
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Mathematics Mathematics

2015

Singular Value Computation and Subspace Clustering Singular Value Computation and Subspace Clustering

Qiao Liang
University of Kentucky, qiao.liang@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Liang, Qiao, "Singular Value Computation and Subspace Clustering" (2015). Theses and Dissertations--
Mathematics. 30.
https://uknowledge.uky.edu/math_etds/30

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Qiao Liang, Student

Dr. Qiang Ye, Major Professor

Dr. Peter Perry, Director of Graduate Studies

SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING

DISSERTATION

A dissertation submitted in partial

fulfillment of the requirements for

the degree of Doctor of Philosophy

in the College of Arts and Sciences

at the University of Kentucky

By

Qiao Liang

Lexington, Kentucky

Director: Dr. Qiang Ye, Professor of Mathematics

Lexington, Kentucky 2015

Copyright c© Qiao Liang 2015

ABSTRACT OF DISSERTATION

SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING

In this dissertation we discuss two problems. In the first part, we consider the

problem of computing a few extreme eigenvalues of a symmetric definite generalized

eigenvalue problem or a few extreme singular values of a large and sparse matrix.

The standard method of choice of computing a few extreme eigenvalues of a large

symmetric matrix is the Lanczos or the implicitly restarted Lanczos method. These

methods usually employ a shift-and-invert transformation to accelerate the speed of

convergence, which is not practical for truly large problems. With this in mind, Golub

and Ye proposes an inverse-free preconditioned Krylov subspace method, which uses

preconditioning instead of shift-and-invert to accelerate the convergence. To com-

pute several eigenvalues, Wielandt is used in a straightforward manner. However, the

Wielandt deflation alters the structure of the problem and may cause some difficulties

in certain applications such as the singular value computations. So we first propose

to consider a deflation by restriction method for the inverse-free Krylov subspace

method. We generalize the original convergence theory for the inverse-free precon-

ditioned Krylov subspace method to justify this deflation scheme. We next extend

the inverse-free Krylov subspace method with deflation by restriction to the singular

value problem. We consider preconditioning based on robust incomplete factoriza-

tion to accelerate the convergence. Numerical examples are provided to demonstrate

efficiency and robustness of the new algorithm.

In the second part of this thesis, we consider the so-called subspace clustering

problem, which aims for extracting a multi-subspace structure from a collection of

points lying in a high-dimensional space. Recently, methods based on self expressive-

ness property (SEP) such as Sparse Subspace Clustering and Low Rank Representa-

tions have been shown to enjoy superior performances than other methods. However,

methods with SEP may result in representations that are not amenable to clustering

through graph partitioning. We propose a method where the points are expressed

in terms of an orthonormal basis. The orthonormal basis is optimally chosen in the

sense that the representation of all points is sparsest. Numerical results are given to

illustrate the effectiveness and efficiency of this method.

KEYWORDS: singular value decomposition, inverse-free preconditioned Krylov sub-

space method, machine learning, subspace clustering

Author’s signature: Qiao Liang

Date: October 8, 2015

iii

SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING

By

Qiao Liang

Director of Dissertation: Qiang Ye

Director of Graduate Studies: Peter Perry

Date: October 8, 2015

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my advisor, Professor

Qiang Ye, who has expertly guided me through my doctorate. His immense knowledge

and invaluable ideas helped me to complete this dissertation.

Secondly, I am highly indebted to my committee members, Professor Russell

Brown, Professor Russell Carden and Professor Yuming Zhang for their insightful

suggestions and comments. I would also like to thank many other professors whom I

took classes in University of Kentucky.

Finally, and most importantly, I would like to thank my parents, my brothers and

my girlfriend for their continuous support through my life. Without their encourage-

ments, I would not have made it this far.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1

1.1 Generalized eigenvalue problem . 1

1.2 Singular value problem . 3

1.3 Subspace clustering problem . 5

1.4 Outline . 6

1.5 Notation . 7

Chapter 2 Inverse-free preconditioned Krylov subspace method with deflation

by restriction . 9

2.1 Preliminaries . 9

2.1.1 Eigenvalues and eigenvectors of symmetric matrices 10

2.1.2 The generalized symmetric eigenvalue problem 11

2.1.3 Krylov subspace method . 17

2.1.4 Deflation . 20

2.2 Inverse-free preconditioned Krylov subspace method with deflation by

restriction . 22

2.2.1 Inverse-free preconditioned Krylov subspace method 22

2.2.2 Deflation by restriction . 25

2.3 Numerical examples . 35

iv

Chapter 3 An Inverse-free preconditioned Krylov subspace method for singu-

lar values problem . 40

3.1 Singular value decomposition . 40

3.2 Computations of singular values of large and sparse matrices 41

3.2.1 The Lanczos bidiagonalization method 42

3.2.2 MATLAB’s routine svds . 43

3.2.3 JDSVD . 43

3.3 SVDIFP–The proposed algorithm . 43

3.3.1 An inverse-free preconditioned Krylov subspace method 46

3.3.2 Preconditioning by robust incomplete factorizations (RIF) . . 54

3.3.3 A robust implementation . 59

3.4 Numerical examples . 60

Chapter 4 Subspace clustering via learning a union of orthonormal bases . . 72

4.1 Spectral clustering and dictionary learning 72

4.1.1 Spectral clustering . 72

4.1.2 Bipartite graph clustering . 76

4.1.3 A dictionary learning method 78

4.2 Subspace clustering . 81

4.2.1 Existing subspace clustering algorithms 82

4.3 A novel subspace clustering algorithm via learning orthonormal bases 86

4.3.1 Motivation . 87

4.3.2 Initialization and estimations of K and {di}Ki=1 91

4.4 Numerical examples . 92

4.4.1 Synthetic data . 93

4.4.2 Basic and rotated MNIST dataset 94

Chapter 5 Concluding remarks . 97

Bibliography . 99

Vita . 109

v

LIST OF FIGURES

2.1 Convergence History of Residuals for three eigenvalues λ1, λ2, λ3 36

2.2 Top: bound ε2m; Bottom: error ratio (ρk+1 − λi)/(ρk − λi). 37

2.3 Convergence History of Residuals for three eigenvalues λ1, λ2, λ3 38

2.4 Top: bound ε2m; Bottom: error ratio (ρk+1 − λi)/(ρk − λi). 39

4.1 Average clustering error of Algorithm 4.8, SSC and LRR on synthetic data

for each (N, θ) group. Left: Our method, Middle: SSC, Right: LRR . . . 94

4.2 Difference of SCR for Algorithm 4.8 and SSC for each (N, θ) group. White:

Algorithm 4.8 has smaller SCE. Black: SSC has smaller SCE. 94

vi

LIST OF TABLES

2.1 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain . 37

2.2 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain . 39

3.1 Example 1: σ1 - computed smallest singular value by svdifp and eigifp; Res

- ‖CTCv1 − σ21v1‖. 62

3.2 Test Matrices Used for Examples 2 and 3 63

3.3 Example 2: With preconditioning: CPU - CPU time; MV - # of matrix-

vector multiplications; nnz - number of non-zeros of the preconditioner; Res -

‖[Cv1 − σ1u1;C
Tu1 − σ1v1]‖/‖C‖1. 64

3.4 Example 2: without preconditioning. CPU - CPU time; MV - # of matrix-

vector multiplications; Res - ‖[Cv1 − σ1u1;C
Tu1 − σ1v1]‖/‖C‖1. 66

3.5 Example 3: CPU - CPU time; nnz - non-zeros of R or L and U; Res -

‖[Cv1 − σ1u1;C
Tu1 − σ1v1]‖/‖C‖1. 69

3.6 Example 4: 5 largest singular values of matrix lp ganges. σk- singular value;

µ- shift used for preconditioning ; MV - # of matrix-vector multiplications; Res

- ‖[Cv1 − σ1u1;C
Tu1 − σ1v1]‖/‖C‖1. 70

4.1 SCE of Algorithm 4.8, SSC and LRR . 95

4.2 Clustering performance on the rotated MNIST dataset 96

vii

Chapter 1 Introduction

In this dissertation, we consider three problems, the definite symmetric generalized

eigenvalue problem where we find λ ∈ R, x ∈ Rn such that

Ax = λBx, (1.1)

(where A,B ∈ Rn×n are symmetric and B is positive definite), the singular value

problem for a matrix C ∈ Rm×n, where we find σ ∈ R,u ∈ Rm,v ∈ Rn such that

Cu = σv and CTv = σu, and a subspace clustering problem which is to cluster a

given dataset such that each cluster lies in a single subspace of low dimension.

1.1 Generalized eigenvalue problem

The eigenvalue problem (1.1), also referred to as a pencil eigenvalue problem

(A,B), arises in many scientific and engineering applications, such as structural dy-

namics, quantum mechanics, and machine learning. The matrices involved in these

applications are usually large and sparse and only a few of the eigenvalues are desired.

Computing a few selected eigenvalues of a large symmetric matrix is a subject that

has been well-studied in the last few decades; see [6, 71] for a survey. Iterative meth-

ods such as the Lanczos algorithm [19], the implicitly restarted Lanczos method [76]

(ARPACK [49]) and the Arnoldi algorithm are some of the most efficient numerical

methods developed in the past few decades for computing a few eigenvalues of a large

scale eigenvalue problem, see [6, 49, 71]. Their speed of convergence depends on the

spectral distribution of (1.1) and they may suffer from slow convergence when the

desired eigenvalues are not well separated.

Preconditioning techniques may be used to accelerate the convergence of these

iterative methods [19, 25] . One of the most effective techniques is the shift-and-

invert transformation. This requires inverting or factorizing a shifted matrix. For

sparse matrices, factorization may create excessive fill-ins of the zero entries, which

results in significant memory and operation costs. When the factorization of the

1

shifted matrix is inefficient or infeasible, several methods have been developed that

employ either inexact shift-and-invert or some preconditioning transformations. The

Jacobi-Davidson method [74], the JDCG algorithm [65], the locally preconditioned

conjugate gradient method (LOBPCG) [42, 43], and the inverse free preconditioned

Krylov subspace method [32, 62] are some of the methods in this class. There is a

large body of literature on various aspects of the large symmetric eigenvalue problem;

see [3, 4, 6, 26, 31, 63, 71, 77, 90] and the references contained therein for more

discussions.

The inverse-free precondioned Krylov subspace method of [32] is a Krylov subspace

projection method that computes the smallest (or the largest) eigenvalues of (1.1).

The method is called inverse-free, because it is based on an inner-outer iteration

that does not require the inversion of B or any shifted matrix A − λB. Given an

approximate eigenvector xk and its Rayleigh quotient ρk, it approximates the smallest

eigenvalue iteratively through the Rayleigh-Ritz projection on the Krylov subspace

Km(Hk,xk) := span{xk,Hkxk,H
2
kxk, . . . ,H

m
k xk} (1.2)

where Hk := A − ρkB. It is proved in [32] that this method converges at least

linearly with a rate determined by the spectral separation of the smallest eigenvalue

of Hk. This convergence theory leads to a preconditioning scheme that accelerates the

convergence through some equivalent congruent transformation based on incomplete

factorizations. This procedure, however, computes one eigenvalue (the smallest) only.

To compute additional eigenvalues, a deflation technique needs to be used. Note that

a block version developed in [70] can compute several eigenvalues simultaneously, but

it is efficient largely for severely clustered eigenvalues.

Deflation processes are standard methods used by iterative eigenvalue algorithms

to compute additional eigenvalues after some eigenvalues have converged. Two widely

used deflation techniques are the Wielandt deflation (or known as deflation by sub-

traction) where the matrix is modified with a low rank perturbation to move con-

verged eigenvalue to a different part of spectrum, and deflation by restriction where

approximate eigenvectors and relevant subspaces are projected to the orthogonal com-

2

plement of the converged eigenvectors, see [67, 71, 89]. Both of these deflation schemes

can be used in the standard Lanczos and Arnoldi algorithms. There are variations of

these schemes that are suitable for some particular methods. For example, the im-

plicitly restarted Arnoldi algorithm [50, 51, 49] employs an elaborate deflation scheme

(locking and purging) that is similar to deflation by restriction. The Jacobi-Davidson

method [74, 75] incorporates a partial Schur decomposition deflation.

For the inverse-free preconditioned Krylov subspace method [32, 62], a natural

deflation scheme is the Wielandt deflation where the method is implicitly applied

to a low rank modified problem. The Wielandt deflation alters the structure of the

problem which may cause some difficulties in some applications, therefore, it is more

desirable to work with the original problem without the low rank modification. The

deflation by restriction method projects the search subspace to the subspace that is

B-orthogonal to the space spanned by the computed eigenvectors. Although this can

be applied in formality to the inverse-free preconditioned Krylov subspace method,

its convergence properties are not known.

We formulate a deflation by restriction scheme for the inverse-free precondioned

Krylov subspace method for computing a few extreme eigenvalues of the definite

symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for

the inverse-free preconditioned Krylov subspace method is generalized to include this

deflation scheme.

1.2 Singular value problem

Computing a few extreme singular values of a large matrix C ∈ Rm×n(m > n) can

be addressed by computing a few eigenvalues of either A = CTC or its augmented

matrix M =

 O C

CT O

. As a special eigenvalue problem, we can apply the Lanczos

algorithm or the implicitly restarted Lanczos algorithm to either M or A and this can

often be done implicitly. Indeed, several methods have been introduced that exploit

the special structure and the associated properties of these eigenvalue problems. The

Lanczos bidiagonalization based methods discussed in [29, 5, 44, 12, 38, 80] are widely

3

used for the singular value problems that implicitly applies the Lanczos method to

A = CTC. These methods work well when the corresponding eigenvalue is reasonably

well separated. However, their convergence may be slow if the eigenvalue is clustered,

which turns out to be often the case when computing the smallest singular values

through A. On the other hand, for formulation M, the smallest singular value is an

interior eigenvalue of M , for which a direct application of the Lanczos algorithm does

not usually result in convergence.

The shift-and-invert transformation is a standard method to deal with clustering

or to compute interior eigenvalues. However, for a non-square matrix C ∈ Rm×n

(m > n), a subtle difficulty arises in using the shift-and-invert transformations for

M because M is singular and, with a shift close to 0, the method often converges to

one of the m− n zero eigenvalues of M rather than to the smallest singular value of

C. On the other hand, one can avoid the shift-and-invert by considering the Jacobi-

Davidson method on the augmented matrix M and a method of this type, called

JDSVD, has been developed in [35] that efficiently exploits the block structure of M.

However, the convergence of JDSVD appears to strongly depend on the quality of

preconditioning. This demands a good preconditioner for M or M − µI, which is

unfortunately difficult to construct when m 6= n owing to the singularity of M.

We present an efficient algorithm for computing a few extreme singular values of

a large sparse m × n matrix C. Our algorithm is based on reformulating the singu-

lar value problem as an eigenvalue problem for CTC. To address the clustering of

singular values, we develop an inverse-free preconditioned Krylov subspace method

to accelerate convergence. We consider preconditioning that is based on robust in-

complete factorizations and we discuss various implementation issues. For deflation,

the deflation by restriction can be used here without altering the structure of the

eigenvalue problem CTC. Indeed, it is the deflation for the singular value problem

that motivates us to investigate the deflation for the inverse-free Krylov subspace

method. The new algorithm, which we call svdifp, overcomes difficulites of com-

puting smallest singular values experienced by some algorithms, such as the Matlab

built-in function svds, jdsvd, irlba, etc.

4

1.3 Subspace clustering problem

Real world data are high-dimensional. It is infeasible to process them directly in

their raw forms even though the computational power has grown exponentially in the

past few years. Since the intrinsic dimensionality (the minimum number of variables

required to capture the structure within the data [88]) is usually much smaller than

the ambient dimension, recovering low dimensional structures in data will have a sig-

nificant reduction in the computational cost and memory requirements of algorithms

dealing with data while maintaining the performance. This fact has motivated the

development of various techniques of finding low-dimensional representations of high

dimensional data. One of the most popular techniques, Principle Component Anal-

ysis(PCA), assumes that the high dimensional data lies in a single low dimensional

subspace of the ambient space. However, in practice, a given dataset may not be well

described by a single subspace. Instead, they may be drawn from multiple subspaces.

For instances, motions of different objects in a video sequence [84], face images of

different people [34] are generally distributed in a union of multiple linear subspaces.

Therefore, a more reasonable model should simultaneously cluster data into multi-

ple groups and fit each group by a linear subspace. That is known as the subspace

clustering problem.

Subspace clustering was first proposed as an extension of feature selection in data

mining community. For a review of those methods, see [68]. Subspace clustering was

also considered in machine learning and computer vision communities where it aims

to find the hidden structure which is a union of arbitrary subspaces in the dataset,

see [81] for a comprehensive review. A number of subspace clustering algorithms

have been proposed based on algebraic, iterative, statistical or spectral clustering

approaches (See Section 4.2). Among them, spectral clustering based methods are

most effective. These methods try to build a similarity graph whose vertices are data

points and weighted edges represent the similarities between data points and then

apply spectral clustering methods to cluster the dataset into different clusters such

that it has high inter-cluster similarities and low intra-cluster similarities.

5

The state-of-the-art spectral clustering based methods, such as Sparse Subspace

Clustering (SSC) [22] and Low Rank Representation (LRR) [56], build the similarity

matrix based on the self-expressiveness property of the dataset, i.e., the data point

in a subspace can be well expressed as a linear combination of other points in the

same subspace. LRR can recover subspaces if they are independent by finding the

lowest rank representation, but fails if the subspaces have large intersections with

each other. SSC tries to find the sparest representation. While SSC can successfully

separate data points in different subspaces, it may potentially separate out the data

points lying in the same subspaces.

We propose a novel subspace clustering algorithm based on dictionary learning.

Our algorithm constructs a dictionary of specific type and finds a compact repre-

sentation of the data with respect to the dictionary simultaneously. Specifically, we

describe a method that learns a union of orthonormal bases as the dictionary so

that the data have a block structured representation with the learned dictionary.

A bipartite graph clustering method is then used to cluster the data into different

clusters.

1.4 Outline

The rest of the dissertation is organized as follows.

In Chapter 2, We introduce the inverse-free preconditioned Krylov subspace method

and then formulate a deflation by restriction scheme. We provide some global and

local convergence results which are extensions of the theory in [32].

In Chapter 3, we develop the inverse-free preconditioned Krylov subspace method

for the singular value problem. We presents a robust incomplete factorization(RIF)

preconditioner in order to accelerate the convergence. We also briefly describe a

MATLAB implementation called svdifp that we have developed.

In Chapter 4, we present the motivation of our novel subspace clustering algorithm

and its detailed implementation. We demonstrate the effectiveness of our algorithm

on several synthetic and real-world datasets.

We conclude our works in Chapter 5.

6

1.5 Notation

The ij-entry of a matrix A is denoted by Aij, A(i, j) or aij and the j-th column

is denoted by aj. AT denotes the transpose of a real matrix A. We use λi(A) to

denote its i-th smallest eigenvalue and λ−i(A) to denote its i-th largest eigenvalues.

Similarly, σi(A) and σ−i(A) denote the i-th smallest and largest singular values of

A respectively.. Calligraphic and blackboard bold letters are used to denote spaces

and sets. In particular, real Euclidean space of n dimension is denoted by Rn . Rm×n

denotes m × n real matrices. The range space and null space of a matrix A are

denoted by R(A) or span(A) and N (A) respectively. For a set S, |S| is the number

of elements in S.

We also introduce the notations for some special vectors and matrices. In denotes

n × n identity matrix with ei as its i-th column. Om×n denotes a zero matrix. For

a vector of length n with all its entries be 1, we use 1n. The subscripts could be

omitted if they are clear in the context.

Now we review some notations and definitions of frequently used norms. Given a

vector v = [v1, . . . , vn]T ∈ Rn, its lp norm is defined as

‖v‖p := (
n∑
i=1

vpi)
1/p.

Throughout this dissertation, we will use ‖ · ‖2 and ‖ · ‖1 extensively. Let p→∞, we

can obtain the infinity norm ‖v‖∞ = max{vi, i = 1, . . . , n}.

Another important “norm” called l0 norm denoted by ‖v‖0 is the number of

nonzero entries in v. Technically, l0 is not a norm as it violates the absolute homo-

geneity, i.e. ‖αv‖0 6= |α|‖v‖0 for some α and v.

Given a matrix A ∈ Rm×n, Forbenius norm of A is

‖A‖F =

√∑
i,j

a2ij

Corresponding to the vector lp norm, the induced lp norm for A is defined as

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

.

7

In particular, the induced 2-norm coincides with spectral norm, i.e.,

‖A‖2 =
√
λ−1(ATA) = σ−1(A).

In general, ‖A‖1 is the induced l1 norm for matrix. However, in this dissertation, we

set

‖A‖1 =
∑
i,j

|aij|.

We also use ‖A‖0 to denote the number of non-zero entries of A and ‖A‖2,0 to denote

the number of non-zero columns of A. The l2,1 norm of A is

‖A‖2,1 =
n∑
j=1

√√√√ m∑
i=1

a2ij.

Another useful norm is max norm ‖A‖max = maxij |aij|.

Copyright c© Qiao Liang, 2015.

8

Chapter 2 Inverse-free preconditioned Krylov subspace method with

deflation by restriction

In this chapter, we consider the problem of computing a few eigenvalues of (A,B).

We investigate the convergence behavior of the inverse-free precondioned Krylov sub-

space method with a different deflation scheme called deflation by restriction com-

prehensively. First we present relevant materials that will be used in this work. We

review the generalized symmetric eigenvalue problem and Krylov subspace methods

and also discuss some existing deflation methods which have been applied in solving

the generalized symmetric eigenvalue problem in Section 2.1. Then we introduce the

inverse-free preconditioned Krylov subspace method and the existing convergence

theory of computing the extreme eigenvalues in Section 2.2.1. We show the origi-

nal deflation method (Wielandt deflation) has some difficulities when we extend the

method to the singular value problem. In Section 2.2.2, we propose to use defla-

tion by restriction to obtain the additional eigenvalues. And we also prove that the

additional eigenvalues computing by the inverse-free Krylov subspace method with

deflation by restriction share the similar convergence behavior as that of the extreme

ones. Numerical examples are presented to demonstrate the convergence properties

of the algorithm with the deflation scheme in Section 2.3

2.1 Preliminaries

We briefly reviews some basic definitions, theorems and tools needed to study

the inverse-free preconditoned Krylov subspace method with deflation by restriction.

Most of the materials presented in this section can be found in any standard numerical

linear algebra textbook, such as [19, 30, 71, 6, 89, 67].

9

2.1.1 Eigenvalues and eigenvectors of symmetric matrices

Definition 2.1.1. [19] The polynomial p(λ) = det(A−λI) is called the characteristic

polynomial of A ∈ Rn×n. The roots of p(λ) = 0 are eigenvalues of A. A nonzero

vector x ∈ Cn such that Ax = λx is a (right) eigenvector for the eigenvalue λ. A

nonzero vector y ∈ Rn with yTA = λyT is a left eigenvector.

From Definition 2.1.1, we can conclude that the eigenvalues of a triangular matrix

are its diagonal entries. It motivates the Schur canonical form.

Theorem 2.1.1. [19] Given A ∈ Rn×n, there exists an orthogonal matrix Q and

an upper triangular matrix T such that QTAQ = T . The eigenvalues of A are the

diagonal entries of T .

In particular, T is a diagonal matrix if A = AT . We will mainly focus on this

kind of matrices in this dissertation.

Definition 2.1.2. A ∈ Rn×n is a symmetric matrix if A = AT .

Symmetric matrices enjoy many simple but beautiful properties, among which is

the spectral theorem as a corollary of Theorem 2.1.1.

Theorem 2.1.2. Suppose A ∈ Rn×n is a symmetric matrix, then A is similar to a

real diagonal matrix via an orthogonal transformation, i.e.

A = ZΛZT (2.1)

where ZTZ = I and Λ is a diagonal matrix with real entries.

From Theorem 2.1.2, we can see that the columns zi of Z are eigenvectors of A

and the diagonal entries λi of Λ are eigenvalues of A. It is well-known that the

eigenvalue problem of a symmetric matrix is well-conditioned, in other words, the

absolute change in an eigenvalue is bounded by the absolute change in the matrix.

The idea is interpreted by the following theorem.

Theorem 2.1.3. Suppose A,B ∈ Rn×n are symmetric matrices, then

max
i
|λi(A)− λi(B)| ≤ ‖A−B‖2.

10

An important class of symmetric matrices positive definite matrices.

Definition 2.1.3. Let A ∈ Rn×n be a symmetric matrix. If zTAz is always positive

for any non-zero vector z ∈ Rn, we call A positive definite.

By the above definition and Theorem 2.1.2, there exists an orthogonal matrix such

that ZTAZ = Λ and Λ is a diagonal matrix with real positive entries if Z is positive

definite. Suppose Λ = diag(λ1, λ2, . . . , λn) and

Λ1/2 = diag(λ
1/2
1 , λ

1/2
2 , . . . , λ1/2n),

then A = LLT where L = ZΛ1/2 and L is invertible. Furthermore, if L is lower trian-

gular with positive diagonals, then L is unique. It concludes the following theorem.

Theorem 2.1.4. If A ∈ Rn×n is a positive definite matrix, then there exists a unique

lower triangular matrix L ∈ Rn×n with positive diagonals such that A = LLT . It is

the called Cholesky decomposition of L and L is the Cholesky factor of A.

Given a positive definite matrix A ∈ Rn×n, we can also obtain a well-defined

inner-product in Rn:

〈x,y〉A = xTAy.

We say x,y ∈ Rn are A-orthogonal, if xTAy = 0. A matrix B ∈ Rn×m is A-

orthonormal if BTAB = I. The induced norm of the inner-product is ‖x‖A =
√

xTAx.

2.1.2 The generalized symmetric eigenvalue problem

Definition 2.1.4. A scalar λ ∈ R is called an eigenvalue of a matrix pencil (A,B)

with A,B ∈ Rn×n if there exists a nonzero vector x ∈ Rn such that

Ax = λBx. (2.2)

The vector x is called an eigenvector of (A,B) associated with λ. (λ,x) is called an

eigenpair of (A,B). The set of all eigenvalues of (A,B) is called the spectrum of

(A,B).

11

The problem of finding some or all of the eigenpairs of (A,B) is referred to as the

generalized eigenvalue problem. The standard problem corresponds to the case when

B = I. If B is nonsingular, then (2.2) can be rewritten as

B−1Ax = λAx,

and the generalized problem is reduced to the standard one. A simpler special case

which arises in practice is that A,B are symmetric and B is positive definite. The

generalized eigenvalue problem of definite pencil (A,B) arises in many scientific and

engineering applications, such as structural dynamics, quantum mechanics, and ma-

chine learning. The matrices involved in these applications are usually large and

sparse and only a few of the eigenvalues are desired.

There is a corresponding spectral theorem of definite pencil (A,B) which is similar

to Theorem 2.1.2.

Theorem 2.1.5. Suppose A,B ∈ Rn are symmetric and B is positive definite. Then

there exists an invertible matrix X such that

XTAX and XTBX

are both real and diagonal.

Proof. Since B is positive definite, we can obtain the following decomposition by

Theorem 2.1.4

B = LLT (2.3)

where L is an invertible lower triangular matrix. Consider the matrix L−1A(LT)−1.

Since A is symmetric, i.e., A = AT , L−1A(LT)−1 is also symmetric. By Theorem

2.1.2, there exists an orthogonal matrix Y such that

L−1A(LT)−1Y = YΛ, (2.4)

where Λ is a diagonal matrix with real entries. Let

X = (LT)−1Y. (2.5)

12

Then X is an invertible matrix. Combine (2.5) with (2.3) and (2.4). We can obtain

AX = BXΛ. Therefore

XTAX = XTBXΛ.

Since XTBX = YTL−1B(LT)−1Y = YTY = I, XTAX = Λ is diagonal and real.

Theorem 2.1.5 is also known as simultaneous diagonalization theorem. By Defini-

tion 2.2, we can see that the columns of X are eigenvectors of (A,B). Furthermore,

we notice that there are infinitely many choices of X. If an X satisfying Theorem

2.1.5 has been found, then by simply multiplying X by an arbitrary diagonal matrix

we can obtain another matrix satisfying Theorem 2.1.5. In general, we are only in-

terested in X which satisfies XTBX = I and XTAX = Λ = diag{λ1, . . . , λn}, where

λ1 ≤ . . . ≤ λn. Then AX = ΛBX.

The proof of Theorem 2.1.5 provides a way to reduce the generalized eigenvalue

problem of (A,B) to the standard eigenvalue problem of L−1A(LT)−1 where L is the

Cholesky factor of B.

One of the most important quantities associated with the generalized eigenvalue

problem is Rayleigh quotient.

Definition 2.1.5. The Rayleigh quotient of x for (A,B) is defined by

ρ(x; A,B) =
xTAx

xTBx
. (2.6)

We frequently shorten the notation to ρ(x) when A,B are clear from context.

The Rayleigh quotient of (A,B) enjoys many properties which will be exploited

through our work.

Lemma 2.1.1. [67, Theorem 15.9.2] When A,B ∈ Rn×n are symmetric and B > 0,

then

1. Homogeneity: ρ(αx) = ρ(x), α 6= 0 ∈ R.

2. Boundedness: λ1 ≤ ρ(x) ≤ λn as x ranges over the unit sphere, where λ1 ≤

. . . ≤ λn are eigenvalues of the pencil (A,B).

13

3. Stationary: ∇ρ(x) = 2(Ax − ρ(x)Bx)T/(xTBx). Thus ρ(x) is stationary at

and only at the eigenvectors of (A,x).

4. Minimum Residual: ‖(A−σB)x‖2B−1 ≥ ‖Ax‖2B−1−|ρ(x)|2‖Bx‖2B−1 with equal-

ity when and only when σ = ρ(x) where σ ∈ R.

Proof. We give the proofs of part 1, 2, and 4, but not part 3 which is quite straight-

forward.

1. From the definition of Rayleigh quotient,

ρ(αx) =
α2(xTAx)

α2(xTBx)
=

xTAx

xTBx
= ρ(x).

2. By part (1), we only need to consider the bounds of ρ(x) where xTBx =

1. By Theorem 2.1.5, we can find Z such that AZ = BZΛ where Z =

[z1, z2, . . . , zn] is B−orthonormal and Λ = diag(λ1, . . . , λn). Since Z is invert-

ible, then {z1, . . . , zn} is a basis of Rn. Hence there exist scalars α1, . . . , αn ∈ R

such that x = α1z1 + . . .+ αnzn and

ρ(x) = (
n∑
i=1

αizi)
TA(

n∑
i=1

αizi) =
n∑
i=1

αiλi.

Then λ1 ≤ ρ(x) ≤ λn follows.

4. Since xTAx = ρ(x)xTBx,

‖(A− σB)x‖2B−1 = ((A− σB)x)TB−1(A− σB)x

= xTATB−1Ax− 2σxTAx + σ2xTBx

= ‖Ax‖2B−1 − (2σρ(x)− σ2)‖Bx‖2B−1

≥ ‖Ax‖2B−1 − |ρ(x)|2‖Bx‖2B−1

Part 2 of Lemma 2.1.1 characterizes the relation between Rayleigh quotient and

the extreme eigenvalues. The renowned Courant-Fischer Minimax Theorem gives us

a more general result.

14

Theorem 2.1.6 (Courant-Fischer Minimax Theorem). Suppose A,B ∈ Rn×n are

symmetric and B > 0 and λ1 ≤ . . . ≤ λn are eigenvalues of (A,B), then

λk = min
dim(S)=k
S⊂Rn

max
x∈S

ρ(x) = max
dim(S)=n−k+1

S⊂Rn

min
x∈S

ρ(x). (2.7)

Proof. We will only show the first part. The proof of the second part is quite similar.

Suppose the eigenvectors corresponding to λ1, . . . , λn are z1, . . . , zn and zTi Bzi =

1, i = 1, . . . , n. And let Sk be the subspace spanned by z1, . . . , zk. By a similar proof

as that of part 2 of Theorem 2.1.1, ρ(x) ≤ λi for any non-zero vector x ∈ Si and the

equality can only be obtained when x is a multiple of zk. Hence

λk ≥ min
dim(S)=k
S⊂Rn

max
x∈S

ρ(x). (2.8)

Let S be an arbitrary subspace with dim(S) = k and Ck = span{zk, zk+1, . . . , zn}.

Since dim(Ck) = n− k + 1, then Ck ∩ S 6= ∅. Suppose x0 ∈ Ck ∩ S. Then

max
x∈S

ρ(x) ≥ ρ(x0) ≥ min
x∈Ck

ρ(x) ≥ λk.

The last inequality can be proven by a similar proof as that of part 2 of Theorem

2.1.1. Hence

λk ≤ min
dim(S)=k
S⊂Rn

max
x∈S

ρ(x). (2.9)

Combine (2.9) with (2.8), we can obtain the first part of Courant-Fischer min-max

Theorem.

Through Courant-Fischer Minimax Theorem, we can prove the following trace-

minimization theorem.

Corollary 2.1.1. Suppose A,B ∈ Rn×n are symmetric matrices with B > 0 and

U = [u1, . . . ,uK] is the solution to the minimization problem

min
X

tr(XTAX)

s.t. XTBX = I, X ∈ Rn×k.

(2.10)

Then the columns of U are eigenvectors associated with the k smallest eigenvalues of

the definite pencil (A,B).

15

In part 4 of Lemma 2.1.1, note that

‖Ax‖2B−1 − |ρ(x)|2‖Bx‖2B−1 = ‖(A− ρ(x)B)x‖2B−1 ,

and ‖(A−σB)x‖2B−1 can obtain its minimum if and only if σ = ρ(x). In other words,

the best estimation to an eigenvalue in a subspace spanned by a single vector x is

given by the Rayleigh quotient of x and the residual Ax − ρ(x)Bx is orthogonal to

x. This fact inspires a so-called Rayleigh-Ritz method to obtain estimations to the

eigenpairs of (A,B), which is presented in Algorithm 2.1.

Algorithm 2.1 Rayleigh-Ritz method

1: Input: Two symmetric matrices A,B ∈ Rn×n with B > 0, a subspace Sm with
dimension m.

2: Output: Approximate eigenpairs (θi,hi), i = 1, . . . ,m.
3: Find a basis Zm of Sm.
4: Form Am = ZT

mAZm and Bm = ZT
mBZm.

5: Find the eigenpairs (θi,yi), i = 1, . . . ,m of (Am,Bm).
6: hi = Zmyi, i = 1, . . . ,m.

Given a subspace S, Rayleigh-Ritz method finds (θ, h) with θ ∈ R and h ∈ S

such that the following Galerkin condition is satisfied:

Ah− θBh ⊥ S. (2.11)

Suppose Z is a B-orthonormal matrix whose columns form a basis of S, then (θ,h)

is an eigenpair of ZTAZ. And the approximate eigenpair (θ,Zh) to the eigenprob-

lem of (A,B) is called a Ritz pair of (A,B) with respect to S. The Rayleigh-Ritz

approximations are optimal which can be shown by the following theorem.

Theorem 2.1.7. Let Z ∈ Rn×m whose columns form a basis of a subspace S ⊂ Rn

with ZTBZ = I. Let AS = ZTAZ. Suppose θi(1 ≤ i ≤ m) are eigenvalues of AS

and their corresponding eigenvectors are y1, . . . ,ym. Let hi = Zyi, i = 1, . . . ,m and

H = [h1, . . . ,hm]. Then (θi,hi), i = 1, . . . ,m are the best approximations in S to the

eigenpairs of (A,B) in the sense that they optimize

m∑
i=1

‖Axi − µiBxi‖2B−1

over all xi ∈ S and xTi Bxj = δij where δij is the Kronecker delta.

16

The proof of the above theorem follows the reduction of (A,B) to the standard

eigenvalue problem of L−1A(LT)−1 where L is the Cholesky factor of B. For complete

proof, see [67].

2.1.3 Krylov subspace method

The computation of all the eigenpairs of a symmetric matrix A has been well-

studied in the past few decades. Most of the algorithms first reduce A to a tridiagonal

matrix and compute its eigenvalue decomposition thereafter. All of those algorithms

can be applied to the generalized eigenvalue problem of the definite pencil (A,B) by

first reducing it to the standard eigenvalue problem. We refer the interested readers

to [67, 71, 89] for a complete review. However, in some cases such as (A,B) are large

and sparse, the computation of all eigenpairs is inefficient and even infeasible. We

need to consider an alternative way to compute a few extreme eigenpairs of (A,B).

From the previous discussion, Rayleigh-Ritz method provides us a way to achieve

this goal by considering an orthogonal projection of (A,B) onto a subspace S to find

approximate eigenpairs. Based on Rayleigh-Ritz method, we can iteratively refine the

subspace S to obtain better and better approximations to the eigenpairs of (A,B).

Krylov subspace methods are a class of methods which extract approximations

from a specific subspace of the form

Km(A,x) := span{x,Ax, . . . ,Amx}.

where m > 0 is preselected. Km(A,x) is referred as a Krylov subspace.

Krylov subspace methods are popular because they are simple but effective. There

are a few properties of the Krylov subspace Km(A,x) which we list as follows:

Proposition 2.1.1. 1. Scaling: Km(A,x) = Km(σA, τx), σ 6= 0, τ 6= 0 ∈ R.

2. Translation: Km(A,x) = Km(A− σI,x), σ ∈ R.

3. Change of Basis: Km(PAPT ,Px) = PKm(A,x), PTP = I.

4. For each vector v ∈ Km(A, x), it can be written as v = p(A)x, where p is a

polynomial of degree not exceeding m, i.e., p ∈ Pm.

17

5. The Krylov subspace Km(A,x) is of dimension m + 1 if and only if the degree

of the minimal polynomial of x with respect to A is larger than m.

The scaling and translation properties of Krylov subspace Km(A,x) indicate that

there is no loss of generality if we assume |λ1(A)| = |λ−1(A)| = 1. Therefore, as m

is increasing, Km(A,x) is getting closer the eigenvectors associated with the extreme

eigenvalues of A.

Consider the Rayleigh-Ritz method on a symmetric matrix A with Km(A,x). Let

(θi,hi), i = 1, . . . ,m are the Ritz pairs of A in Km(A,x). It is well known that the

bound of |θi − λi| is closely related to the Chebyshev polynomials. Later we will

see that the error bound of inverse-free Krylov subspace method also has a strong

relation with the Chebyshev polynomial.

Part 4 of Proposition 2.1.1 shows that the dimension of Km(A,x) is usually m+1.

Though {x,Ax, . . .Amx} is a basis of Km(A,x), we rarely use that in practice since

the basis would be ill-conditioned as Akx would converge to the dominant eigenvec-

tor of A. Suppose a suitable basis Zm has been obtained for Km(A,x), then the

Krylov subspace methods will extract the desired Ritz pairs from the projected pen-

cil (ZT
mAZm,Z

T
mBZm). There are various methods of forming basis of the Krylov

subspace Km(A,x), of which two well-known methods are Lanczos and Arnoldi algo-

rithms. We shall discuss them in details later.

Given an inner product 〈·, ·〉 defined in Rn and its induced norm ‖·‖, the Arnoldi al-

gorithm constructs an orthonormal basis for Km(A,x) by the modified Gram-Schmidt

process. The Arnoldi process is shown in Algorithm 2.2.

The Arnoldi process breaks down when the computed vector w at step j vanishes.

In that case, the subspace Kj(A,x) is an invariant subspace of A and the Ritz pair

of A on Kj(A,x) is the exact eigenpair.

Let Hm = [hj,i] be the Hessenberg matrix obtained in Algorithm 2.2. Then

AZm = ZmHm + hm+1,mzm+1e
T
m+1. (2.12)

ZT
mAZm = Hm (2.13)

where em+1 is the unit vector with 1 on its (m+ 1)-th entry.

18

Algorithm 2.2 Arnoldi Algorithm

1: Input: A ∈ Rn×n, a non-zero vector x ∈ Rn.
2: Output: Zm = [z0, . . . , zm] ∈ Rn×(m+1).
3: z0 = x/‖x‖;
4: for i = 0 : (m− 1) do
5: w = Azi;
6: for j = 1 : i do
7: hj,i = 〈zj,w〉;
8: w = w − hj,izj;
9: end for

10: hi+1,i = ‖w‖
11: if hi+1,i = 0 then
12: break;
13: end if
14: zi+1 = w/hi+1,i.
15: end for

It remains to show that z0, . . . zm indeed forms a basis of Km(A,x).

Proposition 2.1.2. {z0, . . . zm} is a basis of Km(A,x).

Proof. The Algorithm 2.2 is a form of modified Gram-Schmidt orthogonalization

process whereby a new vector Azi is formed and then orthogonalized against all

previous zj. Then the vectors z0, . . . , zm are orthonormal by construction. They

span Km(A,x) can be proved by induction. Clearly, it is true when i = 1. Suppose

{z0, . . . , zi} span Ki(A,x). We have

hi+1,izi+1 = Azi −
j∑
j=0

hj,izj.

Therefore zi+1 ∈ span{z0, . . . , zi,Azi} = Kj+1(A,x).

At last, we notice that there will be loss of orthogonality in the process of Algo-

rithm 2.2 if m is large. In that case, reorthogonalization is necessary to improve the

numerical stability of the algorithm.

In the context of computing a few eigenvalues of the definite pencil (A,B), we may

want to construct a B-orthonormal basis for the Krylov subspace Km(A,x). So we

can apply the Arnoldi algorithm with the inner product defined by 〈x,y〉B := xTBy.

19

The Arnoldi process can be further simplified if the matrix A is symmetric in the

sense of the inner product 〈·, ·〉, i.e., 〈x,Ay〉 = 〈ATx,y〉 for all x,y ∈ Rn. In that

case, Hm obtained in (2.13) is tri-diagonal and Algorithm 2.2 can be simplified to the

so-called Lanczos algorithm. We summarize it as follows:

Algorithm 2.3 Lanczos Algorithm

1: Input: A ∈ Rn×n, a non-zero vector x ∈ Rn.
2: Output: Zm = [z0, . . . , zm] ∈ Rn×(m+1).
3: z0 = x/‖x‖, β0 = 0, z0 = 0;
4: for i = 0:(m-1) do
5: w = Azi;
6: w = w − βizi−1;
7: αi = 〈w, zi〉;
8: w = w − αizi;
9: βi+1 = ‖w‖;

10: if βi+1 = 0 then
11: break;
12: end if
13: zi+1 = w/βi+1.
14: end for

For more discussions in Lanczos algorithm, see [67, 19, 71]

2.1.4 Deflation

Suppose the ` smallest eigenvalues λ1 ≤ . . . ≤ λ` of definite pencil (A,B) and

corresponding eigenvectors v1, . . .v` have been computed, the rest of the eigenvalues

and corresponding eigenvectors are λ`+1, . . . , λn and v`+1, . . . ,vn. Assume V` =

[v1, . . . ,v`] and Λ` = diag(λ1, . . . , λ`) with VT
` BV` = I and AV` = BV`Λ`. A

technique of computing the next eigenvalue λ`+1 is called deflation. The two most

commonly used deflation methods are Wielandt deflation and deflation by restriction

[71, 67].

The idea of Wielandt deflation is to shift the spectrum by subtracting a rank `

matrix from the A such that the desired eigenvalue λ` is shifted to be the smallest

eigenvalue of the new matrix pencil. It is shown in the following theorem.

20

Theorem 2.1.8. Let Σ = diag{λi − αi}(1 ≤ i ≤ `) with αi any value chosen to be

greater than λ`+1. Then the eigenvalues of

(A`,B) := (A− (BV`)Σ(BV`)
T ,B) (2.14)

are the union of α1, . . . , α` and λ`+1, . . . λn.

Proof. For 1 ≤ i ≤ ` and let ei ∈ R` be the unit vector with 1 on its i-th entry,

A`vi = (A− (BV`)Σ(BV`)
T)vi

= Avi − (BV`)Σei

= Avi − (λi − αi)Bvi

= αiBvi

For ` + 1 ≤ i ≤ n, since VT
` Bvi = 0, then A`vi = Avi = λiBvi. Therefore,

the eigenvalues of (A`,B) are α1, . . . , α` and λ`+1, . . . , λn. Therefore, the smallest

eigenvalue is λ`+1 given that αi are greater than λ`+1.

The inverse-free preconditioned Krylov subspace method [32, 62] uses Wielandt

deflation to compute additional eigenvalues.

The basic idea of deflation by restriction is to orthogonalize the approximate eigen-

vectors against the computed eigenvectors from time to time, which is equivalent to

computing the eigenvalues of the restriction of the pencil (A,B) on an invariant sub-

space which is B-orthogonal to the space spanned by the computed eigenvectors. For

example, at some step of an iterative method, instead of computing the eigenvalues

of (A,B) in the subspace S, we consider the eigenvalue problem of (A,B) in the

subspace (I−V`V
T
` B)S.

The deflation by restriction is widely used with many iterative methods but they

do not share a standard form. The implicitly Arnoldi algorithm [50, 51, 49] employs an

elaborate deflation technique with the so-called locking and purging technique. The

Jacobi-Davidson method [74, 75] incorporates it with partial Schur decomposition.

21

2.2 Inverse-free preconditioned Krylov subspace method with deflation

by restriction

In this section, we introduce the inverse-free preconditioned Krylov subspace

method first. Then we incorporate it with a deflation by restriction method. We

prove the additional eigenvalues computed by the method have the same convergence

behavior as the extreme ones. We consider real matrices in this section, but all can

be generalized to complex matrices in a trivial way

2.2.1 Inverse-free preconditioned Krylov subspace method

The inverse-free precondioned Krylov subspace method of [32] is a Krylov subspace

projection method that computes the smallest (or the largest) eigenvalues of (2.2).

The method is based on an inner-outer iteration that does not require the inversion

of B or any shifted matrix A− λB.

Given a vector x, the Rayleigh quotient ρ(x) = (xTAx)/(xTBx) is the best ap-

proximation to an eigenvalue in the sense that α = ρ(x) minimizes the 2-norm of

the residual Ax − αBx. Since r = 2(Ax − ρ(x)Bx)/xTBx is the gradient of ρ(x)

(Part 3 of Lemma 2.1.1), the well-known steepest descent method aims to minimize

the Rayleigh quotient over span{x, r}. Noticing that it can be viewed as a Rayleigh-

Ritz orthogonal projection method on the Krylov subspace K1(A − ρ(x)B,x) =

span{x, (A − ρ(x)B)x}, the inverse-free Krylov subspace method improves this by

considering the Rayleigh-Ritz orthogonal projection on a larger Krylov subspace

Km(A − ρ(x)B,x) = span{x, (A − ρ(x)B)x, . . . , (A − ρ(x)B)mx}. Namely, assume

that xk is the approximate eigenvector at step k in an iterative procedure of finding

the smallest eigenvalue of the pair (A,B), [32] obtains a new approximation through

the Rayleigh-Ritz orthogonal projection on

Km(A− ρkB,xk) = span{xk, (A− ρkB)xk, . . . , (A− ρkB)mxk}

where

ρk = ρ(xk) =
xTkAxk
xTkBxk

(2.15)

22

and m is a parameter to be chosen. Suppose Zm is a matrix whose columns are

basis vectors of Km(A − ρkB,xk). Let Am = ZT
m(A − ρkB)Zm and Bm = ZT

mBZm.

The smallest eigenvalue µ1 of (Am,Bm) and a corresponding eigenvector h can be

obtained by any state-of-the-art eigensolver. Then the new approximation xk+1 is

xk+1 = Zmh (2.16)

and, correspondingly, the Rayleigh quotient

ρk+1 = ρk + µ1 (2.17)

is a new approximate eigenvalue. The choices of Zm are not unique and it can be

constructed by either the Lanczos method or the Arnoldi method with the B-inner

product; see [32] for a more detailed discussion. Throughout this paper, we will only

consider the case when the columns of Zm are B-orthonormal, i.e. ZT
mBZm = I. Then

the basic procedure of inverse-free Krylov subspace method is given in Algorithm 2.4.

Algorithm 2.4 Inverse-free Krylov subspace method for (A,B)

1: Input: m ≥ 1 and an initial approximate eigenvector x0 with ‖x0‖ = 1;
2: Output: (ρk,xk)
3: ρ0 = ρ(x0);
4: for k = 0, 1, 2, . . . until convergence do
5: Construct a B-orthonormal basis Zm = [z0, z1, . . . , zm] for Km(A− ρkB,xk);
6: Form Am = ZT

m(A− ρkB)Zm;
7: Find the smallest eigenpair (µ1,h) of Am;
8: ρk+1 = ρk + µ1 and xk+1 = Zmh.
9: end for

The following theorem states that Algorithm 2.4 always converges to an eigenpair

of (A,B).

Theorem 2.2.1. ([32, Proposition 3.1 and Theorems 3.2]) Let λ1 be the smallest

eigenvalue of (A,B) and (ρk,xk) be the eigenpair approximation of Algorithm 2.4 at

step k. Then

1. λ1 ≤ ρk+1 ≤ ρk;

2. ρk converges to some eigenvalue λ̂ of (A,B) and ‖(A− λ̂B)xk‖ → 0.

23

Theorem 2.2.1 shows that xk in Algorithm 2.4 always converges in direction to an

eigenvector of (A,B). Through a local analysis, we have that Algorithm 2.4 converges

linearly under some conditions with a rate bounded below.

Theorem 2.2.2. ([32, Theorems 3.4]) Let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of

(A,B). Let (ρk+1,xk+1) be the approximate eigenpair obtained by Algorithm 2.4 at

step k + 1 from (ρk,xk). Let σ1 < σ2 ≤ · · · ≤ σn be the eigenvalues of A− ρkB and

u1 be a unit eigenvector corresponding to σ1. Assume λ1 < ρk < λ2. Then

ρk+1 − λ1 ≤ (ρk − λ1)ε2m + 2(ρk − λ1)3/2εm
(
‖B‖
σ2

) 1
2

+O
(
(ρk − λ1)2

)
(2.18)

where

εm = min
p∈Pm,p(σ1)=1

max
i 6=1
|p(σi)|

and Pm denote the set of all polynomials of degree not greater than m.

Theorem 2.2.2 shows that ρk converges at least at the rate of ε2m which is bounded

in terms of σi as

εm ≤ 2

(
1−
√
φ

1 +
√
φ

)m
with φ =

σ2 − σ1
σn − σ1

.

It illustrates an interesting fact that the speed of convergence of ρk depends on the dis-

tribution of eigenvalues of A−ρkB rather than those of (A,B). It leads to some equiv-

alent transformations of the problem, called preconditioning, that changes the spec-

trum of A−ρkB to accelerate the convergence of Algorithm 2.4. In particular, suppose

λ1 < ρk < λ2 and let A − ρkB = LkDkL
T
k be the LDLT factorization with Dk =

diag{−1, 1, . . . , 1}. Then the transformed pair (Âk, B̂k) ≡ (L−1k AL−Tk ,L−1k BL−Tk)

will have the same eigenvalues as (A,B) and the convergence of Algorithm 2.4 will

depend on the spectral gap of L−1k (A − ρkB)L−Tk in which case εm = 0. Then, by

Theorem 2.2.2, the preconditioned Algorithm converges quadratically. However, this

is an ideal situation since we assume a complete LDLT factorization and Lk is com-

puted for each iteration which is not practical. In practice, we use an approximate

LDLT factorization through an incomplete factorization for example. This usually

leads to a small εm and hence accelerates convergence; see [32] for more discussions.

24

2.2.2 Deflation by restriction

Algorithm 2.4 computes the smallest eigenvalue of (A,B) only. When the smallest

eigenvalue has been computed, we can use a deflation procedure to compute addi-

tional eigenvalues. While both the deflation by restriction method and the Wielandt

deflation can be used in most other iterative methods, the Wielandt deflation is the

only one that can be directly used for Algorithm 2.4. The process as presented in [62]

is given in Theorem 2.1.8. Since λ`+1 is the smallest eigenvalue of (A`,B) in (2.14),

Algorithm 2.4 will converge to λ`+1 under the conditions of Theorem 2.2.2.

As discussed in the introduction, the Wielandt deflation changes the structure of

the problem and this may be undesirable in certain applications such as the singular

value computations (see Chapter 3 and [55]). In such problems, it is of interest to

consider the deflation by restriction, namely, by projecting the subspaces involved

to the B-orthogonal complement of V` := span{v1, · · · ,v`}. This can be done by

simply using (I −V`V
T
` B)Km(A − ρkB,xk), but this does not lead to a convergent

algorithm. Also note that, Km(A − ρkB, (I − V`V
T
` B)xk) may not be in the B-

orthogonal complement of V`. A more appropriate approach is to apply the projection

on the matrix or on every step of the basis construction; namely we use Km((I −

V`V
T
` B)(A − ρkB), (I −V`V

T
` B)xk); This also changes subspaces and the existing

convergence theory does not apply. However, it has been observed numerically in

Section 3.4 that such a deflation scheme appears to work in practice.

In this section, we formulate a deflation by restriction method for the inverse-free

Krylov subspace method (Algorithm 2.4) and present a convergence theory that gen-

eralizes the convergence results of Section 2. We first state the deflation by restriction

method in the following algorithm.

The difference of this algorithm from the standard one (Algorithm 2.4) is the use

of the projected Krylov subspace Km(PV(A − ρkB),xk) where PV = I − V`V
T
` B.

We can easily show by induction that PVxk = xk for all k. Then

Km(PV(A− ρkB),xk) = Km(PV(A− ρkB)PV,xk).

However, since the columns of V` are generally not eigenvectors of A − ρkB (when

25

Algorithm 2.5 Inverse-free Krylov subspace method with deflation by restriction

1: Input: V` = [v1, · · · ,v`] satisfying Avi = λiBvi (for 1 ≤ i ≤ l) and VT
` BV` = I;

m and x0 with ‖x0‖ = 1 and VT
` Bx0 = 0;

2: ρ0 = ρ(x0);
3: for k = 0, 1, 2, . . . until convergence do
4: Construct a basis {z1, z2, . . . , zm} for Km((I−V`V

T
` B)(A− ρkB),xk);

5: Am = ZT
m(A− ρkB)Zm and Bm = ZT

mBZm where Zm = [z1, z2, . . . , zm];
6: Find the smallest eigenvalue µ1 and a unit eigenvector v for (Am,Bm);
7: ρk+1 = ρk + µ1 and xk+1 = Zmv.
8: end for

B 6= I), PV(A − ρkB)PV does not lead to a deflated operator (i.e. a spectral

restriction of A−ρkB). Indeed, with PV a B-orthogonal projection, PV(A−ρkB)PV

is not even symmetric. However, the following lemma expresses the Krylov subspace

as one generated by a symmetric matrix, which is key in our analysis of Algorithm

2.5.

Lemma 2.2.1. Let V` = [v1, · · · ,v`] be such that Avi = λiBvi (for 1 ≤ i ≤ l) and

VT
` BV` = I. Let PV = I−V`V

T
` B. Then we have

(A− ρkB)PV = PT
V(A− ρkB) (2.19)

and for any xk with PVxk = xk,

Km(PV(A− ρkB),xk) = PVKm(PT
V(A− ρkB)PV,xk). (2.20)

Proof. First we have AV` = BV`Λ, where Λ = diag{λ1, · · · , λ`}. Then VT
` A =

ΛVT
` B. It follows that

PT
V(A− ρkB) = (A− ρkB)− (BV`V

T
` A− ρkBV`V

T
` B)

= (A− ρkB)− (BV`ΛVT
` B− ρkBV`V

T
` B)

= (A− ρkB)− (AV`V
T
` B− ρkBV`V

T
` B)

= (A− ρkB)PV,

which proves (2.19). From this and P2
V = PV, we have

PT
V(A− ρkB)PV = (A− ρkB)PVPV = (A− ρkB)PV.

26

Thus, it follows from PVxk = xk that for all i = 1, · · · ,m− 1,

(PV(A− ρkB))ixk = (PV(A− ρkB))iPVxk

= PV((A− ρkB)PV)ixk

= PV(PT
V(A− ρkB)PV)ixk.

Hence Km(PV(A− ρkB),xk) = PVKm(PT
V(A− ρkB)PV,xk).

With the above characterization of the projection subspace used in Algorithm 2.5,

the convergence properties described in Section 2 can be generalized following similar

lines of proofs in [32, Theorem 3.2] with careful analysis of some subtle effects of the

projection that are highly nontrivial. We first present a generalization of the global

convergence result (Theorem 2.2.1).

Theorem 2.2.3. Let V` = [v1, · · · ,v`] be such that Avi = λiBvi (for 1 ≤ i ≤ l) and

VT
` BV` = I. Let λ`+1 ≤ λ`+2 ≤ · · · ≤ λn together with λ1, · · · , λ` be the eigenvalues

of (A,B). Let (ρk,xk) be the eigenpair approximation obtained at step k of Algorithm

2.5 with V`. Then

λ`+1 ≤ ρk+1 ≤ ρk.

Furthermore, ρk converges to some eigenvalue λ̂ ∈ {λ`+1, · · · , λn} of (A,B) and

‖(A− λ̂B)xk‖ → 0 (i.e., xk converges in direction to a corresponding eigenvector).

Proof. From Algorithm 2.5, we have

ρk+1 = ρk + min
w∈W,w 6=0

wT (A− ρkB)w

wTBw
= min

w∈W

wTAw

wTBw

where W = Km(PV(A − ρkB),xk) and PV = I −V`V
T
` B. Since xk ∈ W , we have

ρk+1 ≤ ρk. On the other hand, it follows from Lemma 2.2.1 thatW = PVKm(PT
V(A−

ρkB)PV,xk) ⊂ R(PV) . Then

ρk+1 ≥ min
VT
` Bw=0,w 6=0

wTAw

wTBw
= λ`+1.

It follows that ρk is convergent. Since {xk} is bounded, there is a convergent subse-

quence {xnk}. Let

lim ρk = λ̂, and lim xnk = x̂.

27

Write r̂ = (A− λ̂B)x̂. Then it follows from xTk (A− ρkB)xk = 0 that

x̂T r̂ = x̂T (A− λ̂B)x̂ = 0.

Suppose now r̂ 6= 0. Using Lemma 2.2.1 and the fact that PVx̂ = x̂ which follows

from PVxk = xk, we obtain

PT
Vr̂ = PT

V(A− λ̂B)x̂ = (A− λ̂B)PVx̂ = (A− λ̂B)x̂ = r̂. (2.21)

We now show that x̂ and PVr̂ are linearly independent. If they are linearly dependent,

we have PVr̂ = γx̂ for some scaler γ. Then by (2.21), r̂TPVPT
Vr̂ = r̂TPVr̂ = γr̂T x̂ =

0. Thus PT
Vr̂ = 0 or by (2.21) again, r̂ = 0, which is a contradiction. Therefore, x̂

and PVr̂ are linearly independent. We next consider the projection of (A,B) onto

span{x̂,PVr̂} by defining

Â = [x̂,PVr̂]TA[x̂,PVr̂] and B̂ = [x̂,PVr̂]TB[x̂,PVr̂].

Clearly, B̂ > 0. Furthermore,

Â− λ̂B̂ =

 O r̂TPVr̂

r̂TPT
Vr̂ r̂TPT

V(A− λ̂B)PVr̂


is indefinite because, by (2.21), r̂TPVr̂ = (PT

Vr̂)T r̂ = r̂T r̂ 6= 0. Thus the smallest

eigenvalue of (Â, B̂), denoted by λ̃, is less than λ̂, i.e.

λ̃ < λ̂. (2.22)

Furthermore, let rk = (A− ρkB)xk,

Âk = [xk,PVrk]
TA[xk,PVrk] and B̂k = [xk,PVrk]

TB[xk,PVrk].

Let λ̃k+1 be the smallest eigenvalue of (Âk, B̂k). Clearly, as nk →∞, Ânk → Â and

B̂nk → B̂. Hence by the continuity property of the eigenvalue, we have

λ̃nk+1 → λ̃.

On the other hand, ρk+1 is the smallest eigenvalue of the projection of (A,B) on

Km = span{xk,PV(A− ρkB)xk, · · · , (PV(A− ρkB))mxk}, which implies

ρk+1 ≤ λ̃k+1.

28

Finally, combining the above together, we have obtained

λ̃ = lim λ̃nk+1 ≥ lim ρnk+1 = λ̂

which is a contradiction to (2.22). Therefore, r̂ = (A − λ̂B)x̂ = 0, i.e. λ̂ is an

eigenvalue and ‖(A− λ̂B)xnk‖ → 0.

Now, to show ‖(A − λ̂B)xk‖ → 0, suppose there is a subsequence mk such that

‖(A − λ̂B)xmk‖ ≥ α > 0. From the subsequence mk, there is a subsequence nk for

which xnk is convergent. Hence by virtue of the above proof, ‖(A − λ̂B)xnk‖ → 0,

which is a contradiction. Therefore ‖(A−λ̂B)xk‖ → 0, i.e. xk approaches in direction

an eigenvector corresponding to λ̂. Since xk is B-orthogonal to {v1, · · · ,v`}, we have

λ̂ ∈ {λ`+1, · · · , λn}. This completes the proof.

Next we present a lemma and then our main result concerning local linear con-

vergence of ρk that generalizes Theorem 2.2.2.

Lemma 2.2.2. Let V` = [v1, · · · ,v`] be such that Avi = λiBvi (for 1 ≤ i ≤ `) and

VT
` BV` = I and let PV = I−V`V

T
` B and V` = span{v1, · · · ,v`}. Let λ`+1 < λ`+2 ≤

· · · ≤ λn together with λ1, · · · , λ` be the eigenvalues of (A,B). Let (ρk,xk) be the

eigenpair approximation obtained at step k of Algorithm 2.5 with V` and assume that

λ`+1 ≤ ρk < λ`+2. Let PT
V(A − ρkB)PV = WSWT be the eigenvalue decomposition

of PT
V(A − ρkB)PV where S = diag{0, 0, · · · , 0, s`+1, · · · , sn} with s`+1 ≤ s`+2 ≤

· · · ≤ sn, and W = [w1, · · · ,w`,w`+1, · · · ,wn] with wi ∈ V` (for i = 1, · · · , `), and

wi ⊥ V` (for i = `+ 1, · · · , n). Then we have s`+1 ≤ 0 < s`+2, PVw`+1 6= 0 and

|s`+1|
wT
`+1P

T
VBPVw`+1

≤ ρk − λ`+1. (2.23)

Furthermore, ρk → λ`+1 and

s`+1

wT
`+1P

T
VBPVw`+1

= (λ`+1 − ρk) +O((λ`+1 − ρk)2). (2.24)

Proof. First, by Theorem 2.2.3 and the assumption λ`+1 ≤ ρk < λ`+2, we have the

convergence of ρk to λ`+1.

29

Let Ṽ = [v`+1,v`+2, · · · ,vn] be such that Avi = λiBvi (for ` + 1 ≤ i ≤ n) and

ṼTBṼ = I. Let V = [V`, Ṽ] and PVV = [PVV`,PVṼ] = [O, Ṽ] and hence

VTPT
V(A− ρkB)PVV =

 O O

O ṼT (A− ρkB)Ṽ

 =

 O O

O Λ̃− ρkI


where ṼT (A − ρkB)Ṽ = ṼTBṼ(Λ̃ − ρkI) = Λ̃ − ρkI and Λ̃ = diag{λ`+1, · · · , λn}.

By Sylvester’s law of inertia and λ`+1 − ρk ≤ 0 < λ`+2 − ρk, PT
V(A − ρkB)PV has

exactly n− `−1 negative, ` zero, and 1 nonpositive eigenvalues, i.e., s`+1 ≤ 0 < s`+2.

Let w̃`+1 = PVw`+1 and suppose w̃`+1 = 0. Then w`+1 = V`V
T
` Bw`+1 ∈ V`.

This implies w`+1 = 0 as w`+1 ⊥ V`. This is a contradiction. Therefore, w̃`+1 6= 0.

Furthermore, w̃`+1 ⊥B V`, i.e. VT
` Bw̃`+1 = 0. Then

λ`+1 = min
VT
` Bw=0,w 6=0

wTAw

wTBw

≤
w̃T
`+1Aw̃`+1

w̃T
`+1Bw̃`+1

= ρk +
w̃T
`+1(A− ρkB)w̃`+1

w̃T
`+1Bw̃`+1

= ρk +
wT
`+1P

T
V(A− ρkB)PVw`+1

w̃T
`+1Bw̃`+1

= ρk +
s`+1

wT
l+1P

T
VBPVwl+1

.

where we have used PT
V(A − ρkB)PVw`+1 = s`+1w`+1 in the last equation. This

proves (2.23).

Finally, to prove the asymptotic expansion, let s(t) be the smallest eigenvalue of

PT
V(A− tB)PV. Then s(ρk) = s`+1. It is easy to check that s(λ`+1) = 0. Using the

analytic perturbation theory, we obtain s′(ρk) = −w̃T
`+1Bw̃`+1 and hence

s(t) = s(ρk) + s′(ρk)(t− ρk) +O((t− ρk)2)

= s`+1 − w̃T
`+1Bw̃`+1(t− ρk) +O((t− ρk)2)

Choosing t = λ`+1, we have

0 = s(λ`+1) = s`+1 − w̃T
`+1Bw̃`+1(λ`+1 − ρk) +O((λ`+1 − ρk)2)

from which the expansion follows.

30

Theorem 2.2.4. Let V` = [v1, · · · ,v`] be such that Avi = λiBvi (for 1 ≤ i ≤ l)

and VT
` BV` = I and write PV = I − V`V

T
` B and V` = span{v1, · · · ,v`}. Let

λ`+1 < λ`+2 ≤ · · · ≤ λn together with λ1, · · · , λ` be the eigenvalues of (A,B). Let

(ρk,xk) be the eigenpair approximation obtained at step k of Algorithm 2.5 with V`

and assume that λ`+1 ≤ ρk < λ`+2. Let PT
V(A−ρkB)PV = WSWT be the eigenvalue

decomposition of PT
V(A − ρkB)PV where S = diag{0, 0, · · · , 0, s`+1, · · · , sn} with

s`+1 ≤ s`+2 ≤ · · · ≤ sn, and W = [w1, · · · ,w`,w`+1, · · · ,wn] with wi ∈ V` (for

i = 1, · · · , `), and wi ⊥ V` (for i = `+ 1, · · · , n). Then ρk converges to λ`+1 and

ρk+1 − λ`+1 ≤ (ρk − λ`+1)ε
2
m + 2(ρk − λ`+1)

3/2εm

(
‖B‖
s`+2

)1/2

+ δk, (2.25)

where

0 ≤ δk := ρk − λ`+1 +
s`+1

wT
`+1P

T
VBPVw`+1

= O((ρk − λ`+1)
2)

and

εm = min
p∈Pm,

p(s`+1)=1

max
i≥1
|p(s`+i)|

with Pm denoting the set of all polynomials of degree not greater than m.

Proof. First, it follows from Lemma 2.2.2 that ρk converges to λ`+1, s`+1 ≤ 0 < s`+2

and PVw`+1 6= 0.

Let H̃k := PT
V(A − ρkB)PV. From Lemma 2.2.1, Km(PV(A − ρkB),xk) =

PVKm(H̃k,xk) = {PVp(H̃k)xk, p ∈ Pm}. At step k of the algorithm, we have

ρk+1 = min
u∈Km(PV(A−ρkB),xk),

u 6=0

uTAu

uTBu

= ρk + min
u∈Km(PV(A−ρkB),xk),

u 6=0

uT (A− ρkB)u

uTBu

= ρk + min
p∈Pm,

PVp(H̃k)xk 6=0

xTk p(H̃k)P
T
V(A− ρkB)PVp(H̃k)xk

xTk p(H̃k)PT
VBPVp(H̃k)xk

= ρk + min
p∈Pm,

PVp(H̃k)xk 6=0

xTk p(H̃k)H̃kp(H̃k)xk

xTk p(H̃k)(PT
VBPV)p(H̃k)xk

Let q be the minimizing polynomial in εm with q(s`+1) = 1 and maxi≥l+2 |q(si)| =

εm < 1. Let

Ŝ = diag[s`+1, · · · , sn] and Ŵ = [w`+1, · · · ,wn].

31

Then W = [V`T,Ŵ] for some T ∈ R`×n. Since xTk H̃kxk = xTk (A − ρkB)xk = 0

and xTk H̃kxk = xTkWSWTxk =
∑n

i=`+1 si(w
T
i xk)

2 with si > 0 for i ≥ ` + 2, we

have wT
`+1xk 6= 0. Hence PVq(H̃k)xk = PVWq(S)WTxk = [0,PVŴ]q(S)WTxk 6= 0

where we note that VT
` Ŵ = 0 and hence PVŴ has full column rank. Let B1 =

ŴTPT
VBPVŴ and y = ŴTxk. Then

ρk+1 ≤ ρk +
xTk q(H̃k)H̃kq(H̃k)xk

xTk q(H̃k)(PT
VBPV)q(H̃k)xk

= ρk +
xTkWq(S)Sq(S)WTxk

xTkWq(S)WTPT
VBPVWq(S)WTxk

= ρk +
xTk Ŵq2(Ŝ)ŜŴTxk

xTk Ŵq(Ŝ)ŴTPT
VBPVŴq(Ŝ)ŴTxk

= ρk +
yT q2(Ŝ)Ŝy

yT q(Ŝ)B1q(Ŝ)y
. (2.26)

where we have used

Wq(S)Sq(S)WT = Ŵq2(Ŝ)ŜŴT

and

PVWq(S)WT = [O,PVŴ]q(S)WT = PVŴq(Ŝ)ŴT .

Let y = [y1,y2, . . . ,yn−`]
T , ŷ = [0,y2, . . . ,yn−`]

T, and e1 = [1, 0, . . . , 0]T ∈ Rn−`.

Then,

yT q(Ŝ)B1q(Ŝ)y = (y1e1 + ŷ)T q(Ŝ)B1q(Ŝ)(y1e1 + ŷ)

= y2
1q(s`+1)

2eT1 B1e1 + 2y1q(s`+1)e
T
1 B1q(Ŝ)ŷ + ŷT q(Ŝ)B1q(Ŝ)ŷ

= y2
1β

2
1 + 2y1β2 + β2

3 ,

where β1 ≥ 0, β2 and β3 ≥ 0 are defined such that

β2
1 = eT1 B1e1 = wT`+1P

T
VBPVw`+1,

β2
3 = ŷT q(Ŝ)B1q(Ŝ)ŷ

≤ max
l+1≤i≤n

q(si)
2‖B1‖‖ŷ‖2

= ε2m‖B‖‖ŷ‖2

and

|β2| = |eT1 B1q(Ŝ)ŵ| ≤ β1β3.

32

Since yT Ŝy = xTk ŴŜŴTxk = xTk H̃kxk = 0, we have
∑n−`

i=1 s`+iy
2
i = 0. Then

|s`+1|y2
1 =

n−∑̀
i=2

s`+iy
2
i ≥ s`+2‖ŷ‖2, (2.27)

and hence

β3 ≤ εm‖B‖1/2
(
|s`+1|
s`+2

)1/2

|y1|. (2.28)

On the other hand, we also have

yT q2(Ŝ)Ŝy =
n−∑̀
i=1

s`+iq
2(s`+i)y

2
i ≤

n−∑̀
i=1

s`+iy
2
i = yT Ŝy = 0

and

0 ≤ ŷT q2(Ŝ)Ŝŷ =
n−∑̀
i=2

s`+iq
2(s`+i)y

2
i ≤ ε2m

n−∑̀
i=2

s`+iy
2
i = ε2m|s`+1|y2

1, (2.29)

where we have used that q(s`+1) = 1, |q(s`+i)| ≤ εm < 1 for i > 1 and (2.27). Thus

yT q2(Ŝ)Ŝy

yT q(Ŝ)B1q(Ŝ)y
≤ y2

1s`+1 + ŷT q(Ŝ)2Ŝŷ

y2
1β

2
1 + 2|y1|β1β3 + β2

3

=
s`+1

β2
1

− s`+1

β2
1

2|y1|β1β3 + β2
3

y2
1β

2
1 + 2|y1|β1β3 + β2

3

+
ŷT q(Ŝ)2Ŝŷ

y2
1β

2
1 + 2|y1|β1β3 + β2

3

≤ s`+1

β2
1

− s`+1

β2
1

2|y1|β1β3
y2
1β

2
1

+
ŷT q(Ŝ)2Ŝŷ

y2
1β

2
1

≤ s`+1

β2
1

+ 2

(
|s`+1|
β2
1

)3/2

εm

(
‖B‖
s`+2

)1/2

+
|s`+1|
β2
1

ε2m, (2.30)

where we have used (2.28) and (2.29). Finally, combining (2.26), (2.30), and Lemma 2.2.2,

we have

0 ≤ ρk+1 − λ`+1 ≤ ρk − λ`+1 +
s`+1

β2
1

+ 2(ρk − λ`+1)
3/2εm

(
‖B‖
s`+2

)1/2

+ (ρk − λ`+1)ε
2
m

≤ δk + 2(ρk − λ`+1)
3/2εm

(
‖B‖
s`+2

)1/2

+ (ρk − λ`+1)ε
2
m,

where δk = ρk − λ`+1 + s`+1

β2
1

= O((ρk − λ`+1)
2) by Lemma 2.2.2. The proof is

complete.

33

Remark εm in the theorem can be bounded by the Chebyshev polynomials as

εm ≤
1

Tm

(
1+ψ
1−ψ

) , where ψ =
sl+2 − sl+1

sn − sl+1

(2.31)

and Tm is the Chebyshev polynomial of degree m. This bound can be further simpli-

fied to

εm ≤ 2

(
1−
√
ψ

1 +
√
ψ

)m
(2.32)

to show the dependence on the spectral separation ψ. Thus, the speed of convergence

of the deflation algorithm depends on the spectral gap of the smallest nonzero eigen-

value of PT
V(A − ρkB)PV, rather than that of A − ρkB in the original algorithm.

In particular, this may have a different convergence characteristic from the Wielandt

deflation (2.14).

We also note that for small m, the bound (2.31) may be significantly stronger

than (2.32), but when m is sufficiently large, (2.32) is almost as good as (2.31). It is

also easy to see that, asymptotically, we can use the eigenvalues of PT
V(A−λ`+1B)PV

in the place of s`+1 ≤ s`+2 ≤ · · · ≤ sn without changing the first order term of the

bound; see [32] for more discussions.

As in Section 2.2.1, a congruence transformation can be used in Algorithm 2.5 to

reduce εm to 0 so as to accelerate convergence. Consider the ideal situation that we

compute the LDLT -decomposition of PT
V(A− ρkB)PV = LkDkL

T
k with Dk being a

diagonal matrix of 0 and ±1. Then the congruence transformation

(Âk, B̂k) := (L−1k AL−Tk ,L−1k BL−Tk)

does not change the spectrum of (A,B). Applying Algorithm 2.5 to the transformed

problem, we use

V̂` := LkV`

to construct the projection PV̂ := I − B̂V̂`V̂
T
` , as Âkv̂i = λiB̂kv̂i(1 ≤ i ≤ `) and

V̂T
` B̂kV̂` = I. Then, by Theorem 2.2.4, the convergence rate is determined by the

eigenvalues of PT
V̂

(Â− ρkB̂)PV̂. It is easy to see that

PT
V̂

(Â− ρkB̂)PV̂ = L−1k PT
V(A− ρkB)PVL−Tk = Dk. (2.33)

34

Then at the convergence stage with λl+1 < ρk < λl+2, we have s1 = · · · = sl = 0 and

sl+1 = −1, sl+2 = . . . = sn = 1, which implies, for m ≥ 1, εm = 0, and hence by

Theorem 2.2.4,

ρk − λl+1 ≤ δk = O((ρk − λl+1)
2).

The above is an ideal situation that requires computing the LDLT -decomposition.

In practice, we can use an incomplete LDLT -decomposition of PT
V(A − µB)PV =

LkDkL
T
k with a shift µ ≈ ρk (or λ`+1), which would reduce εm and hence accelerate

convergence.

2.3 Numerical examples

In this section, we present two numerical examples to demonstrate the convergence

properties of the deflation by restriction for the inverse free Krylov subspace method.

All computations were carried out using MATLAB version 8.0.0.783 from MathWorks

on a PC with an Intel quad-core i7-2670QM @ 2.20GHz and 12 GB of RAM running

Ubuntu Linux 12.04. The machine epsilon is u ≈ 2.2 · 10−16.

Our implementation is based on the MATLAB program eigifp of [62]. In par-

ticular, the basis of the projected Krylov subspace is constructed using the Arnoldi

method. In both examples, we compute the three smallest eigenvalues and use the

deflation algorithm in computing the second and the third smallest eigenvalues. The

initial vectors are generated by randn(n,3) and we fix the number of inner iterations

as m = 20. Note that m can be set to be chosen adaptively in eigifp, but here

we consider a fixed m for the demonstration of the convergence bound by εm. The

stopping criterion is set as ‖rk‖ ≤ 10−8, where rk = (Axk − ρkBxk)/‖xk‖.

Example 1. Consider the Laplace eigenvalue problem with the Dirichlet bound-

ary condition on an L-shaped domain. A definite symmetric generalized eigenvalue

problem Ax = λBx is obtained by a finite element discretization on a mesh with

20,569 interior nodes using PDE toolbox of MATLAB. Three iterations of deflation

algorithms are carried out to compute the three smallest eigenvalues and we plot the

convergence history of the residuals ‖rk‖ against the number of iterations for the

35

three eigenvalues λi(1 ≤ i ≤ 3) together in Figure 2.1. To illustrate Theorem 2.2.4,

we also plot in Figure 2.2 the convergence rate (ρk+1 − λi)/(ρk − λi) and compare it

with the upper bound (2.31) of ε2m. For the purpose of simplicity, the bound (2.31)

is computed from the eigenvalues of the projected matrix PT
V(A − λiB)PV. The

top straight lines are the upper bounds of ε2m and the bottom three lines are the

corresponding actual error ratios (ρk+1 − λi)/(ρk − λi).

Number of Iterations
0 5 10 15 20 25 30 35 40 45

‖r
k
‖

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

λ1

λ2

λ3

Figure 2.1: Convergence History of Residuals for three eigenvalues λ1, λ2, λ3

We observe that the deflation algorithm converges indeed linearly and (2.31) pro-

vides a good bound on the rate of convergence. We note that λ1 takes more iterations

overall than the other two eigenvalues. This is due to the use of initial random vector

for λ1, but to compute λ2 and λ3 in the eigifp implementation, initial approximate

eigenvectors are computed from the projection used to compute λ1. As a result, λ2

and λ3 have smaller initial errors, but their overall convergence rates are still com-

36

Number of Iterations
0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ1

λ2

λ3

Figure 2.2: Top: bound ε2m; Bottom: error ratio (ρk+1 − λi)/(ρk − λi).

parable as suggested by their bounds. Finally, we list all the converged eigenvalues,

the number of iterations used to reduce the residuals below the threshold, the CPU

time for computing each eigenvalue, and their final residuals in Table 2.1.

Table 2.1: 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain

λl Number of Iterations CPU Residual ‖rk‖
23.3876 42 3.51 5.50e-09

37.9873 36 3.12 4.76e-09

47.4515 30 2.65 9.98e-09

Example 2. In this example, we consider the deflation algorithm when used

with preconditioning. A and B are the same finite element matrices as in Example

1. For preconditioning, we use a constant L as obtained by the threshold incomplete

LDLT factorization of A−µiB with the drop tolerance 10−2, where the shift µi is an

approximation of the desired eigenvalue λi. We use µ1 = 0 for λ1 and µi = λi−1 for

37

i > 1. Then, the convergence rate is given by εm as determined by the eigenvalues of

L−1PT
V(A− λiB)PVL−T as in (2.31).

As in Example 1, three iterations of deflation algorithms with preconditioning are

carried out to compute the three smallest eigenvalues. We plot the convergence his-

tory of the residuals ‖rk‖ in Figure 2.3 and the convergence rate (ρk+1−λi)/(ρk−λi) as

well as its upper bound (2.31) in Figure 2.4. We also list all the converged eigenvalues,

the number of iterations used to reduce the residuals below the threshold, the CPU

time for computing each eigenvalue (the CPU time for constructing preconditioner is

given in parenthesis), and their final residuals in Table 2.2.

Number of Iterations
0 2 4 6 8 10 12 14 16 18

‖r
k
‖

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

λ1

λ2

λ3

Figure 2.3: Convergence History of Residuals for three eigenvalues λ1, λ2, λ3

We observe that the deflation algorithm with preconditioning converges linearly

and (2.31) provides a very good bound on the rate of convergence. In particular,

with the preconditioning, the convergence bounds are significantly improved and

correspondingly, the actual convergence rates are also improved demonstrating the

38

Number of Iterations
0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ1

λ2

λ3

Figure 2.4: Top: bound ε2m; Bottom: error ratio (ρk+1 − λi)/(ρk − λi).

Table 2.2: 3 smallest eigenvalues of Laplacian eigenvalue problem on L-shaped domain

λl Number of Iterations CPU Residual ‖rk‖
23.3876 18 2.01(0.08) 1.54e-09

37.9873 14 1.65(0.10) 1.73e-09

47.4515 12 1.39(0.10) 7.63e-09

effects of preconditioning.

Copyright c© Qiao Liang, 2015.

39

Chapter 3 An Inverse-free preconditioned Krylov subspace method for

singular values problem

In this chapter, we consider the problem of computing a few singular values of

large matrices.

The Singular Value Decomposition(SVD) is one of the major matrix decomposi-

tions which is used for many different purposes such as total least squares problems,

low-rank matrix approximation. Applications of SVD varies from signal processing to

machine learning. The matrices involved in these applications are usually large and

sparse. Computing a complete SVD of those matrices is very expensive. Fortunately,

only a partial SVD is needed in most cases.

In Section 3.1, we introduce the singular value decomposition and its properties.

We briefly review the existing algorithms for computing a few extreme singular val-

ues of large matrices in Section 3.2. Then we adapt the inverse-free preconditioned

algorithm of [32] for the singular value problem in Section 3.3. The new algorithm,

which we call it svdifp, overcomes diffculites of computing smallest singular values

experienced by other algorithms, such as the Matlab built-in function svds, jdsvd,

irlba, etc. Extensive numerical tests are presented to demonstrate efficiency and

robustness of the new algorithm in Section 3.4.

3.1 Singular value decomposition

The Singular value decomposition(SVD) of a matrix C ∈ Rm×n with m ≥ n. is

defined as

C = UΣVT

where U ∈ Rm×n with UTU = I, V ∈ Rn×n with VTV = I and Σ = diag(σ1, . . . , σn),

where 0 ≤ σ1 ≤ . . . ≤ σn. The columns u1, . . . ,un of U are called left singular vectors.

The columns v1, . . . ,vn are called right singular vectors. The σi are called singular

values. If m < n, the SVD is defined by considering CT . ([19, Theorem 3.2])

40

The singular value decomposition is closely related to the eigendecomposition.

Theorem 3.1.1. ([19, Theorem 3.3])

1. The eigenvalues of the symmetric matrix CTC are σ2
i . The right singular vectors

vi are corresponding orthonormal eigenvectors.

2. The eigenvalues of the symmetric matrix CCT are σ2 and m−n zeros. The left

singular vectors ui are corresponding orthonormal eigenvectors for the eigen-

values σi.

3. The augmented matrix M :=

O CT

C O

 has eigenvalues

−σn ≤ . . . ≤ −σ2 ≤ −σ1 ≤ 0 = . . . = 0︸ ︷︷ ︸
m−n

≤ σ1 ≤ σ2 ≤ . . . ≤ σn

Computing the complete SVD of those matrices is very expensive. In this disser-

tation, our major interest is in partial SVD of large and sparse matrices, so we will

not talk about the compuation of complete SVD. For readers who are interested in

this topic, see ([19, 30]).

3.2 Computations of singular values of large and sparse matrices

Consider the problem of computing a few of extreme (i.e. largest or smallest)

singular values and corresponding singular vectors of C. In this section, we consider

real matrices, but all can be generalized to complex matrices in a trivial way. By

Theorem 3.1.1, most existing numerical methods are based on reformulating the sin-

gular value problem as one of the following two symmetric eigenvalue problems by

Theorem 3.1.1:

σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
n are the eigenvalues of CTC (3.1)

and

−σn ≤ · · · ≤ −σ2 ≤ −σ1 ≤ 0 = · · · = 0︸ ︷︷ ︸
m−n

≤ σ1 ≤ σ2 ≤ · · · ≤ σn

41

are the eigenvalues of the augmented matrix

M =

O CT

C O

 (3.2)

To compute a few extreme singular values of C, we can apply the Lanczos algorithm

(Algorithm 2.3) or the implicitly restarted Lanczos algorithm [76] (ARPACK [49]) to

one of the two formulations ((3.1) and (3.2)) and this can often be done implicitly.

Indeed, several methods have been introduced that exploit the special structure and

the associated properties of these eigenvalue problems.

3.2.1 The Lanczos bidiagonalization method

The Lanczos bidiagonalization method introduced in [29] is a widely used method

for the singular value problems that implicitly applies the Lanczos method to formu-

lation (3.1). A robust implementation called lansvd is provided in PROPACK [47].

The implicit restart strategy has been developed for the Lanczos bidiagonalization

algorithm in [5] and [44], which also include robust MATLAB implementations irlba

and irlanb respectively. Other aspects of the Lanczos bidiagonalization algorithm

are discussed in [12, 38, 80].

These methods, based on the Lanczos algorithm for the eigenvalue problem (3.1),

work well when the corresponding eigenvalue is reasonably well separated. However,

their convergence may be slow if the eigenvalue is clustered, which turns out to be

often the case when computing the smallest singular values through (3.1). Specifically,

for formulation (3.1), the spectral separation for σ2
1 as an eigenvalue of CTC may be

much smaller than the separation of σ1 from σ2 since

σ2
2 − σ2

1

σ2
n − σ2

2

=
σ2 − σ1
σn − σ2

σ1 + σ2
σn + σ2

� σ2 − σ1
σn − σ2

(3.3)

(assuming σ2 � σn). On the other hand, for formulation (3.2), σ1 is an interior

eigenvalue of M, for which a direct application of the Lanczos algorithm does not

usually result in convergence.

42

3.2.2 MATLAB’s routine svds

To compute a few of the smallest singular values, MATLAB’s routine svds ap-

plies ARPACK [49, 76] to the augmented matrix M (3.2) with a shift-and-invert

transformation. This works well for square matrices. However, for computing the

smallest singular value of a non-square matrix, a subtle difficulty arises in using the

shift-and-invert transformation for M because M is singular and, with a shift close

to 0, the method often converges to one of the m − n zero eigenvalues of M rather

than to σ1.

3.2.3 JDSVD

On the other hand, one can avoid the shift-and-invert by considering the Jacobi-

Davidson method on the augmented matrix (3.2) and a method of this type, called

JDSVD, has been developed in [35, 36] that efficiently exploits the block structure

of (3.2). The JDSVD method replaces the shift-and-invert by approximately solving

so-called correction equations using a preconditioned iterative method. When com-

puting σ1 as an interior eigenvalue of the augmented matrix (3.2), the convergence

of JDSVD appears to strongly depend on the quality of the preconditioner for the

correction equation. This demands a good preconditioner for M or M− µI, which is

unfortunately difficult to construct when m 6= n owing to the singularity of M.

3.3 SVDIFP–The proposed algorithm

It appears that the augmented matrix formulation (3.2) has some intrinsic dif-

ficulties when it is used for computing a few of the smallest singular values of a

non-square matrix because of the existence of the zero eigenvalues of M. For this

reason, we propose to reconsider formulation (3.1) in this situation. While formu-

lation (3.1) has the advantage of a smaller dimension in the underlying eigenvalue

problem, a clear disadvantage is that there is no efficient method to carry out the

shift-and-invert transformation (CTC− µI)−1 other than explicitly forming CTC.

43

Note that CTC is typically much denser than C and explicitly computing CTC

may result in loss of accuracy with the condition number being squared. In the case

of µ = 0, which can be used to compute σ1 that is sufficiently close to 0, the inverse

of CTC can be implicitly obtained by computing the QR factorization of C. This

is the approach taken in lansvd of PROPACK [47]. However, since a complete QR

factorization of a sparse matrix may be expensive owing to possible excessive fill-ins of

the zero entries, it will be interesting to study other approaches that use incomplete

factorizations instead. Other drawbacks of (3.1) include the need to compute left

singular vectors when they are required, and the potential loss of accuracy caused

by computing σ2
1 when σ1 is tiny (see Section 3.3.1). In particular, the computed

left singular vectors may have a low accuracy if the singular values are small (see the

discussions in Section 3.3.1).

In this section, we propose to address the small separation of σ2
1 in formulation

(3.1) by considering a preconditioned Krylov subspace method. Specifically, we shall

implicitly apply the inverse-free preconditioned Krylov subspace method of [32] (or its

block version [70]) to A = CTC. As already discussed, the standard shift-and-invert

transformation is not practical for (3.1) as it requires factorization of CTC − µI.

The inverse-free preconditioned Krylov subspace method is an effective way to avoid

the shift-and-invert transformation for computing a few extreme eigenvalues of the

symmetric generalized eigenvalue problem Ax = λBx where A and B are symmetric

with B positive definite. In this method, an approximate eigenvector xk is iteratively

improved through the Rayleigh-Ritz projection on the Krylov subspace

Km(Hk,xk) := span{xk,Hkxk,H
2
kxk, . . . ,H

m
k xk} (3.4)

where Hk := A−ρkB and ρk is the Rayleigh quotient of xk. The projection is carried

out by constructing a basis for the Krylov subspace through an inner iteration, where

the matrices A and B are only used to form matrix-vector products. The method

is proved to converge at least linearly and the rate of convergence is determined by

the spectral gap of the smallest eigenvalue of Hk (rather than the original eigenvalue

problem as in the Lanczos method). An important implication of this property is

44

that a congruence transformation of (A,B) derived from an incomplete LDLT fac-

torization of a shifted matrix A − µB may be applied to reduce the spectral gap of

the smallest eigenvalue of Hk and hence to accelerate the convergence to the extreme

eigenvalue. This is referred to as preconditioning. A block version of this algorithm

has also been developed in [70] to address multiple or severely clustered eigenvalues.

In applying the inverse-free preconditioned Krylov subspace method [32, 70] to

A = CTC, we shall construct directly the projection of C rather than the projection

of CTC used for the eigenvalue problem. In this way, we compute approximation of

σ1 directly from the singular values of the projection of C rather than using the the-

oretically equivalent process of computing approximation of σ2
1 from the projection

of CTC. By computing σ1 directly, we avoid the pitfall of loss of accuracy associated

with computing σ2
1 if σ1 is tiny. On the other hand, the potential difficulty with the

accuracy of the computed left singular vector in this case is intrinsic to the approach of

CTC. An efficient implementation of the inverse-free preconditioned Krylov subspace

method depends on the construction of a preconditioner derived from an incomplete

LDLT factorization of CTC− µI. Constructing a preconditioner for CTC has been

discussed extensively in the literature in the context of solving least squares problems

(see [7, 10, 11, 28, 64, 66, 86]) and one method well suited for our problem is the

robust incomplete factorization (RIF) of [10, 11]. For the shifted matrix CTC− µI,

however, there is no known effective method for computing a factorization without

forming CTC first. It turns out that the robust incomplete factorization (RIF) can

be easily adapted to construct an LDLT factorization of the shifted matrix CTC−µI

without forming CTC. Our numerical testing demonstrates that the RIF precondi-

tioner in combination with the inverse-free preconditioned Krylov subspace method

leads to a very efficient preconditioned algorithm for the singular value problem. Nu-

merical tests demonstrate that it is particularly competitive for computing a few of

the smallest singular values of non-square matrices.

45

3.3.1 An inverse-free preconditioned Krylov subspace method

We consider the singular value problem for an m × n matrix C. We apply Al-

gorithm 2.4 to the eigenvalue problem A = CTC and B = I. However, a direct

application involves computing the eigenvalue ρk of the projection matrix Am, which

converges to σ2
1. One potential difficulty associated with this approach is that ρk

computed this way may have a larger error if σ1 is very small (relative to ‖C‖).

Specifically, if ρ̃k is the computed Ritz value, it follows from the standard backward

error analysis [30] that ρ̃k is the exact eigenvalue of a perturbed matrix Am + Em

with ‖Em‖ = O(u)‖Am‖, where u is the machine precision. Then

|ρ̃k − ρk| ≤ O(u)‖Am‖ ≤ O(u)‖A‖ = O(u)‖C‖2 (3.5)

and

|
√
ρ̃k −

√
ρk| ≤ O(u)‖C‖ ‖C‖√

ρ̃k +
√
ρk
≈ O(u)‖C‖κ(C)/2 (3.6)

where κ(C) = σn/σ1 is the condition number of C. In particular, the relative error

|
√
ρ̃k −

√
ρk|√

ρk
≤ O(u)

‖C‖2
√
ρk(
√
ρ̃k +

√
ρk)
≈ O(u)κ(C)2/2

is proportional to κ(C)2. Thus, very little relative accuracy may be expected if

κ(C) is of order 1/
√

u. In contrast, a backward stable algorithm should produce an

approximation of σ1 with absolute error in the order of O(u)‖C‖ and the relative

error in the order of O(u)κ(C). We note that the above discussion is based on a

worst case upper bound. It is likely pessimistic, particularly in the bound of ‖Am‖,

but it does highlight the potential loss of accuracy when one computes σ1 through

computing σ2
1 (see Example 5.1 in Section 5).

To achieve the desired backward stability, we propose to construct a two-sided

projection of C, from which we compute approximate singular values directly. This

is similar to the Lanczos bidiagonalization algorithm where a bidiagonal projection

matrix is constructed whose singular values directly approximate the singular val-

ues of C. Algorithmically, we construct an orthonormal basis {z0, z1, . . . , zm} for

Km(L−TL−1(A−ρkI),xk) and simultaneously an orthonormal basis {y0,y1, . . . ,ym}

46

for span{Cz0,Cz1, . . . ,Czm} as follows. First, f0,0 = ‖Cz0‖2 and y0 = Cz0/f0,0.

Then, for i = 1, . . . ,m, we generate zi and yi by

fi,izi = L−TL−1(CTCzi−1 − ρkzi−1)− f0,iz0 − f1,iz1 − · · · − fi−1,izi−1 (3.7)

gi,iyi = Czi − g0,iy0 − g1,iy1 − · · · − gi−1,iyi−1 (3.8)

where fj,i = zTj L−TL−1(CTCzi−1 − ρkzi−1), gj,i = yTj Czi, and fi,i and gi,i are chosen

so that ‖yi‖ = ‖zi‖ = 1. Assuming dim(Km(L−TL−1(A − ρkI),xk)) = m + 1, the

recurrence for zi does not breakdown and the process leads to an orthonormal basis

{z0, z1, . . . , zm}. It is easy to show that the recurrence for yi does not breakdown

either and {y0,y1, . . . ,ym} is orthonormal. Let Ym = [y0,y1, . . . ,ym]. Then CZm =

YmGm where Gm = [gij]
m
i,j=0. It follows that ZT

m(CTC)Zm = GT
mGm. If σ

(1)
k is

the smallest singular value of Gm, then (σ
(1)
k)2 is the smallest eigenvalue of Am =

ZT
m(CTC)Zm, i.e. (σ

(1)
k)2 so constructed is equal to ρk+1 in Algorithm 2.4.

By computing σ
(1)
k directly, we avoid the possible loss of accuracy. Specifically, if

σ̃
(1)
k is the computed singular value of Gm using the standard SVD algorithm such as

svd, then it follows from the backward stability that σ̃
(1)
k is the exact singular value

of Gm + Fm for some Fm with ‖Fm‖ = O(u)‖Gm‖. Then

|σ̃(1)
k − σ

(1)
k | ≤ O(u)‖Gm‖ ≤ O(u)‖C‖

and hence
|σ̃(1)
k − σ

(1)
k |

σ
(1)
k

≤ O(u)κ(C).

3.1 Thus, as Algorithm 2.4 converges, i.e.
√
ρk = σ

(1)
k → σ1, the approximate singular

value σ̃
(1)
k can approximate σ1 with a relative accuracy in the order of O(u)κ(C).

To compute additional eigenvalues, we use the deflation by restriction method

proposed in Section 2.2.2. We summarize this process as the following algorithm that

compute the (` + 1)st smallest singular value when the first ` singular values have

already been computed.

We make some remarks concerning Algorithm 3.1. The algorithm presented has

deflation included where ` singular values and right singular vectors are given as in-

puts. When none is given, it computes the smallest singular value σ1 by setting ` = 0

47

Algorithm 3.1 Inverse free preconditioned Krylov subspace method for SVD

1: Input: m, V` = [v1, · · · ,v`] with CTCvi = σ2
i vi and VT

` V` = I, initial right
singular vector x0 s.t. ‖x0‖ = 1 and VT

` x0 = 0;
2: initialize: ρ0 = ‖Cx0‖; Gm = [gij] = 0 ∈ R(m+1)×(m+1);
3: for k = 0, 1, 2, . . . until convergence do
4: construct a preconditioner L;
5: z0 = xk; w = Cz0; m

′ = m;
6: g0,0 = ‖w‖ and y0 = w/g0,0;
7: for i = 1 : m do
8: zi = (I−V`V

T
`)L−TL−1(CTw − ρkzi−1);

9: for j = 0 : i− 1 do
10: zi = zi − (zTj zi)zj;
11: end for
12: if ‖zi‖ 6= 0 then
13: zi = zi/‖zi‖
14: else
15: m′ = i and break;
16: end if
17: w = Czi; yi = w;
18: for j = 0 : i− 1 do
19: gj,i = yTj yi and yi = yi − gj,iyj;
20: end for
21: gi,i = ‖yi‖ and yi = yi/gi,i;
22: end for
23: Compute the smallest singular value σ

(1)
k+1 of Gm = [gij]

m′
i,j=0 and a correspond-

ing unit right singular vector h;
24: ρk+1 = (σ

(1)
k+1)

2, xk+1 = [z0, z1, . . . , zm′]h.
25: end for

and V` to the empty matrix. At line 4, a preconditioner needs to be constructed such

that LDLT ≈ CTC−µI for µ equal to ρk or a fixed initial value. An algorithm based

on RIF to compute an incomplete factor L implicitly from C will be discussed in the

next section. As stated, different preconditioners may be used for different iteration

steps, but for the efficiency reason, we usually use the same preconditioner. Line 8 im-

plements the deflation and preconditioning techniques implicitly. The for loop at lines

7-22 constructs an orthonormal basis {z0, z1, . . . , zm′} for the Krylov subspace and

simultaneously an orthonormal basis {y0,y1, . . . ,ym′} such that CZm′ = Ym′Gm′ ,

where m′ = dim(Km((I−V`V
T
`)L−TL−1(A−ρkB),xk))−1. Then Gm′ = YT

m′CZm′ .

Its smallest singular value and a corresponding right singular vector h are computed

48

to construct a new approximate right singular vector at lines 23-24.

The process is theoretically equivalent to Algorithm 2.4 as applied to A = CTC

and B = I. When no preconditioning is used, i.e. L = I, the inverse free Krylov

subspace method is simply the Lanczos method for A with restart after m iterations.

When the preconditioning is used, we effectively transform the standard eigenvalue

problem for CTC to the equivalent generalized eigenvalue problem for (Â, B̂) =

(L−1CTCL−T ,L−1L−T), to which the inverse free Krylov subspace method is applied.

In the eigifp implementation [62] of the inverse free preconditioned Krylov sub-

space method for the eigenvalue problem, an LOBPCG (locally optimal precondi-

tioned conjugate gradient) [43, 41] type subspace enhancement was also included to

further accelerate convergence. Note that, in the LOBPCG method, the steepest de-

scent method is modified by adding the previous approximate eigenvector xk−1 to the

space spanned by the current approximation and its residual span{xk, (A− ρkB)xk}

to construct a new approximate eigenvector. It results in a conjugate gradient like

algorithm that has a significant speedup in convergence over the steepest descent

method. This idea has also been used in eigifp [62] by adding the previous approx-

imate eigenvector xk−1 to the Krylov subspace Km(A− ρkB,xk), which is also found

to accelerate the convergence in many problems. As the extra cost of adding this

vector is quite moderate, we also use this subspace enhancement in our implementa-

tion for the singular value problem. Algorithmically, we just need to add after the

for loop at lines 7-22 to construct an additional basis vector zm′+1 by orthogonalizing

xk−xk−1 against {z0, z1, . . . , zm′}. Note that we have used xk−xk−1 rather than xk−1

for orthogonalization because orthogonalizing xk−1 against z0 = xk typically leads to

cancelation when xk ≈ xk−1. On the other hand, we can avoid possible cancelation

in xk − xk−1 by computing its orthogonalization against z0 = xk implicitly through

d = Z̃m′

 − ĥT ĥ
h1

ĥ

 , where h =

 h1

ĥ

 1

m′

is the unit right singular vector of the projection matrix Gm and Z̃m′ is the matrix

of the basis vectors at line 19 of previous step (step k − 1) of Algorithm 3.1, i.e.

xk = Z̃m′h and xk−1 = Z̃m′e1, where e1 = [1, 0, · · · , 0]T . It is easy to check that

49

d = Z̃m′h − 1
h1

Z̃m′e1 = xk − 1
h1

xk−1 = 1
h1

(xk − xk−1) − h1−1
h1

xk and xTkd = 0.

Therefore, a new basis vector that extends the subspace with xk − xk−1 can be

obtained by orthogonalizing d against {z0, z1, . . . , zm′} as

fm′+1,m′+1zm′+1 = d− f0,m′+1z0 − f1,m′+1z1 − · · · − fm′,m′+1zm′

Moreover, Cd = CZm′ [− ĥT ĥ
h1
, ĥ]T and then Czm′+1 can be computed without the

explicit multiplication by C from

Czm′+1 =
Cd− f0,m′+1Cz0 − f1,m′+1Cz1 − · · · − fm′,m′+1Czm′

fm′+1,m′+1

,

from which ym′+1 and an additional column of G are computed as in (3.8). However,

with possible cancellations in the last formula, Czm′+1 may be computed with large

errors and we suggest to compute Czm′+1 explicitly when high accuracy is needed.

The algorithm we have presented computes approximate singular values and si-

multaneously computes the corresponding right singular vectors only. In applications

where singular triplets are required, we can compute approximate left singular vectors

from the right singular vectors obtained. This is a limitation of the CTC formulation

(3.1) and Algorithm 3.1 where we reduce the eigenvalue residual of the approximate

singular value and right singular vector pair (σ
(1)
k ,xk) (with ‖xk‖ = 1)

rp := ‖CTCxk − (σ
(1)
k)2xk‖. (3.9)

From this residual, the errors of approximate singular value σ
(1)
k and approximate

right singular vector xk can be bounded as (see [19, p.205])

|σ(1)
k − σ1| ≤

r2p

(σ
(1)
k + σ1)gap

and sin∠(xk,v1) ≤
rp

gap

where we assume that σ1 is the singular value closest to σ
(1)
k , v1 is a corresponding

right singular vector, and gap = mini 6=1 |σ(1)
k −σi|. When a corresponding left singular

vector is needed, it can be obtained as

wk = Cxk/σ
(1)
k (3.10)

50

provided σ
(1)
k 6= 0. Then the accuracy of the approximate singular triplet (σ

(1)
k ,wk,xk)

can be assessed by

rt :=

∥∥∥∥∥∥
 Cxk − σ(1)

k wk

CTwk − σ(1)
k xk

∥∥∥∥∥∥ =

∥∥∥∥∥∥M
 wk

xk

− σ(1)
k

 wk

xk

∥∥∥∥∥∥ . (3.11)

It is easily checked that

rt = rp/σ
(1)
k . (3.12)

Therefore, for a tiny singular value, a small residual rp for the pair (σ
(1)
k ,xk) does not

imply a small residual rt for the singular triplet (σ
(1)
k ,wk,xk). Indeed, the constructed

left singular vector wk may not be a good approximation, even when xk is a good

approximate right singular vector as indicated by rp. This appears to be an intrinsic

difficulty of the CTC formulation (3.1). Specifically, in the extreme case of σ1 = 0, a

corresponding left singular vector is any vector in the orthogonal complement ofR(C)

(the range space of C) and it can not be obtained from multiplying a right singular

vector by C or any vector in the subspace CKm(CTC,xk) = Km(CCT , Cxk) ⊂ R(C).

In this case, we need to consider CCT on a new random initial vector to compute a

left singular vector.

An alternative formulation of the left singular vector is by computing the left

singular vector g of the projection matrix Gm at line 19 of Algorithm 3.1 and then

form

wk = [y0,y1, . . . ,ym′]g. (3.13)

It is easy to check that this is theoretically equivalent to (3.10) if σ
(1)
k 6= 0. However,

an advantage of this formulation is that it is still defined even when σ
(1)
k = 0, although

the quality of the approximation is not assured. Our numerical experiments indicate

that (3.13) is generally similar to (3.10) but may lead to a slightly better left singular

vectors in some problems. In our implementation, we use (3.12) to estimate the

residual of singular triplet to avoid the cost of computing the residual of singular

triplets, but at termination, we use (3.13) to compute a left singular vector and then

recompute its residual.

51

In the algorithm, we have used rp for the convergence test unless a left singular

vector is required. When a left singular vector is indeed needed, rt is used for the

convergence test. As discussed above, however, since the rt may never converge if σ
(1)
k

is extremely small. Therefore, in order to properly terminate the iteration in such a

situation, we propose to monitor the magnitude of the singular value computed and,

when an extremely small singular value (i.e in the order of the machine precision)

is detected, the stopping criterion should be switched to using rp. By properly ter-

minating the iteration using rp, we can still obtain a sufficiently good approximate

singular value and a right singular vector. After that, we can then separately apply

the algorithm to CT to compute a left singular vector.

We present the subspace enhancement steps and termination criteria discussed

above as additional steps of Algorithm 3.1. It also includes the additional step needed

in computing the left singular vector when it is required.

In Algorithm 3.2, lines 4-16 expand the subspace with xk−xk−1 using the method

mentioned earlier. Line 18 computes the orthogonalization of xk+1− xk against xk+1

to be used in the next iteration. The algorithm, by default, computes the singular

value and the right singular vectors. If singular triplets are desired, Lines 21-23

compute an appropriate residual to be used for testing convergence. This is only for

the purpose of terminating the iteration. At convergence, however, we compute the

left singular vector wk+1 and the residual of the singular triplets explicitly.

Finally, we mention that the algorithm can be adapted trivially to compute its

largest singular value. Namely, to compute the largest singular values of C, we just

need to modify line 23 in Algorithm 3.1 and line 17 in Algorithm 3.2 to compute the

largest singular value of Gm and a corresponding right singular vector and the rest

of the algorithm remains the same. It is easy to see that the convergence theory of

[32] extends to this case. We also note that the above algorithm is based on vector

iteration for computing a single singular value. A block matrix iteration version of

the inverse free preconditioned Krylov subspace method has been developed in [70] to

compute multiple eigenvalues or extremely clustered eigenvalues. It can be adapted

as in Algorithm 3.1 to the task of computing multiple or extremely clustered singular

52

Algorithm 3.2 Inverse free preconditioned Krylov subspace method for SVD with
LOBPCG enhancement

1: Same as Line 1-2 in Algorithm 3.1
2: for k = 0, 1, 2, . . . until convergence do
3: Same as Line 4-22 in Algorithm 3.1
4: zm′+1 = dk; w = Cdk;
5: for j = 0 : m′ do
6: zm′+1 = zm′+1 − (zTj zm′+1)zj;
7: w = w − (zTj zm′+1)Czj;
8: end for
9: if ‖zm′+1‖ 6= 0 then

10: zm′+1 = zm′+1/‖zm′+1‖,w = w/‖zm′+1‖; ym′+1 = w;
11: for j = 0 : m′ do
12: gj,m′+1 = yTj ym′+1 and ym′+1 = ym′+1 − gj,m′+1yj;
13: end for
14: gm′+1,m′+1 = ‖ym′+1‖ and ym′+1 = ym′+1/gm′+1,m′+1;
15: m′ = m′ + 1;
16: end if
17: Compute the smallest singular value σ

(1)
k+1 of Gm = [gij]

m′
i,j=0 and a correspond-

ing unit right singular vector h;
18: dk+1 = Zm′(h− e1/h1);Cdk+1 = CZm′(h− e1/h1);

19: ρk+1 = (σ
(1)
k+1)

2, xk+1 = Zm′h;
20: res = ‖CTCxk+1 − ρk+1xk+1‖;
21: if singular triplet is desired and σ

(1)
k+1 > u‖C‖2 then

22: res = res/σ
(1)
k+1;

23: end if
24: Test convergence using res;
25: end for
26: if singular triplet is desired then;
27: Compute a left singular vector g of Gm and wk+1 = [y0,y1, . . . ,ym′]g;
28: end if
29: Output: (σ

(1)
k+1,xk+1) or, if singular triplet is required, (σ

(1)
k+1,wk+1,xk+1).

53

values. Here, we omit a formal statement of the algorithm; see [70].

3.3.2 Preconditioning by robust incomplete factorizations (RIF)

In this section, we discuss how to construct a preconditioner L, i.e. an approximate

LDLT factorization CTC−µI = LDLT where
√
µ is an approximation of the singular

value to be computed and D is a diagonal matrix of 0 or ±1. This generally requires

forming the matrix CTC − µI, which may be much denser than C and hence leads

to a denser L. In addition, forming the matrix is associated with potential loss of

information in very ill-conditioned cases, although this appears not to pose a problem

when only an approximate factorization is sought [37].

For computing the smallest singular value, µ = 0 is a natural first choice for

the shift. In this case, we need an incomplete factorization of a symmetric positive

semidefinite matrix, for which numerous techniques have been developed, see [8] for

a survey. Indeed, if µ = 0, the problem is the same as constructing a preconditioner

for the linear least squares problem. One method that has been well studied is the

incomplete QR factorization; see [7, 28, 66, 64, 86]. The incomplete QR factorization

methods, such as incomplete modified Gram-Schmidt method or incomplete Givens

rotation method, can be used here to construct a preconditioner for computing small-

est singular values that are close to 0. While they are effective and often result in

much faster convergence, they tend to have high intermediate storage requirements in

our experiences; see [11] as well. Moreover, they can not deal with the cases of µ 6= 0.

On the other hand, Benzi and Tuma propose a method for constructing a precondi-

tioner for CTC in [11] called robust incomplete factorization (RIF). This method can

be easily adapted to computing an incomplete LDLT factorization for CTC−µI and

is found to have more moderate fill-ins. We discuss now the RIF preconditioner for

the SVD algorithm.

Let A ∈ Rn×n be a sparse symmetric positive definite matrix. The idea of RIF is

to obtain the factorization A = LTDL by applying an A-orthogonalization process

to the unit basis vectors e1, e2, · · · , en (i.e. I = [e1, e2, · · · , en]). It will become a

Gram-Schmidt process for the unit basis vectors with respect to the inner product

54

〈x,y〉A := xTAy, i.e., for i = 1, 2, · · · , n,

zi = ei −
i−1∑
j=1

〈ei, zj〉A
〈zj, zj〉A

zj. (3.14)

This is the classical Gram-Schmidt (CGS) process. The corresponding modified

Gram-Schmidt (MGS) process can be implemented as updating the basis vector zi

initialized as zi = ei (1 ≤ i ≤ n) by the following nested loop: for j = 1, 2, · · · , n,

orthogonalize each zi (for i = j + 1, · · · , n) against zj by

zi = zi −
〈zi, zj〉A
〈zj, zj〉A

zj. (3.15)

This updating process allows discarding zj to free the memory once it is orthogonal-

ized against all zi (for i = j + 1, · · · , n). Let

lij =
〈zi, zj〉A
〈zj, zj〉A

, if i ≥ j;

and set lij = 0 if i < j. Then L = [lij] is a unit lower triangular matrix and this process

results in an A-orthogonal matrix Z = [z1, z2, . . . , zn] such that I = ZLT . Then

ZTAZ = D implies A = LDLT where D = diag[d1, d2, · · · , dn] and dj = 〈zj, zj〉A.

Clearly, by (3.14), zi ∈ span{e1, e2, · · · , ei} and Z is upper triangular. Since CGS

(3.14) and MGS (3.15) are theoretically equivalent, (3.15) can be formulated as

zi = zi − lijzj, with lij =
〈ei, zj〉A
〈zj, zj〉A

(3.16)

which is computationally more efficient (see [9]) for problem like A = CTC below.

In addition, as A is sparse, 〈ei, zj〉A = eTi Azj may be structurally zero for many

i, j, resulting a sparse L. The A-orthogonalization process can efficiently exploit the

property lij = 0 by skipping the corresponding orthogonalization step. Furthermore,

one may also drop the entry lij and skip the orthogonalization if lij is sufficiently

small. This would result in an incomplete factorization called robust incomplete

factorization (RIF).

RIF has also been used in [11] to efficiently construct preconditioners for CTC for

a full rank matrix C ∈ Rm×n arising from the normal equation for the least squares

55

problem. An advantage of RIF for CTC is that the CTC-orthogonalization process

can be carried out using C only as

zi = zi − lijzj, with lij =
〈Czi,Czj〉
〈Czj,Czj〉

(3.17)

for j = 1, 2, · · · , n and i = j + 1, · · · , n, where 〈·, ·〉 is the Euclidian inner product.

In this setting, the following CGS formulation of lij

zi = zi − lijzj, with lij =
〈Cei,Czj〉
〈Czj,Czj〉

is preferred over the MGS formulation because of the need to compute Czi in MGS

(3.17) each time zi is updated, whereas only Cei (the i-th column of C) is needed

in CGS. Since we are only interested in an incomplete factorization by applying

dropping threshold in zi and lij, the difference in stability between CGS and MGS is

not significant. Also, computation of lij requires forming Czj once for each zj, which

involves sparse-sparse matrix-vector multiplications and can be efficiently computed

as a linear combination of a few columns of C; see [11]. We also observe that the

inner products in lij involve two sparse vectors as well.

If we multiply both sides of (3.17) by C, it is possible to get around computing

wi := Czi as a matrix-vector multiplication in MGS (3.17) by computing it through

the updating formula

wi = wi − lijwj, with lij =
〈wi,wj〉
〈wj,wj〉

, (3.18)

which maintains the MGS form. However, since the L matrix is all we need, it is not

necessary in this to compute zi anymore. Indeed, since wi is initialized as Cei, (3.18)

is just the modified Gram-Schmidt process in the Euclidian inner product applied

to the columns of C and it becomes the MGS method for the QR factorization of

C. However, with wi initialized as Cei and zi initialized as ei, the sequence wi

generated may be expected to be much denser than the corresponding zi, which

appears to be the case in our experiments. This may be the main motivation of using

the A-orthogonalization in RIF.

We observe that the same process can be extended to our problem of constructing

an LDLT factorization for A := CTC − µI with a shift µ ≈ σ2
1. The corresponding

56

orthogonalization process is

zi = zi − lijzj, with lij =
〈Cei,Czj〉 − µ〈ei, zj〉
〈Czj,Czj〉 − µ〈zj, zj〉

(3.19)

for j = 1, 2, · · · , n and i = j + 1, · · · , n. Now, if µ < σ2
1, then CTC − µI is positive

definite and, with the divisor in lij nonzero, the process is well defined.

If µ = σ2
1, then CTC− µI is positive semidefinite and the process may encounter

a zero division if 〈Czj,Czj〉 − µ〈zj, zj〉 = 0 for some j. However, in this case,

(CTC − µI)zj = 0 and then 〈Czi,Czj〉 − µ〈zi, zj〉 = 0 for any i. Then we do

not need to carry out the orthogonalization against zj. Continuing the process, we

still obtain z1, z2, · · · , zn such that 〈Czj,Czi〉 − µ〈zj, zi〉 = 0 but ZTAZ = D will

have zero in diagonals. However, this does not cause any problem as we still have

CTC − µI = LDLT and by using a scaled L, we have D with 0 and 1 as diagonal

elements. This is precisely the factorization needed.

If µ > σ2
1, then CTC− µI is indefinite and the process may breakdown with the

occurrence of 〈Czj,Czj〉 − µ〈zj, zj〉 = 0 but (CTC− µI)zj 6= 0 for some j. In prac-

tice, the exact breakdown is unlikely but we may encounter a near breakdown (with

〈Czj,Czj〉 − µ〈zj, zj〉 ≈ 0), which may cause instability to the process. However,

since we are only interested in an incomplete factorization which incur a perturbation

through dropping small elements, we propose to modify the pivot by simply setting

〈Czj,Czj〉−µ〈zj, zj〉 to some nonzero scalar such as the dropping threshold and skip

the orthogonalization against zj. This perturbation is consistent with the dropping

strategy in the incomplete factorization and would amount to a perturbation to zj

in the order of magnitude of the dropping threshold. In any case, it only affects

the quality of the preconditioner and hence efficiency of the overall algorithm, but it

does not reduce the accuracy of the singular value computed by our method. In our

experiences, the algorithm handles modest indefiniteness very well, but the quality

of preconditioner deteriorates as the matrix indefiniteness increases.

The incomplete LDLT factorization provided by RIF need to be scaled so that

D has diagonals equal to 0,±1 for its use as a preconditioner for the singular value

problem. This can be achieved by multiplying L by D1/2 on the right. The following

57

is the RIF algorithm as adapted from [11] with the columns of L scaled.

Algorithm 3.3 Robust Incomplete Factorization of CTC− µI

1: Input: η1 (drop threshold for L) and η2 (drop threshold for Z);
2: initialize: Z = [z1, z2, · · · , zn] = I; L = [lij] = I ∈ Rn×n;
3: for j = 1 to n do
4: dj = 〈Czj,Czj〉 − µ〈zj, zj〉;
5: ljj =

√
|dj|;

6: if ljj > max{η1‖Cej‖1,u} then
7: for i = j + 1 to n do
8: pij = 〈Czj,Cei〉 − µ〈zj, ei〉;
9: if |pij|/ljj ≥ max{η1‖Cej‖1,u} then

10: zi = zi − pij
dj

zj and lij = sgn(pjj) · pij/ljj;
11: if |zi(`)| < η2‖zi‖1 for any ` then
12: set zi(`) = 0;
13: end if
14: end if
15: end for
16: else
17: ljj = max{η1‖Cej‖,u};
18: end if
19: end for

We present some remarks concerning Algorithm 3.3. At line 6, we test the divisor

ljj for near-breakdown. If a near-breakdown occurs, we set ljj to the breakdown

threshold max{η1‖Cej‖1,u} at line 17 and skip the orthogonalization process. Here,

we note that the threshold is chosen to be relative to the norm of Cej as Czj is

constructed from it through orthogonalization and u is added to the definition of the

threshold to deal with possible situation of Cej = 0. We skip the orthogonalization

of zi if the lij is below the given threshold max{η1‖Cej‖1,u}. In that case, lij is set

to 0. To further improve efficiency of the algorithm, we also apply a drop rule to zi at

Line 11 by setting all entries of zi that are below the threshold η2‖zi‖1 to 0. This will

maintain Z as sparse as possible and improve the efficiency of the algorithm. In our

experiments, the quality of the preconditioner constructed appears to depend more

on the magnitude of η2 than that of η1. So η2 is chosen to be much smaller than η1.

In our implementation, we set η1 = 10−3 and η2 = 10−8 as the default values. Finally,

on output, the algorithm produces an approximate factorization CTC− µI ≈ LDLT

58

with D having only 0,±1 as diagonals.

3.3.3 A robust implementation

One advantage of the inverse free preconditioned Krylov subspace method is its

relative simplicity for implementation with the number of inner iterations being the

only parameter to select. We have implemented Algorithm 3.2 in combination with

the RIF preconditioner (Algorithm 3.3) in a black-box MATLAB implementation for

the singular value problem. The program called svdifp is used in our numerical

tests.

Our program svdifp is based on the MATLAB program eigifp [62] which im-

plements the inverse free preconditioned Krylov subspace method with several algo-

rithmic enhancements for the generalized eigenvalue problem. We have incorporated

many features of eigifp into our implementation but the core iteration is to con-

struct the projection of C as outlined in Algorithm 3.2. Noting that for Algorithm

3.2, the only required user input is m (the inner iteration) and a preconditioner, we

have adopted the same strategy used in eigifp in determining m; see [62].

Namely, m can be either specified by the user or, by default, adaptively deter-

mined by the program according to its effect on the rate of convergence. Note that

experiments have shown that an optimal value of m is larger if the problem is more

difficult while it is smaller if the problem is easier (e.g. with a good preconditioner).

On the other hand, to determine a preconditioner, we first need an approximate sin-

gular value as a shift for the RIF preconditioner. Here different strategies will be

used depending on whether computing the largest or the smallest singular values.

For computing the smallest singular value, we assume 0 is a good initial ap-

proximate singular value and, using 0 as the shift, we compute a preconditioner by

Algorithm 3.3 and carry out a preconditioned iteration.

For computing the largest singular value, the standard Lanczos bidiagonalization

algorithm [29] should work well because the spectral separation is typically increased

59

by 2 times through the CTC formulation (3.1), i.e.

σ2
n − σ2

n−1

σ2
n−1 − σ2

1

=
σn − σn−1
σn−1 − σ1

σn + σn−1
σn−1 + σ1

≈ 2
σn − σn−1
σn−1 − σ1

.

However, for problems with clustered largest singular value, the preconditioning ap-

proach can still be very beneficial. One difficulty then is that there is no good approx-

imate singular value readily available initially and no preconditioner can be derived.

Following the strategy in eigifp [62], we start the iteration with no preconditioning

and, when a sufficiently good approximate singular value σ has been found as deter-

mined by the residual, we compute a preconditioner for CTC− µI by Algorithm 3.3

with the shift µ = σ2 +rp and then continue the iteration with preconditioning where

rp is the residual and hence µ is an upper bound for the true singular value. This

typically leads to accelerated convergence.

In both cases, the program monitors the approximate singular value obtained and

the convergence rate and may update the preconditioner using an updated approx-

imate singular value as the shift if significant deviation of the singular value from

the shift is detected. The same strategy is followed when computing several singular

values with deflation. The program can be run with no required user input. However,

it also allows various optional parameters the user may supply to improve the perfor-

mance. They include the inner iteration m, the RIF thresholds, initial approximate

singular value (which can be used to compute a preconditioner) or a preconditioner

itself, among others.

3.4 Numerical examples

In this section, we present some numerical examples to demonstrate the capability

and efficiency of the preconditioned inverse free Krylov subspace method for singular

value problem. We shall compare our MATLAB implementation svdifp with several

existing programs (i.e. irlba of Baglama and Reichel [5], jdsvd of Hochstenbach

[35, 36], lansvd of Larson [47], and svds of MATLAB which is based on the ARPACK

[49] of Lehoucq, Sorenson and Yang). irlba [5] implements an augmented implicitly

restarted Lanczos bi-diagonalization algorithm. jdsvd [35, 36] implements a Jacobi-

60

Davidson method on the augmented matrix formulation. (Note that a program based

on the Jacobi-Davidson method for CTC has also been developed recently [37].)

lansvd [47] implements the Lanczos bidiagonalization algorithm for R−1 from the

QR factorization of C = QR for computing the smallest singular value. svds of

MATLAB implements ARPACK [49] and uses the inverse of M (or M − µI) in the

formulation (3.2) for computing the smallest singular value. We note that svdifp

and jdsvd compute one singular value at a time, while irlba, lansvd, and svds

can compute several singular values simultaneously. On the other hand, svdifp and

jdsvd can use preconditioners to accelerate convergence, while irlba, lansvd, and

svds have to use the shift-and-invert approach.

In the first three examples, we test the programs on computing the smallest sin-

gular value, while in the fourth example, we demonstrate capability of svdifp in

computing several largest singular values using deflation. All the executions were

carried out using MATLAB version 8.0.0.783 from MathWorks on a PC with an Intel

quad-core i7-2670QM @ 2.20GHz and 12 GB of RAM running Ubuntu Linux 12.04.

The machine epsilon is u ≈ 2.2 · 10−16. The performance parameters we consider for

comparisons are the residual of the approximate singular triplet obtained, the number

of matrix-vector multiplications where applicable, and the CPU time. The CPU time

is gathered with on-screen outputs suppressed. For the methods that require some

factorization of the matrix, we also consider the number of non-zeros in the factors,

which indicates the memory requirements and their potential limitations.

We first present an example that tests the capability of svdifp to compute tiny

singular values accurately. We also show that applying eigifp directly to the eigen-

value problem for CTC may result in loss of accuracy for the computed singular

value. Here, in using eigifp, the matrix-vector multiplication CTCx is obtained by

computing Cx first and then multiplying by CT . Even though CTC is not explic-

itly formed, the singular value is obtained from the projection of CTC, potentially

resulting in loss of accuracy; see the discussion in Section 3.3.1. Both methods are

run without preconditioning and with the number of inner iteration set to 20.

61

Example 1. We consider the following matrix

C = UΣVT , with Σ =

 D

0

 n

m− n

where D = diag(1, 1/24, · · · , 1/n4) and U and V are random orthogonal matrices

generated by U=orth(rand(m,m)) and V=orth(rand(n,n)) in MATLAB. We test

and compare the accuracy of the smallest singular value computed by svdifp and

eigifp with n = 100 and m = 100 or m = 200. In either case, the exact smallest sin-

gular value of C is σ1 = 10−8 and the second smallest singular value is approximately

1.041 · 10−8. The convergence is tested using the criterion ‖CTCv1− σ2
1v1‖ < η‖C‖2

and, to achieve the best accuracy possible, we use a very small threshold η = 10−19

and run the iteration until the residual stagnates.

Table 3.1 lists the best smallest singular values and their residuals obtained. For

svdifp, with κ(C) = 108, the residual deceases to about 10−18 and σ1 computed

has relative error in the order of 10−10 ≈ uκ(C). This is the best accuracy one

may expect from using a backward stable method. On the other hand, for eigifp,

the residual decreases and then stagnates at around 10−16. The relative error of the

computed singular values oscillates around 10−4 and no better approximation can

be obtained. The singular value computed by applying eigifp directly lost about 5

digits of accuracy in this case.

Table 3.1: Example 1: σ1 - computed smallest singular value by svdifp and eigifp; Res
- ‖CTCv1 − σ21v1‖.

m = 100 m = 200

σ1 Res σ1 Res

svdifp 1.0000000008e-08 1e-20 1.00000000001e-08 2e-20

eigifp 1.0001e-08 8e-17 1.00008e-8 8e-17

It is interesting to observe that with a good preconditioning, eigifp appears to

be able to compute σ1 accurately. Note that this is a dense matrix and the default

preconditioner constructed by eigifp is the (complete) LDLT factorization.

Next, we test and compare svdifp with several existing programs for SVD on

computing the smallest singular value for a set of test problems. The test matrices

62

consist of both square and non-square matrices taken from the Matrix Market [61]

and the University of Florida Sparse Matrix Collection [18]. They are listed in Table

3.2 together with some basic information of the matrices (the smallest singular values

are computed by MATLAB’s svd(full(A))).

Table 3.2: Test Matrices Used for Examples 2 and 3

No. Matrix Size Non-zeros σ1 κ(C) source

Square Matrix

1 dw2048 2048× 2048 10114 4.68e-4 2.03e3 Matrix Market

2 fidap004 1601× 1601 31837 6.57e-4 2.39e3 Matrix Market

3 hor131 434× 434 41832 1.53e-5 4.31e4 Matrix Market

4 jagmesh1 936× 936 6264 5.63e-3 1.23e3 Matrix Market

5 lshp 3025× 3025 20833 1.03e-4 6.78e4 Matrix Market

6 pde2961 2961× 2961 14585 1.62e-2 6.42e2 Matrix Market

7 pores3 532× 532 3474 2.67e-1 5.61e5 Matrix Market

8 sherman 1000× 1000 3750 3.23e-4 1.56e4 Matrix Market

Rectangular Matrix

9 well1033 1033× 320 4372 1.09e-2 1.66e2 Matrix Market

10 well1850 1850× 712 8755 1.61e-2 1.11e2 Matrix Market

11 lpi cplex1 5224× 3005 10947 6.39e-2 3.13e3 UFLSMC

12 qiulp 1900× 1192 4492 7.57e-1 4.08e1 UFLSMC

13 ge 10099× 16369 44825 1.08e-3 1.28e7 UFLSMC

14 p010 10099× 19090 118000 1.50e-1 1.18e2 UFLSMC

15 lp ganges 1309× 1706 6937 1.87e-4 2.13e4 UFLSMC

16 cep1 1521× 4769 8233 1.00e0 1.49e1 UFLSMC

17 gen2 1121× 3264 81855 1.41e0 3.35e1 UFLSMC

18 Maragal 5 3320× 4654 93091 7.11e-46 2.30e46 UFLSMC

19 lp ship12s 1151× 2869 8284 0 - UFLSMC

Since these programs may have very different approaches and have different as-

sumptions on computing resources, we shall carry out the testing in two different

settings. We first consider in Example 2 programs that do not use any exact fac-

torization for inverse, i.e. svdifp, jdsvd and irlba. Since svdifp and jdsvd can

be implemented with or without preconditioning, we shall test them first with pre-

conditioning and then test them without preconditioning together with irlba. In

the second testing (Example 3), we consider svds and lansvd, where the LU fac-

torization of M and the QR factorization of C are respectively computed for the

shift-and-invert. To facilitate a comparison, we consider svdifp using the R factor

from the QR factorization of C as a preconditioner. Namely, if a complete factor-

63

ization is possible, svdifp may also take advantage of it by using a more effective

preconditioner, although this is not the best way to use the program.

Table 3.3: Example 2: With preconditioning: CPU - CPU time; MV - # of matrix-vector
multiplications; nnz - number of non-zeros of the preconditioner; Res - ‖[Cv1−σ1u1;C

Tu1−
σ1v1]‖/‖C‖1.

svdifp jdsvd

No. CPU MV nnz Res CPU MV nnz Res

Square Matrix

1 0.6 179 25564 9e-7 0.4 136 49019 2e-11

2 1.5 223 91593 1e-7 0.9 102 179673 2e-8

3 0.6 3545 15719 5e-7 0.1 148 11740 3e-10

4 0.4 289 33065 6e-7 0.7 146 67112 6e-10

5 7.3 1103 170276 8e-7 1.7 100 425650 6e-10

6 1.9 113 69291 3e-8 0.3 126 89000 2e-9

7 0.04 25 4870 3e-13 0.09 96 46461 3e-7

8 0.2 355 13695 3e-7 0.1 84 11630 2e-7

Rectangular Matrix

9 0.03 91 2235 2e-10 2.8 750 59291 1e-7

10 0.08 69 6325 7e-8 9.6 426 312083 1e-7

11 0.4 69 8995 2e-7 9.0 320 49318 2e-7

12 0.2 91 13620 1e-8 1.2 350 94671 3e-7

13 10.4 91 110017 5e-7 1689 20052 141008 1e-4

14 13.1 157 138793 2e-7 474 438 11276604 1e-7

15 0.3 91 18573 9e-9 10.6 358 421304 2e-13

16 2.0 113 106822 3e-8 1.1 266 41793 6e-7

17 4.3 267 297609 9e-7 36023 36846 8055182 1e-3

18 28.0 24 997991 3e-21 9002 3744 8666363 7e-7

19 0.08 24 6868 7e-22 0.5 136 65642 4e-8

Example 2. We consider the performance of svdifp, jdsvd and irlba in com-

puting the smallest singular value of matrices in Table 3.2. For matrices with m < n,

we consider their transposes instead. We set the initial vector for all three methods

to be the same random vector generated by randn(n,1). We also select parameters

in the three codes so that each method carries out about the same number of matrix-

vector multiplications in each inner iteration. Specifically, for svdifp, we set the

number of inner iteration m to 10. In jdsvd, the maximum number of steps of inner

linear solver is set to 10, which is also its default value. We use the default settings

of jdsvd for all other parameters. In particular, the refined extraction of Ritz vector

is used throughout and the dimension of the search subspace varies between 10 and

64

20. In irlba, we set k = 1 (the number of desired singular values) and adjust = 8

(the number of initial vectors added to the k restart vectors to form an initial sub-

space). They are chosen so that the dimension of the initial subspace is consistent

with its default choices: k = 6, adjust = 3. All other parameters in irlba are set to

their default values. Then irlba applies 10 bidiagonalization steps after each restart.

Based on these settings, all three methods carry out approximately 22 matrix-vector

multiplications (by C or CT) in each outer iteration. We set the maximum number

of outer iterations to 10000 for all and, unless stated otherwise, the stopping criterion

is

Res := ‖[Cv1 − σ1u1; C
Tu1 − σ1v1]‖/‖C‖1 < 10−6 (3.20)

where (σ1,u1,v1) is the approximate singular triplet obtained at step k.

We first compare svdifp and jdsvd, both of which allow using preconditioning

to accelerate convergence. In svdifp, the default RIF preconditioner is used, i.e.

an incomplete factorization of CTC is constructed by Algorithm 3.3 with the de-

fault choices of thresholds η1 = 10−3 and η2 = 10−8. In jdsvd, a preconditioner is

needed for solving a correction equation in the inner iteration and we use the rou-

tine create prec jdsvd.m that accompanies jdsvd to construct a preconditioner for

M. Specifically, for square matrices, we compute the ILU factorization of C, from

which a preconditioner for M is constructed. For non-square matrices, we compute

the ILU factorization of M but because of singularity of M, breakdown often oc-

curs, in which case the ILU factorization of a shifted matrix M − µI is used where

µ = 2p ·10−2‖M‖max and p is the first non-negative integer that stops the breakdown.

The dropping threshold for all ILU factorizations is 10−3. In addition, jdsvd uses

BiCGSTAB [20] as the inner linear solver when a preconditioner is present.

1For this matrix, σ1 = 7.11e − 46 according to MATLAB’s svd. Although Res = 3e − 2, the
residual defined by ‖CTCv1 − σ2

1v1‖ is 3e-24 while the computed singular value is 2e-25. The
singular values returned by jdsvd for this matrix is 3e-5. Also note that 113 singular values of this
matrix are smaller than the machine precision and the second smallest is 1.7e-31.

2For this matrix, σ1 = 0 according to MATLAB’s svd. Although Res = 6e − 2, the residual
defined by ‖CTCv1−σ2

1v1‖ is 2e-25 while the computed singular value is 4e-27. The singular values
returned by jdsvd for this matrix is 6e-7. Also note that 35 singular values are smaller than the
machine precision. The second smallest singular value is 0 as well and the third one is 1.3e-18.

65

Table 3.3 presents the results of this test. In the table, nnz is the number of

non-zeros in the preconditioner (L for svdifp and both L and U for jdsvd). In the

MV column, we list the number of matrix-vector multiplications by either C or CT .

Res is the relative residual of the approximate singular triplet (3.20).

Table 3.4: Example 2: without preconditioning. CPU - CPU time; MV - # of matrix-
vector multiplications; Res - ‖[Cv1 − σ1u1;C

Tu1 − σ1v1]‖/‖C‖1.

svdifp jdsvd irlba

No. CPU MV Res CPU MV Res CPU MV Res

Square Matrix

1 2.2 8033 1e-06 2.1 7542 9e-7 2.8 13856 9e-7

2 4.9 18901 1e-06 6.0 21830 1e-6 21.9 104496 8e-7

3 20.1 220002 5e-04 34.8 220038 1e-5 25.9 220018 2e-2

4 9.5 81227 1e-06 4.8 26308 9e-7 13.4 90350 1e-6

5 27.3 69457 1e-06 20.7 62476 1e-6 59.8 220018 3e-2

6 3.5 9023 1e-06 3.0 9280 1e-6 6.1 23668 9e-7

7 21.1 220002 2e-03 35.7 220038 2e-5 27.2 220018 2e-2

8 15.1 127185 9e-07 23.7 127134 1e-6 32.6 220018 3e-2

Rectangular Matrix

9 1.2 7153 1e-06 0.4 2284 6e-7 0.2 1206 7e-8

10 0.5 2467 8e-07 0.6 2262 1e-6 0.3 1888 8e-8

11 0.7 1697 1e-06 0.4 1074 6e-7 0.2 634 2e-7

12 0.3 1257 1e-06 0.7 2900 1e-6 0.2 1228 1e-7

13 500 220002 1e-03 189 220038 3e-5 167 220018 2e-2

14 18.4 6669 1e-06 2.0 1866 1e-6 2.8 2856 6e-8

15 0.1 553 1e-06 0.3 1008 1e-6 0.09 480 9e-8

16 0.1 245 2e-07 0.08 238 1e-7 0.02 62 9e-9

17 0.9 2269 8e-07 3.8 9918 9e-7 62.0 220018 5e-7

18 122 228135 9e-063 116 220038 2e-6 94 220018 3e-3

19 0.6 2034 7e-164 2.3 8136 6e-7 0.2 942 7e-8

We observe that svdifp achieves satisfactory convergence within 10000 iterations

in all problems. For matrices 18 and 19, the singular values are extremely small and

therefore the residual of the singular triplet computed by (3.12) is not expected to

converge. For these two problems, the termination criterion is switched to using the

3For this matrix, the residual defined by ‖CTCv1− σ2
1v1‖ is 2e-15 while the computed singular

value is 1e-12. The singular values returned by jdsvd is 5e-10. The singular values returned by
irlba is 6e-7.

4For this matrix, the residual defined by ‖CTCv1− σ2
1v1‖ is 3e-14 while the computed singular

value is 9e-15. The singular values returned by jdsvd is 1e-14. The singular values returned by
irlba is 4e-16.

66

eigenvalue residual ‖CTCv1 − σ2
1v1‖ instead when a singular value of order of the

machine precision is detected (see the discussion on left singular vectors in Section

2) and then, even though the Res is fairly large, the computed singular values, which

are given in the footnotes, are actually very good approximations already. Therefore,

with the limitation of not returning any good left singular vector in such cases, svdifp

still produces good approximate singular values and right singular vectors. jdsvd also

achieve satisfactory convergence within 10000 iterations in all but problems 13 and

17. For those two problems, the preconditioned linear solvers in the inner iterations

of jdsvd converge early in less than the maximum 10 iterations allowed, which is why

the total matrix-vector multiplications are less than the maximum possible. Matrix

17 is also a difficult problem with 138 singular values clustered between 1.41421 and

1.41425. In terms of performance measured by MV and CPU, jdsvd outperforms slightly

in square problems, while svdifp outperforms in non-square problems. In terms of

nnz, RIF in svdifp has substantially less memory requirement.

We next compare svdifp and jdsvd without preconditioning. They are also com-

pared with irlba. When no preconditioner is present, jdsvd uses MINRES as the

inner linear solver. For irlba, we only report its results with one-sided full reorthog-

onalization which is the default setting. We list the results of this test in Table 3.4.

For Problems 18 and 19, with extremely small singular values, the convergence test

is switched to use the eigenvalue residual ‖CTCv1 − σ2
1v1‖, but at termination, the

residual of the singular triplet with the left singular vector computed by (3.13) has

actually converged to a satisfactory level. Nevertheless, we list the computed singular

values and the eigenvalue residuals in the footnotes. We note that, without precon-

ditioning, svdifp converges much more slowly than the ones with preconditioning,

and it appears that the additional iterations have resulted in the substantially more

reduction of the singular triplet residual. We do not expect this to be the case in

general.

It appears that all three methods are comparable in convergence with each method

outperforming in some problems. For non-square matrices, irlba has the best results,

outperforming in most problems. Note that svdifp without preconditioning is simply

67

the restarted Lanczos method with the LOBPCG type subspace enhancement. On

the other hand, irlba is also essentially the Lanczos method but, with the implicit

restart, it uses a larger projection subspace with the same number of matrix-vector

multiplications in each restart. Therefore, irlba may be expected to outperform

svdifp without preconditioning in most cases. We also note that the performance of

svdifp (Table 3.4) is significantly improved by preconditioning (Table 3.3). Several

difficult problems with slow convergence are solved fairly easily after precondition-

ing. With a drop tolerance 10−3, the RIF preconditioner appears to produce a good

preconditioner that also has a relatively small number of fill-ins. Indeed, the number

of non-zeros in L (Table 3.3) is typically 2 to 3 times that of C (Table 3.2).

Example 3. In this example, we compare svdifp with svds and lansvd. For

computing the smallest singular value, svds is based on applying ARPACK [49] to

M−1 or the shift-and-invert matrix (M − µI)−1. lansvd computes the QR factor-

ization by R = qr(C,0) in MATLAB and then computes the largest singular value

of R−1 by the Lanczos bidiagonalization algorithm. For comparison, we use R =

qr(C,0) as the preconditioner for svdifp. This approach runs into difficulty if R is

singular or nearly singular. Indeed, lansvd breaks down in such situations (Problems

18 and 19). An advantage with svdifp is that R is only used as a preconditioner and

its accuracy only affects the speed of convergence but not the accuracy of computed

singular values. Therefore, we can simply perturb zero or nearly zero diagonals of

R to deal with its singularity. For singular or nearly singular R, it is important to

use a column pivoting in the QR factorization but MATLAB’s R = qr(C,0) employs

a column approximate minimum degree permutation to minimize fill-ins. For this

test, if the resulting R is nearly singular, we compute QR factorization by [~,R,e]

= qr(C,0), which appears to employ a column pivoting. We then set the diago-

nals of R that are less than the threshold
√

u‖R‖1 to the threshold to construct a

preconditioner for svdifp.

68

Table 3.5: Example 3: CPU - CPU time; nnz - non-zeros of R or L and U; Res -

‖[Cv1 − σ1u1;C
Tu1 − σ1v1]‖/‖C‖1.

svdifp svds lansvd

No. CPU nnz Res CPU nnz Res CPU nnz Res

Square Matrix

1 0.05 83918 1e-16 0.09 193650 4e-15 0.04 83918 2e-13

2 0.1 249160 6e-17 0.1 259562 5e-16 0.09 249160 7e-14

3 0.01 29165 2e-15 0.04 99351 5e-16 0.01 29165 3e-11

4 0.01 35267 9e-13 0.05 69421 1e-15 0.02 35267 3e-10

5 0.1 196083 4e-16 0.2 439407 4e-15 0.08 196083 3e-12

6 0.06 142050 5e-15 0.1 279930 4e-14 0.06 142050 4e-13

7 0.01 8561 9e-13 0.03 52239 5e-17 0.01 8561 2e-15

8 0.01 32816 2e-16 0.05 49971 3e-16 0.02 32816 2e-13

Rectangular Matrix

9 0.01 2974 2e-13 - - - 0.01 2974 4e-11

10 0.01 9209 1e-12 - - - 0.01 9209 2e-10

11 0.8 1514019 1e-14 - - - 0.6 1514019 7e-16

12 0.06 48470 2e-12 - - - 0.05 48470 2e-13

13 0.4 313320 8e-11 - - - 0.3 313320 8e-15

14 0.6 505993 8e-16 - - - 0.3 505993 2e-12

15 0.02 30975 1e-17 - - - 0.02 30975 4e-14

16 0.4 263226 9e-12 - - - 0.2 263226 8e-11

17 54.7 550793 1e-10 - - - 15.6 550793 1e-16

18 10.2 2046096 5e-25 - - - - - -

19 2.3 7336 5e-176 - - - - - -

All three codes require no additional input parameters other than the matrix but

we set the initial vector to the same random vector for all of them. We run the

5For this matrix, the residual defined by ‖CTCv1− σ2
1v1‖ is 8e-17 while the computed singular

value is 2e-17.
6For this matrix, the residual defined by ‖CTCv1− σ2

1v1‖ is 3e-15 while the computed singular
value is 3e-16.

69

programs till convergence as determined by themselves. We compare the residual

Res defined by (3.20), the CPU time, as well as the number of non-zeros used in the

factorizations (nnz). For svdifp and lansvd, nnz is the number of non-zeros in R,

and for svds, it is the total non-zeros in L and U of the LU-factorization of M.

The results are given in Table 3.5. All three methods perform comparably for

square matrices. svds with the zero shift fails for all non-square matrices because of

singularity of M, which is marked by “-” in the table. Even using a small nonzero

shift, svds usually converges to the eigenvalue 0 rather than σ1. svdifp and lansvd

can both solve non-square problems with comparable performances. However, lansvd

can fail for matrices that are nearly rank deficient (problems 18 and 19, marked by

“-”) because of inverting a singular or nearly singular R. On the other hand, svdifp

does not suffer from a similar problem because L−1 is slightly perturbed to be used

as a preconditioner. Overall, svdifp appears most robust in this setting.

Finally, we consider svdifp for computing several largest singular values with

deflation. With the shifts chosen inside the spectrum now, RIF constructs an LDLT

factorization for an indefinite matrix CTC − µI. So, this also demonstrates the

capability of RIF to work with indefinite matrices.

Table 3.6: Example 4: 5 largest singular values of matrix lp ganges. σk- singular value;

µ- shift used for preconditioning ; MV - # of matrix-vector multiplications; Res - ‖[Cv1 −

σ1u1;C
Tu1 − σ1v1]‖/‖C‖1.

preconditioning no preconditioning

σk µ MV Res MV Res

3.9908 3.9926 91 3e-12 443 5e-11

3.9906 3.9907 91 2e-14 289 9e-11

3.9895 3.9900 91 1e-13 531 7e-11

3.9894 3.9895 91 5e-13 641 4e-11

3.9892 3.9893 91 4e-12 1103 6e-11

Example 4. We consider svdifp with and without preconditioning in comput-

70

ing the 5 largest singular values of Matrix 15 (lp ganges) in Table 3.2. In both

cases, we set the termination threshold to 1e-10 and the number of outer iterations to

10000. To compute the largest singular value, svdifp adaptively chooses a shift for

preconditioning (see Section 4). When computing the next largest singular value, the

mean of the largest and the second largest singular values of the projection matrix

constructed in computing the previous largest singular value is used as the shift to

compute an RIF preconditioner. Then, svdifp proceeds with a deflated precondi-

tioned iteration. Note that the second largest singular value of the projection matrix

is a lower bound of the singular value to be computed and the mean value should

provide a better estimate. The same procedure is used for additional singular values.

We present the results with and without preconditioning for the five largest sin-

gular values in Table 3.6. We list the number of matrix-vector multiplications (by

C or CT) used for each singular value, the residual Res obtained, and in the pre-

conditioned case, the shift µ used. We note that both methods can compute the

singular values correctly while preconditioning by RIF significantly accelerates the

convergence of svdifp. In particular, the shifted matrix is indefinite now but with

the modest indefiniteness in computing a few extreme singular values, RIF results in

a very effective preconditioner.

Copyright c© Qiao Liang, 2015.

71

Chapter 4 Subspace clustering via learning a union of orthonormal bases

In this chapter, we consider the problem of clustering data which is assumed to

lie in a union of subspaces. We propose a novel algorithm to solve this problem. Our

algorithm is based on spectral clustering algorithms. We build the similarity matrix

in a dictionary fashion, i.e, learning the dictionary and representation simultaneously.

We review in Section 4.1 some materials about spectral clustering and dictionary

learning which will be used in our proposed algorithm. In Section 4.2 we discuss

some existing subspace clustering methods. We propose our algorithm and present

its detailed implementations in Section 4.3. Finally we demonstrate the effectiveness

of our algorithm in Section 4.4.

4.1 Spectral clustering and dictionary learning

Spectral clustering and dictionary learning have been well studied in the last few

decades. And they have close relation to the subspace clustering problem. In this

section, we briefly review the relevant materials of these two topics.

4.1.1 Spectral clustering

The spectral clustering algorithms are a class of methods for finding clusters in

a given dataset X = {xi}Ni=1. In practice, a cluster is usually a group of similar

points. Spectral clustering has been well studied in the last few decades [73]. For a

comprehensive tutorial on this topic, see [85].

Let W = [wij] be a similarity matrix for the dataset with wij ≥ 0 measuring

similarity between xi and xj, namely the bigger wij is, the more similar xi and xj

are. If wij = 0, then xi and xj are not relevant to each other and they should

not be classified in the same cluster. The spectral clustering methods construct a

undirected graph G = (X , E) with the adjacency matrix W and then perform some

graph partition methods on the graph to cluster the points.

72

First we review some materials in graph theory. Let G = (X , E) be a weighted

undirected graph with non-negative weights where X = {x1, . . . ,xN}. The order of

G is the number of vertices, |G| = N . Let wij be the weight for the edge between

xi and xj. We assume wij = 0 if there is no edge between xi and xj. Since G is

undirected, the adjacency matrix W ∈ RN×N is a symmetric non-negative matrix

The degree di of a vertex xi ∈ X is defined as

di :=
N∑
j=1

wij. (4.1)

Let the degree matrix D = diag(d1, . . . , dN). The Laplacian matrix L of graph G is

defined as L = D−W. The volume of G is defined as

vol(G) :=
N∑
i=1

di. (4.2)

Given S ⊂ X , we let S̄ be the complement of S in X , |S| be the number of vertices

in S and

vol(S) =
∑
i∈S

di. (4.3)

where, for convenience, we write i ∈ S if xi ∈ S. If S1,S2 ⊂ X are disjoint, we let

W (S1,S2) =
∑

i∈S1,j∈S2

wij. (4.4)

S is called a connected component if there is no edge between S and S̄. Suppose

{X1, . . . ,XK} is a partition of X , i.e., X = X1∪ . . .∪XK and X1, . . . ,XK are disjoint,

we define the cut of this partition to be

cut(X1, . . . ,XK) =
1

2

K∑
i=1

W (Xi, X̄i). (4.5)

Given above definitions, we can formulate a so-called min-cut problem.

Definition 4.1.1. Given a weighted undirected graph G = (X , E) with non-negative

weights, the min-cut problem is to find a partition {X1, . . . ,XK} of X such that it

minimizes cut(X1, . . . ,XK).

73

The min-cut problem is closely related to the clustering problem which is to find a

partition such that similar points are in the same cluster. Suppose the wij characterize

the similarity between xi and xj, then the solution of min-cut problem provides a

way to cluster those vertices x1, . . . ,xN . However, in practice, the solution of min-

cut problem may simply separate one individual vertex from the rest of the graph

and that is what we do not expect in finding a solution of the clustering problem, in

which clusters are usually reasonably large groups of points. Therefore, [73] proposes

to minimize normalized cut denoted by Ncut instead:

Ncut(X1, . . . ,XK) =
1

2

K∑
i=1

W (Xi, X̄i)
vol(Xi)

. (4.6)

The minimization of normalized cut problem is known to be NP-complete. But

it can be solved approximately in a more efficient way.

For a partition X1, . . . ,XK of X , we define an indicator matrix H = [h1, . . . ,hK]

with

hj =
1√

vol(Xj)
1Xj , j = 1, . . . , K (4.7)

where 1Xj ∈ RN is an indicator vector whose i-th entry is 1 if i ∈ Xj and 0 oth-

erwise. From the definition of the Laplacian matrix L, we can obtain hTj Lhj =

W(Xj, X̄j)/vol(Xj), then the normalized cut of the partition X1, . . . ,XK can be writ-

ten as

Ncut(X1, . . . ,XK) = tr(HTLH).

Observe that HTDH = I, then the normalized cut minimization problem is equivalent

to

min
H

tr(HTLH) s.t. HTDH = I. (4.8)

where the minimum is taken over all possible H with the form described in (4.7).

Notice that (4.8) is almost the same as (2.10) except that (4.8) has an additional

constraint that H is a discrete-valued matrix with (4.7). By relaxing H to be a real-

valued matrix, Corollay 2.1.1 provides an approximate solution Ĥ to (4.8) with K

specified and a partition can be constructed according to Ĥ thereafter. This procedure

74

is called normalized spectral clustering [73] which is one of the most common used

spectral clustering algorithms.

Before we present the spectral clustering algorithm, let us take a look at the

generalized eigenvalue problem of the pencil (L,D). From the proof of Theorem

2.1.5, it is equivalent to the standard eigenvalue problem of Lsym = D−1/2LD−1/2. It

is easy to verify that Lsym is diagonally dominant and hence, Lsym is positive semi-

definite which can be proven by Gershgorin theorem [19]. Hence, the eigenvalues of

(L,D) which are denoted as λ1 ≤ λ2 ≤ . . . ≤ λN are all non-negative. In fact, λ1 = 0

because L1 = 0, where 1 = (1, . . . , 1)T ∈ RN .

Consider a special case of the normalized cut minimization problem, that is, the

graph G has K connected components X1, . . . ,XK with |Xi| = Ni. Without loss

of generality, we assume x1, . . . ,xN are ordered according to the connected com-

ponents they belong to. In this special case, L is a block diagonal matrix, i.e.,

L = diag(L1,L2, . . . ,LK) where Li, i = 1, . . . , K, are the Laplacian matrices for the

subgraph of those K connected components respectively. Hence,

L1Xi = Li


1

1
...

1


Ni×Ni

= 0.

Therefore, 1X1 , . . . ,1XK are eigenvectors of (L,D) associated with the eigenvalue 0.

We can summarize the above discussions as the following theorem.

Theorem 4.1.1. [85] Let G be an undirected graph with non-negative weights, then

the multiplicity K of the eigenvalue 0 of (L,D) is equal to the number of connected

components X1, . . . ,XK in the graph. And the eigenspace of eigenvalue 0 is spanned

by 1X1 , . . . ,1XK .

Theorem 4.1.1 indicates that we can cluster the rows of H to find the solution

to the normalized cut minimization problem. We present the spectral clustering

algorithm in Algorithm 4.1 [85].

75

Algorithm 4.1 Spectral Clustering Algorithm

1: Input: The similarity matrix W of the dataset X = {xi}Ni=1, number K of
clusters to construct.

2: Output: Clusters X1, . . . ,XK .
3: Compute K eigenvectors u1, . . . ,uk of the generalized eigenproblem Lu = λDu

associated with the K smallest eigenvalues.
4: For i = 1, . . . , n, let ri ∈ RK be the vector corresponding to the i-th row of

U = [u1,u2, . . . ,uK].
5: Cluster the points {ri}Ni=1 with the k-means algorithm into clusters R1, . . . ,RK .
6: Clusters Xi = {xj|rj ∈ Ri}, i = 1, . . . , K.

4.1.2 Bipartite graph clustering

In some cases, it is hard to find a good similarity matrix for the data set X =

{xi}Ni=1. Hence the spectral clustering algorithms can not be applied directly. How-

ever, we may be provided with a dictionary set Q = {qi}di=1 and the data set may

have a simple representation C ∈ Rd×N in the dictionary set, i.e, X = QC with

X = [x1, . . . ,xN] and Q = [q1, . . . ,qd]. The ij-th entry cij of C measures how much

xj is related to the dictionary atom qi. cij = 0 indicates that qi is not related to xj.

To apply spectral clustering methods, we may consider the above problem as a

bipartite graph clustering problem [21, 92]. Let V = {q1, . . . ,qd,x1, . . . ,xN} be the

vertices and

W =

 O C

CT O

 (4.9)

be the adjacency matrix. The we have a bipartite graph. We cluster the dictionary

atoms Q into {Qi}Ki=1 simultaneously while clustering the points X into {Xi}Ki=1 so

that Qi has weak connections with {Xj|j 6= i} and Xi has a weak connection to

{Qj|j 6= i}. In the words of graph theory, we hope to find clusters that minimize the

following quantity
K∑
i=1

W (Qi,
∑

j 6=iXj) +W (
∑

j 6=iQj,Xi)
vol(Qi) + vol(Xi)

which can be represented as Ncut((Q1,X1), . . . , (XK ,QK)) as in (4.6). Then we can

apply Algorithm 4.1 to find clusters in V .

76

Let D = diag(DR,DC) and DR ∈ Rd×d, DC ∈ RN×N be diagonal matrices with

DR(i, i) =
N∑
j=1

cij, DC(j, j) =
d∑
i=1

cij. (4.10)

Then the Laplacian matrix of the bipartite graph is

L =

 DR −C

−CT DC



Consider the generalized eigenvalue problem of (L,D), suppose z =

u

v

 with u ∈ Rd

and v ∈ RN is an eigenvector of (L,D) associated with λ, then

Cv = (1− λ)DRu

CTu = (1− λ)DCv

which can be rewritten as

D
−1/2
R CD

−1/2
C (D

1/2
C v) = (1− λ)(D

1/2
R u)

D
−1/2
C CTD

−1/2
R (D

1/2
R u) = (1− λ)(D

1/2
C v)

(4.11)

Hence, instead of finding K eigenvectors corresponding to the K smallest eigenvalue

of (L,D) in Algorithm 4.1, we can simply compute the left and right singular vectors

(ûi, v̂i)
K
i=1 corresponding to the largest singular value of Ĉ = D

−1/2
R CD

−1/2
C . And the

eigenvector {zi}i=1 of (L,D) can be obtained by

zi =

D
−1/2
R ûi

D
−1/2
C v̂i

 , i = 1, . . . , K. (4.12)

The complete bipartite graph clustering algorithm is presented in Algorithm 4.2.

Note that in Algorithm 4.2, the number K of clusters is provided. However, we point

out that it is not always necessary. One can always determine K by exploring the

spectrum of Ĉ ∈ Rd×N (We always assume d < N). Namely, let

K = d− arg max
i=1,...,d

(σi+1(Ĉ)− σi(Ĉ)). (4.13)

77

Algorithm 4.2 Bipartite Graph Clustering

1: Input: The representation matrix C of {xi}Ni=1 with respect to dictionary
{qi}di=1, number K of clusters to be clustered in {xi}Ni=1.

2: Output: Clusters X1, . . . ,Xk.
3: Ĉ = D

−1/2
R CD

−1/2
C where DR and DC are computed by (4.10).

4: Compute K left singular vectors {û1, . . . , ûK} and right singular vectors
{v̂1, . . . , v̂K} of Ĉ corresponding to the K largest singular values and form
ZK = [z1, . . . , zK] where {zi}Ki=1 are computed by (4.12).

5: For i = 1, . . . , N + d, let ri ∈ RK be the vector corresponding to the i-th row of
Z.

6: Cluster the points {ri}N+d
i=1 with the k-means algorithm into clusters R1, . . . ,RK .

7: Clusters Xi = {xj|rj+d ∈ Ri}, i = 1, . . . , K.

4.1.3 A dictionary learning method

The problem of dictionary learning for sparse representation assumes that a natu-

ral signal can be represented by a small number of elementary components, which are

called dictionary atoms [45, 53, 54]. It has received extensive interests and a number

of sparse representation algorithms have been proposed, such as MOD [24], K-SVD

[2] and SimCO [17], etc. In this section, we will introduce one of those algorithms

which assumes the dictionary is a union of orthonormal bases [52].

Suppose X = [x1, . . . ,xN] ∈ RD×N is a data matrix with each column represent-

ing a data sampled from RD. The task of dictionary learning is to learn a dictionary

Q ∈ RD×d providing a sparse representation for X, i.e., to find Q with X = QC + E

where E is a noise matrix and C is a sparse matrix. In general, when Q has no special

structure, computing the solution to the above problem is very computational inten-

sive. However, when Q is structured as a union of orthonormal bases, the computa-

tional cost is reduced. In additional, it has been found that some real-world datasets,

such as audio signals and images, can be modeled as the superimposition of several

layers, each of which having sparse representation in its own adapted orthonormal

basis. Wavelet decomposition is one such example. [52] proposes to consider the dic-

tionary learning problem with a dictionary set Q that is locally orthonormal. Namely,

78

we solve

arg min
Q,C

‖X−QC‖2F + λ‖C‖1

s.t. Q = [Q1, . . . ,QK]

QT
i Qi = I, i = 1, . . . , K.

(4.14)

In (4.14), the number K is known as a prior and the dimensions of each orthonormal

basis Qi are predetermined. Since the l1 penalty on C forces C to be sparse, the

dimensions of Qi need not to be accurate as long as they are over-estimations of the

true dimensions.

Since joint optimization of Q and C is very hard, an alternating optimization

strategy is employed which consists of two stages:

1. Sparse coding: given a dictionary Q, find a sparse matrix C:

arg min
C
‖X−QC‖2F + λ‖C‖1. (4.15)

2. Dictionary update: given C, find a dictionary:

arg min
Q

‖X−QC‖2F

s.t. Q = [Q1, . . . ,QK]

QT
i Qi = I, i = 1, . . . , K.

(4.16)

[52] suggests to use basis pursit [15] to solve (4.15). Since Q is a union of or-

thonormal basis, basis pursuit for (4.15) can be implemented efficiently with a Block

Coordinate Relaxation(BCR) algorithm [72].

Let C = [CT
1 , . . . ,C

T
K]T with Ci ∈ Rdi×N , i = 1, . . . , K. The idea of BCR is

to iteratively select and update a block Ci instead of updating C directly to take

advantage of the orthonormality of Qi. The selection strategy could be a systematic

cycle rule or an optimal descent rule [52, 72]. If K is large, it is computationally

infeasible to systematically cycle through all blocks Ci [72]. However, in this work,

we assume K is small. Then, the systematic cycle rule is appropriate.

The subproblem of updating Ci with all other variables fixed is

arg min
C
‖X̂i −QiCi‖2F + λ‖Ci‖1. (4.17)

79

where X̂i = X−
∑

j=i QiCi. Then the solution of (4.17) is given by

Ci = soft(QT
i X, λ/2) (4.18)

where soft is an entry-wise function on matrices with

soft(z, τ) =


z − τ, if z > τ

z + τ, if z < −τ

0, otherwise

Since BCR might converge very slowly when λ is small, [52] proposes to use a

modified BCR algorithm which is summarized in Algorithm 4.3.

Algorithm 4.3 Modified BCR Algorithm

1: Input: X ∈ RD×N , {Qi : QT
i Qi = I,Qi ∈ RD×di}Ki=1, {Ci : Ci ∈ Rdi×N}Ki=1,

λ0 > 0.
2: Output: {Ci : Ci ∈ Rdi×N}Ki=1

3: for i = 1, . . . ,M do
4: for j = 1, . . . , K do
5: X̂j = X−

∑
l 6=j QlCl.

6: Update Cj with λ = λ0(1− (i− 1)/M) by (4.18).
7: end for
8: end for

Similarly, at the stage of dictionary update, Qi is also updated one by one. Ob-

serve that the subproblem

arg min
Qi

‖X̂i −QiCi‖2F

s.t. QT
i Qi = I

(4.19)

is a constrained least squares problem, Qi can be solved analytically by the following

theorem, which is proved in [52] using an optimization approach. Here we give a

proof from the perspective of numerical linear algebra.

Theorem 4.1.2. Suppose X ∈ RD×N and C ∈ Rd×N with d < D. Let XCT =

UΣVT is the singular value decomposition of XCT with U ∈ RD×d, Σ ∈ Rd×d and

V ∈ Rd×d. Then Q = UVT solves

arg min
QTQ=I

‖X−QC‖2F . (4.20)

80

Proof. We have

arg min
QTQ=I

‖X−QC‖2F = arg min
QTQ=I

tr((X−QC)T (X−QC))

= arg min
QTQ=I

tr(−CTQTX−XTQC + CTQTQC)

= arg min
QTQ=I

−tr(CTQTX)

= arg min
QTQ=I

−tr(QTXCT)

= arg max
QTQ=I

tr(QTXCT)

(4.21)

Since XCT = UΣVT ,

tr(QTXCT) = tr(QTUΣVT) = tr(ΣVTQTU)

Let A = VTQTU. Then tr(ΣVTQTU) =
∑d

i=1 σiaii where σi, i = 1, . . . , d are

diagonal elements of Σ. Let Ũ = [U, Û] ∈ RD×D with ÛT Û = I and UT Û =

O. Then, VTQT Ũ(VTQT Ũ)T = I. Since VTQT Ũ = [A VTQÛ], then |aii| ≤ 1.

Therefore

tr(ΣVTQTU) ≤ tr(Σ).

The equality can only be obtained with VTQTU = I. Therefore

Q = UVT . (4.22)

4.2 Subspace clustering

Let X = {xi}Ni=1 be a collection of points drawn from a union of K unknown

subspaces {Si}Ki=1 of the ambient space RD with unknown dimensions di = dim(Si),

i = 1, . . . , K. Let X = [x1, . . . ,xN]. The task of subspace clustering is to find

the number K of subspaces and their dimensions {di}Ki=1, the K subspaces {Si}Ki=1

which can be characterized by finding a set of basis matrices {Bi ∈ RD×di}Ki=1 with

R(Bi) = Si, and a segmentation {Xi}Ki=1 where Xi ⊂ Si ∩ X and |Xi| = Ni.

It is worth pointing out that the subspace clustering problem will be reduced to

a linear dimensionality reduction problem if K = 1 which can be solved analytically

81

by Principal Component Analysis(PCA). However, the subspace clustering problem

becomes significantly more difficult when K > 1 due to a number of challenges which

are listed as follows:

1. The unknown parameters K and {di}Ki=1. The ideal algorithm should be capable

of estimating the parameters simply from the data matrix X without any prior

knowledge. However, it is not an easy task. In addition, the segmentation of X

may be sensitive to the estimations of K and {di}Ki=1.

2. The separation between subspaces {Si}Ki=1. The subspaces could be linearly

independent, disjoint (by disjoint, we mean the subspaces have only trivial

intersection) or even have non-trivial intersection (there exists a non zero vector

with x ∈ Si ∩ Sj). While it is less difficult to solve the subspace clustering

problem for the former two cases, it is much more difficult to solve for the third

case.

3. The existence of noises and outliers will distort the true underlying subspace

structure, thus making the subspace clustering problem even harder.

Next we will present a number of subspace clustering algorithms from the litera-

ture.

4.2.1 Existing subspace clustering algorithms

A number of subspace clustering algorithms have been proposed in the past few

decades. Most of them can be divided into four main categories: algebraic methods,

iterative methods, statistical methods, and spectral clustering-based methods [81].

4.2.1.1 Algebraic Methods

Algebraic methods obtain the segmentation of the data by exploiting the algebraic

structure. For example, [13, 16, 27] are based on a low rank factorization of the data

matrix X. Specifically, there exists a permutation matrix Γ ∈ RN×N such that

82

XΓ = [X1, . . . ,XK] where the columns of Xi are sampled from the same subspace Si
with dimension di. Suppose Qi ∈ RD×di is an orthonormal basis for Si, then

Xi = QiZi, i = 1, . . . , K,

where Zi ∈ Rdi×Ni is the low dimensional representation of the points with respect to

Qi. If we assume the subspaces {Si}Ki=1 are linearly independent, then d = rank(X) =∑n
i=1 di ≤ min{D,N} and

XΓ = [Q1,Q2, . . . ,QK]


Z1

Z2

. . .

ZK

 = QZ,

where Q = [Q1, . . . ,QK] ∈ RD×d and Z ∈ Rd×N . Suppose X = UΣVT is the rank-d

SVD of the data matrix, i.e., U ∈ RD×d,Σ ∈ Rd×d and V ∈ RN×d. Let

W = VVT ∈ RN×N .

Then wij = 0 if points xi and xj are in different subspaces, see [40] for a proof. This

fact can be used to segment the data by thresholding the entries of W. However,

the matrix factorization-based methods are provably correct when the subspaces are

linearly independent and may fail when the assumption is violated. They are also

highly sensitive to the presence of noise and outliers.

Generalized Principal Component Analysis(GPCA) [83] fits the data with a set

of polynomials whose gradients at a point give a normal vector to the subspace con-

taining that point. Then an orthonormal basis Qi can be obtained for each subspace

Si. A segmentation of the data can be obtained thereafter. GPCA does not require

any prior knowledge of the number of subspaces and their dimensions and it can deal

with both linearly independent and dependent subspaces. However, it is computa-

tionally expensive and its complexity increases exponentially in terms of the number

and dimensions of subspaces. It is also sensitive to noises and outliers.

83

4.2.1.2 Iterative Methods

Iterative methods, such as k-planes [14], K-subspaces [79] and median K-flats

[93] are generalizations of K-means algorithm. Basically, given initial subspaces,

iterative methods alternate between assigning points to subspaces and re-estimating

the subspaces. In particular, K subspace method tries to find a set of centroids

{zi}Ki=1, an orthonormal basis {Qi}Ki=1 for subspaces, low rank representations {yi}Ni=1

for X and a set of scalars {wij}i=1,...K,j=1,...,N with wij ∈ {0, 1} which solve

min
{zi}Ki=1,{Qi}Ki=1,{yi}Ni=1,{wij}

K∑
i=1

N∑
j=1

wij‖zi −Qiyj‖22

with constraint
∑K

i=1wij = 1. Jointly optimizing all these variables is very hard.

So K subspace method exploits the same strategy as K means to iteratively cluster

those points and solve a PCA problem for each cluster. In general, iterative methods

require prior knowledge of the number of subspaces and their dimensions. They are

also sensitive to initializations.

4.2.1.3 Statistical Methods

Statistical methods make assumptions about the distribution of data inside the

subspaces or the distribution of noise. Mixtures of Probabilistic PCA (MPPCA)

[78] and Agglomerative Lossy Compression (ALC) [59] assume that data inside each

subspace have (degenerate) Gaussian distribution. MPPCA alternates between clus-

tering and subspace estimation by applying Expectation Maximization method while

ALC finds the segmentation of data to minimize the overall coding length subject to

a given distortion. The main drawbacks of MPPCA are that it needs to know the

number and dimensions of subspaces beforehand and it is sensitive to initialization.

Though ALC automatically determines the number and dimensions of subspaces,

there is no theoretical proof for its optimality.

84

4.2.1.4 Spectral Clustering-based Methods

Spectral clustering-based subspace clustering methods construct a similarity ma-

trix W ∈ RN×N for {xi}Ni=1 and then apply spectral clustering algorithms introduced

in Section 4.1.1 to segment the data into clusters. Some methods introduced earlier

can be extended to form a similarity matrix, such as GPCA.

Local Subspace Affinity(LSA), Spectral Local Best-fit Flats(SLBF) and Locally

Linear Manifold Clustering algorithms use local information around each point to

build the similarity matrix. They have an intrinsic difficulty in dealing with points

near the intersection of two subspaces. In addition, a right choice of the neighborhood

size to compute the local information at each point is critical.

The state-of-the-art subspace clustering algorithms, such as Sparse Subspace Clus-

tering [22, 23], Low Rank Representation(LRR) [56] and their variants [87, 69, 57, 82]

are also spectral clustering-based methods. Those algorithms build better similarities

between data points using global information. The basic observation of SSC and LRR

is that data in a union of multiple subspaces have self-expressiveness property(SEP)

[23] as defined below.

Definition 4.2.1. A dataset has a self-expressive property if each data in this dataset

can be reconstructed by a combination of other points in this dataset. In other words,

there exists a coefficient matrix C ∈ RN×N such that X = XC with diag(C) = 0.

Since N > D in general, there are infinitely many C. To build a good C, we would

like to enforce some penalty function f(C) on C such that only the representations

using points from the same subspace are favored. Namely, we solve the following

optimization problem.

arg min
C

f(C), s.t. X = XC, diag(C) = 0. (4.23)

Then the similarity matrix is constructed as W = |C|+ |CT |.

The key idea of SSC is that the most efficient representation of the data point

x ∈ Si is a combination of at most di points in the same subspace. It motivates us to

find the sparsest C in (4.23), i.e., f(C) = ‖C‖0. Since solving the sparse optimization

85

problem is generally hard, SSC replaces ‖C‖0 by its convex relaxation ‖C‖1. The

l1 optimization step can be solved efficiently. While SSC achieves state-of-the-art

performance in subspace clustering problems, it suffers from the graph connectivity

problem: it is possible that points in the same subspace form multiple components

of the graph and are misclassified as being in different subspaces.

LRR observes that with the assumption that {Si}Ni=1 are linearly independent,

the lowest rank solution of X = XC implies the desired representation, i.e, the

data point x ∈ Si corresponds to a linear combination of data points in the same

subspace. Since rank minimization problem is also NP-hard, LRR uses a convex

surrogate f(C) = ‖C‖∗, the nuclear norm of ‖C‖∗. In addition, LRR does not

require the constraint diag(C) = 0 to avoid the situation C = I which might occur

in SSC. Though LRR is practically successful, it is provably effective if the subspaces

are not independent.

There are also some other choices of f(C) recently, such as ‖C‖2F , ‖C‖∗+λ‖C‖1,

see [58, 87] for more discussions.

4.3 A novel subspace clustering algorithm via learning orthonormal bases

Observe that recently developed subspace clustering algorithms have a close re-

lation with dictionary learning. While the dictionary learning consists of two steps:

coding step and dictionary update step, see Section 4.1.3 as an example, SSC and

LRR only have the coding step as they already take the dataset X as a good dictio-

nary because of its self-expressiveness property. But it is still worth finding a better

dictionary, with which the representation is more informative about the underlying

subspaces in the dataset. [39] developed a dictionary learning based subspace clus-

tering algorithm which assumes the dictionary and sparse coding coefficients are both

non-negative. It is effective for clustering in non-negative datasets but not suitable

for other more general datasets. Recently, [1] applied a dictionary learning algorithm

called k-SVD to generate an over-complete dictionary. With the learned dictionary,

a sparse representation is recovered by Orthogonal Matching Pursuit [60]. Clusters

are obtained by applying bipartite graph clustering to the representation. While this

86

method is efficient, it lacks of proofs about effectiveness. To the best of our knowl-

edge, there is no direct relation between the dictionary learned by k-SVD and the

desirable dictionary which can characterize the subspaces structure of the dataset.

Therefore, it is necessary to find a more suitable dictionary to achieve better subspace

clustering results.

4.3.1 Motivation

When searching for subspaces that cluster the data points, an orthonormal basis

is the most appropriate way to represents a subspace. It also offers better numerical

stability in computations. We therefore consider representation of the data points in

orthonormal bases. Recall the idea of matrix-factorization based methods in Section

4.2.1.1, the data matrix X can be represented by a union of orthogonal bases:

X = [Q1,Q2, . . . ,QK]


Z1

Z2

. . .

ZK

Γ = QC.

We write the corresponding blocks of C as C = [C1, . . . ,CK]. If Qi is an orthogonal

basis of Si, then each block Ci has only Ni non-zero columns, i.e, ‖Ci‖2,0 = Ni. For

any other orthonormal matrices,
∑K

i=1 ‖Ci‖2,0 ≥ N . In addition, each column of C

has at most r = max{d1, . . . , dK} elements, which indicates C is a sparse matrix.

Those facts inspire us to find C with minimum ‖C‖0 and
∑K

i=1 ‖Ci‖2,0 to get a desir-

able block structure of C, i.e., C is block diagonal up to some column permutation.

We find such C by solving the following problem.

arg min
Q,C,E

‖C‖0 + µ
K∑
i=1

‖Ci‖2,0 + λ‖X−QC‖2F

s.t Q = [Q1, . . . ,QK],Qi ∈ RD×di

QT
i Qi = I, i = 1, . . . , K

C = [CT
1 , . . . ,C

T
K]T ,Ci ∈ Rdi×N

(4.24)

87

where K and {di}Ki=1 are predefined and E = X − QC represents the noise in X.

Since the sparse optimization problem is generally NP-hard, we proposes to solve an

alternate optimization problem (4.25) by replacing ‖ · ‖0 and ‖ · ‖2,0 with their convex

relaxations ‖ · ‖1 and ‖ · ‖2,1.

arg min
Q,C

‖C‖1 + µ
K∑
i=1

‖Ci‖2,1 + λ‖X−QC‖2F

s.t Q = [Q1, . . . ,QK],Qi ∈ RD×di

QT
i Qi = I, i = 1, . . . , K

C = [CT
1 , . . . ,C

T
K]T ,Ci ∈ Rdi×N

(4.25)

The main difference between (4.25) and (4.14) is the extra penalty term
∑K

i=1 ‖Ci‖2,1,

which promotes fewer nonzero columns in each block Ci. At the same time, the l1

penalty term promotes sparsity. As a result, it forces the data in a subspace to be

represented by as few blocks in Q = {Qi}Ki=1 as possible.

Observe that (4.25) is similar to (4.14) which is briefly discussed in Section 4.1.3.

We can use the same alternating optimization strategy to solve (4.25).

1. Assuming Q is fixed, we can update C by solving

arg min
C

‖C‖1 + µ
K∑
i=1

‖Ci‖2,1 + λ/2‖X−QC‖2F

s.t C = [CT
1 , . . . ,C

T
K]T ,Ci ∈ Rdi×N

(4.26)

To take advantage the orthonormality of Qi, we can use a similar BCR algorithm

to update Ci iteratively. First, let us consider the subproblem of updating Ci:

arg min
Ci

‖Ci‖1 + µ‖Ci‖2,1 + λ/2‖X̂i −QiCi‖2F (4.27)

where X̂i = X −
∑

j 6=i QjCj. We present an alternating direction method of

multipliers (ADMM) method to solve (4.27).

To start, we introduce an auxiliary matrix F ∈ Rdi×N and consider the opti-

mization problem

arg min
Ci,Fi

‖Ci‖1 + µ‖Fi‖2,1 + λ/2‖X̂i −QiFi‖2F

s.t. Ci = Fi

(4.28)

88

The augmented Lagrangian of (4.28) is given by

L = ‖Ci‖1 + µ‖Fi‖2,1 + λ/2‖X̂i −QiFi‖2F

+ ρ/2‖Ci − Fi‖2F + tr(ΨT
i (Ci − Fi)).

(4.29)

where Ψi ∈ Rdi×N is a matrix of Lagrange multipliers. The ADMM is an

iterative approach of updating Ci, Fi and Ψi alternatively. In the following

algorithm, we let {C(k)
i ,F

(k)
i } be the optimization variables at step k and Ψ

(k)
i

be the Lagrange multipliers at step k.

Algorithm 4.4 Update Ci by an ADMM algorithm

1: Input: X̂i ∈ RD×N , Qi ∈ RD×di with QT
i Qi = I, µ, λ, ρ, ε > 0, maxIter.

2: Output: Ci ∈ Rdi×N .
3: Set C

(0)
i ,F

(0)
i and Ψ

(0)
i be zero. k = 0.

4: while k < maxIter do
5: Obtain F

k+1)
i by (4.31).

6: C
k+1)
i = soft(F

(k)
i −Ψ

(k)
i , 1/ρ).

7: Ψ
(k+1)
i = Ψk

i + ρ(C
(k)
i − F

(k)
i).

8: if ‖C(k)
i − F

(k)
i ‖inf ≤ ε, ‖Ck

i −Ck−1
i ‖ ≤ ε and ‖Fk

i − Fk−1
i ‖ ≤ ε then

9: k =maxIter.
10: end if
11: end while

• Obtain F
(k+1)
i by minimizing L with respect to Fi while the other variables

and Lagrange multipliers are fixed. Compute the partial derivative of L

with respect to Fi and set it to 0, we have

µF̃
(k+1)
i + (λ+ ρ)Fk+1

i − (λQT
i X̂i + ρC

(k)
i + Ψ

(k)
i) = 0. (4.30)

where F̃
(k+1)
i is obtained by normalized column of Fk+1

i . Let V
(k)
i =

λQT
i X̂i + ρC

(k)
i + Ψ

(k)
i . Then the j-th column of Fk+1

i is given by

(Fk+1
i)j =


(V

(k)
i)j

(λ+ ρ)
− µ

λ+ ρ

(V
(k)
i)j

‖(V(k)
i)j‖2

, if ‖(V(k)
i)j‖2 > µ

0, otherwise.

(4.31)

• Obtain C
(k+1)
i by minimizing L with respect to Ci while the other variables

and Lagrange multipliers are fixed. Compute the partial derivative of R

89

with respect to Ci and set it be 0, we have

sgn(C
(k+1)
i) + ρ(C

(k+1)
i − F

(k)
i) + Ψ

(k)
i = 0. (4.32)

The solution of (4.32) is given by soft(F
(k)
i −Ψ

(k)
i /ρ, 1/ρ).

• With F
(k)
i and C

(k)
i fixed, perform a gradient ascent update with the step

size ρ.

Ψ
(k+1)
i = Ψk

i + ρ(C
(k+1)
i − F

(k+1)
i). (4.33)

These three steps are repeated until convergence is achieved or the number

of iterations exceeds a maximum iteration number. Convergence is achieved

when ‖C(k)
i − F

(k)
i ‖max ≤ ε, ‖Ck

i − Ck−1
i ‖max ≤ ε and ‖Fk

i − Fk−1
i ‖max ≤

ε where ε denotes the error tolerance for the primal and dual residuals. In

summary, Algorithm 4.4 shows the updates for the ADMM implementation

of the optimization problem (4.28). We also provide a specific modified BCR

algorithm to update C, see Algorithm 4.5.

Algorithm 4.5 Update C by Modified BCR algorithm

1: Input: X ∈ RD×N , Q = [Q1, . . . ,QK] with QT
i Qi = I and Qi ∈ RD×di , C =

[CT
1 , . . . ,C

T
K]T with Ci ∈ Rdi×D, µ0, λ0, ρ, ε > 0.

2: Output: C ∈ Rd×D.
3: for j = 1, . . . ,M do
4: for i = 1, . . . , K do
5: X̂i = X−

∑
l 6=i QiCi.

6: Obtain Ci by applying Algorithm 4.4 with λ = λ0M/(M − j + 1) and
µ = µ0M/(M − j + 1).

7: end for
8: end for

2. Assuming C is fixed, we find Q by solving

arg min
Q

‖X−QC‖2F

s.t Q = [Q1, . . . ,QK]

QT
i Qi = I, i = 1, . . . , K

(4.34)

To update Q, we update Qi separately as given by Theorem 4.1.2. We give the

details in Algorithm 4.6.

90

Algorithm 4.6 Update Q

1: Input: X ∈ RD×N and C = [CT
1 , . . . ,C

T
K] with Ci ∈ Rdi×N , Q = [Q1, . . . ,QK]

with Qi ∈ RD×di .
2: Output: Q = [Q1, . . . ,QK].
3: for i = 1, . . . , K do
4: X̂i = X−

∑
j 6=i QjCj.

5: Compute the SVD of X̂iC
T
i = UiΣiVi with Ui ∈ RD×di , Vi ∈ Rdi×di .

6: Qi = UiV
T
i .

7: end for

4.3.2 Initialization and estimations of K and {di}Ki=1

Note that the algorithms in Section 4.3.1 require prior knowledge of number K of

subspaces and their dimensions {di}Ki=1. However, in practice, we do not know these

parameters in advance. Observe that the minimization of ‖C‖1 in (4.24) implies a

small number of dictionary atoms will be used. We can conclude that with over-

estimations of di, we can still obtain a matrix C with satisfying structure.

[91] suggests an agglomerative clustering procedure to update number K of clus-

ters, as well as regroup the dictionary atoms for each cluster. In particular, assume we

have dictionary Q = {qi}di=1 and an coefficient matrix C. A segmentation of Q will

be obtained by grouping rows of C according to their sparsity patterns. In particular,

given an initial segmentation of the dictionary {Qi}Ki=1 with each Qi corresponding

to one cluster, merge Qi and Qj whose corresponding rows of C have most similar

sparsity patterns.

Algorithm 4.7 Estimations of K and {di}Ki=1

1: Input: X , Q, C ∈ Rd×N .
2: Output: K, {di}Ni=1, {Qi : QT

i Qi = I,Qi ∈ RD×di}, {Ci : Ci ∈ Rdi×N}Ki=1.
3: Apply Algorithm 4.2 with C to obtain clusters X1, . . . ,XK of X , where K is

determined by (4.13).
4: Let Xi be a matrix which is formed by stacking all vectors in Xi to its columns.

Suppose the index set of elements of Xi in X is Ii.
5: for i = 1, . . . , K do
6: Compute the SVD of Xi = UΣṼ with Σ ∈ Rm×m, where r = min{ni, D}.
7: di = r − arg maxi(σi+1(Xi)− σi(Xi)), Qi = U(:, 1 : di), Ci(:, Ii) = QT

i Xi.
8: end for

Observe that the agglomerative clustering procedure in [91] is an iterative bipartite

91

graph method. A more efficient and effective choice to address the bipartite graph

partition problem is bipartite graph spectral clustering method which is introduced in

Section 4.1.2. In particular, in the setting of subspace clustering, we can also cluster

the corresponding data simultaneously and then apply PCA to obtain an orthonormal

basis for each cluster.

Suppose we obtain a coefficient matrix C of X with respect to a dictionary Q,

we compute clusters based on C with Algorithm 4.2. Then we apply PCA to each

cluster to obtain a new orthonormal basis. These orthonormal bases will then be the

input to Algorithm 4.5 to obtain a better coefficient matrix C, see Algorithm 4.7.

Remark If N and D are large, line 6 of Algorithm 4.7 will be time consuming as

the complete SVD is very expensive. An alternate way is clustering the dictionary

set Q instead of X .

In practice, we do not need to estimate K and di at each step, we could update

them every a few steps. After we obtain a good representation matrix C, we can

apply Algorithm 4.2 to obtain the final clustering results. We summarize the complete

procedure of our method in Algorithm 4.8.

Algorithm 4.8 Subspace clustering by learning a union of orthonormal bases

1: Input: A dataset X with representation X.
2: Output: Clusters X1, . . . ,XK .
3: Initialization: C = X
4: for i = 1, 2, ... until convergence do
5: Compute {di,Qi,Ci}Ki=1 by Algorithm 4.7.
6: for j = 1, 2, ...,M do
7: Solve (4.26) by Algorithm 4.5.
8: Solve (4.34) by Algorithm 4.6.
9: end for

10: end for
11: Compute clusters X1, . . . ,XK by Algorithm 4.2.

4.4 Numerical examples

In this section, we present some examples to evaluate the performance of Algo-

rithm 4.8 and compare it with SSC and LRR, two state-of-the-art subspace clustering

92

algorithms. We use the SSC [23] and LRR [56] implementations from the authors’

websites. For consistency, we normalize each data point of the dataset to unit norm

for all methods.

4.4.1 Synthetic data

Consider three disjoint subspaces {Si}3i=1 of the same dimension d = 4 embedded

in the R20. To make the problem hard enough so that every data point in a subspace

can also be reconstructed as a linear combination of points from other subspaces, we

generate subspace bases {Ui ∈ RD×d}3i=1 such that each subspace lies in the direct

sum of the other two subspaces, i.e., rank([U1,U2,U3]) = 2d. Simply, we set

U1 =

Id

O

 ∈ RD×d, U2 =

O

Id

 ∈ RD×d, U3 =


D1

O

D2

 ∈ RD×d.

where D1 = diag(cos(θ1), . . . , cos(θd)) and D2 = diag(sin(θ1), . . . , sin(θd)) with

θi = θ +
i− 1

d− 1
(π/2− θ).

Thus, we can verify the effect of the smallest principal angle in the subspace

recovery by changing the value of θ. To investigate the effect of the data distribution

in the subspace-sparse recovery, we generate the same number of data points, N , in

each subspace at random (i.e. random linear combination of the basis vectors) and

change the value of N . In our experiment, we let θ vary from 0.1047 (degree 6) to

0.5235 (degree 30) and N vary from 5 to 35. For each (N, θ) group, we compute the

subspace clustering error(SCE):

SCE =
of misclassified points

total # of points
.

We repeat the process 50 times with different randomly generated points with respect

to each (N, θ) group and report only the average SCE for each subspace clustering

algorithm, namely, Algorithm 4.8, SSC and LRR. We show the results in Figure 4.1.

Figure 4.1 shows that the performances of Algorithm 4.8 and SSC are much bet-

ter than LRR, as LRR is developed with the assumption of linearly independent

93

N

5 10 15 20 25 30 35

θ

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

5 10 15 20 25 30 35

θ

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

5 10 15 20 25 30 35

θ

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.1: Average clustering error of Algorithm 4.8, SSC and LRR on synthetic
data for each (N, θ) group. Left: Our method, Middle: SSC, Right: LRR

subspaces. When the subspaces have large intersections with each other, the repre-

sentation matrix C is not low rank any more and LRR underperforms. To further

compare our method and SSC, we plot the differences of SCE measure for the two

methods in Fig 4.2 , where Algorithm 4.8 reports smaller SCR in white area and

SSC has smaller SCE in black area. We observe that Algorithm 4.8 outperforms SSC

when the values of N and θ are larger but underperforms when N and θ are smaller.

N

5 10 15 20 25 30 35

θ

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 4.2: Difference of SCR for Algorithm 4.8 and SSC for each (N, θ) group.
White: Algorithm 4.8 has smaller SCE. Black: SSC has smaller SCE.

4.4.2 Basic and rotated MNIST dataset

The MNIST dataset [48] is a database of binary images of 10 handwritten digits.

The images are all of size 28 × 28 pixels. The database contains 60000 training

94

images and 10000 testing images. We use them to demonstrate the performance of

subspace clustering algorithms for different number K of subspaces. We let K = 3, 6.

We randomly select K digits and randomly select N = 100 sample images from the

training images for each digit to form a dataset. Then we apply Algorithm 4.8, SSC

and LRR to the generated dataset. The process is repeated 100 times with respect

to each K and we report their mean and median SCEs in Table 4.1. We notice that

LRR almost has perfect clustering. It is because the subspaces of handwritten digits

are approximately independent. Thus, the coefficient matrix C has perfect low-rank

property. Our method is better than SSC in the case of K = 3 while SSC is slightly

better when K = 6.

Table 4.1: SCE of Algorithm 4.8, SSC and LRR

K
Algorithm 4.8 SSC LRR

average median average median average median
K = 3 0.186 0.137 0.290 0.353 0.005 0.000
K = 6 0.390 0.403 0.356 0.367 0.018 0.000

The rotated MNIST dataset [46] is a variant of the MNIST dataset. It contains

gray scale images of hand-written digits of size 28× 28 pixels, which were originally

taken from the MNIST dataset, and transformed in several ways to create more

challenging classification problems. Introducing multiple factors of variation leads

to four benchmarks: mnist-rot, mnist-back-rand, mnist-back-image, mnist-rot-back-

image. We only consider the mnist-rot dataset, in which the images from MNIST

dataset were rotated by an angle generated uniformly between 0 and 2π radians. It

was shown in [33] that handwritten digits with some variations lie on 12-dimensional

subspaces. Hence they can be modeled as data points lying close to a union of 12-

dimensional subspaces.

We will evaluate the clustering performances of Algorithm 4.8 as well as SSC

and LRR on this challenging dataset. Since the dataset contains a large number of

samples, we only use samples from the training and validation sets for clustering.

In particular, we randomly select 10 samples per digits and generate a small subset

containing 100 samples from 10 digits. We use these samples for clustering and repeat

95

the process 120 times with different randomly select datasets. We report the average

and median clustering errors of different methods in Table 4.2. It shows Algorithm

4.8 have comparable performance as SSC and LRR in this case.

Table 4.2: Clustering performance on the rotated MNIST dataset

Dataset
Our method SSC LRR

average median average median average median
mnist-rot 0.746 0.745 0.729 0.730 0.761 0.760

Our experiments have shown that Algorithm 4.8 achieve comparable results as

SSC and LRR. In addition, Algorithm 4.8 can deal with more general datasets, in

which the data points may not lie in the union of subspaces.

Copyright c© Qiao Liang, 2015.

96

Chapter 5 Concluding remarks

In the dissertation, we have discussed some algorithms and related theories for

the generalize eigenvalue problem, singular value problem and subspace clustering

problem.

In Chapter 2, we have incorporated the deflation by restriction method into the

inverse-free preconditioned Krylov subspace method to find several eigenvalues of

the generalized symmetric definite eigenvalue problem. We extend the convergence

analysis in [32] to justify the deflation scheme. Numerical examples confirm the

convergence properties as revealed by the new theory. This deflation scheme allows

implementation of the inverse-free preconditioned Krylov subspace method without

using perturbations to the original problems as in the Wielandt deflation. This may be

important in applications such as the singular value computation where the structure

of the problems needs to be preserved.

In Chapter 3, we have presented an inverse free preconditioned Krylov subspace

algorithm for computing a few of the extreme singular values of a rectangular matrix.

The robust incomplete factorization (RIF) has been adapted to efficiently construct

preconditioners for the shifted matrix CTC − µI. A preliminary MATLAB imple-

mentation has been developed and is demonstrated to be very competitive compared

to other existing programs in both settings of using preconditioners or using shift-

and-invert.

In Chapter 4, we have developed a novel subspace clustering algorithm. The main

idea of our algorithm is to find the best orthonormal bases for the underlying sub-

spaces as a dictionary and then finding the sparsest block structured representation

of the data based on the learned dictionary. Different from some other dictionary

learning based algorithms, we find the dictionary and representation of data simul-

taneously. This idea introduces an extra penalty term in the optimization problem

(4.25), which promotes a block structure in the representation of the data with the

dictionary as showed in Section 4.4.1. Numerical examples demonstrate the effective-

97

ness of our algorithm in both synthetic and real world datasets.

Copyright c© Qiao Liang, 2015.

98

Bibliography

[1] A. Adler, M. Elad, and Y. Hel-Or. Linear-time subspace clustering via bipartite

graph modeling. IEEE Transactions on Neural Networks and Learning Systems,

2015.

[2] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing

overcomplete dictionaries for sparse representation. IEEE Transactions on Signal

Processing, 54:4311–4322, 2006.

[3] J. Baglama, D. Calvetti, and L. Reichel. Algorithm 827: irbleigs: A MATLAB

program for computing a few eigenpairs of a large sparse Hermitian matrix. ACM

Transactions on Mathematical Software, 29:337–348, September 2003.

[4] J. Baglama, D. Calvetti, and L. Reichel. IRBL: An implicitly restarted block

Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comp.,

24:1650–1677, 2003.

[5] J. Baglama and L. Reichel. Augmented implicitly restarted Lanczos bidiagonal-

ization methods. SIAM J. Sci. Comp., 27:19–42, 2005.

[6] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates

for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,

Philadelphia, PA, 2000.

[7] Z. Bai, I. S. Duff, and A. J. Wathen. A class of incomplete orthogonal fac-

torization methods. I: methods and theories. Report 99/13, Oxford University

Computing Laboratory, 1999.

[8] M. Benzi. Preconditioning techniques for large linear systems: A survey. J.

Comp. Phys., 182:418–477, 2002.

99

[9] M. Benzi, J. K. Cullum, and M. Tuma. Robust approximate inverse precondi-

tioning for the conjugate gradient method. SIAM J. Sci. Comp., 22:1318–1332,

2000.

[10] M. Benzi and M. Tuma. A robust incomplete factorization preconditioner for

positive definite matrices. Num. Lin. Alg. Appl., 10:385–400, 2003.

[11] M. Benzi and M. Tuma. A robust preconditioner with low memory requirements

for large sparse least squares problems. SIAM J. Sci. Comp., 25:499–512, 2003.

[12] M. W. Berry. Large scale sparse singular value computations. International

Journal of Supercomputer Applications, 6:13–49, 1992.

[13] T. E. Boult and L. G. Brown. Factorization-based segmentation of motions. in

IEEE Workshop on Motion Understanding, pages 179–186, 1991.

[14] P. S. Bradley and O. L. Mangasarian. k-plane clustering. Journal of Global

Optimization, 16(1):23–32, 2000.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunder. Atomic decomposition by basis

pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

[16] J. Costeira and T. Kanade. A multibody factorization method for independently

moving objects. Int. J. of Computer Vision, 29(3), 1998.

[17] W. Dai, T. Xu, and W. Wang. Simultaneous codeword optimization (simco)

for dictionary update and learning. IEEE Transactions on Signal Processing,

60(12):6340–6353, 2012.

[18] T. Davis and Y. Hu. The University of Florida sparse matrix collection.

http://www.cise.ufl.edu/research/sparse/matrices/.

[19] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA,

1997.

100

[20] H. A. Van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of

Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Comput,

13:631–644, 1992.

[21] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph

partitioning. Proceedings of the seventh ACM SIGKDD international conferrence

on Knowledge discovery and data mining, pages 269–274, 2001.

[22] E. Elhamifar and R. Vidal. Sparse subspace clustering. IEEE International

Conference on Computer Vision and Pattern Recogition, 2009.

[23] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and

applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2013.

[24] K. Engan, S. O. Aase, and J. H. Husøy. Method of optimal directons for frame

design. Acoustics, Speech, and Signal Processing, 1999. Proceedings. (ICASSP

’99). IEEE International Conference on, 5:2443–2336, 1999.

[25] T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for the

numerical solution of large sparse generalized symmetric eigenvalue problems.

Mathematics of Computation, 35:1251–1268, 1980.

[26] D. R. Fokkema, G. L. G. Sleijpen, and Henk A. Van Der Vorst. Jacobi-Davidson

style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci.

Comput., 20:94–125, 1998.

[27] C. W. Gear. Multibody grouping from motion images. Int. J. of Computer

Vision, 29(2):133–150, 1998.

[28] A. George and J. Liu. Householder reflectors versus Givens rotations in sparse

orthogonal decompositions. Lin. Alg. Appl., 88/89:223–238, 1987.

[29] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse

of a matrix. SIAM Journal on Numerical Analysis, 2:205–224, 1965.

101

[30] G. H. Golub and C. F. VanLoan. Matrix Computations. Johns Hopkins Univer-

sity Press, Baltimore, MD, 3rd edition, 1996.

[31] G. H. Golub and Q. Ye. Inexact inverse iteration for generalized eigenvalue

problems. BIT, 40:671–684, 2000.

[32] G. H. Golub and Q. Ye. An inverse free preconditioned Krylov subspace method

for symmetric generalized eigenvalue problems. SIAM J. Sci. Comp., 24:312–334,

2002.

[33] T. Hastie and P. Y. Simard. Metrics and models for handwritten character

recognition. Statistical Science, 13(1):54–65, 1997.

[34] J. Ho, M. Yang, J. Lim, K. Lee, and D. Kriegman. Clustering appearances of

objects under varying illumination conditions. CVPR, 2003.

[35] M. E. Hochstenbach. A Jacobi-Davidson type SVD method. SIAM J. Sci.

Comput, 23:606–628, 2001.

[36] M. E. Hochstenbach. Harmonic and refined extraction methods for the singu-

lar value problem with applications in least squares problems. BIT Numerical

Mathematics, 44:721–754, 2004.

[37] M. E. Hochstenbach. Private communications, 2014.

[38] Z. Jia and D. Niu. An implicitly restarted refined bidiagonalization Lanczos

method for computing a partial singular value decomposition. SIAM J. Matrix

Anal. Appl., 25:246–265, 2003.

[39] L. Jing, M. K. Ng, and T. Zeng. Dictionary learning-based subspace structure

identification in spectral clustering. IEEE Transactions on Neural Networks and

Learning Systems, 24(8), 2013.

[40] K. Kanatani. Motion segmentation by subspace separation and model selection.

IEEE International Conference on Computer Vision, 2:586–591, 2001.

102

[41] A. V. Knyazev. A preconditioned conjugate gradient method for eigenvalue

problems and its implementation in a subspace. In International Ser. Numerical

Mathematics, v. 96, Eigenwertaufgaben in Natur- und Ingenieurwissenschaften

und ihre numerische Behandlung, Oberwolfach, pages 143–154, Basel, 1991.

Birkhauser.

[42] A. V. Knyazev. Preconditioned eigensolvers—an oxymoron? Electron. Trans.

Numer. Anal., 7:104–123, 1998.

[43] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal

block preconditioned conjugate gradient. SIAM J. Sci. Comp., 23:517–541, 2001.

[44] E. Kokiopoulou, C. Bekas, and E. Gallopoulos. Computing smallest singular

triplets with implicitly restarted Lanczos bidiagonalization. Appl. Numer. Math,

49:39–61, 2004.

[45] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, and T. W. Lee. Dictio-

nary learning algorithms for sparse representation. Neural Computation, 15(349–

396), 2004.

[46] H. Larochelle, D. Erhan, A. Courvill, J. Bergstra, and Y. Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation.

International Conference on Machine Learning(ICML), pages 473–480, 2007.

[47] R. M. Larsen. Lanczos bidiagonalization with partial reorthogonaliza-

tion. Technical report, DAIMI PB-357, Department of Computer Sci-

ence, University of Aarhus, Aarhus, Denmark, also available online from

http://sun.stanford.edu/ rmunk/PROPACK/, 1998.

[48] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[49] R. Lehoucq, D. Sorenson, and C. Yang. ARPACK Users’ Guides, Solution

of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Method.

SIAM, Philadelphia, 1998.

103

[50] R. B. Lehoucq. Analysis and implementation of an implicitly restarted Arnoldi

iteration. PhD thesis, Rice University, Houston, TX, 1995.

[51] R. B. Lehoucq and D. C. Sorensen. Deflation techniques within an implicitly

restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17:789–821, 1996.

[52] S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya. Learning unions of

orthonormal bases with thresholded singular value decomposition. Acoustics,

Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE Interna-

tional Conference on, 5:v/293–v/296, March 2005.

[53] M. S. Lewicki and B. A. Olshausen. Probabilistic framework for the adaption

and comparison of image codes. J. Opt. Soc. Am. A, 16(7):1587–1601, July 1999.

[54] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neu-

ral Computation, 12(2):337–365, 2000.

[55] Q. Liang and Q. Ye. Computing singular values of large matrices with an inverse-

free preconditioned krylov subspace method. Electronic Transactions on Numer-

ical Analysis, 42:197–221, 2014.

[56] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank represen-

tation. International Conference on Machine Learning(ICML), 2010.

[57] J. Liu, Y. Chen, J. Zhang, and Z. Xu. Enhancing low-rank subspace clustering by

manifold regularization. IEEE Transactions on Image Processing, pages 4022–

4030, 2014.

[58] C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, and S. Yan. Robust and efficient

subspace segmentation via least squares regression. 12th European Confereence

on Computer Vision, 2012.

[59] Y. Ma, H. Derken, W. Hong, and J. Wright. Segmentation of multivariate mixed

data via lossy coding and compression. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 29(9):1546–1562, 2007.

104

[60] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.

IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

[61] Matrix Market. http://math.nist.gov/MatrixMarket/.

[62] J. H. Money and Q. Ye. Algorithm 845: EIGIFP: A MATLAB program for

solving large symmetric generalized eigenvalue problems. ACM Trans. Math.

Softw., 31:270–279, 2005.

[63] R. B. Morgan. Computing interior eigenvalues of large matrices. Lin. Alg. Appl.,

74:1441–1456, 1991.

[64] L. Na and Y. Saad. MIQR: a multilevel incomplete QR preconditioner for large

sparse least-squares problems. SIAM J. Matrix Anal. Appl., 28:524–550, 2006.

[65] Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the par-

tial symmetric eigenproblem. Num. Lin. Alg. Appl., 9:21–44, 2002.

[66] A. T. Papadopoulos, I. S. Duff, and A. J. Wathen. Incomplete orthogonal factor-

ization methods using Givens rotations II: Implementation and results. Report

02/07, Oxford University Computing Laboratory, 2002.

[67] B. N. Parlett. The Symmetric Eigenvalue Problem, volume 20 of Classics in

Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1998. Corrected reprint of the 1980 original.

[68] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:

a review. ACM SIGKDD Explorations Newsletter - Special issue on learning from

imbalanced datasets, 6(1):90–105, 2004.

[69] V. M. Patel, H. Van Nguyen, and R. Vidal. Latent space sparse subspace clus-

tering. IEEE Internation Conference on Computer Vision(ICCV), 2013.

[70] P. Quillen and Q. Ye. A block inverse-free preconditioned Krylov subspace

method for symmetric generalized eigenvalue problems. J. Comp. Appl. Math,

233:1298–1313, 2010.

105

[71] Y. Saad. Numerical methods for large eigenvalue problems, revised edition. Clas-

sics in Applied Mathematics. SIAM, Philadelphia, 2011.

[72] S. Sardy, A. G. Bruce, and P. Tseng. Block coordinate relaxation methods for

nonparametric signal denoising with wavelet dictionaries. Journal of Computa-

tional and Graphical Statistics, 9:361–379, 2000.

[73] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[74] G. Sleijpen and H. van der Vorst. A Jacobi-Davidson iteration method for lin-

ear eigenvalue problems. SIAM Journal on Matrix Analysis and Applications,

17:401–425, 1996.

[75] G. Sleijpen, H. van der Vorst, and M. van Gijzen. Efficient expansion of subspaces

in the Jacobi-Davison method for standard and generalized eigenproblems. Elec-

tron. Trans. Numer. Anal., 7:75–89, 1998.

[76] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi

method. SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

[77] A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson,

and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput, 19:227–245,

1996.

[78] M. Tipping and C. Bishop. Mixtures of probabilistic principal component ana-

lyzers. Neural Computation, 11(2):443–482, 1999.

[79] P. Tseng. Nearest q-flat to m points. Journal of Optimization Theory and

Applications, 105(1):249–252, 2000.

[80] S. Varadhan, M. W. Berry, and G. H. Golub. Approximating dominant singular

triplets of large sparse matrices via modified moments. Numer. Algorithms,

13:123–152, 1996.

[81] R. Vidal. Subspace clustering. Signal Processing Magazine, 2011.

106

[82] R. Vidal and P. Favaro. Low rank subspace clustering (lrsc). Pattern Recognition

Letters, 43:47–61, 2014.

[83] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis(gpca).

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12):1–15,

2005.

[84] R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with miss-

ing data using powerfactorization and gpca. Internation Journal of Computer

Vision, 79(1):85–105, 2008.

[85] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing,

17(4):395–416, 2007.

[86] X. Wang, K. A. Gallivan, and R. Bramley. CIMGS: An incomplete orthogonal

factorization preconditioner. SIAM J. Sci. Comput., 18:516–536, 1997.

[87] Y. Wang, H. Xu, and C. Leng. Provable subspace clustering: When lrr meets

ssc. Advances in Neural Information Processing Systems 26 (NIPS 2013), 2013.

[88] Andrew R. Webb. Statistical Pattern Recognition, Second Edition. John Wiley

& Sons, Ltd., 2002.

[89] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,

New York, 1965.

[90] Q. Ye. An adaptive block Lanczos algorithm. Numerical Algorithms, 12:97–110,

1996.

[91] L. Zelnik-Manor, K. Rosenblum, and Y. C. Eldar. Dictionary optimization for

block sparse representation. IEEE Transactions on Signal Processing, pages

2386–2395, 2012.

[92] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and

data clustering. Proceedings of the tenth international conference on Information

and knowledge management, pages 25–32, 2001.

107

[93] T. Zhang, A. Szlam, and G. Lerman. Median k-flats for hybrid linear modeling

with many outliers. IEEE 12th International Conference on Computer Vision

Workshops, pages 234–241, 2009.

108

Vita

Education

• University of Kentucky, Lexington, Kentucky

M. A. in Mathematics, May, 2013

• University of Science and Technology of China, Hefei, Anhui, China

B. S., Mathematics and Applied Mathematics

Experience

• Research Assistant under Dr. Qiang Ye, University of Kentucky, Fall 2012, Fall

2013, Spring 2014, Fall 2014, Summer 2015

• Teaching Assistant, University of Kentucky, August 2011 - May 2015

• Software Engineering Intern, Google, Pittsburgh, PA, May 2014 - August 2014

Publications

• (with Qi. Ye) Deflation by restriction for the inverse-free precondtioned Krylov

subspace method, submitted.

• (with Q. Ye) Computing singular values of large matrices with inverse free

preconditioned Krylov subspace method, Electronic Transactions on Numerical

Analysis, 42:197-221, 2014.

109

	Singular Value Computation and Subspace Clustering
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Generalized eigenvalue problem
	1.2 Singular value problem
	1.3 Subspace clustering problem
	1.4 Outline
	1.5 Notation

	2 Inverse-free preconditioned Krylov subspace method with deflation by restriction
	2.1 Preliminaries
	2.1.1 Eigenvalues and eigenvectors of symmetric matrices
	2.1.2 The generalized symmetric eigenvalue problem
	2.1.3 Krylov subspace method
	2.1.4 Deflation

	2.2 Inverse-free preconditioned Krylov subspace method with deflation by restriction
	2.2.1 Inverse-free preconditioned Krylov subspace method
	2.2.2 Deflation by restriction

	2.3 Numerical examples

	3 An Inverse-free preconditioned Krylov subspace method for singular values problem
	3.1 Singular value decomposition
	3.2 Computations of singular values of large and sparse matrices
	3.2.1 The Lanczos bidiagonalization method
	3.2.2 MATLAB's routine svds
	3.2.3 JDSVD

	3.3 SVDIFP–The proposed algorithm
	3.3.1 An inverse-free preconditioned Krylov subspace method
	3.3.2 Preconditioning by robust incomplete factorizations (RIF)
	3.3.3 A robust implementation

	3.4 Numerical examples

	4 Subspace clustering via learning a union of orthonormal bases
	4.1 Spectral clustering and dictionary learning
	4.1.1 Spectral clustering
	4.1.2 Bipartite graph clustering
	4.1.3 A dictionary learning method

	4.2 Subspace clustering
	4.2.1 Existing subspace clustering algorithms

	4.3 A novel subspace clustering algorithm via learning orthonormal bases
	4.3.1 Motivation
	4.3.2 Initialization and estimations of K and {di}i = 1K

	4.4 Numerical examples
	4.4.1 Synthetic data
	4.4.2 Basic and rotated MNIST dataset

	5 Concluding remarks
	Bibliography
	Vita

