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ABSTRACT OF DISSERTATION

MATERIAL TENSORS AND PSEUDOTENSORS OF WEAKLY-TEXTURED
POLYCRYSTALS WITH ORIENTATION MEASURE DEFINED ON THE

ORTHOGONAL GROUP

Material properties of polycrystalline aggregates should manifest the influence of crystallo-
graphic texture as defined by the orientation distribution function (ODF). A representation
theorem on material tensors of weakly-textured polycrystals was established by Man and
Huang (2012), by which a given material tensor can be expressed as a linear combination
of an orthonormal set of irreducible basis tensors, with the components given explicitly in
terms of texture coefficients and a number of undetermined material parameters. Man and
Huang’s theorem is based on the classical assumption in texture analysis that ODFs are
defined on the rotation group SO(3), which strictly speaking makes it applicable only to
polycrystals with (single) crystal symmetry defined by a proper point group. In the present
study we consider ODFs defined on the orthogonal group O(3) and extend the represen-
tation theorem of Man and Huang to cover pseudotensors and polycrystals with crystal
symmetry defined by any improper point group. This extension is important because many
materials, including common metals such as aluminum, copper, iron, have their group of
crystal symmetry being an improper point group. We present the restrictions on texture
coefficients imposed by crystal symmetry for all the 21 improper point groups, and we
illustrate the extended representation theorem by its application to elasticity.
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Chapter 1 Introduction

Many materials are polycrystalline aggregates of tiny crystallites or grains of various sizes

and shapes separated by defective boundaries. In theories to evaluate physical proper-

ties of a polycrystal, as a first approximation, all effects of grain boundaries are ignored

and the constituent crystallites of the polycrystal are taken as parts of perfect single crys-

tals, the crystal lattices of which have different orientations in space. Since each crystal-

lite is anisotropic, the macroscopic physical properties of the polycrystal will likewise be

anisotropic unless the orientations of its constituent crystallites are completely random.

However, manufacturing processes (e.g. annealing and hot/cold rolling in the case of sheet

metals) usually impart material products with crystallographic texture, i.e., the constituent

crystallites have preferred orientations. In materials science, orientation distribution func-

tions (ODFs) defined on the rotation group (SO(3)) have been used to characterize crystal-

lographic texture (see, e.g., the monograph by Bunge [5]).

Material properties are often described by tensors or pseudotensors of various types.

Material tensors and pseudotensors pertaining to polycrystalline aggregates should mani-

fest the influence of crystallographic texture on material properties. Many papers which

study the effects of texture on various material properties have been published. But, until

the recent work of Man and Huang [20], all these papers were restricted to some specific

classes of tensors (e.g. second-order tensors that describe thermal conductivity, optical re-

fractive index and electrical conductivity, the fourth-order elasticity tensor, the sixth-order

acoustoelastic tensor, etc.) and, with one exception (namely, Morris’ computation [27] of

the Voigt average of the fourth-order elasticity tensor for polycrystals with both texture and

crystal symmetry described by any rotational point group), were restricted to some spe-

cific texture and crystal symmetries (e.g., orthorhombic aggregates of cubic or hexagonal

crystallites were mostly studied). Man and Huang [20] derived a representation theorem
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by which any material tensor of a weakly-textured polycrystal can be expressed as a lin-

ear combination of an orthonormal set of irreducible basis tensors, with the components

given explicitly in terms of texture coefficients and a set of undetermined material param-

eters. In their paper they provide a procedure by which the irreducible basis tensors can

be constructed explicitly. The representation theorem of Man and Huang is based on the

classical assumption in quantitative texture analysis that the ODF is defined on the rotation

group. As a consequence, both texture symmetry and crystal symmetry are described by

subgroups of the rotation group.

Among the 32 crystallographic point groups, 11 are proper (i.e., they are subgroups of

SO(3)) and 21 are improper (i.e., they are subgroups of O(3) but not SO(3)). A survey

([29], Section 3.5) of circa 127,000 inorganic and 156,000 organic compounds shows that

only 9.15% of the inorganic and 19.71% of the organic crystals have their symmetries de-

scribed by rotational point groups; the rest, which is a huge majority by abundance, has

their symmetries described by improper point groups. In fact, in texture analysis the im-

portance of relaxing the restriction to crystallites with symmetries described by rotational

point groups is indicated not only by the aforementioned population statistics, but also by

the fact that many engineering materials (e.g., metals such as aluminum, copper, iron, mag-

nesium, titanium, zinc) have some improper point group as their group of crystal symmetry

(Gcr).

With the abundance and importance of materials whose crystal symmetry groups are

improper, one may wonder why material scientists would develop texture analysis with

ODFs defined on SO(3). Here we venture to give two plausible explanations:

(1) Quantitative texture analysis began in the 1960s. At that time X-ray diffraction

(XRD) was the only tool that could deliver quantitative information on the ODF. By

Friedel’s law, XRD can not distinguish two crystals that have their Gcr in the same

Laue class, each of which has one rotational point group as member. For example,
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aluminum crystals have their Gcr = Oh, an improper point group. The diffraction

pattern would be the same even if the proper point group O, a peer of Oh in the same

Laue class, were the symmetry group of aluminum crystals.

(2) The predictions made by the SO(3)-based texture analysis were confirmed by exper-

iments in various fields, e.g., in ultrasonics.

With the advent and development of orientation imaging microscopy in the last two decades,

however, we now have tools more powerful than XRD for texture measurement. As for (2),

that the SO(3)-based texture analysis works for some problems which involve materials

with their Gcr being some improper point group is no proof that it will always work for all

such problems. In this regard, a few questions naturally arise:

• Will the SO(3)-based texture analysis always work?

• If the answer to the preceding question is negative, why did the SO(3)-based texture

analysis work for so many problems? What are the conditions that make it work for

those problems?

The main objective of this thesis is to extend the representation theorem of Man and

Huang [20] by letting the ODF be defined on the orthogonal group O(3) so that the extended

theorem will cover also aggregates of crystallites with their Gcr being an improper point

group. With the extended theorem in hand, we will answer the questions above at least

for material properties of weakly-textured polycrystals that are characterized by tensors

or pseudotensors. We will also examine some applications of the extended theorem in

elasticity. It should be pointed out that it was Bunge and his coworkers [5, 6, 7, 8] who

first examined ODFs defined on O(3). Their attention, however, was largely restricted to

the effects of texture and crystal symmetry on the ODF and the possibility of measurement

of the O(3)-based ODF by XRD. Here we are mainly interested in the effects of texture on

material properties that are characterized by tensors and pseudotensors.
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What follows is an outline of the contents of this thesis. In Chapter 2, we recapitulate

some basic concepts and facts about crystallographic point groups (i.e., finite subgroups

of the orthogonal group O(3) that satisfy the crystallographic restriction), integration on

O(3), group representations, and material tensors and pseudotensors. We begin Chapter 3

by presenting a complete set of irreducible representations of O(3). Perhaps because such

a complete set for O(3) can be easily obtained from a complete set of irreducible represen-

tations of SO(3), this information is seldom presented in books and, in the few instances

[1, 24] where this information is touched upon, it is mentioned only in passing. On the

other hand, the irreducible representations of O(3) play a central role in the present study.

Hence in Sections 3.1 and 3.2 we derive in detail all the information on a complete set of ir-

reducible representations of O(3) that we need. Building on these prerequisites, in Section

3.3 we obtain Theorem 3.3.3, which describes how the rank of a tensor or pseudotensor

affects its decomposition into irreducible parts under O(3). Chapter 4 is the centerpiece

of this thesis, where we adopt the approach to texture analysis originated by Roe [32, 33].

In Section 4.2 we introduce ODFs defined on O(3) and explain how an aggregate of crys-

tallites with their Gcr being an improper point group can be looked upon as a mixture of

right-handed and left-handed crystals given in equal volume fractions. It is this observation

and the main physical assumption (4.3.1), which is none other than a version of the “prin-

ciple of material frame-indifference” [39] for our present context, that serve as the basis

for the proof of Theorem (4.6.4), the extended representation theorem that we seek. In

Section 4.7 we present an alternative line of argument, which appeals heavily to Man and

Huang’s original representation theorem, to arrive at the extended representation theorem.

In Chapter 5, using an argument similar to that given by Roe [32, 33] in SO(3)-based tex-

ture analysis, we extend the transformation formula for texture coefficients under change

of reference crystal orientation so that the new formulas are valid when the ODF is defined

on O(3). We then apply the transformation formulas to derive restrictions on texture coef-

ficients imposed by crystal symmetry for each of the 32 crystallographic point groups. The
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parallel problem—regarding the effects of crystal symmetry on the O(3)-based ODF—in

Bunge’s approach [5] to texture analysis was examined in a 1981 paper by Bunge, Esling,

and Muller [7]. We close the thesis in Chapter 6 by applying the representation theorem

(4.6.4) and the restrictions on texture coefficients derived in Chapter 5 to material ten-

sors and pseudotensors of single crystals in [[V⊗2
c ]⊗2], the space of 4th-order tensors and

pseudotensors that enjoy both the major and minor symmetries. There we derive the ex-

plicit form of the 6 × 6 matrices that represent, in the Voigt notation, material tensors and

pseudotensors of single crystals with Gcr being Cs, D3h, C4v, or D2d, which are Type III

improper groups. We present also the number of undetermined material parameters (UMP)

for the class of material tensors and pseudotensors that we obtain by our method for sin-

gle crystals with any of the 10 Type III improper groups as Gcr. This exercise serves as a

check on the correctness of the representation formula (4.94) and the restrictions derived in

Chapters 4 and 5, respectively, because the aforementioned matrices and UMPs can be de-

rived by brute force, i.e., by exploiting the fact that the material tensor and pseudotensor at

issue remain invariant under transformations induced by elements of the symmetry group

in question (cf. (2.38) and (2.39)). We use Type III crystal and even-order pseudotensor

for this check because this represents the situation where the representation formula differs

most markedly from its counterpart for the Type I crystal which is its peer in the same Laue

class.

Copyright c©Wenwen Du 2015
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Chapter 2 Preliminaries

2.1 Crystallographic point groups

2.1.1 Definition

The orthogonal group of dimension 3, denoted by O(3), is the group of distance and angle

preserving transformations of a Euclidean space of dimension 3 that preserve a fixed point,

where the group operation is given by composing transformations [18]. Equivalently, it

is the group of 3 × 3 orthogonal matrices. These matrices form a group because they are

closed under multiplication and taking inverses. An orthogonal matrix is a real matrix

whose inverse equals its transpose. Let E and Q denote the identity and any element in

O(3), respectively, then we have QQT = QT Q = E [18, 26, 35].

The determinant of an orthogonal matrix is either 1 or -1. A very important subgroup

of O(3) is the special orthogonal group, denoted by SO(3), of the orthogonal matrices with

determinant 1. This group is also called the rotation group since its elements are the usual

rotations around an axis in dimensions 3.

Except for the identity E, every rotation R ∈ SO(3) is specified [18] by an axis and an

angle of rotation. Let R(n, ω) denote the rotation with the axis defined by the unit vector

n and with angle of rotation ω. Extending this notation, we let R(n, 0) = E for any n. To

cover the entire rotation group, we may limit ω ∈ [0, π] because R(−n, θ) = R(n, 2π − θ).

A rotation R(n, ω) is a symmetry operation of a crystal lattice if it renders the lattice

invariant. With this, the lattice structure imposes a severe restriction on the possible values

of rotation angle ω of the symmetry operation R(n, ω) [18, 35]. It can be shown that the

trace of R(n, ω) is 1 + 2 cosω which should be an integer. Within the range of [0, π], the

possible values of ω are 0, π3 ,
π
2 ,

2π
3 , π. This requirement on the rotation angle ω is called the
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crystallogaphic restriction on the symmetry operation R(n, ω) of a crystal lattice.

Finite subgroups of O(3) are called point groups. Those that further satisfy the crystal-

lographic restriction are called crystallographic point groups.

2.1.2 Classification

Crystallographic point groups that only contain rotational operators are called proper groups,

while groups with both rotations and reflections (combination of rotation and inversion de-

noted as I) are called improper groups in many references (e.g. [2, 3, 4, 35, 37]). In what

follows we denote generic proper and improper groups by Gp and Gi, respectively.

There are 11 finite subgroups of the rotational group SO(3) that satisfy the crystallo-

gaphic restriction [2, 18, 35]. These 11 subgroups in the Schönflies notation are C1, C2,

C3, C4, C6, D2, D3, D4, D6, T , and O, where Cn, Dn, T , and O are referred to as the cyclic,

dihedral, tetrahedral, and octahedral (cubic) groups respectively. Clearly these 11 finite

subgroups of SO(3) are the proper (rotational) crystallographic point groups since SO(3) is

a subgroup of O(3).

The structure of the improper crystallographic point groups can be ascertained through

the following theorems [35].

Theorem 2.1.1. [35] Any improper group can be decomposed into a proper subgroup and

its coset, i.e., Gi = Gp
⋃

R̄Gp, where R̄ = IR is an improper operator (inversion-rotation).

Proof. Clearly all proper operators E = R1, R2, ..., R j, ..., Rn in Gi form a proper sub-

group, say Gp. Let R̄ be any improper operator in Gi. Then R̄Gp = {R̄, R̄R2, ..., R̄R j, ..., R̄Rn}.

To complete the proof, it suffices to show any other improper element R̄′ in Gi is in R̄Gp.

Indeed, since R̄2 and R̄R̄′ are proper elements, there exists a j and a k, such that R̄2
= R j

and R̄R̄′ = Rk. Thus R̄′ = R̄−1Rk = R̄−1R jR−1
j Rk = R̄−1R̄R̄R−1

j Rk = R̄R−1
j Rk = R̄Rm for

some m, which is in R̄Gp. �
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With this theorem, we have one type of improper crystallographic point groups: Im-

proper groups that contain the inversion as a member can be decomposed as the disjoint

union of Gp and its coset IGp, i.e., Gi = Gp
⋃

IGp. These 11 improper groups in the

Schönflies notation are Ci, C2h, C3i, C4h, C6h, D2h, D3d, D4h, D6h, Th and Oh, which has C1,

C2, C3, C4, C6, D2, D3, D4, D6, T , and O as their proper subgroup (e.g. C2h = C2
⋃

IC2),

respectively.

Improper crystallographic point groups that do not contain the inversion can be decom-

posed as the disjoint union of Gp and its coset R̄Gp, i.e., Gi = Gp
⋃

R̄Gp, where R̄ = IR

with R < Gp (otherwise R̄R−1 = IRR−1 = I which contradicts I < Gi). To determine all

such improper groups, we need the following theorem.

Theorem 2.1.2. [35] Any improper group (Gi = Gp
⋃

R̄Gp) not containing the inversion is

isomorphic to the proper group G′ which can be written as G′ = Gp
⋃

RGp (where R̄ = IR

and R < Gp).

Proof. We just need to show G′ = Gp
⋃

RGp is indeed a group. It is clear that E is in

G′, and the elements of G′ satisfy the associativity law because we have (AB)C = A(BC)

for matrix multiplications. Thus there remain two things to check: (1) there exists a unique

inverse for each a ∈ G′ and (2) ab ∈ G′ for any a, b ∈ G′. Let R, R1 and R2 be any

elements in Gp and R̄ = IR. That (R̄R1)−1 ∈ R̄Gp implies (RR1)−1 ∈ RGp completes

the proof of (1). To prove (2): First, if a, b ∈ Gp (let a = R1 and b = R2), then clearly

ab = R1R2 ∈ Gp ⊂ G′. Second, if a = R1 ∈ Gp and b = RR2 ∈ RGp, then to show

ab = R1(RR2) ∈ RGp, it suffices to show R1(IRR2) = R1(R̄R2) ∈ R̄Gp ⊂ Gi, which

is trivial because R1, (R̄R2) ∈ Gi, which is a group. And we can get similar result if

a = RR1 ∈ RGp and b = R2 ∈ Gp. Last, if a, b ∈ RGp with a = RR1 and b = RR2, then

we also have ab = (RR1)(RR2) ∈ Gp. Indeed, (R̄R1)(R̄R2) ∈ Gi and R, R1, R2 ∈ Gp imply

(IRR1)(IRR2) = (RR1)(RR2) ∈ Gp. �
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By this theorem, the proper groups that correspond to these improper groups have to be

subgroups of index 2. Notice that the groups C1, C3, and T have no subgroup of index 2,

while D4 and D6 each has two different subgroups of index 2. Hence we have 11−3+2 = 10

new improper groups not containing the inversion, which in the Schönflies notation are Cs,

C2v, S 4, C4v, D2d, C3v, C3h, D3h, C6v, Td.

In summary, there are 32 crystallographic point groups, which can be categorized in

three types.

Type I: 11 rotational point groups, i.e., proper groups with det R = 1, namely,

C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O

Type II: 11 improper groups containing inversion, namely,

Ci,C2h,C3i,C4h,C6h,D2h,D3d,D4h,D6h,Th,Oh

Type III: 10 improper groups not containing inversion, namely,

Cs,C2v, S 4,C4v,D2d,C3v,C3h,D3h,C6v,Td

Since most metals, with b.c.c, f.c.c, and h.c.p lattices (body centered cubic, face cen-

tered cubic, and hexagonal close packed, respectively), are centrosymmetric, Type II is

especially important in texture analysis in metallurgy. The non-centrosymmetric crystal

classes (Type I and III) are more important in mineralogical and geological problems.

2.1.3 Laue classes

When radiation and particles (e.g. electrons, neutrons, X-rays) interact with a crystal, it

is impossible to distinguish by diffraction between crystals with symmetry defined by a

centrosymmetric point group or one of its non-centrosymmetric subgroups. This is a con-

sequence of Friedel’s law, i.e., the diffraction pattern is always centrosymmetric regardless

9



Table 2.1: The 11 Laue classes

1. C1, Ci 7. D3, C3v, D3d

2. C2, Cs, C2h 8. D4, C4v, D2d, D4h

3. C3, C3i 9. D6, C6v, D3h, D6h

4. C4, S 4, C4h 10. T , Th

5. C6, C3h, C6h 11. O, Td, Oh

6. D2, C2v, D2h

of whether an inversion center is present in the crystal or not [7, 31]. This leads to another

classification of crystallographic point groups, called Laue classes. The 32 crystallographic

point groups can be divided into 11 Laue classes as in Table 2.1 and Table 2.2. Crystals

with symmetry group in the same Laue class cannot be distinguished by diffraction tech-

niques. The historical development of texture analysis might have followed a different

route if during its formative years (1960s to 1980s) X-ray diffraction were not the only

technique available for measurement of the ODF.
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Table 2.2: Group structure in the same Laue class. For brevity, let R1 = R(e3, π), R2 =

R(e3,
π
2 ), R3 = R(e3,

π
3 ) and R4 = R(e2, π).

Laue Classes Type I Type II Type III

1. C1, Ci C1 Ci = C1 ∪ IC1

2. C2, C2h, Cs C2 = C1 ∪ R1C1 C2h = C2 ∪ IC2 Cs = C1 ∪ IR1C1

3. C3, C3i C3 C3i = C3 ∪ IC3

4. C4, C4h, S 4 C4 = C2 ∪ R2C2 C4h = C4 ∪ IC4 S 4 = C2 ∪ IR2C2

5. C6, C6h, C3h C6 = C3 ∪ R3C3 C6h = C6 ∪ IC6 C3h = C3 ∪ IR3C3

6. D2, D2h, C2v D2 = C2 ∪ R4C2 D2h = D2 ∪ ID2 C2v = C2 ∪ IR4C2

7. D3, D3d, C3v D3 = C3 ∪ R4C3 D3d = D3 ∪ ID3 C3v = C3 ∪ IR4C3

8. D4, D4h , C4v D4 = C4 ∪ R4C4 D4h = D4 ∪ ID4 C4v = C4 ∪ IR4C4

8. D4, D2d D4 = D2 ∪ R2D2 D2d = D2 ∪ IR2D2

9. D6, D6h, D3h D6 = D3 ∪ R3D3 D6h = D6 ∪ ID6 D3h = D3 ∪ IR3D3

9. D6, C6v D6 = C6 ∪ R4C6 C6v = C6 ∪ IR4C6

10. T , Th T Th = T ∪ IT

11. O, Td, Oh O = T ∪ R2T Oh = O ∪ IO Td = T ∪ IR2T

11



2.2 Basics of integration on O(3)

Much of the exposition that follows until the end of subsection 2.2.2 is adapted from the

lecture notes of Man [18].

In classical texture analysis, the orientation of the crystal lattice L(X) at a sampling

point X in a polycrystal is defined by the rotation R(X) that takes the lattice Lref of an

arbitrarily-chosen reference single crystal to L(X). It is assumed that a probability distri-

bution function w : SO(3)→ R1, called the orientation distribution function (ODF), can be

defined so that ∫
A

w(R) dV,

where V is a suitable positive (“volume”) measure on SO(3) and A ⊂ SO(3), gives the

probability of finding R(X) ∈ A. In particular, the normalization condition∫
SO(3)

w(R) dV = 1 (2.1)

should hold. To cover the possibility of macroscopic isotropy, where all orientations have

the same probability or w(R) = constant, we see from (2.1) thatVmust be a finite measure.

Further physical considerations [18]—which concern the effects of sample rotations and the

arbitrariness of the reference orientation on the ODF—dictate that the volume measureV

should be left-invariant and right-invariant, i.e.

V(RA) = V(A) and V(AR) = V(A) for any R ∈ SO(3). (2.2)

In the present study, we will let ODFs to be defined on O(3) instead of SO(3), and our

theory will subsume that of classical texture analysis. We will require the volume measure

V on O(3) likewise to be finite, left-invariant, and right-invariant.

The rotation group SO(3) and the orthogonal group O(3) are compact topological groups.

It is well known that on every compact topological group there exists a regular Borel mea-

sure, unique up to a positive multiplicative constant, which is finite, left-invariant, and
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right-invariant (see, e.g., Rudin [36]). Such measures are called Haar measures. For a given

compact group, the normalized Haar measure (under which the group in question has unit

measure) is unique. In what follows we shall determine the normalized Haar measure for

SO(3) and for O(3), respectively, by using the fact that SO(3) and O(3) are Riemannian

manifolds with a bi-invariant metric.

2.2.1 Geometric Structure of O(3)

Let V be the translation space of the three-dimensional physical Euclidean space, and let

Lin be the space of linear transformations on V . We adopt and fix a right-handed orthonor-

mal basis {ei} (i = 1, 2, 3) of V , under which each linear transformation in Lin is represented

by a matrix in M(3), the space of 3 × 3 real matrices. In what follows we shall identify

each linear transformation A in Lin with its representative in M(3), which we denote by

the same symbol A.

We equip M(3) with the inner product defined by

A · B =
1
2

tr(ABT ) for A, B ∈ M(3). (2.3)

We choose and fix an orthonormal basis Ei (i = 1, 2, ..., 9) in M(3) as follows. Let

E1 = −e2 ⊗ e3 + e3 ⊗ e2, E2 = −e3 ⊗ e1 + e1 ⊗ e3, E3 = −e1 ⊗ e2 + e2 ⊗ e1,

E4 =
√

2(e1 ⊗ e1), E5 =
√

2(e2 ⊗ e2), E6 =
√

2(e3 ⊗ e3),

E7 = e2 ⊗ e3 + e3 ⊗ e2, E8 = e3 ⊗ e1 + e1 ⊗ e3, E9 = e1 ⊗ e2 + e2 ⊗ e1.

It is easy to verify that under the inner product (2.3) the matrices Ei (i = 1, 2, ..., 9)

constitute an orthonormal basis in M(3). Every X ∈ M(3) can be written uniquely as a

linear combination X =
∑

i XiEi, where Xi ∈ R
1 for each i. Let ϕ : M(3) → R9 be defined

by

ϕ(
∑

i

XiEi) = (X1, X2, ..., X9). (2.4)
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The function ϕ, which is clearly a homeomorphism between M(3) and R9, defines a

global chart on M(3) and a C∞ differentiable structure there. It is easy to show that this

differentiable structure is independent of the basis chosen in M(3). We take GL(3), the set

of non-singular 3 × 3 matrices, as an open submanifold of M(3), and endow the subspaces

Sym (the space of symmetric matrices) and Skw (the space of skew-symmetric matrices)

each with the differentiable structure that make them embedded submanifolds of M(3).

It is easy to show that both the orthogonal group

O(3) = {Q ∈ M(3) : QQT = E} (2.5)

and the rotation group

SO(3) = {Q ∈ M(3) : QQT = E and det Q = 1} (2.6)

are 3-dimensional embedded submanifolds of M(3) [14]. Let Ψ : M(3) → Sym be the

function defined by

Ψ(A) = AAT . (2.7)

It is clear that Ψ is of class C∞ and that Ψ−1(E) = O(3). Since O(3) is a level set of the

continuous function Ψ, it is a closed subset of M(3). Moreover, O(3) is bounded in M(3)

because ‖Q‖ =
√

3 for each Q ∈ O(3). Hence O(3) is compact.

Each Q ∈ O(3) is orthogonal. Thus det Q satisfies

(det Q)2 = (det Q)(det QT ) = det(QQT ) = det E = 1,

which implies det Q = ±1. If det Q = 1, then Q = R for some R ∈ SO(3). If det Q = −1,

then det(IQ) = 1 and there is an R ∈ SO(3) such that IQ = R or Q = IR. Since the map

h : O(3)→ R1, Q 7→ det Q, is continuous, O(3) is the disjoint union of G := SO(3) and

IG := {IR : R ∈ SO(3)}. (2.8)
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As a closed and open subset of O(3), SO(3) is compact and is an embedded submanifold

of M(3).

For each A ∈ M(3), T AM(3)—the tangent space to M(3) at A—can be identified with

M(3), which carries the inner product (2.3). Hence M(3) is a Riemannian manifold. As

embedded submanifolds of M(3), both O(3) and SO(3) are Riemannian. For each Q ∈

O(3), TQO(3) is a linear subspace of TQM(3) and carries the inner produce induced by that

of M(3), namely (2.3). A similar statement holds for the tangent spaces to SO(3).

Before we close this subsection, we characterize the structure of the tangent spaces

TQO(3), where Q ∈ O(3). Consider a smooth curve B(t) in O(3) that passes through the

element Q at t = 0, i.e., B(0) = Q. Then A(t) := QT B(t) defines a smooth curve in O(3)

that satisfies A(0) = E. Differentiating both sides of the equation A(t)A(t)T = E and then

setting t = 0, we obtain

Ȧ(0)A(0)T + A(0)Ȧ(0)T = 0,

which implies Ȧ(0) = −Ȧ(0)T or QT Ḃ(0) is skew. Thus there exists a skew matrix W

such that the tangent vector Ḃ(0) ∈ TQO(3) is given by Ḃ(0) = QW. Conversely, for each

W ∈ Skw, C(t) := Q exp(tW) defines a smooth curve in O(3) that satisfies C(0) = Q and

Ċ(0) = QW is a tangent vector in TQO(3). We conclude that

TQO(3) = {QW : W ∈ Skw}. (2.9)

In particular, TEO(3) is none other than the space of skew tensors Skw.

2.2.2 Bi-invariant Metric

A smooth manifold G is a Lie group if the following two assertions hold:

1. G is a group.
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2. The group operations G × G → G, (x, y) 7→ xy and G → G, x 7→ x−1 are smooth

functions.

For each a ∈ G, we define the left translation La : G → G and right translation Ra :

G → G by

La(x) = ax for each x ∈ G, (2.10)

and

Ra(x) = xa for each x ∈ G, (2.11)

respectively. It is clear that both La and Ra are smooth functions. The groups GL(3), O(3),

and SO(3) are examples of Lie groups.

Let G be a Lie group and a Riemannian manifold. Let <u, v>x denote the inner product

of tangent vectors u, v in TxG. The Riemannian metric on G is said to be left-invariant if

each left-translation on G is an isometry, i.e.,

<u, v>x = <DLa(x)[u],DLa(x)[v]>La(x) for all a, x ∈ G and u, v ∈ TxG, (2.12)

and right-invariant if each right-translation is an isometry. A Riemannian metric is bi-

invariant if it is both left-invariant and right-invariant.

In what follows we show that the Riemannian metric on O(3) is bi-invariant. For a

given A ∈ O(3), we have by definition (2.10)

LA(Q) = AQ for each Q ∈ O(3). (2.13)

Let W be skew and let QW be a tangent vector in TQO(3). It is easy to verify that

DLA(Q)[QW] = AQW. (2.14)

To verify that the Riemannian metric on O(3) is left-invariant, we have to check that

requirement (2.12) is observed. Let A, Q be in O(3), and let X and Y be skew. On the
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left-hand side of requirement (2.12), we have

<QX,QY>Q =
1
2

tr
(
QX(QY)T

)
=

1
2

tr
(
XYT

)
.

On the right-hand side, there holds

<DLA(Q)[QX],DLA(Q)[QY]>LA(Q) =
1
2

tr
(
AQX(AQY)T

)
=

1
2

tr
(
XYT

)
.

Hence the Riemannian metric on O(3) is left-invariant. That it is also right-invariant can

be proved in a similar way. In conclusion, the Riemannian metric on O(3) is bi-invariant.

Similarly the Riemannian metric on SO(3) is also bi-invariant.

2.2.3 Integration on O(3)

By the discussions in the previous two subsections, we can determine the (normalized)

Haar measure on O(3) by computing the volume element pertaining to the invariant metric

on the Lie group.

All rotations R that satisfy Re3 , e3 can be parametrized by the Euler angles (ψ, θ, φ),

where 0 ≤ φ < 2π, 0 < θ < π, and 0 ≤ φ < 2π. For these R ∈ SO(3), we can write

R(ψ, θ, φ) = R(e3, ψ)R(e2, θ)R(e3, φ) [18, 26]. For any element in ISO(3), we can write it as

IR(ψ, θ, φ). For brevity, let R = R(ψ, θ, φ), R1 = R(e3, ψ), R2 = R(e2, θ) and R3 = R(e3, φ).

The matrix expressions are given as following.

R1 =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 ; (2.15)
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R2 =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 ; (2.16)

R3 =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 ; (2.17)

and

R =


cos(ψ) cos(θ) cos(φ) − sin(ψ) sin(φ) − cos(ψ) cos(θ) sin(φ) − sin(ψ) cos(φ) cos(ψ) sin(θ)

sin(ψ) cos(θ) cos(φ) + cos(ψ) sin(φ) − sin(ψ) cos(θ) sin(φ) + cos(ψ) cos(φ) sin(ψ) sin(θ)

− sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

 .
(2.18)

Now we can write R = R1R2R3 = eψE3eθE2eφE3 [18]. The formula of components of

the Riemannian metric tensor in local coordinates ψ, θ, φ is given as gi j = <
∂R
∂xi

,
∂R
∂x j

>,

where x1 = ψ, x2 = θ, and x3 = φ [13, 25]. For example,

g11 = <
∂R
∂ψ

,
∂R
∂ψ

> = <
∂(eψE3eθE2eφE3)

∂ψ
,
∂(eψE3eθE2eφE3)

∂ψ
>

= < eψE3 E3eθE2eφE3 , eψE3 E3eθE2eφE3 > = < R1E3R2R3, R1E3R2R3 >

=
1
2

tr(R1E3R2R3(R1E3R2R3)T ) =
1
2

tr(R1E3R2R3RT
3 RT

2 ET
3 RT

1 )

=
1
2

tr(R1E3ET
3 RT

1 ) =
1
2

tr(R1


1 0 0

0 1 0

0 0 0

 RT
1 ) =

1
2

tr(


1 0 0

0 1 0

0 0 0

 R1RT
1 )

=
1
2

tr(


1 0 0

0 1 0

0 0 0

) = 1, (2.19)
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where we have used the fact that RiRT
i = E for i = 1, 2, 3 and

E3ET
3 =


0 −1 0

1 0 0

0 0 0




0 1 0

−1 0 0

0 0 0

 =


1 0 0

0 1 0

0 0 0

 .

The author computed the other components by writing a short Maple program (see

Appendix 1). In summary, the matrix representation (gi j) of the metric tensor in question

is:

(gi j) =


1 0 cos θ

0 1 0

cos θ 0 1

 . (2.20)

Thus the volume element is
√

det(gi j) = sin θ and the volume of SO(3) is:

V(SO(3)) =

∫ 2π

0

∫ π

0

∫ 2π

0
w(R(ψ, θ, φ)) sin θ dψdθdφ = 8π2. (2.21)

Hence the normalized Haar measure g of a Borel setA in SO(3) is:

g(A) =

∫
SO(3)

χA dg =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
χA sin θ dψdθdφ, (2.22)

where χA is the characteristic function ofA defined by

χA(x) =


1 if x ∈ A

0 if x < A
.

In line with Roe’s pioneering work [32] in texture analysis, we will give SO(3) the

volume measureV = 8π2g.

Since O(3) is the disjoint union of SO(3) and ISO(3), both of which are Riemannian

submanifolds of M(3) and are isometric under the mapping SO(3) → ISO(3), R 7→ IR,
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we give ISO(3) the volume measure that, for every measurable setA ⊂ SO(3), the volume

of IA is the same as that of A, i.e., V(A). As no confusion should arise, we denote this

measure on ISO(3) and the consequent volume measure on O(3) all byV. Then we have

V(O(3)) = 2
∫ 2π

0

∫ π

0

∫ 2π

0
w(R(ψ, θ, φ)) sin θ dψdθdφ = 16π2. (2.23)

For A = A1 ∪ A2 in O(3), where A1 ⊂ SO(3) and A2 ⊂ ISO(3) are Borel sets, the

normalized Haar measure ofA is:∫
O(3)

χA dg =
1

16π2

∫ 2π

0

∫ π

0

∫ 2π

0
χA1 sin θ dψdθdφ+

1
16π2

∫ 2π

0

∫ π

0

∫ 2π

0
χA2 sin θ dψdθdφ.

(2.24)

In what follows there will be occasions that we use the axis-angle parametrization of

rotations in integrations. Under the axis-angle parametrization, a rotation R is specified by

the direction n(Θ,Φ) of its axis, where (1,Θ,Φ) are the spherical coordinates of n, and the

angle of rotation 0 < ω < π. Note that the ranges of Θ and Φ are 0 < Θ < π, 0 ≤ Φ < 2π.

It can be shown [18, 40] that

sin θ dφdθdφ = 4 sin2 ω

2
sin Θ dωdΘdΦ (2.25)

on SO(3).

2.3 Group representations

2.3.1 Basics of group representations

Definition 2.3.1. [28] Let G be a group and let X be a complex linear space (, {0}).

Consider a mapping T of G into the set of all linear operators carrying X into itself, written

g 7→ T (g), with the following properties:

1. T (e) = 1, where e is the identity of G and 1 is the identity operator in X;

2. T (g1g2) = T (g1)T (g2) for all g1, g2 ∈ G.
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Then T is called a representation of G in the space X. The space X is called the represen-

tation space and the operators T (g) representation operators.

Remark: Let dim X < +∞, and let GL(X) be the space of non-singular linear transforma-

tions on X. Then a homomorphism

T : G → GL(X)

is a representation of G on X.

Two representations T, S of a group G in spaces X and Y are called equivalent if there

is a one-to-one linear operator A carrying X onto Y and satisfying the condition AT (g) =

S (g)A, for all g ∈ G. It is possible that X = Y , and in this case we speak of the equivalence

of the representation in the same space. For the case where X and Y are finite-dimensional,

representations S and T on X and Y are equivalent representations if and only if nS = nT

(dimensions of S and T ) and under a proper choice of bases in X and Y , the matrix which

represents S coincides with that which represents T [28].

A representation T of G in a pre-Hilbert space X (a linear space with a scalar product)

is called unitary if all operators of the representation are unitary, i.e., 〈Ax, Ay〉 = 〈x, y〉 [28].

In what follows we recall the definition of Hermitian inner product.

Definition 2.3.2. [38] A Hermitian inner product on a complex vector space V is a complex-

valued bilinear form on V which is antilinear in the second slot, and is positive definite.

That is, it satisfies the following properties, where z denotes the complex conjugate of z.

1. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 and 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉

2. 〈ax, y〉 = a〈x, y〉 and 〈x, ay〉 = a〈x, y〉

3. 〈x, y〉 = 〈y, x〉
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4. 〈x, x〉 ≥ 0, with equality only if x = 0

Note the inner product defines a metric topology on X by d(x, y) =
√
〈x − y, x − y〉. A

basic example is the form 〈x, y〉 =
∑n

i=1 xiyi in Cn.

A representation T of G in X is said to be (strongly) continuous if g 7→ T (g)x is contin-

uous on G for every x ∈ X. A subspace M ⊂ X is said to be invariant under a representation

T if it is invariant under all operators T (g) of this representation. A representation in a

space X is called irreducible if, except for {0} and X itself, the space X admits no subspace

invariant under the representation. A set {Tα} of representations of the group G is called a

complete set of irreducible representations of G if (i) the representations Tα are irreducible

and are pairwise inequivalent, and (ii) every irreducible representation of G is equivalent

to one of the representations Tα [28].

2.3.2 Irreducible representations of SO(3)

The rotation group SO(3) has a complete set of pairwise-inequivalent, strongly continuous,

irreducible unitary representations Dl (l = 0, 1, 2, · · · ) of dimension 2l + 1 [20, 38], which

can be defined by means of the Wigner D-functions Dl
mn : SO(3) → C, with Dl : R 7→

[Dl
mn(R)], where [Dl

mn(R)] denotes the (2l + 1) × (2l + 1) matrix with entries Dl
mn(R) (−l ≤

m ≤ l,−l ≤ n ≤ l).

The Wigner D-functions are given by the following formulas [18, 20, 40].

Dl
mn(R(ψ, θ, φ)) = dl

mn(θ)e−i(mψ+nφ), (2.26)

where

dl
mn(θ) =

min{l−n, l+m}∑
k=max{m−n, 0}

(−1)k √(l + m)!(l − m)!(l + n)!(l − n)!
k!(l − n − k)!(l + m − k)!(k − m + n)!

×

(
cos

θ

2

)2l−n+m−2k (
sin

θ

2

)2k−m+n

. (2.27)
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and the Wigner D-functions satisfy the identities

Dl
mn(R1R2) =

l∑
p=−l

Dl
mp(R1)Dl

pn(R2), (2.28)

Dl
mn(R−1) = Dl

nm(R) (2.29)

for all rotations R, R1, R2 ∈ SO(3), l = 0, 1, 2, · · · , −l ≤ m ≤ l, and −l ≤ n ≤ l.

2.4 Material tensors and pseudotensors

2.4.1 Tensors and pseudotensors

Let V be the translation space of the three-dimensional physical space E3, and let Vr =

V × · · · × V (r copies), where r ≥ 2. A mapping H : Vr → R1 is multilinear if it is linear

with respect to each of its vector arguments, i.e.,

H[v1, · · · , vi + αv′i , · · · , vr] = H[v1, · · · , vi, · · · , vr] + αH[v1, · · · , v′i , · · · , vr] (2.30)

for each vi (1 ≤ i ≤ r), v′i ∈ V and α ∈ R1. In mathematics such multilinear mappings are

called rth-order tensors.¬ Let u1, · · · ,ur be in V . The tensor product of u1, · · · ,ur is the

rth-order tensor u1 ⊗ · · · ⊗ ur : Vr → R1 defined by

u1 ⊗ · · · ⊗ ur[v1, · · · , vr] = (u1 · v1) · · · (ur · vr) for each (v1, · · · , vr) ∈ Vr. (2.31)

We call tensor products of vectors simple tensors. Under the usual definition of addition

and of scalar multiplication of mappings, the set of rth-order tensors clearly forms a linear

space over R1, which we denote by V⊗r := V ⊗ · · · ⊗ V (r copies) and call the space of

rth-order tensors.

Let e1, e2, and e3 constitute a right-handed orthonormal basis in V . It is easy to see that

every H ∈ V⊗r can be written in the form

H = Hi1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir (2.32)
¬In what follows we use the word “tensor” in two senses: (i) a multilinear mapping as defined in (2.30)

for some r ≥ 2; (ii) as in “material tensor”, a multilinear mapping in the preceding sense that further obeys
the law of transformation (2.38).

23



where the Einstein summation convention is in force and

Hi1i2···ir = H[ei1 , ei2 , · · · , eir ]. (2.33)

We define an inner product < ·, ·> on V⊗r by requiring that

<u1 ⊗ · · · ⊗ ur,w1 ⊗ · · · ⊗ wr> = (u1 · w1) · · · (ur · wr). (2.34)

Clearly simple tensors of the form ei1 ⊗ ei2 ⊗ · · · ⊗ eir , where each suffix runs over the

indices 1, 2, and 3, constitute an orthonormal basis in V⊗r. Hence dim V⊗r = 3r. For

H = Hi1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir and K = K j1 j2··· jr e j1 ⊗ e j2 ⊗ · · · ⊗ e jr , (2.35)

we have

<H, K> = Hi1i2···ir Ki1i2···ir . (2.36)

Each orthogonal linear transformation Q on V induces an orthogonal linear transforma-

tion Q⊗r : V⊗r → V⊗r defined by

Q⊗r(u1 ⊗ · · · ⊗ ur) = Qu1 ⊗ · · · ⊗ Qur, (2.37)

for all u1, · · · ,ur ∈ V .

In continuum physics, many attributes of material points are characterized by multilin-

ear mappings. Let a physical attribute Π of a given material point P be described by an

rth-order tensor H. When the material point P undergoes a rotation or a rotation followed

by an inversion defined by Q ∈O(3), the multilinear mapping that characterizes its attribute

Π changes from H to TQH. We say that Π is characterized by a material tensor H if

TQH = Q⊗r H, (2.38)
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and by a material pseudotensor H if 

TQH = (det Q)Q⊗r H. (2.39)

Particularly, we obtain the effects of inversion on material tensors and pseudotensors as

follows. For an rth-order material tensor H,

TIH = I⊗r H = I⊗r(Hi1···ir ei1 ⊗ · · · ⊗ eir )

= Hi1···ir Iei1 ⊗ · · · ⊗ Ieir

= Hi1···ir (−ei1) ⊗ · · · ⊗ (−eir ) = (−1)r H. (2.40)

For an rth-order pseudotensor H,

TIH = (det I)I⊗r H = −I⊗r(Hi1···ir ei1 ⊗ · · · ⊗ eir )

= −Hi1···ir Iei1 ⊗ · · · ⊗ Ieir

= −Hi1···ir (−ei1) ⊗ · · · ⊗ (−eir ) = (−1)r+1H. (2.41)

In continuum mechanics, the stress (T) and strain (E) inside a solid body are described

both by second-order tensors, and are related in a general linear elastic material by a fourth-

order elasticity tensor (C) and T = C[E] [9]. The Levi-Civita symbol εi jk = (ei × e j) · ek

is a third order pseudotensor [10]. Here the cross product is taken with respect to the

orthonormal basis {e1, e2, e3}. And εi jk can be written as:

εi jk =


1, if (i, j, k) is a cyclic (even) permutation of (1, 2, 3);

−1, if (i, j, k) is a non-cyclic (odd) permutation of (1, 2, 3);

0, otherwise.

(2.42)

For brevity, we use TQ when it acts on both material tensors and pseudotensors with linear transforma-
tion Q as in Eqs. (2.38) and in (2.39). Meanwhile this symbol will be also used as the ODF after the linear
transformation Q in Chapter 4, in which case it only depends on Q, nothing to do with material tensors or
pseudotensors. The readers should be beware of the difference in the context.
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Particularly, scalars are tensors of zeroth order and vectors are tensors of first order.

Mass and volume of a body are scalars. And vectors like velocity, acceleration and force

are first-order tensors. Similarly, pseudoscalars are pseudotensors of zeroth order and pseu-

dovectors are pseudotensors of first order. A prime example of pseudovector is the mag-

netic field. The magnetic flux is the result of the dot product between the surface normal (a

vector) and the magnetic field (a pseudovector). Hence the magnetic flux is a pseudoscalar.

The gyration tensor, which describes optical activity, is a second-order symmetric pseu-

dotensor. The Righi-Leduc effect, which concerns the effects of a magnetic field on thermal

conductivity, is described by a third-order pseudotensor [16].

2.4.2 Complexification of tensor space

Let Vc = {u+
√
−1v : u ∈ V, v ∈ V} be the complexification of V [19, 34]. We equip Vc with

the Hermitian product induced by the inner product in V for real vectors. The Hermitian

product of two vectors w = (w1,w2,w3) and z = (z1, z2, z3) in Vc is given by <w, z> = wizi

for i = 1, 2, 3. Each orthogonal linear transformation Q on V has a natural extension to a

linear transformation on Vc, which we still denote by Q, defined as follows:

Q(u +
√
−1v) = Qu +

√
−1Qv (2.43)

for each u, v in V . As each transformation Q : V → V is orthogonal, its extension Q :

Vc → Vc is unitary.

Let V⊗r
c be the complexification of V⊗r. It is clear that V⊗r

c = Vc ⊗ Vc ⊗ · · · ⊗ Vc (r

factors). We equip V⊗r
c with the Hermitian product satisfying (2.34) for all u1, · · · ,ur and

v1, · · · , vr in Vc, which is induced by the Hermitian product on Vc. Under this Hermitian

product, for two rth-order tensors H, K as in (2.35), we obtain the following formula as an

extension of (2.36):

<H, K> = Hi1i2···ir Ki1i2···ir . (2.44)
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Similarly each operator Q ∈ O(3) on Vc induces a linear transformation Q⊗r on V⊗r
c defined

by (2.37) for all u1, · · · ,ur in Vc.

The mappings Φr : O(3) → GL(V⊗r
c ), Q 7→ Q⊗r (cf. (2.38) for material tensors) and

Φp : O(3) → GL(V⊗r
c ), Q 7→ (det Q)Q⊗r (cf. (2.39) for material pseudotensors) are repre-

sentations of O(3) on V⊗r
c . To see this, it is sufficient to show that Φp is indeed a repre-

sentaion of O(3) (the proof for Φr is similar but simpler). Let E be the identity in O(3),

clearly (det E)E⊗r = E⊗r is an identity operator on V⊗r
c by (2.37). And for Q1,Q2 ∈ O(3),

det (Q1Q2)(Q1Q2)⊗r = (det Q1)(det Q2)Q⊗r
1 Q⊗r

2 = (det Q1)Q⊗r
1 (det Q2)Q⊗r

2 . Hence by Defini-

tion (2.3.1) Φp is a representation of O(3).

Moreover, the representations Φr and Φp are unitary and continuous. Indeed, by Eqs.

(2.31) and (2.37), since Q : Vc → Vc is unitary, both Q⊗r and (det Q)Q⊗r : V⊗r
c → V⊗r

c are

unitary. As for continuity of the representations Φr and Φp, note that the matrix elements

of Q⊗r and (det Q)Q⊗r under the basis {ei1 ⊗ ei2 ⊗ · · · ⊗ eir : 1 ≤ ik ≤ 3 for k = 1, · · · r} are

polynomial functions of Qi j, the matrix elements of Q under the basis e1, e2, e3.

Copyright c©Wenwen Du 2015
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Chapter 3 Decomposition formulas for tensors and pseudotensors under O(3)

3.1 A complete set of irreducible representations of O(3)

We have introduced some basic concepts of group representations and the irreducible rep-

resentations of SO(3). In this section, we will present the irreducible representations of

O(3).

The irreducible representations of the orthogonal group O(3), which is compact, can be

obtained from those of SO(3). The rotation group SO(3) is a normal subgroup of index two

in O(3). The left coset decomposition of O(3) is O(3) = {SO(3), ISO(3)}, where I is the

inversion.

Theorem 3.1.1. A complete set of irreducible unitary representations of O(3) is given by

D±l of dimension 2l + 1 (l = 0, 1, 2, · · · ), which are defined by D±l : Q 7→ [Dl,±
mn(Q)] (−l ≤

m ≤ l,−l ≤ n ≤ l), where Q ∈ O(3), and

Dl,+
mn(Q) =


Dl

mn(R), if Q = R ∈ SO(3);

Dl
mn(R), if Q = IR ∈ ISO(3).

(3.1)

Dl,−
mn(Q) =


Dl

mn(R), if Q = R ∈ SO(3);

−Dl
mn(R), if Q = IR ∈ ISO(3).

(3.2)

We shall need the following lemma for our proof of the theorem.

Lemma 3.1.2. Let Zc be a finite-dimensional complex vector space. Let D̃ : O(3) →

GL(Zc) be an irreducible unitary representation of O(3) on Zc. Then D̃(I) = λE for some

λ ∈ C; here E is the identity operator in Zc.
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Proof of Lemma 3.1.2. By the fundamental theorem of algebra D̃(I), as a linear operator,

has at least one eigenvalue. Let λ be an eigenvalue of D̃(I), and let Z1 = {x ∈ Zc : D̃(I)x =

λx}. Since λ is an eigenvalue, Z1 is not empty. Choose x ∈ Z1; then D̃(I)x = λx. Let Q ∈

O(3). Since I commutes with all elements of O(3), we have D̃(I)D̃(Q)x = D̃(Q)D̃(I)x =

D̃(Q)λx = λD̃(Q)x for any Q ∈ O(3). Thus D̃(Q)x ∈ Z1 for any Q ∈ O(3). Since D̃ is

irreducible, we conclude that Z1 = Zc. Thus we have D̃(I)x = λx for all x ∈ Zc, and this

completes the proof. �

Proof of Theorem 3.1.1. [1, 24] Let D̃ be a finite-dimensional irreducible unitary repre-

sentation of O(3). By Lemma 3.1.2 and the fact that D̃(I)2 = D̃(I2) = D̃(E) = E, we

have D̃(I) = ±E. It follows that D̃|SO(3) is still irreducible. Indeed, if it is reducible in

space Zc and has Z′ ⊂ Zc as a non-zero proper subspace on which D̃|SO(3) is invariant,

then D̃|O(3) is irreducible in Z′ and thus D̃|O(3) is reducible in Zc, which contradicts the

assumption. Therefore D̃|SO(3) � Dl for some l = 0, 1, 2, · · · . With the fact D̃(I) = ±E,

we have D̃(R) = Dl(R) and D̃(IR) = ±Dl(R) for any R ∈ SO(3). It follows that for each

l = 0, 1, 2, ..., there are two irreducible representations of O(3), namely D+
l , D−l which are

defined by (3.1) and (3.2).

The representationsD±l are not only irreducible, but they are also pairwise-inequivalent,

continuous and unitary, which can be easily seen by the relations between D±l and Dl and

the fact thatDl has these properties.

Furthermore, the family of {D±l } is a complete set of irreducible representations of the

orthogonal group (O(3)). To show this, we need to show every irreducible representation

of O(3) is equivalent to one of the representations D±l which are irreducible and pairwise

inequivalent. Indeed, let T be an irreducible unitary representation of O(3). Then T |SO(3)

has to be equivalent to one of Dl by the fact that the family {Dl} is a complete set of

irreducible unitary representations of SO(3). Without loss of generality, say T |SO(3) is
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equivalent toDk. Because T (I) = ±E (Lemma 3.1.2), T is equivalent toD+
k orD−k . �

Remark: We can also obtain expressions of the two familiesD+
l ,D−l of irreducible repre-

sentations of O(3) by a general theorem as follows. Let {T i
G1
} and {T µ

G2
} be complete sets

of irreducible unitary representations of finite or compact groups G1 and G2, respectively.

Then a complete set of irreducible unitary representations of the direct product G1 × G2

is given by the family {T i
G1
⊗ T µ

G2
} of tensor products of representations in {T i

G1
} and {T µ

G2
}

[15].

The table of irreducible representations for Ci = {E, I} is given as follows [37]:

Ci e i

D1 1 1

D2 1 −1

(3.3)

Since O(3) can be written as the direct product of Ci and SO(3) (i.e. O(3) = Ci×SO(3)),

the matrix elements of the irreducible representations of O(3) are given by products as

follows:
Q ∈ O(3) Q = R ∈ SO(3) Q = IR ∈ ISO(3)

Dl,+
mn(Q) 1 × Dl

mn(R) 1 × Dl
mn(R)

Dl,−
mn(Q) 1 × Dl

mn(R) −1 × Dl
mn(R)

(3.4)

Of course, (3.4) agrees with (3.1) and (3.2).

3.2 Characters of the irreducible representations of O(3)

Let χ±l (Q) = tr[Dl,±
mn(Q)] and χl(R) = tr[Dl

mn(R)] be the characters of the representations

D±l of O(3) and Dl of SO(3), respectively. Since elements in the orthogonal group can be

considered as rotations or rotations followed by inversions, by Theorem 3.1.1 we have

χ±l (R(n, ω)) = tr[Dl,±
mn(R(n, ω))] = tr[Dl

mn(R(n, ω))] = χl(R(n, ω)) (3.5)

30



χ+
l (IR(n, ω)) = tr[Dl,+

mn(IR(n, ω))] = tr[Dl
mn(R(n, ω))] = χl(R(n, ω))

= −tr[Dl,−
mn(IR(n, ω))] = −χ−l (IR(n, ω)) (3.6)

where [20],

χl(R(n, ω)) = 1 + 2
l∑

k=0

cos kω =


sin(l + 1

2 )ω

sin 1
2ω

for ω , 0

2l + 1 for ω = 0

(3.7)

In summary,

χ±l (R(n, ω)) = χl(R(n, ω)) (3.8)

χ+
l (IR(n, ω)) = −χ−l (IR(n, ω)) = χl(R(n, ω)) (3.9)

By direct computation, we find that∫
O(3)
|χ+

l |
2dg =

∫
O(3)
|χ−l |

2dg = 2
∫

SO(3)
|χl|

2dg

= 2 ·
1

16π2

∫
SO(3)
|χl|

2dV = 2 ·
1

16π2

∫
SO(3)
|χl|

2 sin θdψdθdφ

= 2 ·
1

16π2

∫
SO(3)
|χl|

24 sin2 ω

2
sinΘdωdΘdΦ

= 2 ·
1

16π2

∫ 2π

0

∫ π

0
4sinΘdΘdΦ

∫ π

0
|χl|

2 sin2 ω

2
dω

= 2 ·
16π
16π2

∫ π

0
|χl(ω)|2 sin2 ω

2
dω

=
2
π

∫ π

0
|χl(ω)|2 sin2 ω

2
dω

= 1, (3.10)

where we have appealed to the axis-angle (n(Θ,Φ), ω) parametrization of rotations (cf.

(2.25)).

This also shows that the representationD±l is irreducible.
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Remark: As we have discussed earlier, the orthogonal group O(3) can be taken as the

disjoint union of SO(3) and ISO(3), each of which has a natural Riemannian-manifold

structure. Pertaining to the Riemannian metric the orthogonal group has a bi-invariant

volume measure (thus also a Haar measure) V, which is related to the normalized Haar

measure g by the formulaV = 16π2g. Here we use the measure g instead ofV to conform

to standard practice in the theory of group representations, i.e., let the compact group in

question have unit group volume.

The family of pairwise-inequivalent, continuous, irreducible unitary representationsD±l

(l = 0, 1, 2, · · · ) is complete, i.e., any irreducible unitary representation of the orthogonal

group is equivalent to one of the D±l ’s. In particular, let Q 7→ Q⊗r|Zc be an irreducible

unitary representation of the orthogonal group on Zc which is equivalent to D+
k or D−k .

There exists then a basis Am (−k ≤ m ≤ k) in Zc such that

Q⊗r Am =

k∑
p=−k

Dk,±
pm(Q)Ap. (3.11)

By taking complex-conjugate on both sides of the preceding equation, we see that there

also exists a basis Bm = Am (−k ≤ m ≤ k) in Zc such that

Q⊗r Bm =

k∑
p=−k

Dk,±
pm(Q)Bp =

k∑
p=−k

Dk,±
mp(QT )Bp, (3.12)

where we have appealed to Eq. (2.29). The mapping Q 7→ [Dl,±
mn(Q)] is none other than the

contragradient representation ofD±l ; hence it is also irreducible. We say that the tensors Bm

(−k ≤ m ≤ k) constitute an irreducible tensor basis (with respect to the orthogonal group

O(3)), because they form the basis for an irreducible representation of O(3).

Let L2(O(3)) be the Hilbert space of complex-valued square-integrable functions de-

fined on the orthogonal group. Note that all Dl,±
pm functions belong to L2(O(3)). The inner

product < ·, ·> on L2(O(3)) is defined by

< f , g> =

∫
O(3)

f (R)g(R)dg (3.13)
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for all f , g in L2(O(3)). Since the orthogonal group is compact, it follows from the theory of

group representations that the functions Dl,±
mn(·), being the matrix elements of a complete set

of mutually-inequivalent, irreducible, continuous unitary representations of the orthogonal

group, satisfy the orthogonality relation

<Dl,+
mn,D

l′,+
m′n′ > =

∫
O(3)

Dl,+
mn(Q)Dl′,+

m′n′(Q)dg =
1

2l + 1
δll′δmm′δnn′ , (3.14)

<Dl,−
mn,D

l′,−
m′n′ > =

∫
O(3)

Dl,−
mn(Q)Dl′,−

m′n′(Q)dg =
1

2l + 1
δll′δmm′δnn′ , (3.15)

where the Kronecker delta (δi j) is defined as

δi j =


1, if i = j;

0, if i , j.
(3.16)

and

<Dl,+
mn,D

l′,−
m′n′ > = <Dl,−

mn,D
l′,+
m′n′ > = 0, (3.17)

and they constitute an orthogonal basis in L2(O(3)). From the orthogonality relations of

the matrix elements follow the orthogonality relations of the characters (denoted by χ±l ),

namely:

<χ+
l , χ

+
l′ > =

l∑
m=−l

l′∑
m′=−l′

∫
O(3)

Dl,+
mm(Q)Dl′,+

m′m′(Q)dg

=

l∑
m=−l

l′∑
m′=−l′

δll′δmm′

2l + 1
=

l∑
m=−l

δll′

2l + 1
= δll′ . (3.18)

and

<χ−l , χ
−
l′ > = δll′ , <χ+

l , χ
−
l′ > = <χ−l , χ

+
l′ > = 0. (3.19)
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As illustration, we give a proof that <χ+
l , χ

−
l′ > = 0:

<χ+
l , χ

−
l′ > =

l∑
m=−l

l′∑
m′=−l′

∫
O(3)

Dl,+
mm(Q)Dl′,−

m′m′(Q)dg

=

l∑
m=−l

l′∑
m′=−l′

∫
SO(3)

Dl,+
mm(R)Dl′,−

m′m′(R)dg

+

l∑
m=−l

l′∑
m′=−l′

∫
ISO(3)

Dl,+
mm(IR)Dl′,−

m′m′(IR)dg

=

l∑
m=−l

l′∑
m′=−l′

∫
SO(3)

Dl
mm(R)Dl′

m′m′(R)dg

+

l∑
m=−l

l′∑
m′=−l′

∫
SO(3)

Dl
mm(R)(−Dl′

m′m′(R))dg

= 0. (3.20)

3.3 Decomposition of a tensor or pseudotensor into its irreducible parts under O(3)

A subspace Z ⊂ V⊗r (See Sec 2.4) is said to be invariant under the action of the orthogo-

nal group (O(3)) if it remains invariant under Q⊗r for each operator Q ∈ O(3). If Z is an

invariant subspace of V⊗r under the action of the orthogonal group, then its complexifica-

tion Zc is an invariant subspace of V⊗r
c . Since every finite-dimensional continuous unitary

representation of a compact group is completely reducible, each tensor representation of

the orthogonal group ρ : Q 7→ Q⊗r
|Zc can be decomposed as a direct sum of irreducible

subrepresentations, each of which is equivalent to someD±k (k := 1, 2, · · · , r):

Zc = m+
0D

+
0 + m+

1D
+
1 + · · · + m+

rD
+
r + m−0D

−
0 + m−1D

−
1 + · · · + m−rD

−
r , (3.21)

where mk is the multiplicity ofD±k in the decomposition.

Let χρ be the character of the representation ρ : Q 7→ Q⊗r|Zc with Q ∈ O(3), which

decomposes into the direct sum given in Eq. (3.21). This decomposition dictates that we

have

χρ = m+
0χ

+
0 + m+

1χ
+
1 + · · · + m+

r χ
+
r + m−0χ

−
0 + m−1χ

−
1 + · · · + m−r χ

−
r . (3.22)
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By Eqs. (3.18) and (3.22) we obtain the following formula for the multiplicities m±k

(k = 0, 1, ..., r) in the decomposition (3.21); for brevity, we shall write χ(ω) = χ(R(n, ω))

and χ(I, ω) = χ(IR(n, ω)):

m±k = <χρ, χ
±
k > =

∫
O(3)

χρχ
±
k dg =

∫
SO(3)

χρχ
±
k dg +

∫
ISO(3)

χρχ
±
k dg

=
1

16π2

∫ 2π

0

∫ π

0

∫ π

0
4χρ(ω)χ±k (ω) sin2 ω

2
sin ΘdΘdΦdω

+
1

16π2

∫ 2π

0

∫ π

0

∫ π

0
4χρ(I, ω)χ±k (I, ω) sin2 ω

2
sin ΘdΘdΦdω

=
1

16π2

∫ π

0
(
∫ 2π

0

∫ π

0
4 sin ΘdΘdΦ)χρ(ω)χ±k (ω) sin2 ω

2
dω

+
1

16π2

∫ π

0
(
∫ 2π

0

∫ π

0
4 sin ΘdΘdΦ)χρ(I, ω)χ±k (I, ω) sin2 ω

2
dω

=
16π
16π2

∫ π

0
χρ(ω)χ±k (ω) sin2 ω

2
dω +

16π
16π2

∫ π

0
χρ(I, ω)χ±k (I, ω) sin2 ω

2
dω

=
1
π

∫ π

0
χρ(ω)χ±k (ω) sin2 ω

2
dω +

1
π

∫ π

0
χρ(I, ω)χ±k (I, ω) sin2 ω

2
dω, (3.23)

where the fourth equality is obtained by using axis-angle parameters ([18, 40]; see also

(2.25)) and χ±k denotes the complex conjugate of χ±k ; here χ±k = χ±k because χ±k is real.

Hence, once the character χρ of a representation ρ : Q 7→ Q⊗r|Zc is obtained, the

decomposition formula for the representation follows immediately (see some examples in

[20, 42], particularly on rotational groups).

In this work we will specify more about the decomposition formula (3.21) for ten-

sor representations and its counterpart for pseudotensor representations of the orthogonal

group through the following lemma and theorem.

Lemma 3.3.1. For k ≥ 1, let Z be a (2k + 1)-dimensional subspace of the tensor space

V⊗r invariant under R⊗r for each R ∈ SO(3), and let Zc be its complexification. Suppose

the representation R 7→ R⊗r|Zc is equivalent to the irreducible unitary representation Dk.

Then Zc is invariant under TQ : V⊗r
c → V⊗r

c for each Q ∈ O(3), where TQ = Q⊗r for ma-

terial tensors and TQ = (det Q)Q⊗r for material pseudotensors, respectively. For material
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tensors, the representation Q 7→ TQ|Zc is equivalent toD+
k if r is even and toD−k if r is odd.

For material pseudotensors, the representation Q 7→ TQ|Zc is equivalent to D+
k if r is odd

and toD−k if r is even.

Proof. Under both transformation laws (2.38) and (2.39), we have TIH = ±H for any

H ∈ Zc; cf. (2.40) and (2.41). Since Zc is invariant under R⊗r, it is also invariant under

(IR)⊗r = I⊗r R⊗r and (det (IR))(IR)⊗r = −I⊗r R⊗r. It follows that Zc is invariant under TQ

for each Q ∈ O(3).

Consider first the case of material tensors, which obey the transformation law TQ =

Q⊗r. Let ρ : O(3) → GL(Zc) be the representation Q 7→ Q⊗r
|Zc. By the hypothesis that

the representation R 7→ R⊗r|Zc is equivalent to the irreducible unitary representationDk of

SO(3), there exists an orthonormal basis Hm
¬ (−k ≤ m ≤ k) such that

R⊗r Hm =

k∑
p=−k

Dk
mp(RT )Hp for each R ∈ SO(3). (3.24)

It follows from (2.40) and (3.24) that

(IR)⊗r Hm = I⊗r (R⊗r Hm
)

= (−1)r
k∑

p=−k

Dk
mp(RT )Hp for each R ∈ SO(3). (3.25)

We obtain from (3.24) and (3.25) that

χρ(Q) =


χk(R) for Q = R

(−1)rχk(R) for Q = IR

=


χ+

k (Q) if r is even

χ−k (Q) if r is odd.
(3.26)

¬Man and Huang [20] showed the existence of an orthonormal set of irreducible basis tensors Hk,s
m (−k ≤

m ≤ k, 1 ≤ s ≤ nk where nk is the multiplicity ofDk) which together span Zc, and they developed a procedure
to determine explicitly Hk,s

m .
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Hence we conclude that for material tensors the representation Q 7→ TQ|Zc is equivalent

toD+
k if r is even and toD−k if r is odd.

For pseudotensors, which observe the transformation law TQ = (det Q)Q⊗r, instead of

(3.25) we derive from (2.41) the formula that

(det (IR))(IR)⊗r Hm = (−1)r+1
k∑

p=−k

Dk
mp(RT )Hp for each R ∈ SO(3), (3.27)

from which it follows that the representation TQ|Zc is equivalent to D+
k if r is odd and to

D−k if r is even. �

Corollary 3.3.2. The representation Q 7→ TQ|Zc described in Lemma 3.3.1 satisfy the

condition: For each Q ∈ O(3),

TQHm =



k∑
p=−k

Dk,+
mp(QT )Hp, for even order [r] and odd order [p];

k∑
p=−k

Dk,−
mp(QT )Hp, for odd order [r] and even order [p].

(3.28)

Here [r] denotes material tensors (regular) and [p] denotes pseudotensors.

Proof. For material tensors, we have from (3.1), (3.2) and (3.24) that

TQHm = Q⊗r Hm =

k∑
p=−k

Dk
mp(QT )Hp =

k∑
p=−k

Dk,±
mp(QT )Hp (3.29)

for each Q = R ∈ SO(3).
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Now for each Q = IR ∈ ISO(3), it follows from (3.1), (3.2) and (3.25) that

TQHm = Q⊗r Hm = (IR)⊗r Hm

= (−1)r
k∑

p=−k

Dk
mp(RT )Hp

=



k∑
p=−k

Dk
mp(RT )Hp if r is even

−

k∑
p=−k

Dk
mp(RT )Hp if r is odd

=



k∑
p=−k

Dk,+
mp(IRT )Hp if r is even

k∑
p=−k

Dk,−
mp(IRT )Hp if r is odd

=



k∑
p=−k

Dk,+
mp(QT )Hp if r is even

k∑
p=−k

Dk,−
mp(QT )Hp. if r is odd.

(3.30)

Combining (3.29) and (3.30), we obtain (3.28) for material tensors.

For the case of pseudotensors, (3.28) can be proved by (3.27), together with (3.1), (3.2)

and (3.24).

Theorem 3.3.3. Let Z ⊂ V⊗r be a subspace invariant under the action of the orthogonal

group O(3), and let Zc be its complexification. For material tensors (reps. pseudotensors),

which obey transformation law (2.38) (resp. (2.39)), Zc is decomposed into its irreducible

parts under O(3) as

Zc =


n0D

+
0 + n1D

+
1 + · · · + nrD

+
r if r is even (resp. odd)

n0D
−
0 + n1D

−
1 + · · · + nrD

−
r if r is odd (resp. even),

(3.31)
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where the multiplicities nk (i = 0, 1, · · · , r) are exactly those that appear in the decomposi-

tion

Zc = n0D0 + n1D1 + · · · + nrDr (3.32)

under the rotation group SO(3), where some of the nk’s may be zero but
∑r

k=0 nk(2k + 1) =

dim Zc. In the decomposition formula (3.31), nr ≤ 1; when Zc = V⊗r
c , nr = 1.

Proof. Since SO(3) ⊂ O(3), Zc is invariant under SO(3). Under SO(3), the decomposition

of Zc into its irreducible parts is of the form (3.32) [20, 28, 38], where the multiplicity nk

(k = 0, 1, · · · , r) is the number of times that the irreducible representation Dk appears in

the representation R 7→ R⊗r|Zc. By applying Lemma 3.3.1 to each irreducible invariant

subspace of Zc under SO(3), we obtain decomposition (3.31) of Zc under O(3) for material

tensors (reps. pseudotensors).

As for the last assertion of the theorem, it suffices to prove that nr = 1 in (3.32)

when Zc = V⊗r
c , because the value of nr in (3.31) is the same as that in (3.32) and the

value of nr in the decomposition of V⊗r
c is clearly an upper bound for its counterpart in

the decomposition of any of its invariant subspaces. Let χl and χρ be the character of

the irreducible representation Dl and of the representation Q 7→ Q⊗r, respectively. Note

that χl(R(n, ω)) =
∑l

k=−l e
√
−1kω (l = 0, 1, · · · ), χρ(R(n, ω)) = (e

√
−1ω + 1 + e−

√
−1ω)r, and

χρ = n0χ0 + n1χ1 + · · · + nrχr. Clearly nr is equal to the coefficient of the term e
√
−1rω in

χρ(R(n, ω)), which is 1. �

To specify the various types of tensors (or tensor spaces), let V⊗2 be the tensor product

V ⊗ V , let [V⊗2] stand for the space of symmetric second-order tensors, and let [[V⊗2]⊗2]

denote the symmetric square of [V⊗2] (i.e., the symmetrized tensor product of [V⊗2] and

[V⊗2]) [20]. And we use the same notations for pseudotensors. Later in this study, we

will apply the representation theorem to elasticity tensors (or stiffness tensor) C, which are

fourth-order tensors with the major and minor symmetries [11, 23]. Hence C ∈ [[V⊗2]⊗2],

39



and C can be expressed in the Voigt notation [41] with 21 independent components as

follows:

C =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66



. (3.33)

And tensors in [[V⊗2
c ]⊗2] can be decomposed into its irreducible parts under SO(3) as fol-

lows [20]:

[[V⊗2
c ]⊗2] = 2D0 + 2D2 +D4. (3.34)

Here the non-trivial multiplicities are: n0 = 2, n2 = 2, and n4 = 1.

By Theorem 3.3.3, tensors in [[V⊗2
c ]⊗2] (e.g. fourth-order elasticity tensor) can be de-

composed into its irreducible parts under O(3) as

[[V⊗2
c ]⊗2] = 2D+

0 + 2D+
2 +D+

4 . (3.35)

For pseudotensors in [[V⊗2
c ]⊗2], the corresponding decomposition formula under O(3)

is:

[[V⊗2
c ]⊗2] = 2D−0 + 2D−2 +D−4 . (3.36)

Copyright c©Wenwen Du 2015
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Chapter 4 Orientation measures on O(3) and the extended representation theorem

4.1 SO(3)-based classical texture analysis

In classical texture analysis, while material scientists usually characterize crystallographic

texture by the orientation distribution functions (ODF), they also talk about ideal textures,

where all crystallites have the same orientation, as limits of suitable sequences of ODFs.

Mathematically it is more convenient to present classical texture analysis by using orienta-

tion measures [17, 21] as the starting point.

Let a reference crystal lattice be given. In classical texture analysis, the orientation

of the crystal lattice at a sampling point X in a polycrystal is described by the rotation

R(X) that brings the reference lattice to the lattice at X. The basic assumption is that there

exists a positive Radon measure ℘, which is called the orientation (probability) measure

[21] and satisfies ℘(SO(3)) = 1, such that for each measurable set A ⊂ SO(3), ℘(A)

gives the probability of finding R(X) ∈ A. When the orientation measure ℘ is absolutely

continuous with respect to the volume measure V := 8π2g, where g is the normalized

Haar measure on SO(3), the Radon-Nikodym derivative d℘/dV is well defined [12]. The

function w : SO(3)→ R defined by

w(R) =
d℘
dV

(R) for each R ∈ SO(3) (4.1)

is the orientation distribution function (ODF) in classical texture analysis. In Roe’s pio-

neering paper [32] on quantitative texture analysis, he takes ODFs as functions of the Euler

angles and adopts the normalization∫ 2π

0

∫ π

0

∫ 2π

0
w(ψ, θ, φ) sin θ dψdθdφ =

∫
SO(3)

w dV = 1, (4.2)

which has since become standard practice for materials scientists who follow Roe’s ap-

proach in texture analysis.
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When the ODF is square-integrable, i.e., w ∈ L2(SO(3)), it can be expanded (see [17]

and the references therein) as an infinite series of Wigner D-functions Dl
mn : SO(3) → C

(see (2.26)):

w(R(ψ, θ, φ)) =
1

8π2 +

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl
mnDl

mn(R(ψ, θ, φ)), (4.3)

where the Wigner D-functions satisfy (2.28), (2.29),

Dl
mn(R) = (−1)m+nDl

m̄n̄(R), (4.4)

where m̄ = −m and n̄ = −n, and the orthogonality relations∫
SO(3)

Dl
mn(R)Dl′

m′n′(R) dV =
8π2

2l + 1
δll′δmm′δnn′ . (4.5)

As the ODF (w) is real-valued, the coefficients in the preceding expansion satisfy the

following condition [18],

cl
mn = (−1)m+ncl

m̄n̄. (4.6)

In Roe’s notation [32], the series expansion of w is written in the form

w(R(ψ, θ, φ)) =
1

8π2 +

∞∑
l=1

l∑
m=−l

l∑
n=−l

WlmnZlmn(cos θ)e−imψe−inθ, (4.7)

where

Wlmn = (−1)m−n

√
2

2l + 1
cl

mn, Zlmn(cos θ) = (−1)m−n

√
2l + 1

2
dl

mn(θ). (4.8)

Central to the theory of texture analysis are [32, 33, 5, 17] the restrictions imposed on

the ODF by texture (or sample) symmetry and crystal symmetry as defined by the groups

Gtex and Gcr, respectively. These restrictions are derived through formulas that describe

how the ODF transforms under rotation of sample and rotation of reference crystal lattice.

Since all the classical restrictions and formulas in this regard will be subsumed by their

counterparts in our O(3)-based theory, we refrain from saying more on them here.
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Figure 4.1: A schematic figure of a polycrystalline aggregate



4.2 Orientation measures on O(3)

With ODFs defined on SO(3), classical texture analysis suffers from the limitation that the

groups of texture and crystal symmetry Gtex and Gcr are restricted to be rotational. Thus,

strictly speaking, all polycrystalline materials with Gcr being improper, which include most

engineering materials (e.g., metals) with important applications, are not covered by the

theory of classical texture analysis. That in applications of texture analysis substituting

an improper Gcr by its proper peer in the same Laue class seems to have often worked

does not validate such an ad hoc practice. On the contrary, such unexpected “successes”

of the classical theory should be explained, and the conditions which render them possible

delineated.

Bunge and his coworkers [5, 6, 7, 8] were the first to introduce ODFs that are defined

on O(3). However, they stopped pursuing further after giving some basic properties of

the ODF that include the restrictions imposed on it by texture and crystal symmetries and

some discussions that concern its measurement by X-ray diffraction. Below we will cite

their work whenever there is overlap with ours.

Henceforth we will assume that orientation probability measures ℘ are defined on O(3).

4.2.1 Orientation measures of single crystals

As illustration and for later use, we will write down the orientation measures of single

crystals which belong to a Laue class that contains all three types of crystals. Let G1,

G2, and G3 be crystallographic point groups of Type I, Type II, and Type III in one such

Laue class, respectively. By observation of Table 2.2, it is clear that we can represent the

structure of each group as follows:

G1 = G ∪ RG where R < G and G is a rotational point group; (4.9)
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G2 = G1 ∪ IG1 = G ∪ RG ∪ IG ∪ IRG; (4.10)

G3 = G ∪ IRG. (4.11)

Let G have order N, and let Rk (k = 1, · · · ,N) be the elements of G. Then RRk

(k = 1, · · · ,N) are the elements of RG. It follows that we can rewrite G1 as:

G1 = {R1, · · · , RN , RR1, · · · , RRN} = {R1, · · · , RN , RN+1, · · · , R2N} (4.12)

where RN+1 = RR1, · · · , R2N = RRN .

It follows that G2 and G3 have the following elements:

G2 = {R1, · · · , RN , RN+1, · · · , R2N , IR1, · · · IRN , IRN+1, · · · , IR2N} (4.13)

G3 = {R1, · · · RN , IRN+1, · · · , IR2N} (4.14)

Let δQ be the Dirac measure at Q ∈ O(3), i.e., for all measurableA ⊂ O(3),

δQ(A) =


1 if Q ∈ A

0 if Q < A
. (4.15)

Consider a single crystal with point group G1 whose orientation with respect to the

chosen reference lattice is specified by a rotation R0. The orientation measure of the single

crystal is [21]:

℘1 =
1

2N

2N∑
i=1

δR0 Ri . (4.16)

Similarly, if the single crystal has symmetry group G2, its orientation measure is given

by

℘2 =
1

4N

 2N∑
i=1

δR0 Ri +

2N∑
i=1

δIR0 Ri

 . (4.17)

45



If the single crystal has symmetry group G3, its orientation measure is:

℘3 =
1

2N

 N∑
i=1

δR0 Ri +

2N∑
i=N+1

δIR0 Ri

 . (4.18)

4.2.2 Transformation formulas for orientation measures. Texture and crystal symme-

tries

Let ℘ and T R℘ be the orientation measure of a polycrystal before and after it undergoes a

rotation R ∈ SO(3), respectively. For each measurableA ⊂ SO(3), clearly we have

(T R℘)(A) = ℘(RTA), (4.19)

where RTA = {RT P : P ∈ A}. In the context of classical texture analysis, transformation

formula (4.19) can be traced back to Roe’s 1965 paper [32], where it is expressed in terms

of the ODF.

Here we allow polycrystals to undergo also roto-inversions, and we extend (4.19) as

follows. Let ℘ and TQ℘ be the orientation measure of a polycrystal before and after it

undergoes a rotation or roto-inversion Q ∈ O(3), respectively. For each measurable A ⊂

O(3), we have

(TQ℘)(A) = ℘(QT
A), (4.20)

where QT
A = {QT P : P ∈ A}. The subgroup Gtex of elements Q ∈ O(3) that observe

TQ℘ = ℘ (4.21)

is the group of texture (or sample) symmetry of the polycrystal.

Likewise, let ℘ and T̃Q℘ be the orientation measure of a polycrystal before and after

the reference crystal lattice undergoes a rotation or roto-inversion Q ∈ O(3), respectively.

For each measurableA, clearly we have

(T̃Q℘)(A) = ℘(AQ), (4.22)
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whereAQ = {QP : P ∈ A}. The subgroup Gcr of elements Q ∈ SO(3) that observe

T̃Q℘ = ℘ (4.23)

is the group of crystal symmetry.
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Figure 4.2: Images of left- and right-handed quartz



4.2.3 Enantiomorphism. Right-handed and left-handed crystals

Type I crystals are enantiomorphic. They can exist in right- and left-handed forms (see

Figure 4.2 ¬). Under inversion, a right-handed crystal becomes a left-handed crystal, and

vice versa. By transformation formula (4.20), we see that

T IδR = δIR, T IδIR = δR for each R ∈ SO(3). (4.24)

Hence we can and we will adopt the convention that right-handed and left-handed Type

1 crystals have the support of their orientation measures in SO(3) and ISO(3), respectively.

A polycrystal which consists of both right- and left-handed crystallites has the support

of its orientation measure in both SO(3) and ISO(3). Let λ, (1 − λ) ∈ [0, 1] be the vol-

ume fraction of right- and left-handed crystallites in the polycrystal, respectively. Under

inversion, the volume fractions of right- and left-handed crystallites in the polycrystal be-

come 1 − λ and λ, respectively. The proportion of right- and left-handed crystallites in the

polycrystal will not change under inversion if and only if λ = 1/2.

Consider a single crystal of Type II. It has a point group of the form G ∪ IG, where

G is a rotational point group. Let G = {R1, · · · , RN}, and let the orientation of the given

single crystal with respect to a chosen reference lattice be specified by a rotation R0. The

orientation measure of the Type II crystal in question is then given by

℘ =
1

2N

 N∑
i=1

δR0 Ri +

N∑
i=1

δIR0 Ri

 . (4.25)

Since ℘(SO(3)) = ℘(ISO(3)) = 1/2, we may take a Type II crystal as a mixture of

right- and left-handed crystallites in equal volume fractions. Moreover, from (4.25) we

clearly have

TI℘ = ℘. (4.26)
¬I am indebted to Dr. S.F. Pavkovic for granting me his permission to reproduce this figure.
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Thus, from the standpoint of texture analysis, we may regard a Type II crystal as a spe-

cial type of mixture of right- and left-handed crystallites that is invariant under inversion. It

is also apparent that (4.26) remains valid for the orientation measure of any polycrystalline

aggregate of Type II crystallites.

Each single crystal of Type III has a point group of the form G ∪ IRG. While its

orientation measure ℘ is not invariant under inversion, it still satisfies

℘(SO(3)) = ℘(ISO(3)) =
1
2
. (4.27)

Thus, from the standpoint of texture analysis, we may take a Type III single crystal as

a mixture of right- and left-handed crystallites in equal volume fractions.

4.3 Orientation distribution functions on O(3)

When the orientation measure ℘ is absolutely continuous with respect to the volume mea-

sureV on O(3) (see Section 2.2.3), the Radon-Nikodym derivative d℘/dV is well defined.

The function w : O(3)→ R1 defined by

w(Q) =
d℘
dV

(Q) for each Q ∈ O(3) (4.28)

is the orientation distribution function (ODF). Since the ODFs are [30] dense in the space

of orientation measures (i.e., positive Radon measures ℘ on O(3) with ℘(O(3)) = 1) under

the weak* topology, there is no loss in generality to work with ODFs instead of orientation

measures.

All the basic concepts and formulas introduced above through orientation measures

can be easily translated into their counterparts in terms of ODFs. For example, let w be

the ODF that characterizes the texture of a given polycrystal. Let TQw and T̃Qw be the

ODF of the polycrystal after it undergoes a rotation or roto-inversion and after the reference
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lattice undergoes undergoes a rotation or roto-inversion Q ∈ O(3), respectivelyy. Parallel

to (4.20) and (4.22), we have

(TQw)(P) = w(QT P) for each P ∈ O(3), (4.29)

and

(T̃Qw)(P) = w(PQ) for each P ∈ O(3). (4.30)

The groups of texture symmetry and crystal symmetry are defined respectively as fol-

lows:

Gtex = {Q ∈ O(3) : TQw = w}, (4.31)

Gcr = {Q ∈ O(3) : T̃Qw = w}. (4.32)

Since O(3) is the disjoint union of SO(3) and ISO(3), we can take an ODF defined on

O(3) as a pair of functions, each of which is defined on SO(3).

Definition 4.3.1. [8] Let w : O(3)→ R1 be the ODF. Define wR/L : SO(3)→ R1 by

wR(R) = w(R), wL(R) = w(IR), for R ∈ SO(3). (4.33)

By transformation formula (4.29), we have

TIw(P) = w(I−1 P) = w(IP) for P ∈ O(3); (4.34)

here TIw(P) denotes the ODF after inversion I of the polycrystal. It follows then from

Definition (4.3.1) that

(TIw)R(R) = (TIw)(R) = w(IR) = wL(R) for R ∈ SO(3), (4.35)

and

(TIw)L(R) = (TIw)(IR) = w(R) = wR(R) for R ∈ SO(3). (4.36)
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The ODF w is determined by the pair (wR,wL) and vice versa. The ODF (wR,wL) of

an aggregate of right-handed crystallites can be written as (wR,wL) = (wo, 0) for some

wo : SO(3) → R1. Under inversion, each right-handed crystallite becomes a left-handed

crystallite. The ODF of the aggregate becomes ((TIw)R, (TIw)L) = (0,wo).

Each improper group of Type II is of the form G = Gp ∪ IGp, where Gp is a rotational

point group. For example, Oh = O ∪ IO, D6h = D6 ∪ ID6. Because I ∈ Gcr, the group of

crystal symmetry, by (4.30), (4.32), and Definition 4.3.1 we have

wR(R) = w(R) = w(RI) = w(IR) = wL(R) for each R ∈ SO(3). (4.37)

We record this simple but important observation as a proposition.

Proposition 4.3.2. The right- and left-handed parts wR and wL of the ODF w of any poly-

crystalline aggregate of Type II crystallites are identical.

4.3.1 Series expansions and texture coefficients

By Theorem 3.1.1 and the theory of group representations [28], each orientation distribu-

tion function w ∈ L2(O(3)) can be expanded as an infinite series in terms of the matrix

elements Dl,±
mn of the complete set of irreducible unitary representationsDl,± of O(3):

w(Q) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,+
mnDl,+

mn(Q) +

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,−
mnDl,−

mn(Q) (4.38)

=



∞∑
l=0

l∑
m=−l

l∑
n=−l

(cl,+
mn + cl,−

mn)Dl
mn(R(ψ, θ, φ)) for Q = R ∈ SO(3)

∞∑
l=0

l∑
m=−l

l∑
n=−l

(cl,+
mn − cl,−

mn)Dl
mn(R(ψ, θ, φ)) for Q = IR ∈ ISO(3),

(4.39)

where the expansion coefficients are called texture coefficients and they satisfy

cl,±
mn = (−1)m+ncl.±

m̄n̄. (4.40)
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Let w0 be an ODF which has all its texture coefficients with l ≥ 1 vanish. By (4.38), we

have

w0 = w0(Q) = c0,+
00 D0,+

00 (Q) + c0,−
00 D0,−

00 (Q) (4.41)

where D0,+
00 (Q) = D0

00(R) = 1 for any Q ∈ O(3), and

D0,−
00 (Q) =


D0

00(R) = 1 for Q = R ∈ SO(3)

−D0
00(R) = −1 for Q = IR ∈ ISO(3).

(4.42)

It follows that

w0(Q) =


c0,+

00 + c0,−
00 for Q ∈ SO(3)

c0,+
00 − c0,−

00 for Q ∈ ISO(3).
(4.43)

and from the normalization condition we have

1 =

∫
O(3)

w0 dV

=

∫
SO(3)

(c0,+
00 + c0,−

00 ) dV +

∫
ISO(3)

(c0,+
00 − c0,−

00 ) dV

= 8π2(c0,+
00 + c0,−

00 ) + 8π2(c0,+
00 − c0,−

00 )

= 16π2c0,+
00 , (4.44)

which implies c0,+
00 =

1
16π2 . Clearly the normalization condition does not put any restriction

on c0,−
00 . It turns out that the coefficient c0,−

00 is determined by the volume fraction of right-

handed crystallites in the polycrystal as we shall see.

By Definition (4.3.1) regarding wR and wL, we have

w(Q) =


wR(R) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,R
mnDl

mn(R(ψ, θ, φ)) for Q = R ∈ SO(3)

wL(R) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,L
mnDl

mn(R(ψ, θ, φ)) for IQ = R ∈ SO(3).

(4.45)

Combining (4.39) and (4.45), we have,

cl,R
mn = cl,+

mn + cl,−
mn, cl,L

mn = cl,+
mn − cl,−

mn. (4.46)
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And thus

cl,+
mn =

1
2

(cl,R
mn + cl,L

mn), cl,−
mn =

1
2

(cl,R
mn − cl,L

mn). (4.47)

When l = 0, by (4.46) we have

c0,R
00 = c0,+

00 + c0,−
00 , c0,L

00 = c0,+
00 − c0,−

00 . (4.48)

Substituting c0,+
00 = 1

16π2 into (4.48), we obtain

c0,R
00 =

1
16π2 + c0,−

00 , c0,L
00 =

1
16π2 − c0,−

00 . (4.49)

Now let λ and 1−λ ∈ [0, 1] be the volume fraction of right- and left-handed crystallites

in the polycrystalline aggregate. We then have

c0,R
00 =

1
16π2 + c0,−

00 =
λ

8π2 , c0,L
00 =

1
16π2 − c0,−

00 =
1 − λ
8π2 . (4.50)

Solving for c0,−
00 , we obtain c0,−

00 =
2λ − 1
16π2 .

For λ ∈ [0, 1], let

w0,λ(Q) =
1

16π2 D0,+
00 (Q) +

(
λ

8π2 −
1

16π2

)
D0,−

00 (Q) for Q ∈ O(3)

=


λ

8π2 for Q ∈ SO(3)

1 − λ
8π2 for Q ∈ ISO(3)

(4.51)

be the ODF which pertains to an aggregate of right- and left-handed crystallites with vol-

ume fractions λ and 1 − λ, respectively, that has all texture coefficients with l ≥ 1 equal to

zero.

Remark: When c0,−
00 = 1

16π2 , we have λ = 1, c0,R
00 = 1

8π2 , while c0,L
00 = 0, i.e, the polycrystal

consists of right-handed crystals. When c0,−
00 = − 1

16π2 , we have λ = 0, c0,R
00 = 0, while
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c0,L
00 = 1

8π2 , i.e, the polycrystal consists of left-handed crystals. When c0,−
00 = 0, we have

λ = 1
2 , c0,R

00 = c0,L
00 = 1

16π2 , i.e, the polycrystal consists of half of right-handed crystals and

half of left-handed crystals. Next we will discuss the case with λ = 1
2 more for aggregates

of Type II and Type III crystallites.

Proposition 4.3.3. The ODF w0,λ is isotropic, i.e., it satisfies TQw0,λ = w0,λ for each Q ∈

O(3) if and only if c0,−
00 = 0 or λ = 1

2 .

Proof. Suppose TQw0,λ = w0,λ for each Q ∈ O(3). For Q = I, we have

T Iw0,λ(Q1) = w0,λ(IT Q1) = c0,+
00 D0,+

00 (IT Q1) + c0,−
00 D0,−

00 (IT Q1)

= c0,+
00 D0,+

00 (IT )D0,+
00 (Q1) + c0,−

00 D0,−
00 (IT )D0,−

00 (Q1)

=


c0,+

00 − c0,−
00 for Q1 ∈ SO(3)

c0,+
00 + c0,−

00 for Q1 ∈ ISO(3).
(4.52)

Comparing the preceding equation with (4.43), we conclude that c0,−
00 = 0, which is

equivalent to λ = 1
2 .

Conversely, suppose c0,−
00 = 0. It follows then from (4.43) and (4.52) that T Iw0,λ = w0,λ.

On the other hand, for each R ∈ SO(3) we have

T Rw0,λ(Q) = w0,λ(RT Q) = c0,+
00 D0,+

00 (RT )D0,+
00 (Q) = c0,+

00 D0,+
00 (Q) = w0(Q) (4.53)

for each Q ∈ O(3). �

Henceforth we shall denote by wiso the isotropic ODF w0, 1
2
, which has all its texture

coefficients vanish, i.e.,

wiso(Q) =
1

16π2 for each Q ∈ O(3). (4.54)
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For aggregates of Type II and of Type III crystallites, we have the normalization condi-

tions

∫
SO(3)

wR(R) dV =
1
2
,

∫
SO(3)

wL(R) dV =
1
2
. (4.55)

Parallel to the series expansion (4.3) for aggregates of Type I crystallites, we have

wR/L(R(ψ, θ, φ)) =
1

16π2 +

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl,R/L
mn Dl

mn(R(ψ, θ, φ)) (4.56)

for aggregates of Type II and of Type III crystallites.

4.4 Main assumption

The main assumption behind Man and Huang’s proof of their representation theorem [20]

is as follows: For each rotation R, each rth-order material tensor H, and each ODF w :

SO(3)→ R1, there holds

R⊗r H(w) = H(TRw), (4.57)

where R⊗r(Hi1···ir (w)ei1 ⊗ · · · ⊗ eir ) = Hi1···ir (w)Rei1 ⊗ · · · ⊗ Reir . As a concrete example

of a tensor function H(·) that satisfies (4.57), consider the orientational average [20] of a

specific r-th order tensor H0 defined by

H(w) = 8π2
∫

SO(3)
Q⊗r H0w(Q)dg(Q). (4.58)
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By appealing to the bi-invariance of the Haar measure, we have

R⊗r H(w) = 8π2
∫

SO(3)
R⊗rQ⊗r H0w(Q)dg(Q)

= 8π2
∫

SO(3)
(RQ)⊗r H0w(Q)dg(Q)

= 8π2
∫

SO(3)
Q̃⊗r H0w(RT Q̃)dg(RT Q̃)

= 8π2
∫

SO(3)
Q̃⊗r H0w(RT Q̃)dg(Q̃)

= 8π2
∫

SO(3)
Q̃⊗r H0TRw(Q̃)dg(Q̃)

= H(TRw), (4.59)

where Q̃ = RQ.

Here we extend Man and Huang’s assumption as follows: For each Q ∈ O(3), each

rth-order material tensor or pseudotensor H, and each ODF w : O(3)→ R1, there holds

TQH(w) = H(TQw). (4.60)

where TQH = Q⊗r H if H is a material tensor and TQH = (det Q)Q⊗r H if H is a material

pseudotensor, and (TQw)(P) = w(QT P) for each P ∈ O(3). Requirement (4.60) is the

main physical assumption of the present study. It is equivalent to (4.57) amended by the

requirement

T IH(w) = H(T Iw). (4.61)

Before we apply our main assumption (4.60) in Section 4.6 to obtain a representation

theorem for material tensors and pseudotensors that pertain to aggregates of Type II and

Type III crystallites, we illustrate some of its non-trivial implications below.

Consider an rth-order tensor H pertaining to an aggregate of right-handed crystals with

(wR,wL) = (wo, 0). By(2.40), (4.35), (4.36), and (4.61), the corresponding tensor of the
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left-handed counterpart with (wR,wL) = (0,wo) is given by

H(0,wo) = H(TI(wo, 0)) = T IH(wo, 0)

= (−1)r H(wo, 0) =


H(wo, 0) for even r;

−H(wo, 0) for odd r.
(4.62)

For an rth-order pseudotensor H, with (2.41), we have instead

H(0,wo) = H(TI(wo, 0)) = T IH(wo, 0)

= (−1)r+1H(wo, 0) =


−H(wo, 0) for even r;

H(wo, 0) for odd r.
(4.63)

As illustration, let us apply (4.62) and (4.63) to the quartz crystal, which is enantiomor-

phic. Let CL, EL, GL and CR, ER, GR be the 4th-order elasticity tensor, the 3rd-order

piezoelectric tensor, the 2nd-order gyration pseudotensor that pertain to the left- and right-

handed (single) quartz crystal (see Figure 4.2), respectively. From (4.62) and (4.63), we get

CL = CR, EL = −ER, GL = −GR. Cf. Figure 4.3, which is taken from IEEE Standard

on Piezoelectricity (176-1987); in the table cE is the 4th-order elasticity tensor, and e is the

3rd-order piezoelectric tensor.

As shown in the following proposition, requirement (4.61) imposes strong restrictions

on some classes of material tensors and pseudotensors.

Proposition 4.4.1. Let H(w) be a material tensor (resp. pseudotensor) pertaining to a

polycrystalline aggregate of Type II crystallites. Then H(w) = 0 if it is of odd (resp. even)

order.

Proof. As I ∈ Gcr, I−1 = I, and QI = IQ for Q ∈ O(3), we have

(T Iw)(Q) = w(I−1Q) = w(IQ) = w(QI) = w(Q) for each Q ∈ O(3).
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It then follows from (4.61), (2.40), and (2.41) that

H(w) = H(TIw) = T IH(w)

=


(−1)r H(w) if H(w) is an rth-order material tensor

(−1)r+1H(w) if H(w) is an rth-order material pseudotensor.
(4.64)

Hence H(w) = 0 if it is an odd-order material tensor or an even-order pseudotensor. �
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Figure 4.3: Data for left- and right-handed quartz



4.5 Treating Type II or III crystallites as if they are their Type I Laue-class peers:

an equality of texture coefficients

In classical texture analysis, as the ODF is defined on SO(3), both Gtex and Gcr are sub-

groups of SO(3). When the theory of texture analysis is applied to a polycrystalline aggre-

gate of crystallites whose Gcr is improper, it is routine practice to replace the improper Gcr

by its peer proper group in the same Laue class. It is a puzzle that such an ad hoc proce-

dure seemed to have often worked, and it is an objective of the present study to resolve this

puzzle at least as far as material tensors and pseudotensors of weakly-textured polycrystals

are concerned. Our answer will be based in part on a relation between the texture coeffi-

cients of a polycrystal with its Gcr being improper and its counterparts if the improper Gcr

is replaced by its proper peer in the same Laue class. We will derive this relation in this

section.

We may restrict our attention to the Laue classes which include Type I, Type II, and

Type III crystals in the same class, as the discussions for the remaining cases (Laue classes

1, 3, and 10 in Table 2.2) are similar. The generic structures of the groups G1, G2, and G3

in one such Laue class, which are of Type I, II, and III, respectively, are given in Section

4.2.1. We begin by considering a single crystal whose orientation with respect to the chosen

reference is specified by rotation R0.

Suppose for the given single crystal Gcr = G1. Then its orientation measure ℘1 is given

by (4.16), which we repeat below for convenience:

℘1 =
1

2N

2N∑
i=1

δR0 Ri .

By the series expansion (4.3), the orthogonality relation (4.5), and the formula for ℘1
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above, we obtain [21]

cl
mn =

2l + 1
8π2

∫
SO(3)

Dl
mn(R) d℘1

=
2l + 1
8π2

∫
SO(3)

Dl
mn(R) d

 1
2N

2N∑
i=1

δR0 Ri


=

2l + 1
8π2 ·

1
2N
·

2N∑
i=1

Dl
mn(R0Ri). (4.65)

Suppose the single crystal in question is of Type II and it has Gcr = G2. Then its

orientation measure is given by (4.17), i.e.,

℘2 =
1

4N

 2N∑
i=1

δR0 Ri +

2N∑
i=1

δIR0 Ri

 .
By a similar argument as above but using the series expansion (4.56), we get

cl,R
mn =

2l + 1
8π2

∫
SO(3)

Dl
mn(R) d℘2

=
2l + 1
8π2

∫
SO(3)

Dl
mn(R) d

 1
4N

2N∑
i=1

δR0 Ri


=

2l + 1
8π2 ·

1
4N
·

2N∑
i=1

Dl
mn(R0Ri). (4.66)

Similarly, we have

cl,L
mn =

2l + 1
8π2 ·

1
4N
·

2N∑
i=1

Dl
mn(R0Ri). (4.67)

If the single crystal is of Type III and has Gcr = G2, its orientation measure is given by

(4.18), which reads

℘3 =
1

2N

 N∑
i=1

δR0 Ri +

2N∑
i=N+1

δIR0 Ri

 .
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Using the series expansion (4.56) again, we obtain

cl,R
mn =

2l + 1
8π2

∫
SO(3)

Dl
mn(R) d℘3

=
2l + 1
8π2

∫
SO(3)

Dl
mn(R) d

 1
2N

N∑
i=1

δR0 Ri


=

2l + 1
8π2 ·

1
2N
·

N∑
i=1

Dl
mn(R0Ri). (4.68)

Similarly, we find

cl,L
mn =

2l + 1
8π2 ·

1
2N
·

2N∑
i=N+1

Dl
mn(R0Ri). (4.69)

Comparing equations (4.65) with (4.66) and (4.67), and with (4.68) and (4.69), we

arrive at the following equation:

cl
mn (Type I) = cl,R

mn + cl,L
mn (Type II or III). (4.70)

Clearly equation (4.70) remains valid for orientation measures defined by a finite num-

ber of orientations, where the texture coefficients in question are weighted averages (with

volume fractions as weight) of the corresponding texture coefficients that pertain to each

orientation.

In practice, a polycrystal is an aggregate of a finite number of crystallites with various

orientations. In texture measurement by orientation imaging microscopy (OIM) using elec-

tron backscatter diffraction (EBSD), texture coefficients are computed, precisely by using

(4.65), (4.66), (4.67), (4.68) and (4.69), from orientation measurements at a finite num-

ber of sampling points. Hence equality (4.70) is valid for all practical purposes in texture

analysis.

On the other hand, for theoretical completeness the following question arises:
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Does (4.70) hold not only for discrete measures but also for all corresponding

ODFs (or absolutely-continuous orientation measures) pertaining to the two

sides of the equation?

For aggregates of Type II crystallites, since wR = wL = wI/2 (see Proposition (4.3.2);

here wI is the ODF on SO(3) that results if we replace Gcr = G ∪ IG of the Type II

crystallites by the rotational point group G in its Laue class), clearly (4.70) will always

hold. For aggregates of Type III crystallites, according to Man [22] the answer to the

question above is still affirmative.

We will henceforth use equality (4.70) freely in this thesis.

4.6 The extended representation theorem

The representation theorem of Man and Huang [20] concerns material tensors that per-

tain to weakly-textured aggregates of Type I crystallites. In this Section we extend their

representation theorem to cover material tensors and pseudotensors that pertain to weakly-

textured aggregates of Type II or Type III crystallites.

All orientation distribution functions w that pertain to polycrystalline aggregates of

Type II or Type III crystallites satisfy the following two conditions:

1. When all texture coefficients cl,+
00 and cl,−

mn with l ≥ 1 are zero,

w(Q) = wiso =
1

16π2 for each Q ∈ O(3). (4.71)

2. ∫
O(3)

(w − wiso) dV = 0. (4.72)
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Let

H0 = { f ∈ L2(O(3)) :
∫

O(3)
f dV = 0}, (4.73)

H = {w ∈ L2(O(3)) : w = wiso + f , where f ∈ H0}. (4.74)

For r ≥ 1, let Z ⊂ V⊗r be an invariant subspace of the tensor space V⊗r under TQ = Q⊗r

(and, a fortiori, also underTQ = (det Q) Q⊗r for material pseudotensors) for each Q ∈ O(3).

Let N be an O(3)-invariant neighborhood of wiso in H (i.e., if w ∈ N , then TQw ∈ N for

each Q ∈ O(3)). We consider material tensors (resp. pseudotensors) H : N → Z which

are continuously differentiable inN . Let DH(wiso)[·] denote the Fréchet derivative of H at

wiso.

Definition 4.6.1. A polycrystalline aggegate of Type II or Type III crystallites is weakly-

textured for the physical property characterized by the material tensor or pseudotensor H

if, as far as the effect of texture on H is concerned, it is adequate to replace H(w) by its

affine approximation at wiso, i.e., we may put

H(w) = H(wiso) + DH(wiso)[w − wiso] + o(‖w − wiso‖L2) (4.75)

and ignore the o(‖w − wiso‖L2) term.

Henceforth we shall restrict our attention to weakly-textured polycrystals.

By our basic assumption (4.60) and Proposition 4.3.3, we have

TQH(wiso) = H(TQwiso) = H(wiso). (4.76)

Hence the term H(wiso) is an isotropic rth-order material tensor (reps. pseudotensor) in

Z. The derivative DH(wiso)[w −wiso] takes values in Z ⊂ V⊗r, and it is linear in the texture
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coefficients (cl,±
mn or cl,R/L

mn ). The following lemma follows easily from our basic assumption

(4.60).

Lemma 4.6.2. For each Q ∈ O(3) and each w ∈ H ,

TQ(DH(wiso)[w − wiso]) = DH(wiso)[TQ(w − wiso)]. (4.77)

Proof. We start from the basic assumption TQ(H(w)) = H(TQw). On the left-hand side

of the equation, we have

TQ(H(w)) = TQ(H(wiso) + DH(wiso)[w − wiso] + o(‖w − wiso‖L2)). (4.78)

On the right-hand side, we put w = wiso + (w − wiso) and get

H(TQw) = H(TQwiso + TQ(w − wiso))

= H(TQwiso) + DH(TQwiso)[TQ(w − wiso)] + o(‖TQ(w − wiso)‖L2)). (4.79)

Equating (4.78) and (4.79), we obtain (4.77) because TQ(H(wα)) = H(TQwα), TQwiso =

wiso, TQ : V⊗r → V⊗r is unitary, and TQ : L2(O(3)) → L2(O(3)) (w 7→ TQw) is norm-

preserving. �

For material tensors that pertain to polycrystalline aggregates of Type I crystallites, Man

and Huang [20] derived a representation theorem that delineates the explicit dependence of

DH(wiso)[w−wiso] on texture coefficients. Here we will follow their arguments and extend

their theorem to cover aggregates of Type II or Type III crystallites.

Every subspace of rth-order tensors (r = 0, 1, 2, · · · ) invariant under Q⊗r can be writ-

ten as a direct sum of irreducible invariant subspaces on each of which the representation

Q → Q⊗r is equivalent to one of the irreducible unitary representations D±k . To start with,

we derive a representation theorem for material tensors (resp. pseudotensors) of weakly-

textured polycrystals that satisfy condition (4.77) and belong to a specific irreducible in-

variant subspace.
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Theorem 4.6.3. For k ≥ 1, let Z be a (2k + 1)-dimensional subspace of V⊗r invariant

under Q⊗r for each Q ∈ O(3), and let Zc be its complexification. Let Hm (−k ≤ m ≤ k)

be an orthonormal irreducible tensor basis in Zc, which satisfies Hm = (−1)mHm̄. Let

H : H → Zc be a material tensor (resp. pseudotensor) that pertains to a polycrystalline

aggregate of Type II or Type III crystallites, and let H be differentiable at wiso. Suppose

the restriction of the representation Q 7→ TQ on Zc, where TQ = Q⊗r for material tensor

and TQ = (det Q) Q⊗r for material pseudotensor, is equivalent to the irreducible unitary

representationD+
k when r is even for material tensor (resp. odd for pseudotensor) or toD−k

when r is odd for material tensor (resp. even for pseudotensor). Let DH(wiso) : H0 → Z,

the Frechét derivative of H at wiso, satisfy condition (4.77) for each Q ∈ O(3) and for each

w − wiso ∈ H0. When r is even for material tensor (resp. odd for pseudotensor), we have:

DH(wiso)[w − wiso] =

k∑
n,m=−k

αk
n(ck,R

mn + ck,L
mn)Hm; (4.80)

when r is odd for material tensor (resp. even for pseudotensor), there holds:

DH(wiso)[w − wiso] =

k∑
n,m=−k

αk
n(ck,R

mn − ck,L
mn)Hm; (4.81)

here ck,R
mn and ck,L

mn are texture coefficients that pertain to wR and wL, respectively, and αk,s
n

are (complex) undetermined parameters. The parameters αk
n satisfy:

αk
n = (−1)nαk

n̄. (4.82)

Proof. LetH c
0 be the complexification ofH0. We extend the function DH : H0 → Z to

a linear mapping fromH c
0 to Zc, which we still denote by DH, defined by

DH[ f +
√
−1h] = DH[ f ] +

√
−1DH[h] (4.83)

for each f , h ∈ H0. Condition (4.77) remains valid after this extension.

Man and Huang [20] showed the existence of the orthonormal tensors Hk
m and provided

a procedure for their construction. Let us proceed to consider formula (4.80) for even-
Cf. [20] for the existence and a procedure for the construction of such a basis.
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order material tensors and odd-order pseudotensors. Since the tensors Hm (−k ≤ m ≤ k)

constitute a basis in Zc, we may write

DH(wiso)[w − wiso] =

k∑
p=−k

βp(wiso)[w − wiso]Hp, (4.84)

for some linear functioals βp : H0 → C. As the domain of DH is extended toH c
0 according

to (4.83), the linear functions βp are likewise extended accordingly. By (4.77) and (4.84),

we have

TQ(DH(wiso)[w − wiso]) = DH(TQwiso)[TQ(w − wiso)]

=

k∑
p=−k

βp(TQwiso)[TQ(w − wiso)]Hp

=

k∑
p=−k

βp(wiso)[TQw − TQwiso]Hp. (4.85)

for each w − wiso inH c
0. (Notice that here TQ has two different meanings which should be

clear from the context.) Substituting

TQw(Q1) − TQwiso =

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl,+
mnDl,+

mn(QT Q1) +

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl,−
mnDl,−

mn(QT Q1)

=

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl,+
mn

 l∑
s=−l

Dl,+
ms(Q

T )Dl,+
sn (Q1)


+

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl,−
mn

 l∑
s=−l

Dl,−
ms(Q

T )Dl,−
sn (Q1)

 (4.86)

into equation (4.85) and multiplying both sides of the equation on the left by TQT , we
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obtain

DH(wiso)[w − wiso] =

∞∑
l=1

l∑
m,n,s=−l

k∑
p=−k

cl,+
mnβp[Dl,+

sn (·)]Dl,+
ms(Q

T )
(
TQT Hp

)
+

∞∑
l=1

l∑
m,n,s=−l

k∑
p=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]Dl,−
ms(Q

T )
(
TQT Hp

)
=

∞∑
l=1

l∑
m,n,s=−l

k∑
p=−k

cl,+
mnβp(wiso)[Dl,+

sn (·)]Dl,+
ms(Q

T )

 k∑
q=−k

Dk,+
pq (Q)Hq


+

∞∑
l=1

l∑
m,n,s=−l

k∑
p=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]Dl,−
ms(Q

T )

 k∑
q=−k

Dk,+
pq (Q)Hq


=

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,+
mnβp(wiso)[Dl,+

sn (·)]Dl,+
sm(Q)Dk,+

pq (Q)Hq

+

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]Dl,−
sm(Q)Dk,+

pq (Q)Hq, (4.87)

where we have appealed to TQHm =
∑k

p=−k Dk,+
mp(QT )Hp as in Corollary 3.3.2 and to the

properties of the Wigner D-functions. Integrating both sides of the preceding equation over

the orthogonal group with respect to Q, we derive from the orthogonal relation (cf. (3.14),

(3.15) and (3.17)) that

DH(wiso)[w − wiso] =

∫
O(3)

DH(wiso)[w − wiso]dg

=

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,+
mnβp(wiso)[Dl,+

sn (·)]
(∫

O(3)
Dl,+

sm(Q)Dk,+
pq (Q)dg

)
Hq

+

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]
(∫

O(3)
Dl,−

sm(Q)Dk,+
pq (Q)dg

)
Hq

=

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,+
mnβp(wiso)[Dl,+

sn (·)]
(

1
2k + 1

δlkδspδmq

)
Hq

=
1

2k + 1

k∑
n=−k

k∑
p=−k

k∑
m=−k

ck,+
mnβp(wiso)[Dk,+

pn (·)]Hm

=

k∑
n=−k

α̃k
n

 k∑
m=−k

ck,+
mn Hm


=

k∑
n=−k

αk
n

 k∑
m=−k

(ck,R
mn + ck,L

mn)Hm

 , (4.88)
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where last equality follows from (4.47)1 and

αk
n =

1
2
α̃k

n =
1

4k + 2

k∑
p=−k

βp(wiso)[Dk,+
pn (·)]. (4.89)

Next we proceed to prove (4.81). For odd-order material tensors and even-order pseu-

dotensors, we have TQHm =
∑k

p=−k Dk,−
mp(QT )Hp as in Corollary 3.3.2. Instead of (4.87),

we have

DH(wiso)[w − wiso] =

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,+
mnβp(wiso)[Dl,+

sn (·)]Dl,+
sm(Q)Dk,−

pq (Q)Hq

+

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]Dl,−
sm(Q)Dk,−

pq (Q)Hq. (4.90)

And then (4.88) is replaced by:

DH(wiso)[w − wiso] =

∫
O(3)

DH(wiso)[w − wiso]dg

=

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,+
mnβp(wiso)[Dl,+

sn (·)]
(∫

O(3)
Dl,+

sm(Q)Dk,−
pq (Q)dg

)
Hq

+

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]
(∫

O(3)
Dl,−

sm(Q)Dk,−
pq (Q)dg

)
Hq

=

∞∑
l=1

l∑
m,n,s=−l

k∑
p,q=−k

cl,−
mnβp(wiso)[Dl,−

sn (·)]
(

1
2k + 1

δlkδspδmq

)
Hq

=
1

2k + 1

k∑
n=−k

k∑
p=−k

k∑
m=−k

ck,−
mnβp(wiso)[Dk,−

pn (·)]Hm

=

k∑
n=−k

α̃k
n

 k∑
m=−k

ck,−
mn Hm


=

k∑
n=−k

αk
n

 k∑
m=−k

(ck,R
mn − ck,L

mn)Hm

 (4.91)

where the last equality follows from (4.47)2 and

αk
n =

1
2
α̃k

n =
1

4k + 2

k∑
p=−k

βp(wiso)[Dk,−
pn (·)]. (4.92)
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Finally the properties in (4.82) on the (complex) undetermined parameters αk
n can be

derived by the fact that w − wiso ∈ H0 is real-valued, i.e., DH[w − wiso] ∈ Z and thus

DH[w − wiso] = DH[w−wiso]. We refer the reader for the proof in Man and Huang’s work

[20]. �

Theorem 3.3.3 shows the decomposition formula for the tensor and pseudotensor rep-

resentations of the orthogonal group. Applying Theorem 4.6.3 to each of the irreducible in-

variant subspaces of Zc in the decomposition formula, we have the following representation

theorem for material tensors and pseudotensors that pertain to weakly-textured aggregates

of Type II or Type III crystallites.

Theorem 4.6.4. Let Z ⊂ V⊗r be a tensor (resp. pseudotensor) space invariant under the

action of the orthogonal group. Let H(w) ∈ Z be a material tensor (resp. pseudotensor)

pertaining to a weakly-textured polycrystal of Type II or Type III crystallites. Let equation

(3.31) be the decomposition of Zc, the complexification of Z, into its irreducible parts under

O(3). For each k in J := { j : n j , 0} and 1 ≤ s ≤ nk, there exists a family of orthonormal

irreducible basis tensors Hk,s
m ∈ Zc (−k ≤ m ≤ k) for which the following representation

formula is valid when r is even (resp. odd):

H(w) =
∑
k∈J

nk∑
s=1

k∑
m,n=−k

αk,s
n (ck,R

mn + ck,L
mn)Hk,s

m . (4.93)

When r is odd (resp. even), the formula is:

H(w) =
∑
k∈J

nk∑
s=1

k∑
m,n=−k

αk,s
n (ck,R

mn − ck,L
mn)Hk,s

m . (4.94)

where ck,R/L
mn are texture coefficients® of wR and wL, respectively, and αk,s

n are (complex)

undetermined parameters. For each k ∈ J and 1 ≤ s ≤ nk, the orthonormal tensors Hk,s
m

and parameters αk,s
n enjoy the following properties (see also Corollary (3.3.2)):

Hk,s
m = (−1)mHk,s

m̄ , αk,s
n = (−1)nαk,s

n̄ . (4.95)

®c0,R/L
00 := 1/(16π2)
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In summary, the following representation formula holds for material tensors and pseu-

dotensors H(w) of weakly-textured polycrystals:

H(w) =
∑
l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n bl

mnHl,s
m , (4.96)

where αl,s
n are undetermined material parameters and bl

mn are given by the texture coeffi-

cients as follows:

1. For aggregates of Type I crystallites, we have bl
mn = cl

mn (see Man and Huang [20]).

2. For aggregates of Type II or Type III crystallites, we have

bl
mn =


cl,R

mn + cl,L
mn = cl

mn, for even order [r] and odd order [p]

cl,R
mn − cl,L

mn , cl
mn, for odd order [r] and even order [p];

(4.97)

here [r] denotes (regular) material tensors and [p] denotes material pesudotensors,

and cl
mn are the texture coefficients of the ODF in classical texture analysis, where

Type II and Type III crystallites are treated as if they are their Type I Laue-class

peers.

Remark: Work in classical texture analysis was concentrated on fcc, bcc, and hcp metals,

with Gcr in question being the Type II Oh (fcc, bcc) and D6h (hcp). For aggregates of

Type II crystallites, we have wR = wL = wI/2 (see Proposition 4.3.2), where wI is the

ODF of the polycrystal when the Type II crystallites with Gcr = G ∪ IG, where G is

of Type I, are treated as if their Gcr = G (e.g. crystallites with Gcf = Oh are treated

as if their group of crystal symmetry is O). The material properties studied in classical

texture analysis were those involving even-order material tensors, because all odd-order

material tensors of Type II aggregates are zero (see Proposition 4.4.1). For even-order

material tensors of weakly-textured polycrystals, by the representation formula (4.93) and

the equality (4.70) on texture coefficients, we see that no error will be made by treating

crystallites with Gcr = Oh (resp. D6h) as if their Gcr = O (resp. D6). In particular, X-ray
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diffraction (modulo its other limitations) may be used to determine the texture coefficients

in question.

Remark: For aggregates of Type III crystallites, X-ray diffraction (XRD) can determine

only sums of texture coefficients of the form cl,R
mn + cl,L

mn. To determine odd-order material

tensors and even-order pseudotensors of weakly-texured Type III polycrystals, however,

by representation formula (4.94) we should ascertain the differences cl,R
mn − cl,L

mn. XRD alone

cannot provide the required information.

4.7 An alternate proof the extended representation theorem

Let fiso := 1/(8π2) and λ ∈ [0, 1]. We consider aggregate mixtures of right- and left-handed

crystallites with volume fractions λ and 1 − λ, respectively. Let

H0 := {h ∈ L2(SO(3)) :
∫

SO(3)
h dg = 0}, (4.98)

H := { f ∈ L2(SO(3)) : f = fiso + h, where h ∈ H0}. (4.99)

Let Z be a space of rth-order tensors. We assume that

H : H ×H × [0, 1]→ Z, ( f R, f L, λ) 7→ H( f R, f L, λ), (4.100)

where λ stands for the volume fraction of right-handed crystallites, is continuously differ-

entiable. For a given λ, the restriction H(·, ·, λ) can be written as

Hλ : λH × (1 − λ)H → Z, (wR,wL) 7→ Hλ(wR,wL), (4.101)

where

µH := {µ f : f ∈ H} for any µ ∈ [0, 1], wR = λ f R, wL = (1 − λ) f L. (4.102)

One consequence of our basic physical assumption (4.60) is that

Hλ(wR,wL) =


H(1−λ)(w̃R, w̃L), for even order [r] and odd order [p]

−H(1−λ)(w̃R, w̃L), for odd order [r] and even order [p],
(4.103)
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where w̃R = wL = 1
2 f L, w̃L = wR = 1

2 f R, for any f R, f L ∈ H ; here [r] denotes (regular)

material tensors and [p] denotes material pesudotensors. When λ = 1
2 , we shall suppress

the subscript in H 1
2
(wR,wL) and simply write H(wR,wL). In this case, the above equation

reads

H(wR,wL) =


H(wL,wR), for even order [r] and odd order [p]

−H(wL,wR), for odd order [r] and even order [p]
(4.104)

for any wR,wL ∈ 1
2H .

Lemma 4.7.1. Let wo = 1
2 fiso = 1/(16π2). Then we have

D1H(wo,wo)[w − wo]

=


D2H(wo,wo)[w − wo], for even order [r] and odd order [p]

−D2H(wo,wo)[w − wo], for odd order [r] and even order [p]
(4.105)

for each w ∈ 1
2H .

Proof. Let us first consider material tensors of even order and pseudotensors of odd order.

For each w ∈ 1
2H , we have

H(w,wo) = H(wo,wo) + D1H(wo,wo)[w − wo] + o(‖w − wo‖), (4.106)

and

H(wo,w) = H(wo,wo) + D2H(wo,wo)[w − wo] + o(‖w − wo‖). (4.107)

Since by (4.104) we have H(w,wo) = H(wo,w) for each w ∈ 1
2H , the conclusion

follows. For material tensors of odd order and pseudotensors of even order, we have

H(w,wo) = −H(wo,w). It follows that H(wo,wo) = −H(wo,wo), and we observe that

H(wo,wo) = 0. The conclusion then follows from (4.104), (4.106), and (4.107). �

Now let us start by restricting our attention to material tensors of even order and pseu-

dotensors of odd order. Let

f R(R) =

∞∑
k=0

k∑
m,n=−k

ck,R
mn Dk

mn(R), f L(R) =

∞∑
k=0

k∑
m,n=−k

ck,L
mn Dk

mn(R) (4.108)
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be the expansions of f R and f L in terms of the Wigner D-functions.

It follows from Lemma 4.7.1 and the representation formula of Man and Huang [20]

that for weakly-textured polycrystalline aggregates of Type II or Type III crystallites we

have

H(wR,wL) ' H(wo,wo) + D1H(wo,wo)[wR − wo] + D2H(wo,wo)[wL − wo]

= H(wo,wo) +
∑

l,0,l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n cl,R

mnHl,s
m +

∑
l,0,l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n cl,L

mnHl,s
m

= H(wo,wo) +
∑

l,0,l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n

(
cl,R

mn + cl,L
mn

)
Hl,s

m

= H(wo,wo) +
∑

l,0,l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n bl

mnHl,s
m . (4.109)

where αl,s
n are undetermined materials parameters and bl

mn = cl,R
mn + cl,L

mn.

Similarly, for tensors of odd order and pseudotensors of even order that pertain to

weakly-textured polycrystals of Type II or Type III crystallites, we have

H(wR,wL) '
∑

l,0,l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n

(
cl,R

mn − cl,L
mn

)
Hl,s

m

=
∑

l,0,l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n bl

mnHl,s
m . (4.110)

where bl
mn = cl,R

mn − cl,L
mn.

Finally let us summarize by including the information given by Man and Huang [20]

on weakly-textured polycrystals of Type I crystallites. For even-order material tensors and

odd-order pseudotensors of weakly-textured polycrystals , we have

H(w) =
∑
l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n bl

mnHl,s
m , (4.111)

where

bl
mn = cl

mn (Type I), bl
mn = cR,l

mn + cL,l
mn (Types II and III) (4.112)
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For odd-order material tensors of and even-order pseudotensors of weakly-textured

polycrystals, similarly we have

H(w) =
∑
l∈J

nl∑
s=1

l∑
m,n=−l

αl,s
n bl

mnHl,s
m , (4.113)

where

bl
mn = cl

mn (Type I), bl
mn = 0 (Type II), bl

mn = cR,l
mn − cL,l

mn (Type III). (4.114)

For aggregates of crystallites with Gcr in the same Laue class (e.g., O, Oh, Td), by (4.70)

the equality cl
mn = cR,l

mn + cL,l
mn is always valid.

Remark: The shorter alternate proof of the extended representation theorem given in this

section is heavily based on the theorem of Man and Huang [20]. The much longer ar-

guments that lead to Theorems 4.6.3 and 4.6.4 in the preceding section follow the same

lines as in Man and Huang’s proof of their theorem and can be regarded as a generalized

version of their proof. In fact the proof of Man and Huang’s representation theorem and

that of Theorem 4.6.4 can be easily combined to become the proof of one theorem that

covers material tensors and pseudotensors of weakly textured polycrystals with Gcr being

any crystallographic point group.

Copyright c©Wenwen Du 2015
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Chapter 5 Restrictions on texture coefficients

5.1 Transformation formulas

5.1.1 Crystal symmetry

When the reference crystal lattice of the crystallites undergoes a rotation or roto-inversion

defined by Q2 ∈ O(3), the ODF of the polycrystal becomes w̃, which is related to the

original ODF w by w̃(Q1) = w(Q1Q2) for each Q1 ∈ O(3). If Q2 ∈ O(3) is an element

in Gcr, we have w(Q1) = w(Q1Q2) for each Q1 ∈ O(3) [18], which leads to equations the

texture coefficients of w must satisfy. We distinguish four cases as follows.

Case (1): When both Q1 and Q2 ∈ SO(3), we can write Q1 = R1,Q2 = R2 ∈ SO(3).

Then we have cl,R
mn =

∑l
k=−l cl,R

mkDl
nk(R2).

Proof. Since w(R1) = wR(R1) =
∑∞

l=0
∑l

m=−l
∑l

s=−l cl,R
msDl

ms(R1), we have

w(R1R2) = wR(R1R2) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,R
mnDl

mn(R1R2)

=

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,R
mn

 l∑
s=−l

Dl
ms(R1)Dl

sn(R2)


=

∞∑
l=0

l∑
m=−l

l∑
s=−l

 l∑
n=−l

cl,R
mnDl

sn(R2)

 Dl
ms(R1). (5.1)

Now w(R1) = w(R1R2) implies cl,R
ms =

∑l
n=−l cl,R

mnDl
sn(R2). By renaming indices, we

obtain cl,R
mn =

∑l
k=−l cl,R

mkDl
nk(R2). �

Case (2): If Q1 = R1 ∈ SO(3), Q2 = IR2 ∈ ISO(3), then cl,R
mn =

∑l
k=−l cl,L

mkDl
nk(R2).
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Proof. Since w(R1) = wR(R1) =
∑∞

l=0
∑l

m=−l
∑l

s=−l cl,R
msDl

ms(R1), we have

w(R1Q2) = w(R1IR2) = wL(R1R2) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,L
mnDl

mn(R1R2)

=

∞∑
l=0

l∑
m=−l

l∑
n=−l

cl,L
mn

 l∑
s=−l

Dl
ms(R1)Dl

sn(R2)


=

∞∑
l=0

l∑
m=−l

l∑
s=−l

 l∑
n=−l

cl,L
mnDl

sn(R2)

 Dl
ms(R1). (5.2)

Now w(R1) = w(R1Q2) implies cl,R
ms =

∑l
n=−l cl,L

mnDl
sn(R2). By renaming indices, we

obtain cl,R
mn =

∑l
k=−l cl,L

mkDl
nk(R2). �

Case (3): If Q2 = R2 ∈ SO(3), Q1 = IR1 ∈ ISO(3), then cl,L
mn =

∑l
k=−l cl,L

mkDl
nk(R2).

Proof. We have w(Q1) = w(IR1) = wL(R1) and w(Q1Q2) = w(IR1R2) = wL(R1R2).

Similar to Case (1), wL(R1) = wL(R1R2) implies cl,L
mn =

∑l
k=−l cl,L

mkDl
nk(R2).

Case (4): If Q1 = IR1, and Q2 = IR2 ∈ ISO(3), then cl,L
mn =

∑l
k=−l cl,R

mkDl
nk(R2).

Proof. We have w(Q1) = w(IR1) = wL(R1) and w(Q1Q2) = w(IR1IR2) = wR(R1R2).

Similar to Case (2), wL(R1) = wR(R1R2) implies cl,L
mn =

∑l
k=−l cl,R

mkDl
nk(R2).

Notice that Q1 is the orientation of the crystal which can be chosen as Q1 ∈ SO(3) or

Q1 ∈ ISO(3). Therefore we can combine Case (1) and Case (3), Case (2) and Case (4) into

two cases as follows.

Case (i): For Q2 = R2 ∈ SO(3), we have

cl,R/L
mn =

l∑
k=−l

cl,R/L
mk Dl

nk(R2); (5.3)

Case (ii): For Q2 = IR2 ∈ ISO(3), we have

cl,R/L
mn =

l∑
k=−l

cl,L/R
mk Dl

nk(R2). (5.4)
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5.1.2 Texture symmetry

When a polycrystal undergoes a rotation Q2 = R2 ∈ SO(3), its texture is described by a

new ODF w̃, which is related to the ODF w of the polycrystal before rotation by equation

w̃(Q1) = w(Q−1
2 Q1) for each Q1 ∈ O(3). If Q2 = R2 ∈ SO(3) is an element in Gtex (i.e.,

the symmetry group of the sample), this yields equations that the texture coefficients must

satisfy, namely cl,R/L
mn =

∑l
k=−l cl,R/L

kn Dl
km(R−1

2 ) [18].

5.2 Restrictions on texture coefficients imposed by crystal symmetries

5.2.1 Crystal Symmetries

For crystal symmetries in O(3), we will discuss restrictions imposed by 32 crystallographic

point groups in 3 types by the order listed in Chapter 2.

5.2.1.1 Type I crystal symmetry

In this case, Q2 = R2 ∈ SO(3), so we have cl,R/L
mn =

∑l
k=−l cl,R/L

mk Dl
nk(R2). Let (ψ, θ, φ) be the

Euler angles pertaining to R−1
2 . In Roe’s notation, we have [20, 32],

WR/L
lmn =

√
2

2l + 1

l∑
k=−l

WR/L
lmk Zlkn(cosθ)eikψeinφ, (5.5)

where WR/L
lmn = (−1)m−n

√
2

2l+1cl,R/L
mn and Zlmn(cosθ) = (−1)m−n

√
2l+1

2 dl
mn(θ).

1. C1

No symmetry for this group. So we won’t get any restriction.

2. C2

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements of C2 are E and R(e3, π),

where E is the identity. The Euler angles of R(e3, π) are (0, 0, π). Then we have cl,R/L
mn =
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∑
p cl,R/L

mp Dl
np(0, 0, π) =

∑
p cl,R/L

mp dl
np(0)e−ipπ = cl,R/L

mn cos(nπ) [18]. Thus cl,R/L
mn = 0 if n is odd

or WR/L
lmn = 0 if n is odd.

3. C3

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are E, R(e3,
2π
3 ) and

R(e3,
4π
3 ), with R(e3,

2π
3 ) being the generator with Euler angles given by (0, 0, 2π

3 ). Then we

have

cl,R/L
mn =

∑
p

cl,R/L
mp Dl

np(0, 0,
2π
3

) =
∑

p

cl,R/L
mp dl

np(0)e
−2ipπ

3 = cl,R/L
mn cos(

2nπ
3

). (5.6)

Hence cl,R/L
mn = 0 for n , 3k, k ∈ Z, or WR/L

lmn = 0 for n , 3k, k ∈ Z.

4. C4

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
π
2 ).

Similarly, we have cl,R/L
mn = 0 for n , 4k, k ∈ Z, or WR/L

lmn = 0 for n , 4k, k ∈ Z.

5. C6

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
π
3 ).

We then have cl,R/L
mn = 0 for n , 6k, k ∈ Z, or WR/L

lmn = 0 for n , 6k, k ∈ Z.

6. D2

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements of D2 are E, R(e1, π),

R(e2, π) and R(e3, π). Orthorhombic crystal symmetry dictates that c̃l
mn = cl

mn for R given

by the Euler angles (0, π, 0), (0, 0, π), and (0, π, π), respectively. Clearly only two of them

are independent.

80



For R(e2, π) given by Euler angle (0, π, 0), we have [18]

cl,R/L
mn =

∑
p

cl,R/L
mp Dl

np(0, π, 0) =
∑

p

cl,R/L
mp dl

np(π) =
∑

p

cl,R/L
mp (−1)l+ndl

np̄(0) = (−1)l+ncl,R/L
mn̄ .

(5.7)

Note that dl
mn(0) = δmn. Thus we obtain cl,R/L

mn = (−1)l+ncl,R/L
mn̄ .

For R(e3, π) given by (0, 0, π), we have [18]

cl,R/L
mn =

∑
p

cl,R/L
mp Dl

np(0, 0, π) =
∑

p

cl,R/L
mp dl

np(0)e−ipπ = cl,R/L
mn cos(nπ). (5.8)

Therefore cl,R/L
mn = 0 if n is odd, or WR/L

lmn = 0 if n is odd.

Combining the preceding two requirements, we have

cl,R/L
mn =


(−1)lcl,R/L

mn̄ , for even n;

0, for odd n.
(5.9)

7. D3

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
2π
3 )

and R(e2, π). As discussed earlier, R(e3,
2π
3 ) implies cl,R/L

mn = 0 for n , 3k, k ∈ Z; and

R(e2, π) implies cl,R/L
mn = (−1)l+ncl,R/L

mn̄ .

Combining these two, we have

cl,R/L
mn =


(−1)l+ncl,R/L

mn̄ , for n = 3k, k ∈ Z;

0, else.
(5.10)

8. D4

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
π
2 )

81



and R(e2, π). Similar to the discussions on D2 and D3, we have

cl,R/L
mn =


(−1)lcl,R/L

mn̄ , for n = 4k, k ∈ Z;

0, else.
(5.11)

9. D6

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
π
3 )

and R(e2, π). Likewise, we have

cl,R/L
mn =


(−1)lcl,R/L

mn̄ , for n = 6k, k ∈ Z;

0, else.
(5.12)

10. T

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3, π),

R(e2, π), and R(n, 2π
3 ), where n = 1

√
3
(e1 +e2 +e3). We can write R(n, 2π

3 ) = R(e2,
π
2 )R(e3,

π
2 ).

Invariance under R(e3, π) implies cl,R/L
mn = 0 if n is odd, and invariance under R(e2, π) implies

cl,R/L
mn = (−1)l+ncl,R/L

mn̄ . Combining the preceding two requirements as in D2, we have

cl,R/L
mn =


(−1)lcl,R/L

mn̄ , for even n;

0, for odd n.
(5.13)

Next invariance under R(e2,
π
2 )R(e3,

π
2 ) implies [18]

cl,R/L
mn =

∑
p

cl,R/L
mp Dl

np(0,
π

2
,
π

2
) =

∑
p

cl,R/L
mp dl

np(
π

2
)e
−ipπ

2 =
∑

p

cl,R/L
mp dl

np(
π

2
) cos(

pπ
2

), (5.14)

where p is even.

With the fact that [18]

cl,R/L
mp̄ dl

np̄(
π

2
) = (−1)lcl,R/L

mn (−1)l+ndl
np(
π

2
) = cl,R/L

mn dl
np(
π

2
) (5.15)
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for even p, we may recast (5.14) in the following form:

dl
00( π2 ) − 1, −2dl

02( π2 ), . . . , (−1)
p
2 2dl

0p( π2 ), . . . , (−1)
N
2 2dl

0N( π2 )

dl
20( π2 ), −2dl

22( π2 ) − 1, . . . , (−1)
p
2 2dl

2p( π2 ), . . . , (−1)
N
2 2dl

2N( π2 )

. . . , . . . , . . . , . . . , . . . , . . .

. . . , . . . , . . . , . . . , . . . , . . .

dl
N0( π2 ), −2dl

N2( π2 ), . . . , (−1)
p
2 2dl

N p( π2 ), . . . , (−1)
N
2 2dl

NN( π2 ) − 1





cl,R/L
m0

cl,R/L
m2

cl,R/L
m4

. . .

cl,R/L
mN



= 0 (5.16)

Here N is the largest positive even integer that satisfies N ≤ l. With equations (5.13)

and (5.16), we list the exact relations on WR/L
lmn for l ≤ 12 in Table 5.1. Here we use

WR/L
lmn as the texture coefficients instead of cl,R/L

mn to match the notations in [18]. Note that

WR/L
lmn = (−1)m−n

√
2

2l+1cl,R/L
mn . These relations are obtained through a simple Maple program,

which delivers also the exact relations for the higher l’s. With increasing l, however, the

exact relations soon become too complicated and unwisely for practical use.

83



Table 5.1: Relations on the texture coefficients Wlmn for aggregates of tetrahedral (T ) crys-
tallites for 1 ≤ l ≤ 12.

l Lin. indep. coeff. Lin dep. coeff.

2 W2m0 = W2m2 = 0

3 W3m2

4 W4m0 W4m4 =
√

70
14 W4m0

6 W6m0 W6m4 = −
√

14
2 W6m0

W6m2 W6m6 = −
√

55
11 W6m2

7 W7m2 W7m6 =
√

143
13 W7m2

8 W8m0 W8m4 =
√

154
33 W8m0

W8m8 =
√

1430
66 W8m0

9 W9m2 W9m6 = −
√

39
3 W9m2

W9m4 W9m8 = −
√

119
17 W9m4

10 W10m0 W10m4 = −
√

4290
65 W10m0

W10m8 = −
√

24310
130 W10m0

W10m2 W10m6 =
√

26
26 W10m2

W10m10 = −
√

125970
494 W10m2

11 W11m2 W11m6 =
√

22610
170 W11m2

W11m10 = 9
√

170
170 W11m2

12 W12m0 W12m8 =
√

277134
646 W12m0 −

4
√

13566
323 W12m4

W12m4 W12m12 = 4
√

676039
7429 W12m0 + 9

√
81719

7429 W12m4

W12m2 W12m6 = −5
√

714
34 W12m2

W12m10 =
√

7106
34 W12m2

Note: WR/L
lmn = (−1)lWR/L

lmn̄ . For those 1 ≤ l ≤ 12 not given in the table, all Wlmn = 0.

Also, Wlmn = 0 for odd l. For brevity, we write W for WR/L in the table.
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11. O

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e1,
π
2 ),

R(e2,
π
2 ), and R(e3,

π
2 ).

As in D4, invariance under R(e2, π) and R(e3,
π
2 ) imply

cl,R/L
mn =


(−1)lcl,R/L

mn̄ , for n = 4k, k ∈ Z;

0, else.
(5.17)

The restrictions imposed by R(e2,
π
2 ) implies [18]

cl,R/L
mn =

∑
p

cl,R/L
mp Dl

np(0,
π

2
, 0) =

∑
p

cl,R/L
mp dl

np(
π

2
) (5.18)

where p is p = 4k, k ∈ Z.

Again with the fact that

cl,R/L
mp̄ dl

np̄(
π

2
) = (−1)lcl,R/L

mn (−1)l+ndl
np(
π

2
) = cl,R/L

mn dl
np(
π

2
) (5.19)

for even p, we may recast (5.18) in the following form:

dl
00(π2 ) − 1, 2dl

04(π2 ), . . . , 2dl
0N(π2 )

dl
40(π2 ), 2dl

44(π2 ) − 1, . . . , 2dl
4N(π2 )

. . . , . . . , . . . , . . .

. . . , . . . , . . . , . . .

dl
N0(π2 ), 2dl

N4(π2 ), . . . , 2dl
NN(π2 ) − 1





cl,R/L
m0

cl,R/L
m4

cl,R/L
m8

. . .

cl,R/L
mN



= 0. (5.20)

Here N is the largest positive integer that satisfies N ≤ l and N = 4k for some integer

k. With equations (5.17) and (5.20), we can calculate the exact relations for l ≤ 15 through

a simple Maple program [18]. The results are displayed in Table 5.2.
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Table 5.2: Relations on the texture coefficients Wlmn for aggregates of cubic (O) crystallites
for 1 ≤ l ≤ 15.

l Lin. indep. coeff. Lin dep. coeff.

4 W4m0 W4m4 =
√

70
14 W4m0

6 W6m0 W6m4 = −
√

14
2 W6m0

8 W8m0 W8m4 =
√

154
33 W8m0

W8m8 =
√

1430
66 W8m0

9 W9m4 W9m8 = −
√

119
17 W9m4

10 W10m0 W10m4 = −
√

4290
65 W10m0

W10m8 = −
√

24310
130 W10m0

12 W12m0 W12m8 =
√

277134
646 W12m0 −

4
√

13566
323 W12m4

W12m4 W12m12 = 4
√

676039
7429 W12m0 + 9

√
81719

7429 W12m4

13 W13m4 W13m8 = 2
√

190
95 W13m4

W13m12 = −
√

4807
95 W13m4

14 W14m0 W14m4 = −3
√

85085
1190 W14m0

W14m8 = −
√

881790
1190 W14m0

W14m12 = −
√

52003
238 W14m0

15 W15m4 W15m8 = −2
√

966
23 W15m4

W15m12 =
√

1495
23 W15m4

Note: WR/L
lmn = (−1)lWR/L

lmn̄ . For those 1 ≤ l ≤ 15 not given in the table, all Wlmn = 0.

Also, Wlmn = 0 for odd l. For brevity, we write W for WR/L in the table.
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5.2.1.2 Type II crystal symmetry

Each Gcr of Type II contains the inversion I as an element and can be written as Gcr =

Gp ∪ IGp, where Gp is of Type I. For an ODF w : O(3)→ R1, we have

wR(R) = w(R) = w(RI) = w(IR) = wL(R) for R ∈ SO(3).

It follows that cl,R
mn = cl,L

mn or in Roe’s notation, WR
lmn = WL

lmn. Hence the restrictions

imposed by Gcr = Gp ∪ IGp of Type II on the texture coefficients cl,R/L
mn or WR/L

lmn are exactly

the same as those imposed by the proper subgroup Gp on the texture coefficients cl
mn or

Wlmn reported in Section 5.2.1.1.

5.2.1.3 Type III crystal symmetry

As in Chapter 2, the 10 improper groups Gi in Type III, which do not contain the inversion

as an element, are:

Cs,C2v, S 4,C4v,D2d,C3v,C3h,D3h,C6v,Td. (5.21)

For each of these groups, the subset with the identity and all rotational elements form a

subgroup Gp. And the proper rotational subgroups Gp, in the order of Gi listed above, are:

C1,C2,C2,C4,D2,C3,C3,D3,C6,T (5.22)

Since Gi = Gp∪ R̄2Gp = Gp∪ IR2G for some specific rotation R2 < Gp, the restrictions

imposed by Gi on texture coefficients are exactly those imposed by Gp and the extra gener-

ator Q2 = R̄2 = IR2 ∈ ISO(3). The corresponding rotational subgroup Gp and rotation R2

pertaining to each improper group Gi in Type III are listed in Table 5.3.

Notice that both C2v and S 4 have C2 as the rotational subgroup, but their WR
lmn and WL

lmn

(or, cl,R
mn and cl,L

mn) are related differently. Similarly, C3v and C3h both have C3 as the rotational

subgroup.
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Table 5.3: Corresponding rotational subgroup Gp and R2 of each Type III improper group
Gi.

Improper group Gi Rotational subgroup Gp R2

Cs C1 R(e3, π)

C2v C2 R(e2, π)

S 4 C2 R(e3,
π
2 )

C4v C4 R(e2, π)

D2d D2 R(e3,
π
2 )

C3v C3 R(e2, π)

C3h C3 R(e3,
π
3 )

D3h D3 R(e3,
π
3 )

C6v C6 R(e2,
π
2 )

Td T R(e3,
π
2 )

Note: Gi = Gp ∪ R̄2Gp (e.g. Cs = C1 ∪ R̄2C1, where R̄2 = IR(e3, π)).

Next we will discuss these 10 improper groups separately as crystal symmetries.

1. Cs, S 1 or C1h

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are E and IR(e3, π).
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Invariance under IR(e3, π) with R(e3, π) given by (0, 0, π) implies

cl,R/L
mn =

∑
p

cl,L/R
mp Dl

np(0, 0, π) =
∑

p

cl,L/R
mp dl

np(0)e−ipπ = cl,L/R
mn cos(nπ) = (−1)ncl,L/R

mn . (5.23)

Thus

cl,R/L
mn =


cl,L/R

mn , for even n;

−cl,L/R
mn , for odd n.

(5.24)

2. S 4

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are E, R(e3, π), IR(e3,
π
2 )

and IR(e3,
3π
2 ). Invariance under R(e3, π) implies that texture coefficients are zero unless n

is even (as in C2). Invariance under IR(e3,
π
2 ) implies

cl,R/L
mn =

∑
p

cl,L/R
mp Dl

np(0, 0,
π

2
) =

∑
p

cl,L/R
mp dl

np(0)e−
ipπ
2 = cl,L/R

mn cos(
nπ
2

) = (−1)
n
2 cl,L/R

mn . (5.25)

Together we have,

cl,R/L
mn =


cl,L/R

mn , for n = 4k, k ∈ Z;

−cl,L/R
mn , for n = 4k + 2, k ∈ Z;

0, else.

(5.26)

3. C3h

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by IR(e3,
π
3 ).

Clearly , R(e3,
2π
3 ) is also an element which implies, as in C3, n = 3k, k ∈ Z for non-zero

texture coefficients. Invariance under IR(e3,
π
3 ) implies

cl,R/L
mn =

∑
p

cl,L/R
mp Dl

np(0, 0,
π

3
) =

∑
p

cl,L/R
mp dl

np(0)e−
ipπ
3 = cl,L/R

mn cos(
nπ
3

) = (−1)
n
3 cl,L/R

mn . (5.27)
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Therefore,

cl,R/L
mn =


cl,L/R

mn , for n = 6k, k ∈ Z;

−cl,L/R
mn , for n = 6k + 3, k ∈ Z;

0, else.

(5.28)

4. C2v

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that we can write

C2v = {e, R(e3, π), IR(e2, π), IR(e1, π)}. (5.29)

Invariance under R(e3, π) implies that n must be even for non-zero cl,R/L
mn as in C2. In-

variance under IR(e2, π) with Euler anger (0, π, 0) implies cl,R/L
mn = (−1)l+ncl,L/R

mn̄ with similar

argument indicated in (5.7).

Together we have

cl,R/L
mn =


(−1)lcl,L/R

mn̄ , for even n;

0, for odd n.
(5.30)

5. C3v

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
2π
3 )

and IR(e2, π). Invariance under R(e3,
2π
3 ) implies, as in C3, n = 3k, k ∈ Z for non-zero

texture coefficients. Invariance under IR(e2, π) implies cl,R/L
mn = (−1)l+ncl,L/R

mn̄ . Thus

cl,R/L
mn =


(−1)lcl,L/R

mn̄ , for n = 6k, k ∈ Z;

(−1)l+1cl,L/R
mn̄ , for n = 6k + 3, k ∈ Z;

0, else.

(5.31)
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6. C4v

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
π
2 )

and IR(e2, π). We can write C4v = C4
⋃

C̄2C4. Invariance under R(e3,
π
2 ) with Euler anger

(0, 0, π2 ) implies n = 4k, k ∈ Z for non-zero texture coefficients; invariance under IR(e2, π)

implies cl,R/L
mn = (−1)l+ncl,L/R

mn̄ . We then have

cl,R/L
mn =


(−1)lcl,L/R

mn̄ , for n = 4k, k ∈ Z;

0, else.
(5.32)

7. D2d

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e2, π),

R(e3, π), and IR(e3,
π
2 ). Invariance under IR(e3,

π
2 ) implies cl,R/L

mn = (−1)n/2cl,L/R
mn . Combining

this with the restrictions imposed by D2, we have:

(1) if n = 4k for some integer k, then cl,R
mn = cl,L

mn and we have cl,R/L
mn = (−1)lcl,R/L

mn̄ ;

(2) if n = 4k+2 for some integer k, then cl,R
mn = −cl,L

mn and we also have cl,R/L
mn = (−1)lcl,R/L

mn̄ .

8. C6v

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by R(e3,
π
3 )

and IR(e2, π). As in C6, invariance under R(e3,
π
3 ) implies that n = 6k, k ∈ Z for non-zero

texture coefficients. Invariance under IR(e2, π) implies cl,R/L
mn = (−1)l+ncl,L/R

mn̄ .

Combining these requirements, we obtain

cl,R/L
mn =


(−1)lcl,L/R

mn̄ , for n = 6k, k ∈ Z;

0, else.
(5.33)
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9. D3h

Suppose the reference crystal lattice of the crystallites and the spatial coordinate system

for the definition of Euler angles are chosen so that the elements are generated by IR(e3,
π
3 )

and R(e2, π). Notice that we can write D3h = D3
⋃

R̄D3 with R = R(e3,
π
3 ).

The restrictions imposed by D3 is:

cl,R/L
mn =


(−1)l+ncl,R/L

mn̄ , for n = 3k, k ∈ Z;

0 , else.
(5.34)

Invariance under IR(e3,
π
3 ) implies

cl,R/L
mn =

∑
p

cl,L/R
mp Dl

np(0, 0,
π

3
) =

∑
p

cl,L/R
mp dl

np(0)e−
ipπ
3 = cl,L/R

mn cos(
nπ
3

) = (−1)
n
3 cl,L/R

mn . (5.35)

In conclusion, we have:

(1) if n = 6k for some integer k, then cl,R
mn = cl,L

mn and we have cl,R/L
mn = (−1)lcl,R/L

mn̄ ;

(2) if n = 6k + 3 for some integer k, then cl,R
mn = −cl,L

mn and cl,R/L
mn = (−1)l+1cl,R/L

mn̄ .

10. Td

Suppose the reference crystal lattice of the crystallites and the spatial coordinate sys-

tem for the definition of Euler angles are chosen so that the elements are generated by

R(e3, π), R(e2, π), R(e2,
π
2 )R(e3,

π
2 ) and IR(e3,

π
2 ). Here R(e2,

π
2 )R(e3,

π
2 ) = R(n, 2π

3 ), where

n = 1
√

3
(e1 + e2 + e3).

Invariance under IR(e3,
π
2 ) implies

cl,R/L
mn =

∑
p

cl,L/R
mp Dl

np(0, 0,
π

2
) =

∑
p

cl,L/R
mp dl

np(0)e−
ipπ
2 = cl,L/R

mn cos(
nπ
2

). (5.36)

Invariance under R(e3, π) implies that n is even for non-zero cl
mn. Thus cl,R/L

mn = (−1)
n
2 cl,L/R

mn

for even n.
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Combining the restrictions above with those imposed by T , we have:

(1) if n = 4k for some integer k, then cl,R
mn = cl,L

mn;

(2) if n = 4k + 2 for some integer k, then cl,R
mn = −cl,L

mn.

In both cases, we have cl,R/L
mn = (−1)lcl,R/L

mn̄ and the results listed in Table 5.1.

Remark: Material symmetries defined by the 32 crystallographic point groups can be

distinguished by their restrictions on the texture coefficients of wR and wL. The lowest

order p such that all crystallographic point groups can be distinguished by cl
mn or Wlmn with

l ≤ p is 4, i.e. with l no more than 4, the non-zero cl
mn or Wlmn coefficients under each group

are different or differently related. For example, to distinguish the point groups T and O,

we see that c3
m2 or W3m2 , 0 for T and c3

m2 or W3m2 = 0 for O.

5.2.2 Texture symmetry

Here we just consider the case where Gtex is of Type I, i.e., Gtex is a subgroup of SO(3). As

in Sec 5.1.2, we have wR(R1) = wR(R−1
2 R1) and wL(R1) = wL(R−1

2 R1), for each R2 ∈ Gtex

and R1 ∈ SO(3).

We then have [18],

cl,R/L
mn =

l∑
p=−l

cl,R/L
pn Dl

pm(R−1
2 ); (5.37)

or in Roe’s notation,

WR/L
lmn =

√
2

2l + 1

l∑
k=−l

WR/L
lkn Zlkm(cos θ)e−ikψe−inφ. (5.38)

Here cl,R/L
mn and WR/L

lmn are texture coefficients, and WR/L
lmn = (−1)m−n

√
2

2l+1cl,R/L
mn .

The restrictions imposed by sample symmetries can be found simply by exchanging m

and n in the restrictions imposed by crystal symmetries.
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Chapter 6 An application of the extended representation theorem

The representation formulas derived in Chapter 4 are meant for material tensors and pseu-

dotensors of weakly-textured polycrystals. But they are valid also for the special case

where the crystallites all have the same orientation. This special case covers also single

crystals which are weakly anisotropic. Given a single crystal with a particular Gcr and a

certain rth-order material tensor or pseudotensor H pertaining to the crystal, information

such as restrictions imposed by crystal symmetry on the components of H and the num-

ber of undetermined material parameters (UMPs) carried by it, which do not depend on

whether the anisotropy of the crystal is strong or weak, can be determined by the repre-

sentation formulas. Of course, using the representation formulas to get such information

would be overkill, because they can be obtained by brute force, i.e., by solving directly the

equation

Q⊗r H = H, if H is a material tensor, (6.1)

or the equation

(det Q) Q⊗r H = H, if H is a material pseudotensor. (6.2)

On the other hand, obtaining the restrictions on H and the UMPs carried by it by using

the representation formulas and then by brute force will serve as a check on the correct-

ness of the representation formulas and of the restrictions on texture coefficients derived in

Chapter 5.

In this Chapter we will study material tensors and pseudotensors in the space [V⊗2]⊗2],

i.e., the space of 4th-order tensors that enjoy the major and minor symmetries. A familiar

example of material tensors in this space is the elasticity tensor. Pseudotensors in [V⊗2]⊗2]

are seldom studied. For a material tensor or pseudotensor H in [V⊗2]⊗2], we will use
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representation formulas (4.93), (4.94) and the restrictions on texture coefficients derived in

Chapter 5 to determine the number of UMPs in H and the restrictions on the components of

H imposed by Gcr for the cases of Gcr = Cs, D3h, C4v, and D2d. We elect to work with Type

III crystals because representation formula (4.94) will hold for pseudotensors in [V⊗2]⊗2],

an instance for which the ad hoc approach in classical texture analysis to treat Type III

crystals as if they are their Type I Laue-class peer will not work. We select Cs, D3h, C4v,

and D2d from the 10 Type III cases, because they represent the four subcases of Type III

crystals as distinguished by the generator containing inversion (see Table 6.1). We will

check the correctness of the findings by solving (6.1) and (6.2) directly.

Table 6.1: Four subcases in Type III.

Generator containing inversion (IR) Groups

Subcase I IR(e3, π) Cs

Subcase II IR(e3,
π
3 ) C3h, D3h

Subcase III IR(e2, π) C2v, C3v, C4v, C6v

Subcase IV IR(e3,
π
2 ) S 4, D2d, Td

6.1 Crystal symmetry Cs

The point group Cs has only two elements, namely, the identity E and IR(e3, π). We will

first apply the general representation formula to both material tensors and pseudotensors

with even order and then work out the details for material tensors and pseudotensors in

[[V⊗2
c ]⊗2].
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6.1.1 Even-order tensor

As shown in Chapter 5, invariance under IR(e3, π) implies cl,R/L
mn = cl,L/R

mn when n is even

and cl,R/L
mn = −cl,L/R

mn when n is odd. It follows that bl
mn = cl,R

mn + cl,L
mn = 0 when n is odd. The

representation formula (4.112) becomes

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=even

k∑
m=−k

αk,s
n bk

mnHk,s
m (6.3)

where a procedure to obtain the orthonormal basis tensors Hk,s
m is given explicitly by Man

and Huang [20].

To match the notation in Man and Huang’s paper [20], let C(w) = H(w) as a 4th-

order elasticity tensor in [[V⊗2
c ]⊗2], which decomposes into its irreducible parts under O(3)

according to formula (3.35). For this particular instance, (6.3) assumes the form

C(w) = Ciso +

2∑
s=1

∑
n=0,±2

α2,s
n Ψns +

∑
n=0,±2,±4

α4
nΦn, (6.4)

where Ciso is given in equations (132)–(133) in Man and Huang’s paper [20] with λ, µ

as 2 undetermined material parameters, Ψns =
∑2

m=−2 b2
mnH2,s

m , Φn =
∑4

m=−4 b4
mnH4

m. The

corresponding orthonormal basis tensors Hk,s
m are given by Man and Huang [20] and are

reproduced in Appendix 2 of this thesis.

Note that for aggregates of crystallites with crystal symmetry Cs, the elasticity tensor

C(w) carries 13 undetermined material parameters, 11 out of which are the α’s in (6.4).

For single crystal with symmetry Cs, we can apply the restrictions imposed by sample

symmetry on texture coefficients and have ck,R/L
mn = ck,L/R

mn when m is even and ck,R/L
mn = −ck,L/R

mn
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when m is odd, which implies bk
mn = 0 when m is odd. Thus (6.3) becomes

H(w) = H(wR,wL)

=
∑
k∈J

nk∑
s=1

∑
n=even

k∑
m=−k

αk,s
n,Rck,R

mn Hk,s
m +

∑
k∈J

nk∑
s=1

∑
n=even

k∑
m=−k

αk,s
n,Lck,L

mn Hk,s
m

=
∑
k∈J

nk∑
s=1

∑
n,m=even

αk,s
n bk

mnHk,s
m (6.5)

Using the formulas for Hk,s
m in [[V⊗2

c ]⊗2] with even m in Appendix 2, we obtain the

following 6 × 6 matrix, which represents C(w) = H(w) in the Voigt notation:

(ci j) =



c11 c12 c13 0 0 c16

c22 c23 0 0 c26

c33 0 0 c36

c44 c45 0

S ym c55 0

c66



, (6.6)

where there are 13 undetermined material parameters.

On the other hand, the same 6 × 6 matrix is obtained by directly solving the matrix

equation Q⊗4C = C for Q ∈ Cs by hand and by using Maple.

6.1.2 Even-order pseudotensor

Again invariance under IR(e3, π) implies cl,R/L
mn = cl,L/R

mn when n is even and cl,R/L
mn = −cl,L/R

mn

when n is odd. Now we have bl
mn = cl,R

mn − cl,L
mn = 0 when n is even. The representation

formula (4.114) becomes

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=odd

k∑
m=−k

αk,s
n bk

mnHk,s
m (6.7)
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For a 4th-order pesudotensor in [[V⊗2
c ]⊗2], it follows that with C(w) = H(w)

C(w) =

2∑
s=1

∑
n=±1

α2,s
n Ψns +

∑
n=±1,±3

α4
nΦn. (6.8)

Note that for aggregates of crystallites with Gcr = Cs, the pseudotensor C(w) carries 8

undetermined material parameters, namely α2,1
1 , α2,1

1̄
, α2,2

1 , α2,2
1̄
, α4

1, α
4
1̄
, α4

3, and α4
3̄
.

For single crystal with symmetry Cs, we have bk
mn = 0 when m is odd. Then (6.7)

reduces to the form

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n,m=odd

αk,s
n bk

mnHk,s
m . (6.9)

On the one hand, using the formulas for the basis tensors Hk,s
m with odd m in Appendix

2, we obtain the 6 × 6 matrix (6.10) which represents C(w) = H(w) in the Voigt notation.

This matrix carries 8 independent undetermined parameters. On the other hand, this same

matrix is obtained by directly solving the matrix equation (det Q) Q⊗4C = C for Q ∈ Cs by

hand and by using Maple.

(ci j) =



0 0 0 c14 c15 0

0 0 c24 c25 0

0 c34 c35 0

0 0 c46

S ym 0 c56

0



(6.10)

6.2 Crystal symmetry D3h

For subcase II, we will use D3h as an example. The calculations for crystal symmetry C3h

are similar. From chapter 5, the texture restrictions on crystal symmetry D3h is given as

follows:
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(1) if n = 6k for some integer k, then cl,R
mn = cl,L

mn and we have cl,R/L
mn = (−1)lcl,R/L

mn̄ ;

(2) if n = 6k + 3 for some integer k, then cl,R
mn = −cl,L

mn and cl,R/L
mn = (−1)l+1cl,R/L

mn̄ .

6.2.1 Even-order tensor

Since Cs is a subgroup of D3h, the representation formula should satisfy (6.3) with n even

for non-zero terms bl
mn. Together with the above texture restrictions, we have

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=±0,±6,...

k∑
m=−k

αk,s
n bk

mnHk,s
m . (6.11)

For elasticity tensor C(w) in [[V⊗2
c ]⊗2] by writing H(w) = C(w), from (6.11) we then

have

C(w) = Ciso +

2∑
s=1

α2,s
0 Ψ0s + α4

0Φ0, (6.12)

where Ψ0s =
∑2

m=−2 b2
m0H2,s

m , Φ0 =
∑4

m=−4 b4
m0H4

m.

We see that for aggregates of crystallites with crystal symmetry D3h, the elasticity tensor

C(w) carries 5 undetermined material parameters (λ, µ, α2,1
0 , α2,2

0 and α4
0).

For single crystal with symmetry D3h, we have bl
mn = 0 unless m = 6k, k ∈ Z. Thus

(6.11) further reduces to

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n,m=0,6,...

αk,s
n bk

mnHk,s
m . (6.13)

In [[V⊗2
c ]⊗2], bl

mn = 0 unless m = 0 because m ≤ 4. The elasticity tensor C(w) in (6.12)

then becomes

C(w) = Ciso +

2∑
s=1

α2,s
0 b2

00H2,s
0 + α4

0b4
00H4

0 (6.14)
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Using the formulas for Hk,s
0 with k = 0, 2, 4 and s = 0, 1 (See Appendix 2), we obtain

the 6 × 6 matrix that represents C(w) = H(w) in the Voigt notation:

(ci j) =



c12 + 2c66 c12 c13 0 0 0

c12 + 2c66 c13 0 0 0

c33 0 0 0

c44 0 0

S ym c44 0

c66



(6.15)

We see that this matrix representation of C has 5 undetermined material parameters.

Meanwhile, the same 6 × 6 matrix is also derived by directly solving the matrix equation

Q⊗4C = C for Q ∈ D3h by hand and by using Maple.

6.2.2 Even-order pseudotensor

The representation formula should satisfy (6.7) since Cs is a subgroup of D3h. With the

restrictions on texture coefficient restrictions imposed by D3h, we see that bl
mn = 0 unless

n = 6k + 3 with k ∈ Z. The representation formula becomes

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=±3,±9,...

k∑
m=−k

αk,s
n bk

mnHk,s
m (6.16)

where bk
mn = ck,R

mn − ck,L
mn as in (4.112).

In [[V⊗2
c ]⊗2], it follows that

C(w) =
∑
n=±3

α4
n

4∑
m=−4

b4
mnH4

m (6.17)

From restrictions on texture coefficients imposed by D3h, we also have cl,R/L
mn = (−1)l+1cl,R/L

mn̄

for n = 6k + 3, k ∈ Z. Applying this in the space of [[V⊗2
c ]⊗2], we obtain cR/L,4

m3 = −cR/L,4
m3̄

. It
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follows that b4
m3 = cR,4

m3 − cL,4
m3 = −cR,4

m3̄
+ cL,4

m3̄
= −(cR,4

m3̄
− cL,4

m3̄
) = −b4

m3̄
. Thus (6.17) becomes

C(w) =
∑
n=±3

α4
n

4∑
m=−4

b4
mnH4

m = (α4
3

4∑
m=−4

b4
m3 + α4

3̄

4∑
m=−4

b4
m3̄)H4

m

= (α4
3

4∑
m=−4

b4
m3 − α

4
3̄

4∑
m=−4

b4
m3)H4

m = α3

4∑
m=−4

b4
m3H4

m, (6.18)

where α3 = α4
3 − α

4
3̄
.

For aggregates of crystallites with crystal symmetry D3h, the pseudotensor C(w) just

carries 1 undetermined material parameter α3.

For single crystal with symmetry D3h, we have cl
mn = 0 unless m = 6k + 3, k ∈ Z. In the

space [[V⊗2
c ]⊗2], we obtain b4

33 = −b4
3̄3

. It follows from (6.18) that

C(w) = α3

4∑
m=−4

b4
m3H4

m = α3(b4
33H4

3 + b4
3̄3H4

3̄) = α3b4
33(H4

3 − H4
3̄) (6.19)

The matrix elements in the 6 × 6 representation of C(w) = H(w) are all zeros except

possibly c14, c24, c15, c25, c46, c56 and those on symmetric positions as in H4
3 and H4

3̄ (See

Appendix 2). Now note that c14 = −c24 = c56 = α3b4
33[(H4

3)14 − (H4
3̄)14] = α3b4

33(i − i) = 0.

Thus the non-zero elements are c15 = −c25 = −c46 = α3b4
33(−1 − 1) = −2α3b4

33. Hence C

assumes the form

(ci j) =



0 0 0 0 −2α3b4
33 0

0 0 0 2α3b4
33 0

0 0 0 0

0 0 2α3b4
33

S ym 0 0

0



(6.20)

This matrix has only one independent element (i.e., c15 = −c25 = −c46). The same 6×6

matrix is obtained by directly solving the matrix equation (det Q) Q⊗4C = C for Q ∈ D3h.
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6.3 Crystal symmetry C4v

For groups C2v,C3v,C4v, and C6v in subcase III, we choose C4v = 〈R(e3,
π
2 ), IR(e2, π)〉 as an

example. Restrictions on texture coefficients restrictions imposed by crystal symmetry C4v

derived in Chapter 5 show that

cl,R/L
mn =


(−1)lcl,L/R

mn̄ , for n = 4k, k ∈ Z;

0, else.
(6.21)

Clearly, bl
mn = 0 for both tensors and pseudotensors when n is not a multiple of 4. The

representation formula (4.112) can then be reduced as

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=0,±4,...

k∑
m=−k

αk,s
n bk

mnHk,s
m , (6.22)

where bk
mn = ck,R

mn + ck,L
mn for tensors and bk

mn = ck,R
mn − ck,L

mn for pseudotensors.

6.3.1 Even-order tensor

In Chapter 5, we have derived the restrictions ck,R/L
mn = (−1)l+nck,L/R

mn̄ , which are imposed by

IR(e2, π). Thus we have bk
mn = ck,R

mn + ck,L
mn = (−1)k+nck,L

mn̄ + (−1)k+nck,R
mn̄ = (−1)k+nbk

mn̄. In the

space [[V⊗2
c ]⊗2], we have k = 0, 2, 4 and n = −4, 0, 4. Thus we obtain b4

m4 = b4
m4̄

. By writing

H(w) as C(w) for an elasticity tensor, (6.22) then can be simplified as

C(w) = Ciso +

2∑
s=1

α2,s
0

2∑
m=−2

b2
m0H2,s

m +
∑

n=0,±4

α4
n

4∑
m=−4

b4
mnH4

m

= Ciso +

2∑
s=1

α2,s
0

2∑
m=−2

b2
m0H2,s

m + α4
0

4∑
m=−4

b4
m0H4

m + α4
4

4∑
m=−4

b4
m4H4

m + α4
4̄

4∑
m=−4

b4
m4̄H4

m

= Ciso +

2∑
s=1

α2,s
0

2∑
m=−2

b2
m0H2,s

m +
∑
n=0,4

α4
n′

4∑
m=−4

b4
mnH4

m, (6.23)

where α4
0′ = α4

0 and α4
4′ = α4

4 + α4
4̄
.

We see that α4
4′ is a real number since α4

4 and α4
4̄

are complex conjugates [20]. Thus

for aggregates of crystallites with crystal symmetry C4v, the elasticity tensor C(w) carries

6 undetermined material parameters, namely λ, µ, α2,1
0 , α2,2

0 , α4
0, and α4

4′ .
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For single crystal with symmetry C4v, in [[V⊗2
c ]⊗2] we have m = 4k, k ∈ Z for non-zero

terms in C. Similarly, we obtain b4
4n = b4

4̄n
. By using the formulas for Hk,s

m with m = 0,±4

(see Appendix 2), we obtain the following matrix expression for C in the Voigt notation:

(ci j) =



c11 c12 c13 0 0 c16

c11 c13 0 0 −c16

c33 0 0 0

c44 0 0

S ym c44 0

c66



(6.24)

Moreover, h16 = −h26 is non-zero only in H4
4 and H4

4̄. However, b4
4n(H4

4)16 +b4
4̄n

(H4
4̄)16 =

b4
4n · (−i)+b4

4̄n
· i = 0 implies c16 = 0 from (6.23). Similarly c26 = −c16 = 0. Therefore C can

be expressed as follows in the Voigt notation with 6 independent elastic constants. Mean-

while, this matrix expression is obtained by directly solving the matrix equation Q⊗4C = C

for Q ∈ C4v by hand and by using Maple.

(ci j) =



c11 c12 c13 0 0 0

c11 c13 0 0 0

c33 0 0 0

c44 0 0

S ym c44 0

c66



(6.25)

6.3.2 Even-order pseudotensor

With ck,R/L
mn = (−1)k+nck,L/R

mn̄ for pseudotensor, we have bk
mn = ck,R

mn − ck,L
mn = (−1)k+nck,L

mn̄ −

(−1)k+nck,R
mn̄ = (−1)k+n(−bk

mn̄). In the space [[V⊗2
c ]⊗2], we have k = 0, 2, 4 and n = −4, 0, 4. It

follows that bk,s
m0 = −bk,s

m0̄
for k = 0, 2, 4, and b4

m4 = −b4
m4̄

. The former implies bk,s
m0 = 0. Then
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(6.22) reduces to

H(w) =
∑
n=±4

α4
n

4∑
m=−4

b4
mnH4

m

= α4
4

4∑
m=−4

b4
m4H4

m + α4
4̄

4∑
m=−4

b4
m4̄H4

m

= (α4
4 − α

4
4̄)

4∑
m=−4

b4
m4H4

m

= α4
4′

4∑
m=−4

b4
m4H4

m, (6.26)

where α4
4′ = α4

4 − α
4
4̄
.

Note that for aggregates of crystallites with crystal symmetry C4v, the pseudotensor

H(w) carries just 1 undetermined material parameter α4
4′ .

For single crystal with symmetry C4v, we have m = 4k, k ∈ Z for non-zero terms in

C(w) = H(w) by analogue. Similarly we get b4
44 = −b4

4̄4
and b4

04 = 0. Thus (6.26) becomes

C(w) = α4
4′

4∑
m=−4

b4
m4H4

m

= α4
4′b

4
44H4

4 + α4
4′b

4
4̄4H4

4̄

= α4
4′b

4
44(H4

4 − H4
4̄) (6.27)

By observation, Hm = (hi j) with m = ±4 (see Appendix 2) have the following matrix

expression in the Voigt notation:

(hi j) =



h11 −h11 0 0 0 h16

h11 0 0 0 −h16

0 0 0 0

0 0 0

S ym 0 0

h11



, (6.28)
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where h16 = −h26 is imaginary and h11 = −h12 = h66 is real.

That H4
4 = H4

4̄ implies (H4
4)i j− (H4

4̄)i j = 0 if it is real. It follows that c11 = c12 = c66 = 0

in C(w) by (6.27). Therefore C(w) can be expressed as follows in the Voigt notation with

one independent matrix entry. Similarly this 6 × 6 matrix expression is found by directly

solving the matrix equation (det Q) Q⊗4C = C for Q ∈ C4v.

C(w) =



0 0 0 0 0 c16

0 0 0 0 −c16

0 0 0 0

0 0 0

S ym 0 0

0



(6.29)

6.4 Crystal symmetry D2d

For groups in subcase IV (i.e., S 4, D2d and Td), we will discuss D2d as an example, which

is in the same Laue class as C4v (see Section 6.3). As derived in Chapter 5, the restrictions

imposed on non-trivial texture coefficients imposed by crystal symmetry D2d are as follows:

(1) if n = 0,±4,±8, . . ., then ck,R
mn = ck,L

mn and ck,R/L
mn = (−1)kck,R/L

mn̄ ;

(2) if n = ±2,±6,±10, . . ., then ck,R
mn = −ck,L

mn and ck,R/L
mn = (−1)kck,R/L

mn̄ .

For material tensors, we obtain bk
mn = ck,R

mn + ck,L
mn = 2ck,R

mn = 2ck,L
mn for n = 4k with k ∈ Z;

Otherwise, bk
mn = 0. And bk

mn = ck,R
mn + ck,L

mn = (−1)kck,R
mn̄ + (−1)kck,R

mn̄ = (−1)kbk
mn̄. Thus the

representation formula (4.112) can be simplified as

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=0,±4,...

k∑
m=−k

αk,s
n bk

mnHk,s
m

=
∑
k∈J

nk∑
s=1

∑
n=0,4,...

k∑
m=−k

αk,s
n′ bk

mnHk,s
m , (6.30)

where bk
mn = 2ck,R

mn = 2ck,L
mn , αk,s

0′ = αk,s
0 and αk,s

n′ = αk,s
n + (−1)kαk,s

n̄ .
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For material pseudotensors, bk
mn = ck,R

mn − ck,L
mn = 2ck,R

mn = −2ck,L
mn for n = 4k + 2 with k ∈ Z;

Otherwise, bk
mn = 0. And again bk

mn = (−1)kbk
mn̄. It follows that the representation formula

can be reduced as

H(w) = H(wR,wL) =
∑
k∈J

nk∑
s=1

∑
n=±2,±6,...

k∑
m=−k

αk,s
n bk

mnHk,s
m

=
∑
k∈J

nk∑
s=1

∑
n=2,6,...

k∑
m=−k

αk,s
n′ bk

mnHk,s
m (6.31)

where bk
mn = 2ck,R

mn = −2ck,L
mn and αk,s

n′ = αk,s
n + (−1)kαk,s

n̄ .

6.4.1 Even-order tensor

In [[V⊗2
c ]⊗2], the values of k in (6.30) are restricted to k = 0, 2, 4. We obtain the following

expression from (6.30) by writing C(w) for H(w) as an elasticity tensor:

C(w) = Ciso +

2∑
s=1

α2,s
0

2∑
m=−2

b2
m0H2,s

m +
∑
n=0,4

α4
n′

4∑
m=−4

b4
mnH4

m, (6.32)

where α4
0′ = α4

0 and α4
4′ = α4

4 + α4
4̄
.

We see that for aggregates of crystallites with crystal symmetry D2d, the elasticity tensor

C(w) carries 6 undetermined material parameters (λ, µ, α2,1
0 , α2,2

0 , α4
0′ and α4

4′).

For single crystal, we now have bk
mn = bk

m̄n and m = 0,±4 for non-zero bk
mn. By obser-

vation, Hk,s
m with m = 0,±4 (see Appendix 2) all have the following matrix expression in

Voigt notation:

(hi j) =



h11 h12 h13 0 0 h16

h11 h13 0 0 −h16

h33 0 0 0

h44 0 0

S ym h44 0

h66



(6.33)
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The matrix representation C(w) should also have this pattern by (6.32). Notice that

h16 = −h26 , 0 only in H4
4 and H4

4̄. Thus c16 in C(w) can be calculated as

c16 =
∑
n=0,4

α4
n′(b

4
4n(H4

4)16 + b4
4̄n(H4

4̄)16) =
∑
n=0,4

α4
n′(b

4
4n(−i) + b4

4̄n(i)) = 0. (6.34)

Hence, we obtain the following matrix expression for C in the Voigt notation:

(ci j) =



c11 c12 c13 0 0 0

c11 c13 0 0 0

c33 0 0 0

c44 0 0

S ym c44 0

c66



(6.35)

Therefore for the single crystal, C with symmetry D2d has 6 independent undetermined

parameters. And again, the same matrix expression (6.35) is found by directly solving the

matrix equation Q⊗4C = C for Q ∈ D2d by hand and by using Maple.

6.4.2 Even-order pseudotensor

In the space [[V⊗2
c ]⊗2] with the values of k restricted to 0, 2, 4, we see that n = ±2 for non-

trivial bk
mn. Now we obtain from (6.31) the following simplified representation formula:

C(w) =

2∑
s=1

α2,s
2′

2∑
m=−2

b2
m2H2,s

m + α4
2′

4∑
m=−4

b4
m2H4

m, (6.36)

where α2,s
2′ = α2,s

2 + α2,s
2̄

and α4
2′ = α4

2 + α4
2̄
.

Note that for aggregates of crystallites with crystal symmetry D2d, the pseudotensor

C(w) carries 3 undetermined material parameters (α2,1
2′ , α2,2

2′ and α4
2′).
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For the single crystal, in [[V⊗2
c ]⊗2] we have m = ±2, k ∈ Z for non-zero terms bk

mn and

bk
mn = bk

m̄n. Then (6.36) can be further simplified as

C(w) =

2∑
s=1

α2,s
2′ b2

22(H2,s
2 + H2,s

2̄
) + α4

2′b
4
22(H4

2 + H4
2̄). (6.37)

By observation, the matrix expressions Hk,s
m = (hi j) with m = ±2, k = 2, 4 and s = 1, 2

(see Appendix 2) all have the following form in the Voigt notation:

(hi j) =



h11 0 h13 0 0 h16

−h11 −h13 0 0 h16

0 0 0 h36

h44 h45 0

S ym −h44 0

0



. (6.38)

The matrix representation of C(w) = (ci j) should also have the same form because it is

a linear combination of Hk
m with m = ±2, k = 2, 4. Notice that the entries h16, h36 and h45

in all of these Hk,s
m are either zero or pure imaginary numbers. Together with Hk

m = Hk
m̄,

we have (Hk
m)i j + (Hk

m̄)i j = 0 at these three positions. It follows that c16 = c36 = c45 = 0

in C(w) by (6.37). Together with (6.38), we obtain the following matrix expression in the

Voigt notation for C(w):

C =



c11 0 c13 0 0 0

−c11 −c13 0 0 0

0 0 0 0

c44 0 0

S ym −c44 0

0



(6.39)
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We see C with symmetry D2d has 3 undetermined material parameters for the single

crystal. The same matrix expression (6.39) is also obtained by directly solving the matrix

equation (det Q) Q⊗4C = C for Q ∈ D2d.

6.5 Conclusion

In summary, Table 6.2 to Table 6.4 show the numbers of undetermined material parameters

(UMP) in [[V⊗2
c ]⊗2] for aggregates of Type III crystallites and for aggregates with Gcr in

Laue classes 2 and 8.

110



Table 6.2: Number of undetermined material parameters (UMP) in [[V⊗2
c ]⊗2] for aggregates

of Type III crystallites.

Gcr Cs C2v S 4 C4v D2d C3v C3h D3h C6v Td

UMP [r] 13 9 7 6 6 6 5 5 5 3

UMP [p] 8 4 6 1 3 1 2 1 0 0

Gp C1 C2 C2 C4 D2 C3 C3 D3 C6 T

UMP [r] 21 13 13 7 9 7 7 6 5 3

UMP [p] 21 13 13 7 9 7 7 6 5 3

Gcr = Gp ∪ IRGp for some R ∈ SO(3) and R < Gp; [r] = (regular) material tensor;

[p] = material pseudotensor
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Table 6.3: Number of undetermined material parameters (UMP) in [[V⊗2
c ]⊗2] for aggregates

of Type III crystallites in the Laue Class 2.

Gcr C2 (Type I) C2h (Type II) Cs (Type III)

UMP [r] 13 13 13

UMP [p] 13 0 8

Table 6.4: Number of undetermined material parameters (UMP) in [[V⊗2
c ]⊗2] for aggregates

of Type III crystallites in the Laue Class 8.

Gcr D4 (Type I) D4h (Type II) D2d (Type III) C4v (Type III)

UMP [r] 6 6 6 6

UMP [p] 6 0 3 1

Copyright c©Wenwen Du 2015
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Appendix 1: Maple procedure

The following code is a procedure for Maple to compute the matrix elements of the Rie-

mannian metric tensor gi j in Section 2.2.3. To run this procedure, one must first load the

package linalg.

Restart:

with(linalg):

R1:=matrix([[cos(psi), -sin(psi), 0], [sin(psi), cos(psi),0], [0, 0, 1]]):

R2:=matrix([[cos(theta), 0, sin(theta)], [0, 1,0], [-sin(theta), 0, cos(theta)]]):

R3:=matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi),0], [0, 0, 1]]):

E3:=matrix([[0,-1, 0], [1, 0,0], [0, 0, 0]]);

E2:=matrix([[0,0,1], [0, 0,0], [-1, 0, 0]]);

R:=multiply(R1,R2,R3);

g:=array(1..3,1..3):

g[1,1]:=simplify(1/2*trace(multiply(R1,E3,R2,R3,transpose(multiply(R1,E3,R2,R3))))):

g[1,2]:=simplify(1/2*trace(multiply(R1,E3,R2,R3,transpose(multiply(R1,R2,E2,R3))))):

g[1,3]:=simplify(1/2*trace(multiply(R1,E3,R2,R3,transpose(multiply(R1,R2,R3,E3))))):

g[2,2]:=simplify(1/2*trace(multiply(R1,R2,E2,R3,transpose(multiply(R1,R2,E2,R3))))):

g[2,3]:=simplify(1/2*trace(multiply(R1,R2,E2,R3,transpose(multiply(R1,R2,R3,E3))))):

g[3,3]:=simplify(1/2*trace(multiply(R1,R2,R3,E3,transpose(multiply(R1,R2,R3,E3))))):

for i from 2 to 3 do

for j from 1 to i-1 do

g[i,j]:=g[j,i]:

od: od:

print(g);
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Appendix 2: Orthonormal basis tensors Hk,s
m in [[V2

c ]2]

In Chapter 6 we use the 21 orthonormal irreducible basis tensors Hk,s
m (k = 0, 2, 4; 1 ≤ s ≤

nk;−k ≤ m ≤ k) given by Man and Huang [20] for the tensor space [[V2
c ]2]. These basis

tensors are listed below. As those Hk,s
m with m < 0 are given in terms of their counterparts

with m > 0 by Hk,s
m = (−1)mHk,s

m̄ (Also see Eq. (4.95)1) , only the ones with m ≥ 0 are

displayed in Voigt notation [41]:

(H0,1
0 )i jkl =

√
5

15
[δi jδkl + (δikδ jl + δilδ jk)], (40)

(H0,2
0 )i jkl =

1
6

[2δi jδkl − (δikδ jl + δilδ jk)], (41)

and,

H2,1
0 =

√
7

42



6 2 −1 0 0 0

2 6 −1 0 0 0

−1 −1 −12 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 2



, (42)

H2,2
0 =

√
2

12



0 4 −2 0 0 0

4 0 −2 0 0 0

−2 −2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −2



, (43)
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H2,1
1 =

√
42

84



0 0 0 −i 3 0

0 0 0 −3i 1 0

0 0 0 −3i 3 0

−i −3i −3i 0 0 1

3 1 3 0 0 −i

0 0 0 1 −i 0



, (44)

H2,2
1 =

√
3

12



0 0 0 −2i 0 0

0 0 0 0 2 0

0 0 0 0 0 0

−2i 0 0 0 0 −1

0 2 0 0 0 i

0 0 0 −1 i 0



(45)

H2,1
2 =

√
42

84



−6 0 −1 0 0 3i

0 6 1 0 0 3i

−1 1 0 0 0 i

0 0 0 1 i 0

0 0 0 i −1 0

3i 3i i 0 0 0



, (46)

H2,2
2 =

√
3

12



0 0 −2 0 0 0

0 0 2 0 0 0

−2 2 0 0 0 2i

0 0 0 −1 −i 0

0 0 0 −i 1 0

0 0 2i 0 0 0



, (47)
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H4
0 =

√
70

140



3 1 −4 0 0 0

1 3 −4 0 0 0

−4 −4 8 0 0 0

0 0 0 −4 0 0

0 0 0 0 −4 0

0 0 0 0 0 1



, (48)

H4
1 =

√
14

56



0 0 0 −i 3 0

0 0 0 −3i 1 0

0 0 0 4i −4 0

−i −3i 4i 0 0 1

3 1 −4 0 0 −i

0 0 0 1 −i 0



, (49)

H4
2 =

√
7

28



−2 0 2 0 0 i

0 2 −2 0 0 i

2 −2 0 0 0 −2i

0 0 0 −2 −2i 0

0 0 0 −2i 2 0

i i −2i 0 0 0



, (50)

H4
3 =

√
2

8



0 0 0 i −1 0

0 0 0 −i 1 0

0 0 0 0 0 0

i −i 0 0 0 1

−1 1 0 0 0 i

0 0 0 1 i 0



, (51)
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H4
4 =

1
4



1 −1 0 0 0 −i

−1 1 0 0 0 i

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−i i 0 0 0 −1



, where i =
√
−1. (52)

Note that s = 1 when nk = 1. We have suppressed the superscript s in Hk,s
m when nk = 1,

i.e., we write Hk
m for Hk,1

m when nk = 1. Thus here H4
m stands for H4,1

m for each m.
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