the powers of eta;
> time=timer-time; time; // yields the time in ticks-per-sec (default 1)
0
>
. // ENUMERATE THE INDICES OF THE GENERATORS (ordered by y-degree)
. intvec rho(0)=0;
> for(i=1;i<=w;i++){ intvec rho(i)=1; }
> for(i=1;i<w;i++){ for(j=0;j<=w;j++){ if(i>=j) {rho(j)=0,rho(j);} else {rho(j)
=rho(j),0;} } }
> P=w;
> for(j=1; j<l; j++)
. {
. for(i=1; i<=w; i++)
. {
. bc=binom(w-i+j,j);
. bP=binom(w+j,j)-bc-1;
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. for(t=1; t<=bc; t++) { intvec rho(P+t)=rho(bP+t) + rho(i); }

. P=P+bc;

. }

. }
> // ADD ETA POWER TO LAST POSITION OF rho(i)
. for(j=0; j<p; j++){ rho(j)=rho(j), max(0,m-norm(rho(j))); }
> //---------------------------------------------------------------------------
//
.
.
. //--- GENERATING A RANDOM CODEWORD TO FUDGE AND DECODE ----------------------
//
. hc=0; // initialize message polynomial
> cw=0; // initialize corresponding codeword
> e=0; // initialize error vector
> for (i=1; i<=8; i++) { // make msg polynomial have ~8 terms
. hc=hc+a^random(0,n)*x^random(0,k-1); // hc = msg polynomial (deg < k)
. }
> for (i=1; i<=n; i++) {
. cw=cw+subst(hc, x, A[i])*gen(i); // pretend we’re sending the codeword
cw generated by hc.

. }
> for (i=1; i<=tau; i++) { // tau~=number of errors
. e=e+a^random(0,n)*gen(random(0,n)); // an error vector e is added to cw d
uring the transmission.
. }
> r=cw+e; // r is our pretend received word.
> //---------------------------------------------------------------------------
//
.
.
. //--- BUILDING A BASIS FOR Irml ---------------------------------------------
//
. // COMPUTE hr(j)=h_{sigma^{j-1}(r)}’s
. for(j=1; j<=w; j++)
. {
. ylist=0;
. for(i=1; i<=n; i++) { ylist=ylist + r[(i+j-2)%n+1]/V[(i+j-2)%n+1]*gen(i);
} // list of y-coords of the points is r shifted left j-1 tmies.

. poly hr(j)=Interpolate(n, A, ylist);

. }
// ** redefining FIsubproducttreeM
// ** redefining FIindepvaluesu
// ** redefining FIcombinecoeffsc
>
. // COMPUTE THE POWERS OF (y(j)-hr(j))^i
. for(j=1; j<=w; j++)
. {
. poly y_hr(j)(0)=1;
. for(i=1; i<=l; i++)
. {
. poly y_hr(j)(i)=y_hr(j)(i-1)*(y(j)-hr(j));
. }
. }
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>
. // COMPUTE THE INITIAL GENERATING SET OF SUBMODULE Irml
. g=0; // initialize basis
> for (j=0; j<p; j++)
. {
. c=1; for(i=1; i<=w; i++) { c=c*y_hr(i)(rho(j)[i]); } c=c*eta(rho(j)[w+1
]);
. g=g+c*gen(j+1);
. }
> //---------------------------------------------------------------------------
//
.
.
. //--- MAIN LOOP -------------------------------------------------------------
//
. // Computes a Groebner basis from the initial basis a la Algorithm 4.5.8
. //---------------------------------------------------------------------------
//
.
. time=timer;
> for (s=2; s<=p; s++)
. {
. printf(" s=%s.", s); // display progress (iteration #) during loop
. lexp_gs=leadexp(g[s]);
. t=1; while(rho(t-1)[1..w] <> lexp_gs[1..w]) { t++; } // find which rho(
t) matches g(s)’s leading exponent
. while (t!=s)
. {
. lexp_gt=leadexp(g[t]);
. d=lexp_gs[w+1]-lexp_gt[w+1];
. c=leadcoef(g[s])/leadcoef(g[t]);
. if (d>=0)
. {
. g=g-c*x^d*g[t]*gen(s);
. }
. else
. {
. g=g+(g[s]-g[t])*gen(t) + (x^(-d)*g[s]-c*g[t]-g[s])*gen(s);
. }
. lexp_gs=leadexp(g[s]);
. t=1; while(rho(t-1)[1..w] <> lexp_gs[1..w]) { t++; }
. }
. }
> time=timer-time; time; // compute time elapsed during for loop
431
>
. //---------------------------------------------------------------------------
//
.
.
.
. //--- FINDING THE FOLDED ROOTS ----------------------------------------------
---//
. // Basically like Algorithm 4.4.4
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. //---------------------------------------------------------------------------
//
. // FIND THE MINIMAL POLYNOMIAL Q OF THE GROEBNER BASIS
. i=1;
> for (j=2; j<=l+1; j++) { if (g[j] < g[i]) { i=j; } }
> Q=g[i];
>
. // COMPUTE R WHOSE y-ROOTS ARE THE FOLDED ROOTS OF Q
. R=Q;
> for(j=2; j<=w; j++) { R=subst(R, y(j), y(1)^(q^(j-1))); }
> time=timer;
> yroots=RootDig(R, k, h, x, y(1)); // Call to Algorithm 2.3.3
> time=timer-time; time;
0
> print(yroots);
[1]:

-4*gen(2)-2*gen(1)
[2]:

-gen(2)-3*gen(1)
>
. // CONVERT LIST OF VECTORS FROM RootDig TO CORRESPONDING POLYNOMIALS AND CODE
WORDS
. d=size(yroots);
> yreval=list();
> for (i=1; i<=d; i++) {
. c=0;
. for (j=1; j<=k; j++) { c=c+yroots[i][j]*x^(j-1); }
. yroots=delete(yroots, i);
. yroots=insert(yroots, c);
. yreval=insert(yreval,evalfc);
. }
> print(yroots);
[1]:

-2*x
[2]:

-4*x-2
> //print(yreval); // print the codewords if desired, but output may be long
.
.
. //--- THE END! --------------------------------------------------------------
//
.
. hc;
-2*x
> print(evalf(-2*x));
[-2,-4,3,-5,1,2,4,-3,5,-1]
> print(evalf(-4*x-2));
[5,1,4,-1,0,2,-5,3,-3,-4]
> print(cw);
[-2,-4,3,-5,1,2,4,-3,5,-1]
> print(e);
[0,0,0,0,-1]
> print(r);
[-2,-4,3,-5,0,2,4,-3,5,-1]
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> Q;
y(1)*y(2)^2+y(1)*y(2)*x+2*y(2)^2*x-y(1)*x^2+2*y(2)*x^2-2*x^3+2*y(1)*y(2)-3*y(1)*
x+4*y(2)*x+5*x^2
> subst(subst(Q,y(2),-4*a*x-2),y(1),-4x-2);
0
> subst(subst(Q,y(2),-2*a*x),y(1),-2x);
0
>

Maple Worksheet

This short Maple worksheet is a useful tool for computing the parameters D, tau, and
l used in the SINGULAR list decoding program. These particular parameters are
difficult to calculate in SINGULAR because it does not have a square root function,
nor does it do real arithmetic unless you set R as the ground field of your polyno-
mial ring (which I do not care to do). The first command (or list of such) sets the
user-defined parameters of the algorithm. The second command computes the other
parameters from those. The third command is helpful for finding a primitive element
of the field GF (qs) to define your code.

> # User-defined parameters (same as in the SINGULAR program)
> q := 11; qs := 11; b := 1; n := 10; k := 2; v := 2; w := 2; m := 2;
> # Computed parameters for SINGULAR program (the values of d (D in SINGULAR),
tau, and l, must be manually set).

> N := n/v; K:=k/v;
d := floor(((k-1)^w*n*(product(m+w-j, j = 0 .. w)))^(1/(w+1)))+1;
tau:=N-floor(N*v*(((k-1)/n)^w*(product(m+w-j,j=0 .. w)))^(1/(w+1))/m(v-w+1))-2;
l := floor(d/(k-1)); p1 := binomial(m+w, m); p2 := binomial(w+l, l);

> # Thus is a useful routine for finding a primitive element of Z mod qs.
> # Just pick numbers for a until all qs-1 of the numbers output are distinct.
> a := 2; for i to qs-1 do print(‘mod‘(a^i, qs)) end do;

Custom Singular Libraries

FastInterpolation.lib

This library contains a function for performing multi-point based fast univariate in-
terpolation, as described in [38, Ch. 10]. The procedure Interpolate is called
in the main list decoding program to compute the polynomials hσj(r) interpolating
σj(r)i = ri+j for each of the n code locators αi. This library also has a useful multi-
point evaluation procedure Multeval which is used within the Interpolate function
but not used otherwise in the present version of the list decoding program.

////////////////////////////////////////////////////////////////////////////////
// version string automatically expanded by CVS
version="$Id: template.lib,v 1.10 2001/01/16 13:48:46 Singular Exp $";
category="Miscellaneous";
// summary description of the library
info="
LIBRARY: FastInterpolation.lib Implementation of fast interpolation algorithm
AUTHOR: Philip Busse, email: pbusse@ms.uky.edu
SEE ALSO: standard_lib, Guidelines for writing a library,

Typesetting of help strings
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KEYWORDS: library, FastInterpolation; FastInterpolation.lib;
von zur Gathen, Gerhard

PROCEDURES:
BuildM(int, vector) return subproduct matrix of polynomials
Multeval(poly, int, int) return evaluation of poly at multiple points
CombineM(int, int) return combo of subproducts for interpolation
Interpolate(int, vector, vector) return poly interpolated through given points
Log(int) return ceil(log base 2 of n)

";
////////////////////////////////////////////////////////////////////////////////
proc BuildM (int n, vector u)
"Alg. 10.3 from von zur Gathen & Gerhard: Building up the subproduct tree.
USAGE: BuildM(n, u); (int n, vector u[1..n] of distinct algebraic values)
RETURNS: polynomials M[i,j]=prod(l=1..2^i, x-u[(j-1)*2^i+l])"
{

int i; int j;
int k=Log(n);
int r=2^k;
matrix M[k+1][r];
for (j=1; j<=n; j++) { M[1,j]=x-u[j]; }
for (j=n+1; j<=r; j++) { M[1,j]=1; }
for (i=1; i<=k; i++)
{

for (j=1; j<=2^(k-i); j++)
{

M[i+1,j]=M[i,2*j-1]*M[i,2*j];
}

}
return(M);

}
example
{
"EXAMPLE:"; echo=2;
matrix M=BuildM(5, [1,2,3,4,5]);
print(M);

}
////////////////////////////////////////////////////////////////////////////////
proc Multeval (poly f, int initindex, int termindex)
"Alg 10.5 from von zur Gathen & Gerhard: Going down the subproduct tree
USAGE: Multeval(f, a, b); (poly f of deg<n, int a, int b)
GLOBALS: FIsubproducttreeM
RETURNS: vector [f(u[a])..f(u[b])]"
{
// printf("poly=%s, initindex=%s, termindex=%s", f, initindex, termindex);

if (initindex == termindex)
{

return([f]);
}
else
{

int i;
int n=termindex-initindex+1;
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int k=Log(n);
// printf(" k=%s", k);

int n0=2^(k-1);
poly r0=f-FIsubproducttreeM[k, (initindex-1)/n0+1]*

(f/FIsubproducttreeM[k, (initindex-1)/n0+1]);
poly r1=f-FIsubproducttreeM[k, (initindex-1)/n0+2]*

(f/FIsubproducttreeM[k, (initindex-1)/n0+2]);
vector r0eval=Multeval(r0, initindex, initindex+n0-1);
vector r1eval=Multeval(r1, initindex+n0, termindex);
vector r=r0eval;
for (i=n0+1; i<=n; i++) { r=r+r1eval[i-n0]*gen(i); }
return(r);

}
}
example
{
"EXAMPLE:"; echo=2;
vector u=[1,2,3,4,5];
matrix FIsubproducttreeM=BuildM(5, u);
Multeval(x3+x+1, 1, 5); // displays value of x^3+x+1 at u[1],...,u[5]

}
////////////////////////////////////////////////////////////////////////////////
proc CombineM (int initindex, int termindex)
"Alg. 10.9 from von zur Gathen & Gerhard: Linear combination for linear moduli.
USAGE: CombineM(a, b); (int a, int b)
GLOBALS: FIindepvaluesu[1..n],

FIcombinecoeffsc[1..n],
FIsubproducttreeM

RETURNS: sum(i=1..n, c[i]*m/(x-u[i]), where
m=(x-FIindepvaluesu[initindex])*...*(x-FIindepvaluesu[termindex])"

{
if (termindex == initindex)
{

return(FIcombinecoeffsc[initindex]);
}
else
{

int n=termindex-initindex+1;
int k=Log(n);
int n0=2^(k-1);
poly r0=CombineM(initindex, initindex+n0-1);
poly r1=CombineM(initindex+n0, termindex);
return(FIsubproducttreeM[k, (initindex-1)/n0+2]*r0 +

FIsubproducttreeM[k, (initindex-1)/n0+1]*r1);
}

}
example
{
"EXAMPLE:"; echo=2;
vector FIindepvaluesu=[1,2,3,4,5];
matrix FIsubproducttreeM=BuildM(5, FIindepvaluesu);
vector FIcombinecoeffsc=Multeval(x3+x+1, 1, 5);
CombineM(1, 5);

}
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////////////////////////////////////////////////////////////////////////////////
proc Interpolate (int n, vector xlist, vector ylist)
"Alg. 10.11 from von zur Gathen & Gerhard: Fast Interpolation.
USAGE: Interpolate(n,xlist,ylist); int n,

vector xlist[1..n] (independent vals),
vector ylist[1..n] (dependent values))

GLOBALS: vector FIindepvaluesu,
vector FIcombinecoeffsc,
matrix FIsubproducttreeM

RETURNS: unique f(x) of deg < n s.t. f(u[i])=v[i] for i=1..n"
{

int i;
vector FIindepvaluesu=xlist; vector v=ylist;
matrix FIsubproducttreeM=BuildM(n, FIindepvaluesu);
int k=Log(n);
poly m=FIsubproducttreeM[k+1,1];
poly dm=diff(m, x);
export(FIsubproducttreeM);
vector dmeval=Multeval(dm, 1, n);
vector FIcombinecoeffsc;
for(i=1;i<=n;i++) {FIcombinecoeffsc=FIcombinecoeffsc+v[i]/dmeval[i]*gen(i);}
export(FIindepvaluesu, FIcombinecoeffsc);
return(CombineM(1, n)); } example

{
"EXAMPLE:"; echo=2;
Interpolate(5, [1,2,3,4,5], [1,4,9,16,25]);

}
////////////////////////////////////////////////////////////////////////////////
proc Log (int n)
"logarithm base 2 of n
USAGE: Log(n); int n should be >0.
RETURNS: the ceiling of the log to the base 2 of n"
{

int l=0;
while (n>2^l) {l++;}
return(l);

}
example
{
"EXAMPLE:"; echo=2;
Log(25);

}

RootFinder.lib

This is a library for the procedure RootDig which is essentially Algorithm 2.3.3.
RootDig is called by the main list decoding program soon after the main loop (which
is near the end).

//////////////////////////////////////////////////////////////////////////////////
// version string automatically expanded by CVS

version="$Id: template.lib,v 3.0.2 2007/08/24 13:48:46 Singular Exp $";
category="Miscellaneous";
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// summary description of the library
info="
LIBRARY: RootFinder.lib, Implementation of fast bivariate root-finding algorithm

modulo an irreducible polynomial
AUTHOR: Philip Busse, email: pbusse@ms.uky.edu

SEE ALSO: standard_lib, Guidelines for writing a library,
Typesetting of help strings

KEYWORDS: library, RootFinder.lib; RootFinder.lib; library, Roth, Ruckenstein

PROCEDURES:
RootDig(poly, int, poly, var, var) entry fnc into main recursive proc
Reconstruct(poly, int, int, ideal, var, var) puts y-roots of poly in global list

";

//////////////////////////////////////////////////////////////////////////////////
proc RootDig (poly Q, int k, poly h, x, y)
"Entry function to recursive reconstruction routine
GLOBALS: vector RFphi

list RF
yroots
USAGE: RootDig(Q, k, h, x, y);
RETURNS: list of coeff. vectors of yroots mod h(x) of Q(x,y)!=0 (poly’s in F[x]

of degree < k) stored in the global list yroots
{

vector RFphi=0;
list RFyroots=list();
ideal H=std(h);
export(RFphi, RFyroots);
Reconstruct(Q, k, 1, H, x, y);
return(RFyroots);

}
example
{
"EXAMPLE:"; echo=2;
list L=RootDig(y^2*(y+x+x4), 4, x^36-2, x, y);
print(L);

}
//////////////////////////////////////////////////////////////////////////////////
proc Reconstruct (poly Q, int k, int i, ideal H, x, y)
"Roth & Ruckenstein’s recursive procedure to find a superset of consistent poly’s
GLOBALS: vector RFphi

list RFyroots
USAGE: reconstruct(Q, k, 1, H, x, y);
RETURNS: nothing directly; de facto, coeffs of yroots of Q(x,y)!=0 (elts in F[x]

of degree < k) stored in the global list yroots
{

int j; int d;
int r=0;
matrix C=coeffs(Q, x);
if (Q != 0) { while (C[r+1,1] == 0) { r++; } }
poly M=reduce(Q/x^r, H);
list factors=factorize(subst(M, x, 0), 2);
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int nfactors=size(factors[1]);
for (j=1; j<=nfactors; j++) {

d=deg(coef(factors[1][j], y)[1,1]);
if (d==deg(y)) {

C=coeffs(factors[1][j], y);
RFphi=RFphi-(RFphi[i]+C[1,1]/C[2,1])*gen(i);
if (i==k) {

RFyroots=insert(RFyroots, RFphi);
}
else {

Reconstruct(subst(M, y, x*y+RFphi[i]), k, i+1, H, x, y);
}

}
}

}
example
{
"EXAMPLE:"; echo=2;
vector RFphi=0;
list RFyroots;
Reconstruct(y^2*(y+x+x4), 5, 1, std(x^36-2), x, y);
print(RFyroots);

}

UsefulProcs.lib

This is not really a library, but more of a random collection of semi-useful, basic
procedures. The procedures in this file that are actually called by the main list
decoding program are binom, max, norm, and evalf.

// COMPUTE THE BINOMIAL COEFFICIENT, n choose k
proc binom (int n, int k)
{

if (k<0 or k>n) { return(0); }
if (k==0 or k==n) { return(1); }
return(binom(n-1,k-1) + binom(n-1,k));

}

// COMPUTE n!
proc factorial(int n)
{
if (n<1) { return(1); }
return(n*factorial(n-1));

}

//COMPUTE THE CEILING OF THE LOG TO THE BASE b OF n: ceil(log[b](n))
proc LOG(int b, int n)
{
int l=0;
while (n>b^l) {l++;}
return(l);

}

//COMPUTE THE FLOOR OF THE LOG TO THE BASE b OF n: floor(log[b](n))
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proc log(int b, int n)
{

int l=0;
while (n>=b^l) {l++;}
return(l-1);

}

//COMPUTE THE MAXIMUM VALUE OF TWO INTEGERS
proc max(int i, int j)
{
if (i>j) {return(i);} else {return(j);}

}

//COMPUTE THE SUM (1-norm) OF A VECTOR OF INTEGERS
proc norm(intvec nums)
{
int n=size(nums);
int sum=0;
for(int i=1; i<=n; i++)
{
sum=sum+nums[i];

}
return(sum);

}

//EVALUATE POLY f(x) AT VALUES OF n-TUPLE A TO GET NEW n-TUPLE
proc evalf(poly f)
{
vector evalf=0;
for(int i=1; i<=n; i++)
{
evalf=evalf+subst(f, x, A[i]*V[i])*gen(i);

}
return(evalf);

}
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