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ABSTRACT OF DISSERTATION

Subfunctors of Extension Functors

This dissertation examines subfunctors of Ext relative to covering (enveloping) classes
and the theory of covering (enveloping) ideals. The notion of covers and envelopes by
modules was introduced independently by Auslander-Smalø and Enochs and has proven
to be beneficial for module theory as well as for representation theory. The first few
chapters examine the subfunctors of Ext and their properties. It is showed how the class
of precoverings give us subfunctors of Ext. Furthermore, the characterization of these
subfunctors and some examples are given. In the latter chapters ideals, the subfunctors
of Hom, are investigated. The definition of cover and envelope carry over to the ideals
naturally. Classical conditions for existence theorems for covers led to similar approaches
in the ideal case. Even though some theorems such as Salce’s Lemma were proven to
extend to ideals, most of the theorems do not directly apply to the new case. It is showed
how Eklof & Trlifaj’s result can partially be extended to the ideals generated by a set. In
that case, one also obtains a significant result about the orthogonal complement of the
ideal. We relate the existence theorems for covering ideals of morphisms by identifying
the morphisms with objects in A2 and obtain a su�cient condition for the existence of
covering ideals in a more general setting. We finish with applying this result to the class
of phantom morphisms.
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Chapter 1 INTRODUCTION

The theory of covers and envelopes was first introduced by Enochs in [16] for classes of
injective modules and flat modules. Auslander-Smalø had also introduced essentially the
same notion in [4] for modules over an Artinian algebra. The study of these notions
have proven to be beneficial for module theory as well as representation theory (see, for
example, [2], [8], [11], [22], [30]).

With the help of these notions one can define resolutions for precovering (preenvelop-
ing) classes and then look at the derived functors of Hom relative to these classes. In
particular one can prove that these derived functors (denoted Ext1P ) give us a subfunctor
of Ext1. The study of these relative derived functors have been considered in di↵erent
settings (see [2], [12], [28], [45]) and have been useful for several areas such as tilting
theory, finitistic dimension theory, representation theory of Artin algebras, etc. We will
mostly focus on the subfunctors Ext1P relative to a precovering (preenveloping) class P
and formulate the characterization for the short exact sequences in Ext1P .

One of the recent trends in the theory of covers (envelopes) that attracted wide inter-
est is the ideals. The concept of covers and envelopes carry over to the ideal case very
naturally and hence leads to the statement of existence theorems for covers and envelopes
associated to these ideals, similar to the ones obtained in the classical theory of covers
and envelopes. Even though some theorems such as Salce’s Lemma were proven to extend
to ideals (see [32]), most of the theorems do not directly apply to the new case. In [37] we
showed how Eklof & Trlifaj’s result [15] can partially be extended to the ideals generated
by a set. In that case, one also obtains a significant result about the orthogonal comple-
ment of the ideal. In collaboration with Prof. Estrada and Prof. A. Guil (see [21]), we
also have studied the conditions under which existence of covering ideals were guaranteed
in a more general setting. Our approach was to relate the existence theorems for covering
ideals of morphisms by identifying the morphisms with objects in a Grothendieck cate-
gory A2 of all representations by left R-modules of the quiver A2 : • ! •. Then one also
obtains a new and elementary proof for the existence of phantom covers (cf. [31]).

The theory of ideal approximation has rapidly been developed and started to be a
focus of interest in the last few years (see [21], [24], [25], [26], [31], [32], [37]). With the
new tools in hand, the theory has the potential to be of long research interest for algebraist
and will reveal examples of covers and envelopes that could not had been deduced from
the classes of objects before.

We now give a more detailed description of the contents of the following chapters.
In chapter 2, we first give the definition of a (pre)covering P . We see how a precovering

class gives rise to a new kind of resolution, namely P -resolution, which are unique up
to homotopy if the precovering class contains the projective modules. Then focusing on
the precovering classes that contain projective modules, we see that one can obtain the
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derived functor ExtnP with these new resolutions. Next we show that Ext1P is a subfuntor
of Ext1. We tweak the definition of a global dimension of R with respect to a precovering
class and finish the chapter with a result about the global dimension of R with respect to
P .

In chapter 3, we first define absolutely pure modules (FP-injective modules). Then
we recall that the class of absolutely pure modules form a preenveloping class. Next we
see that this preenveloping class gives us an example for a subfunctor of Ext1 which is
denoted by Axt. Next, we examine some properties of absolutely pure modules and use
these properties to get a result on a localization of Axt.

In chapter 4, we define the concept of phantom morphism relative to a subfunctor
ExtC where C is a preenveloping. Then we characterize these phantoms in terms of its
special relation with the subfunctor ExtC . Next we investigate the phantom morphism
relative to ExtC when (F , C ) is a cotorsion pair and see that in that case direct sum
of phantom morphisms relative to ExtC will not lose the property of being phantom. In
the last section we examine a special case. We look at the phantom morphisms relative
to Axt and apply the theorem and results from the previous section to this special case.

In chapter 5, we introduce the notion of an ideal and see how the definition of a cover
and envelope carry over to the ideal case. We also define ideal cotorsion pairs in a similar
way to the module case. A significant result of cotorsion theory proven by Eklof & Trlifaj
is that if a pair (F , C) of classes of R-modules is cogenerated by a set, then it is complete
[15]. Motivated by the Eklof & Trlifaj argument, we prove a similar result for an ideal I
when it is generated by a set of homomorphisms. We prove that if I is generated by a
set then I? is preenveloping and that I is precovering if it is closed under sums.

In the last chapter we give the results from [21], a joint work with Sergio Estrada and
Pedro A. Guil. Our result is motivated by El Bashir’s well-known theorem:

Theorem 1.0.1. (El Bashir, [6]) Let F be a class of objects of a Grothendieck category
G closed under coproducts and directed co-limits. If there exists a subset S of F such
that each object in F is a directed co-limit of objects in S, then each object of G has an
F -cover.

We use this result to find a similar su�cient condition for an ideal to be covering.
Then we prove that the class of phantom morphisms can easily be proven to be covering
as a consequence. We conclude the chapter by showing that the kernel of a phantom cover
is always pure injective.

We note that throughout the chapters all rings R are associative with identities and
all modules are unitary. If for an R-module M there is no particular side mentioned, it is
assumed to be a left R-module. Even though some of the results presented here can be
extended to a more general setting we will focus on the category of R-modules.

Copyright c� Furuzan Ozbek, 2014.
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Chapter 2 SUBFUNCTORS OF Ext

2.1 Preliminaries

In general it is a complicated task to describe all modules over an arbitrary ring. Since
early 1960’s injective envelopes and projective covers have been used to investigate prop-
erties of modules over an arbitrary ring. One can try to understand the structure of this
type of classes and approximate arbitrary modules by the ones in these classes. So we
start by giving the formal definition of such a class first.

Definition 2.1.1. Let R be a ring and P be a class of R-modules. A morphism ' :
F ! M where F 2 P is called a P -precover of M if any morphism G ! M where
G 2 P factors through '. Moreover if every endomorphism of F satisfying ' � f = ' is
an automorphism, then ' is said to be a P -cover of M . Then a class P is said to be
(pre)covering if every module admits a P -(pre)cover.

In categorical sense, dual notion of a (pre)cover is (pre)envelope and defined by revers-
ing the directions of arrows. Note that precovers are also known as left approximations
due to Auslander and Reiten (see [2]).

Example 2.1.2. The easiest example for a precovering is the class of all projective mod-
ules. For any module M there exists a surjective homomorphism ' : F ! M where F
is free. Then ' is a projective precover of M , since for any projective module P one can
complete the following diagram,

P

~~ ✏✏
F

' //M

Moreover every R�module has a projective cover if and only if the ring R is perfect.

Example 2.1.3. An R-module F is said to be flat if given any exact sequence 0 ! A ! B
of R-modules, the tensored sequence 0 ! A

N
R

F ! B
N

R

F is exact. It was conjectured
and then proven by Enochs that the class of flat modules is a covering [10].

Example 2.1.4. A short exact sequence in R-Mod 0 // X
i // Y // Z

p // 0 is
said to be pure exact if for every finitely presented R-module M , Hom(M,Y ) ! Hom(M,Z)
is surjective. Then we say X is pure injective if every pure exact sequence with left term
X is split exact. Warfield proved in [45] that every module has a pure injective envelope.
Pure injective modules play a central role in the model theory (for a detailed exposition
see [38]). Moreover pure injective modules are of interest for cotilting theory since it was
proven recently that all cotilting modules are pure injective by Bazzoni in [7].

3



One can generalize the definition of a free resolution to an arbitrary precovering P .
First we give the definition of a left P -resolution and then see under which condition this
resolution will be exact. For the proof of existence of P -resolutions, we refer the reader
to [22].

Proposition 2.1.5. (Enochs, Jenda [22]) Let P be a precovering and M be an R-module,
then there exist a complex

... P1
// P0

//M // 0

with each P
i

2 P for which

... Hom(P, P1) // Hom(P, P0) // Hom(P,M) // 0

is exact for any P 2 P . Such a complex is called a left P -resolution of M .

A right C -resolution for a preenveloping class C is defined similarly. Note that such a
left P -resolution is not necessarily exact but the following proposition gives us a su�cient
condition for such a resolution to be exact.

Proposition 2.1.6. If P is a precovering which contains all projective modules then
every R-module has an exact left P -resolution.

Proof. Let M be a R-module and P0 ! M be a P -precover of M . Then choose a
P -precover P1 ! Ker(P0 ! M) for the kernel Ker(P0 ! M). Choosing precovers
recursively, one obtains a P -resolution,

... P1
d1 // P0

d0 //M // 0

Now we will show that this complex is exact. Since P contains all projective modules,
in particular it contains all free modules. For any Ker(d

i

) there exists a free module F
and a surjective morphism F ! Ker(d

i

). But then the following can be completed to a
commutative diagram,

F

onto

✏✏yy
P
i+1

di+1// Ker(d
i

)

Hence d
i+1 is surjective. That is Im(d

i+1) = Ker(d
i

) and the P -resolution is exact.
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2.2 Subfunctors corresponding to a precovering class

Extension of groups was first studied by Baer and observed to be an abelian group with
the “Baer sum” (see [5]). It was Eilenberg and Steenrod who used free resolutions to
compute Ext1 (see [13]). Following Baer’s lead, we interpret Ext1

R

(U, V ) as the quotient
group of all the extensions of V by U module the homotopy equivalence, for details we
refer reader to [40]. An extension of V by U denoted by an element ⇠ 2 Ext(U, V ) is a
short exact sequence,

0 // U // X // V // 0

Two extensions are said to be equivalent if there is such a commutative diagram,

0 // U // X

✏✏

// V // 0

0 // U // Y // V // 0

where the middle map is an isomorphism. Then one can easily see that there is an
equivalence relation in the set of all extensions of R-modules and with this viewpoint,
one can interpret Ext1 as a bifunctor from R-Modop⇥R-Mod to the category Ab. That is
Ext1 associates a pair (U, V ) of modules to the group of all extension equivalence classes
of V by U. Moreover if f : N ! V and g : U ! M are morphisms in R-Mod then
Ext1(f, g) maps an extension of V by U to an extension of N by M that is calculated by
using a pushout along g followed by a pullback along f (or equivalently a pullback along
f followed by a pushout along g) as following,

0 // U //

~~

Z 0 //

}}

✏✏

N //

✏✏

0

0 //M // Z //

✏✏

N //

✏✏

0

0 // U //

~~

X //

}}

V // 0

0 //M // X 0 // V // 0

In this chapter we study the precovering classes that contain all the projective R-
modules. We first show that for such a precovering class the left P -resolutions of modules
are unique up to homotopy.

Proposition 2.2.1. Let P be a precovering class that contains all the projective modules.
If Q is a projective resolution of M and P is a P -resolution of M , then there exists a

5



family of maps (f
i

)
i2N making the following diagram commutative,

... // Q2
//

f2

✏✏

Q1
//

f1

✏✏

Q0
//

f0

✏✏

M // 0

... // P2
// P1

// P0
//M // 0

Moreover any such map is unique up to homotopy.

Proof. We will use induction. Since Q0 is a projective module and P0 ! M is onto we
conclude the existence of f0.

To construct f
i

assume that there exist f
i�1 satisfying the desired conditions and

consider the diagram,

Q
i

ei //

fi

✏✏

Q
i�1

fi�1

✏✏
P
i

di // Im(d
i

) = Ker(d
i�1)

Note that Im(f
i�1ei) ✓ Im(d

i

) = Ker(d
i�1), since d

i�1fi�1ei = e
i

e
i�1fi�2 = 0. Then

since Q
i

is a projective module we can conclude the existence of f
i

making the diagram
commutative.

Now to prove uniqueness, assume that we have two such families of maps (f
i

) and (g
i

).
Notice that Im(f0 � g0) ✓ Kerd0 = Imd1 so,

Q0

9s0

{{
f0�g0

✏✏
P1

// Im(d1)

In general since Im(f
i

� gi� s
i�1ei) ✓ Ker(d

i

) = Im(d
i+1) we get,

Q
i

9si

yy
fi�gi�si�1ei

✏✏
P
i+1

// Im(d
i+1)

So we conclude that f
i

� g
i

= s
i�1ei + d

i+1si. That is (fi) ' (g
i

). 2

Corollary 2.2.2. Let P be a precovering class that contains all the projective modules. If
P̄ and P are two P -resolutions for M , then there exists a family of maps (f

i

)
i2N making

the following diagram commutative,

... // P̄2
//

f2

✏✏

P̄1
//

f1

✏✏

P̄0
//

f0

✏✏

M // 0

... // P2
// P1

// P0
//M // 0

6



Moreover any such map is unique up to homotopy.

Proof. This follows in a similar way as Proposition 2.2.1. 2

If P is a precovering containing all projective modules then using a left P -resolution
one can compute the relative derived functor of Hom functor with respect to P denoted
as ExtnP and it is well-defined by Corollary 2.2.2. Given a module M , lets compute the
first degree Ext1P (M,N). We only need to look at the partial exact P -resolution,

0 // K // P //M // 0

Then Ext1P (M,N) consists of f 2 Hom(K,N) modulo Im(Hom(P,N) ! Hom(K,N)).
Similar to the usual bijective correspondence one gets for the Ext1 functor, we observe
that there is a bijective correspondence between the morphisms f 2 Hom(K,N) modulo
Im(Hom(P,N) ! Hom(K,N)) and the equivalence class of extensions of N by M that
is obtained by a pushout from the above partial P -resolution as following,

0 // K //

✏✏

P 0

✏✏

//M // 0

0 // N // U //M // 0

So we note that the equivalence class of the lower row is in Ext1P (M,N) if it is obtained
by a pushout as above. We will use both of these interpretations whenever necessary.

Now we are ready to prove our main result which gives a nice relationship between
Ext1P and Ext1.

Theorem 2.2.3. Let P be a precovering. Then Ext1P ( , N) : R-Modop ! Ab is a
subfunctor of Ext1( , N) : R-Modop ! Ab.

Proof. Given a P -precover Q0 ! M for M with a surjection P0 ! Q0 where P0 is a
projective module. Let S = Ker(P0 ! Q0) then Q0

⇠= P0/S. So we have the following
exact diagram,

0 // K1
//

⇡|K1

✏✏

P0
//

⇡

✏✏

M // 0

  

0 // K1/S // P0/S //M // 0

This yields to the morphism Ext1P (M,N) ! Ext1(M,N). We need to show that:

• Ext1P (M,N) ! Ext1(M,N) is an injection.

7



• For any map M 0 f //M , the restriction of the map Ext1(M,N)
Ext1(f,N) // Ext1(M 0, N)

to Ext1P (M,N) will be the morphism Ext1P (f,N).

Lets first show the first map is an injection. From the commutative diagram above we
get the following exact diagram,

Hom(P0/S,N) //

✏✏

Hom(K1/S,N) //

✏✏

Ext1P (M,N) //

✏✏

0

Hom(P0, N) // Hom(K1, N) // Ext1(M,N) // 0

where Ext1P (M,N) = Hom(K1/S,N)/U st U = {g 2 Hom(K1/S,N) | g can be extended toP0/S}.
Moreover, Ext1(M,N) = Hom(K1, N)/V where V = {h 2 Hom(K1, N) | h can be extended toP0}.

Given '̃ = '+U 2 Ext1P (M,N) such that the map Ext1P (M,N) ! Ext1(M,N) maps
' to 0 + U . That means, 'f |

K1 can be extended to ↵ : P0 ! N . Define '̄ : P0/S ! N
such that '̄(x+ S) = ↵(x). So we have the following diagram,

K1
� � //

f |K1
✏✏

P0

↵

mm

K1/S
� � //

'

✏✏

P0/S

'̄

zz
N

' is well-defined. Moreover, '̄|
K1/S = '. That is '̄ is extension of ' to P0/S. Hence

' 2 U in Ext1P (M,N).

To prove the second part given M 0 f //M , and given projective resolution Q of M ,
projective resolution Q̄ of M 0, P -resolution P of M , P -resolution P̄ of M 0. Then by
Proposition 2.2.1 we get the following comparison maps,

Q̄

✏✏

//

 

⌫⌫

M 0

f

✏✏
f

⌥⌥

Q

✏✏

//M

P //M

and

Q̄

✏✏

//

'

⌫⌫

M 0

f

⌥⌥

P̄

✏✏

//M 0

f

✏✏
P //M

By Proposition 2.2.1 we notice that ' and  are homotopy equivalent. They will still
be homotopy equivalent if we take Hom( , N) of each complex. Then the Hom( , N) of
the diagram of these complexes induce the same maps on homology groups. So we get
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the following commutative diagram of the homology groups,

Ext1P (M,N)

✏✏

Ext1P (f,N)
// Ext1P (M 0, N)

✏✏
Ext1(M,N)

Ext1(f,N) // Ext1(M 0, N)

which shows that Ext1P (f,N) is just the restriction of Ext1(f,N). 2

Then one can easily obtain the following corollary.

Corollary 2.2.4. Let P be a precovering. Then Ext1P ( , ) : R-Modop ⇥R-Mod ! Ab is
a subfunctor of the bifunctor Ext1( , ) : R-Modop ! Ab.

The proof above can easily be adapted to a preenveloping class. Now we give an
example for such a subfunctor relative to the pure injective enveloping class.

Example 2.2.5. Recall that in Example 2.1.4 we give the definition of a pure exact
sequence and called a module X pure injective if every pure exact sequence with left term
X is split exact. The class of pure injective class is an enveloping and gives rise to a
subfunctor denoted as Pext which consists of all pure exact sequences. This subfunctor
have been studied in details by Fuchs ([28]) and Warfield ([45]).

2.3 Results on ExtP

We discuss how some of the results concerning Ext can partially be carried over to ExtP
and see what kind of conditions must be asserted for them to hold.

We say (left) global dimension of a ring R is n (n � 0) if Extn+1(M,N) = 0 for all
M,N 2 R-Mod and that Extn(M,N) 6= 0 for some M,N 2 R-Mod. It is known that
global dimension of R is 0 if one of the following equal condition is satisfied,

• Every submodule S of every R-module M is a direct summand of M . That is, every
M is semisimple.

• All R-modules are injective(projective).

• R is a direct sum of simple R-modules.

Then one can extend the notion of global dimension for the functors ExtP . We say
global dimension of a ring with respect to a precovering P is n if Extn+1

P (M,N) = 0 for
all M,N 2 R-Mod and that ExtnP (M,N) 6= 0 for some M,N 2 R-Mod. Now, we show
that global dimension of a ring with respect to a precovering P is zero if it satisfies the
following condition.

9



Theorem 2.3.1. Let P be a precovering. The global dimension with respect to P is 0
if and only if for every P 2 P and submodule K ⇢ P , K is a direct summand of P .

Proof. ()) Assume that the global dimension with respect to P is 0. Now given P 2 P
and a submodule K ⇢ P , we have the following left P -resolution of P/K

... P // P/K // 0

Then Ext1P = Hom(K,K)
Im(Hom(P,K)!Hom(K,K))

which is 0 by assumption. That is Hom(P,K) !
Hom(K,K) is surjective. Hence K is a retract of P , and a direct summand of P .

(() Assume that for every P 2 P and submodule K ⇢ P , K is a direct summand of
P . For any n � 1 to compute ExtnP (M,N) consider a partial P -resolution of M ,

K
n

� � // P
n�1

// P
n�2

// ... // P0
//M //// 0

Note that then K
n

⇢ P
n�1 is a direct summand of P

n�1 and hence there is a retraction
q : P

n�1 ! K
n

. So for any morphism f : K
n

! N we have f � q|
Kn = f hence ExtnP = 0

for any n � 1.

Now we prove that the first degree derived functor relative to precoverings containing
projective modules are all isomorphic as explained in the given proposition.

Proposition 2.3.2. Let P be a precovering. P contains the class of all projective
modules if and only if Hom(M,N) ⇠= Ext0P (M,N) for any M,N 2 R-Mod.

Proof. Assume that P contains all projective modules. Given an R-module M and a
P -resolution of M ,

... P1
// P0

//M // 0

which is exact by Remark 2.1.6. For an arbitrary R-module N , take Hom(�, N) of the
above complex,

0 // Hom(M,P ) // Hom(P0, P ) // Hom(P1, P ) ...

Since the P -resolution is exact, the complex above is exact as well. That is Ext0P (M,N) =
Ker(Hom(P0, N) ! Hom(P1, N)) ⇠= Hom(M,N).

To prove the other direction, assume that the given isomorphism holds for any M,N 2
R-Mod. Let P be a projective module and

... P1
d1 // P0

d0 // P // 0

be a P -resolution of P . Then

0 // Hom(P,N) // Hom(P0, N) // Hom(P1, N) ...

10



is exact for every module N by assumption. Then notice that P0
d0 // P is surjective

since 0 // Hom(P, P/Im(d0)) // Hom(P0, P/Im(d0)) is exact. Then notice there
exists a morphism f completing the following diagram,

P
f

~~
1
✏✏

P0
d0 // P

Hence d0�f = 1 and P is a direct summand of P0. Now we can conclude that all projective
modules are in P since P is closed under direct summands.

2.4 Characterization of Ext1P

In this section we assume that P is closed under direct summands and contains all the
projective modules. If P is not closed under direct summands, say P̄ is the closure of
P under direct summands, then P̄ is also a precovering class. Moreover, if P ! M is
a P -precover then it will also be a P̄-precover. Then it is not di�cult to see that one
would get the same derived functor with respect to both classes.

Now we give a characterization for the short exact sequences in Ext1P and also see
how this characterization determines the elements of P .

Proposition 2.4.1. 0 // N // U //M // 0 is in Ext1P (M,N) if and only if
the s.e.s. has the following property:
If P 0 2 P and given any map P 0 //M then

P 0

✏✏~~
0 // N // U //M // 0

can be completed to a commutative diagram.

Proof. Suppose we have the given property. So the following can be completed to a
commutative diagram,

P 0

✏✏

//M // 0

0 // N // U //M // 0

But then,

11



0 // K //

✏✏

P 0

✏✏

//M // 0

0 // N // U //M // 0

Notice where Coker(K ,! P 0) ⇠= M ⇠= Coker(N ,! U).Hence,

K

✏✏

� � // P 0

✏✏
N �
� // U

is a pushout.
That is, 0 // N // U //M // 0 is in Ext1P (M,N).

Now suppose 0 // N // U //M // 0 is in Ext1P (M,N). That is there exists
a diagram:

P 0

✏✏
0 // K //

✏✏

P

✏✏

//M // 0

0 // N // U //M // 0

Then since P 0 and P 2 P , there exist a map completing the diagram:

P 0

~~ ✏✏
P //M

Hence there exist a map completing the commutative diagram,

P 0

~~ ✏✏
U //M

2

Proposition 2.4.2. Given a precovering class P which can be assumed to be closed un-
der direct summands. An R-module L is in the precovering class P if and only if for any

12



map L ! M and s.e.s. 0 // N // U //M // 0 in Ext1P (M,N) the diagram,

L

✏✏~~
0 // N // U //M // 0

can be lifted to a commutative diagram for any N,M 2 R�Mod.

Proof. If L 2 P then we know that lifting property holds.

To show the other direction, assume that lifting property holds for L. We know there
exist a P -precover P ! L ! 0 which yields to a exact sequence,
0 // K �

� // P // L // 0 in Ext1P (L,K). But then by assumption,

L

��
0 // K �

� // P // L // 0

can be completed. That is L is a direct summand of P . Since P 2 P and P is closed
under direct summands L 2 P as well. 2

We give yet another characterization of elements of a precovering class.

Proposition 2.4.3. Let P be a precovering class containing all projective modules and
closed under direct summands. Then a module M is in P if and only if Ext1P (M,N) = 0
for all modules N .

Proof. If M is in P then clearly Ext1P (M,N) = 0 for all modules N .
To prove other direction assume Ext1P (M,N) = 0 for all modules N . Let us consider

the short exact sequence

0 // K // P //M // 0

where P is a P -precover of M . Then by using the long-exact sequence theorem (Enochs-
Jenda, Theorem 8.2.3, [22]) one applies Hom( , K) to get the following exact sequence,

0 // Hom(M,K) // Hom(P,K) // Hom(K,K) // Ext1P (M,K) = 0 ...

That is Hom(P,K) ! Hom(K,K) is surjective and thus M is a direct summand of P .
Now we can conclude that M is in P .

We would now like to turn our attention to the lattice property of these subfunctors.
In order to see the lattice property, we need to prove the following proposition first.
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Proposition 2.4.4. Suppose Ext1P and Ext1P̄ corresponds to the precovering classes P
and P̄ respectively. Then the precovering class P � P̄ gives rise to the subfunctor
Ext1P \Ext1P̄ .

Proof. Suppose the class of s.e.s Ext1P \Ext1P̄ corresponds to the precovering class ⇧ .
We claim that ⇧ = P � P̄ .

P � P̄ ✓ ⇧: Given P � P̄ 2 P � P̄ and a s.e.s in Ext1P \Ext1P̄ with a map f :

P � P̄
f

✏✏
0 // N // U

� //M // 0

Then there exist '1 and '2 completing the diagrams,

P

'1

⌅⌅

⇡1
✏✏

P � P̄
f

✏✏
0 // N // U

� //M // 0

P̄

'2

⌅⌅

⇡2

✏✏
P � P̄

f

✏✏
0 // N // U

� //M // 0

Define ' such that '((x, y)) = '1(x) + '2(y) . That is we get the following commutative
diagram,

P � P̄
'

{{
f

✏✏
U

� //M

So �('(x, y)) = �('1(x)) + �('2(y)) = f(x, 0) + f(0, y) = f(x, y). That is P � P̄ 2 ⇧.
⇧ ✓ P � P̄ : Given P̃ 2 ⇧, there exist P and P̄-precoverings respectively,

P
f // P̃ // 0 and P̄

g // P̃ // 0 which gives rise to exact sequences,

0 // Ker(f)�Ker(g) �
� // P

f // P̃ // 0
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in Ext1P and

0 // Ker(f)�Ker(g) �
� // P̄

g // P̃ // 0

in Ext1P̄ So we get the following exact sequence in Ext1P \Ext1P̄ ,

0 // Ker(f)�Ker(g) �
� // P � P̄

(f,g) // P̃ // 0

where (f, g)(x, y) = f(x) + g(y). That is because for any P1 2 P there exist '1 such
that,

P1

'1

|| ✏✏

0 // Ker(f)�Ker(g) �
� // P � P̄

(f,g) // P̃ // 0

where '1 is induced from ',
P1

'

�� ✏✏

P // P̃

such that '1(x) = ('(x), 0).So 0 // Ker(f)�Ker(g) �
� // P � P̄ // P̃ // 0 is in

Ext1P . The same way we can show that it is in Ext1P̄ .Hence,

P̃

||
id

✏✏

0 // Ker(f)�Ker(g) �
� // P � P̄ // P̃ // 0

can be completed that is P̃ is a direct summand of P � P̄ . Hence ⇧ = P � P̄ . 2

Corollary 2.4.5. Let the class of all subfunctors Ext1P that rises from precoverings be
partially ordered by Ext1P  Ext1P̄ , Ext 1P ✓ Ext1P̄ . Then the class of these subfunctors
form a lattice.

Proof. We need to show that any two subfunctors have a least upper bound and a greatest
lower bound. We immediately notice that by Proposition 2.4.4 a greatest lower bound of
the two subfunctors Ext1P , Ext1P̄ is Ext1P \Ext1P̄ . One can easily observe that then the
least upper bound of two such subfunctors is the intersection of all the subfunctors that
rise from precoverings that contains union of those two subfunctors.

Copyright c� Furuzan Ozbek, 2014.
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Chapter 3 ABSOLUTELY PURE MODULES AND THE SUBFUNCTOR
Axt

A is called an absolutely pure R-module if for every projective R-module P , every finitely
generated submodule S ⇢ P and every morphism S ! A, there is an extension to P ! A.
In this section, we study some of the properties of the subfunctor Axt

R

for a coherent ring
R. A commutative ring R is coherent if every finitely generated submodule of a finitely
presented module is finitely presented.

3.1 On absolutely pure modules

We gather some of the results on direct limit and localization of absolutely pure modules
that will help us to get our main result in the upcoming section.

Lemma 3.1.1. Given a directed set I and let M
i

'i // N
i

be a set of onto maps. The
map,

lim
!

M
i

' // lim
!

N
i

defined as '([x]) = ['
i

(x)] where say x 2 M
i

is onto as well.

Proof. By the universal property of direct limit, we see that the map ' is well-defined.
But then it is clearly onto, since each '

i

is onto.

Lemma 3.1.2. Given a family (M
i

)
i2I of left R-modules where I is a directed set then,

lim
!

Hom(Rn,M
i

) ⇠= Hom(Rn, lim
!

M
i

)

Proof. This follows since Hom(Rn,M
i

) ⇠= Mn

i

then notice that,

lim
!

Hom(Rn,M
i

) ⇠= lim
!

Mn

i

⇠= (lim
!

M
i

)n

On the other hand,
Hom(Rn, lim

!
M

i

) ⇠= (lim
!

M
i

)n

Lemma 3.1.3. Given a family (M
i

)
i2I of left R-modules where I is a directed set and

given any linear Rn ! lim
!

M
i

then we can find some j 2 I so that f(Rn) ⇢ e
j

(M
j

).Then,

Rn

{{
f

✏✏
M

j

ej
// lim
!

M
i
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can be completed to a commutative diagram.

Lemma 3.1.4. Given a family (M
i

)
i2I of left R-modules where I is a directed set and let

L = Rn/S where S is a finitely generated R-module (i.e. L is a finitely related R-module)
then for any map Rn/S ! lim

!
M

i

there is some j 2 I and a linear map Rn/S ! M
j

such

that,
Rn/S

|| ✏✏
M

j

ej
// lim
!

M
i

is commutative.

Proof. Given a map,

Rn/S
' // lim

!
M

i

then by the Lemma 3.1.3 we know we can find j 2 I and a map h
j

that completes the
diagram,

Rn

✏✏

⇧⇧

Rn/S

'

✏✏
M

j

// lim
!

M
i

What we want is to find such an Rn ! M
j

that has S in its kernel, so that we can get an
induced map Rn/S ! M

j

.
Now since

Rn

hj //M
j

ej // lim
!

M
i

has S in its kernel.This means that, for x 2 S we get e
j

(h
j

(x)) = 0 in lim
!

M
i

. Using the

definition of the equivalence relation that gives lim
!

M
i

we see that this means that for

some k 2 I with j  k we have f
kj

(h
j

(x)) = 0.
This means that

Rn ! M
j

! M
k

is 0 on S. But since S is finitely generated we can find one such k such that,

Rn ! M
j

! M
k
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is 0 on all of S. So we conclude that,

Rn/S

|| ✏✏
M

k

ek
// lim
!

M
i

can be induced from
Rn

✏✏

⇧⇧

Rn/S

'

✏✏||
M

k

// lim
!

M
i

2

Fact 3.1.5. Given a family (M
i

)
i2I of left R-modules where there is a partial order on I

and let L = Rn/S where S is a finitely generated R-module (i.e. L is a finitely related
R-module) then,

lim
!

Hom(Rn/S,M
i

) ⇠= Hom(Rn/S, lim
!

M
i

)

In a noetherian ring we know that direct limit of injective modules is again injective.
We have a similar relationship between the coherent rings and absolutely pure modules.

Theorem 3.1.6. If R is left noetherian and if ((E
i

), (f
ji

)) is a directed system of injective
R-modules, then lim

!
E

i

is an injective R-module as well.

Now we state the promised relationship between coherent rings and direct limit of ab-
solutely pure modules. We will need this result to show the dependence between absolute
purity of a module and its localization.

Theorem 3.1.7. ( Stenström, [42])R is a coherent ring if and only if the direct limit of
absolutely pure R-modules is also absolutely pure.

Now let’s see how one can relate the direct limit to the localization for the following
particular case.

Theorem 3.1.8. Let S = {1, s2, s3, ...} be a multiplicative set in R and consider the
system of modules where each M

i

= M and f
ji

is multiplying by sj�i,

M0
s //M1

s //M2 ...
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Then the direct limit obtained by the family ((M
i

)
i2N, (fji)) has the following isomorphism,

lim
!

M
i

⇠= S�1M

Proof. f
ji

: M
i

! M
j

is defined by f
ji

(a) = sj�ia now we define '
i

’s ,

M
i

fji //

'i ##

M
j

'j

✏✏
S�1M

such that '
i

(a) = a

s

i which clearly makes the diagram commutative.
Then by the universal property of the direct limit, there exists ' that makes the

following diagram commutative,

M
i

'i

""

//

""

M
j

'j

||

||
lim
!

M
i

'

✏✏
S�1M

So '([a]) = a

s

i for any a 2 M
i

. Then notice that ' is onto by definition.
To prove that ' is one-to-one, let '([a]) = '([b]) for some a, b 2 M . That is a

s

i = b

s

j

for some i, j. Then st+ja = st+ib for some t. Now we can notice that [a] = [b] since
f
ki

(a) = f
kj

(b) for k = j + i+ t. 2

We prove the following isomorphism between localizations of a module with respect
to di↵erent multiplicative sets and we will use this result to prove the upcoming theorem.

Lemma 3.1.9. If T is the multiplicative set generated by {r1, r2, ..., rk} and S ⇢ T is the
multiplicative set generated by the single element r1...rk then,

S�1M ⇠= T�1M

for all R-modules M.

Proof. Define S�1M
' // T�1M where ' acts as inclusion. Then clearly it is well-defined

& one-to-one.
To show it is onto, given any m

r

t1
1 ...r

tk
k

2 T�1M then if t = max{t1, ..., tk} we get,

'(
rt�t1
1 ...rt�tk

k

m

(r1...rk)t
) =

m

rt11 ...r
tk
k
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Hence ' is onto. 2

Finally, we prove the relationship between the absolute purity of a module and its
localization.

Theorem 3.1.10. If R is coherent and if T ⇢ R is any multiplicative set then T�1A is
absolutely pure R-module whenever A is absolutely pure R-module.

Proof. Note that T ⇠= lim
!

S where the direct limit is over the finitely generated multi-

plicative subsets S ⇢ T .(Here the index set is partially ordered by inclusion, i.e. i  j if
S
i

⇢ S
j

.)
Now if A is absolutely pure then by Theorem 3.1.7 lim

!
A is absolutely pure as well. And

by Theorem 3.1.8 and Fact 3.1.9 lim
!

A ⇠= S�1A for any finitely generated multiplicative

set S. But since,
lim
!

(S�1A) ⇠= (lim
!

S)�1A

we can generalize the result that lim
!

A ⇠= T�1A holds for any multiplicative set T. Hence

T�1A is absolutely pure as well. 2

With the help of this result, note that if N ⇢ A is an absolutely pure preenvelope
then S�1N ⇢ S�1A is also an absolutely pure preenvelope in S�1R. So an absolutely
pure preenvelope of a module automatically gives us an absolutely pure preenvelope of
the localization of the module.

3.2 The subfunctor Axt
R

for coherent rings

D. Adams proved that the class of absolutely pure modules form a preenveloping in his
thesis.

Theorem 3.2.1. (Adams, [1]) Let R be a commutative ring and Abs be the class of all
absolutely pure R-modules. Then Abs is preenveloping.

Hence by 2.1.5 we conclude that every module has a Abs-resolution. With the help of
the results given in the previous section, we get the following for Axt, the relative derived
functor with respect to Abs.

Theorem 3.2.2. If R is commutative, coherent and if M is finitely presented then,

S�1Axtn
R

(M,N) ⇠= Axtn
S

�1
R

(S�1M,S�1N)

for any module N .

Proof. First we need to prove that S�1 Hom
R

(M,A) ⇠= Hom
S

�1
R

(S�1M,S�1A) for finitely
generated module M . Let,

F1 ! F0 ! M ! 0

20



be an exact sequence where F1, F0 are finitely generated free modules which exists since
M is finitely presented. Then,

0 ! Hom(M,N) ! Hom(F0, N) ! Hom(F1, N)

is exact and hence we get the following exact sequence,

0 ! S�1 Hom(M,N) ! S�1 Hom(F0, N) ! S�1 Hom(F1, N)

So we get the following commutative diagram,

0 // S�1 Hom(M,N)

?

✏✏

// S�1 Hom(F0, N)

⇠=
✏✏

// S�1 Hom(F1, N)

⇠=
✏✏

0 // Hom
S

�1
R

(S�1M,S�1N) // Hom
S

�1
R

(S�1F0, S
�1N) // Hom

S

�1
R

(S�1F1, S
�1N)

where ? is also an isomorphism since the four-lemma gives us surjection and diagrams
being commutative gives us injection.

Now let the following be an absolutely pure resolution of N ,

0 ! N ! A0 ! A1 ! A2 ! ...

Then we get the following isomorphisms,

S�1Axtn
R

(M,N) ⇠= S�1

✓
Ker(Hom(M,A

n

) ! Hom(M,A
n+1)

Im(Hom(M,A
n�1) ! Hom(M,A

n

)

◆

⇠=
Ker(S�1 Hom(M,A

n

) ! S�1 Hom(M,A
n+1))

Im(S�1(Hom(M,A
n�1) ! S�1 Hom(M,A

n

))

⇠=
Ker(Hom

S

�1
R

(S�1M,S�1A
n

) ! Hom
S

�1
R

(S�1M,S�1A
n+1))

Im(Hom
S

�1
R

(S�1M,S�1A
n�1) ! S�1 Hom

S

�1
R

(S�1M,S�1A
n

))

= Axtn
S

�1
R

(S�1M,S�1N)

Since we get the following absolutely pure resolution for S�1N ,

0 ! S�1N ! S�1A0 ! S�1A1 ! S�1A2 ! ...

by Thm 3.1.10 and the fact that if N ⇢ A is an absolutely pure preenvelope then S�1N ⇢
S�1A is also an absolutely pure preenvelope in S�1R. 2

Copyright c� Furuzan Ozbek, 2014.
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Chapter 4 PHANTOM MORPHISM RELATIVE TO A SUBFUNCTOR

Subfunctors of extensions also appeared in the study of ideals which we will investigate
in the next two chapters. Herzog defined a phantom morphism relative to a sunfunctor in
[32]. He showed that if E is a subfunctor of Ext with enough injectives then the class of
E -phantom morphisms gives us a complete ideal cotorsion pair (see Chapter 6 for more
details on ideal theory). So in this chapter we would like to focus on this special class of
morphisms and give some proporties of them.

4.1 Properties of phantom morphisms

Suppose C is a preenveloping class which contains all the injective modules. Then the
subfunctor corresponding to C will be denoted by Ext1C .

Definition 4.1.1. Let Ext1C be a subfunctor of Ext1. A morphism f : M 0 ! M is called
a phantom morphism for Ext1C (or Ext1C -phantom morphism) if the map

Ext1(f,N) : Ext1(M,N) ! Ext1(M 0, N)

has its image in Ext1C (M 0, N) for any module N. i.e Any pullback along f falls into
Ext1C (M 0, N).

Definition 4.1.2. Let Ext1C be a subfunctor of Ext1. A R-module M is called a Ext1C -
phantom object if id

M

is a phantom morphism for Ext1C .

Proposition 4.1.3. Let C be a preenveloping class that contains all the injective R-
modules. Then M is a phantom object relative to Ext1C if and only if Ext1(M,C) = 0 for
any C 2 C .

Proof. Assume that M is a phantom object relative to Ext1C . Then id
M

is a phantom
morphism relative to Ext1C . But this implies Ext1(M, ) = Ext1C (M, ). Now notice
that for any C 2 C , Ext1C (M,C) = 0 since, if the following short exact sequence is in
Ext1C (M,C)

0 // A // U //M // 0

then we know there exist an extension making the following diagram commutative,

0 // C // U //

��

M // 0

C

Hence the sequence is split exact which gives us Ext1C (M,C) = Ext1(M,C) = 0.
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To prove the other way around, assume that Ext1(M,C) = 0 for any C 2 C . Given
a short exact sequence in Ext1(M,N),

0 // N // U //M // 0

then for any morphism N ! C where C 2 C we get the following pushout,

0 // N //

✏✏

U //

✏✏

M // 0

0 // C // P //M // 0

Since Ext1(M,C) = 0 by assumption, the lower sequence is split exact. So we can define
f as the composition of U ! P ! C,

0 // N //

✏✏

U //

f

~~ ✏✏

M // 0

0 // C // P //ii M // 0

Then 0 ! N ! U ! M ! 0 is in Ext1C (M,N). We conclude that Ext1(M, ) =
Ext1C (M, ), i.e M is a phantom object relative to Ext1C . 2

We find a su�cient and necessary condition for a morphism to be phantom for Ext1C .

Proposition 4.1.4. f : M 0 ! M is a phantom morphism for Ext1C if and only if
Ext1(f, C) = 0 for any C 2 C .

Proof. Assume that Ext1(f, C) = 0 for all C 2 C .
We want to show that Ext1(f,N) : Ext1(M,N) ! Ext1(M 0, N) has its image in

Ext1C (M 0, N). Given R-modules and a morphism N ! C where C 2 C , by pushout and
pullbacks we get the following commutative diagram,

0 // N //

✏✏

T

✏✏

��

//M 0

!!

// 0

0 // N //

✏✏

U

✏✏

//M // 0

0 // C // S //

��

M 0

!!

// 0

0 // C // V //M // 0

By assumption the far bottom row is split exact, so we get

0 // N //

✏✏

T

✏✏~~
0 // C // Sii
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Then we get the dotted map which proves that far top row in the previous diagram is in
Ext1C (M 0, N).

Assume that f : M 0 ! M is a phantom morphism for Ext1C . Then for any module
C 2 C we have,

0 // C // T

✏✏

//

��

M 0 //

f

✏✏

0

0 // C // U //M // 0

since top row falls in Ext1C (M 0, C) we have the dotted map. But then we see that the top
row is split exact hence Ext1(f, C) = 0. 2

We now turn our attention to the complete cotorsion pair (F , C ) and see how a
phantom morphism relative to Ext1C can be related to the class F . Recall that a pair of
classes is cotorsion if F ? = C , C ? = F and they have enough projectives and injectives
respectively.

Theorem 4.1.5. Suppose (F , C ) is a complete cotorsion pair. Then f : M 0 ! M is a
phantom morphism for Ext1C if and only if f can be factored through a R-module F 2 F .

Proof. Given a morphism f : M 0 ! M , assume f factors through F for some F 2 F .
For any C 2 C , we get the following pullbacks,

0 // C // T

✏✏

//M 0 //

✏✏

0

0 // C //

✏✏

S //

✏✏

F //

✏✏

0

0 // C // U //M // 0

Since F 2 F =? C the middle row is split exact, hence also the top row. That is
Ext1(f, C) = 0, i.e. f is phantom for Ext1C .

Now assume that f : M 0 ! M is phantom for Ext1C . Since (F , C ) is a complete
cotorsion pair there exists an exact sequence,

0 // C // F //M // 0

where C 2 C and F 2 F then looking at the pullback along f,

0 // C // U //

✏✏

M 0 //

f

✏✏

0

0 // C // F //M // 0
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notice that the top row is split exact since Ext1(f, C) = 0. But then f factors through F
by the composition of the maps in the following diagram,

U //

✏✏

M 0

f

✏✏

uu

F //M

2

With the above characterization we now prove that phantom morphisms are in some
sense closed under direct sums.

Corollary 4.1.6. Suppose (F , C ) is a complete cotorsion pair.If f
i

: M 0
i

! M
i

, i 2 I,
is phantom morphism for Ext1C then so is

L
i

f
i

:
L

i

M 0
i

!
L

i

M
i

.

Proof. Since f
i

: M 0
i

! M
i

is Ext1C -phantom for each i 2 I, we conclude that they factor
through some P

i

2 F ,
M 0

i

// P
i

//M
i

which gives us that
L

i

f
i

factors through
L

i

P
i

as following diagram suggests,

L
i

M 0
i

//
L

i

P
i

//
L

i

M
i

Then we need to prove that
L

i

P
i

2 F . Since ?C = F it is enough to prove that if
Ext1(P

i

, A) = 0 for any A 2 C then Ext1(
L

i

P
i

, A) = 0 for any A 2 C as well.
Given projective resolutions for each P

i

,

... // Q2
i

// Q1
i

// Q0
i

// P
i

// 0

we get a projective resolution for
L

i

P
i

,

... //
L

i

Q2
i

//
L

i

Q1
i

//
L

i

Q0
i

//
L

i

P
i

// 0

Now we notice that for any A 2 C , if

Ext1(P
i

, A) =
Ker(Hom(Q1

i

, A) ! Hom(Q2
i

, A))

Im(Hom(Q0
i

, A) ! Hom(Q1
i

, A)))
= 0

then

Ext1(
M

P
i

, A) =
Ker(Hom(

L
Q1

i

, A) ! Hom(
L

Q2
i

, A))

Im(Hom(
L

Q0
i

, A) ! Hom(
L

Q1
i

, A)))
= 0

We can now conclude that
L

i

P
i

2 F . Hence we get the result. 2
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4.2 Phantom morphisms relative to Axt

In this section we will denote the class of all absolutely pure modules by Abs and the
representative set of all finitely presented modules by P
Proposition 4.2.1. [42] Abs = P ?.

Proof. (Abs ◆ P ?) : Given M 2 P ? then for any morphism S ! M where S ⇢ Rn a
finitely generated submodule then we get the following diagram by the pushout,

0 // S //

✏✏

Rn

✏✏

// Rn/S // 0

0 //M // U //jj Rn/S // 0

where the bottom row is split exact by assumption since M 2 P ?. Hence we conclude
that M 2 Abs.

(Abs ✓ P ?) : Given A 2 Abs, then for any finitely generated S ⇢ Rn we get the short
exact sequence,

0 // S �
� // Rn // Rn/S // 0

which yields to the long exact sequence and we get,

Hom(Rn, A) // Hom(S,A) // Ext1(Rn/S,A) // 0

But since A is absolutely pure module, Hom(Rn, A) ! Hom(S,A) is onto and since the
sequence is exact Hom(S,A) ! Ext1(Rn/S,A) is onto as well. So we conclude that
Ext1(Rn/S,A) = 0, that is A 2 P ?. 2

Proposition 4.2.2. (?Abs,Abs) is a complete cotorsion pair.

Proof. By Proposition 4.2.1, Abs = P ? hence we conclude that Abs = (?Abs)? since
P ? = (?(P ?))?. Moreover, due to Eklof and Trlifaj the pair (?Abs,Abs) is complete
since it is cogenerated by a set of modules P . 2p

Corollary 4.2.3. f : M 0 ! M is phantom for Axt1 if and only if f can be factored
through a module P 2? Abs.

Proof. By Proposition 4.2.2 (?Abs,Abs) is a complete cotorsion pair, then by Theo-
rem 4.1.5 we can conclude the result. 2

Corollary 4.2.4. If f : M 0 ! M is phantom for Axt1
R

then so is S�1f : S�1M 0 ! S�1M
for Axt1

S

�1
R

.
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Proof. By corollary 4.2.3 we conclude that f factors through M 0 ! P ! M for some
P 2? Ab. We want to show that S�1f : S�1M 0 ! S�1M factors as well. But notice that
we have the following factorization,

S�1M 0 ! S�1P ! S�1M

Now since R ! S�1R is a flat map we have the following isomorphism

Ext1
S

�1
R

(P ⌦ S�1R,A) ⇠= Ext1
S

�1
R

(S�1P,A) ⇠= Ext1
R

(P,A)

for any absolutely S�1R-module A. But then A is also an absolutely R-module. Hence
Ext1

R

(P,A) = 0. We conclude that S�1P 2 ?Abs. Then by Corollary 4.2.3 we can
conclude that S�1f is phantom for Axt1

S

�1
R

. 2

Corollary 4.2.5. If f
i

: M 0
i

! M
i

, i 2 I, is phantom for Axt1
R

then so is
L

i

f
i

:L
i

M 0
i

!
L

i

M
i

.

Proof. It follows by the corollary 4.1.6, since (?Abs,Abs) is a complete cotorsion pair. 2

Copyright c� Furuzan Ozbek, 2014.
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Chapter 5 IDEALS GENERATED BY A SET

Throughout this chapter we will focus on the ideals which are generated by a set of
homomorphisms. First we examine how the elements of such ideals is characterized in
Remark 5.2.2. This helps us to find su�cient conditions for a morphism to be in I?

(Lemma 5.2.3). We see that every homomorphism g in I? has a small enough factor-
ization (Lemma 5.2.6) which is motivated by Proposition(5.2.2) from Enochs and Jenda’s
pivotal book Relative Homological Algebra [22]. With all the tools in hand we prove that
if an ideal I is generated by a set then I? is a preenveloping class (Theorem 5.3.1).

We then give the definition for an ideal to be closed under sums and observe that
being closed under sums is su�cient for an ideal to be precovering if it is generated by a
set of morphisms (Theorem 5.4.3).

Finally we revise the definition of being generated by a set of homomorphisms. We
see that if we allow infinite direct sums in the factorization of elements of an ideal, that
luckily the results we have still hold.

5.1 Preliminaries

Following the lead of [24], we call an additive subfunctor of the bifunctor Hom : R-Modop⇥
R-Mod ! Ab an ideal I of R-Mod. This means that given R-homomorphisms f, g, h, t
with f, g 2 I, then f + g 2 I and h � f � t 2 I, whenever they are defined. The next
definition is the natural extension of the usual notions of (pre)cover and (pre)envelope to
ideals of morphisms (for a detailed exposition see [24]).

Definition 5.1.1. Let I ✓ Hom
R

be an ideal in R-Mod and M 2 R-Mod. An I-precover
of M is a morphism i : I ! M in I such that any morphism i0 : I 0 ! M in I factors
through i. I.e., the following triangle can be completed to a commutative one,

I 0

✏✏

i

0

  
I i //M.

An I-precover i : I ! M is said to be an I-cover if every map j that completes the
diagram

I

j

✏✏

i

��
I

i //M

is necessarily an automorphism. An ideal I is said to be (pre)covering if every R-module
M admits an I-(pre)cover.
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I-(pre)envelopes and (pre)enveloping ideals are defined dually.

Definition 5.1.2. Given two ideals I ,J ✓ Hom
R

of R-modules define,

I? = {j|Ext1(i, j) = 0 for all i 2 I }
?J= {i|Ext1(i, j) = 0 for all j 2 J }

An ideal cotorsion pair in R-Mod is a pair (I ,J ) of ideals such that I ? = J and
?J = I .

5.2 Properties of an ideal generated by a set

In this section we observe how the elements of an ideal generated by a set can be factored
through a certain kind of homomorphism. This observation helps us to identify the
elements of I as well as of I? . We finish this section by proving Lemma 5.2.6 which
will be the main tool to study when I? is preenveloping.

Remark 5.2.1. Let I =< f > where f : M ! N . Then ' : U ! V is in I if and only
if it has a factorization of the form,

U //Mm

fji // Nn // V

for some 1  m,n where f
ji

has entries either equal to f or 0.

Proof. Let S = {' |' has the desired factorization property}. Clearly f 2 I and S ✓ I ,
so it is enough to prove that S is an ideal. Let g, g0 2 S where,

g : U ↵ //Mm

gji // Nn

� // V

and

g0 : U ↵̃ //M m̃

g

0
ji // N ñ

�̃ // V

then g + g0 has the following factorization,

U
(↵,↵̃) //Mm+m̃

h // Nn+ñ

(�,�̃) // V

where
(↵, ↵̃)(u) = (↵(u), ↵̃(u)),

(�, �̃)(n, ñ) = �(n) + �̃(n)

and

h =

"
(g

ji

) 0

0 (g0
ji

)

#
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for each 1  j  n + ñ and 1  i  m + m̃. Given u 2 U say ↵(u) = (x1, ..., xm

) and
↵̃(u) = (y1, ..., ym̃) then,

u � (↵,↵̃) // (↵(u), ˜↵(u)) h // (g
ji

(x
j

), g0
ji

(y
j

))
(�,�̃) // �(g

ji

(x
j

)) + �̃(g0
ji

(y
j

))

where we notice that,

g(u) + g0(u) = �(g
ji

(x
j

)) + �̃(g0
ji

(y
j

))

Hence we conclude that we have a factorization of g + g0. 2

Remark 5.2.2. Let I =< fk >
k2K be generated by a set of homomorphisms where

fk : M
k

! N
k

. Then ' : U ! V is in I if and only if it has the following factorization,

U //Mm1
k1

� ...�Mmt
kt

(hji) // Nn1
k1

⇥ ...⇥Nnt
kt

// V

where k1, ..., kt 2 K and

h
ji

= fk1 or 0 for 1  j  n1, 1  i  m1,

.

.

.

h
ji

= fkt or 0 for (n1 + ...+ n
t�1)  j  (n1 + ...+ n

t

), (m1 + ...+m
t�1)  i  (m1 + ...+m

t

)

and h
ji

can be viewed as a matrix with entries,

2

6666664

fk1
ji

0 . 0 0

0 . . . 0
. . . . .
0 . . . 0

0 0 . 0 fkt
ji

3

7777775

Proof. Similar to the case where I is generated by a single homomorphism.
With the help of the above characterization, we find the following equivalent conditions

for a morphism g to be in I? . So one can use either of these equivalent conditions to
detect the elements of I? .

Lemma 5.2.3. Let I =< f
k

| k 2 K > and f
k

: M
k

! N
k

, g : U ! V be homomorphisms
of R-modules then the following are equivalent,
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1. g is in I? .

2. Given any s.e.s.,
0 // U // X // Y // 0

the s.e.s. obtained by taking the pushout along g,

0 // U //

g

✏✏

X //

✏✏

Y // 0

0 // V // Q // Y // 0

can be completed to a commutative diagram for any N
k

! Y where k 2 K as shown
below,

M
k

 

⌃⌃

fk

✏✏
N

k

✏✏
0 // V // Q // Y // 0

3. Let 0 ! V ! Q ! Q/V ! 0 be the s.e.s. obtained by taking the pushout along
g. Then for any k 2 K the composition Hom(N

k

, Q/V ) ! Hom(M
k

, Q/V ) !
Ext1(M

k

, V ) (obtained from M
k

fk // N
k

// Q/V ) is the zero map for any ho-

momorphism N
k

! Q/V .

Proof. (1 ) 2) Assume g 2 I? . Given a s.e.s. ⇠ : 0 // U // X // Y // 0 then
Ext1(f̃ , g)(⇠) = 0 for any f̃ 2 I . That is the resulting s.e.s we get by computing the
pushout along g followed by the pullback along f̃ is split exact. Since for any N

k

! Y
the composition M

k

! N
k

! Y is in I , in particular the upper row in the following
diagram,

0 // V // P

✏✏

//M
k

uu

⌃⌃

fk

✏✏

// 0

N
k

✏✏
0 // V // Q // Y // 0

is split exact. Hence we obtain the desired commutative triangle as shown above.
(2 ) 1) Assume that the second property holds for g : U ! V . We need to prove that

g is in I? , that is Ext1(f, g)(⇠) = 0 for any f 2 I where ⇠ is any extension of codomain
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of f by U . One can easily observe that it is enough to show instead Ext1(f̃ , g)(⇠) = 0 for
f̃ 2 I where,

f̃ : M
j

�M
i

f // N
j

�N
i

// Y

and where ⇠ is any s.e.s. ⇠ : 0 ! U ! X ! Y ! 0. By Remark 5.2.2, f =

✓
f
j

0
0 f

i

◆

where f
j

, f
i

are from the set of generators of I . Given any ' : N
j

� N
i

! Y , we define
'
j

: N
j

! Y and '
i

: N
i

! Y such that '
j

is the restriction of ' to N
j

� 0 and similarly
'
i

is the restriction of ' to 0 � N
i

. Then by assumption there exists ↵
j

and ↵
i

making
the following diagrams commutative,

M
j

 ↵j

⌥⌥

fj

✏✏
N

j

'j

✏✏
0 // V // Q // Y // 0

and
M

i

 ↵i

⌥⌥

fi

✏✏
N

i

'i

✏✏
0 // V // Q // Y // 0

Then it is easy to see that the map ↵ : M
j

�M
i

! Q defined as ↵(x
j

, x
i

) = ↵
j

(x
j

)+↵
i

(x
i

)
makes the following diagram commutative,

M
j

�M
i

↵

⌅⌅

f

✏✏
N

j

�N
i

'

✏✏
0 // V // Q // Y // 0

If we compute the pullback along f̃ we get the following diagram,

P //

✏✏

M
j

�M
i

f̃

✏✏
Q // Y

32



Now using the commutativity of the previous diagram, we get the following commutative
diagram,

M
j

�M
i

id

 
&&

↵

�

��

 

##
P //

✏✏

M
j

�M
i

✏✏
Q // Y

So by the universal property of pullback diagrams we conclude that there exists a homo-

morphism  such that M
j

�M
i

 // P //M
j

�M
i

is the identity homomorphism.

Hence looking at the s.e.s. obtained by the pullback along f̃ ,

0 // U // P //

✏✏

M
j

�M
i

//

f̃

✏✏

0

0 // U // Q // Y // 0

we conclude that the upper row is split exact. That is Ext1(f̃ , g) maps ⇠ to a split exact
sequence, i.e. Ext1(f̃ , g)(⇠) = 0 for any s.e.s. ⇠.

(2 , 3) Assume that the second property holds. Given any s.e.s. ⇠ : 0 ! U ! X !
Y ! 0 by using the pushout along g we get,

0 // U //

g

✏✏

X //

✏✏

Y // 0

0 // V // Q // Y ⇠= Q/V // 0

by assumption the lower row can be completed to a commutative diagram for any N
k

!
Q/V as shown below,

M
k

 

⌃⌃

fk

✏✏
N

k

✏✏
0 // V // Q // Q/V // 0

So we get the diagram,

Hom(N
k

, Q/V )

✏✏
Hom(M

k

, Q) // Hom(M
k

, Q/V ) // Ext1(M
k

, V )
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with an exact row. But now our assumption holds if and only if the following composition,

Hom(N
k

, Q/V ) // Hom(M
k

, Q/V ) // Ext1(M
k

, V )

is the zero map. 2

Corollary 5.2.4. Let I be as in Lemma 5.2.3 and g : U ! V be in I? . If V
0 ✓ V is

a submodule such that g(U) ✓ V
0 ✓ V and the map Ext1(M

k

, V
0
) ! Ext1(M

k

, V ) is an
injection for any k 2 K then g : U ! V

0
is in I? as well.

Proof. Notice that by Lemma 5.2.3, g : U ! V 0 ✓ V is in I? if and only if the following
composition is 0 for any given N

k

! Q
0
/V

0
and any given k 2 K,

Hom(N
k

, Q
0
/V

0
) // Hom(M

k

, Q
0
/V

0
) // Ext1(M

k

, V
0
)

which is induced from the following s.e.s.,

0 ! V
0 ! Q

0 ! Q
0
/V

0 ! 0

Then the following diagram,

0 // U //

g

✏✏

E(U) //

✏✏

E(U)/U //

⇠=
✏✏

0

0 // V
0 //
� _

✏✏

Q
0 //

✏✏

Q
0
/V

0 //

⇠=
✏✏

0

0 // V // Q // Q/V // 0

where E(U) is the injective envelope of U , gives us,

Hom(N
k

, Q0/V
0
) //

⇠=
✏✏

Hom(M
k

, Q0/V
0
) //

⇠=
✏✏

Ext1(M
k

, V
0
)

✏✏
Hom(N

k

, Q/V ) // Hom(M
k

, Q/V ) // Ext1(M
k

, V )

We notice that if Ext1(M
k

, V
0
) ! Ext1(M

k

, V ) is an injection for every k 2 K then the
composition on the top row is 0 for every k 2 K. By Lemma 5.2.3 we conclude that
g : U ! V 0 is in I? . 2

Lemma 5.2.5. Let I be as in Lemma 5.2.3. If each g
i

: U ! V
i

, i 2 I is in I? then
g : U !

Q
i2I

V
i

where g(x) = (g
i

(x))
i2I is in I? .
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Proof. Assume each g
i

: U ! V
i

, i 2 I is in I? . That is '
i

= Ext1(f̃ , g
i

) is the zero map
for any f̃ : Z ! Y in I . Since Ext1(Z,

Q
i2I

V
i

) ⇠=
Q
i2I

Ext1(Z, V
i

) we have the following

diagram,

Ext1(Y, U)

'j

��

'i

��

✏✏Q
i2I

Ext1(Z, V
i

)

⇡j
''

⇡i
ww

Ext1(Z, V
i

) Ext1(Z, V
j

)

So there exists ' : Ext1(Y, U) !
Q
i2I

Ext1(Z, V
i

) which makes the above diagram commu-

tative. Now given any ⌘ 2 Ext1(Y, U) and say '(⌘) = (⇠
i

)
i2I then,

0 = '
j

(⌘) = ⇡
j

('(⌘)) = ⇡
j

((⇠
i

)
i2I) = ⇠

j

That is, ⌘ = 0. Hence ' or Ext(f̃ , g) is the zero map and g 2 I? . 2

Recall that our main goal is to prove that I? is preenveloping when I is generated
by a set. In order to prove that we need to show every g 2 I? has a “small” enough
factorization. In the following lemma we show how one gets such a factorization.

Lemma 5.2.6. Let I be as in Lemma 5.2.3 and g : U ! V in I? . Then g can be
factored through V

0
such that,

U //

g

''
V

0 � � // V

where the cardinality of V
0
is bounded by a cardinal number  which depends only on |U |

and I .

Proof. First we need to show that g is in I? if and only if Ext(f̃ , g)(⇠
0
) = 0 for the short

exact sequence ⇠
0
: 0 ! U ! E(U) ! E(U)/U ! 0 where E(U) is the injective envelope

of U . One direction is obvious. To show the other direction let,

⇠ : 0 ! U ! X ! Y ! 0

be any short exact sequence. Since E(U) is injective we get the following commutative
diagram,

0 // U // X //

✏✏

Y //

9h
✏✏

0

0 // U // E(U) // E(U)/U // 0
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where h : Y ! E(U)/U is induced from X ! E(U). Now we look at Ext1(h, id
U

)(⇠
0
),

0 // U // X //

✏✏

Y //

h

✏✏

0

0 // U //

idU��

E(U) //

{{

E(U)/U //

xx

0

0 // U // E(U) // E(U)/U // 0

That is Ext1(h, id
U

)(⇠
0
) = ⇠. Note that the upper row is a pullback along h since X ! Y

and E(U) ! E(U)/U are epimorphisms and U
idU // U is an isomorphism. Then,

Ext1(f̃ , g)(⇠) = Ext1(f̃ , g) � Ext1(h, id
U

)(⇠
0
) = Ext1(h � f̃ , g)(⇠0

) = 0

Hence g 2 I? .
Now we want to construct a “small” enough V

0
such that g : U ! V

0 ⇢ V is in I? . By
Corollary 5.2.4, it is enough to show that Ext1(M

k

, V
0
) ! Ext1(M

k

, V ) is an injection for
any k 2 K. But notice that this holds if the following map is an injection,

Y

k2K

Ext1(M
k

, V
0
) !

Y

k2K

Ext1(M
k

, V )

But we have the following commutative diagram,

Ext1(
L
k2K

M
k

, V
0
)

⇠= //

✏✏

Q
k2K

Ext1(M
k

, V
0
)

✏✏
Ext1(

L
k2K

M
k

, V )
⇠= //

Q
k2K

Ext1(M
k

, V )

So we conclude that in order to show g : U ! V
0
in I? , it is enough to show the left

column is injective.
Now we will construct the desired V

0
. Given an i 2 K, let 0 ! K

i

! P
i

! M
i

! 0
be a partial projective resolution of M

i

. Then we obtain the following partial projective
resolution for

L
i2K

M
i

,

0 // K =
L
i2K

K
i

// P =
L
i2K

P
i

//
L
i2K

M
i

// 0

We will construct an ascending chain of modules to obtain such a “small” V
0
. Let g(U) =

V0 and for every K ! V0 morphism that has an extension P ! V , choose one such
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extension ↵ : P ! V . So we have the following diagram,

P

##
K
?�

OO

// V0 ⇢ V

Define V1 =
P
↵(P ) where the sum is over all such chosen extensions ↵ : P ! V for each

K ! V0. Then V0 ⇢ V1. Now we construct V2 in a similar way. So we get an ascending
chain of modules,

V0 ⇢ V1 ⇢ ... ⇢ V
!

⇢ V
!+1 ⇢ ... ⇢ V

�

where � is the least cardinal number with |K| < � . Define V
�

=
S
↵<�

V
↵

if �  � is a

limit ordinal and let V
0
= V

�

.
Now we will show that g : U ! V

0
is in I? . By the previous observation all we need

to show is that the homomorphism,

Ext1(
M

k2K

M
k

, V
0
) ! Ext1(

M

k2K

M
k

, V )

is injective. Given a morphism K
' // V

0 ⇢ V that has an extension P
� // V , we

want to show that then there is an extension P ! V
0
. But now since |K| < � we

conclude that Im(') ✓ V
↵

for some ↵ such that |↵| < �; hence, by the construction of
the ascending chain we can extend ' to P ! V

↵+1 ⇢ V
0
. This shows that

Ext1(
M

k2K

M
k

, V
0
) ! Ext1(

M

k2K

M
k

, V )

is an injection. Now by Corollary 5.2.4 we conclude that g : U ! V
0 ⇢ V is in I? .

Moreover, note that the cardinality of V
↵+1 =

P
�(P ) (where the sum is taken over all

chosen extensions � : P ! V for each K ! V
↵

) is bounded by,

|V
↵+1|  |P ||V↵||K|

Since,
|Hom(K,V

↵

)|  |V K

↵

| = |V
↵

|K

and
|�(P )|  |P |

We find a bound on |V 0 | 
P
↵<�

|V
↵

|. So we conclude that for any given U , if g : U ! V is

in I? we can find a factorization U ! V
0 ! V where |V 0 |   for some cardinal number

 that depends on |U |, |K| and |P | and thus only on |U | and I . 2
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5.3 Main result

We are now ready to prove the main theorem. The motivation for this result came from
Eklof-Trlifaj’s well-known theorem (Thm.10, [15]).

Theorem 5.3.1. If I is generated by a set then I? is a preenveloping class.

Proof. Given an R-module U by Lemma 5.2.6 we find a cardinal number  with the
desired properties given in the lemma . We will use a similar argument to that of Rada-
Saoŕın in [39]. Let {g

j

}
j2J be the set of all the homomorphisms g

j

: U ! V
j

in I? (up
to isomorphism) where |V

j

|  . Then by lemma 5.2.5 the homomorphism,

U
Q

gj//
Q
j2J

V
j

is in I? . Moreover we claim that it is an I? -preenvelope of U .
Given any g : U ! V in I? by Lemma 5.2.6 we get a factorization,

U //

g

''
V 0 � � // V

where |V 0|  . Then g : U ! V 0 ⇢ V is isomorphic to g
j

for some j. That is, there
exists a map making the following diagram commutative,

U
gj //

g

✏✏

V
j

�
~~

V 0

Now we get the following commutative diagram,

U
gj //

✏✏

Q
j2J

V
j

~~
V
j

✏✏
V 0

✏✏
V
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We conclude that the following diagram is commutative where we use the composition of
maps

Q
j2J

V
j

! V
j

! V 0 ! V ,

U
gj //

g

✏✏

Q
j2J

V
j

�
~~

V

That is I? is a preenveloping class. 2

5.4 Ideals closed under sums

We begin this section by the definition of being closed under sums for an ideal. Note that
precovering ideals automatically satisfies this condition.

Definition 5.4.1. The ideal I is said to be closed under sums if it satisfies one of the
following equivalent conditions,

• If (f
j

)
j2J , fj : Mj

! N
j

is any family of elements of I then
L
j2J

f
j

:
L
⌘2J

M
j

!
L
⌘2J

N
j

is in I .

• If (g
j

)
j2J , gj : Mj

! N is any family of elements of I then g :
L
⌘2J

M
j

! N defined

by g((x
j

)
j2J) =

P
j2J

g
j

(x
j

) is in I .

Now we draw our attention to ideals closed under direct sums. We will prove that
being closed under sums is enough for an ideal generated by a set to be precovering. But
first we consider an ideal that is generated by a single morphism to simplify the proof.

Theorem 5.4.2. If I is the closure under direct sums of the ideal generated by a single
homomorphism f : M ! N , then I is a precovering ideal.

Proof. Given an arbitraryR-module V , we consider the homomorphism ↵ : M (Hom(N,V )) !
V defined by,

↵((x
g

)
g2Hom(N,V )) =

X

g2Hom(N,V )

g(f(x
g

))

which is in I since it is closed under sums. Moreover we claim that it is an I -precover
of V . Given a homomorphism,

L
j2J

M //
L
j2J

N
h // V
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in I . Define h
j

: N ! V such that h =
P
j2J

h
j

and �
j

: M ! M (Hom(N,V )) such that �
j

(x)

is the element of M (Hom(N,V )) whose all entries are 0, except the one that corresponds to
h
j

, which is x. With the maps defined above the following diagram commutes,

M

�j

��

f

✏✏
N

hj

✏✏
M (Hom(N,V )) ↵ // V

Now we define �, L
j2J

M

�

⇤⇤

L
f

✏✏L
j2J

N

h

✏✏
M (Hom(N,V )) ↵ // V

where �((x
j

)
j2J) =

P
j2J

�
j

((x
j

). Then notice that,

↵(�((x
j

)
j2J)) = ↵(

X

j2J

�
j

(x
j

)) =
X

j2J

↵(�
j

(x
j

))

=
X

j2J

h
j

(f(x
j

)) = h((f(x
j

))
j2J)

= (h(�f(x
j

)
j2J))

So the above diagram is commutative and we conclude that V has an I -precover. That
is I is a precovering ideal. 2

Theorem 5.4.3. If I is the closure under direct sums of the ideal generated by a set,
then I is a precovering ideal.

Proof. The proof follows very similarly to that of Theorem 5.4.2. 2

In the following Proposition, we note that the orthogonal of an ideal generated by a
set and the orthogonal of its closure should be the same.

Proposition 5.4.4. Let I =< f
s

>
s2S generated by a set and I 0

be the smallest ideal
that contains I and closed under sums. Then I? = (I 0

)?.
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Proof. One way of the inclusion is easy. By definition I ✓ I 0
implies (I 0

)? ✓ I? .
To prove the other way of inclusion, let g 2 I? where g : U ! V . Then notice that

Ext1(f
s

, g) = 0 for all f
s

. Now given any T ✓ S and a homomorphism,

L
M

t

�ft //
L

N
t

We want to prove that,

Ext1(�f
t

, g) : Ext1(�N
t

, U) // Ext1(�M
t

, V )

is the zero map. Let us observe the commutative diagram,

Ext1(
L
t2T

N
t

, U)
⇠= //

✏✏

Q
t2T

Ext1(N
t

, U)

✏✏
Ext1(

L
t2T

M
t

, V )
⇠= //

Q
t2T

Ext1(M
t

, V )

Notice that the right column is the zero map since Ext1(f
t

, g) = 0 for all t 2 T . Hence
we conclude that Ext1(�f

t

, g) = 0. Let us choose an arbitrary homomorphism in I 0
,

U k //
L

M
t

�ft //
L

N
t

h // V

where t 2 T ✓ S. We have,

Ext1(h � �f
t

� k, g) = Ext1(k, id) � Ext1(�f
t

, g) � Ext1(h, id) = 0

Hence we conclude that I? ✓ (I 0
)?. 2

5.5 Ideals generated by a set in the extended sense

We revise our definition of I being generated by a set.

Definition 5.5.1. Let (f
s

)
s2S be a set of homomorphisms where f

s

: M
s

! N
s

. I is
said to be generated by (f

s

)
s2S in the extended sense if every f̃ : U ! V in I has a

factorization,

U //
L
s2S

Ms
s

L
fs //

L
s2S

Ns
s

// V

where 
s

is a cardinal number for each s 2 S.

We note that if I is generated by a set in the extended sense, then it is closed under
sums. So we can adapt the previous results to the new case of ideals generated by a set
in the extended sense.
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Corollary 5.5.2. Let I be generated by a set of homomorphisms in the extended sense,
then I? is a preenveloping ideal.

Proof. It follows from Theorem 5.3.1 and Proposition 5.4.4. 2

Corollary 5.5.3. Let I be generated by a set of homomorphisms in the extended sense,
then I is a precovering ideal.

Proof. Since I is closed under sums, we get the result by Theorem 5.4.3. 2

There are a couple of further open questions that are worth pursuing and might be of
interest about an ideal generated by a set. For example, whether the pair (I , I? ) is a
cotorsion ideal pair if I is generated by a set. If this is proven to be correct, then the
necessary conditions for completeness of such a cotorsion pair can be of interest.

Copyright c� Furuzan Ozbek, 2014.
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Chapter 6 IDEALS CLOSED UNDER DIRECT LIMITS

The main motivation of this chapter is to introduce a new criterion for the existence
of covers of modules associated to ideals of morphisms. Namely, we prove a su�cient
condition to ensure that an ideal in R-Mod is covering, in the sense that any R-module
has an I-cover (cf. [24]). And these su�cient conditions are satisfied by the ideal of
phantom morphisms in R-Mod introduced in [31]. In this chapter the key point is that
one may identify ideals I of morphisms in R-Mod with certain classes I(A2) of objects
in the Grothendieck category A2 of all representations by left R-modules of the quiver
A2 : • ! •. This allows to apply the general existence theorems developed in the literature
for (pre)covers of modules with respect to a class of objects. The contents of this chapter
are from [21], a joint work with Segio Estrada and Pedro A. Guil.

An important instance of ideal in R-Mod is the ideal of phantom morphisms considered
in [31]. A morphism f : M ! N of left R-modules is called a phantom morphism if for
each morphism g : L ! M , with L a finitely presented left R-module, the composition
f � g factors through a (finitely presented) projective module. Equivalently, for each left
R-module A, the functor Ext1(f, A) maps Ext1(N,A) inside the subgroup PExt1(M,A)
of Ext1(M,A) consisting of all pure-exact sequences. It is straightforward to check that
the class of all phantom morphisms forms an ideal, which we will denote by Phant(R).

6.1 The category A2

Let us denote by A2 the quiver with two vertices v1, v2 and an edge a : v1 ! v2. This
may be thought as a small category. Let us consider the category A2 = (A2, R-Mod)
of all representations of the quiver A2 by left R-modules. That is, the category of all
covariant functors from A2 to R-Mod. Note that an object M of A2 is just a morphism

M ⌘ M1
f! M2 in R-Mod. Whereas a morphism in A2 from M ⌘ M1

f! M2 to
N ⌘ N1

g! N2 is a natural transformation; that is, a pair of morphisms (d, s) in R-Mod
for which the diagram

M1
f //

d

✏✏

M2

s

✏✏
N1

g

// N2

is commutative. The category A2 is Grothendieck and the representations R
1R! R and

0
0! R are projective representations that generateA2. It is also known that P ⌘ P1

f! P2

is a projective representation if, and only if, P1 and P2 are projective R-modules and f
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is a splitting monomorphism. And P is flat provided that P1 and P2 are flat R-modules
and f is a pure monomorphism (see [17, 23]).

We can associate to any ideal I in R-Mod, the class of objects I(A2) in A2 consisting

of those representations M ⌘ M1
f! M2 in I(A2) such that f 2 I. In particular, we

will denote by Phant
R

(A2) the class of all phantom morphisms in R-Mod, considered as

a class of representations in A2. Hence, M ⌘ M1
f! M2 belongs to Phant

R

(A2) if and
only if f is a phantom morphism in R-Mod. It is clear, from the definition of phantom
morphism, that flat representations of A2 belong to Phant

R

(A2). This means that, if
F ⌘ F1 ! F2 is a representation in which F1 is a flat R-module, then F 2 Phant

R

(A2).
In particular, Phant

R

(A2) contains a projective generator of A2.
As A2 is a Grothendieck category, we have the usual notions of (pre)covers and

(pre)envelopes with respect to a class of representations F in A2. Namely, if F is a
class of objects in A2 and M 2 A2, an F -precover (F -preenvelope) of M is a morphism
F

'! M (resp., M
'! F ) with F 2 F , such that Hom(F 0, F ) ! Hom(F 0,M) ! 0 is

exact (resp., Hom(M,F 0) ! Hom(F , F 0) ! 0 is exact), for every F 0 2 F . If, moreover,
any f : F ! F such that ' � f = ' (resp. f � ' = ') is an automorphism, then ' is
called an F -cover (resp., F -envelope). We will say that a class F of representations in
A2 is (pre)covering ((pre)enveloping)) if every M 2 A2 admits an F -(pre)cover (resp.,
F -(pre)envelope).

Throughout this chapter, all rings will be associative rings with identity element and
all modules will be unitary left modules. We refer to [24, 22, 29, 46] for any undefined
notion.

6.2 A Su�cient Condition for Covering Ideals

Let us begin this section by introducing the following definition which will be needed to
state the main result of this section.

Definition 6.2.1. Let I be an ideal in R-Mod. We will say that I is closed under
direct limits if for any morphism {f

i

: M
i

! N
i

}
I

between directed systems of morphisms
{g

ij

: M
i

! M
j

}
ij

and {h
ij

: N
i

! N
j

}
ij

, satisfying that f
i

2 I for every i 2 I, the
induced morphism lim�! f : lim�!M

i

! lim�!N
i

also belongs to I.
And we will say that the ideal I is the closure under direct limits of a set of morphisms

I0 ✓ I if there exists a set I0 ✓ I such that any morphism f 2 I can be obtained in the
above fashion from a morphism {f

i

}
I

of direct systems with each f
i

2 I0.

We can now prove our promised criterion for the existence of covering ideals of mor-
phisms.

Theorem 6.2.2. Let I be an ideal in R-Mod closed under direct limits. If I is the closure
under direct limits of a set of morphisms I0 ✓ I, then I is a covering ideal of R-Mod.
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Proof. Note that our hypothesis implies that I(A2) is the closure under direct limits in
the Grothendieck category A2 of the set I0(A2). Hence I(A2) is a covering class in A2

by [6, Theorem 3.2].
Let us first show that this implies that I is a precovering ideal. Let M be an R-module

and F ⌘ F1
'! F2, an I(A2)-cover of 1

M

⌘ M
1M! M . Then there exist morphisms s, t

such that the following diagram commutes,

F1
s //

'

✏✏

M

F2
t //M

Now, given any G
 ! M in I(A2), there exist morphisms ↵, � which make the following

diagram commutative
G

↵

~~

 

  

 

✏✏

F1
s //

'

✏✏

M

M
�

~~
F2

t //M

since F is an I(A2)-precover. Note that this implies that s = t � ' belongs to I, since I
is an ideal, and that the top triangle commutes. Hence, s is an I-precover of M . This
shows that I is a precovering ideal.

Moreover we claim that F1
s! M is not only an I-precover of M but also an I(A2)-

cover of M
1M! M . To prove this claim it is enough to show that F1

s! M is isomorphic
to F1

'! F2. First, note that there exist morphisms j, h such that the following diagram
commutes,

F1

j

~~

s

  

s

✏✏

F1
s //

'

✏✏

M

M
h

~~
F2

t //M
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The commutativity of the bottom triangle implies t � h = 1
M

, hence h is monic. We
also conclude that ' � j = h � s and t � ' = s which gives us the following commutative
diagram,

F1

j

~~

s

  

'

✏✏

F1
s //

'

✏✏

M

F2

ht

~~ t   
F2

t //M

But since F1
'! F2 is an I(A2)-cover of M

1M! M , we conclude that j and h � t are
automorphisms. Then h is epic which implies that it is an isomorphism.

So we showed that F1
s! M is an I(A2)-cover of 1M ⌘ M

1M! M . Then one can easily
see that it is a I-cover of M . This finishes the proof.

As noted in [6, Theorem 3.3], the above arguments can be easily carried out to deduce
the following stronger result under the assumption of Vopěnka’s Principle (see e.g. [2,
Chapter 6]).

Theorem 6.2.3. (Assume Vopěnka’s Principle) Any ideal I of R-Mod closed under direct
limits is covering.

Remark 6.2.4. We would like to stress that the usual version of Wakamatsu’s Lemma
[46, Lemma 2.1.1] in A2 cannot be used to infer from Theorem 6.2.2 that the kernel of
an I(A2)-cover is an object in I(A2)? = {M 2 A2| Ext1A2

(F ,M) = 0, 8F 2 I(A2)}.
The reason is that the class of representations I(A2) of A2 which we have associated to
any ideal I of R-Mod is not closed under extensions unless the ideal I = Hom. Note that
if f : A ! B is a morphism in R-Mod such that f /2 I and we consider the following
commutative diagram of splitting sequences,

0 // A

0
✏✏

⌧1 // A� A

t1f⇡2

✏✏

⇡2 // A

0
✏✏

// 0

0 // B
t1

// B � B
p2

// B // 0

then 0 : A ! B belongs to I but t1 � f � ⇡2 /2 I since f /2 I. This means that the

representation A�A
t1f⇡2�! B�B is an extension of the representation 0 : A ! B by itself

which does not belong to I(A2).
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Note that in the category of A2-representations, every morphism f : M ! N is trivially
an extension of 0 morphisms,

0 // 0

0
✏✏

//M

f

✏✏

M

0
✏✏

// 0

0 // N N // 0 // 0.

Suppose now that f 2 I, for some ideal I. Both of the zero morphisms 0 : 0 ! N
and 0 : M ! 0 are then deconstructible in the sense of [14], by deconstructing N and
M in the module category, and belong to I. Thus f 2 I will be also deconstructible.
Hence any ideal I is deconstructible (in the sense that the class of representations I(A2)
in A2 is deconstructible). However, in view of the above comment, the class I(A2) is
never closed under I(A2)-filtrations, for any ideal I. This suggests that we may need a
more sophisticated definition of deconstructibility in order to extend its usual applications
in the classical approximation theory by objects (see, for instance [43, 44]) to this new
framework.

6.3 Filtering Phantom Morphisms

Throughout this last section we will focus on the case in which the considered ideal I is
the class Phant(R) of all phantom morphisms in R-Mod. Our aim is to prove that each
phantom morphism admits a nice filtration by “small” phantom morphism, and deduce
from it that the ideal Phant(R) satisfies the hypothesis of Theorem 6.2.2.

Let A be a Grothendieck category and �, an ordinal number. Recall that a linearly
ordered directed system of morphisms in A, {f

↵�

: A
↵

! A
�

|↵  � < �}, is called
continuous if A

�

= lim�!
↵�<�

f
↵�

for each ordinal limit �  �. Note that, in particular, this

means that A0 = 0.
A linearly ordered directed system of morphisms is called a continuous directed union

if all morphisms in the system are monomorphisms.
Our goal in this section is to show in Corollary 6.3.4 that the class of phantom mor-

phisms is the closure under directed unions of a set of phantom morphisms. To achieve
this aim, we will start with the following technical lemma.

Lemma 6.3.1. Let  � |R| be an infinite cardinal number, F ⌘ F1 ! F2, a representation
in Phant

R

(A2), and X1 ✓ F1, X2 ✓ F2 two subsets with |X1|, |X2|  . Then there is a
phantom subrepresentation S ⌘ S1 ! S2 of F such that |S1|, |S2|   and X1 ✓ S1 and
X2 ✓ S2.

Proof. Let S1 be the submodule of F1 generated by X1. Let L be any finitely presented
R-module and h : L ! S1, any homomorphism. As F 2 Phant

R

(A2), there exists a
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finitely presented projective R-module P
h

(whose cardinality is therefore, bounded by )
such that L ! F2 factors through it

L

h

✏✏

⇠⇠

S1
� � // F1

'

✏✏

P
h

fh~~
X2
� � // F2

Define

S2 = X2 +
X

{Im(f
h

)|L is a finitely presented module and h 2 Hom(L, S1)}

and note that |S2|  . Then, by construction, for any arbitrary finitely presented R-
module L and any h : L ! S1, there exists a projective R-module P such that the
following diagram commutes

L

h

✏✏

⌫⌫

S1

'|S1

✏✏

� � // F1

'

✏✏

P
fh

ww
S2
� � // F2

since Im(f
h

) ⇢ S2. This means that L ! S2 factors through P . And hence, S1

'|S1 // S2

belongs to Phant
R

(A2).

Lemma 6.3.2. The class Phant
R

(A2) is closed under direct limits.

Proof. Let {f
i

: N
i

! M
i

}
I

be a morphism between two directed systems of morphisms
{g

ij

: N
i

! N
j

}
ij

and {h
ij

: M
i

! M
j

}
ij

in R-Mod such that f
i

: N
i

! M
i

is a phantom
morphism, for each i 2 I. And let lim�!f

i

: lim�!N
i

! lim�!M
i

be the induced morphism in
the direct limits. We must show that lim�!f

i

is also a phantom morphism.
Let L be any finitely presented left R-module. We have to prove that for any morphism

L ! lim
!

N
i

the composition L ! lim
!

N
i

! lim
!

M
i

factors through a projective R-module.
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But, as L is finitely presented, we have an isomorphism

Hom(L, lim
!

N
i

) ⇠= lim
!

Hom(L,N
i

).

Hence, given a morphism L ! lim
!

N
i

, there is a j 2 I such that the following diagram

can be completed
L

 
{{ ✏✏

N
j

//

✏✏

lim
!

N
i

✏✏
M

j

// lim
!

M
i

Now, as f
j

2 Phant(R), we conclude that the composition L ! N
j

! M
j

factors
through a projective R-module, say P

L

vv ✏✏
N

j

//

✏✏

��

lim
!

N
i

✏✏

P

��
M

j

// lim
!

M
i

and then, by diagram chasing, we conclude that the morphism L ! lim
!

M
i

factors through

P as well.

Proposition 6.3.3. Let us consider a morphism of exact sequences:

0 // A

f

✏✏

// B

g

✏✏

// C

h

✏✏

// 0

0 // X // Y // Z // 0

If g is a phantom morphism and the top sequence is pure exact, then h : C ! Z is
phantom.
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Proof. Let L be a finitely presented R-module L and a morphism L ! C, there exists a
morphism L ! B which completes the following commutative diagram

L

�� ✏✏
0 // A //

f

✏✏

B //

g

✏✏

C //

h

✏✏

0

0 // X // Y // Z // 0

Moreover, as g 2 Phant(R), the composition L ! B ! Y factors through a projective
R-module, say P ,

L

ww ✏✏

⌥⌥

B //

✏✏

C //

✏✏

0

P

��
Y // Z // 0

This shows that L ! C
h! Z also factors through P and hence, we deduce that h 2

Phant(R).

Recall that a representationM ⌘ M1 ! M2 inA2 is of type  (for  an infinite cardinal
number), if each of the R-modules M1 and M2 are generated at most by  elements.

Corollary 6.3.4. There exists an infinite cardinal  such that every representation in A2

belongs to Phant
R

(A2) if and only if it is the directed union of its subrepresentations in
Phant

R

(A2) of type .

Proof. This follows from lemmas 6.3.1 and 6.3.2.

Corollary 6.3.5. Every module has a surjective phantom cover.

Proof. It follows from Lemma 6.3.2 and Corollary 6.3.4 that the class Phant
R

(A2) satis-
fies the conditions of Theorem 6.2.2. Finally, phantom covers are surjective because the
class Phant

R

(A2) contains a projective generator of A2.

We are going to close this chapter by showing that the kernel of a phantom cover is
always a pure injective module. First we need to prove the following lemma, which is of
independent interest.
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Lemma 6.3.6. Let � : M ! N be a phantom epimorphism, with kernel u : K ! M and
let v : K ! K 0 be a pure monomorphism. Let us consider the pushout along u, v:

0

✏✏

0

✏✏
0 // K

v

✏✏

u //M
� //

v

0

✏✏

// N // 0

0 // K 0

⇡

✏✏

u

0
// X

⇡

0

✏✏

�

0
// N // 0

K/K 0

✏✏

X/M

✏✏
0 0

Then �0 is also a phantom map.

Proof. Let F be a finitely presented module and consider a morphism f : F ! X. As
the short exact sequence

0 ! K
v�! K 0 ⇡�! K/K 0 ! 0

is pure, there will exist a morphism g : F ! K 0 such that ⇡�g = ⇡0�f . Then ⇡�g = ⇡0�u0�g
and thus, Im(f � u0g) ✓ Ker(⇡0) = M . Therefore, there exists a unique h : F ! M such
that v0h = f � u0g. Now

�h = �0v0h = �0f � �0u0g = �0f,

where the last equality holds because �0u0 = 0. Now, as � is phantom, �h factors through
a projective module. This shows that �0f factors through a projective module and thus,
�0 is phantom.

Proposition 6.3.7. Let � : M ! N be a phantom cover. Then Ker(�) is a pure injective
module.

Proof. Let K = Ker(�) and u : K ! M , the inclusion. We must show that K is pure
injective. So let u : K ! X be a pure monomorphism. We want to see that it admits a
retract. As phantom covers are surjective, it follows from Lemma 6.3.6 that the pushout
along u and v,

0 // K

v

✏✏

u //M
� //

v

0
✏✏

// N // 0

0 // X
u

0
//M 0

�

0
// N // 0
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gives a phantom morphism �0 : M 0 ! N . This leads to commutative triangles:

M

v

0
✏✏

�

!!
M 0 �

0
//

t

✏✏

N

M
�

==

where t : M 0 ! M comes from the fact that �0 is phantom and � is a phantom (pre)cover.
Let us denote by w = t �

X

the restriction of t to X ! K. As � is a cover, the mor-
phism tv0 : M ! M is an automorphism. Hence, the restriction w � v : K ! K is an
automorphism of K and therefore, r = (wv)�1w is the desired retract of v.

Copyright c� Furuzan Ozbek, 2014.
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