iy N g

UK _ I __ d University of Kentucky
[1OWIE ge UKnowledge

Theses and Dissertations--Mathematics Mathematics

2015

Singular Value Computation and Subspace Clustering

Qiao Liang
University of Kentucky, giao.liang@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Liang, Qiao, "Singular Value Computation and Subspace Clustering" (2015). Theses and Dissertations—
Mathematics. 30.

https://uknowledge.uky.edu/math_etds/30

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations-Mathematics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@Isv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

| represent that my thesis or dissertation and abstract are my original work. Proper attribution
has been given to all outside sources. | understand that | am solely responsible for obtaining
any needed copyright permissions. | have obtained needed written permission statement(s)
from the owner(s) of each third-party copyrighted matter to be included in my work, allowing
electronic distribution (if such use is not permitted by the fair use doctrine) which will be
submitted to UKnowledge as Additional File.

| hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and
royalty-free license to archive and make accessible my work in whole or in part in all forms of
media, now or hereafter known. | agree that the document mentioned above may be made
available immediately for worldwide access unless an embargo applies.

| retain all other ownership rights to the copyright of my work. | also retain the right to use in
future works (such as articles or books) all or part of my work. | understand that | am free to
register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on
behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of
the program; we verify that this is the final, approved version of the student’s thesis including all
changes required by the advisory committee. The undersigned agree to abide by the statements
above.

Qiao Liang, Student
Dr. Qiang Ye, Major Professor

Dr. Peter Perry, Director of Graduate Studies

SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences
at the University of Kentucky
By
Qiao Liang
Lexington, Kentucky

Director: Dr. Qiang Ye, Professor of Mathematics
Lexington, Kentucky 2015

Copyright© Qiao Liang 2015

ABSTRACT OF DISSERTATION

SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING

In this dissertation we discuss two problems. In the first part, we consider the
problem of computing a few extreme eigenvalues of a symmetric definite generalized
eigenvalue problem or a few extreme singular values of a large and sparse matrix.
The standard method of choice of computing a few extreme eigenvalues of a large
symmetric matrix is the Lanczos or the implicitly restarted Lanczos method. These
methods usually employ a shift-and-invert transformation to accelerate the speed of
convergence, which is not practical for truly large problems. With this in mind, Golub
and Ye proposes an inverse-free preconditioned Krylov subspace method, which uses
preconditioning instead of shift-and-invert to accelerate the convergence. To com-
pute several eigenvalues, Wielandt is used in a straightforward manner. However, the
Wielandt deflation alters the structure of the problem and may cause some difficulties
in certain applications such as the singular value computations. So we first propose
to consider a deflation by restriction method for the inverse-free Krylov subspace
method. We generalize the original convergence theory for the inverse-free precon-
ditioned Krylov subspace method to justify this deflation scheme. We next extend
the inverse-free Krylov subspace method with deflation by restriction to the singular
value problem. We consider preconditioning based on robust incomplete factoriza-
tion to accelerate the convergence. Numerical examples are provided to demonstrate
efficiency and robustness of the new algorithm.

In the second part of this thesis, we consider the so-called subspace clustering

problem, which aims for extracting a multi-subspace structure from a collection of
points lying in a high-dimensional space. Recently, methods based on self expressive-
ness property (SEP) such as Sparse Subspace Clustering and Low Rank Representa-
tions have been shown to enjoy superior performances than other methods. However,
methods with SEP may result in representations that are not amenable to clustering
through graph partitioning. We propose a method where the points are expressed
in terms of an orthonormal basis. The orthonormal basis is optimally chosen in the
sense that the representation of all points is sparsest. Numerical results are given to

illustrate the effectiveness and efficiency of this method.

KEYWORDS: singular value decomposition, inverse-free preconditioned Krylov sub-

space method, machine learning, subspace clustering

Author’s signature: Qiao Liang

Date: October 8, 2015

il

SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING

By
Qiao Liang
Director of Dissertation: Qiang Ye
Director of Graduate Studies: Peter Perry

Date: October 8, 2015

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my advisor, Professor
Qiang Ye, who has expertly guided me through my doctorate. His immense knowledge
and invaluable ideas helped me to complete this dissertation.

Secondly, I am highly indebted to my committee members, Professor Russell
Brown, Professor Russell Carden and Professor Yuming Zhang for their insightful
suggestions and comments. I would also like to thank many other professors whom I
took classes in University of Kentucky.

Finally, and most importantly, I would like to thank my parents, my brothers and
my girlfriend for their continuous support through my life. Without their encourage-

ments, I would not have made it this far.

il

TABLE OF CONTENTS

[Acknowledgments|. Lo iii
[Table of Contentsl. iv
[List of Figures| vi
[Cistof Tabled vii
[Chapter 1 Introduction|. 1
(1.1 Generalized eigenvalue problem| 1
(1.2 Singular value problem| 00 3
(1.3 Subspace clustering problem| 5
M4 Outlind. 6
(Lo Notationl o 7
[Chapter 2 Inverse-free preconditioned Krylov subspace method with deflation [
| by restriction| 9
2.1 Preliminaries] 9
[2.1.1 Eigenvalues and eigenvectors of symmetric matrices| 10

[2.1.2 The generalized symmetric eigenvalue problem|. 11

[2.1.3 Krylov subspace method| 17

214 Deflationl. 20

[2.2 Inverse-tree preconditioned Krylov subspace method with deflation by |

[restrictionl L 22
[2.2.1 Inverse-free preconditioned Krylov subspace method|. 22

[2.2.2 Deflation by restriction| 0oL 25

[2.3 Numerical examples|. 0000 35

v

[Chapter 3 An Inverse-free preconditioned Krylov subspace method for singu- |

| lar values problem| 000, 40
[3.1 Singular value decomposition| 40
[3.2 Computations of singular values of large and sparse matrices| 41

[3.2.1 'The Lanczos bidiagonalization method 42
.22 MATLAB's routine svdsl 0. 43
B23IDSVDl 43
[3.3 SVDIFP-The proposed algorithm| 43
[3.3.1 An inverse-free preconditioned Krylov subspace method|. . . . 46
[3.3.2 Preconditioning by robust incomplete factorizations (RIF) . . 54
[3.3.3 A robust implementation|.o 000 59
[3.4 Numerical examples|. 000 60

[Chapter 4 Subspace clustering via learning a union of orthonormal bases . . 72

[4.1 Spectral clustering and dictionary learning| 72
[4.1.1 Spectral clustering| 72
[4.1.2 Bipartite graph clusteringl 76
[4.1.3 A dictionary learning method| 78

[4.2 Subspace clustering| oo 81
[4.2.1 Existing subspace clustering algorithms|. 82

[4.3 A novel subspace clustering algorithm via learning orthonormal bases| 86

431 Motivationl. 87

14.3.2 Initialization and estimations of K and {d;}}*,|. 91

[4.4 Numerical examples|. 0L 92
[4.4.1 Synthetic datal. 93

4.4.2 DBasic and rotated MNIST datasetl 94
[Chapter 5 Concluding remarks|. 97
Bibliography| 99
VIal . . . o o 109

LIST OF FIGURES

[2.1 Convergence History of Residuals for three eigenvalues A, Ao, A3l 36
[2.2 Top: bound € : Bottom: error ratio (pri1 — No)/(pr — No)| - .« 37
[2.3 Convergence History of Residuals for three eigenvalues A;, Ao, As 38
[2.4 Top: bound €2 ; Bottom: error ratio (pri1 — N)/(pr — Ni)| - -« o 39
[4.1 Average clustering error of Algorithm 4.8 SSC and LRR on synthetic data [
| for each (N, 0) group. Left: Our method, Middle: SSC, Right: LRR] . . . 94
4.2 Difference of SCR for Algorithm 4.8 and SSC for each (/V, §) group. White: |
| Algorithm |4.8[has smaller SCE. Black: SSC has smaller SCE.| 94

vi

LIST OF TABLES

[2.1 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain| 37
[2.2 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain| 39
[5.1 Example 1: o1 - computed smallest singular value by svdifp and eigifp; Res |
| -ICTCvy — vy | . 62
[0.2 Test Matrices Used for Examples 2 and 3| 63
0.0 Example 2: With preconditioning: CPU - CPU time; MV - # of matrix- |
| vector multiplications; nnz - number of non-zeros of the preconditioner; Res - |
| |[Cvi — orur; CTuy —ovi||l/IIClle. | o o o o o 64
0.4 Example 2: without preconditioning. CPU - CPU time; MV - # of matrix- |
| vector multiplications; Res - |[[Cv; — oyuy; CTuy — oy vi]|l/[[Clla. |- - - - - . 66
[0.5 Example 3: CPU - CPU time; nnz - non-zeros of R or L and U; Res - |
| |[Cvi —o1ur; CTuy —oyvi|l/IICl. | - - - o oo 69
[0.6 Example 4: 5 largest singular values of matrix 1p_ganges. - singular value; |
| u- shitt used tor preconditioning ; MV - # of matrix-vector multiplications; Res |
| - [[Cvy —oyur; CTuy — o vi]|/IICI Y - - - o o 70
4.1 SCE ot Algorithm 4.8 SSC and LRR| 95
[4.2 Clustering performance on the rotated MNIST dataset| 96

vil

Chapter 1 Introduction

In this dissertation, we consider three problems, the definite symmetric generalized

eigenvalue problem where we find A € R, x € R" such that
Ax = \Bx, (1.1)

(where A;B € R™™ are symmetric and B is positive definite), the singular value
problem for a matrix C € R™*", where we find ¢ € R,u € R™,v € R” such that
Cu = ov and CTv = ou, and a subspace clustering problem which is to cluster a

given dataset such that each cluster lies in a single subspace of low dimension.

1.1 Generalized eigenvalue problem

The eigenvalue problem , also referred to as a pencil eigenvalue problem
(A, B), arises in many scientific and engineering applications, such as structural dy-
namics, quantum mechanics, and machine learning. The matrices involved in these
applications are usually large and sparse and only a few of the eigenvalues are desired.
Computing a few selected eigenvalues of a large symmetric matrix is a subject that
has been well-studied in the last few decades; see [6], [71] for a survey. Iterative meth-
ods such as the Lanczos algorithm [19], the implicitly restarted Lanczos method [76]
(ARPACK [49]) and the Arnoldi algorithm are some of the most efficient numerical
methods developed in the past few decades for computing a few eigenvalues of a large
scale eigenvalue problem, see [0, 49, [71]. Their speed of convergence depends on the
spectral distribution of and they may suffer from slow convergence when the
desired eigenvalues are not well separated.

Preconditioning techniques may be used to accelerate the convergence of these
iterative methods [I9, 25] . One of the most effective techniques is the shift-and-
invert transformation. This requires inverting or factorizing a shifted matrix. For
sparse matrices, factorization may create excessive fill-ins of the zero entries, which

results in significant memory and operation costs. When the factorization of the

shifted matrix is inefficient or infeasible, several methods have been developed that
employ either inexact shift-and-invert or some preconditioning transformations. The
Jacobi-Davidson method [74], the JDCG algorithm [65], the locally preconditioned
conjugate gradient method (LOBPCG) [42, [43], and the inverse free preconditioned
Krylov subspace method [32] [62] are some of the methods in this class. There is a
large body of literature on various aspects of the large symmetric eigenvalue problem;
see [3, 4, 6 26, BT, 63, [71], 77, @0] and the references contained therein for more
discussions.

The inverse-free precondioned Krylov subspace method of [32] is a Krylov subspace
projection method that computes the smallest (or the largest) eigenvalues of .
The method is called inverse-free, because it is based on an inner-outer iteration
that does not require the inversion of B or any shifted matrix A — AB. Given an
approximate eigenvector x; and its Rayleigh quotient py, it approximates the smallest

eigenvalue iteratively through the Rayleigh-Ritz projection on the Krylov subspace
’Cm(Hk, Xk) = span{xk, Hkxk, Hixk, C ,H?Xk} (12)

where H, := A — pB. It is proved in [32] that this method converges at least
linearly with a rate determined by the spectral separation of the smallest eigenvalue
of Hj. This convergence theory leads to a preconditioning scheme that accelerates the
convergence through some equivalent congruent transformation based on incomplete
factorizations. This procedure, however, computes one eigenvalue (the smallest) only.
To compute additional eigenvalues, a deflation technique needs to be used. Note that
a block version developed in [70] can compute several eigenvalues simultaneously, but
it is efficient largely for severely clustered eigenvalues.

Deflation processes are standard methods used by iterative eigenvalue algorithms
to compute additional eigenvalues after some eigenvalues have converged. Two widely
used deflation techniques are the Wielandt deflation (or known as deflation by sub-
traction) where the matrix is modified with a low rank perturbation to move con-
verged eigenvalue to a different part of spectrum, and deflation by restriction where

approximate eigenvectors and relevant subspaces are projected to the orthogonal com-

plement of the converged eigenvectors, see [67, [71],89]. Both of these deflation schemes
can be used in the standard Lanczos and Arnoldi algorithms. There are variations of
these schemes that are suitable for some particular methods. For example, the im-
plicitly restarted Arnoldi algorithm [50, [51) 49] employs an elaborate deflation scheme
(locking and purging) that is similar to deflation by restriction. The Jacobi-Davidson
method [74], [75] incorporates a partial Schur decomposition deflation.

For the inverse-free preconditioned Krylov subspace method [32] 62], a natural
deflation scheme is the Wielandt deflation where the method is implicitly applied
to a low rank modified problem. The Wielandt deflation alters the structure of the
problem which may cause some difficulties in some applications, therefore, it is more
desirable to work with the original problem without the low rank modification. The
deflation by restriction method projects the search subspace to the subspace that is
B-orthogonal to the space spanned by the computed eigenvectors. Although this can
be applied in formality to the inverse-free preconditioned Krylov subspace method,
its convergence properties are not known.

We formulate a deflation by restriction scheme for the inverse-free precondioned
Krylov subspace method for computing a few extreme eigenvalues of the definite
symmetric generalized eigenvalue problem Ax = ABx. The convergence theory for
the inverse-free preconditioned Krylov subspace method is generalized to include this

deflation scheme.

1.2 Singular value problem

Computing a few extreme singular values of a large matrix C € R™*"(m > n) can

be addressed by computing a few eigenvalues of either A = CTC or its augmented

O C
matrix M = - . As a special eigenvalue problem, we can apply the Lanczos
ct O
algorithm or the implicitly restarted Lanczos algorithm to either M or A and this can
often be done implicitly. Indeed, several methods have been introduced that exploit

the special structure and the associated properties of these eigenvalue problems. The

Lanczos bidiagonalization based methods discussed in [29] 5] [44], T2 38|, [80] are widely

used for the singular value problems that implicitly applies the Lanczos method to
A = CTC. These methods work well when the corresponding eigenvalue is reasonably
well separated. However, their convergence may be slow if the eigenvalue is clustered,
which turns out to be often the case when computing the smallest singular values
through A. On the other hand, for formulation M, the smallest singular value is an
interior eigenvalue of M, for which a direct application of the Lanczos algorithm does
not usually result in convergence.

The shift-and-invert transformation is a standard method to deal with clustering
or to compute interior eigenvalues. However, for a non-square matrix C € R™*"
(m > n), a subtle difficulty arises in using the shift-and-invert transformations for
M because M is singular and, with a shift close to 0, the method often converges to
one of the m — n zero eigenvalues of M rather than to the smallest singular value of
C. On the other hand, one can avoid the shift-and-invert by considering the Jacobi-
Davidson method on the augmented matrix M and a method of this type, called
JDSVD, has been developed in [35] that efficiently exploits the block structure of M.
However, the convergence of JDSVD appears to strongly depend on the quality of
preconditioning. This demands a good preconditioner for M or M — ul, which is
unfortunately difficult to construct when m # n owing to the singularity of M.

We present an efficient algorithm for computing a few extreme singular values of
a large sparse m x n matrix C. Our algorithm is based on reformulating the singu-
lar value problem as an eigenvalue problem for CTC. To address the clustering of
singular values, we develop an inverse-free preconditioned Krylov subspace method
to accelerate convergence. We consider preconditioning that is based on robust in-
complete factorizations and we discuss various implementation issues. For deflation,
the deflation by restriction can be used here without altering the structure of the
cigenvalue problem CTC. Indeed, it is the deflation for the singular value problem
that motivates us to investigate the deflation for the inverse-free Krylov subspace
method. The new algorithm, which we call svdifp, overcomes difficulites of com-
puting smallest singular values experienced by some algorithms, such as the Matlab

built-in function svds, jdsvd, irlba, etc.

1.3 Subspace clustering problem

Real world data are high-dimensional. It is infeasible to process them directly in
their raw forms even though the computational power has grown exponentially in the
past few years. Since the intrinsic dimensionality (the minimum number of variables
required to capture the structure within the data [88]) is usually much smaller than
the ambient dimension, recovering low dimensional structures in data will have a sig-
nificant reduction in the computational cost and memory requirements of algorithms
dealing with data while maintaining the performance. This fact has motivated the
development of various techniques of finding low-dimensional representations of high
dimensional data. One of the most popular techniques, Principle Component Anal-
ysis(PCA), assumes that the high dimensional data lies in a single low dimensional
subspace of the ambient space. However, in practice, a given dataset may not be well
described by a single subspace. Instead, they may be drawn from multiple subspaces.
For instances, motions of different objects in a video sequence [84], face images of
different people [34] are generally distributed in a union of multiple linear subspaces.
Therefore, a more reasonable model should simultaneously cluster data into multi-
ple groups and fit each group by a linear subspace. That is known as the subspace
clustering problem.

Subspace clustering was first proposed as an extension of feature selection in data
mining community. For a review of those methods, see [68]. Subspace clustering was
also considered in machine learning and computer vision communities where it aims
to find the hidden structure which is a union of arbitrary subspaces in the dataset,
see [81] for a comprehensive review. A number of subspace clustering algorithms
have been proposed based on algebraic, iterative, statistical or spectral clustering
approaches (See Section . Among them, spectral clustering based methods are
most effective. These methods try to build a similarity graph whose vertices are data
points and weighted edges represent the similarities between data points and then
apply spectral clustering methods to cluster the dataset into different clusters such

that it has high inter-cluster similarities and low intra-cluster similarities.

The state-of-the-art spectral clustering based methods, such as Sparse Subspace
Clustering (SSC) [22] and Low Rank Representation (LRR) [56], build the similarity
matrix based on the self-expressiveness property of the dataset, i.e., the data point
in a subspace can be well expressed as a linear combination of other points in the
same subspace. LRR can recover subspaces if they are independent by finding the
lowest rank representation, but fails if the subspaces have large intersections with
each other. SSC tries to find the sparest representation. While SSC can successfully
separate data points in different subspaces, it may potentially separate out the data
points lying in the same subspaces.

We propose a novel subspace clustering algorithm based on dictionary learning.
Our algorithm constructs a dictionary of specific type and finds a compact repre-
sentation of the data with respect to the dictionary simultaneously. Specifically, we
describe a method that learns a union of orthonormal bases as the dictionary so
that the data have a block structured representation with the learned dictionary.
A bipartite graph clustering method is then used to cluster the data into different

clusters.

1.4 Outline

The rest of the dissertation is organized as follows.

In Chapter 2, We introduce the inverse-free preconditioned Krylov subspace method
and then formulate a deflation by restriction scheme. We provide some global and
local convergence results which are extensions of the theory in [32].

In Chapter 3, we develop the inverse-free preconditioned Krylov subspace method
for the singular value problem. We presents a robust incomplete factorization(RIF)
preconditioner in order to accelerate the convergence. We also briefly describe a
MATLAB implementation called svdifp that we have developed.

In Chapter 4, we present the motivation of our novel subspace clustering algorithm
and its detailed implementation. We demonstrate the effectiveness of our algorithm
on several synthetic and real-world datasets.

We conclude our works in Chapter 5.

1.5 Notation

The ij-entry of a matrix A is denoted by A;;, A(¢,j) or a;; and the j-th column
is denoted by a;. AT denotes the transpose of a real matrix A. We use)\;(A) to
denote its i-th smallest eigenvalue and A_;(A) to denote its i-th largest eigenvalues.
Similarly, 0;(A) and o_;(A) denote the i-th smallest and largest singular values of
A respectively.. Calligraphic and blackboard bold letters are used to denote spaces
and sets. In particular, real Euclidean space of n dimension is denoted by R™ . R™*"
denotes m x n real matrices. The range space and null space of a matrix A are
denoted by R(A) or span(A) and N (A) respectively. For a set S, |S| is the number
of elements in S.

We also introduce the notations for some special vectors and matrices. I,, denotes
n X n identity matrix with e; as its i-th column. O,,y, denotes a zero matrix. For
a vector of length n with all its entries be 1, we use 1,,. The subscripts could be
omitted if they are clear in the context.

Now we review some notations and definitions of frequently used norms. Given a

vector v = [vy,...,v,]T € R", its [, norm is defined as
n
IVl = (D o).
i=1
Throughout this dissertation, we will use || - || and || - ||; extensively. Let p — oo, we
can obtain the infinity norm ||v||oc = max{v;,i =1,...,n}.

Another important “norm” called [y norm denoted by ||v||o is the number of
nonzero entries in v. Technically, [y is not a norm as it violates the absolute homo-
geneity, i.e. ||av|o # |a|||v]|o for some a and v.

Given a matrix A € R™*" Forbenius norm of A is

1AllF= > a3
i

Corresponding to the vector /, norm, the induced [/, norm for A is defined as

A
A, = max 12Xl
2 Tl

In particular, the induced 2-norm coincides with spectral norm, i.e.,

|All2 = VA1 (ATA) = 0_1(A).

In general, ||Al|; is the induced [; norm for matrix. However, in this dissertation, we

set
Al =" lay].
]

We also use ||A || to denote the number of non-zero entries of A and ||A||2 to denote

the number of non-zero columns of A. The l5; norm of A is

Another useful norm is max norm ||A||max = max;; |a;;|.

Copyright© Qiao Liang, 2015.

Chapter 2 Inverse-free preconditioned Krylov subspace method with

deflation by restriction

In this chapter, we consider the problem of computing a few eigenvalues of (A, B).
We investigate the convergence behavior of the inverse-free precondioned Krylov sub-
space method with a different deflation scheme called deflation by restriction com-
prehensively. First we present relevant materials that will be used in this work. We
review the generalized symmetric eigenvalue problem and Krylov subspace methods
and also discuss some existing deflation methods which have been applied in solving
the generalized symmetric eigenvalue problem in Section 2.1. Then we introduce the
inverse-free preconditioned Krylov subspace method and the existing convergence
theory of computing the extreme eigenvalues in Section 2.2.1. We show the origi-
nal deflation method (Wielandt deflation) has some difficulities when we extend the
method to the singular value problem. In Section 2.2.2, we propose to use defla-
tion by restriction to obtain the additional eigenvalues. And we also prove that the
additional eigenvalues computing by the inverse-free Krylov subspace method with
deflation by restriction share the similar convergence behavior as that of the extreme
ones. Numerical examples are presented to demonstrate the convergence properties

of the algorithm with the deflation scheme in Section 2.3

2.1 Preliminaries

We briefly reviews some basic definitions, theorems and tools needed to study
the inverse-free preconditoned Krylov subspace method with deflation by restriction.
Most of the materials presented in this section can be found in any standard numerical

linear algebra textbook, such as [19] B0, [71], |6, 89, 67].

2.1.1 Eigenvalues and eigenvectors of symmetric matrices

Definition 2.1.1. [19] The polynomial p(\) = det(A — A1) is called the characteristic
polynomial of A € R™ ™. The roots of p(\) = 0 are eigenvalues of A. A nonzero
vector x € C™ such that Ax = A\x is a (right) eigenvector for the eigenvalue . A

nonzero vector y € R™ with yT' A = \yT is a left eigenvector.

From Definition [2.1.1], we can conclude that the eigenvalues of a triangular matrix

are its diagonal entries. It motivates the Schur canonical form.

Theorem 2.1.1. [19] Given A € R™ ", there exists an orthogonal matriz Q and
an upper triangular matriz T such that QT AQ = T. The eigenvalues of A are the

diagonal entries of T.

In particular, 7" is a diagonal matrix if A = AT. We will mainly focus on this

kind of matrices in this dissertation.
Definition 2.1.2. A € R™" is a symmetric matriz if A = AT,

Symmetric matrices enjoy many simple but beautiful properties, among which is

the spectral theorem as a corollary of Theorem [2.1.1]

Theorem 2.1.2. Suppose A € R™™ is a symmetric matriz, then A is similar to a

real diagonal matrix via an orthogonal transformation, i.e.
A =7ZAZ" (2.1)
where Z'Z =1 and A is a diagonal matriz with real entries.

From Theorem [2.1.2] we can see that the columns z; of Z are eigenvectors of A
and the diagonal entries \; of A are eigenvalues of A. It is well-known that the
eigenvalue problem of a symmetric matrix is well-conditioned, in other words, the
absolute change in an eigenvalue is bounded by the absolute change in the matrix.

The idea is interpreted by the following theorem.

Theorem 2.1.3. Suppose A,B € R™" are symmetric matrices, then

max [\i(A) = Ai(B)| < [|A ~ Bll»

10

An important class of symmetric matrices positive definite matrices.

Definition 2.1.3. Let A € R™" be a symmetric matriz. If z¥ Az is always positive

for any non-zero vector z € R", we call A positive definite.

By the above definition and Theorem there exists an orthogonal matrix such
that ZTAZ = A and A is a diagonal matrix with real positive entries if Z is positive

definite. Suppose A = diag(A1, Az, ..., A,) and
A2 = diag(A\/? A%, AR,

then A = LL” where L = ZA'/? and L is invertible. Furthermore, if L is lower trian-

gular with positive diagonals, then L is unique. It concludes the following theorem.

Theorem 2.1.4. If A € R™" is a positive definite matrix, then there exists a unique

lower triangular matriz L € R™ ™ with positive diagonals such that A = LLT. It is

the called Cholesky decomposition of L and L is the Cholesky factor of A.

Given a positive definite matrix A € R"™", we can also obtain a well-defined
inner-product in R™:
(x,y)a = x' Ay.
We say x,y € R" are A-orthogonal, if x’Ay = 0. A matrix B € R™™ is A-

orthonormal if BPAB = I. The induced norm of the inner-product is ||x||a =
vxTAx.
2.1.2 The generalized symmetric eigenvalue problem

Definition 2.1.4. A scalar X\ € R is called an eigenvalue of a matriz pencil (A, B)

with A, B € R™ " if there exists a nonzero vector x € R™ such that
Ax = \Bx. (2.2)

The vector x is called an eigenvector of (A, B) associated with A. (A, x) is called an
eigenpair of (A,B). The set of all eigenvalues of (A, B) is called the spectrum of
(A, B).

11

The problem of finding some or all of the eigenpairs of (A, B) is referred to as the
generalized eigenvalue problem. The standard problem corresponds to the case when

B = 1. If B is nonsingular, then (2.2]) can be rewritten as
B 'Ax = \Ax,

and the generalized problem is reduced to the standard one. A simpler special case
which arises in practice is that A, B are symmetric and B is positive definite. The
generalized eigenvalue problem of definite pencil (A, B) arises in many scientific and
engineering applications, such as structural dynamics, quantum mechanics, and ma-
chine learning. The matrices involved in these applications are usually large and
sparse and only a few of the eigenvalues are desired.

There is a corresponding spectral theorem of definite pencil (A, B) which is similar

to Theorem 2.1.2]

Theorem 2.1.5. Suppose A, B € R" are symmetric and B is positive definite. Then

there exists an invertible matrizx X such that
XTAX and XTBX

are both real and diagonal.

Proof. Since B is positive definite, we can obtain the following decomposition by
Theorem 2.1.4]
B =LL" (2.3)

where L is an invertible lower triangular matrix. Consider the matrix L~'A (L")~
Since A is symmetric, i.e., A = AT, L7!A(L?)! is also symmetric. By Theorem

2.1.2] there exists an orthogonal matrix Y such that
LALT) 'Y = YA, (2.4)
where A is a diagonal matrix with real entries. Let

X = (L7)7Y. (2.5)

12

Then X is an invertible matrix. Combine (2.5)) with (2.3)) and (2.4). We can obtain
AX = BXA. Therefore
X"AX = X"BXA.

Since X"BX = YL 'B(LT)'Y = YTY =1, XTAX = A is diagonal and real. [J

Theorem [2.1.5]is also known as simultaneous diagonalization theorem. By Defini-
tion , we can see that the columns of X are eigenvectors of (A, B). Furthermore,
we notice that there are infinitely many choices of X. If an X satisfying Theorem
has been found, then by simply multiplying X by an arbitrary diagonal matrix
we can obtain another matrix satisfying Theorem [2.1.5] In general, we are only in-
terested in X which satisfies X’BX =T and XTAX = A = diag{\y, ..., \,}, where
A <...< A\, Then AX = ABX.

The proof of Theorem [2.1.5] provides a way to reduce the generalized eigenvalue
problem of (A, B) to the standard eigenvalue problem of L™t A(L”)~! where L is the
Cholesky factor of B.

One of the most important quantities associated with the generalized eigenvalue

problem is Rayleigh quotient.

Definition 2.1.5. The Rayleigh quotient of x for (A, B) is defined by

xT Ax
xTBx’

p(x;A,B) = (2.6)

We frequently shorten the notation to p(x) when A, B are clear from context.

The Rayleigh quotient of (A, B) enjoys many properties which will be exploited

through our work.

Lemma 2.1.1. [67, Theorem 15.9.2] When A,B € R™™ are symmetric and B > 0,
then

1. Homogeneity: p(ax) = p(x), a #0 € R.
2. Boundedness: Ay < p(x) < A\, as x ranges over the unit sphere, where \; <

... < A\, are eigenvalues of the pencil (A, B).

13

3. Stationary: Vp(x) = 2(Ax — p(x)Bx)? /(x'Bx). Thus p(x) is stationary at

and only at the eigenvectors of (A, x).

4. Minimum Residual: ||(A—oB)x||%-, > |Ax[|5-: — |p(x)?||Bx||j-1 with equal-

ity when and only when o = p(x) where o € R.

Proof. We give the proofs of part 1, 2, and 4, but not part 3 which is quite straight-

forward.

1. From the definition of Rayleigh quotient,

(az) = o?(x"Ax) x"Ax (x)
prae) = a?2(xTBx) x'Bx PR3-

2. By part (1), we only need to consider the bounds of p(x) where x'Bx =
1. By Theorem [2.1.5] we can find Z such that AZ = BZA where Z =
[Z1, 22, . ..,2,] is B—orthonormal and A = diag(Aq,...,\,). Since Z is invert-
ible, then {z,...,z,} is a basis of R". Hence there exist scalars ay,...,a, € R

such that x = ayz1 + ... + o2, and

p(x) = (Z aizi)TA(Z ;Z;) = Z Q.
i=1 i=1 i=1
Then A, < p(x) < A, follows.
4. Since xT Ax = p(x)x"Bx,

I(A — oB)x[-: = (A — 0B)x)"B~'(A - 0B)x
=x'ATB7'Ax — 20xT Ax + 0’x'Bx
= |Ax[[31 — (20p(x) — 0®) | Bx||B-

> [|[Ax[5+ — |p(x) [Bx|[5-
O

Part 2 of Lemma characterizes the relation between Rayleigh quotient and
the extreme eigenvalues. The renowned Courant-Fischer Minimax Theorem gives us

a more general result.

14

Theorem 2.1.6 (Courant-Fischer Minimax Theorem). Suppose A,B € R™ ™ are

symmetric and B > 0 and A\ < ... <\, are eigenvalues of (A, B), then

Ak = mi = i : 2.7
P L) = g () 27
SCR™ SCR™

Proof. We will only show the first part. The proof of the second part is quite similar.

Suppose the eigenvectors corresponding to Ay, ..., \, are zi,...,z, and z! Bz; =
1,2 =1,...,n. And let §; be the subspace spanned by zi,...,z;. By a similar proof
as that of part 2 of Theorem [2.1.1] p(x) <); for any non-zero vector x € S; and the

equality can only be obtained when x is a multiple of z;. Hence

A > ‘ : 2.8
FZ i, R) 29
SCR"™

Let S be an arbitrary subspace with dim(S) = k and Cy, = span{zg, Zx+1, ..., 2}
Since dim(Cy) =n — k + 1, then C, NS # 0. Suppose x¢ € C, N'S. Then

> > mi > Ag.
max p(x) > p(xo) = min p(x) = A

The last inequality can be proven by a similar proof as that of part 2 of Theorem

2. 1.1l Hence

A < i . 2.9
b= dirg(lg)l:k I:r(leag p(x) (2.9)
SCR™
Combine (2.9) with (2.8)), we can obtain the first part of Courant-Fischer min-max
Theorem. O

Through Courant-Fischer Minimax Theorem, we can prove the following trace-

minimization theorem.

Corollary 2.1.1. Suppose A, B € R™" are symmetric matrices with B > 0 and

U = [uy,...,ug] is the solution to the minimization problem

min tr(XTAX)
X (2.10)
st. X'BX =1, X e Rk,

Then the columns of U are eigenvectors associated with the k smallest eigenvalues of

the definite pencil (A, B).

15

In part 4 of Lemma [2.1.1] note that
|Ax[[5-1 — [p(x)[*IBx([5-1 = [[(A — p(x)B)x||5-,

and ||(A —oB)x||3-: can obtain its minimum if and only if o = p(x). In other words,
the best estimation to an eigenvalue in a subspace spanned by a single vector x is
given by the Rayleigh quotient of x and the residual Az — p(x)Bx is orthogonal to
x. This fact inspires a so-called Rayleigh-Ritz method to obtain estimations to the

eigenpairs of (A, B), which is presented in Algorithm [2.1]

Algorithm 2.1 Rayleigh-Ritz method

1: Input: Two symmetric matrices A, B € R"*" with B > 0, a subspace §,,, with
dimension m.

: Output: Approximate eigenpairs (6;,h;), i =1,...,m.

: Find a basis Z,,, of S,,,.

: Form A, = ZL AZ,, and B,, = ZL BZ,,,.

: Find the eigenpairs (0;,y;), i = 1,...,m of (A,,, B,,).

hz:Zmy“Z: 1,...,m.

o ISR

Given a subspace S, Rayleigh-Ritz method finds (6, h) with 6 € R and h € S

such that the following Galerkin condition is satisfied:
Ah—6¢Bh LS. (2.11)

Suppose Z is a B-orthonormal matrix whose columns form a basis of S, then (6, h)
is an eigenpair of ZT' AZ. And the approximate eigenpair (#,Zh) to the eigenprob-
lem of (A, B) is called a Ritz pair of (A, B) with respect to S. The Rayleigh-Ritz

approximations are optimal which can be shown by the following theorem.

Theorem 2.1.7. Let Z € R™™™ whose columns form a basis of a subspace S C R"
with Z'BZ = 1. Let As = ZTAZ. Suppose 0;(1 < i < m) are eigenvalues of A
and their corresponding eigenvectors are yi,...,Ym. Let h; =Zy;, 1 =1,....m and
H = |hy,...,h,]. Then (0;,h;), i =1,...,m are the best approzimations in S to the
eigenpairs of (A, B) in the sense that they optimize

Z IAX; — 11 Bx;[5 -
=1

over allx;, € S and xl-Tij = 0, where 0;; 1s the Kronecker delta.

16

The proof of the above theorem follows the reduction of (A, B) to the standard
eigenvalue problem of L' A(L”)~! where L is the Cholesky factor of B. For complete
proof, see [67].

2.1.3 Krylov subspace method

The computation of all the eigenpairs of a symmetric matrix A has been well-
studied in the past few decades. Most of the algorithms first reduce A to a tridiagonal
matrix and compute its eigenvalue decomposition thereafter. All of those algorithms
can be applied to the generalized eigenvalue problem of the definite pencil (A, B) by
first reducing it to the standard eigenvalue problem. We refer the interested readers
to [67, [7T], 89] for a complete review. However, in some cases such as (A, B) are large
and sparse, the computation of all eigenpairs is inefficient and even infeasible. We
need to consider an alternative way to compute a few extreme eigenpairs of (A, B).
From the previous discussion, Rayleigh-Ritz method provides us a way to achieve
this goal by considering an orthogonal projection of (A, B) onto a subspace S to find
approximate eigenpairs. Based on Rayleigh-Ritz method, we can iteratively refine the
subspace S to obtain better and better approximations to the eigenpairs of (A, B).

Krylov subspace methods are a class of methods which extract approximations

from a specific subspace of the form
Kn(A,x) = span{x, Ax, ..., A"x}.

where m > 0 is preselected. IC,,(A,x) is referred as a Krylov subspace.
Krylov subspace methods are popular because they are simple but effective. There

are a few properties of the Krylov subspace K,,(A,x) which we list as follows:
Proposition 2.1.1. 1. Scaling: K,,(A,x) = K,,(cA,7x), 0 #0,7 #0 € R.
2. Translation: Kp(A,x) = K (A —ol,x), 0 € R.
3. Change of Basis: K,,(PAPT Px) = PK,,(A,x), PTP =1

4. For each vector v € K,,,(A,x), it can be written as v = p(A)x, where p is a

polynomial of degree not exceeding m, i.e., p € P™.

17

5. The Krylov subspace K,,(A,x) is of dimension m + 1 if and only if the degree

of the minimal polynomial of x with respect to A is larger than m.

The scaling and translation properties of Krylov subspace K, (A, x) indicate that
there is no loss of generality if we assume |A;(A)| = |A_1(A)| = 1. Therefore, as m
is increasing, KC,,,(A, x) is getting closer the eigenvectors associated with the extreme
eigenvalues of A.

Consider the Rayleigh-Ritz method on a symmetric matrix A with /C,,(A, x). Let
(0;,h;), i =1,...,m are the Ritz pairs of A in IC,,(A,x). It is well known that the
bound of |6; — \;| is closely related to the Chebyshev polynomials. Later we will
see that the error bound of inverse-free Krylov subspace method also has a strong
relation with the Chebyshev polynomial.

Part 4 of Proposition shows that the dimension of IC,,(A, x) is usually m+1.
Though {x, Ax,... A™x} is a basis of K,,,(A,x), we rarely use that in practice since
the basis would be ill-conditioned as A*x would converge to the dominant eigenvec-
tor of A. Suppose a suitable basis Z,, has been obtained for K,,(A,x), then the
Krylov subspace methods will extract the desired Ritz pairs from the projected pen-
cil (ZY AZ,,,ZLBZ,,). There are various methods of forming basis of the Krylov
subspace IC,, (A, x), of which two well-known methods are Lanczos and Arnoldi algo-
rithms. We shall discuss them in details later.

Given an inner product (-, -) defined in R™ and its induced norm ||-||, the Arnoldi al-
gorithm constructs an orthonormal basis for IC,,, (A, x) by the modified Gram-Schmidt
process. The Arnoldi process is shown in Algorithm [2.2]

The Arnoldi process breaks down when the computed vector w at step j vanishes.
In that case, the subspace K;(A,x) is an invariant subspace of A and the Ritz pair
of A on K;(A,x) is the exact eigenpair.

Let H,,, = [h;;] be the Hessenberg matrix obtained in Algorithm [2.2] Then

AZ, = Z,H, +hpiimZmiier, . (2.12)

Z'AZ, = H, (2.13)

where e, is the unit vector with 1 on its (m + 1)-th entry.

18

Algorithm 2.2 Arnoldi Algorithm

1: Input: A € R™", a non-zero vector x € R™.
2: Qutput: Z,, = [zo,...,2y] € R,

3: 2o = x/|[x[[;

4: fori=0:(m—1) do

5: w = Az;;

6: for j=1:7do
l§ hji = (2, W);
8: W =W — hj,izj;
9: end for

10: hi+1,i = ||W||

11: if hi+1,i =0 then
12: break;

13: end if

14: Z;11 = W/hz’—&—l,i‘
15: end for

It remains to show that z, ...z, indeed forms a basis of IC,, (A, x).
Proposition 2.1.2. {z,...z,} is a basis of K,,(A,x).

Proof. The Algorithm is a form of modified Gram-Schmidt orthogonalization
process whereby a new vector Az; is formed and then orthogonalized against all
previous z;. Then the vectors zy,...,z, are orthonormal by construction. They
span K,,(A,x) can be proved by induction. Clearly, it is true when ¢ = 1. Suppose
{20, ...,2;} span IC;(A,x). We have

J
hi+1,z‘Zz‘+1 = Az, — E hj,izj-
j=0

Therefore z;41 € span{z, ...,z;, Az;} = K;11(A,x).]

At last, we notice that there will be loss of orthogonality in the process of Algo-
rithm if m is large. In that case, reorthogonalization is necessary to improve the
numerical stability of the algorithm.

In the context of computing a few eigenvalues of the definite pencil (A, B), we may
want to construct a B-orthonormal basis for the Krylov subspace IC,,,(A, x). So we

can apply the Arnoldi algorithm with the inner product defined by (x,y)g := x' By.

19

The Arnoldi process can be further simplified if the matrix A is symmetric in the
sense of the inner product (-,-), i.e., (x,Ay) = (ATx,y) for all x,y € R". In that
case, H,, obtained in (2.13)) is tri-diagonal and Algorithm [2.2| can be simplified to the

so-called Lanczos algorithm. We summarize it as follows:

Algorithm 2.3 Lanczos Algorithm

1: Input: A € R™ " a non-zero vector x € R™.
2: Output: Z,, = [zo,...,2,] € R0,

3 zo = x/||x]], Bo =0, zg = 0;

4: for i = 0:(m-1) do

5: w = Az;;

6: W =W — [;z;_1;
T a; = (W, 2;);

8: W =W — Z;;

9 Bipr = |[wl;

10: if /B/L'Jrl = 0 then
11: break;

12: end if

13: zi1 = W/ Bt
14: end for

For more discussions in Lanczos algorithm, see [67, 19 [71]

2.1.4 Deflation

Suppose the ¢ smallest eigenvalues A\; < ... <), of definite pencil (A, B) and
corresponding eigenvectors vy, ... v, have been computed, the rest of the eigenvalues
and corresponding eigenvectors are Agy1,...,A, and vy q,...,Vv,. Assume V, =
[vi,...,v¢] and A, = diag(\y,...,\) with VIBV, = T and AV, = BV,A,. A
technique of computing the next eigenvalue A\,y; is called deflation. The two most
commonly used deflation methods are Wielandt deflation and deflation by restriction
[T, 67].

The idea of Wielandt deflation is to shift the spectrum by subtracting a rank ¢
matrix from the A such that the desired eigenvalue), is shifted to be the smallest

eigenvalue of the new matrix pencil. It is shown in the following theorem.

20

Theorem 2.1.8. Let ¥ = diag{\; — oy }(1 < i <) with a; any value chosen to be

greater than A\pr1. Then the eigenvalues of
(A, B) := (A — (BV,)Z(BV,)",B) (2.14)
are the union of ay,...,ap and Agyq, ... Ay.

Proof. For 1 <i < { and let e; € R? be the unit vector with 1 on its i-th entry,

Awv, = (A—(BV)ZBV,))v;
= AVi — (BV@)Eez
= AVi — ()\z — Oéi)BVZ‘

= OZZ'BVZ'

For / +1 < ¢ < n, since Vngi = 0, then Ayv; = Av; = \;Bv;. Therefore,
the eigenvalues of (A,,B) are ay,...,ap and Apyq,..., A,. Therefore, the smallest

eigenvalue is A\y;1 given that o are greater than Ay, ;. O]

The inverse-free preconditioned Krylov subspace method [32, [62] uses Wielandt
deflation to compute additional eigenvalues.

The basic idea of deflation by restriction is to orthogonalize the approximate eigen-
vectors against the computed eigenvectors from time to time, which is equivalent to
computing the eigenvalues of the restriction of the pencil (A, B) on an invariant sub-
space which is B-orthogonal to the space spanned by the computed eigenvectors. For
example, at some step of an iterative method, instead of computing the eigenvalues
of (A,B) in the subspace S, we consider the eigenvalue problem of (A,B) in the
subspace (I — V,V}B)S.

The deflation by restriction is widely used with many iterative methods but they
do not share a standard form. The implicitly Arnoldi algorithm [50, 511 [49] employs an
elaborate deflation technique with the so-called locking and purging technique. The

Jacobi-Davidson method [74] [75] incorporates it with partial Schur decomposition.

21

2.2 Inverse-free preconditioned Krylov subspace method with deflation

by restriction

In this section, we introduce the inverse-free preconditioned Krylov subspace
method first. Then we incorporate it with a deflation by restriction method. We
prove the additional eigenvalues computed by the method have the same convergence
behavior as the extreme ones. We consider real matrices in this section, but all can

be generalized to complex matrices in a trivial way

2.2.1 Inverse-free preconditioned Krylov subspace method

The inverse-free precondioned Krylov subspace method of [32] is a Krylov subspace
projection method that computes the smallest (or the largest) eigenvalues of .
The method is based on an inner-outer iteration that does not require the inversion
of B or any shifted matrix A — AB.

Given a vector x, the Rayleigh quotient p(x) = (xT Ax)/(x”Bx) is the best ap-
proximation to an eigenvalue in the sense that o = p(x) minimizes the 2-norm of
the residual Az — aBx. Since r = 2(Ax — p(x)Bx) /2T Bx is the gradient of p(x)
(Part 3 of Lemma , the well-known steepest descent method aims to minimize
the Rayleigh quotient over span{x,r}. Noticing that it can be viewed as a Rayleigh-
Ritz orthogonal projection method on the Krylov subspace Ki(A — p(x)B,x) =
span{x, (A — p(x)B)x}, the inverse-free Krylov subspace method improves this by
considering the Rayleigh-Ritz orthogonal projection on a larger Krylov subspace
Km(A — p(x)B,x) = span{x, (A — p(x)B)x, ..., (A — p(x)B)™x}. Namely, assume
that x; is the approximate eigenvector at step k in an iterative procedure of finding
the smallest eigenvalue of the pair (A, B), [32] obtains a new approximation through

the Rayleigh-Ritz orthogonal projection on
Kn(A — pxB,x;) = span{xy, (A — psB)xy, ..., (A — pB)"x; }

where

T
x;, Axy,
= o(x) = 2.15

22

and m is a parameter to be chosen. Suppose Z,, is a matrix whose columns are
basis vectors of K, (A — pB, x;). Let A, = Z1 (A — pyB)Z,, and B,, = Z! BZ,,.
The smallest eigenvalue p; of (A,,,B,,) and a corresponding eigenvector h can be

obtained by any state-of-the-art eigensolver. Then the new approximation xj; is
X1 = Lih (2.16)
and, correspondingly, the Rayleigh quotient

Pr+1 = pr + (2.17)

is a new approximate eigenvalue. The choices of Z,, are not unique and it can be
constructed by either the Lanczos method or the Arnoldi method with the B-inner
product; see [32] for a more detailed discussion. Throughout this paper, we will only
consider the case when the columns of Z,,, are B-orthonormal, i.e. Z%BZm = 1. Then

the basic procedure of inverse-free Krylov subspace method is given in Algorithm [2.4]

Algorithm 2.4 Inverse-free Krylov subspace method for (A, B)

: Input: m > 1 and an initial approximate eigenvector xg with ||xo|| = 1;
: Output: (pg,xy)
2 po = p(Xo);
: for £ =0,1,2,... until convergence do
Construct a B-orthonormal basis Z,, = [2q, 21, - - . , Zm| for K, (A — ppB, x3);

Form A,, = Z1 (A — pyB)Z,,;
Find the smallest eigenpair (i1, h) of A,y;
Pe+1 = pr + 1 and Xy = Z,,h.

end for

R S LA v

The following theorem states that Algorithm always converges to an eigenpair
of (A, B).

Theorem 2.2.1. ([32] Proposition 3.1 and Theorems 3.2]) Let \; be the smallest
eigenvalue of (A, B) and (pg,xx) be the eigenpair approzimation of Algom'thm at
step k. Then

1Ay < pry1 < pw;

2. pr converges to some eigenvalue X of (A, B) and ||(A — AB)xy|| — 0.

23

Theorem [2.2.1] shows that x; in Algorithm always converges in direction to an
eigenvector of (A, B). Through a local analysis, we have that Algorithm [2.4|converges

linearly under some conditions with a rate bounded below.

Theorem 2.2.2. ([32] Theorems 3.4]) Let \y < Ay < --- <\, be the eigenvalues of
(A,B). Let (prs1,Xkr1) be the approzimate eigenpair obtained by Algorithm at
step k+ 1 from (py,Xy). Let o1 < 03 < -+ < 0, be the eigenvalues of A — ppB and

uy be a unit eigenvector corresponding to o1. Assume A\ < pp < Ay. Then

Bl

pra1 — A < (i — Ar)en, + 2(oe — M)*Pen (HU—
2

) om-np) e

where

R A o [pos)]

and P, denote the set of all polynomials of degree not greater than m.

Theorem shows that p; converges at least at the rate of €2, which is bounded

in terms of o; as
09 — 01

1=V
67”32(14“/5

It illustrates an interesting fact that the speed of convergence of p; depends on the dis-

)m with ¢ =

On — 01

tribution of eigenvalues of A —p;B rather than those of (A, B). It leads to some equiv-
alent transformations of the problem, called preconditioning, that changes the spec-
trum of A—p;B to accelerate the convergence of Algorithm[2.4] In particular, suppose
A < pp < A and let A — ppB = L;DyLY be the LDLT factorization with Dy =
diag{—1,1,...,1}. Then the transformed pair (Ak,]:%k) = (L,'AL, ", L;'BL; ")
will have the same eigenvalues as (A, B) and the convergence of Algorithm will
depend on the spectral gap of LEI(A — pkB)L,;T in which case ¢,, = 0. Then, by
Theorem [2.2.2] the preconditioned Algorithm converges quadratically. However, this
is an ideal situation since we assume a complete LDL” factorization and Lj, is com-
puted for each iteration which is not practical. In practice, we use an approximate
LDLT factorization through an incomplete factorization for example. This usually

leads to a small €, and hence accelerates convergence; see [32] for more discussions.

24

2.2.2 Deflation by restriction

Algorithm[2.4] computes the smallest eigenvalue of (A, B) only. When the smallest
eigenvalue has been computed, we can use a deflation procedure to compute addi-
tional eigenvalues. While both the deflation by restriction method and the Wielandt
deflation can be used in most other iterative methods, the Wielandt deflation is the
only one that can be directly used for Algorithm . The process as presented in [62]
is given in Theorem 2.1.8] Since A,41 is the smallest eigenvalue of (A, B) in (2.14)),
Algorithm will converge to Ar under the conditions of Theorem [2.2.2]

As discussed in the introduction, the Wielandt deflation changes the structure of
the problem and this may be undesirable in certain applications such as the singular
value computations (see Chapter [3{ and [55]). In such problems, it is of interest to
consider the deflation by restriction, namely, by projecting the subspaces involved
to the B-orthogonal complement of V, := span{vy,---,v,}. This can be done by
simply using (I — V,V!B)K,,(A — p;B,x;,), but this does not lead to a convergent
algorithm. Also note that, K,,(A — ppB, (I — V,VIB)x;) may not be in the B-
orthogonal complement of V,. A more appropriate approach is to apply the projection
on the matrix or on every step of the basis construction; namely we use IC,,((I —
V,VIB)(A — p:B), (I — V,V!B)xy;); This also changes subspaces and the existing
convergence theory does not apply. However, it has been observed numerically in
Section that such a deflation scheme appears to work in practice.

In this section, we formulate a deflation by restriction method for the inverse-free
Krylov subspace method (Algorithm and present a convergence theory that gen-
eralizes the convergence results of Section 2. We first state the deflation by restriction
method in the following algorithm.

The difference of this algorithm from the standard one (Algorithm is the use
of the projected Krylov subspace K,,(Pv(A — piB),x;) where Py =1 -V, V] B.

We can easily show by induction that Pyx, = x;, for all k. Then
’Cm(Pv(A — pkB), Xk) = ICm(Pv(A — pk;B)PV7 Xk).

However, since the columns of V, are generally not eigenvectors of A — pB (when

25

Algorithm 2.5 Inverse-free Krylov subspace method with deflation by restriction
1: Input: V, = [vy,- -+, vy satisfying Av; = \Bv; (for 1 <i <[)and VBV, =1;

m and xq with ||xo|| = 1 and VI Bx, = 0;
2: po = p(xo);
3: for £ =0,1,2,... until convergence do

4: Construct a basis {z1, s, ..., 2z, } for K,,(I—V,V]B)(A — p;B), x3);
5 A, =77 (A — pxB)Z,, and B,, = ZL BZ,, where Z,, = (21,2, ... ,2n);
6 Find the smallest eigenvalue p; and a unit eigenvector v for (A, B,,);
& Pr+1 = pr + p1 and Xy = Zpy,v.

8: end for

B # I), Pyv(A — pyB)Py does not lead to a deflated operator (i.e. a spectral
restriction of A —p;B). Indeed, with Py a B-orthogonal projection, Py (A —pB)Pv
is not even symmetric. However, the following lemma expresses the Krylov subspace
as one generated by a symmetric matrix, which is key in our analysis of Algorithm

2.0

Lemma 2.2.1. Let V, = [vy,--- ,vy| be such that Av; = \\Bv; (for 1 <i<1) and
VgBVg =1 LetPv=1- VngB. Then we have

(A — pB)Py = Py, (A — pB) (2.19)
and for any X with Pyx, = X,
Km(Pv(A = pB), x) = PyKn(PY(A — pB)Py, x). (2.:20)

Proof. First we have AV, = BV,A, where A = diag{\;,--- ,\;}. Then VIA =
AVTB. Tt follows that

>
|
2
&
|
@
N
>
<
SN
o
|
2
o
<
<
o~
=

which proves (2.19). From this and P%, = Py, we have
Py (A — pB)Py = (A — p,B)PyPy = (A — p,B)Py.

26

Thus, it follows from Pyx, = x; that foralle=1,--- ,m — 1,

(Pv(A —pB))'x;, = (Pv(A - pB))'Pyxy
= Pv((A - pkB)Pv)ZXk
= Pv(PL(A — pB)Pv)'x;.

Hence ICm(Pv<A — pkB), Xk) = PVICm(PF{,(A — pkB)Pv, Xk).]

With the above characterization of the projection subspace used in Algorithm [2.5]
the convergence properties described in Section 2 can be generalized following similar
lines of proofs in [32, Theorem 3.2] with careful analysis of some subtle effects of the

projection that are highly nontrivial. We first present a generalization of the global

convergence result (Theorem [2.2.1)).

Theorem 2.2.3. Let V, = [vq,- -+ ,vy] be such that Av; = \Bv; (for1 <i<1) and
V?BVK =1. Let Apy1 < Ao < -+ <\, together with Ay, --- , Ay be the eigenvalues
of (A, B). Let (pg,xx) be the eigenpair approximation obtained at step k of Algorithm
with V,. Then

A1 < Prg1 < Pk

Furthermore, py, converges to some eigenvalue A € {Aps1,--- A} of (A, B) and

(A — AB)xy|| = 0 (i.e., X converges in direction to a corresponding eigenvector).

Proof. From Algorithm [2.5] we have

N . wl(A-pB)w . wlAw
= min = min
PRl = PR rro w!Bw wew wlBw

where W = K,,(Pv(A — pB),xx) and Py =1 — V,VI'B. Since x; € W, we have
Pitr1 < pr. On the other hand, it follows from Lemmathat W = PyK,,(PL(A-
pB)Pv,x;) C R(Pv) . Then
) wlAw
Pt V;{Brv{rli%,w;éo wiBw At
It follows that pj is convergent. Since {x;} is bounded, there is a convergent subse-

quence {z,, }. Let

lim py, = 5\, and limx,, = X.

27

Write = (A — AB)%. Then it follows from x7 (A — p;B)x; = 0 that
Tt = %T(A - AB)x = 0.

Suppose now 1 # 0. Using Lemma and the fact that Pyx = x which follows

from Pvyx; = x5, we obtain
Plt =PL(A - AB)x = (A — AB)PyX = (A — AB)x = I. (2.21)

We now show that x and Py are linearly independent. If they are linearly dependent,
we have Pyt = vx for some scaler 7. Then by (2.21)), t7PyPLt = +' Pyt = y17x =
0. Thus PL# = 0 or by (2.21)) again, ¢ = 0, which is a contradiction. Therefore, x
and Pyt are linearly independent. We next consider the projection of (A, B) onto
span{x, Py} by defining

A =[x, Pyi]TA[X, Pyi] and B = [x, Pyi]"B[x, Pyil.

Clearly, B > 0. Furthermore,

A e @) Pyt
A-)B-= .
t'PLr t"PL (A — AB)Pyr
is indefinite because, by (2.21), t"Pyt = (PLr)’t = #7t # 0. Thus the smallest
eigenvalue of (A, B), denoted by), is less than A, i.e.

A< (2.22)
Furthermore, let v, = (A — pxB)xy,
Ak = [Xk, Pvrk]TA[Xk, PvI‘k] and Bk = [Xk, Pvrk]TB[Xk, Pvrk].

Let 5\k+1 be the smallest eigenvalue of (Ak, Bk) Clearly, as nj — oo, Ank — A and

B, — B. Hence by the continuity property of the eigenvalue, we have
5‘”1«4-1 — 5\

On the other hand, pgy; is the smallest eigenvalue of the projection of (A,B) on
K = span{xy, Pv(A — pB)x, - -, (Pv(A — pB))™x; }, which implies

Prt1 <)\k+1-

28

Finally, combining the above together, we have obtained

A = lim S\nk_l’_l > lim pp, 41 = A

~

which is a contradiction to . Therefore, # = (A — AB)Xx = 0, i.e. A is an
eigenvalue and [|(A — AB)x,,, || — 0.

Now, to show ||(A — AB)xy|| — 0, suppose there is a subsequence my, such that
(A — AB)x,n, || > @ > 0. From the subsequence my, there is a subsequence ny, for
which x,, is convergent. Hence by virtue of the above proof, ||(A — AB)x,,| — 0,
which is a contradiction. Therefore ||(A—AB)x;|| — 0, i.e. x; approaches in direction
an eigenvector corresponding to A. Since xj is B-orthogonal to {v1, -+, vy}, we have

= {Ae+1,- -, An}. This completes the proof. O

Next we present a lemma and then our main result concerning local linear con-

vergence of py that generalizes Theorem [2.2.2]

Lemma 2.2.2. Let V, = [vy, -+ ,v] be such that Av; = \\Bv; (for 1 <i:</) and
VIBV, =1 andlet Py =1-V,V]B and V, = span{vy, - ,v;}. Let \p11 < Apya <

- < A\, together with Ay, -+, X\, be the eigenvalues of (A,B). Let (pg,Xx) be the
eigenpair approximation obtained at step k of Algorithm[2.5 with V, and assume that
M1 < pre < Aego. Let PL(A — ppB)Py = WSWT be the eigenvalue decomposition
of PL(A — ppB)Pv where S = diag{0,0,---,0,8011, -+ ,8,} with s;y1 < Sp0 <
e < S, and W o= [wy, -+ Wy, Woiq, -+, Wy, with w; €V (fori=1,---,{), and

w; LV, (fori=0+1,--- n). Then we have sp11 <0 < sp40, Pywyi1 # 0 and

‘3£+1’

< pp — Aes1- 2.23
Furthermore, pr, — A1 and
ot = (A — i) + Ot —). (2.24)

Proof. First, by Theorem [2.2.3] and the assumption Apyq < pp < Apyo, we have the

convergence of pr to Apiq.

29

Let V = [Ver1, Vo, -+, V] be such that Av, = \Bv; (for /+1 < i < n) and
VBV =1. Let V = [V,, V] and PyV = [Py V,, PyV] = [0, V] and hence

VIRpa- By OO (9 O
O VI(A-pB)V O A—pl

where VI(A — p,B)V = VIBV(A — p,I) = A — pi] and A = diag{\r1, -, M}
By Sylvester’s law of inertia and Apy1 — pr < 0 < Apyo — pi, PL(A — p,B)Py has
exactly n — ¢ — 1 negative, ¢ zero, and 1 nonpositive eigenvalues, i.e.; sy 1 < 0 < Spy9.

Let wyy1 = Pywy,; and suppose Wy = 0. Then wyy; = V,V/Bw,; € V,.
This implies wy, 1 = 0 as wy; L V. This is a contradiction. Therefore, wy 1 # 0.

Furthermore, wy, 1 L Vy, ie. VETB(WH = (0. Then

. w! Aw
Aey1 = min
VI Bw= wIBw
; Bw=0,w#0

~ T ~
Wg+1AW€+1

IA

~ T ~
W(+1BW€+1

v~v€T+1(A - PkB)V~Ve+1

T T B
Wi PY(A — ppB)Pyvweyy
WETHB‘X’EH
Se+1
WalprPVWH—l ’

where we have used P%(A — pB)Pywyi 1 = sp1wyyq in the last equation. This

proves (2.23).

Finally, to prove the asymptotic expansion, let s(t) be the smallest eigenvalue of
PL (A — tB)Py. Then s(py) = sei1. It is easy to check that s(A\;1) = 0. Using the

analytic perturbation theory, we obtain s'(py) = —w/,;Bw,1 and hence

s(t) = s(px) + ' (px) (t — pr) + O((t — pr)?)
= S001 — Wy BWe (t— pi) + O((t — pr)?)

Choosing t = A\y11, we have
0= s(Aes1) = se11 — W BWor1 (A1 — pi) + O((Aes1 — pi)?)

from which the expansion follows. m

30

Theorem 2.2.4. Let Vy = [vy,--- ,vy| be such that Av; = \\Bv; (for 1 <i <)
and VIBV, = I and write Py = 1 — V,V]IB and V, = span{vy,--- ,v,}. Let
A1 < Apgo < oo <\, together with Ay, -+ Ay be the eigenvalues of (A,B). Let
(pr,Xx) be the eigenpair approximation obtained at step k of Algorithm with 'V,
and assume that \p11 < pp < Aero. Let PL(A —pB)Py = WSWT be the eigenvalue
decomposition of PL(A — ppB)Pv where S = diag{0,0,---,0, 841, ,5,} with
Sep1 < Spyo < oo <8y, and Wo= [Wy, -0 Wo, Weaq, e, Wy | with wy € Yy (for

i=1,---), and w; L Vy (fori=0+1,--- ,n). Then py converges to A\py1 and

1/2
Pt — A1 < (pr — Aer1)en, + 2(pr — A1) Pen, (%) / + Ok, (2.25)
where
0 <0k :=pr— A1+ WE+1P£g]1;’VWE+1 = O((pr — Ae1)?)
and
€n = min max |p(s)|

p(spq1)=1

with P, denoting the set of all polynomials of degree not greater than m.
Proof. First, it follows from Lemma that pr converges to Api1, Spr1 < 0 < Spyo
and Pywy 1 # 0.

Let Hy, := PL(A — p,B)Py. From Lemma 2.2.1, K,,(Pv(A — pB),x;) =
PVICm(I:Ik, Xp) = {Pvp(f{k)xk,p € Pn}. At step k of the algorithm, we have

) ul’ Au
ktl = min
Ph+ uekm (Py (A—ppB)x;), Ul Bu
u#0
, ul(A — ppB)u
= ppt min T
uezcmmv(i—pkB),xk), ulBu
u#0

= pp+ min Xgp(ﬂk)P{/(A — pkB)PVp(I:Ik)Xk
A xi p(Hy) Py BPyp(Hy)xy,

Pvp(ﬁk)xk #0
. x p(Hy) Hyp(Hy)%y,

Py p(Hp)xp, #0

Let ¢ be the minimizing polynomial in €,, with ¢(s;+1) = 1 and max;>;12 |q(s;)| =

€m < 1. Let

A

S = diag[spy1, -+, Sy) and W = (Woi1, , Wpl.

31

Then W = [V, T, W] for some T € R>". Since x! Hyx;, = xL(A — pB)x;, = 0
and xIH;x, = x, WSW'x,, = o1 si(wixy)? with s; > 0 for @ > £+ 2, we
have w{, x;, # 0. Hence Pvq(H;)x, = PyWq(S)WTx,;, = [0, PyW]g(S)WTx;, # 0
where we note that VW = 0 and hence PyW has full column rank. Let B, =
VAVTPgBPVVAV and y = WTXk. Then

< Xzfl(f{k)ﬁkQ(ﬁk)Xk
Pr+1 S Pk T T T ~
x;, ¢(Hy) (PyBPv)q(Hy)xy,
= et x; Wq(S)Sq(S) W'
" XITWq(S)WTPLBPy W(S)Wx,
B N xIW¢2(S)SWTx,
P T Wq(8)WTPTBPyWq(S)W'x,
T2 g S
= et Tyg()y . (2.26)
y'q(S)B1q(S)y

where we have used

A

Wq(S)Sq(S)WT = W¢?(S)SWT
and
PyW¢(S)W' = [0, PyW]¢(S)W' = PyW¢(S)W7.
Let y = [y17 Y27 L 7yn—£]T7 5’ - [07}’27 oo 7Yn—€]T7 and e = [17 07 s 70]T S Rn—f'
Then,
vy q(S)Big(S)y = (yie1 +¥) q(S)Bi1g(S)(yie1 +¥)
= yiq(ses1)’eIBies + 2y1q(sei1)el Big(S)y + 57 ¢(S)Big(S)y
= yiBi+2y1B + S5,

where 81 > 0, 8, and 3 > 0 are defined such that

ﬁf = elTBlelszHP{,BPVWgH,
53 = 3"4(8)Bia(S)y
< max q(s;)?|Bull[y[?

14+1<i<n
= e |BlllIylP?

and

|Ba| = eI Big(S)i| < B15s.

32

Since yTSy = foAVSVAVTxk = XZI:Ika =0, we have Z;:f Se1iy? = 0. Then

n—~{
[seraly? =) sesiy? > seaa|l91I°, (2.27)
=2
and hence
|S@ 1‘ 1/2
o < enlB2 (B2) (229
S¢4-2
On the other hand, we also have
n—~¢ n—~¢
(S Sy - Z 5€+zq 5€+z < Z 3€+zyl = yTSy =0
=1 i=1
and
n—~{ n—~¢
0<y"¢*(S)Sy = Serid” (se4i)ys < €, Z Se1Y; = Enlsenlyt, (2.29)
i=2 i=2

where we have used that q(s;1) =1, |q(se44)| < €, < 1 for i > 1 and (2.27)). Thus

y'¢*(S)Sy _ yisea+3"a(S)°Sy
Tq(8)Big(S)y YIS +2lyilBibs + 53
Sev1 Ser1 2[yalBifs + 33
83 B yiBt +2|yl/Bs + B3
y"a(S)*Sy
Y36t + 2|y1|51fs + 53
Sev1 Ser1 2|yilBiBs n y7q(S)*Sy

gt BE yift yi0t

3/2 1/2
Se41 |Sé+1|) <||BH) |8011] o
< —— 42 (€m | — + €., (2.30
512 /6% Se42 5% ()

where we have used (2.28)) and ([2.29). Finally, combining ({2.26]), (2.30), and Lemma/|2.2.2

IN

we have
0<prg1— Aep1 < — A1+ —5 s 2(pr — A1) e <” H> + (pr — Meg1)es,
51 Se42
< O+ 20k — A1) em (Lle H) + (k= M1)€
+2
L = O((pr — Mz1)?) by Lemma [2.2.2, The proof is
complete. O

33

Remark ¢, in the theorem can be bounded by the Chebyshev polynomials as

€m < ———, where ¢ = B2 7 Sl (2.31)
T <%> Sn — Si41

and T,, is the Chebyshev polynomial of degree m. This bound can be further simpli-

fied to
VA
€m < 2 <1 n ﬁ) (2.32)

to show the dependence on the spectral separation). Thus, the speed of convergence

of the deflation algorithm depends on the spectral gap of the smallest nonzero eigen-
value of PL(A — p;B)Py, rather than that of A — p;B in the original algorithm.
In particular, this may have a different convergence characteristic from the Wielandt

deflation ([2.14)).

We also note that for small m, the bound may be significantly stronger
than , but when m is sufficiently large, is almost as good as . It is
also easy to see that, asymptotically, we can use the eigenvalues of PL (A —)\, B)Py
in the place of spy; < spp90 < -+ < s, without changing the first order term of the
bound; see [32] for more discussions.

As in Section [2.2.1], a congruence transformation can be used in Algorithm to
reduce €,, to 0 so as to accelerate convergence. Consider the ideal situation that we
compute the LDLT-decomposition of P (A — p,B)Py = L;D;L! with Dy, being a

diagonal matrix of 0 and +1. Then the congruence transformation
(Ag,By) := (L'AL; T L 'BL;T)

does not change the spectrum of (A, B). Applying Algorithm to the transformed
problem, we use

Vg = Lng

to construct the projection Py, = I —]A3\A/—g\A7€T, as Apv; =)\inVi(l < i < /() and
V{Bm = I. Then, by Theorem , the convergence rate is determined by the

eigenvalues of P{/(A — pkE)Pv. It is easy to see that

PL(A - pB)Py = L 'Py(A — p,B)PyL;" = D. (2.33)

34

Then at the convergence stage with A1 < pr < Aj1o, we have sy =--- =5, =0 and

Siv1 = —1, ;40 = ... = s, = 1, which implies, for m > 1, ¢,, = 0, and hence by
Theorem [2.2.4]

P — M1 < 0 = O(pr — Mig1)?).

The above is an ideal situation that requires computing the LD L”-decomposition.
In practice, we can use an incomplete LD L”-decomposition of PL(A — uB)Py =
LD, LY with a shift 4 ~ p;, (or Apyy), which would reduce ¢, and hence accelerate

convergence.

2.3 Numerical examples

In this section, we present two numerical examples to demonstrate the convergence
properties of the deflation by restriction for the inverse free Krylov subspace method.
All computations were carried out using MATLAB version 8.0.0.783 from MathWorks
on a PC with an Intel quad-core i7-2670QM @ 2.20GHz and 12 GB of RAM running
Ubuntu Linux 12.04. The machine epsilon is u ~ 2.2 - 1071,

Our implementation is based on the MATLAB program eigifp of [62]. In par-
ticular, the basis of the projected Krylov subspace is constructed using the Arnoldi
method. In both examples, we compute the three smallest eigenvalues and use the
deflation algorithm in computing the second and the third smallest eigenvalues. The
initial vectors are generated by randn(n,3) and we fix the number of inner iterations
as m = 20. Note that m can be set to be chosen adaptively in eigifp, but here
we consider a fixed m for the demonstration of the convergence bound by ¢,,. The
stopping criterion is set as ||rg| < 1078, where ry = (Ax; — ppBxy) /|| Xk]|-

ExAMPLE 1. Consider the Laplace eigenvalue problem with the Dirichlet bound-
ary condition on an L-shaped domain. A definite symmetric generalized eigenvalue
problem Az = ABx is obtained by a finite element discretization on a mesh with
20,569 interior nodes using PDE toolbox of MATLAB. Three iterations of deflation
algorithms are carried out to compute the three smallest eigenvalues and we plot the

convergence history of the residuals |[rg|| against the number of iterations for the

35

three eigenvalues \;(1 < ¢ < 3) together in Figure . To illustrate Theorem m,
we also plot in Figure the convergence rate (pr+1 — A\i)/(pr — A\;) and compare it
with the upper bound of €. For the purpose of simplicity, the bound
is computed from the eigenvalues of the projected matrix PL(A — \;B)Py. The
top straight lines are the upper bounds of €2, and the bottom three lines are the

corresponding actual error ratios (prr1 — Ai)/(px — Ai).

101§ T T T T T T T T

100§

107

7%
3
S

10-9 [1 1 1 1 1 1 1 1
0 5 10 15 30 35 40 45

20 25 .
Number of Iterations

Figure 2.1: Convergence History of Residuals for three eigenvalues Ai, Ag, A3

We observe that the deflation algorithm converges indeed linearly and pro-
vides a good bound on the rate of convergence. We note that A\, takes more iterations
overall than the other two eigenvalues. This is due to the use of initial random vector
for A1, but to compute Ay and A3 in the eigifp implementation, initial approximate
eigenvectors are computed from the projection used to compute A;. As a result, Ay

and A3 have smaller initial errors, but their overall convergence rates are still com-

36

30 35 40 45

20 25
Number of lterations

Figure 2.2: Top: bound €2 ; Bottom: error ratio (prps1 — i)/ (pr — \i)-

parable as suggested by their bounds. Finally, we list all the converged eigenvalues,
the number of iterations used to reduce the residuals below the threshold, the CPU

time for computing each eigenvalue, and their final residuals in Table 2.1}

Table 2.1: 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain

Al Number of Iterations | CPU | Residual ||rg]|
23.3876 42 3.51 5.50e-09
37.9873 36 3.12 4.76e-09
47.4515 30 2.65 9.98e-09

ExAMPLE 2. In this example, we consider the deflation algorithm when used
with preconditioning. A and B are the same finite element matrices as in Example
1. For preconditioning, we use a constant L as obtained by the threshold incomplete
LDLT factorization of A — u; B with the drop tolerance 1072, where the shift y; is an

approximation of the desired eigenvalue \;. We use p; = 0 for \; and p; = A\;_; for

37

¢ > 1. Then, the convergence rate is given by ¢, as determined by the eigenvalues of
L'PL (A — \B)PyL~T as in (2.31).

As in Example 1, three iterations of deflation algorithms with preconditioning are
carried out to compute the three smallest eigenvalues. We plot the convergence his-
tory of the residuals ||r|| in Figure[2.3]and the convergence rate (pr11—\;)/(pp—\i) as
well as its upper bound in Figure We also list all the converged eigenvalues,
the number of iterations used to reduce the residuals below the threshold, the CPU
time for computing each eigenvalue (the CPU time for constructing preconditioner is

given in parenthesis), and their final residuals in Table .

101§ T T T T T T T T

107 3

10*E

7l

10° L

10 3

-9 [1 1 1 1
10 4

6 8 10 . 12 14 16 18
Number of Iterations

Figure 2.3: Convergence History of Residuals for three eigenvalues Aj, Ao, A3

We observe that the deflation algorithm with preconditioning converges linearly
and ([2.31)) provides a very good bound on the rate of convergence. In particular,
with the preconditioning, the convergence bounds are significantly improved and

correspondingly, the actual convergence rates are also improved demonstrating the

38

0.9 T T T T T T T T

0.7

0.6 -

04

0.3

0.1

1
0 2 4 6 12 14 16 18

8 10
Number of lterations
Figure 2.4: Top: bound €2 ; Bottom: error ratio (pri1 — Ni)/(pr — \i)-

Table 2.2: 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain

Al Number of Iterations CPU Residual ||rg||
23.3876 18 2.01(0.08) 1.54e-09
37.9873 14 1.65(0.10) 1.73e-09
47.4515 12 1.39(0.10) 7.63e-09

effects of preconditioning.

Copyright© Qiao Liang, 2015.

39

Chapter 3 An Inverse-free preconditioned Krylov subspace method for

singular values problem

In this chapter, we consider the problem of computing a few singular values of
large matrices.

The Singular Value Decomposition(SVD) is one of the major matrix decomposi-
tions which is used for many different purposes such as total least squares problems,
low-rank matrix approximation. Applications of SVD varies from signal processing to
machine learning. The matrices involved in these applications are usually large and
sparse. Computing a complete SVD of those matrices is very expensive. Fortunately,
only a partial SVD is needed in most cases.

In Section 3.1, we introduce the singular value decomposition and its properties.
We briefly review the existing algorithms for computing a few extreme singular val-
ues of large matrices in Section 3.2. Then we adapt the inverse-free preconditioned
algorithm of [32] for the singular value problem in Section 3.3. The new algorithm,
which we call it svdifp, overcomes diffculites of computing smallest singular values
experienced by other algorithms, such as the Matlab built-in function svds, jdsvd,
irlba, etc. Extensive numerical tests are presented to demonstrate efficiency and

robustness of the new algorithm in Section 3.4.

3.1 Singular value decomposition

The Singular value decomposition(SVD) of a matrix C € R™*™ with m > n. is
defined as
C=UxVv’"

where U € R™" with UTU =1,V € R™" with VIV = T and ¥ = diag(cy, ..., 0,),
where 0 < oy < ... < 0,. The columns uy, ..., u, of U are called left singular vectors.
The columns vy, ..., v, are called right singular vectors. The o; are called singular

values. If m < n, the SVD is defined by considering CT. ([I9, Theorem 3.2])

40

The singular value decomposition is closely related to the eigendecomposition.
Theorem 3.1.1. ([19, Theorem 3.3])

1. The eigenvalues of the symmetric matriz CT'C are o?. The right singular vectors

v; are corresponding orthonormal eigenvectors.

2

2. The eigenvalues of the symmetric matriz CCT are 0® and m —n zeros. The left

singular vectors w; are corresponding orthonormal eigenvectors for the eigen-

values o;.
. o ct .
3. The augmented matriz M = has eigenvalues
Cc O
— 0, <. . < —03<—0;<0=...=0<0<0r<... <07,
—

m—n

Computing the complete SVD of those matrices is very expensive. In this disser-
tation, our major interest is in partial SVD of large and sparse matrices, so we will
not talk about the compuation of complete SVD. For readers who are interested in

this topic, see ([19, 30]).

3.2 Computations of singular values of large and sparse matrices

Consider the problem of computing a few of extreme (i.e. largest or smallest)
singular values and corresponding singular vectors of C. In this section, we consider
real matrices, but all can be generalized to complex matrices in a trivial way. By
Theorem most existing numerical methods are based on reformulating the sin-

gular value problem as one of the following two symmetric eigenvalue problems by

Theorem B.1.1F

0l <02 <--- < o2 are the eigenvalues of CT'C (3.1)
and
—o, < <—09< -0 <0=---=0<01 <0< <o,
—_—
m—n

41

are the eigenvalues of the augmented matriz

o C’
M = (3.2)
C o

To compute a few extreme singular values of C, we can apply the Lanczos algorithm
(Algorithm or the implicitly restarted Lanczos algorithm [76] (ARPACK [49]) to
one of the two formulations ((3.1) and (3.2))) and this can often be done implicitly.
Indeed, several methods have been introduced that exploit the special structure and

the associated properties of these eigenvalue problems.

3.2.1 The Lanczos bidiagonalization method

The Lanczos bidiagonalization method introduced in [29] is a widely used method
for the singular value problems that implicitly applies the Lanczos method to formu-
lation (3.1). A robust implementation called lansvd is provided in PROPACK [47].
The implicit restart strategy has been developed for the Lanczos bidiagonalization
algorithm in [5] and [44], which also include robust MATLAB implementations irlba
and irlanb respectively. Other aspects of the Lanczos bidiagonalization algorithm
are discussed in [12] [38] [80].

These methods, based on the Lanczos algorithm for the eigenvalue problem ,
work well when the corresponding eigenvalue is reasonably well separated. However,
their convergence may be slow if the eigenvalue is clustered, which turns out to be
often the case when computing the smallest singular values through . Specifically,
for formulation , the spectral separation for o as an eigenvalue of CTC may be

much smaller than the separation of o from oy since

o5 — 0% 09— 001+ 0y 09 — 04
2 _ 2 < (3.3)
oL — 05 Op — 09 0, + 09 Op — 09

(assuming o9 < 0,). On the other hand, for formulation (3.2)), oy is an interior
eigenvalue of M, for which a direct application of the Lanczos algorithm does not

usually result in convergence.

42

3.2.2 MATLAB'’s routine svds

To compute a few of the smallest singular values, MATLAB’s routine svds ap-
plies ARPACK [49, [76] to the augmented matrix M with a shift-and-invert
transformation. This works well for square matrices. However, for computing the
smallest singular value of a non-square matrix, a subtle difficulty arises in using the
shift-and-invert transformation for M because M is singular and, with a shift close
to 0, the method often converges to one of the m — n zero eigenvalues of M rather

than to o;.

3.2.3 JDSVD

On the other hand, one can avoid the shift-and-invert by considering the Jacobi-
Davidson method on the augmented matrix and a method of this type, called
JDSVD, has been developed in [35, B6] that efficiently exploits the block structure
of (3.2). The JDSVD method replaces the shift-and-invert by approximately solving
so-called correction equations using a preconditioned iterative method. When com-
puting o; as an interior eigenvalue of the augmented matrix , the convergence
of JDSVD appears to strongly depend on the quality of the preconditioner for the
correction equation. This demands a good preconditioner for M or M — ul, which is

unfortunately difficult to construct when m # n owing to the singularity of M.

3.3 SVDIFP-The proposed algorithm

It appears that the augmented matrix formulation has some intrinsic dif-
ficulties when it is used for computing a few of the smallest singular values of a
non-square matrix because of the existence of the zero eigenvalues of M. For this
reason, we propose to reconsider formulation in this situation. While formu-
lation has the advantage of a smaller dimension in the underlying eigenvalue
problem, a clear disadvantage is that there is no efficient method to carry out the

shift-and-invert transformation (CTC — uI)~! other than explicitly forming CTC.

43

Note that CTC is typically much denser than C and explicitly computing CTC
may result in loss of accuracy with the condition number being squared. In the case
of 4 = 0, which can be used to compute o that is sufficiently close to 0, the inverse
of CTC can be implicitly obtained by computing the QR factorization of C. This
is the approach taken in lansvd of PROPACK [47]. However, since a complete QR
factorization of a sparse matrix may be expensive owing to possible excessive fill-ins of
the zero entries, it will be interesting to study other approaches that use incomplete
factorizations instead. Other drawbacks of include the need to compute left
singular vectors when they are required, and the potential loss of accuracy caused
by computing o when o is tiny (see Section . In particular, the computed
left singular vectors may have a low accuracy if the singular values are small (see the
discussions in Section .

In this section, we propose to address the small separation of o7 in formulation
by considering a preconditioned Krylov subspace method. Specifically, we shall
implicitly apply the inverse-free preconditioned Krylov subspace method of [32] (or its
block version [70]) to A = CTC. As already discussed, the standard shift-and-invert
transformation is not practical for as it requires factorization of CTC — pul.
The inverse-free preconditioned Krylov subspace method is an effective way to avoid
the shift-and-invert transformation for computing a few extreme eigenvalues of the
symmetric generalized eigenvalue problem Az = ABx where A and B are symmetric
with B positive definite. In this method, an approximate eigenvector x;, is iteratively

improved through the Rayleigh-Ritz projection on the Krylov subspace
Ko (Hy, x1,) := span{xy, Hyxp, Hoxy, ..., H'x,.} (3.4)

where Hy, := A — p;B and p;, is the Rayleigh quotient of x;. The projection is carried
out by constructing a basis for the Krylov subspace through an inner iteration, where
the matrices A and B are only used to form matrix-vector products. The method
is proved to converge at least linearly and the rate of convergence is determined by
the spectral gap of the smallest eigenvalue of H, (rather than the original eigenvalue

problem as in the Lanczos method). An important implication of this property is

44

that a congruence transformation of (A, B) derived from an incomplete LDL” fac-
torization of a shifted matrix A — 4B may be applied to reduce the spectral gap of
the smallest eigenvalue of Hy and hence to accelerate the convergence to the extreme
eigenvalue. This is referred to as preconditioning. A block version of this algorithm
has also been developed in [70] to address multiple or severely clustered eigenvalues.

In applying the inverse-free preconditioned Krylov subspace method [32], [70] to
A = CT'C, we shall construct directly the projection of C rather than the projection
of CTC used for the eigenvalue problem. In this way, we compute approximation of
o1 directly from the singular values of the projection of C rather than using the the-
oretically equivalent process of computing approximation of o7 from the projection
of CT'C. By computing o; directly, we avoid the pitfall of loss of accuracy associated
with computing o2 if oy is tiny. On the other hand, the potential difficulty with the
accuracy of the computed left singular vector in this case is intrinsic to the approach of
CTC. An efficient implementation of the inverse-free preconditioned Krylov subspace
method depends on the construction of a preconditioner derived from an incomplete
LDLT factorization of CT'C — uI. Constructing a preconditioner for CT'C has been
discussed extensively in the literature in the context of solving least squares problems
(see [7, [10, 1T, 28], 64, 66, 86]) and one method well suited for our problem is the
robust incomplete factorization (RIF) of [10, I1]. For the shifted matrix CTC — pul,
however, there is no known effective method for computing a factorization without
forming CTC first. It turns out that the robust incomplete factorization (RIF) can
be easily adapted to construct an LDL” factorization of the shifted matrix CTC — ul
without forming CTC. Our numerical testing demonstrates that the RIF precondi-
tioner in combination with the inverse-free preconditioned Krylov subspace method
leads to a very efficient preconditioned algorithm for the singular value problem. Nu-
merical tests demonstrate that it is particularly competitive for computing a few of

the smallest singular values of non-square matrices.

45

3.3.1 An inverse-free preconditioned Krylov subspace method

We consider the singular value problem for an m x n matrix C. We apply Al-
gorithm to the eigenvalue problem A = CTC and B = I. However, a direct
application involves computing the eigenvalue pj of the projection matrix A,,, which
converges to o?. One potential difficulty associated with this approach is that py
computed this way may have a larger error if oy is very small (relative to ||C||).

Specifically, if py is the computed Ritz value, it follows from the standard backward

error analysis [30] that pj is the exact eigenvalue of a perturbed matrix A, + E,,

with ||E,,|| = O(u)||A,,||, where u is the machine precision. Then
151 = ol < O(W)[|[An| < O)[[A] = O(w)||CI* (3.5)
and
ICll

v/ Bk — /7r SO(U)HCHm ~ O(u)|Cl[[x(C)/2 (3.6)

where k(C) = 0,,/01 is the condition number of C. In particular, the relative error

V= By IO
N /AN

is proportional to x(C)?. Thus, very little relative accuracy may be expected if

O(u)k(C)?/2

k(C) is of order 1/y/u. In contrast, a backward stable algorithm should produce an
approximation of o; with absolute error in the order of O(u)||C|| and the relative
error in the order of O(u)k(C). We note that the above discussion is based on a
worst case upper bound. It is likely pessimistic, particularly in the bound of ||A,,]|,
but it does highlight the potential loss of accuracy when one computes o; through
computing o7 (see Example 5.1 in Section 5).

To achieve the desired backward stability, we propose to construct a two-sided
projection of C, from which we compute approximate singular values directly. This
is similar to the Lanczos bidiagonalization algorithm where a bidiagonal projection
matrix is constructed whose singular values directly approximate the singular val-

ues of C. Algorithmically, we construct an orthonormal basis {zg,z1,...,%,} for

K (L~TL7(A — piI), xi) and simultaneously an orthonormal basis {yo,y1,---,¥m}

46

for span{Cz, Cz,,...,Cz,} as follows. First, foo = ||Cz|]2 and yo = Czo/ fo,.

Then, for : = 1,...,m, we generate z; and y; by
fi,izi = L_TL_I(CTCZi—1 - kaz‘—l) - fo,z'Zo - fl,z'zl — fi—l,izi—l (3-7)
9ii¥i = Cz;— goiyo— 91,¥1 — *** — Ji-1,i¥i-1 (3.8)

where f;; = z] L™"L(C"Czi_1 — przi-1), gji = ¥, Cz;, and f;; and g;; are chosen
so that |ly;|| = ||zi|| = 1. Assuming dim(K,,(L~TL™Y(A — piI),x1)) = m + 1, the
recurrence for z; does not breakdown and the process leads to an orthonormal basis
{20,21,...,2n}. It is easy to show that the recurrence for y; does not breakdown
either and {yo,y1,...,¥m} is orthonormal. Let Y,, = [y0,¥1,.-.,¥Ym]. Then CZ,, =
Y,,G,, where G, = [g;]7_o. It follows that ZL(CTC)Z,, = GLG,,. If of" is

the smallest singular value of G,,, then (J,S))2 is the smallest eigenvalue of A,, =

ZL (CTC)Z,y,, ie. (U/l(ﬁl))2 so constructed is equal to pgy1 in Algorithm

By computing a,(:) directly, we avoid the possible loss of accuracy. Specifically, if
6,21) is the computed singular value of G,, using the standard SVD algorithm such as
svd, then it follows from the backward stability that &,(Cl) is the exact singular value

of G, + F,, for some F,, with ||F,,|| = O(u)||G,,||. Then
3 = | < OW)|Gon| < O()[C]

and hence

Thus, as Algorithmconverges, ie. /pr = alil) — 01, the approximate singular

value 6,(:)

can approximate o; with a relative accuracy in the order of O(u)x(C).
To compute additional eigenvalues, we use the deflation by restriction method
proposed in Section [2.2.2] We summarize this process as the following algorithm that
compute the (¢ + 1)st smallest singular value when the first ¢ singular values have
already been computed.
We make some remarks concerning Algorithm [3.1] The algorithm presented has

deflation included where ¢ singular values and right singular vectors are given as in-

puts. When none is given, it computes the smallest singular value o by setting £ = 0

47

Algorithm 3.1 Inverse free preconditioned Krylov subspace method for SVD

1: Input: m, Vy = [vy, -, vy with CTCv; = o?v; and V]V, = 1, initial right
singular vector xg s.t. ||xo|| = 1 and Vxy = 0;
2: initialize: py = ||Cxgl; G, = [gij] = 0 € RmFDx(m+1),
3: for £k =0,1,2,... until convergence do
4: construct a preconditioner L;
5: 7o = Xp; W = Czg; m' = m;
6: goo = ||lw| and yo = W/go,o;
7 fori=1:m do
8: z; =1 -V, V))LTTLY(CTw — prz;_1);
9: for j=0:7—1do
10 z; = z; — (2, 2;)2j;
11: end for
12: if ||z;|| # 0 then
13: z; = z;/ ||z
14: else
15: m’ =i and break;
16: end if
17: w = Cz;; y; = W;
18: for j=0:72—1do
19: 95 =Y, yi and yi = yi — g;3¥;
20: end for
21: 9ii = |lyill and yi = yi/9i4
22: end for
23: Compute the smallest singular value J,(ClJZl of G,, = [gij]?fj/zo and a correspond-
ing unit right singular vector h;
. —_ (1) 32 _
24: Prr1 = (03 11)% Xer1 = (20,21, - -+, Zow) P
25: end for

and V, to the empty matrix. At line 4, a preconditioner needs to be constructed such
that LDL? ~ CTC — uI for 41 equal to pj, or a fixed initial value. An algorithm based
on RIF to compute an incomplete factor L implicitly from C will be discussed in the
next section. As stated, different preconditioners may be used for different iteration
steps, but for the efficiency reason, we usually use the same preconditioner. Line 8 im-
plements the deflation and preconditioning techniques implicitly. The forloop at lines
7-22 constructs an orthonormal basis {zg, Z1, ..., 2z, } for the Krylov subspace and
simultaneously an orthonormal basis {yo,¥1,...,ym } such that CZ,, = Y, G,
where m’' = dim(K,,,((I =V, V])L™TL (A — p;B),x;)) — 1. Then G,,, = Y!,CZ,,,.

Its smallest singular value and a corresponding right singular vector h are computed

48

to construct a new approximate right singular vector at lines 23-24.

The process is theoretically equivalent to Algorithm as applied to A = CTC
and B = I. When no preconditioning is used, i.e. L = I, the inverse free Krylov
subspace method is simply the Lanczos method for A with restart after m iterations.
When the preconditioning is used, we effectively transform the standard eigenvalue
problem for CTC to the equivalent generalized eigenvalue problem for (A,B) =
(L7'CTCL~T,L7'L~T), to which the inverse free Krylov subspace method is applied.

In the eigifp implementation [62] of the inverse free preconditioned Krylov sub-
space method for the eigenvalue problem, an LOBPCG (locally optimal precondi-
tioned conjugate gradient) [43] 41] type subspace enhancement was also included to
further accelerate convergence. Note that, in the LOBPCG method, the steepest de-
scent method is modified by adding the previous approximate eigenvector x;_; to the
space spanned by the current approximation and its residual span{xy, (A — pB)xy}
to construct a new approximate eigenvector. It results in a conjugate gradient like
algorithm that has a significant speedup in convergence over the steepest descent
method. This idea has also been used in eigifp [62] by adding the previous approx-
imate eigenvector x;_; to the Krylov subspace IC,,(A — p;B, x}), which is also found
to accelerate the convergence in many problems. As the extra cost of adding this
vector is quite moderate, we also use this subspace enhancement in our implementa-
tion for the singular value problem. Algorithmically, we just need to add after the
forloop at lines 7-22 to construct an additional basis vector z,,/ ;1 by orthogonalizing
X —Xp_1 against {zg, z1, . .., Z, }. Note that we have used x;, —xj,_1 rather than x;_;
for orthogonalization because orthogonalizing x;_; against zy = x; typically leads to
cancelation when X, &~ x;_;. On the other hand, we can avoid possible cancelation

in x; — X;_1 by computing its orthogonalization against z, = x; implicitly through

~ _ hTh hy 1
d=Zy Mmoo where h=|[
h h |

is the unit right singular vector of the projection matrix G,, and Z,, is the matrix
of the basis vectors at line 19 of previous step (step & — 1) of Algorithm ie.

x; = Zmh and x4 = Zye;, where e; = [1,0,---,0]7. Tt is easy to check that

49

5 17 1 1 hi—1 T
d =7,h— o lmer = Xp — p-Xp-1 = h—l(xk — Xp_1) — X, and x,d = 0.
Therefore, a new basis vector that extends the subspace with x; — x;_1 can be

obtained by orthogonalizing d against {zg,z1, ..., %,/ } as

fm’+1,m’+1zm’+1 =d— fO,m’+1ZO - f1,m'+1Z1 — fm’,m’+1zm’

Moreover, Cd = CZm/[—%,ﬁ]T and then Cz,,,; can be computed without the

explicit multiplication by C from

Cd - fO,mUrlCZO - f1,m/+1czl — fm/,m/+1CZm/
fm’+1,m’+l

sz’+1 =

I

from which y,,,; and an additional column of G are computed as in (3.8]). However,
with possible cancellations in the last formula, Cz,,; may be computed with large
errors and we suggest to compute Cz,,,; explicitly when high accuracy is needed.
The algorithm we have presented computes approximate singular values and si-
multaneously computes the corresponding right singular vectors only. In applications
where singular triplets are required, we can compute approximate left singular vectors
from the right singular vectors obtained. This is a limitation of the CTC formulation
and Algorithm where we reduce the eigenvalue residual of the approximate

singular value and right singular vector pair (0,9), xi) (with ||xg]| = 1)

ry = |CTCx, — (01")2xs].- (3.9)

From this residual, the errors of approximate singular value a,(cl) and approximate

right singular vector x; can be bounded as (see [19, p.205])

2
r ' r
L and sin Z(xy, vi) < 2

|0(1) o< ——2
¥ (U,(gl) + o1)gap gap

. . 1 . .
where we assume that o is the singular value closest to 0/1(C), vy is a corresponding

right singular vector, and gap = min; 4 |a,§1) —o0;|. When a corresponding left singular

vector is needed, it can be obtained as

Wy = ka/a,il) (3.10)

20

provided a,(cl) # 0. Then the accuracy of the approximate singular triplet (0,9), Wi, Xk)

can be assessed by

Cx; — 0w w
SN N B (3.11)
Wk — Uk Xk Xk
It is easily checked that
r, =1,/ (3.12)

Therefore, for a tiny singular value, a small residual r,, for the pair (O’,(cl), x;,) does not

imply a small residual r; for the singular triplet (a,(:), Wy, Xi). Indeed, the constructed
left singular vector w;, may not be a good approximation, even when x; is a good
approximate right singular vector as indicated by 7,. This appears to be an intrinsic
difficulty of the CTC formulation . Specifically, in the extreme case of o1 = 0, a
corresponding left singular vector is any vector in the orthogonal complement of R(C)
(the range space of C) and it can not be obtained from multiplying a right singular
vector by C or any vector in the subspace CK,,(CTC, x;) = K,,(CCT,Cx;) C R(C).
In this case, we need to consider CC? on a new random initial vector to compute a
left singular vector.

An alternative formulation of the left singular vector is by computing the left
singular vector g of the projection matrix G,, at line 19 of Algorithm and then

form

Wi = [YO7 Yi,--- aym/]g‘ (3]‘3)

It is easy to check that this is theoretically equivalent to ‘} if a,(gl) # 0. However,
an advantage of this formulation is that it is still defined even when a,(:) = 0, although
the quality of the approximation is not assured. Our numerical experiments indicate
that is generally similar to but may lead to a slightly better left singular
vectors in some problems. In our implementation, we use to estimate the
residual of singular triplet to avoid the cost of computing the residual of singular
triplets, but at termination, we use to compute a left singular vector and then

recompute its residual.

51

In the algorithm, we have used r, for the convergence test unless a left singular
vector is required. When a left singular vector is indeed needed, r; is used for the
convergence test. As discussed above, however, since the r; may never converge if a,(cl)
is extremely small. Therefore, in order to properly terminate the iteration in such a
situation, we propose to monitor the magnitude of the singular value computed and,
when an extremely small singular value (i.e in the order of the machine precision)
is detected, the stopping criterion should be switched to using r,. By properly ter-
minating the iteration using 7,, we can still obtain a sufficiently good approximate
singular value and a right singular vector. After that, we can then separately apply
the algorithm to CT to compute a left singular vector.

We present the subspace enhancement steps and termination criteria discussed
above as additional steps of Algorithm 3.1} It also includes the additional step needed
in computing the left singular vector when it is required.

In Algorithm [3.2] lines 4-16 expand the subspace with x; —xj_1 using the method
mentioned earlier. Line 18 computes the orthogonalization of x;.1 — X; against xj
to be used in the next iteration. The algorithm, by default, computes the singular
value and the right singular vectors. If singular triplets are desired, Lines 21-23
compute an appropriate residual to be used for testing convergence. This is only for
the purpose of terminating the iteration. At convergence, however, we compute the
left singular vector w1 and the residual of the singular triplets explicitly.

Finally, we mention that the algorithm can be adapted trivially to compute its
largest singular value. Namely, to compute the largest singular values of C, we just
need to modify line 23 in Algorithm and line 17 in Algorithm to compute the
largest singular value of G,, and a corresponding right singular vector and the rest
of the algorithm remains the same. It is easy to see that the convergence theory of
[32] extends to this case. We also note that the above algorithm is based on vector
iteration for computing a single singular value. A block matrix iteration version of
the inverse free preconditioned Krylov subspace method has been developed in [70] to
compute multiple eigenvalues or extremely clustered eigenvalues. It can be adapted

as in Algorithm to the task of computing multiple or extremely clustered singular

52

Algorithm 3.2 Inverse free preconditioned Krylov subspace method for SVD with
LOBPCG enhancement

1: Same as Line 1-2 in Algorithm

2: for £k =0,1,2,... until convergence do

3: Same as Line 4-22 in Algorithm

4: Zp/+1 = dk,W = Cdk,
5: for j=0:m' do
6: Zi/+1 = Zm/+1 — (ZJTZm +1>Zj)
7 W =W — (2] Zp+1)Cz;;
8: end for
9: if ||z 41]] # 0 then
10: Zo i1 = Zoig1/ | Zmr 1 ||, W = W/ || Zi gt |5 Y1 = W3
11: for j=0:m' do
T .
12: Gjm+1 =Y; Y1 a0d Y1 = Y1 — Gjm 1Y
13: end for
14: Im's1mi41 = [Yors1l| and Y1 = Y1/ G 1m 115
15: m' =m'+1;
16: end if
17: Compute the smallest singular value ak +1 of G,, [gij]?:}/:o and a correspond-

ing unit right singular vector h;

18: dk+l = Z (— el/hl) Cdk+1 CZ (— el/hl);

19: Pk+1 = (Uz(c+)1)2a Xp+1 = Lyl

20: res = |CTCxp11 — prr1Xes|l;

21: if singular tm’plet is desired and 0,5321 > u|C||* then

22: res = res/akH,

23: end if

24: Test convergence using res;

25: end for

26: if singular triplet is desired then;

27: Compute a left singular vector g of G, and wii1 = [yo,¥1, -, Ym|8;
28: end if

29: Output: (a,(izl,xkﬂ) or, if singular triplet is required, (a,(clﬁl,wkﬂ,xkﬂ).

93

values. Here, we omit a formal statement of the algorithm; see [70].

3.3.2 Preconditioning by robust incomplete factorizations (RIF)

In this section, we discuss how to construct a preconditioner L, i.e. an approximate
LDL” factorization CTC—pul = LDL" where /1t is an approximation of the singular
value to be computed and D is a diagonal matrix of 0 or £1. This generally requires
forming the matrix CTC — ulI, which may be much denser than C and hence leads
to a denser L. In addition, forming the matrix is associated with potential loss of
information in very ill-conditioned cases, although this appears not to pose a problem
when only an approximate factorization is sought [37].

For computing the smallest singular value, 4 = 0 is a natural first choice for
the shift. In this case, we need an incomplete factorization of a symmetric positive
semidefinite matrix, for which numerous techniques have been developed, see [] for
a survey. Indeed, if = 0, the problem is the same as constructing a preconditioner
for the linear least squares problem. One method that has been well studied is the
incomplete QR factorization; see [7, 28| [66] [64, [86]. The incomplete QR factorization
methods, such as incomplete modified Gram-Schmidt method or incomplete Givens
rotation method, can be used here to construct a preconditioner for computing small-
est singular values that are close to 0. While they are effective and often result in
much faster convergence, they tend to have high intermediate storage requirements in
our experiences; see [11] as well. Moreover, they can not deal with the cases of u # 0.
On the other hand, Benzi and Tuma propose a method for constructing a precondi-
tioner for CTC in [I1] called robust incomplete factorization (RIF). This method can
be easily adapted to computing an incomplete LDL” factorization for CT'C — uI and
is found to have more moderate fill-ins. We discuss now the RIF preconditioner for
the SVD algorithm.

Let A € R™™" be a sparse symmetric positive definite matrix. The idea of RIF is
to obtain the factorization A = LTDL by applying an A-orthogonalization process
to the unit basis vectors e, ey, - ,e, (i.e. I = [ej, e, -+ ,e,]). It will become a

Gram-Schmidt process for the unit basis vectors with respect to the inner product

54

<X,y>A =xTAy,ie, fori=1,2,---,n,

—_

71—

<ei7 Zj)A

Z, = €; —

z;. (3.14)

This is the classical Gram-Schmidt (CGS) process. The corresponding modified

Gram-Schmidt (MGS) process can be implemented as updating the basis vector z;

initialized as z; = e; (1 < i < n) by the following nested loop: for j = 1,2,--- ,n,
orthogonalize each z; (for i = j 4+ 1,--- ,n) against z; by
Z, —7Z; — MZ]'. (315)
<Zjvzj>A

This updating process allows discarding z; to free the memory once it is orthogonal-

ized against all z; (for i =75+ 1,--- ,n). Let
lij:+, if 1> j;

and set [;; = 0ifi < j. Then L = [l;;] is a unit lower triangular matrix and this process
results in an A-orthogonal matrix Z = [z, 2, ...,2,| such that I = ZLT. Then
Z"AZ = D implies A = LDL” where D = diag[dy,ds, - ,d,] and d; = (z;,2;) 4.

Clearly, by , z; € span{ej, ey, -+ ,€;} and Z is upper triangular. Since CGS
and MGS are theoretically equivalent, can be formulated as

<ei7 Zj>A

Z, = 7Z; — liij, Wlth lij = A .
(j,2;) o

(3.16)

which is computationally more efficient (see [9]) for problem like A = CTC below.
In addition, as A is sparse, (e;,z;), = e/ Az; may be structurally zero for many
i, j, resulting a sparse L. The A-orthogonalization process can efficiently exploit the
property l;; = 0 by skipping the corresponding orthogonalization step. Furthermore,
one may also drop the entry [;; and skip the orthogonalization if /;; is sufficiently
small. This would result in an incomplete factorization called robust incomplete
factorization (RIF).

RIF has also been used in [I1] to efficiently construct preconditioners for CTC for

a full rank matrix C € R™*" arising from the normal equation for the least squares

95

problem. An advantage of RIF for CTC is that the CTC-orthogonalization process
can be carried out using C only as

<CZZ‘, CZj)

<CZj, CZj) <317>

7z, = 7Z; — liij, with lij =

for j =1,2,--- ,nand i = j+1,--- ,n, where (-,-) is the Euclidian inner product.
In this setting, the following CGS formulation of ;;

(Cei, CZ]‘>
<C/‘Zj7 CZj)

Z, = 7Z; — liij, with lij =

is preferred over the MGS formulation because of the need to compute Cz; in MGS
each time z; is updated, whereas only Ce; (the i-th column of C) is needed
in CGS. Since we are only interested in an incomplete factorization by applying
dropping threshold in z; and [;;, the difference in stability between CGS and MGS is
not significant. Also, computation of /;; requires forming Cz; once for each z;, which
involves sparse-sparse matrix-vector multiplications and can be efficiently computed
as a linear combination of a few columns of C; see [11]. We also observe that the
inner products in /;; involve two sparse vectors as well.

If we multiply both sides of by C, it is possible to get around computing
w; := Cz; as a matrix-vector multiplication in MGS by computing it through
the updating formula

(wi, w;) (3.18)

W; = W; — lijW]’, Wlth lij = W,
VEIAN/

which maintains the MGS form. However, since the L matrix is all we need, it is not
necessary in this to compute z; anymore. Indeed, since w; is initialized as Ce;, (3.18))
is just the modified Gram-Schmidt process in the Euclidian inner product applied
to the columns of C and it becomes the MGS method for the QR factorization of
C. However, with w; initialized as Ce; and z; initialized as e;, the sequence w;
generated may be expected to be much denser than the corresponding z;, which
appears to be the case in our experiments. This may be the main motivation of using
the A-orthogonalization in RIF.

We observe that the same process can be extended to our problem of constructing

an LDL™ factorization for A := CTC — ul with a shift u ~ o}. The corresponding

o6

orthogonalization process is

(Ce;, Cz;) — pife;, z;)
(Czj, Czj) — u(zj, z;)

(3.19)

Z, —7Z; — liij, with lij =

for j =1,2,---,nand i =j+1,--- ,n. Now, if 4 < 02, then CTC — pI is positive
definite and, with the divisor in /;; nonzero, the process is well defined.

If 4 = 02, then CTC — ul is positive semidefinite and the process may encounter
a zero division if (Czj, Cz;) — p(z;,z;) = 0 for some j. However, in this case,
(CTC — pl)z; = 0 and then (Cz;, Cz;) — u(z;,z;) = 0 for any 7. Then we do
not need to carry out the orthogonalization against z;. Continuing the process, we
still obtain zy,2s, - , 2z, such that (Cz;, Cz;) — u(z;,z;) = 0 but ZTAZ = D will
have zero in diagonals. However, this does not cause any problem as we still have
CTC — uI = LDL” and by using a scaled L, we have D with 0 and 1 as diagonal
elements. This is precisely the factorization needed.

If 1 > 02, then CTC — plI is indefinite and the process may breakdown with the
occurrence of (Cz;, Cz;) — p(zj,2;) = 0 but (CTC — pl)z; # 0 for some j. In prac-
tice, the exact breakdown is unlikely but we may encounter a near breakdown (with
(Cz;,Cz;) — n(z;,2;) ~ 0), which may cause instability to the process. However,
since we are only interested in an incomplete factorization which incur a perturbation
through dropping small elements, we propose to modify the pivot by simply setting
(Cz;, Cz;) — (2, ;) to some nonzero scalar such as the dropping threshold and skip
the orthogonalization against z;. This perturbation is consistent with the dropping
strategy in the incomplete factorization and would amount to a perturbation to z,
in the order of magnitude of the dropping threshold. In any case, it only affects
the quality of the preconditioner and hence efficiency of the overall algorithm, but it
does not reduce the accuracy of the singular value computed by our method. In our
experiences, the algorithm handles modest indefiniteness very well, but the quality
of preconditioner deteriorates as the matrix indefiniteness increases.

The incomplete LDL? factorization provided by RIF need to be scaled so that
D has diagonals equal to 0, £1 for its use as a preconditioner for the singular value

problem. This can be achieved by multiplying L by D'/2 on the right. The following

o7

is the RIF algorithm as adapted from [I1] with the columns of L scaled.

Algorithm 3.3 Robust Incomplete Factorization of CTC — ul

1: Input: n; (drop threshold for L) and 7 (drop threshold for Z);
2: initialize: Z = (21,29, -+ ,2,| =I; L = [;;] =1 € R™"™;
3: for j =1tondo

4 dy = (Cz;, Czj) — (z;,25);

50 1y =V1djl;

6: if ljj > maX{mHCejHl, U} then

7: fori=7+1tondo

8: pij = (Cz;, Ce;) — 1i(z;, €:);

9: if |p;;|/l;; > max{n||Ce;||1,u} then
10: Z, =7Z; — %Z]‘ and lij = Sgn(pjj) . pzj/l]j,
11: if |2;(¢)| < n2|z:][1 for any ¢ then
12: set z;(() = 0;

13: end if

14: end if

15: end for

16: else

17: lj; = max{m||Ce;l, u};
18: end if

19: end for

We present some remarks concerning Algorithm [3.3] At line 6, we test the divisor
l;; for near-breakdown. If a near-breakdown occurs, we set [;; to the breakdown
threshold max{n;||Ce,||1,u} at line 17 and skip the orthogonalization process. Here,
we note that the threshold is chosen to be relative to the norm of Ce; as Cz; is
constructed from it through orthogonalization and u is added to the definition of the
threshold to deal with possible situation of Ce; = 0. We skip the orthogonalization
of z; if the [;; is below the given threshold max{7n;||Ce;||;,u}. In that case, l;; is set
to 0. To further improve efficiency of the algorithm, we also apply a drop rule to z; at
Line 11 by setting all entries of z; that are below the threshold 7,||z;||; to 0. This will
maintain Z as sparse as possible and improve the efficiency of the algorithm. In our
experiments, the quality of the preconditioner constructed appears to depend more
on the magnitude of 7, than that of n;. So 7, is chosen to be much smaller than 7.
In our implementation, we set n; = 1072 and 1, = 1078 as the default values. Finally,

on output, the algorithm produces an approximate factorization C*'C — pI ~ LDL”

o8

with D having only 0, +1 as diagonals.

3.3.3 A robust implementation

One advantage of the inverse free preconditioned Krylov subspace method is its
relative simplicity for implementation with the number of inner iterations being the
only parameter to select. We have implemented Algorithm in combination with
the RIF preconditioner (Algorithm [3.3) in a black-box MATLAB implementation for
the singular value problem. The program called svdifp is used in our numerical
tests.

Our program svdifp is based on the MATLAB program eigifp [62] which im-
plements the inverse free preconditioned Krylov subspace method with several algo-
rithmic enhancements for the generalized eigenvalue problem. We have incorporated
many features of eigifp into our implementation but the core iteration is to con-
struct the projection of C as outlined in Algorithm Noting that for Algorithm
, the only required user input is m (the inner iteration) and a preconditioner, we
have adopted the same strategy used in eigifp in determining m; see [62].

Namely, m can be either specified by the user or, by default, adaptively deter-
mined by the program according to its effect on the rate of convergence. Note that
experiments have shown that an optimal value of m is larger if the problem is more
difficult while it is smaller if the problem is easier (e.g. with a good preconditioner).
On the other hand, to determine a preconditioner, we first need an approximate sin-
gular value as a shift for the RIF preconditioner. Here different strategies will be
used depending on whether computing the largest or the smallest singular values.

For computing the smallest singular value, we assume 0 is a good initial ap-
proximate singular value and, using 0 as the shift, we compute a preconditioner by
Algorithm [3.3] and carry out a preconditioned iteration.

For computing the largest singular value, the standard Lanczos bidiagonalization

algorithm [29] should work well because the spectral separation is typically increased

29

by 2 times through the CTC formulation (3.1)), i.e.

2
—O0p-1 _ Opn—0p-10n + O0n-1 ~ 2Un — On-1
2 ~ :
1 Op—1 — 01 Op_1+ 01 Op—1— 01

SIS N

o
ol — 0
However, for problems with clustered largest singular value, the preconditioning ap-
proach can still be very beneficial. One difficulty then is that there is no good approx-
imate singular value readily available initially and no preconditioner can be derived.
Following the strategy in eigifp [62], we start the iteration with no preconditioning
and, when a sufficiently good approximate singular value ¢ has been found as deter-
mined by the residual, we compute a preconditioner for CTC — uI by Algorithm
with the shift 4 = 0% +r, and then continue the iteration with preconditioning where
7p is the residual and hence p is an upper bound for the true singular value. This
typically leads to accelerated convergence.

In both cases, the program monitors the approximate singular value obtained and
the convergence rate and may update the preconditioner using an updated approx-
imate singular value as the shift if significant deviation of the singular value from
the shift is detected. The same strategy is followed when computing several singular
values with deflation. The program can be run with no required user input. However,
it also allows various optional parameters the user may supply to improve the perfor-
mance. They include the inner iteration m, the RIF thresholds, initial approximate
singular value (which can be used to compute a preconditioner) or a preconditioner

itself, among others.

3.4 Numerical examples

In this section, we present some numerical examples to demonstrate the capability
and efficiency of the preconditioned inverse free Krylov subspace method for singular
value problem. We shall compare our MATLAB implementation svdifp with several
existing programs (i.e. irlba of Baglama and Reichel [5], jdsvd of Hochstenbach
[35,86], 1ansvd of Larson [47], and svds of MATLAB which is based on the ARPACK
[49] of Lehoucq, Sorenson and Yang). irlba [5] implements an augmented implicitly

restarted Lanczos bi-diagonalization algorithm. jdsvd [35, [36] implements a Jacobi-

60

Davidson method on the augmented matrix formulation. (Note that a program based
on the Jacobi-Davidson method for CTC has also been developed recently [37].)
lansvd [47] implements the Lanczos bidiagonalization algorithm for R~ from the
QR factorization of C = QR for computing the smallest singular value. svds of
MATLAB implements ARPACK [49] and uses the inverse of M (or M — pI) in the
formulation for computing the smallest singular value. We note that svdifp
and jdsvd compute one singular value at a time, while irlba, lansvd, and svds
can compute several singular values simultaneously. On the other hand, svdifp and
jdsvd can use preconditioners to accelerate convergence, while irlba, lansvd, and
svds have to use the shift-and-invert approach.

In the first three examples, we test the programs on computing the smallest sin-
gular value, while in the fourth example, we demonstrate capability of svdifp in
computing several largest singular values using deflation. All the executions were
carried out using MATLAB version 8.0.0.783 from MathWorks on a PC with an Intel
quad-core i7-2670QM @ 2.20GHz and 12 GB of RAM running Ubuntu Linux 12.04.
The machine epsilon is u ~ 2.2 - 107!¢. The performance parameters we consider for
comparisons are the residual of the approximate singular triplet obtained, the number
of matrix-vector multiplications where applicable, and the CPU time. The CPU time
is gathered with on-screen outputs suppressed. For the methods that require some
factorization of the matrix, we also consider the number of non-zeros in the factors,
which indicates the memory requirements and their potential limitations.

We first present an example that tests the capability of svdifp to compute tiny
singular values accurately. We also show that applying eigifp directly to the eigen-
value problem for CTC may result in loss of accuracy for the computed singular
value. Here, in using eigifp, the matrix-vector multiplication CTCx is obtained by
computing Cx first and then multiplying by C?. Even though C”C is not explic-
itly formed, the singular value is obtained from the projection of CTC, potentially
resulting in loss of accuracy; see the discussion in Section Both methods are

run without preconditioning and with the number of inner iteration set to 20.

61

ExAMPLE 1. We consider the following matrix

n
C=UxV?, with ¥ =
0

m—mn
where D = diag(1,1/2%,--- ,1/n?) and U and V are random orthogonal matrices
generated by U=orth(rand(m,m)) and V=orth(rand(n,n)) in MATLAB. We test
and compare the accuracy of the smallest singular value computed by svdifp and
eigifp with n = 100 and m = 100 or m = 200. In either case, the exact smallest sin-
gular value of C is o1 = 1078 and the second smallest singular value is approximately
1.041-107%. The convergence is tested using the criterion ||CTCv; — a?vy|| < n||C|?
and, to achieve the best accuracy possible, we use a very small threshold n = 10~
and run the iteration until the residual stagnates.

Table lists the best smallest singular values and their residuals obtained. For
svdifp, with x(C) = 10%, the residual deceases to about 107'® and o; computed
has relative error in the order of 107! ~ ux(C). This is the best accuracy one
may expect from using a backward stable method. On the other hand, for eigifp,
the residual decreases and then stagnates at around 1071°. The relative error of the
computed singular values oscillates around 10~ and no better approximation can
be obtained. The singular value computed by applying eigifp directly lost about 5

digits of accuracy in this case.

Table 3.1: Example 1: o1 - computed smallest singular value by svdifp and eigifp; Res
- HCTCV1 — U%Vln.

m = 100 m = 200
o1 Res o1 Res
svdifp | 1.0000000008e-08 | 1e-20 | 1.00000000001e-08 | 2e-20
eigifp 1.0001e-08 8e-17 1.00008e-8 8e-17

It is interesting to observe that with a good preconditioning, eigifp appears to
be able to compute o; accurately. Note that this is a dense matrix and the default
preconditioner constructed by eigifp is the (complete) LDLT factorization.

Next, we test and compare svdifp with several existing programs for SVD on

computing the smallest singular value for a set of test problems. The test matrices

62

consist of both square and non-square matrices taken from the Matrix Market [61]
and the University of Florida Sparse Matrix Collection [18]. They are listed in Table
together with some basic information of the matrices (the smallest singular values

are computed by MATLAB’s svd(full(A))).

Table 3.2: Test Matrices Used for Examples 2 and 3

No. ‘ Matrix ‘ Size ‘ Non-zeros ‘ o1 ‘ k(C) ‘ source
Square Matrix
1 dw2048 2048 x 2048 10114 4.68e-4 2.03e3 | Matrix Market
2 fidap004 | 1601 x 1601 31837 6.57e-4 | 2.39e3 | Matrix Market
3 hor131 434 x 434 41832 1.53e-5 | 4.31e4 | Matrix Market
4 jagmeshl | 936 x 936 6264 5.63e-3 | 1.23e3 | Matrix Market
5 1shp 3025 x 3025 20833 1.03e-4 | 6.78e4 | Matrix Market
6 pde2961 2961 x 2961 14585 1.62e-2 | 6.42e2 | Matrix Market
7 pores3 532 x 532 3474 2.67e-1 | 5.61eb | Matrix Market
8 sherman 1000 x 1000 3750 3.23e-4 | 1.56e4 | Matrix Market
Rectangular Matrix
9 welll033 | 1033 x 320 4372 1.09e-2 | 1.66e2 | Matrix Market
10 welll1850 | 1850 x 712 8755 1.61e-2 1.11e2 | Matrix Market
11 lpi_cplexl | 5224 x 3005 10947 6.39e-2 3.13e3 UFLSMC
12 qiulp 1900 x 1192 4492 7.57e-1 4.08e1l UFLSMC
13 ge 10099 x 16369 44825 1.08e-3 1.28e7 UFLSMC
14 p010 10099 x 19090 118000 1.50e-1 1.18e2 UFLSMC
15 lp_ganges | 1309 x 1706 6937 1.87e-4 | 2.13e4 UFLSMC
16 cepl 1521 x 4769 8233 1.00e0 1.49e1 UFLSMC
17 gen2 1121 x 3264 818565 1.41e0 3.3bel UFLSMC
18 Maragal 5 | 3320 x 4654 93091 7.11e-46 | 2.30e46 UFLSMC
19 | 1p_shipi2s | 1151 x 2869 8284 0 - UFLSMC

Since these programs may have very different approaches and have different as-
sumptions on computing resources, we shall carry out the testing in two different
settings. We first consider in Example 2 programs that do not use any exact fac-
torization for inverse, i.e. svdifp, jdsvd and irlba. Since svdifp and jdsvd can
be implemented with or without preconditioning, we shall test them first with pre-
conditioning and then test them without preconditioning together with irlba. In
the second testing (Example 3), we consider svds and lansvd, where the LU fac-
torization of M and the QR factorization of C are respectively computed for the
shift-and-invert. To facilitate a comparison, we consider svdifp using the R factor

from the QR factorization of C as a preconditioner. Namely, if a complete factor-

63

ization is possible, svdifp may also take advantage of it by using a more effective

preconditioner, although this is not the best way to use the program.

Table 3.3: Example 2: With preconditioning: CPU - CPU time; MV - # of matrix-vector
multiplications; nnz - number of non-zeros of the preconditioner; Res - ||[Cvi—o1uy; CTuy —

a1vi[l/[Cll-

svdifp jdsvd
No. | CPU | MV | nnz Res | CPU | MV | mnz Res
Square Matrix
1 0.6 179 | 25564 | 9e-7 0.4 136 49019 2e-11
2 1.5 223 | 91593 le-7 0.9 102 179673 2e-8
3 0.6 | 3545 | 15719 | be-7 0.1 148 11740 3e-10
4 0.4 | 289 | 33065 | 6e-7 0.7 146 67112 6e-10
5 7.3 1103 | 170276 | 8e-7 1.7 100 425650 | 6e-10
6 1.9 113 | 69291 | 3e-8 0.3 126 89000 2e-9
7 0.04 | 25 4870 | 3e-13 | 0.09 96 46461 3e-7
8 0.2 355 13695 | 3e-7 0.1 84 11630 2e-7
Rectangular Matrix
9 0.03 | 91 2235 | 2e-10 | 2.8 750 59291 le-7
10 0.08 | 69 6325 T7e-8 9.6 426 312083 le-7
11 0.4 69 8995 2e-7 9.0 320 49318 2e-7
12 0.2 91 13620 le-8 1.2 350 94671 3e-7
13 10.4 | 91 110017 | 5e-7 1689 | 20052 141008 le-4
14 13.1 | 157 | 138793 | 2e-7 474 438 11276604 | 1le-7
15 0.3 91 18573 | 9e-9 10.6 358 421304 | 2e-13
16 2.0 113 | 106822 | 3e-8 1.1 266 41793 6e-7
17 4.3 | 267 | 297609 | 9e-7 | 36023 | 36846 | 8055182 le-3
18 28.0 | 24 | 997991 | 3e-2 9002 | 3744 | 8666363 | Te-7
19 0.08 | 24 6868 7e-F|| 0.5 136 65642 4e-8

EXAMPLE 2. We consider the performance of svdifp, jdsvd and irlba in com-
puting the smallest singular value of matrices in Table For matrices with m < n,
we consider their transposes instead. We set the initial vector for all three methods
to be the same random vector generated by randn(n,1). We also select parameters
in the three codes so that each method carries out about the same number of matrix-
vector multiplications in each inner iteration. Specifically, for svdifp, we set the
number of inner iteration m to 10. In jdsvd, the maximum number of steps of inner
linear solver is set to 10, which is also its default value. We use the default settings
of jdsvd for all other parameters. In particular, the refined extraction of Ritz vector

is used throughout and the dimension of the search subspace varies between 10 and

64

20. In irlba, we set k = 1 (the number of desired singular values) and adjust = 8
(the number of initial vectors added to the k restart vectors to form an initial sub-
space). They are chosen so that the dimension of the initial subspace is consistent
with its default choices: k = 6, adjust = 3. All other parameters in irlba are set to
their default values. Then irlba applies 10 bidiagonalization steps after each restart.
Based on these settings, all three methods carry out approximately 22 matrix-vector
multiplications (by C or CT) in each outer iteration. We set the maximum number
of outer iterations to 10000 for all and, unless stated otherwise, the stopping criterion
is
Res := ||[Cv; — oquy; CTuy — oy vi]||/||C|; < 1078 (3.20)
where (01, u;, vy) is the approximate singular triplet obtained at step k.
We first compare svdifp and jdsvd, both of which allow using preconditioning
to accelerate convergence. In svdifp, the default RIF preconditioner is used, i.e.
an incomplete factorization of CTC is constructed by Algorithm [3.3[with the de-
fault choices of thresholds 7, = 1072 and 7, = 1078, In jdsvd, a preconditioner is
needed for solving a correction equation in the inner iteration and we use the rou-
tine create_prec_jdsvd.m that accompanies jdsvd to construct a preconditioner for
M. Specifically, for square matrices, we compute the ILU factorization of C, from
which a preconditioner for M is constructed. For non-square matrices, we compute
the ILU factorization of M but because of singularity of M, breakdown often oc-
curs, in which case the ILU factorization of a shifted matrix M — ul is used where
p=2P-1072||M||;max and p is the first non-negative integer that stops the breakdown.
The dropping threshold for all ILU factorizations is 1073, In addition, jdsvd uses

BiCGSTAB [20] as the inner linear solver when a preconditioner is present.

!For this matrix, o; = 7.11e — 46 according to MATLAB’s svd. Although Res = 3e — 2, the
residual defined by ||CTCv; — o?vy| is 3e-24 while the computed singular value is 2e-25. The
singular values returned by jdsvd for this matrix is 3e-5. Also note that 113 singular values of this
matrix are smaller than the machine precision and the second smallest is 1.7e-31.

2For this matrix, o; = 0 according to MATLAB’s svd. Although Res = 6e — 2, the residual
defined by |CTCv; —o2vy]| is 2e-25 while the computed singular value is 4e-27. The singular values
returned by jdsvd for this matrix is 6e-7. Also note that 35 singular values are smaller than the
machine precision. The second smallest singular value is 0 as well and the third one is 1.3e-18.

65

Table presents the results of this test. In the table, nnz is the number of
non-zeros in the preconditioner (L for svdifp and both L and U for jdsvd). In the
MV column, we list the number of matrix-vector multiplications by either C or CT.

Res is the relative residual of the approximate singular triplet (3.20)).

Table 3.4: Example 2: without preconditioning. CPU - CPU time; MV - # of matrix-
vector multiplications; Res - ||[[Cv1 — o1u1; CTuy — o1v1]||/]|Cll1.

svdifp jdsvd irlba
No. | CPU MV | Res CPU MV [Res | CPU [MV Res
Square Matrix
1 2.2 | 8033 | 1e-06 | 2.1 | 7542 | 9e-7| 2.8 | 13856 | 9e-7
2 4.9 | 18901 | 1e-06 | 6.0 | 21830 | 1e-6 | 21.9 | 104496 | 8e-7
3 20.1 | 220002 | 5e-04 | 34.8 | 220038 | 1e-5 | 25.9 | 220018 | 2e-2
4 9.5 | 81227 | 1e-06 | 4.8 | 26308 | 9e-7 | 13.4 | 90350 | 1e-6
5 27.3 | 69457 | 1e-06 | 20.7 | 62476 | 1e-6 | 59.8 | 220018 | 3e-2
6 3.5 | 9023 | 1e-06 | 3.0 | 9280 | 1e-6| 6.1 | 23668 | 9e-7
7 21.1 | 220002 | 2e-03 | 35.7 | 220038 | 2e-5 | 27.2 | 220018 | 2e-2
8 15.1 | 127185 | 9e-07 | 23.7 | 127134 | 1e-6 | 32.6 | 220018 | 3e-2

Rectangular Matrix
9 1.2 7153 le-06 | 0.4 2284 | 6e-7 0.2 1206 | 7e-8
10 0.5 2467 8e-07 | 0.6 2262 le-6 0.3 1888 | 8e-8
11 0.7 1697 le-06 | 0.4 1074 | 6e-7 0.2 634 2e-7
12 0.3 1257 le-06 | 0.7 2900 le-6 0.2 1228 le-7
13 500 | 220002 | 1e-03 | 189 | 220038 | 3e-5 167 | 220018 | 2e-2
14 18.4 | 6669 le-06 | 2.0 1866 le-6 2.8 2856 | 6e-8
15 0.1 553 le-06 | 0.3 1008 le-6 | 0.09 480 9e-8
16 0.1 245 2e-07 | 0.08 238 le-7 | 0.02 62 9e-9
17 0.9 2269 8e-07 | 3.8 9918 | 9e-7 | 62.0 | 220018 | be-7
18 122 | 228135 | 9e-06°| | 116 | 220038 | 2e-6 94 220018 | 3e-3
19 0.6 2034 | 7e-16 2.3 8136 | 6e-7 | 0.2 942 7e-8

We observe that svdifp achieves satisfactory convergence within 10000 iterations
in all problems. For matrices 18 and 19, the singular values are extremely small and
therefore the residual of the singular triplet computed by (3.12)) is not expected to

converge. For these two problems, the termination criterion is switched to using the

3For this matrix, the residual defined by ||[CTCvy — o?v;|| is 2e-15 while the computed singular
value is le-12. The singular values returned by jdsvd is 5e-10. The singular values returned by
irlba is Ge-7.

4For this matrix, the residual defined by ||[CTCv; — o?vy|| is 3e-14 while the computed singular
value is 9e-15. The singular values returned by jdsvd is le-14. The singular values returned by
irlba is 4e-16.

66

eigenvalue residual ||CTCv, — o?v,|| instead when a singular value of order of the
machine precision is detected (see the discussion on left singular vectors in Section
2) and then, even though the Res is fairly large, the computed singular values, which
are given in the footnotes, are actually very good approximations already. Therefore,
with the limitation of not returning any good left singular vector in such cases, svdifp
still produces good approximate singular values and right singular vectors. jdsvd also
achieve satisfactory convergence within 10000 iterations in all but problems 13 and
17. For those two problems, the preconditioned linear solvers in the inner iterations
of jdsvd converge early in less than the maximum 10 iterations allowed, which is why
the total matrix-vector multiplications are less than the maximum possible. Matrix
17 is also a difficult problem with 138 singular values clustered between 1.41421 and
1.41425. In terms of performance measured by MV and CPU, jdsvd outperforms slightly
in square problems, while svdifp outperforms in non-square problems. In terms of
nnz, RIF in svdifp has substantially less memory requirement.

We next compare svdifp and jdsvd without preconditioning. They are also com-
pared with irlba. When no preconditioner is present, jdsvd uses MINRES as the
inner linear solver. For irlba, we only report its results with one-sided full reorthog-
onalization which is the default setting. We list the results of this test in Table [3.4]
For Problems 18 and 19, with extremely small singular values, the convergence test
is switched to use the eigenvalue residual ||[CTCv; — o?v4||, but at termination, the
residual of the singular triplet with the left singular vector computed by has
actually converged to a satisfactory level. Nevertheless, we list the computed singular
values and the eigenvalue residuals in the footnotes. We note that, without precon-
ditioning, svdifp converges much more slowly than the ones with preconditioning,
and it appears that the additional iterations have resulted in the substantially more
reduction of the singular triplet residual. We do not expect this to be the case in
general.

It appears that all three methods are comparable in convergence with each method
outperforming in some problems. For non-square matrices, irlba has the best results,

outperforming in most problems. Note that svdifp without preconditioning is simply

67

the restarted Lanczos method with the LOBPCG type subspace enhancement. On
the other hand, irlba is also essentially the Lanczos method but, with the implicit
restart, it uses a larger projection subspace with the same number of matrix-vector
multiplications in each restart. Therefore, irlba may be expected to outperform
svdifp without preconditioning in most cases. We also note that the performance of
svdifp (Table is significantly improved by preconditioning (Table . Several
difficult problems with slow convergence are solved fairly easily after precondition-
ing. With a drop tolerance 1073, the RIF preconditioner appears to produce a good
preconditioner that also has a relatively small number of fill-ins. Indeed, the number

of non-zeros in L (Table is typically 2 to 3 times that of C (Table [3.2)).

EXAMPLE 3. In this example, we compare svdifp with svds and lansvd. For
computing the smallest singular value, svds is based on applying ARPACK [49] to
M~! or the shift-and-invert matrix (M — pI)~!. lansvd computes the QR factor-
ization by R = qr(C,0) in MATLAB and then computes the largest singular value
of R7! by the Lanczos bidiagonalization algorithm. For comparison, we use R =
qr(C,0) as the preconditioner for svdifp. This approach runs into difficulty if R is
singular or nearly singular. Indeed, lansvd breaks down in such situations (Problems
18 and 19). An advantage with svdifp is that R is only used as a preconditioner and
its accuracy only affects the speed of convergence but not the accuracy of computed
singular values. Therefore, we can simply perturb zero or nearly zero diagonals of
R to deal with its singularity. For singular or nearly singular R, it is important to
use a column pivoting in the QR factorization but MATLAB’s R = qr(C,0) employs
a column approximate minimum degree permutation to minimize fill-ins. For this
test, if the resulting R is nearly singular, we compute Q)R factorization by [7,R,e]
= qr(C,0), which appears to employ a column pivoting. We then set the diago-
nals of R that are less than the threshold y/u||R||; to the threshold to construct a

preconditioner for svdifp.

68

Table 3.5: Example 3: CPU - CPU time; nnz - non-zeros of R or L and U; Res -

[[Cvi — g1ui; CTuy — a1vi]||/[ICl1-

svdifp svds lansvd

No. CPU nnz Res CPU nnz Res CPU nnz Res

Square Matrix

1 0.05 83918 le-16 | 0.09 | 193650 | 4e-15 | 0.04 83918 2e-13

0.1 249160 | 6e-17 | 0.1 | 259562 | be-16 | 0.09 | 249160 | 7e-14

0.01 29165 2e-15 | 0.04 | 99351 | be-16 | 0.01 29165 3e-11

= w N

0.01 35267 9e-13 | 0.05 | 69421 | 1le-15 .02 35267 3e-10

5 0.1 196083 | 4e-16 | 0.2 | 439407 | 4e-15 .08 | 196083 | 3e-12

6 0.06 | 142050 5e-15 0.1 | 279930 | 4e-14 | 0.06 | 142050 | 4e-13

7 0.01 8561 9e-13 | 0.03 | 52239 | 5e-17 | 0.01 8561 2e-15

8 0.01 32816 2e-16 | 0.05 | 49971 | 3e-16 | 0.02 32816 2e-13

Rectangular Matrix

9 0.01 2974 2e-13 - - - 0.01 2974 4e-11
10 0.01 9209 le-12 - - - 0.01 9209 2e-10
11 0.8 | 1514019 | 1le-14 - - - 0.6 | 1514019 | 7e-16
12 0.06 48470 2e-12 - - - 0.05 48470 2e-13
13 0.4 313320 | 8e-11 - - - 0.3 313320 | 8e-15
14 0.6 505993 | 8e-16 - - - 0.3 505993 | 2e-12
15 0.02 30975 le-17 - - - 0.02 30975 de-14
16 0.4 263226 | 9e-12 - - - 0.2 263226 | 8e-11
17 54.7 | 550793 le-10 - - - 15.6 | 550793 | le-16

18 | 10.2 | 2046096 | 5e-2° - - - - - -

19 2.3 7336 5e-170 - - - - _ _

All three codes require no additional input parameters other than the matrix but

we set the initial vector to the same random vector for all of them. We run the

®For this matrix, the residual defined by ||[CTCv; — o?v;|| is 8e-17 while the computed singular
value is 2e-17.

SFor this matrix, the residual defined by ||[CTCvy — o?v;|| is 3e-15 while the computed singular
value is 3e-16.

69

programs till convergence as determined by themselves. We compare the residual
Res defined by (3.20), the CPU time, as well as the number of non-zeros used in the
factorizations (nnz). For svdifp and lansvd, nnz is the number of non-zeros in R,
and for svds, it is the total non-zeros in L and U of the LU-factorization of M.
The results are given in Table 3.5 All three methods perform comparably for
square matrices. svds with the zero shift fails for all non-square matrices because of
singularity of M, which is marked by “-” in the table. Even using a small nonzero
shift, svds usually converges to the eigenvalue 0 rather than ;. svdifp and lansvd
can both solve non-square problems with comparable performances. However, lansvd
can fail for matrices that are nearly rank deficient (problems 18 and 19, marked by
“) because of inverting a singular or nearly singular R. On the other hand, svdifp
does not suffer from a similar problem because L™! is slightly perturbed to be used

as a preconditioner. Overall, svdifp appears most robust in this setting.

Finally, we consider svdifp for computing several largest singular values with
deflation. With the shifts chosen inside the spectrum now, RIF constructs an LDLT
factorization for an indefinite matrix CTC — pul. So, this also demonstrates the

capability of RIF to work with indefinite matrices.

Table 3.6: Example 4: 5 largest singular values of matrix 1p_ganges. oj- singular value;
- shift used for preconditioning ; MV - # of matrix-vector multiplications; Res - ||[Cv] —

01111;CT111 - 01V1]||/HC||1~

preconditioning no preconditioning
o 7! MV Res MV Res
3.9908 | 3.9926 | 91 | 3e-12 | 443 5e-11
3.9906 | 3.9907 | 91 | 2e-14 | 289 9e-11
3.9895 | 3.9900 | 91 | 1e-13 | 531 Te-11
3.9894 | 3.9895 | 91 | be-13 | 641 4e-11
3.9892 | 3.9893 | 91 | 4e-12 | 1103 6e-11

ExXAMPLE 4. We consider svdifp with and without preconditioning in comput-

70

ing the 5 largest singular values of Matrix 15 (1p_ganges) in Table In both
cases, we set the termination threshold to 1e-10 and the number of outer iterations to
10000. To compute the largest singular value, svdifp adaptively chooses a shift for
preconditioning (see Section 4). When computing the next largest singular value, the
mean of the largest and the second largest singular values of the projection matrix
constructed in computing the previous largest singular value is used as the shift to
compute an RIF preconditioner. Then, svdifp proceeds with a deflated precondi-
tioned iteration. Note that the second largest singular value of the projection matrix
is a lower bound of the singular value to be computed and the mean value should
provide a better estimate. The same procedure is used for additional singular values.

We present the results with and without preconditioning for the five largest sin-
gular values in Table . We list the number of matrix-vector multiplications (by
C or CT) used for each singular value, the residual Res obtained, and in the pre-
conditioned case, the shift u used. We note that both methods can compute the
singular values correctly while preconditioning by RIF significantly accelerates the
convergence of svdifp. In particular, the shifted matrix is indefinite now but with
the modest indefiniteness in computing a few extreme singular values, RIF results in

a very effective preconditioner.

Copyright© Qiao Liang, 2015.

71

Chapter 4 Subspace clustering via learning a union of orthonormal bases

In this chapter, we consider the problem of clustering data which is assumed to
lie in a union of subspaces. We propose a novel algorithm to solve this problem. Our
algorithm is based on spectral clustering algorithms. We build the similarity matrix
in a dictionary fashion, i.e, learning the dictionary and representation simultaneously.

We review in Section 4.1 some materials about spectral clustering and dictionary
learning which will be used in our proposed algorithm. In Section 4.2 we discuss
some existing subspace clustering methods. We propose our algorithm and present
its detailed implementations in Section 4.3. Finally we demonstrate the effectiveness

of our algorithm in Section 4.4.

4.1 Spectral clustering and dictionary learning

Spectral clustering and dictionary learning have been well studied in the last few
decades. And they have close relation to the subspace clustering problem. In this

section, we briefly review the relevant materials of these two topics.

4.1.1 Spectral clustering

The spectral clustering algorithms are a class of methods for finding clusters in
a given dataset X = {x;}¥,. In practice, a cluster is usually a group of similar
points. Spectral clustering has been well studied in the last few decades [73]. For a
comprehensive tutorial on this topic, see [85].

Let W = [w;;] be a similarity matrix for the dataset with w;; > 0 measuring
similarity between x; and x;, namely the bigger w;; is, the more similar x; and x;
are. If w;; = 0, then x; and x; are not relevant to each other and they should
not be classified in the same cluster. The spectral clustering methods construct a
undirected graph G = (X, E) with the adjacency matrix W and then perform some
graph partition methods on the graph to cluster the points.

72

First we review some materials in graph theory. Let G = (X, E) be a weighted
undirected graph with non-negative weights where X = {xy,...,xx}. The order of
G is the number of vertices, |G| = N. Let w;; be the weight for the edge between
x; and x;. We assume w;; = 0 if there is no edge between x; and x;. Since G is

RNXN

undirected, the adjacency matrix W € is a symmetric non-negative matrix

The degree d; of a vertex x; € X is defined as

N
j=1

Let the degree matrix D = diag(ds, ...,dy). The Laplacian matrix L of graph G is
defined as L = D — W. The volume of G is defined as

N

vol(G) ==Y d;. (4.2)

i=1
Given S C X, we let S be the complement of S in X', |S| be the number of vertices

in § and
vol(S) = > " d;. (4.3)

1€S

where, for convenience, we write 1 € S if x; € S. If 51,55 C X are disjoint, we let

81, 82 Z Wy - (44)

1€S]632

S is called a connected component if there is no edge between S and S. Suppose
{Xy,..., Xk} is a partition of X', i.e., X = X3 U...UXk and A}, ..., Xk are disjoint,

we define the cut of this partition to be
R i
cut(Xy, ..., Xg) = §ZW(XZ-,XZ-). (4.5)

Given above definitions, we can formulate a so-called min-cut problem.

Definition 4.1.1. Given a weighted undirected graph G = (X, E) with non-negative
weights, the min-cut problem is to find a partition {Xy,..., Xk} of X such that it

minimizes cut(Xy, ..., Xk).

73

The min-cut problem is closely related to the clustering problem which is to find a
partition such that similar points are in the same cluster. Suppose the w;; characterize
the similarity between x; and x;, then the solution of min-cut problem provides a
way to cluster those vertices xi,...,Xy. However, in practice, the solution of min-
cut problem may simply separate one individual vertex from the rest of the graph
and that is what we do not expect in finding a solution of the clustering problem, in
which clusters are usually reasonably large groups of points. Therefore, [73] proposes

to minimize normalized cut denoted by Ncut instead:

&

Neut(Xy, ..., Xg) =5 Y Wi, &) (4.6)

VOl(i

N | —
N~—

=1
The minimization of normalized cut problem is known to be NP-complete. But

it can be solved approximately in a more efficient way.

For a partition Xy, ..., Xk of X', we define an indicator matrix H = [hy, ... hg]
with
1
hi=—— 1y, j=1,... K 47
N T AR (4.7)

where 1y, € RY is an indicator vector whose i-th entry is 1 if i € X; and 0 oth-
erwise. From the definition of the Laplacian matrix L, we can obtain h;Fth =
W(X;, X;)/vol(X;), then the normalized cut of the partition X1, ..., Xx can be writ-
ten as

Neut(&y, ..., Xx) = tr(H'LH).

Observe that H'DH = I, then the normalized cut minimization problem is equivalent
to

m}ilntr(HTLH) st. H'DH =1 (4.8)

where the minimum is taken over all possible H with the form described in (4.7)).
Notice that is almost the same as except that has an additional
constraint that H is a discrete-valued matrix with . By relaxing H to be a real-
valued matrix, Corollay provides an approximate solution H to 1) with K

specified and a partition can be constructed according to H thereafter. This procedure

74

is called normalized spectral clustering [73] which is one of the most common used
spectral clustering algorithms.

Before we present the spectral clustering algorithm, let us take a look at the
generalized eigenvalue problem of the pencil (L,D). From the proof of Theorem
, it is equivalent to the standard eigenvalue problem of Ly, = D '2LD-Y2 1t
is easy to verify that Ly, is diagonally dominant and hence, Ly, is positive semi-
definite which can be proven by Gershgorin theorem [19]. Hence, the eigenvalues of
(L, D) which are denoted as A\; < Ay < ... < Ay are all non-negative. In fact, Ay =0
because L1 = 0, where 1 = (1,...,1)T € RY.

Consider a special case of the normalized cut minimization problem, that is, the
graph G has K connected components Xy, ..., Xk with |[X;| = N;. Without loss
of generality, we assume Xi,...,xy are ordered according to the connected com-
ponents they belong to. In this special case, L is a block diagonal matrix, i.e.,
L = diag(Ly, Lo, ..., Lg) where L;, i = 1,..., K, are the Laplacian matrices for the

subgraph of those K connected components respectively. Hence,

1
1
1
- - NZ‘XNZ'
Therefore, 14, ..., 1y, are eigenvectors of (L, D) associated with the eigenvalue 0.

We can summarize the above discussions as the following theorem.

Theorem 4.1.1. [85] Let G be an undirected graph with non-negative weights, then
the multiplicity K of the eigenvalue 0 of (L, D) is equal to the number of connected
components Xy, ..., Xk in the graph. And the eigenspace of eigenvalue 0 is spanned

by 1X17""1XK'

Theorem indicates that we can cluster the rows of H to find the solution
to the normalized cut minimization problem. We present the spectral clustering

algorithm in Algorithm [4.1] [85].

75

Algorithm 4.1 Spectral Clustering Algorithm

1: Input: The similarity matrix W of the dataset X = {x;},, number K of
clusters to construct.
2: Output: Clusters X},..., Xk.

3: Compute K eigenvectors uy,...,u; of the generalized eigenproblem Lu = ADu
associated with the K smallest eigenvalues.

4: For i = 1,...,n, let r; € RX be the vector corresponding to the i-th row of
U= [111,1_127...,1,1[(}.

5: Cluster the points {r;}? | with the k-means algorithm into clusters R, ..., Rx.
6: Clusters &; = {x;|r; e R;},i=1,..., K.

4.1.2 Bipartite graph clustering

In some cases, it is hard to find a good similarity matrix for the data set X =
{x;}¥,. Hence the spectral clustering algorithms can not be applied directly. How-
ever, we may be provided with a dictionary set Q@ = {q;}%_, and the data set may
have a simple representation C € R™¥ in the dictionary set, i.e, X = QC with
X =[x1,...,xy] and Q =[qy,...,qq]. The ij-th entry ¢;; of C measures how much
x; is related to the dictionary atom q;. ¢;; = 0 indicates that q; is not related to x;.

To apply spectral clustering methods, we may consider the above problem as a
bipartite graph clustering problem [21, 92]. Let V = {q1,...,qq,X1,...,Xn} be the

vertices and

O C
W = (4.9)

C’ O
be the adjacency matrix. The we have a bipartite graph. We cluster the dictionary
atoms Q into {Q;}X, simultaneously while clustering the points X into {X;}X, so
that Q, has weak connections with {X};|j # i} and X; has a weak connection to

{Q,|7 # i}. In the words of graph theory, we hope to find clusters that minimize the

following quantity
EK: W(Q;, Zj;éz’ Xj) + W(Zj;ﬁi Qj, X;)
vol(Q;) + vol(&;)

=1

which can be represented as Ncut((Q1, X1),. .., (Xk, Qk)) as in (4.6). Then we can
apply Algorithm to find clusters in V.

76

Let D = diag(Dg, D¢) and D € R D € RY*Y be diagonal matrices with
N d

Dp(i,i) =Y ¢, De(hj) =) ci (4.10)

j=1

=1

Then the Laplacian matrix of the bipartite graph is

L_ Dy -C
—-CT D¢
u
Consider the generalized eigenvalue problem of (L, D), suppose z = with u € R?

\%

and v € RY is an eigenvector of (L, D) associated with A, then

Cv =(1-)\)Dgu
CTu=(1-\D¢v
which can be rewritten as

D*CD.*(Dg*v) = (1 - 2)(Dj{*u) .
D.*C"D, A (Dj{*) = (1 - (D) |
Hence, instead of finding K eigenvectors corresponding to the K smallest eigenvalue
of (L, D) in Algorithm we can simply compute the left and right singular vectors
(0, v;)E | corresponding to the largest singular value of C= D,_%l/ QCD(;l/ . And the
eigenvector {z;};—; of (L, D) can be obtained by

—-1/2 ~
DR u;

Z; =
¢ D%
c Vi

. i=1,..., K. (4.12)

The complete bipartite graph clustering algorithm is presented in Algorithm [4.2]
Note that in Algorithm [4.2] the number K of clusters is provided. However, we point
out that it is not always necessary. One can always determine K by exploring the
spectrum of C' € RN (We always assume d < N). Namely, let

K =d— arg {r%axd(criﬂ(é) — 0;(0)). (4.13)

i=

.....

77

Algorithm 4.2 Bipartite Graph Clustering

1: Input: The representation matrix C of {x;}¥, with respect to dictionary
{q;}%,, number K of clusters to be clustered in {x;} .

2: Output: Clusters A7,..., X.

3 C= D§1/2CD61/2 where Di and D¢ are computed by .

4: Compute K left singular vectors {uj,...,ux} and right singular vectors
{¥1,..., vk} of C corresponding to the K largest singular values and form
Zy = [z1,...,2x] where {z;}X are computed by (4.12).

5 Fori=1,...,N +d, let r; € R¥ be the vector corresponding to the i-th row of
Z.

6: Cluster the points {r; with the k-means algorithm into clusters Ry, ..., Rg.

7. Clusters &; = {zj|rj;q € R;}, i=1,... K.

|k

4.1.3 A dictionary learning method

The problem of dictionary learning for sparse representation assumes that a natu-
ral signal can be represented by a small number of elementary components, which are
called dictionary atoms |45, (53] [54]. It has received extensive interests and a number
of sparse representation algorithms have been proposed, such as MOD [24], K-SVD
[2] and SimCO [I7], etc. In this section, we will introduce one of those algorithms
which assumes the dictionary is a union of orthonormal bases [52].

Suppose X = [x1,...,xy] € RP*N is a data matrix with each column represent-
ing a data sampled from R?. The task of dictionary learning is to learn a dictionary
Q € RP*4 providing a sparse representation for X, i.e., to find Q with X = QC + E
where E is a noise matrix and C is a sparse matrix. In general, when Q has no special
structure, computing the solution to the above problem is very computational inten-
sive. However, when Q is structured as a union of orthonormal bases, the computa-
tional cost is reduced. In additional, it has been found that some real-world datasets,
such as audio signals and images, can be modeled as the superimposition of several
layers, each of which having sparse representation in its own adapted orthonormal
basis. Wavelet decomposition is one such example. [52] proposes to consider the dic-

tionary learning problem with a dictionary set Q that is locally orthonormal. Namely,

78

we solve

. . 2
argmin X - QCJ[: + AC];

st. Q=1[Qi,...,Qk] (4.14)
QQ, =1, i=1,... K.
In , the number K is known as a prior and the dimensions of each orthonormal
basis Q; are predetermined. Since the [; penalty on C forces C to be sparse, the
dimensions of Q; need not to be accurate as long as they are over-estimations of the
true dimensions.
Since joint optimization of Q and C is very hard, an alternating optimization

strategy is employed which consists of two stages:
1. Sparse coding: given a dictionary Q, find a sparse matrix C:

argmin X — QCf3 + A|C]lx (4.15)

2. Dictionary update: given C, find a dictionary:
wgmin X - Q3

st. Q=1[Qi,...,Qx] (4.16)
Q'Q, =1, i=1,...,K.

[52] suggests to use basis pursit [15] to solve (4.15). Since Q is a union of or-
thonormal basis, basis pursuit for can be implemented efficiently with a Block
Coordinate Relaxation(BCR) algorithm [72].

Let C = [CT,... C%]T with C; € R%*N ¢ = 1,..., K. The idea of BCR is
to iteratively select and update a block C; instead of updating C directly to take
advantage of the orthonormality of Q;. The selection strategy could be a systematic
cycle rule or an optimal descent rule [52], [72]. If K is large, it is computationally
infeasible to systematically cycle through all blocks C; [72]. However, in this work,
we assume K is small. Then, the systematic cycle rule is appropriate.

The subproblem of updating C; with all other variables fixed is

argmcinllxi—QiCiII?+AIICiII1- (4.17)

79

where X; = X — Zj:i Q;C;. Then the solution of (4.17)) is given by

C; = soft(Q] X, \/2) (4.18)
where soft is an entry-wise function on matrices with
z—r,if z>71
soft(z,7) =4 z+7, if 2 < —7
0, otherwise

Since BCR might converge very slowly when A is small, [52] proposes to use a

modified BCR algorithm which is summarized in Algorithm [4.3

Algorithm 4.3 Modified BCR Algorithm

1: Input: X e RDXN, {Q,L : QlTQ,L = I, Qz S RDXdi}fil, {CZ : C,L € RdiXN}iIil,
Ao > 0.
: Output: {C;: C; € RN }IE
:fori=1,...,M do
forj=1,...,K do
X] - X - Zl;é] QlCl.
Update C; with A = X\o(1 — (i — 1)/M) by (4.18).
end for
end for

IS L A

Similarly, at the stage of dictionary update, Q; is also updated one by one. Ob-
serve that the subproblem
arg min HXI — QiGi|%
@ (4.19)
st. QIQ; =1

is a constrained least squares problem, Q; can be solved analytically by the following
theorem, which is proved in [52] using an optimization approach. Here we give a

proof from the perspective of numerical linear algebra.

Theorem 4.1.2. Suppose X € RP*N gnd C € R™N with d < D. Let XCT =
UXVT is the singular value decomposition of XCT with U € RP*4, 3 ¢ R™? and
V € R¥™ Then Q = UVT solves

in_||X - QC|3. 4.20
arg wmin_[|X - QCl[k (4.20)

80

Proof. We have
: 2 _ : _ Ty _
arg mmin X = QCl[p = arg leégltr((X QC)" (X -QQC))
= arg Qx%n tr(—CTQTX — XTQC + C'Q'QC)
=1
= in —tr(C'Q'X
argQrTnériI r(C* Q" X) (4.21)
=arg min —tr(Q'XCT)
QTQ=1
= arg max tr(QTXCT)
QTQ=I
Since XCT = UX VT,
tr(QTXCT) = tr(QTUXVY) = tr(2VIQ'U)
Let A = VIQTU. Then tr(ESV7Q"U) = Y% | cia;; where 0y, i = 1,...,d are
diagonal elements of 3. Let U = [U,ﬂ] e RP*P with UTU = I and UTU =
O. Then, VIQTU(VTQTU)T = 1. Since VI'Q'U = [A VTQU], then |ay| < 1.

Therefore

tr(EVIQTU) < tr(X).

The equality can only be obtained with VIQTU = I. Therefore

Q=UV", (4.22)

4.2 Subspace clustering

Let X = {x;}¥, be a collection of points drawn from a union of K unknown
subspaces {S;}X, of the ambient space R” with unknown dimensions d; = dim(S;),
i =1,...,K. Let X = [x1,...,xy]. The task of subspace clustering is to find
the number K of subspaces and their dimensions {d;}£,, the K subspaces {S;}X£,
which can be characterized by finding a set of basis matrices {B; € RP*4}K with
R(B;) = S;, and a segmentation {X;}%, where X; C S;N X and |X;| = N;.

It is worth pointing out that the subspace clustering problem will be reduced to

a linear dimensionality reduction problem if K = 1 which can be solved analytically

81

by Principal Component Analysis(PCA). However, the subspace clustering problem
becomes significantly more difficult when K > 1 due to a number of challenges which

are listed as follows:

1. The unknown parameters K and {d;}X,. The ideal algorithm should be capable
of estimating the parameters simply from the data matrix X without any prior
knowledge. However, it is not an easy task. In addition, the segmentation of X

may be sensitive to the estimations of K and {d;}X,.

2. The separation between subspaces {S;}X,. The subspaces could be linearly
independent, disjoint (by disjoint, we mean the subspaces have only trivial
intersection) or even have non-trivial intersection (there exists a non zero vector
with x € §;NS;). While it is less difficult to solve the subspace clustering
problem for the former two cases, it is much more difficult to solve for the third

case.

3. The existence of noises and outliers will distort the true underlying subspace

structure, thus making the subspace clustering problem even harder.

Next we will present a number of subspace clustering algorithms from the litera-
ture.
4.2.1 Existing subspace clustering algorithms

A number of subspace clustering algorithms have been proposed in the past few
decades. Most of them can be divided into four main categories: algebraic methods,

iterative methods, statistical methods, and spectral clustering-based methods [81].

4.2.1.1 Algebraic Methods

Algebraic methods obtain the segmentation of the data by exploiting the algebraic
structure. For example, [13] 16, 27] are based on a low rank factorization of the data

matrix X. Specifically, there exists a permutation matrix I' € R¥*Y¥ such that

82

XT = [X4,..., X k] where the columns of X; are sampled from the same subspace S;

with dimension d;. Suppose Q; € RP*% is an orthonormal basis for S;, then
X’L:QZZ’L7 izla"wKa

where Z; € R%*Ni is the low dimensional representation of the points with respect to
Q;. If we assume the subspaces {S;} X, are linearly independent, then d = rank(X) =

Y1 di <min{D, N} and

Z,

Zy
XP:[Q17Q27"'7QK] . :Q27

Zg

where Q = [Qq,...,Qx] € RP*? and Z € RV, Suppose X = UXVT is the rank-d
SVD of the data matrix, i.e., U € RP*4 ¥ € R™? and V € R¥*4, Let

W = VVT e RVXN,

Then w;; = 0 if points x; and x; are in different subspaces, see [40] for a proof. This
fact can be used to segment the data by thresholding the entries of W. However,
the matrix factorization-based methods are provably correct when the subspaces are
linearly independent and may fail when the assumption is violated. They are also
highly sensitive to the presence of noise and outliers.

Generalized Principal Component Analysis(GPCA) [83] fits the data with a set
of polynomials whose gradients at a point give a normal vector to the subspace con-
taining that point. Then an orthonormal basis Q; can be obtained for each subspace
S;. A segmentation of the data can be obtained thereafter. GPCA does not require
any prior knowledge of the number of subspaces and their dimensions and it can deal
with both linearly independent and dependent subspaces. However, it is computa-
tionally expensive and its complexity increases exponentially in terms of the number

and dimensions of subspaces. It is also sensitive to noises and outliers.

83

4.2.1.2 Iterative Methods

Iterative methods, such as k-planes [14], K-subspaces [79] and median K-flats
[93] are generalizations of K-means algorithm. Basically, given initial subspaces,
iterative methods alternate between assigning points to subspaces and re-estimating
the subspaces. In particular, K subspace method tries to find a set of centroids
{z;}K |, an orthonormal basis {Q;}X, for subspaces, low rank representations {y;}¥,
for X and a set of scalars {wj;}i—1,. k=1, n With w;; € {0,1} which solve

K N
min ZZM;’HZ@‘ - Qz‘}’jug

{zi}gil7{Qi}{(:17{}’i}11'v:17{wij} i=1 j=1

with constraint Zfil w;; = 1. Jointly optimizing all these variables is very hard.
So K subspace method exploits the same strategy as K means to iteratively cluster
those points and solve a PCA problem for each cluster. In general, iterative methods
require prior knowledge of the number of subspaces and their dimensions. They are

also sensitive to initializations.

4.2.1.3 Statistical Methods

Statistical methods make assumptions about the distribution of data inside the
subspaces or the distribution of noise. Mixtures of Probabilistic PCA (MPPCA)
[78] and Agglomerative Lossy Compression (ALC) [59] assume that data inside each
subspace have (degenerate) Gaussian distribution. MPPCA alternates between clus-
tering and subspace estimation by applying Expectation Maximization method while
ALC finds the segmentation of data to minimize the overall coding length subject to
a given distortion. The main drawbacks of MPPCA are that it needs to know the
number and dimensions of subspaces beforehand and it is sensitive to initialization.
Though ALC automatically determines the number and dimensions of subspaces,

there is no theoretical proof for its optimality.

84

4.2.1.4 Spectral Clustering-based Methods

Spectral clustering-based subspace clustering methods construct a similarity ma-
trix W € RV for {x;}¥, and then apply spectral clustering algorithms introduced
in Section to segment the data into clusters. Some methods introduced earlier
can be extended to form a similarity matrix, such as GPCA.

Local Subspace Affinity(LSA), Spectral Local Best-fit Flats(SLBF) and Locally
Linear Manifold Clustering algorithms use local information around each point to
build the similarity matrix. They have an intrinsic difficulty in dealing with points
near the intersection of two subspaces. In addition, a right choice of the neighborhood
size to compute the local information at each point is critical.

The state-of-the-art subspace clustering algorithms, such as Sparse Subspace Clus-
tering [22], 23], Low Rank Representation(LRR) [56] and their variants [87, 69, 57, [82]
are also spectral clustering-based methods. Those algorithms build better similarities
between data points using global information. The basic observation of SSC and LRR
is that data in a union of multiple subspaces have self-expressiveness property(SEP)

[23] as defined below.

Definition 4.2.1. A dataset has a self-expressive property if each data in this dataset
can be reconstructed by a combination of other points in this dataset. In other words,

there exists a coefficient matriz C € RN*N such that X = XC with diag(C) = 0.

Since N > D in general, there are infinitely many C. To build a good C, we would
like to enforce some penalty function f(C) on C such that only the representations
using points from the same subspace are favored. Namely, we solve the following

optimization problem.
arg mén f(C), st. X =XC, diag(C) = 0. (4.23)

Then the similarity matrix is constructed as W = |C| + |CT|.
The key idea of SSC is that the most efficient representation of the data point
x € §; is a combination of at most d; points in the same subspace. It motivates us to

find the sparsest C in (4.23)), i.e., f(C) = ||Cl|o. Since solving the sparse optimization

85

problem is generally hard, SSC replaces ||C||o by its convex relaxation ||C|;. The
[optimization step can be solved efficiently. While SSC achieves state-of-the-art
performance in subspace clustering problems, it suffers from the graph connectivity
problem: it is possible that points in the same subspace form multiple components
of the graph and are misclassified as being in different subspaces.

LRR observes that with the assumption that {S;}Y, are linearly independent,
the lowest rank solution of X = XC implies the desired representation, i.e, the
data point x € §; corresponds to a linear combination of data points in the same
subspace. Since rank minimization problem is also NP-hard, LRR uses a convex
surrogate f(C) = ||C||., the nuclear norm of ||Cll.. In addition, LRR does not
require the constraint diag(C) = 0 to avoid the situation C' = I which might occur
in SSC. Though LRR is practically successful, it is provably effective if the subspaces
are not independent.

There are also some other choices of f(C) recently, such as |C||%, ||C||+ + M| C||1,

see [58, [R7] for more discussions.

4.3 A novel subspace clustering algorithm via learning orthonormal bases

Observe that recently developed subspace clustering algorithms have a close re-
lation with dictionary learning. While the dictionary learning consists of two steps:
coding step and dictionary update step, see Section [4.1.3] as an example, SSC and
LRR only have the coding step as they already take the dataset X as a good dictio-
nary because of its self-expressiveness property. But it is still worth finding a better
dictionary, with which the representation is more informative about the underlying
subspaces in the dataset. [39] developed a dictionary learning based subspace clus-
tering algorithm which assumes the dictionary and sparse coding coefficients are both
non-negative. It is effective for clustering in non-negative datasets but not suitable
for other more general datasets. Recently, [I] applied a dictionary learning algorithm
called k-SVD to generate an over-complete dictionary. With the learned dictionary,
a sparse representation is recovered by Orthogonal Matching Pursuit [60]. Clusters

are obtained by applying bipartite graph clustering to the representation. While this

86

method is efficient, it lacks of proofs about effectiveness. To the best of our knowl-
edge, there is no direct relation between the dictionary learned by k-SVD and the
desirable dictionary which can characterize the subspaces structure of the dataset.
Therefore, it is necessary to find a more suitable dictionary to achieve better subspace

clustering results.

4.3.1 Motivation

When searching for subspaces that cluster the data points, an orthonormal basis
is the most appropriate way to represents a subspace. It also offers better numerical
stability in computations. We therefore consider representation of the data points in
orthonormal bases. Recall the idea of matrix-factorization based methods in Section

4.2.1.1], the data matrix X can be represented by a union of orthogonal bases:

Z,

Zy
X:[QDQZ?"'?QK] . F:QC

Zg

We write the corresponding blocks of C as C = [Cy,...,Cg]|. If Q; is an orthogonal

basis of S;, then each block C; has only N; non-zero columns, i.e, ||C;||20 = N;. For

K

any other orthonormal matrices, > ",

|Cill20 > N. In addition, each column of C
has at most » = max{dy,...,dx} elements, which indicates C' is a sparse matrix.
Those facts inspire us to find C with minimum ||C|y and 35, [|Cy|l2.0 to get a desir-
able block structure of C, i.e., C is block diagonal up to some column permutation.

We find such C by solving the following problem.

K
.) X _ 2
arg min - [[Cllo + 4) [Cillao + AIX ~ QT

i=1
s.t Q = [Qlu) QK]7 Q’L € RDXdi (424)
Q/Q,=1i=1,...,.K
C=[CT,...,CL]T,C, e RE*V

87

where K and {d;}!, are predefined and E = X — QC represents the noise in X.
Since the sparse optimization problem is generally NP-hard, we proposes to solve an
alternate optimization problem (4.25)) by replacing || - [|o and || - ||2,0 with their convex

relaxations || - ||; and || - ||2.1.

K
.) o 2
arg min ICH:+ 1) ICillaa + AIX - QC|%

i=1
st Q=1[Qi,...,Qx],Q; € RP* (4.25)
Q/Q;,=1i=1,....K
c=[cT . .. CciT c, e R%N
The main difference between (4.25)) and (4.14]) is the extra penalty term Zfil 1Cill2.15

which promotes fewer nonzero columns in each block C;. At the same time, the [;
penalty term promotes sparsity. As a result, it forces the data in a subspace to be
represented by as few blocks in Q = {Q;}X, as possible.

Observe that is similar to (4.14)) which is briefly discussed in Section [4.1.3]

We can use the same alternating optimization strategy to solve (4.25)).

1. Assuming Q is fixed, we can update C by solving
K
argmin [|Clli + 4) [Cilla +A/2]X ~ QC|3
i=1 (4.26)
st C=[CT ... CL" C;e RN
To take advantage the orthonormality of Q;, we can use a similar BCR algorithm

to update C; iteratively. First, let us consider the subproblem of updating C;:

21+ 2/2|X; — QCil[7 (4.27)

argmin - [|Gil[s + p][C]

where X; = X — > i Q,C;. We present an alternating direction method of
multipliers (ADMM) method to solve (4.27)).

To start, we introduce an auxiliary matrix F € R%*N and consider the opti-

mization problem

arg min ICills + pl|Fill2n + A/2]|1X; — QiFi|1% (4.28)
v 4.28

88

The augmented Lagrangian of (4.28)) is given by

L=|Cily + pl|Fill20 + A/2]1X: — QiF: |3
" (4.29)
+p/2||Ci = Fil|% + tr(¥] (C; — Fy)).
where ¥, € R%*Y is a matrix of Lagrange multipliers. The ADMM is an
iterative approach of updating C;, F; and W, alternatively. In the following
algorithm, we let {Cgk)7 Fl(k)} be the optimization variables at step k& and \I’Z(.k)

be the Lagrange multipliers at step k.

Algorithm 4.4 Update C; by an ADMM algorithm

— =
= O

Input: X; € RPN Q; € RP*% with QI'Q; =1, u, A, p, € > 0, maxTter.
Output: C; € R%*N,
Set CZ(-O), FEO) and \IIEO) be zero. k = 0.
while k£ < maxlIter do
Obtain FfH) by .
CfH) = soft(FEk) — \Ilgk), 1/p).
Bl gt e)
if [|C — F{" s <€, |CF = CI!| < c and |F¥ — F¥ || < ¢ then
k =maxIter.
end if
: end while

e Obtain ngﬂ) by minimizing L with respect to F; while the other variables
and Lagrange multipliers are fixed. Compute the partial derivative of L

with respect to F; and set it to 0, we have

pES 4 (4 pFI - 0QFX + pCP +) =0, (430)

(2

where Fi(kﬂ) is obtained by normalized column of FF™'. Let ng) =

/\QlTXZ + pCEk) + 9% Then the j-th column of Ff“ is given by

i

VP, w (V)

7

- V)l >
@), =) Ao (v, ’ (4.31)

0, otherwise.

e Obtain Cgkﬂ) by minimizing L with respect to C; while the other variables

and Lagrange multipliers are fixed. Compute the partial derivative of R

89

with respect to C; and set it be 0, we have

sgn(CHFY) 4 o) —F®) o™ — . (4.32)

i %

The solution of 1’ is given by soft(FZ(»k) - \Ilz(k)/p, 1/p).

e With ng) and Cgk) fixed, perform a gradient ascent update with the step
size p.

D — @k 4 et — FlED), (4.33)

These three steps are repeated until convergence is achieved or the number
of iterations exceeds a maximum iteration number. Convergence is achieved
when [|C — F¥ e < € ICF — Cf las < ¢ and [[F — Fi e <
¢ where e denotes the error tolerance for the primal and dual residuals. In
summary, Algorithm shows the updates for the ADMM implementation
of the optimization problem (4.28). We also provide a specific modified BCR
algorithm to update C, see Algorithm

Algorithm 4.5 Update C by Modified BCR algorithm

® 3

: Input: X € RPN Q = [Qy,...,Qxk] with Q7Q; =T and Q; € RP*% C =
[CT,...,CL]T with C; € R4 115, Ao, p, € > 0.

. Output: C € R¥™P,

forj=1,...,M do

fori=1,...,K do
Xi=X-2,QC..
Obtain C; by applying Algorithm with A\ = \gM/(M — j + 1) and

p=poM/(M —j+1).

end for

: end for

2. Assuming C is fixed, we find Q by solving

argmin X - QC|}

st Q=1[Qi,...,Qx] (4.34)
QlQ;,=1i=1,...,K
To update Q, we update Q; separately as given by Theorem [4.1.2] We give the
details in Algorithm [4.6]

90

Algorithm 4.6 Update Q
: Input: X € RP*Y and C = [CT,...,CL] with C; € RN Q = [Qq,...,Qx]
with Q; € RP*%.
: Output: Q =1[Q,...,Qxkl.
cfori=1,...,K do
Xi =X - Zj;éi QjCj.A
Compute the SVD of X;CI = U; X, V; with U; € RP*% | V; € R%*di,
Q: =U,V/].
end for

—

N s ey

4.3.2 Initialization and estimations of K and {d;} X,

Note that the algorithms in Section [4.3.1| require prior knowledge of number K of
subspaces and their dimensions {d;}X ;. However, in practice, we do not know these
parameters in advance. Observe that the minimization of ||C||; in implies a
small number of dictionary atoms will be used. We can conclude that with over-
estimations of d;, we can still obtain a matrix C with satisfying structure.

[91] suggests an agglomerative clustering procedure to update number K of clus-
ters, as well as regroup the dictionary atoms for each cluster. In particular, assume we
have dictionary Q@ = {q;}%, and an coefficient matrix C. A segmentation of Q will
be obtained by grouping rows of C' according to their sparsity patterns. In particular,
given an initial segmentation of the dictionary {Q;}X, with each Q; corresponding
to one cluster, merge Q; and Q; whose corresponding rows of C have most similar

sparsity patterns.

Algorithm 4.7 Estimations of K and {d;} X,

1: Input: X, Q, C € RV,

2: Output: K, {d;}¥,, {Q;: QI'Q; =1,Q,; € RP*%} {C;: C; € REXNIE

3: Apply Algorithm [4.2] with C to obtain clusters X7j,..., Xx of X, where K is

determined by .

4: Let X; be a matrix which is formed by stacking all vectors in A&} to its columns.
Suppose the index set of elements of &; in X is Z;.

:forv=1,... K do

Compute the SVD of X; = UXV with ¥ € R™*"™ where = min{n;, D}.

dz‘ =T — argmax,-(ai+1(Xi) — Uz<Xz))a Qz = U(I, 1: dz), CZ(,IZ) = QlTXZ

: end for

Observe that the agglomerative clustering procedure in [91] is an iterative bipartite

91

graph method. A more efficient and effective choice to address the bipartite graph
partition problem is bipartite graph spectral clustering method which is introduced in
Section In particular, in the setting of subspace clustering, we can also cluster
the corresponding data simultaneously and then apply PCA to obtain an orthonormal
basis for each cluster.

Suppose we obtain a coefficient matrix C of X with respect to a dictionary Q,
we compute clusters based on C with Algorithm [4.2] Then we apply PCA to each
cluster to obtain a new orthonormal basis. These orthonormal bases will then be the

input to Algorithm [4.5) to obtain a better coefficient matrix C, see Algorithm

Remark If N and D are large, line 6 of Algorithm will be time consuming as
the complete SVD is very expensive. An alternate way is clustering the dictionary

set O instead of X.

In practice, we do not need to estimate K and d; at each step, we could update
them every a few steps. After we obtain a good representation matrix C, we can
apply Algorithm[4.2]to obtain the final clustering results. We summarize the complete
procedure of our method in Algorithm

Algorithm 4.8 Subspace clustering by learning a union of orthonormal bases

: Input: A dataset X with representation X.
: Output: Clusters &7, ..., Xk.
: Initialization: C =X
: for ¢+ = 1,2, ... until convergence do
Compute {d;, Q;, C;}X, by Algorithm [4.7]
for j=1,2,..., M do
Solve (4.26)) by Algorithm [£.5]
Solve ([4.34)) by Algorithm [4.6]
end for
end for
: Compute clusters X7, ..., Xx by Algorithm [4.2]

N R LA v

_ =
— O

4.4 Numerical examples

In this section, we present some examples to evaluate the performance of Algo-

rithm [4.§]and compare it with SSC and LRR, two state-of-the-art subspace clustering

92

algorithms. We use the SSC [23] and LRR [56] implementations from the authors’
websites. For consistency, we normalize each data point of the dataset to unit norm

for all methods.

4.4.1 Synthetic data

Consider three disjoint subspaces {S;}3_; of the same dimension d = 4 embedded
in the R?°. To make the problem hard enough so that every data point in a subspace
can also be reconstructed as a linear combination of points from other subspaces, we
generate subspace bases {U; € RP*4}2_| such that each subspace lies in the direct

sum of the other two subspaces, i.e., rank([Uy, Uy, Us]) = 2d. Simply, we set

D,
I o)
U, = | erP*d, U, = eRP* Us= |0 | e RP*.
o) I, N
2

where D, = diag(cos(6,),...,cos(f;)) and Dy = diag(sin(6,), . ..,sin(fy)) with

1 —1
d—1

Thus, we can verify the effect of the smallest principal angle in the subspace
recovery by changing the value of #. To investigate the effect of the data distribution
in the subspace-sparse recovery, we generate the same number of data points, N, in
each subspace at random (i.e. random linear combination of the basis vectors) and
change the value of N. In our experiment, we let 6 vary from 0.1047 (degree 6) to
0.5235 (degree 30) and N vary from 5 to 35. For each (N, 0) group, we compute the
subspace clustering error(SCE):

of misclassified points
total # of points

SCE =

We repeat the process 50 times with different randomly generated points with respect
to each (N,0) group and report only the average SCE for each subspace clustering
algorithm, namely, Algorithm [4.8) SSC and LRR. We show the results in Figure [4.1]

Figure shows that the performances of Algorithm and SSC are much bet-
ter than LRR, as LRR is developed with the assumption of linearly independent

93

. 0.35
0.1
0.05
0

5 10 15 20 25 30 35

15 20 25 30 35 20 25 30 35
N N

Figure 4.1: Average clustering error of Algorithm SSC and LRR on synthetic
data for each (N, 0) group. Left: Our method, Middle: SSC, Right: LRR

subspaces. When the subspaces have large intersections with each other, the repre-
sentation matrix C' is not low rank any more and LRR underperforms. To further
compare our method and SSC, we plot the differences of SCE measure for the two
methods in Fig , where Algorithm reports smaller SCR in white area and
SSC has smaller SCE in black area. We observe that Algorithm outperforms SSC

when the values of N and 6 are larger but underperforms when N and 6 are smaller.

Figure 4.2: Difference of SCR for Algorithm and SSC for each (N,0) group.
White: Algorithm has smaller SCE. Black: SSC has smaller SCE.

4.4.2 Basic and rotated MNIST dataset

The MNIST dataset [48] is a database of binary images of 10 handwritten digits.

The images are all of size 28 x 28 pixels. The database contains 60000 training

94

images and 10000 testing images. We use them to demonstrate the performance of
subspace clustering algorithms for different number K of subspaces. We let K = 3, 6.
We randomly select K digits and randomly select N = 100 sample images from the
training images for each digit to form a dataset. Then we apply Algorithm 1.8 SSC
and LRR to the generated dataset. The process is repeated 100 times with respect
to each K and we report their mean and median SCEs in Table [4.1] We notice that
LRR almost has perfect clustering. It is because the subspaces of handwritten digits
are approximately independent. Thus, the coefficient matrix C has perfect low-rank
property. Our method is better than SSC in the case of K = 3 while SSC is slightly
better when K = 6.

Table 4.1: SCE of Algorithm [1.8, SSC and LRR

K Algorithm |4.8| SSC LRR
average | median | average | median | average | median
K=3] 0.186 0.137 0.290 0.353 0.005 0.000
K=6] 0.390 0.403 0.356 0.367 0.018 0.000

The rotated MNIST dataset [46] is a variant of the MNIST dataset. It contains
gray scale images of hand-written digits of size 28 x 28 pixels, which were originally
taken from the MNIST dataset, and transformed in several ways to create more
challenging classification problems. Introducing multiple factors of variation leads
to four benchmarks: mnist-rot, mnist-back-rand, mnist-back-image, mnist-rot-back-
image. We only consider the mnist-rot dataset, in which the images from MNIST
dataset were rotated by an angle generated uniformly between 0 and 27 radians. It
was shown in [33] that handwritten digits with some variations lie on 12-dimensional
subspaces. Hence they can be modeled as data points lying close to a union of 12-
dimensional subspaces.

We will evaluate the clustering performances of Algorithm as well as SSC
and LRR on this challenging dataset. Since the dataset contains a large number of
samples, we only use samples from the training and validation sets for clustering.
In particular, we randomly select 10 samples per digits and generate a small subset

containing 100 samples from 10 digits. We use these samples for clustering and repeat

95

the process 120 times with different randomly select datasets. We report the average
and median clustering errors of different methods in Table It shows Algorithm
have comparable performance as SSC and LRR in this case.

Table 4.2: Clustering performance on the rotated MNIST dataset

Our method SSC LRR
average | median | average | median | average | median
mnist-rot | 0.746 0.745 0.729 0.730 0.761 0.760

Dataset

Our experiments have shown that Algorithm achieve comparable results as
SSC and LRR. In addition, Algorithm can deal with more general datasets, in

which the data points may not lie in the union of subspaces.

Copyright© Qiao Liang, 2015.

96

Chapter 5 Concluding remarks

In the dissertation, we have discussed some algorithms and related theories for
the generalize eigenvalue problem, singular value problem and subspace clustering
problem.

In Chapter 2, we have incorporated the deflation by restriction method into the
inverse-free preconditioned Krylov subspace method to find several eigenvalues of
the generalized symmetric definite eigenvalue problem. We extend the convergence
analysis in [32] to justify the deflation scheme. Numerical examples confirm the
convergence properties as revealed by the new theory. This deflation scheme allows
implementation of the inverse-free preconditioned Krylov subspace method without
using perturbations to the original problems as in the Wielandt deflation. This may be
important in applications such as the singular value computation where the structure
of the problems needs to be preserved.

In Chapter 3, we have presented an inverse free preconditioned Krylov subspace
algorithm for computing a few of the extreme singular values of a rectangular matrix.
The robust incomplete factorization (RIF) has been adapted to efficiently construct
preconditioners for the shifted matrix CTC — uI. A preliminary MATLAB imple-
mentation has been developed and is demonstrated to be very competitive compared
to other existing programs in both settings of using preconditioners or using shift-
and-invert.

In Chapter 4, we have developed a novel subspace clustering algorithm. The main
idea of our algorithm is to find the best orthonormal bases for the underlying sub-
spaces as a dictionary and then finding the sparsest block structured representation
of the data based on the learned dictionary. Different from some other dictionary
learning based algorithms, we find the dictionary and representation of data simul-
taneously. This idea introduces an extra penalty term in the optimization problem
, which promotes a block structure in the representation of the data with the

dictionary as showed in Section [4.4.1] Numerical examples demonstrate the effective-

97

ness of our algorithm in both synthetic and real world datasets.

Copyright© Qiao Liang, 2015.

98

Bibliography

1]

A. Adler, M. Elad, and Y. Hel-Or. Linear-time subspace clustering via bipartite
graph modeling. IEEE Transactions on Neural Networks and Learning Systems,
2015.

M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Transactions on Signal

Processing, 54:4311-4322, 2006.

J. Baglama, D. Calvetti, and L. Reichel. Algorithm 827: irbleigs: A MATLAB
program for computing a few eigenpairs of a large sparse Hermitian matrix. ACM

Transactions on Mathematical Software, 29:337-348, September 2003.

J. Baglama, D. Calvetti, and L. Reichel. IRBL: An implicitly restarted block
Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comp.,

24:1650-1677, 2003.

J. Baglama and L. Reichel. Augmented implicitly restarted Lanczos bidiagonal-
ization methods. SIAM J. Sci. Comp., 27:19-42, 2005.

7. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. STAM,
Philadelphia, PA, 2000.

Z. Bai, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal fac-
torization methods. I: methods and theories. Report 99/13, Oxford University
Computing Laboratory, 1999.

M. Benzi. Preconditioning techniques for large linear systems: A survey. J.

Comp. Phys., 182:418-477, 2002.

99

9] M. Benzi, J. K. Cullum, and M. Tuma. Robust approximate inverse precondi-
tioning for the conjugate gradient method. SIAM J. Sci. Comp., 22:1318-1332,
2000.

[10] M. Benzi and M. Tuma. A robust incomplete factorization preconditioner for

positive definite matrices. Num. Lin. Alg. Appl., 10:385-400, 2003.

[11] M. Benzi and M. Tuma. A robust preconditioner with low memory requirements

for large sparse least squares problems. SIAM J. Sci. Comp., 25:499-512, 2003.

[12] M. W. Berry. Large scale sparse singular value computations. International

Journal of Supercomputer Applications, 6:13-49, 1992.

[13] T. E. Boult and L. G. Brown. Factorization-based segmentation of motions. in

IEEE Workshop on Motion Understanding, pages 179-186, 1991.

[14] P. S. Bradley and O. L. Mangasarian. k-plane clustering. Journal of Global
Optimization, 16(1):23-32, 2000.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunder. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, 1998.

[16] J. Costeira and T. Kanade. A multibody factorization method for independently
moving objects. Int. J. of Computer Vision, 29(3), 1998.

[17] W. Dai, T. Xu, and W. Wang. Simultaneous codeword optimization (simco)
for dictionary update and learning. IEEFE Transactions on Signal Processing,

60(12):6340-6353, 2012.

[18] T. Davis and Y. Hu. The University of Florida sparse matrix collection.

http://www.cise.ufl.edu/research /sparse/matrices/ .

[19] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA,
1997.

100

[20]

[21]

[22]

23]

[24]

[27]

28]

[29]

H. A. Van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of
Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Comput,
13:631-644, 1992.

[. S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. Proceedings of the seventh ACM SIGKDD international conferrence
on Knowledge discovery and data mining, pages 269-274, 2001.

E. Elhamifar and R. Vidal. Sparse subspace clustering. [IFEEFE International

Conference on Computer Vision and Pattern Recogition, 2009.

E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2013.

K. Engan, S. O. Aase, and J. H. Husgy. Method of optimal directons for frame
design. Acoustics, Speech, and Signal Processing, 1999. Proceedings. (ICASSP
'99). IEEE International Conference on, 5:2443-2336, 1999.

T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for the
numerical solution of large sparse generalized symmetric eigenvalue problems.

Mathematics of Computation, 35:1251-1268, 1980.

D. R. Fokkema, G. L. G. Sleijpen, and Henk A. Van Der Vorst. Jacobi-Davidson
style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci.
Comput., 20:94-125, 1998.

C. W. Gear. Multibody grouping from motion images. Int. J. of Computer
Vision, 29(2):133-150, 1998.

A. George and J. Liu. Householder reflectors versus Givens rotations in sparse

orthogonal decompositions. Lin. Alg. Appl., 88/89:223-238, 1987.

G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse
of a matrix. SIAM Journal on Numerical Analysis, 2:205-224, 1965.

101

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[40]

G. H. Golub and C. F. VanLoan. Matrix Computations. Johns Hopkins Univer-
sity Press, Baltimore, MD, 3rd edition, 1996.

G. H. Golub and Q. Ye. Inexact inverse iteration for generalized eigenvalue

problems. BIT, 40:671-684, 2000.

G. H. Golub and Q. Ye. An inverse free preconditioned Krylov subspace method
for symmetric generalized eigenvalue problems. STAM J. Sci. Comp., 24:312-334,
2002.

T. Hastie and P. Y. Simard. Metrics and models for handwritten character

recognition. Statistical Science, 13(1):54-65, 1997.

J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Clustering appearances of
objects under varying illumination conditions. C'VPR, 2003.

M. E. Hochstenbach. A Jacobi-Davidson type SVD method. SIAM J. Sci.
Comput, 23:606-628, 2001.

M. E. Hochstenbach. Harmonic and refined extraction methods for the singu-

lar value problem with applications in least squares problems. BIT Numerical

Mathematics, 44:721-754, 2004.
M. E. Hochstenbach. Private communications, 2014.

Z. Jia and D. Niu. An implicitly restarted refined bidiagonalization Lanczos
method for computing a partial singular value decomposition. SIAM J. Matriz

Anal. Appl., 25:246-265, 2003.

L. Jing, M. K. Ng, and T. Zeng. Dictionary learning-based subspace structure
identification in spectral clustering. IEEE Transactions on Neural Networks and

Learning Systems, 24(8), 2013.

K. Kanatani. Motion segmentation by subspace separation and model selection.

IEEFE International Conference on Computer Vision, 2:586-591, 2001.

102

[41]

[42]

[43]

[44]

[46]

[47]

A. V. Knyazev. A preconditioned conjugate gradient method for eigenvalue
problems and its implementation in a subspace. In International Ser. Numerical
Mathematics, v. 96, Eigenwertaufgaben in Natur- und Ingenieurwissenschaften

und thre numerische Behandlung, Oberwolfach, pages 143-154, Basel, 1991.

Birkhauser.

A. V. Knyazev. Preconditioned eigensolvers—an oxymoron? FElectron. Trans.

Numer. Anal., 7:104-123, 1998.

A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal

block preconditioned conjugate gradient. SIAM J. Sci. Comp., 23:517-541, 2001.

E. Kokiopoulou, C. Bekas, and E. Gallopoulos. Computing smallest singular
triplets with implicitly restarted Lanczos bidiagonalization. Appl. Numer. Math,
49:39-61, 2004.

K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, and T. W. Lee. Dictio-
nary learning algorithms for sparse representation. Neural Computation, 15(349—

396), 2004.

H. Larochelle, D. Erhan, A. Courvill, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation.

International Conference on Machine Learning(ICML), pages 473-480, 2007.

R. M. Larsen. Lanczos bidiagonalization with partial reorthogonaliza-
tion. Technical report, DAIMI PB-357, Department of Computer Sci-
ence, University of Aarhus, Aarhus, Denmark, also available online from

http://sun.stanford.edu/ rmunk/PROPACK/, 1998.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

R. Lehoucq, D. Sorenson, and C. Yang. ARPACK Users’ Guides, Solution
of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Method.
SIAM, Philadelphia, 1998.

103

[50]

[51]

[52]

[59]

R. B. Lehoucq. Analysis and implementation of an implicitly restarted Arnoldi

iteration. PhD thesis, Rice University, Houston, TX, 1995.

R. B. Lehoucq and D. C. Sorensen. Deflation techniques within an implicitly
restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17:789-821, 1996.

S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya. Learning unions of
orthonormal bases with thresholded singular value decomposition. Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE Interna-
tional Conference on, 5:v/293-v/296, March 2005.

M. S. Lewicki and B. A. Olshausen. Probabilistic framework for the adaption
and comparison of image codes. J. Opt. Soc. Am. A, 16(7):1587-1601, July 1999.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neu-

ral Computation, 12(2):337-365, 2000.

Q. Liang and Q. Ye. Computing singular values of large matrices with an inverse-
free preconditioned krylov subspace method. Electronic Transactions on Numer-

ical Analysis, 42:197-221, 2014.

G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank represen-

tation. International Conference on Machine Learning(ICML), 2010.

J. Liu, Y. Chen, J. Zhang, and Z. Xu. Enhancing low-rank subspace clustering by
manifold regularization. IEEE Transactions on Image Processing, pages 4022

4030, 2014.

C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, and S. Yan. Robust and efficient
subspace segmentation via least squares regression. 12th European Confereence

on Computer Vision, 2012.

Y. Ma, H. Derken, W. Hong, and J. Wright. Segmentation of multivariate mixed
data via lossy coding and compression. IEEFE Transactions on Pattern Analysis

and Machine Intelligence, 29(9):1546-1562, 2007.

104

[60] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.
IEEE Transactions on Signal Processing, 41(12):3397-3415, 1993.

[61] Matrix Market. http://math.nist.gov/MatrixMarket /.

[62] J. H. Money and Q. Ye. Algorithm 845: EIGIFP: A MATLAB program for
solving large symmetric generalized eigenvalue problems. ACM Trans. Math.

Softw., 31:270-279, 2005.

[63] R. B. Morgan. Computing interior eigenvalues of large matrices. Lin. Alg. Appl.,
74:1441-1456, 1991.

[64] L. Na and Y. Saad. MIQR: a multilevel incomplete QR preconditioner for large
sparse least-squares problems. SIAM J. Matriz Anal. Appl., 28:524-550, 2006.

[65] Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the par-
tial symmetric eigenproblem. Num. Lin. Alg. Appl., 9:21-44, 2002.

[66] A.T. Papadopoulos, I. S. Duff, and A. J. Wathen. Incomplete orthogonal factor-
ization methods using Givens rotations II: Implementation and results. Report

02/07, Oxford University Computing Laboratory, 2002.

[67] B. N. Parlett. The Symmetric Eigenvalue Problem, volume 20 of Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1998. Corrected reprint of the 1980 original.

[68] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:
areview. ACM SIGKDD Ezxplorations Newsletter - Special issue on learning from
imbalanced datasets, 6(1):90-105, 2004.

[69] V. M. Patel, H. Van Nguyen, and R. Vidal. Latent space sparse subspace clus-
tering. IEEFE Internation Conference on Computer Vision(ICCV), 2013.

[70] P. Quillen and Q. Ye. A block inverse-free preconditioned Krylov subspace
method for symmetric generalized eigenvalue problems. J. Comp. Appl. Math,
233:1298-1313, 2010.

105

[71]

[72]

73]

[74]

[76]

[77]

[81]

Y. Saad. Numerical methods for large eigenvalue problems, revised edition. Clas-

sics in Applied Mathematics. STAM, Philadelphia, 2011.

S. Sardy, A. G. Bruce, and P. Tseng. Block coordinate relaxation methods for
nonparametric signal denoising with wavelet dictionaries. Journal of Computa-

tional and Graphical Statistics, 9:361-379, 2000.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.

G. Sleijpen and H. van der Vorst. A Jacobi-Davidson iteration method for lin-
ear eigenvalue problems. SIAM Journal on Matriz Analysis and Applications,

17:401-425, 1996.

G. Sleijpen, H. van der Vorst, and M. van Gijzen. Efficient expansion of subspaces
in the Jacobi-Davison method for standard and generalized eigenproblems. Elec-

tron. Trans. Numer. Anal., 7:75-89, 1998.

D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi

method. SIAM J. Matriz Anal. Appl., 13:357-385, 1992.

A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson,
and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput, 19:227-245,
1996.

M. Tipping and C. Bishop. Mixtures of probabilistic principal component ana-
lyzers. Neural Computation, 11(2):443-482, 1999.

P. Tseng. Nearest ¢-flat to m points. Journal of Optimization Theory and
Applications, 105(1):249-252, 2000.

S. Varadhan, M. W. Berry, and G. H. Golub. Approximating dominant singular
triplets of large sparse matrices via modified moments. Numer. Algorithms,

13:123-152, 1996.

R. Vidal. Subspace clustering. Signal Processing Magazine, 2011.

106

[82]

[83]

[84]

[87]

[33]

[89]

[92]

R. Vidal and P. Favaro. Low rank subspace clustering (Irsc). Pattern Recognition

Letters, 43:47-61, 2014.

R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis(gpca).
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12):1-15,
2005.

R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with miss-

ing data using powerfactorization and gpca. Internation Journal of Computer

Vision, 79(1):85-105, 2008.

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing,

17(4):395-416, 2007.

X. Wang, K. A. Gallivan, and R. Bramley. CIMGS: An incomplete orthogonal
factorization preconditioner. SIAM J. Sci. Comput., 18:516-536, 1997.

Y. Wang, H. Xu, and C. Leng. Provable subspace clustering: When Irr meets
ssc. Advances in Neural Information Processing Systems 26 (NIPS 2013), 2013.

Andrew R. Webb. Statistical Pattern Recognition, Second Edition. John Wiley
& Somns, Ltd., 2002.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,
New York, 1965.

Q. Ye. An adaptive block Lanczos algorithm. Numerical Algorithms, 12:97-110,
1996.

L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar. Dictionary optimization for
block sparse representation. [EEE Transactions on Signal Processing, pages

23862395, 2012.

H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and
data clustering. Proceedings of the tenth international conference on Information

and knowledge management, pages 25-32, 2001.

107

[93] T. Zhang, A. Szlam, and G. Lerman. Median k-flats for hybrid linear modeling
with many outliers. IEFE 12th International Conference on Computer Vision

Workshops, pages 234-241, 2009.

108

Vita

Education

e University of Kentucky, Lexington, Kentucky
M. A. in Mathematics, May, 2013

e University of Science and Technology of China, Hefei, Anhui, China
B. S., Mathematics and Applied Mathematics

Experience

e Research Assistant under Dr. Qiang Ye, University of Kentucky, Fall 2012, Fall
2013, Spring 2014, Fall 2014, Summer 2015

e Teaching Assistant, University of Kentucky, August 2011 - May 2015
e Software Engineering Intern, Google, Pittsburgh, PA, May 2014 - August 2014
Publications

e (with Qi. Ye) Deflation by restriction for the inverse-free precondtioned Krylov

subspace method, submitted.

e (with Q. Ye) Computing singular values of large matrices with inverse free
preconditioned Krylov subspace method, Electronic Transactions on Numerical

Analysis, 42:197-221, 2014.

109

	Singular Value Computation and Subspace Clustering
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Generalized eigenvalue problem
	1.2 Singular value problem
	1.3 Subspace clustering problem
	1.4 Outline
	1.5 Notation

	2 Inverse-free preconditioned Krylov subspace method with deflation by restriction
	2.1 Preliminaries
	2.1.1 Eigenvalues and eigenvectors of symmetric matrices
	2.1.2 The generalized symmetric eigenvalue problem
	2.1.3 Krylov subspace method
	2.1.4 Deflation

	2.2 Inverse-free preconditioned Krylov subspace method with deflation by restriction
	2.2.1 Inverse-free preconditioned Krylov subspace method
	2.2.2 Deflation by restriction

	2.3 Numerical examples

	3 An Inverse-free preconditioned Krylov subspace method for singular values problem
	3.1 Singular value decomposition
	3.2 Computations of singular values of large and sparse matrices
	3.2.1 The Lanczos bidiagonalization method
	3.2.2 MATLAB's routine svds
	3.2.3 JDSVD

	3.3 SVDIFP–The proposed algorithm
	3.3.1 An inverse-free preconditioned Krylov subspace method
	3.3.2 Preconditioning by robust incomplete factorizations (RIF)
	3.3.3 A robust implementation

	3.4 Numerical examples

	4 Subspace clustering via learning a union of orthonormal bases
	4.1 Spectral clustering and dictionary learning
	4.1.1 Spectral clustering
	4.1.2 Bipartite graph clustering
	4.1.3 A dictionary learning method

	4.2 Subspace clustering
	4.2.1 Existing subspace clustering algorithms

	4.3 A novel subspace clustering algorithm via learning orthonormal bases
	4.3.1 Motivation
	4.3.2 Initialization and estimations of K and {di}i = 1K

	4.4 Numerical examples
	4.4.1 Synthetic data
	4.4.2 Basic and rotated MNIST dataset

	5 Concluding remarks
	Bibliography
	Vita

