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Homogenization of Stokes Systems with Periodic Coefficients

In this dissertation we study the quantitative theory in homogenization of Stokes
systems. We study uniform regularity estimates for a family of Stokes systems with
rapidly oscillating periodic coefficients. We establish interior Lipschitz estimates for
the velocity and L∞ estimates for the pressure as well as Liouville property for so-
lutions in Rd. We are able to obtain the boundary W 1,p estimates in a bounded C1

domain for any 1 < p < ∞. We also study the convergence rates in L2 and H1 of
Dirichlet and Neumann problems for Stokes systems with rapidly oscillating periodic
coefficients, without any regularity assumptions on the coefficients.
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Chapter 1 Introduction and Main Results

The theory of homogenization was introduced in part to describe the behavior of

composite materials in mechanics, physics, chemistry and engineering. Composite

materials are usually characterized by two scales, the microscopic one, describing the

heterogeneities, and the macroscopic one, describing the global behavior of the com-

posite. In a composite, the heterogeneities are small compared to its global dimension,

while from the macroscopic points of view, the composite looks like a “homogeneous”

material. The intent of homogenization theory is to replace the microscopically het-

erogeneous material by a homogenized material, whose global characteristics are a

good approximation of the initial ones.

In the study of boundary value problems in media with periodic structure, if the

period of the structure is small compared to the size of the region in which the system

is to be studied, we will use a small parameter ε to denote the ratio of the period

of the structure to a typical length in the region. In mathematics terms, a family

of partial differential operators Lε with rapidly oscillating coefficients, depending on

the small parameter ε, is given. In a domain Ω, we have a boundary value problem{
Lε(uε) = F in Ω,

uε subject to appropriate boundary conditions.

Homogenization theory has shown that uε converges to u0 as ε → 0 (with suitable

definition of weak type convergence), where u0 is the solution of{
L0(u0) = F in Ω,

u0 subject to the same kind of boundary conditions,

where L0 is a partial differential operator with constant coefficients, which is called

the homogenized operator of the family Lε.
Specifically in qualitative homogenization theory, for the standard elliptic system

−div(A(x/ε)∇uε) = F in a bounded domain Ω in Rd, the proof of homogenization

theorem was first obtained by De Diorgi and Spagnolo [16–18,53,54]. Here A(y) is a

matrix with periodic measurable coefficients satisfying ellipticity condition. Shortly

thereafter, Bakhvalov [8,9] and then Lions [10,40] established the same result based on

method of asymptotic expansions. Another approach to the homogenization theory,

based on compensated compactness, was developed by Murat [43] and Tartar [57].
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Quantitative homogenization has been studied extensively in recent years, given

these qualitative results in homogenization for various types of equations with var-

ious boundary conditions. There are two main and natural tasks in quantitative

homogenization theory,

1. uniform regularity estimates of solutions, which are independent of the small

parameter ε;

2. sharp convergence rates, which describe the speed of convergence.

Uniform Regularity Estimates

For uniform regularity estimates, we consider a family of standard second-order el-

liptic operator Lε in divergence form with rapidly oscillating coefficients, which are

defined by

Lε = −div(A(x/ε)∇) = − ∂

∂xi

[
aαβij

(x
ε

) ∂

∂xj

]
, ε > 0. (1.0.1)

with 1 ≤ i, j, α, β ≤ d, the summation convention is used throughout this thesis.

The study of uniform regularity estimates in homogenization theory was initiated

by M. Avellaneda and F. Lin in 1987. In a series of paper [3–7] from 1987 to 1991,

Avellaneda and Lin established interior and boundary Lipschitz estimates and also

W 1,p estimates for the standard elliptic system Lε(uε) = F with Dirichlet boundary

condition uε = g on ∂Ω for C1,α domains, assuming the coefficient matrix A is elliptic,

periodic and Hölder continuous. The approach called compactness method was used

in [3] to prove Lipschitz estimates. We should mention that the Lipschitz estimates

are sharp; in fact, even with C∞ data, one cannot expect high-order uniform estimates

for uε, since ∇uε converges to ∇u0 only weakly.

For standard second-order elliptic system Lε(uε) = F with Neumann boundary

condition ∂uε
∂νε

= g, Lipschitz estimates has been a longstanding open problem, as the

boundary conditions are ε-dependent. It was only until in 2013, in [34] C. Kenig,

F. Lin and Z. Shen were able to extend the boundary Lipschitz estimates to Neu-

mann problems in C1,α domains, with additional symmetry condition A∗ = A. The

breakthrough is based on the Rellich estimates obtained in [36,37] and nontangential

maximal function estimates in [34]. Sharp W 1,p estimates for Neumann problem were

also obtained.

The symmetry condition was recently removed by S. Armstrong and Z. Shen.

In [1], the uniform Lipschitz estimates and W 1,p estimates in C1,α were obtained
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for second-order elliptic system in divergence form with rapidly oscillating, almost-

periodic coefficients, with either Dirichlet or Neumann data. In contrast to papers

[3,34], the results were proved through constructive arguments, and thus the constants

are in principle computable.

In this thesis, we study the uniform regularity estimates for a family of Stokes

systems with rapidly oscillating periodic coefficients. We establish interior Lipschitz

estimates for the velocity and L∞ estimates for the pressure as well as a Liouville

property for solutions in Rd. We also obtain the boundary W 1,p estimates in a

bounded C1 domain for any 1 < p <∞.

More precisely, we consider the Stokes systems in fluid dynamics,{
Lε(uε) +∇pε = F,

div(uε) = g,
(1.0.2)

in a bounded domain Ω in Rd, where ε > 0 and Lε is defined in (1.0.1). We will assume

that the coefficient matrix A(y) = (aαβij (y)) is real, bounded measurable, satisfies the

ellipticity condition:

µ|ξ|2 ≤ aαβij (y)ξαi ξ
β
j ≤

1

µ
|ξ|2, for y ∈ Rd and ξ = (ξαi ) ∈ Rd×d, (1.0.3)

where µ > 0, and the periodicity condition:

A(y + z) = A(y) for y ∈ Rd and z ∈ Zd. (1.0.4)

We note that the system (1.0.2), which does not fit the standard framework of second-

order elliptic systems considered in [3,34], is used in the modeling of flows in porous

media.

The following is one of the main results we obtained in [30].

Theorem 1.0.1. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and pe-

riodicity condition (1.0.4). Let (uε, pε) be a weak solution of the Stokes system (1.0.2)

in B(x0, R) for some x0 ∈ Rd and R > ε. Then, for any ε ≤ r < R,(
−
ˆ
B(x0,r)

|∇uε|2
)1/2

+

(
−
ˆ
B(x0,r)

|pε −−
ˆ
B(x0,R)

pε|2
)1/2

≤ C

{(
−
ˆ
B(x0,R)

|∇uε|2
)1/2

+ ‖g‖L∞(B(x0,R)) +Rρ[g]C0,ρ(B(x0,R))

+ CR

(
−
ˆ
B(x0,R)

|F |q
)1/q}

,

(1.0.5)

where 0 < ρ = 1− d
q
< 1, and the constant C depends only on d, µ, and ρ.
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The scaling-invariant estimate (1.0.5) should be regarded as a Lipschitz estimate

for the velocity and L∞ estimate for the pressure down to the microscopic scale ε,

even though no smoothness assumption is made on the coefficients A(y). In [30], we

also obtain the following boundary W 1,p estimates.

Theorem 1.0.2. Let Ω be a bounded C1 domain in Rd and 1 < q < ∞. Suppose

that A satisfies ellipticity (1.0.3) and periodicity (1.0.4) conditions. Also assume that

A ∈ VMO(Rd). Let f = (fαi ) ∈ Lq(Ω;Rd×d), g ∈ Lq(Ω) and h ∈ B1− 1
q
,q(∂Ω;Rd)

satisfy the compatibility condition
ˆ

Ω

g −
ˆ
∂Ω

h · n = 0,

where n denotes the outward unit normal to ∂Ω. Then the solutions (uε, pε) in

W 1,q(Ω;Rd)× Lq(Ω) to Dirichlet problem
Lε(uε) +∇pε = div(f) in Ω,

div(uε) = g in Ω,

uε = h on ∂Ω,

(1.0.6)

satisfy the estimate

‖∇uε‖Lq(Ω) + ‖pε −−
ˆ

Ω

pε‖Lq(Ω) ≤ Cq

{
‖f‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖

B
1− 1

q ,q(∂Ω)

}
, (1.0.7)

where Cq depends only on d, µ, A, and Ω.

Sharp Convergence Rates

As for the second task concerning sharp convergence rates, the primary purpose is to

establish the optimal rate of convergence of solution uε to homogenized solution u0

in L2(Ω;Rd) for both Dirichlet and Neumann problems.

For Dirichlet problems, consider the scalar elliptic equation Lε(uε) = F in a Lips-

chitz domain Ω with Dirichlet condition uε = f on ∂Ω. By energy estimates and maxi-

mum principle, it is well known that ‖uε−u0‖L2(Ω) ≤ Cε
{
‖∇2u0‖L2(Ω) + ‖∇u0‖L∞(∂Ω)

}
.

More recently, using the method of periodic unfolding, Griso [26, 27] was able to es-

tablish the much sharper estimate

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω). (1.0.8)

In the case of elliptic systems, the estimates (1.0.8) continue to hold under the ad-

ditional assumption that A is Hölder continuous. The approach was based on the

4



uniform regularity estimates established in [3,37] and do not apply to operators with

bounded measurable coefficients. Recently, by using the Steklov smoothing operator,

T.A. Suslina [55] was able to establish the O(ε) estimate (1.0.8) in L2 for a broader

class of elliptic operators in C1,1 domains without any smoothness assumptions on

the coefficient matrix A.

There are relatively fewer known results for Neumann problems. Consider the

Neumann problem for the scalar elliptic equation Lε(uε) = F in Ω with ∂uε
∂νε

= 0

on ∂Ω, the estimate ‖uε − u0‖L2(Ω) ≤ Cε‖F‖H2(Ω) was proved by Griso [27] for

C1,1 domains with bounded measurable coefficients using the “periodic unfolding”

method [14, 15]. The same result was also proved by Moskow and Vogelius [42] for

curvilinear convex polygons Ω in R2. For the system case, consider elliptic systems

Lε(uε) = F in Ω with Neumann condition ∂uε
∂νε

= g on ∂Ω, C. Kenig, F. Lin and Z.

Shen [32] have shown that the estimate (1.0.8) holds in bounded Lipschitz domain Ω,

under additional assumption that A is Hölder continuous. Also recently, by using the

Steklov smoothing operator, T. A. Suslina [56] was able to eliminate the smoothness

condition on coefficients to establish the O(ε) estimate (1.0.8) in L2 for a broader

class of elliptic operators with Neumann data.

In this thesis, we study the convergence rates in L2 and H1 of both Dirichlet and

Neumann problems for Stokes systems with rapidly oscillating periodic coefficients in

C1,1 domains, without any smoothness assumptions on the coefficients.

More precisely, by the homogenization theory of Stokes systems (see [10, 30]),

under suitable conditions on F , g and h, suppose (uε, pε) is a weak solution of Stokes

system (1.0.2) with either Dirichlet uε = h or Neumann ∂uε
∂νε
− pε · n = h boundary

conditions on ∂Ω, it is known that

uε ⇀ u0 weakly in H1(Ω;Rd) and pε −−
ˆ

Ω

pε ⇀ p0 −−
ˆ

Ω

p0 weakly in L2(Ω),

where (u0, p0) ∈ H1(Ω;Rd)×L2(Ω) is the weak solution of the homogenized problem

with constant coefficients,{
L0(u0) +∇p0 = F, in Ω,

div(u0) = g, in Ω,
(1.0.9)

satisfying the same Dirichlet u0 = h or Neumann ∂u0
∂ν0
− p0 ·n = h boundary condition

on ∂Ω. Our primary purpose is to study the rate of convergence ‖uε − u0‖L2(Ω) as

ε→ 0.

The following is the main result for Dirichlet problem we obtained in [28].

5



Theorem 1.0.3. Let Ω be a bounded C1,1 domain. Suppose that A satisfies the

ellipticity condition (1.0.3) and periodicity condition (1.0.4). Given g ∈ H1(Ω) and

h ∈ H3/2(∂Ω;Rd) satisfying the Dirichlet compatibility condition
´

Ω
g−
´
∂Ω
h · n = 0,

where n denotes the outward unit normal to ∂Ω. For F ∈ L2(Ω;Rd), let (uε, pε),

(u0, p0) be weak solutions of Stokes systems (1.0.2), (1.0.9) respectively with Dirichlet

boundary conditions uε = u0 = h on ∂Ω. Then

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω), (1.0.10)

where the constant C depends only on d, µ, and Ω.

The next theorem is our main result for Neumann problem in [29].

Theorem 1.0.4. Let Ω be a bounded C1,1 domain. Suppose A satisfies ellipticity

condition (1.0.3) and periodicity condition (1.0.4). Given F ∈ L2(Ω;Rd) and h ∈
H1/2(∂Ω;Rd) satisfying the Neumann compatibility condition

´
Ω
F +

´
∂Ω
h = 0, for

g ∈ H1(Ω), let (uε, pε), (u0, p0) be weak solutions of Stokes systems (1.0.2), (1.0.9)

respectively with Neumann boundary conditions ∂uε
∂νε
− pε · n = ∂u0

∂ν0
− p0 · n = h.Then

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω), (1.0.11)

where the constant C depends only on µ, d, and Ω.

The organization of this thesis is as follows. Chapter 2 contains notations and

definitions that will be used throughout the thesis. Chapter 3 is devoted to the

homogenization theory of Stokes systems, including asymptotic expansions and com-

pactness theorem. Our main results described above are presented in Chapter 4-6.

In Chapter 4 and Chapter 5, we give the convergence results in L2 and H1 of Stokes

system with Dirichlet and Neumann boundary conditions, respectively. Chapter 6

deals with uniform regularity estimates in homogenization of Stokes systems.

Copyright c© Shu Gu, 2016.
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Chapter 2 Notations and Definitions

In this chapter we first give basic notations and definitions that will be used through-

out this thesis. Then we introduce the Steklov smoothing operator and its properties,

as well as a lemma that plays an vital part in the study of convergence rates.

2.1 Notations

- 1-periodic function. We call a function f 1-periodic if it satisfies the periodicity

condition we defined in (1.0.4), i.e.

f(y + z) = f(y) for a.e. y ∈ Rd and z ∈ Zd.

- Conormal derivative. We define the conormal derivative of Stokes system (1.0.2)

on ∂Ω by (
∂uε
∂νε

)α
− pε nα = ni(x)aαβij (x/ε)

∂uβε
∂xj
− pε(x)nα(x), (2.1.1)

where n = (n1, · · · , nd) is the outward unit normal to ∂Ω.

- L1-average. We denote the L1 average of f over the set E by

−
ˆ
E

f =
1

|E|

ˆ
E

f.

- Hölder condition. We call A(y) Hölder continuous, if it satisfies

|A(x)− A(y)| ≤ τ |x− y|λ for x, y ∈ Rd, (2.1.2)

where τ ≥ 0 and λ ∈ (0, 1].

- Rescaling property of Stokes systems. The technique of rescaling will be used

routinely in the rest of the paper. Indeed, if (uε, pε) is a weak solution of Stokes

system (1.0.2) and v(x) = uε(rx), then{
L ε
r
(v) +∇q = F̃ ,

div(v) = g̃,
(2.1.3)

where

g̃(x) = rg(rx), F̃ (x) = r2F (rx), (2.1.4)

and

q(x) = rpε(rx). (2.1.5)

7



- r-neighborhood of the boundary. For r > 0, we let Ωr and Ω̃r to denote the

r-neighborhood of ∂Ω as

Ωr = {x ∈ Ω : dist(x, ∂Ω) ≤ r},

Ω̃r = {x ∈ Rd : dist(x, ∂Ω) ≤ r}.
(2.1.6)

- Hölder Space. The Hölder space Ck,λ(Ē) consists of all functions u ∈ Ck(Ē) for

which the norm

‖u‖Ck,λ(Ē) =
∑
|α|≤k

‖Dαu‖C(Ē) +
∑
|α|=k

[Dαu]C0,λ(Ē) (2.1.7)

is finite, where the λ-th semi-norm of g is denoted by

[g]C0,λ(Ē) = sup

{
|g(x)− g(y)|
|x− y|λ

: x, y ∈ Ē and x 6= y

}
, (2.1.8)

and Ck(E) denotes the set of functions having all derivatives of order≤ k continuous

in E.

- BMO Space. A locally integrable function f will be said to belong to BMO(Rd)

if the following norm

‖f‖BMO = sup
Q
−
ˆ
Q

∣∣f −−ˆ
Q

f
∣∣ dx (2.1.9)

is finite.

- VMO Space. A function f in BMO(Rd) is said to be VMO(Rd), the space of

functions of vanishing mean oscillation, if

lim
|Q|→0

−
ˆ
Q

∣∣f −−ˆ
Q

f
∣∣ dx = 0. (2.1.10)

2.2 Smoothing in Steklov’s sense

We will use this section to introduce the Steklov smoothing operator as well as its

properties, which play a crucial role in deriving convergence rates in the following

chapters. More details about Steklov smoothing operator can be found in the litera-

tures such as [45,46,55,56,59].

Let Sε be the operator on L2(Rd) given by

(Sεu)(x) = −
ˆ
Y

u(x− εz)dz (2.2.1)

8



and called the Steklov smoothing operator. Note that

‖Sεu‖L2(Rd) ≤ ‖u‖L2(Rd).

Obviously, DαSεu = SεD
αu for u ∈ Hs(Rd) and any multi-index α such that |α| ≤ s.

Therefore,

‖Sεu‖Hs(Rd) ≤ ‖u‖Hs(Rd).

The following are a few properties of Steklov’s operator; see [55,56].

Proposition 2.2.1. For any u ∈ H1(Rd) we have

‖Sεu− u‖L2(Rd) ≤ Cε‖∇u‖L2(Rd),

where C depends only on d.

For simplicity, we will use the notation f ε(x) = f(x/ε). And we let Y = [0, 1)d.

Proposition 2.2.2. Let f(x) be a 1-periodic function in Rd such that f ∈ L2(Y ).

Then for any u ∈ L2(Rd),

‖f εSεu‖L2(Rd) ≤ ‖f‖L2(Y )‖u‖L2(Rd).

The following lemma gives us an estimate for integrals near the boundary, see

[55,56] for example.

Lemma 2.2.3. Let Ω ⊂ Rd be a bounded C1 domain. Then, for any function u ∈
H1(Ω) and for any 0 < r ≤ diam(Ω),(ˆ

Ωr

|u|2dx
)1/2

≤ C
√
r‖u‖1/2

H1(Ω)‖u‖
1/2

L2(Ω). (2.2.2)

Moreover, for any 1-periodic function f ∈ L2(Y ) and u ∈ H1(Rd),(ˆ
Ω̃2ε

|f ε|2|Sεu|2dx
)1/2

≤ C
√
ε‖f‖1/2

L2(Y )‖u‖
1/2

H1(Rd)
‖u‖1/2

L2(Rd)
, (2.2.3)

where C depends only on Ω and Sε is the Steklov smoothing operator defined in (2.2.1).

Copyright c© Shu Gu, 2016.
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Chapter 3 Preliminaries

In this chapter we will first give a brief introduction to the homogenization the-

ory of Stokes systems, including the definition of correctors and the homogenization

theorem. Then we will formally derive the asymptotic expansion of Stokes system,

showing the intuition behind the definition of correctors and effective matrices. Then

we prove a compactness theorem for a sequence of Stokes systems with periodic

coefficient matrices satisfying the ellipticity condition (1.0.3) with the same µ. At

last, we will describe the homogenization of Stokes system with Neumann boundary

conditions.

3.1 Homogenization Theory of Stokes Systems

In this section we will give a review of homogenization theory of Stokes systems with

periodic coefficients. We refer the reader to [10, pp.76-81] for a detailed presentation.

Let Ω be a bounded Lipschitz domain in Rd. For u, v ∈ H1(Ω;Rd), we define the

bilinear form as the following,

aε(u, v) =

ˆ
Ω

aαβij

(x
ε

)∂uβ
∂xj

∂vα

∂xi
dx. (3.1.1)

For F ∈ H−1(Ω;Rd) and g ∈ L2(Ω), we say that (uε, pε) ∈ H1(Ω;Rd) × L2(Ω) is a

weak solution of the Stokes system (1.0.2){
Lε(uε) +∇pε = F,

div(uε) = g

in Ω, if div(uε) = g in Ω and for any ϕ ∈ C1
0(Ω;Rd),

aε(uε, ϕ)−
ˆ

Ω

pε div(ϕ) = 〈F, ϕ〉.

The following theorem gives us the existence and uniqueness (up to constants) of

weak solution of Stokes system with Dirichlet boundary condition.

Theorem 3.1.1. Let Ω be a Lipschitz domain in Rd. Suppose A satisfies the ellipticity

condition (1.0.3). Let F ∈ H−1(Ω;Rd), g ∈ L2(Ω) and h ∈ H1/2(∂Ω;Rd) satisfy the

Dirichlet compatibility conditionˆ
Ω

g −
ˆ
∂Ω

h · n = 0, (3.1.2)
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where n is the outward unit normal to ∂Ω. Then there exist a unique uε ∈ H1(Ω;Rd)

and pε ∈ L2(Ω) (unique up to constants) such that (uε, pε) is a weak solution of (1.0.2)

in Ω and uε = h on ∂Ω. Moreover,

‖uε‖H1(Ω) + ‖pε −−
ˆ

Ω

pε‖L2(Ω) ≤ C
{
‖F‖H−1(Ω) + ‖h‖H1/2(∂Ω) + ‖g‖L2(Ω)

}
, (3.1.3)

where C depends only on d, µ, and Ω.

Proof. This theorem is well known and does not use the periodicity condition of A.

First, we choose h̃ ∈ H1(Ω;Rd) such that h̃ = h on ∂Ω and

‖h̃‖H1(Ω) ≤ C‖h‖H1/2(∂Ω).

By considering uε − h̃, we may assume that h = 0. Next, we choose a function U(x)

in H1
0 (Ω;Rd) such that

div(U) = g in Ω, and ‖U‖H1(Ω) ≤ C‖g‖L2(Ω),

detailed proof of the existence of such functions can be found in [20]. By considering

uε − U , we may further assume that g = 0. Finally, the case h = 0 and g = 0 may

be proved by applying the Lax-Milgram Theorem to the bilinear form aε(u, v) on the

Hilbert space

V = {u ∈ H1
0 (Ω;Rd) : div(u) = 0 in Ω}.

This completes the proof.

Remark 3.1.2. If Ω is C1,1 and A is a constant matrix, the weak solution (u, p), given

by Theorem 3.1.1, is in H2(Ω;Rd)×H1(Ω), provided that F ∈ L2(Ω;Rd), g ∈ H1(Ω)

and h ∈ H3/2(∂Ω;Rd). Moreover,

‖u‖H2(Ω) + ‖∇p‖L2(Ω) ≤ C
{
‖F‖L2(Ω) + ‖g‖H1(Ω) + ‖h‖H3/2(∂Ω)

}
, (3.1.4)

where C depends only on d, µ, and Ω (see e.g. [24]).

Let Y = [0, 1)d. We denote by H1
per(Y ;Rd) the closure in H1(Y ;Rd) of C∞per(Y ;Rd),

the set of C∞ 1-periodic and Rd-valued functions in Rd. Let

aper(ψ, φ) =

ˆ
Y

aαβij (y)
∂ψβ

∂yj

∂φα

∂yi
,

where φ = (φα) and ψ = (ψα). By applying the Lax-Milgram Theorem to the bilinear

form aper(ψ, φ) on the Hilbert space

Vper(Y ) = {u ∈ H1
per(Y ;Rd) : div(u) = 0 in Y and

ˆ
Y

u = 0},

11



it follows that for each 1 ≤ j, β ≤ d, there exists a unique χβj ∈ Vper(Y ) such that

aper(χ
β
j , φ) = −aper(P

β
j , φ) for any φ ∈ Vper(Y )

where P β
j = P β

j (y) = yje
β = yj(0, ..., 1, ..., 0) with 1 in the βth position. As a result,

there exist 1-periodic functions (χβj , π
β
j ) ∈ H1

loc(Rd;Rd) × L2
loc(Rd), which are called

the first-order correctors for the Stokes system (1.0.2), such that
L1(χβj + P β

j ) +∇πβj = 0 in Rd

div(χβj ) = 0 in Rd

ˆ
Y

πβj = 0 and

ˆ
Y

χβj = 0.

(3.1.5)

Note that

‖χβj ‖H1(Y ) + ‖πβj ‖L2(Y ) ≤ C, (3.1.6)

where C depends only on d and µ. Let Â = (âαβij ), where

âαβij = aper(χ
β
j + P β

j , χ
α
i + Pα

i ) (3.1.7)

The homogenized system for the Stokes system (1.0.2) is given by{
L0(u0) +∇p0 = F,

div(u0) = g,

where L0 = −div(Â∇) is a second-order elliptic operator with constant coefficients.

The constant matrix Â is called the homogenized matrix or effective matrix, and

satisfies the following two properties.

Remark 3.1.3. The homogenized matrix Â satisfies the ellipticity condition

µ|ξ|2 ≤ âαβij ξ
α
i ξ

β
j ≤ µ1|ξ|2 (3.1.8)

for any ξ = (ξαi ) ∈ Rd×d, where µ1 depends only on d and µ. The upper bound is

a consequence of the estimate ‖∇χβj ‖L2(Y ) ≤ C(d, µ), while the lower bound follows

from

âαβij ξ
α
i ξ

β
j = aper((χ

β
j + P β

j )ξβj , (χ
α
i + Pα

i )ξαi )

≥ µ

ˆ
Y

|∇(χαi + Pα
i )ξαi |2

≥ µ|ξ|2.
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Remark 3.1.4. Let χ∗ = (χ∗βj ) denote the matrix of correctors for the system (1.0.2)

with A replaced by its adjoint A∗. Note that by definition, χ∗βj ∈ Vper(Y ) and

a∗per(χ
∗β
j , φ) = −a∗per(P

β
j , φ)

where a∗per(ψ, φ) = aper(φ, ψ). It follows that

âαβij = aper(χ
β
j + P β

j , χ
α
i + Pα

i ) = aper(χ
β
j + P β

j , P
α
i )

= aper(χ
β
j + P β

j , χ
∗α
i + Pα

i ) = a∗per(χ
∗α
i + Pα

i , χ
β
j + P β

j )

= a∗per(χ
∗α
i + Pα

i , P
β
j ) = a∗per(χ

∗α
i + Pα

i , χ
∗β
j + P β

j ).

(3.1.9)

This, in particular, shows that (Â)∗ = Â∗.

Now we are ready to give the following homogenization theorem of Stokes systems

with Dirichlet boundary conditions. It shows that the limiting solutions are actually

solutions of Stokes system associated with the homogenized operator L0 with the

same Dirichlet boundary condition.

Theorem 3.1.5. Suppose that A(y) satisfies ellipticity (1.0.3) and periodicity (1.0.4)

conditions. Let Ω be a bounded Lipschitz domain. Let (uε, pε) ∈ H1(Ω;Rd) × L2(Ω)

be a weak solution of the following Dirichlet problem of Stokes system
Lε(uε) +∇pε = F in Ω,

div(uε) = g in Ω,

uε = h on ∂Ω,

(3.1.10)

where F ∈ H−1(Ω;Rd), g ∈ L2(Ω) and h ∈ H1/2(∂Ω;Rd) satisfying the Dirichlet

compatibility condition (3.1.2). Assume that
´

Ω
pε = 0, then as ε→ 0,

uε → u0 strongly in L2(Ω;Rd),

uε ⇀ u0 weakly in H1(Ω;Rd),

pε ⇀ p0 weakly in L2(Ω),

A(x/ε)∇uε ⇀ Â∇u0 weakly in L2(Ω;Rd×d).

Moreover,
´

Ω
p0 = 0 and (u0, p0) is the weak solution of the homogenized problem

L0(u0) +∇p0 = F in Ω,

div(u0) = g in Ω,

u0 = h on ∂Ω.

(3.1.11)

Proof. This homogenization theorem of Stokes systems is more or less proved in [10],

using Tartar’s oscillating testing function method. We therefore omit the details.
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3.2 Asymptotic Expansions

In this section we will apply the multi-scale method to the study of Stokes system.

As we mentioned earlier, two scales describe the model: the variable x is the “macro-

scopic” one, while x/ε describe the “microscopic” one. Indeed, this suggests looking

for a formal asymptotic expansion of solution (uε, pε) in the form:

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ · · · ,

pε(x) = p0

(
x,
x

ε

)
+ εp1

(
x,
x

ε

)
+ · · · ,

(3.2.1)

where the functions uj(x, y), pj(x, y) are defined on Ω × Y and 1-periodic in y, for

any x ∈ Ω. Note that if φε(x) = φ(x, y) with y = x/ε, then

∂φε
∂xj

(x) =
1

ε

∂φ

∂yj

(
x,
x

ε

)
+
∂φ

∂xj

(
x,
x

ε

)
.

Now if we consider the divergence-free Stokes system{
Lε(uε) +∇pε = F,

div(uε) = 0,
(3.2.2)

which may now be rewritten as the following
[
(ε−2L0 + ε−1L1 + ε0L2)uε

] (
x,
x

ε

)
+
[
(ε−1∇y +∇x)pε

] (
x,
x

ε

)
= F,[

(ε−1divy + divx)uε
] (
x,
x

ε

)
= 0,

(3.2.3)

where the operators L0, L1, L2 are defined by

[
L0(φ(x, y))

]α
= − ∂

∂yi

(
aαβij (y)

∂φβ

∂yj

)
,

[
L1(φ(x, y))

]α
= − ∂

∂xi

(
aαβij (y)

∂φβ

∂yj

)
− ∂

∂yi

(
aαβij (y)

∂φβ

∂xj

)
,

[
L2(φ(x, y))

]α
= − ∂

∂xi

(
aαβij (y)

∂φβ

∂xj

)
.

We identify the coefficients of the powers ε−2, ε−1, ε0. This gives the following systems

to be solved. As of order O(ε−2), we have

L0(u0) = 0, (3.2.4)

Of order O(ε−1), we have {
L0(u1) +∇yp0 = −L1(u0),

divy(u0) = 0.
(3.2.5)
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And of order O(ε), we obtain{
L0(u2) +∇yp1 = F − L1(u1)− L2(u0)−∇xp0,

divy(u1) = −divx(u0).
(3.2.6)

Using the fact that u0(x, y) is 1-periodic in y, we may derive from (3.2.4) that u0(x, y)

is independent of y, i.e.,

u0(x, y) = u0(x). (3.2.7)

Then (3.2.5) reduces to

L0(u1) +∇yp0 = −L1(u0).

The second condition in (3.2.6) implies

ˆ
Y

[divy(u1) + divx(u0)] dy = 0,

and since the above integral equals |Y |div(u0), one has

div(u0) = 0. (3.2.8)

Then the second condition in (3.2.6) is equivalent to divy(u1) = 0; i.e., finally for

(u1, p0), we need to solve the following system (note that L1 = L0),L0(u1) +∇yp1 = −L0(P β
j )
∂uβ0
∂xj

divy(u1) = 0

(3.2.9)

Recalling that the correctors (χβj , π
β
j ) are solution to the cell problem (3.1.5), then

the general solution of (3.2.9) is,

u1(x, y) = χβj (y)
∂uβ0
∂xj

(x) + ũ1(x), (3.2.10)

and

p0(x, y) = πβj (y)
∂uβ0
∂xj

(x) + p̃0(x), (3.2.11)

where ũ1(x) and p̃0(x) are independent of y. We now use the equations (3.2.10) and

(3.2.11) in the first equation in (3.2.6) to obtain

(
L0(u2)

)α
+
∂p1

∂yα
= Fα(x) +

[
aαβij (y) + aαγik (y)

∂χγβj
∂yk

]
∂2uβ0
∂xi∂xj

+
∂

∂yi

{
aαβij (y)

∂ũβ1
∂xj

}

− πβj (y)
∂2uβ0
∂xα∂xj

− ∂p̃0

∂xα
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The above equation can be solved in (u2, p1) if we integrate both sides in y over Y ,

Fα(x) = −
ˆ
Y

[
aαβij (y) + aαγik (y)

∂χγβj
∂yk

]
dy · ∂2uβ0

∂xi∂xj
+
∂p̃0

∂xα
,

where we have used the fact that
´
Y
πβj dy = 0. The above equation is nothing else

than

L0(u0) +∇p̃0 = F,

where L0 = −div(Â∇) and Â = (âαβij ) defined the same as in (3.1.7) that

âαβij =

ˆ
Y

[
aαβij (y) + aαγik (y)

∂χγβj
∂xk

]
dy.

So far by this multi-scale method, if we denote p̃0(x) by p0(x) for simplicity, we have

formally shown that the homogenization problem of Stokes system (3.2.2) is exactly{
L0(u0) +∇p0 = F,

div(u0) = 0.
(3.2.12)

3.3 Compactness Theorem

We now prove a compactness theorem for a sequence of Stokes systems with coefficient

matrices satisfying the same conditions and should be regarded as a compactness

property of the Stokes systems with periodic coefficients. Its proof follows the Tartar’s

oscillating testing function method found in [10] for the proof of Theorem 3.1.5, and

also uses the following observation.

Proposition 3.3.1. Suppose that {φk} be a sequence of 1-periodic functions with

‖φk‖L2(Y ) ≤ C and εk → 0, then

φk(x/εk)−−
ˆ
Y

φk ⇀ 0 weakly in L2(Ω), (3.3.1)

as k →∞.

Proof. Let uk ∈ H2
per(Y ) such that

∆uk = φk −−
ˆ
Y

φk, in Y.

Let Uk = ∇uk. Then div(Uk) = φk − −́Y φk and

‖Uk‖L2(Y ) ≤ ‖φk −−
ˆ
Y

φk‖L2(Y ) ≤ C.
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Then for any ϕ ∈ C1
0(Ω),

ˆ
Ω

[
φk(x/εk)−−

ˆ
Y

φk
]
ϕ(x) = −εk

ˆ
Ω

Uk(x/εk) · ∇ϕ(x)→ 0, (3.3.2)

as εk → 0, since

‖Uk(x/εk)‖L2(Ω) ≤ C‖Uk‖L2(Y ) ≤ C,

where we have used the periodicity of Uk. We may now conclude that

φk(x/εk)−−
ˆ
Y

φk ⇀ 0 weakly in L2(Ω),

as similarly

‖φk(x/ε)‖L2(Ω) ≤ C‖φk‖L2(Y ) ≤ C

The proof is now complete.

We are now ready to prove our interior compactness theorem of Stokes systems.

Theorem 3.3.2. Let {Ak(y)} be a sequence of 1-periodic matrices satisfies the el-

lipticity condition (1.0.3) (with the same µ). Let (uk, pk) ∈ H1(Ω;Rd) × L2(Ω) be a

weak solution of {
−div(Ak(x/εk)∇uk) +∇pk = Fk,

div(uk) = gk

in Ω, where εk → 0, Fk ∈ H−1(Ω;Rd) and gk ∈ L2(Ω). We further assume that as

k →∞, 

Fk → F0 strongly in H−1(Ω;Rd),

gk → g0 strongly in L2(Ω),

uk ⇀ u0 weakly in H1(Ω;Rd),

pk ⇀ p0 weakly in L2(Ω),

Âk → A0,

where Âk is the coefficient matrix of the homogenized system for the Stokes system

with coefficient matrix Ak(x/ε). Then, Ak(x/εk)∇uk ⇀ A0∇u0 weakly in L2(Ω;Rd×d),

and (u0, p0) is a weak solution of{
−div(A0∇u0) +∇p0 = F0,

div(u0) = g0

in Ω. (3.3.3)
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Proof. Let Ak = (akαβij ) and

(ξk)
α
i = akαβij

(
x

εk

)
∂uβk
∂xj

Note that ‖(ξk)αi ‖L2(Ω) ≤ C . It suffices to show that if {ξk′} is a subsequence of {ξk}
and {ξk′} converges weakly to ξ0 in L2(Ω;Rd×d), then ξ0 = A0∇u0. This would imply

that (u0, p0) is a weak solution of (3.3.3) in Ω. It also implies that the whole sequence

{ξk} converges weakly to A0∇u0 in L2(Ω;Rd×d).

Without loss of generality we may assume that ξk ⇀ ξ0 weakly in L2(Ω;Rd×d).

Note that

〈ξk,∇φ〉 = 〈Fk, φ〉+ 〈pk, div(φ)〉 (3.3.4)

for all φ ∈ H1
0 (Ω;Rd). Fix 1 ≤ j, d ≤ d and ψ ∈ C1

0(Ω). Let

φk(x) =
(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
ψ(x),

where χk∗βj (and πk∗βj used in the following) are the correctors for the Stokes systems

with coefficient matrix (Ak)∗(x/ε), introduced in Remark 3.1.4. A computation shows

that

〈ξk,∇φk〉 = 〈Ak(x/εk)∇uk,∇
(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
· ψ〉

+ 〈Ak(x/εk)∇uk,
(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
∇ψ〉

= 〈ψ∇uk, (Ak)∗(x/εk)∇
(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
〉

+ 〈Ak(x/εk)∇uk,
(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
∇ψ〉

= 〈∇(ψuk), (A
k)∗(x/εk)∇

(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
〉

− 〈(∇ψ)uk, (A
k)∗(x/εk)∇

(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
〉

+ 〈ξk,
(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
∇ψ〉.

(3.3.5)

Since

−div
(

(Ak)∗(x/εk)∇
[
P β
j (x) + εkχ

k∗β
j (x/εk)

])
= −∇

[
πk∗βj (x/εk)

]
in Rd,

it follows that the first term in the right hand side of (3.3.5) equals

〈πk∗βj (x/ε), div(ψuk)〉 = 〈πk∗βj (x/ε)−−
ˆ
Y

πk∗βj , div(ψuk)〉.

Using the fact that

div(ψuk) = ∇ψ · uk + ψgk → ∇ψ · u0 + ψg0 strongly in L2(Ω)
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and by Proposition 3.3.1,

πk∗βj (x/ε)−−
ˆ
Y

πk∗βj ⇀ 0 weakly in L2(Ω),

we see that first term in the right hand side of (3.3.5) goes to zero. In view of the

estimate

‖εkχk∗βj (x/εk)‖L2(Ω) ≤ Cεk‖χk∗βj ‖L2(Y ) ≤ C εk,

it is easy to see that for the third term in the right hand side of (3.3.5) goes to

〈ξ0, P
β
j ∇ψ〉.

To handle the second term in the right hand side of (3.3.5), we note that again

by Proposition 3.3.1,

∇Pα
i · (Ak)∗(x/εk)∇

(
P β
j (x) + εkχ

k∗β
j (x/εk)

)
converges weakly in L2(Ω) to

lim
k→∞

ˆ
Y

∇Pα
i · (Ak)∗(y)∇

(
P β
j + χk∗βj (y)

)
dy = lim

k→∞
âkβαji = a0βα

ji ,

where Âk = (âkαβij ), A0 = (a0αβ
ij ), and we have used the definition of matrices of

effective coefficients as well as the assumption that Âk → A0. This, together with

the fact that uk → u0 strongly in L2(Ω;Rd), shows that the second term in the right

hand side of (3.3.5) goes to

−a0βα
ji

ˆ
Ω

∂ψ

∂xi
uα0 = a0βα

ji

ˆ
Ω

ψ
∂uα0
∂xi

,

where we have used integration by parts. To summarize, we have proved that as

k →∞,

〈ξk,∇φk〉 → 〈ξ0, P
β
j ∇ψ〉+ a0βα

ji

ˆ
Ω

ψ
∂uα0
∂xi

. (3.3.6)

Finally, since φk ⇀ P β
j ψ weakly inH1

0 (Ω;Rd) and Fk → F0 strongly inH−1(Ω;Rd),

we have 〈Fk, φk〉 → 〈F0, P
β
j ψ〉. Also, since div(χβj ) = 0 in Rd,

〈pk, div(φk)〉 = 〈pk, div(P β
j ψ)〉+ 〈pk, εkχk∗βj (x/ε)∇ψ〉 → 〈p0, div(P β

j ψ)〉.

Thus, the right hand side of (3.3.4) converges to

〈F0, P
β
j ψ〉+ 〈p0, div(P β

j ψ)〉 = 〈ξ0,∇(P β
j ψ)〉 = 〈ξ0, P

β
j ∇ψ〉+ 〈ξ0, ψ∇P β

j 〉,

where the first equality follows by taking the limit in (3.3.4) with φ = P β
j ψ. In view

of (3.3.6) we obtain

a0βα
ji

ˆ
Ω

ψ
∂uα0
∂xi

= 〈ξ0, ψ∇P β
j 〉.

Since ψ ∈ C1
0(Ω) is arbitrary, this gives (ξ0)βj = a0βα

ji
∂uα0
∂xi

, i.e., ξ0 = A0∇u0. The proof

is complete.
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3.4 Homogenization for Neumann problems

The homogenization theory can be extended to Neumann problem of Stokes systems,

following by an analogous argument as in Section 3.1 for Dirichlet boundary value

problems. Here we state the main results.

The following theorem gives us the existence and uniqueness of weak solution for

Neumann problem of Stokes systems.

Theorem 3.4.1. Let Ω be a bounded Lipschitz domain in Rd. Suppose A(y) sat-

isfies the ellipticity condition (1.0.3). Let F ∈ H−1(Ω;Rd), g ∈ L2(Ω) and f ∈
H−1/2(∂Ω;Rd) satisfy the following Neumann compatibility condition

ˆ
Ω

F +

ˆ
∂Ω

h = 0. (3.4.1)

Then there exist a unique (uε, pε) ∈ H1(Ω;Rd) × L2(Ω) ( unique in the sense of up

to constants), such that (uε, pε) is a weak solution of (1.0.2) and ∂uε
∂νε
− pε · n = h on

∂Ω, where ∂uε
∂νε

is defined in (2.1.1) and n is the outward unit normal. Moreover,

‖uε‖H1(Ω) + ‖pε −−
ˆ

Ω

pε‖L2(Ω) ≤ C
{
‖F‖H−1(Ω) + ‖g‖L2(Ω) + ‖h‖H−1/2(∂Ω)

}
, (3.4.2)

where C depends only on d, µ, and Ω.

Proof. The existence and uniqueness of weak solutions for Neumann problem of

Stokes system can be proved again by applying the Lax-Milgram Theorem. We

skip the details here.

Remark 3.4.2. If Ω is C1,1 and A is a constant matrix, the weak solution (u, p), given

by Theorem 3.4.1, is in H2(Ω;Rd)×H1(Ω), provided that F ∈ L2(Ω;Rd), g ∈ H1(Ω)

and h ∈ H1/2(∂Ω;Rd). Moreover,

‖u‖H2(Ω) + ‖∇p‖L2(Ω) ≤ C
{
‖F‖L2(Ω) + ‖g‖H1(Ω) + ‖h‖H1/2(∂Ω)

}
, (3.4.3)

where C depends only on d, µ, and Ω (see e.g. [24]).

The following homogenization theorem of Stokes systems with Neumann bound-

ary condition also shows that the limiting solutions are solutions of Stokes system

associated with effective coefficients with the same Neumann boundary condition.

Theorem 3.4.3. Suppose A(y) satisfies ellipticity condition (1.0.3) and periodicity

condition (1.0.4). Let Ω be a bounded Lipschitiz domain. Let (uε, pε) ∈ H1(Ω;Rd)×
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L2(Ω) to be a weak solution of the following Neumann problem of Stokes system
Lε(uε) +∇pε = F in Ω,

div(uε) = g in Ω,

∂uε
∂νε
− pε · n = h on ∂Ω,

(3.4.4)

where F ∈ H−1(Ω;Rd), g ∈ L2(Ω) and h ∈ H−1/2(∂Ω;Rd) satisfying the Neumann

compatibility condition (3.4.1). Assume that
´

Ω
uε =

´
Ω
pε = 0, then as ε→ 0,

uε → u0 strongly in L2(Ω;Rd),

uε ⇀ u0 weakly in H1(Ω;Rd),

pε ⇀ p0 weakly in L2(Ω),

A(x/ε)∇uε ⇀ Â∇u0 weakly in L2(Ω;Rd×d).

Moreover,
´

Ω
u0 =

´
Ω
p0 = 0 and (u0, p0) is the weak solution of the homogenized

problem 
L0(u0) +∇p0 = F in Ω,

div(u0) = g in Ω,

∂u0

∂ν0

− p0 · n = h on ∂Ω.

(3.4.5)

Proof. The proof will use the same approach as in the proof of Theorem 3.3.2. Let

ξε = A(x/ε)∇uε. Note that ‖ξε‖L2(Ω) ≤ C. We say (uε, pε) is a weak solution of

Neumann problem (3.4.4), if

〈ξε,∇φ〉 = 〈F, φ〉+ 〈pε, div(φ)〉+ 〈h, φ〉H−1/2(∂Ω;Rd)×H1/2(∂Ω;Rd), (3.4.6)

for any φ ∈ H1(Ω;Rd). By Theorem 3.4.1, we can extract a subsequence, still denoted

by {uε}, {pε} and {ξε} such that

uε ⇀ u0 weakly in H1(Ω;Rd);

pε ⇀ p0 weakly in L2(Ω);

ξε ⇀ ξ0 weakly in L2(Ω;Rd×d).

Similarly, as in (3.3.5) of the proof of Theorem 3.3.2, we choose

φ(x) =
(
P β
j (x) + εχ∗βj (x/ε)

)
ψ(x),

where 1 ≤ j, d ≤ d and ψ(x) ∈ C1
0(Ω) are fixed. Similarly,

〈ξε,∇φ〉 = 〈∇(ψuε), A
∗(x/ε)∇

(
P β
j (x) + εχ∗βj (x/ε)

)
〉

− 〈(∇ψ)uε, A
∗(x/ε)∇

(
P β
j (x) + εχ∗βj (x/ε)

)
〉

+ 〈ξε,
(
P β
j (x) + εχ∗βj (x/ε)

)
∇ψ〉.

(3.4.7)
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Since

−div
(
A∗(x/ε)∇

[
P β
j (x) + εχ∗βj (x/ε)

])
= −∇π∗βj (x/ε) in Rd,

it follows that the first term in the right hand side of (3.4.7) equals

〈π∗βj (x/ε), div(ψuε)〉 = 〈π∗βj (x/ε)−−
ˆ
Y

π∗βj , div(ψuε)〉.

Using the fact that

div(ψuε) = ∇ψ · uε + ψg → ∇ψ · u0 + ψg strongly in L2(Ω)

and by Proposition 3.3.1,

π∗βj (x/ε)−−
ˆ
Y

π∗βj ⇀ 0 weakly in L2(Ω),

we see that first term in the right hand side of (3.4.7) goes to zero. In view of the

estimate

‖εχ∗βj (x/ε)‖L2(Ω) ≤ Cε‖χ∗βj ‖L2(Y ) ≤ C ε,

it is easy to see that for the third term in the right hand side of (3.4.7) goes to

〈ξ0, P
β
j ∇ψ〉.

To handle the second term in the right hand side of (3.4.7), we note that again

by Proposition 3.3.1,

∇Pα
i · A∗(x/ε)∇

(
P β
j (x) + εχ∗βj (x/ε)

)
converges weakly in L2(Ω) to

ˆ
Y

∇Pα
i · A∗(y)∇

(
P β
j + χ∗βj (y)

)
dy = âβαji ,

where we have used the definition of matrices of effective coefficients. This, together

with the fact that uε → u0 strongly in L2(Ω;Rd), shows that the second term in the

right hand side of (3.4.7) goes to

−âβαji
ˆ

Ω

∂ψ

∂xi
uα0 = âβαji

ˆ
Ω

ψ
∂uα0
∂xi

,

where we have used integration by parts. To summarize, we have proved that,

〈ξε,∇φ〉 → 〈ξ0, P
β
j ∇ψ〉+ âβαji

ˆ
Ω

ψ
∂uα0
∂xi

. (3.4.8)
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Finally, since φ ⇀ P β
j ψ weakly in H1

0 (Ω;Rd), we have 〈F, φ〉 → 〈F, P β
j ψ〉. Also,

since div(χβj ) = 0 in Rd,

〈pε, div(φ)〉 = 〈pε, div(P β
j ψ)〉+ 〈pε, εχ∗βj (x/ε)∇ψ〉 → 〈p0, div(P β

j ψ)〉.

Thus, the right hand side of (3.4.6) converges to

〈F, P β
j ψ〉+ 〈p0, div(P β

j ψ)〉 = 〈ξ0,∇(P β
j ψ)〉 = 〈ξ0, P

β
j ∇ψ〉+ 〈ξ0, ψ∇P β

j 〉,

where the first equality follows by taking the limit in (3.4.6) with φ = P β
j ψ. In view

of (3.4.8) we obtain

âβαji

ˆ
Ω

ψ
∂uα0
∂xi

= 〈ξ0, ψ∇P β
j 〉.

Since ψ ∈ C1
0(Ω) is arbitrary, this gives (ξ0)βj = âβαji

∂uα0
∂xi

, i.e. we have prove that

ξ0 = Â∇u0.

Taking limit in (3.4.6), we see that

〈Â∇u0,∇φ〉 = 〈F, φ〉+ 〈p0, div(φ)〉+ 〈h, φ〉H−1/2(∂Ω;Rd)×H1/2(∂Ω;Rd),

this implies that (u0, p0) is the unique solution of Neumann problem
L0(u0) +∇p0 = F in Ω,

div(u0) = g in Ω,

∂u0

∂ν0

− p0 · n = h on ∂Ω.

satisfying
´

Ω
u0 =

´
Ω
p0 = 0. As a result we conclude that the whole sequence uε ⇀ u0

weakly in H1(Ω;Rd) and pε ⇀ p0 weakly in L2(Ω).

Copyright c© Shu Gu, 2016.
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Chapter 4 Convergence Rates of Dirichlet Problems in Homogenization

of Stokes Systems

In this chapter we study the convergence rates in L2 and H1 of Dirichlet problems

for Stokes systems with rapidly oscillating periodic coefficient, without any regularity

assumptions on the coefficients.

4.1 Introduction

More precisely, we consider the following Dirichlet problem for Stokes systems
Lε(uε) +∇pε = F in Ω,

div uε = g in Ω,

uε = h on ∂Ω,

with the Dirichlet compatibility condition

ˆ
Ω

g −
ˆ
∂Ω

h · n = 0.

By homogenization theorem (Theorem 3.1.5), we have shown that

uε ⇀ u0 weakly in H1(Ω;Rd),

and

pε −−
ˆ

Ω

pε ⇀ p0 −−
ˆ

Ω

p0 weakly in L2(Ω),

where (u0, p0) ∈ H1(Ω;Rd)×L2(Ω) is the weak solution of the homogenized problem
L0(u0) +∇p0 = F in Ω,

div(u0) = g in Ω,

u0 = h on ∂Ω.

The main purpose of this chapter is to investigate the rate of convergence of ‖uε −
u0‖L2(Ω) as ε→ 0, which is stated in the following theorem.

Theorem 4.1.1. Let Ω be a bounded C1,1 domain. Suppose that A satisfies the

ellipticity condition (1.0.3) and periodicity condition (1.0.4). Given g ∈ H1(Ω)

and f ∈ H3/2(∂Ω;Rd) satisfying the Dirichlet compatibility condition (3.1.2), for
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F ∈ L2(Ω;Rd), let (uε, pε), (u0, p0) be weak solutions of Dirichlet problems (3.1.10),

(3.1.11), respectively. Then

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω), (4.1.1)

where the constant C depends only on d, µ, and Ω.

Theorem 4.1.1 gives the optimal O(ε) convergence rate for the inverses of the

Stokes operators in L2 operator norm. Indeed, let

Tε : F ∈ L2
σ(Ω)→ uε,

where

L2
σ(Ω) =

{
F ∈ L2(Ω;Rd) : div(F ) = 0 in Ω

}
,

and uε denotes the solution of (3.1.10) with F ∈ L2
σ(Ω;Rd) and g = 0, f = 0. Then

it follows from (4.1.1) and the estimate ‖u0‖H2(Ω) ≤ C‖F‖L2(Ω) that

‖Tε − T0‖L2
σ(Ω)→L2

σ(Ω) ≤ Cε,

where T0 : F ∈ L2
σ(Ω)→ u0.

In this chapter we also obtain O(
√
ε) rates for a two-scale expansion of (uε, pε) in

H1 × L2. Let (χ, π) denote the correctors associated with A, defined by (3.1.5), and

Sε the Steklov smoothing operator defined by (2.2.1).

Theorem 4.1.2. Let Ω be a bounded C1,1 domain. Suppose that A satisfies ellipticity

(1.0.3) and periodicity (1.0.4) conditions. Let (uε, pε) and (u0, p0) be the same as in

Theorem 4.1.1. Then

‖uε − u0 − εχεSε(∇ũ0)‖H1(Ω) ≤ C
√
ε‖u0‖H2(Ω), (4.1.2)

where χε(x) = χ(x/ε) and ũ0 is the extension of u0 defined as in (4.2.1). Moreover,

if
´

Ω
pε =

´
Ω
p0 = 0, then

‖pε − p0 −
{
πεSε(∇ũ0)−−

ˆ
Ω

πεSε(∇ũ0)
}
‖L2(Ω) ≤ C

√
ε‖u0‖H2(Ω), (4.1.3)

where πε(x) = π(x/ε). The constants C in (4.1.2) and (4.1.3) depend only on d, µ,

and Ω.

For the known results, as we mentioned earlier, consider the Dirichlet problem for

the scalar elliptic equation Lε(uε) = F in a Lipschitz domain Ω with uε = f on ∂Ω.

It is well known that

‖uε − u0‖L2(Ω) ≤ Cε
{
‖∇2u0‖L2(Ω) + ‖∇u0‖L∞(∂Ω)

}
. (4.1.4)
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To see (4.1.4), one considers the difference between uε and its first order approxima-

tion u0 + εχε∇u0 and let

vε = uε − u0 − εχε∇u0. (4.1.5)

To correct the boundary data, one further introduces a function wε, where wε is the

solution to the Dirichlet problem: Lε(wε) = 0 in Ω and wε = −εχε∇u0 on ∂Ω. Using

energy estimates, one may show that

‖vε − wε‖H1
0 (Ω) ≤ Cε‖∇2u0‖L2(Ω).

The estimate (4.1.4) follows from this and the estimate ‖wε‖L∞(Ω) ≤ Cε‖∇u0‖L∞(∂Ω),

which is obtained by the maximum principle (see e.g. [31]). More recently, Griso

[26, 27] was able to establish the much sharper estimate (4.1.1), using the method

of periodic unfolding. We mention that in the case of scalar elliptic equations with

bounded measurable coefficients, one may also prove (4.1.1) by using the so-called

Dirichlet corrector. In fact, it was shown in [33] that

‖uε − u0 −
{

Φε − x
}
∇u0‖H1

0 (Ω) ≤ Cε‖u0‖H2(Ω), (4.1.6)

where Φε(x) is the solution of Lε(Φε) = 0 in Ω with Φε = x on ∂Ω. In the case

of elliptic systems, the estimates (4.1.6) and thus (4.1.1) continue to hold under

the additional assumption that A is Hölder continuous. Moreover, if A is Hölder

continuous and symmetric, it was proved in [32] that

‖vε‖H1/2(Ω) ≤ Cε‖u0‖H2(Ω). (4.1.7)

The approaches used in [32, 33] rely on the uniform regularity estimates estab-

lished in [3,37] and do not apply to operators with bounded measurable coefficients.

Recently, by using the Steklov smoothing operator, T. A. Suslina [55, 56] was able

to establish the O(ε) estimate (4.1.1) in L2 for a boarder class of elliptic operators,

which, in particular, contains the elliptic systems Lε in divergence form with coeffi-

cients satisfying the ellipticity condition aαβij ξ
α
i ξ

β
j ≥ µ|ξ|2 for any ξ =

(
ξαi
)
∈ Rm×d.

Since the correctors χ may not be bounded in the case of non-smooth coefficients,

the idea is to consider the two-scale expansion

vε = uε − u0 − εχεSε(∇ũ0), (4.1.8)

where Sε is a smoothing operator at scale ε defined in (2.2.1) and ũ0 an extension of

u0 to Rd (also see [45,46,59] and their references on the use of Sε in homogenization).

This reduces the problem to the control of the L2 norm of wε, where wε is the solution
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to the Dirichlet problem: Lε(wε) = 0 in Ω and wε = −εχεSε∇(ũ0) on ∂Ω. Next, one

considers

hε = wε − εχεθεSε(∇ũ0),

where θε is a cutoff function supported in an ε neighborhood of ∂Ω. Note that hε = 0

on ∂Ω and Lε(hε) is supported in an ε neighborhood of ∂Ω. This allows one to

approximate hε in the L2 norm by h0, using an O(
√
ε) estimate in H1 and a duality

argument, where L0(h0) = Lε(hε) in Ω and h0 = 0 on ∂Ω. Finally, one estimates the

L2 norm of h0 by another duality argument.

In this chapter we extend the approach of Suslina to the case of Stokes systems,

which do not fit the standard framework of second-order elliptic systems in diver-

gence form. As expected in the study of Stokes or Navies-Stokes systems, the main

difficulty is caused by the pressure term pε. By carefully analyzing the systems for the

correctors (χ, π) as well as their dual (φαβkij, q
β
ij), we are able to establish the O(

√
ε)

error estimates, given in Theorem 4.1.2, for the two-scale expansions of (uε, pε) in

H1 × L2. This allows us to use the idea of boundary cutoff and duality argument in

a manner similar to that in [55].

4.2 Convergence rates for uε in H1

From now on we will assume that Ω is a bounded domain with boundary of class

C1,1, F ∈ L2(Ω;Rd), g ∈ H1(Ω), and h ∈ H3/2(∂Ω;Rd). We fix a linear continuous

extension operator

EΩ : H2(Ω;Rd)→ H2(Rd;Rd),

and let

ũ0 = EΩu0, (4.2.1)

so that ũ0 = u0 in Ω and

‖ũ0‖H2(Rd) ≤ C‖u0‖H2(Ω), (4.2.2)

where C depends on Ω. We introduce a first order approximation of uε,

vε = u0 + εχεSε(∇ũ0).

Let (wε, τε) ∈ H1(Ω;Rd)× L2(Ω) be a weak solution of
Lε(wε) +∇τε = 0 in Ω,

div(wε) = ε div
(
χεSε∇ũ0

)
in Ω,

wε = εχεSε(∇ũ0) on ∂Ω.

(4.2.3)
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We will use wε to approximate the difference between uε and its first order approxi-

mation vε. To this end, for 1 ≤ i, j, α, β ≤ d, we let

bαβij (y) = aαβij (y) + aαγik (y)
∂

∂yk

(
χγβj
)
− âαβij . (4.2.4)

Note that bαβij is 1-periodic. By the definition of χ and Â, bαβij ∈ L2(Y ) satisfies

ˆ
Y

bαβij (y) dy = 0.

and, for each 1 ≤ α, β, j ≤ d,

∂

∂yi

(
bαβij (y)

)
=

∂

∂yi

(
aαβij (y)

)
+

∂

∂yi

(
aαγik (y)

∂χγβj
∂yk

)

=
∂

∂yi

(
aαβij (y)

)
− ∂

∂yi

(
aαγik (y)

∂P γβ
j

∂yk

)
+

∂

∂yα
(πβj )

=
∂

∂yα
(πβj ).

(4.2.5)

Lemma 4.2.1. There exist Φαβkij ∈ H1
per(Y ) and qβij ∈ H1

per(Y ) such that

bαβij =
∂

∂yk
(Φαβ

kij) +
∂

∂yα
(qβij) and Φαβ

kij = −Φαβ
ikj. (4.2.6)

Moreover,

‖Φαβ
kij‖L2(Y ) + ‖qβij‖L2(Y ) ≤ C, (4.2.7)

where C depends only on d and µ.

Proof. Fix 1 ≤ i, j, β ≤ d. There exist fβij = (fαβij ) ∈ H2
per(Y ;Rd) and qβij ∈ H1

per(Y )

satisfying the following Stokes system,
∆fβij +∇qβij = bβij in Y,

div(fβij) = 0 in Y,ˆ
Y

fβij dy = 0,

(4.2.8)

where bβij = (bαβij ). We now define

Φαβ
kij(y) =

∂

∂yk
(fαβij )− ∂

∂yi
(fαβkj ).
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Clearly, Φαβ
kij ∈ H1

per(Y ) and Φαβ
kij = −Φαβ

ikj. Note that, by (4.2.5) and (4.2.8),
∂fαβij
∂yi
∈

H1
per(Y ) satisfies 

∆

(
∂fαβij
∂yi

)
= − ∂

∂yα

(
∂qβij
∂yi

)
+
∂bαβij
∂yi

=
∂

∂yα

(
πβj −

∂qβij
∂yi

)
,

∂

∂yα

(
∂fαβij
∂yi

)
= 0.

(4.2.9)

It follows by the energy estimates that
∂fαβij
∂yi

is constant. Hence, by (4.2.9) we obtain

that
∂

∂yk
(Φαβ

kij) =
∂2

∂yk∂yk
(fαβij )− ∂

∂yi

(
∂

∂yk
(fαβkj )

)
= bαβij −

∂

∂yα
(qβij).

Furthermore, since ‖χβj ‖H1(Y ) ≤ C, then

‖Φαβ
kij‖L2(Y ) + ‖qβij‖L2(Y ) ≤ C‖bαβij ‖L2(Y )

≤ C,

where C depends only on d and µ. This completes the proof.

Remark 4.2.2. Recall that πβj and qβij are both 1-periodic. By (4.2.9) and the fact that
∂fαβij
∂yi

is constant, we see that πβj and
∂qβij
∂yi

differ only by a constant. Since
´
Y
πβj = 0,

we obtain the following relation,

πβj =
∂qβij
∂yi

. (4.2.10)

Lemma 4.2.3. Let Ω be a bounded C1,1 domain. Suppose that A satisfies ellip-

ticity condition (1.0.3) and periodicity condition (1.0.4). Given g ∈ H1(Ω) and

h ∈ H3/2(∂Ω;Rd) satisfying the compatibility condition (3.1.2), for F ∈ L2(Ω;Rd), let

(uε, pε), (u0, p0) and (wε, τε) be weak solutions of Dirichlet problems (3.1.10), (3.1.11)

and (4.2.3), respectively. Then,

‖uε − u0 − εχεSε(∇ũ0) + wε‖H1
0 (Ω) ≤ Cε‖u0‖H2(Ω), (4.2.11)

where C depends only on d, µ, and Ω.
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Proof. Let

zε = uε − u0 − εχεSε(∇ũ0) + wε.

Through the construction of wε in (4.2.3), we can easily observe that

div(zε) = 0 in Ω,

and

zε = 0 on ∂Ω.

Now we compute Lε(zε), since

Lε(uε)− Lε(u0) = L0(u0)− Lε(u0) +∇(p0 − pε),

then by direct computation and the definition of bαβij (y) in (4.2.4) we have

(Lε(zε))α = −∂[pε − p0 + τε]

∂xα
− ∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

]∂uβ0
∂xj

)

+
∂

∂xi

(
aαγik (x/ε)

∂

∂xk

[
εχγβj (x/ε)

]
Sε
∂ũβ0
∂xj

)
+ ε

∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

)

= −∂[pε − p0 + τε]

∂xα
− ∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

][∂uβ0
∂xj
− Sε

∂ũβ0
∂xj

])

+
∂

∂xi

(
bαβij (x/ε)Sε

∂ũβ0
∂xj

)
+ ε

∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

)
.

Using Lemma 4.2.1, we may write

∂

∂xi

(
bαβij (x/ε)Sε

∂ũβ0
∂xj

)
=

∂

∂xi

([
∂

∂xk

(
εΦαβ

kij(x/ε)
)

+
∂

∂xα

(
εqβij(x/ε)

)]
Sε
∂ũβ0
∂xj

)
= I1 + I2.

(4.2.12)

Since Φαβ
kij = −Φαβ

ikj, we see that

I1 =
∂2

∂xi∂xk

(
εΦαβ

kij(x/ε)Sε
∂ũ0

β

∂xj

)
− ε ∂

∂xi

(
Φαβ
kij(x/ε)Sε

∂2ũβ0
∂xj∂xk

)

= −ε ∂

∂xi

(
Φαβ
kij(x/ε)Sε

∂2ũβ0
∂xj∂xk

)
.

For the second term in the RHS of (4.2.12), we have

I2 =
∂

∂xα

(
∂

∂xi

[
εqβij(x/ε)Sε

∂ũβ0
∂xj

])
− ∂

∂xi

(
εqβij(x/ε)Sε

∂2ũβ0
∂xα∂xj

)

= I3 −
∂

∂xi

(
εqβij(x/ε)Sε

∂2ũβ0
∂xα∂xj

)
.

(4.2.13)
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In view of (4.2.10), for the first term on the R.H.S. of (4.2.13), we obtain

I3 =
∂

∂xα

(
πβj (x/ε)Sε

∂ũβ0
∂xj

)
+

∂

∂xα

(
εqβij(x/ε)Sε

∂2ũβ0
∂xj∂xi

)
. (4.2.14)

Putting altogether, we have shown that zε satisfies

(Lε(zε))α +
∂

∂xα

(
pε − p0 − πβj (x/ε)Sε

∂ũβ0
∂xj
− εqβij(x/ε)Sε

∂2ũβ0
∂xj∂xi

+ τε

)

= ε
∂

∂xi

([
aαγij (x/ε)χγβk (x/ε)− Φαβ

kij(x/ε)
]
Sε

∂2ũβ0
∂xj∂xk

)

− ε ∂

∂xi

(
qβij(x/ε)Sε

∂2ũβ0
∂xα∂xj

)

− ∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

][∂uβ0
∂xj
− Sε

∂ũβ0
∂xj

])
.

(4.2.15)

Since zε ∈ H1
0 (Ω;Rd) and div(zε) = 0 in Ω, it follows from (4.2.15) by the energy

estimate (3.1.3) that

c

ˆ
Ω

|∇zε|2dx ≤ ε2

ˆ
Ω

∣∣∣[|χ(x/ε)|+ |Φ(x/ε)|
]
Sε(∇2ũ0)

∣∣∣2 dx
+ ε2

ˆ
Ω

∣∣∣q(x/ε)Sε(∇2ũ0)
∣∣∣2 dx

+

ˆ
Ω

∣∣∣∇u0 − Sε(∇ũ0)
∣∣∣2 dx.

Now we apply Propositions 2.2.1-2.2.2 as well as (4.2.2). This gives

‖∇zε‖L2(Ω) ≤ Cε
(
‖χ‖L2(Y ) + ‖Φ‖L2(Y ) + ‖q‖L2(Y ) + 1

)
‖∇2ũ0‖L2(Rd)

≤ Cε‖∇2ũ0‖L2(Rd)

≤ Cε‖u0‖H2(Ω),

where C depends only on d, µ and Ω. Hence we have proved the desired result,

‖zε‖H1
0 (Ω) ≤ Cε‖u0‖H2(Ω), and completed the proof.

We choose two cut-off functions θε(x) and θ̃ε(x) in Rd satisfying the following

conditions,

θε ∈ C∞0 (Rd), supp(θε) ⊂ Ω̃ε, 0 ≤ θε(x) ≤ 1,

θε|∂Ω = 1, |∇θε| ≤ κ/ε,
(4.2.16)

and
θ̃ε ∈ C∞0 (Rd), supp(θ̃ε) ⊂ Ω̃2ε, 0 ≤ θ̃ε(x) ≤ 1,

θ̃ε(x) = 1 for x ∈ Ω̃ε, |∇θ̃ε| ≤ κ̃/ε.
(4.2.17)

Now we are ready to give the proof of the H1 convergence (4.1.2) in Theorem 4.1.2.
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Proof of estimate (4.1.2). Lemma 4.2.3 have shown that

‖uε − u0 − εχεSε(∇ũ0) + wε‖H1
0 (Ω) ≤ Cε‖u0‖H2(Ω),

therefore the problem has been reduced to estimating wε in H1. Notice that by the

energy estimate (3.1.3) and since div(χ) = 0, then

‖wε‖H1(Ω) ≤ Cε‖χεSε(∇ũ0)‖H1/2(∂Ω) + Cε‖div
(
χεSε∇ũ0)‖L2(Ω)

≤ Cε‖θεχεSε(∇ũ0)‖H1(Ω) + Cε‖χε∇Sε(∇ũ0)‖L2(Ω).
(4.2.18)

For the first term on R.H.S. of (4.2.18), using the properties of cut-off function θε in

(4.2.16) we obtain

‖θεχεSε(∇ũ0)‖H1(Ω) ≤ ‖χεSε(∇ũ0)‖L2(Ω) + ‖(∇θε)χεSε(∇ũ0)‖L2(Ω)

+ ε−1‖θε(∇χ)εSε(∇ũ0)‖L2(Ω) + ‖χεSε(∇2ũ0)‖L2(Ω),

≤ ‖χεSε(∇ũ0)‖L2(Ω) + ‖χεSε(∇2ũ0)‖L2(Ω)

+ ε−1
{
‖χεSε(∇ũ0)‖L2(Ωε) + ‖(∇χ)εSε(∇ũ0)‖L2(Ωε)

}
.

(4.2.19)

Plug (4.2.19) back into (4.2.18),

‖wε‖H1(Ω) ≤ Cε
{
‖χεSε(∇ũ0)‖L2(Ω) + ‖χεSε(∇2ũ0)‖L2(Ω)

}
+ C

{
‖χεSε(∇ũ0)‖L2(Ωε) + ‖(∇χ)εSε(∇ũ0)‖L2(Ωε)

}
≤ Cε‖ũ0‖H2(Rd) + C

√
ε‖∇ũ0‖1/2

L2(Rd)
‖∇ũ0‖1/2

H1(Rd)

≤ C
√
ε‖ũ0‖H2(Rd),

(4.2.20)

where in the second last inequality we have used Proposition 2.2.2 for the first brace

and (2.2.3) in Lemma 2.2.3 for the second. Therefore, by (4.2.2) we see

‖uε − u0 − εχεSε (∇ũ0) ‖H1(Ω) ≤ ‖zε‖H1(Ω) + ‖wε‖H1(Ω)

≤ C
√
ε‖u0‖H2(Ω),

where C depends only on d, µ, and Ω. This completes the proof.

4.3 Convergence rates for the pressure term

To prove estimate (4.1.3), we first recall that if (uε, pε) ∈ H1(Ω;Rd)×L2(Ω) is a weak

solution of the Stokes system (3.1.10), then

‖pε −−
ˆ

Ω

pε‖L2(Ω) ≤ C‖∇pε‖H−1(Ω)

≤ C
{
‖F‖H−1(Ω) + ‖uε‖H1(Ω)

}
,

(4.3.1)

where C depends only on d, µ, and Ω (see e.g. [58]).
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Proof of estimate (4.1.3). Since we are assuming
ˆ

Ω

pε =

ˆ
Ω

p0 = 0,

by applying (4.3.1) to system (4.2.15), we see that

‖pε − p0−
(
πεSε∇ũ0 + εqεSε∇2ũ0 − τε

)
−−
ˆ

Ω

(
πεSε∇ũ0 + εqεSε∇2ũ0 − τε

)
‖L2(Ω)

≤ C‖∇
[
pε − p0 − πεSε (∇ũ0)− εqεSε

(
∇2ũ0

)
+ τε

]
‖H−1(Ω)

≤ C‖∇zε‖L2(Ω) + C‖Sε (∇ũ0)−∇u0‖L2(Ω)

+ Cε
∥∥(|χε|+ |Φε|+ |qε|

)
Sε
(
∇2ũ0

)∥∥
L2(Ω)

≤ Cε‖u0‖H2(Ω),

(4.3.2)

where the last inequality follows from the proof of Lemma 4.2.3. Note that by Propo-

sition 2.2.1 and (4.2.2),

ε‖qεSε(∇2ũ0)−−
ˆ

Ω

qεSε(∇2ũ0)‖L2(Ω)

≤ Cε‖ũ0‖H2(Rd)

≤ Cε‖u0‖H2(Ω).

(4.3.3)

Also, since (wε, τε) is weak solution of system (4.2.3), and we applying (4.3.1) again

to obtain

‖τε −−
ˆ

Ω

τε‖L2(Ω) ≤ C‖∇τε‖H−1(Ω)

≤ C‖∇wε‖L2(Ω)

≤ C
√
ε‖u0‖H2(Ω),

(4.3.4)

where the last inequality follows from (4.2.20) and (4.2.2). By combining (4.3.2),

(4.3.3) and (4.3.4), we have proved that

‖pε − p0 −
[
πεSε (∇ũ0)−−

ˆ
Ω

πεSε (∇ũ0)
]
‖L2(Ω) ≤ C

√
ε‖u0‖H2(Ω).

This completes the proof.

4.4 Convergence rates for uε in L2

To establish the sharp O(ε) rate for uε in L2, in view of (4.2.11), we have already

shown that

‖uε − u0 − εχεSε(∇ũ0) + wε‖L2(Ω) ≤ Cε‖u0‖H2(Ω).
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By using Proposition 2.2.2 and (4.2.2) once again,

‖χεSε(∇ũ0)‖L2(Ω) ≤ C‖χ‖L2(Y )‖∇ũ0‖L2(Rd)

≤ C‖u0‖H2(Ω).

Therefore,

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω) + ‖wε‖L2(Ω), (4.4.1)

and it remains to estimate ‖wε‖L2(Ω).

Lemma 4.4.1. Let Ω be a bounded C1,1 domain. Suppose that A satisfies ellip-

ticity condition (1.0.3) and periodicity condition (1.0.4). Given g ∈ H1(Ω) and

h ∈ H3/2(∂Ω;Rd) satisfying the compatibility condition (3.1.2), for F ∈ L2(Ω;Rd),

let (uε, pε), (u0, p0) be weak solutions of the Dirichlet problems (3.1.10), (3.1.11),

respectively. If θ̃ε is the cut-off function defined as in (4.2.17), then

‖uε − u0 − ε(1− θ̃ε)χεSε (∇ũ0) ‖H1(Ω) ≤ C
√
ε‖u0‖H2(Ω), (4.4.2)

and

‖pε − p0 −
[
(1− θ̃ε)πεSε (∇ũ0)−−

ˆ
Ω

πεSε (∇ũ0)
]
‖L2(Ω) ≤ C

√
ε‖u0‖H2(Ω), (4.4.3)

where C depends only on d, µ, and Ω.

Proof. We use the same argument as we did for (4.2.19) in the proof of (4.1.2) to treat

the extra term εθ̃εχ
εSε(∇ũ0) and θ̃επ

εSε(∇ũ0), with θε replaced by θ̃ε. Explicitly,

ε‖θ̃εχεSε(∇ũ0)‖H1(Ω) ≤ Cε‖χεSε(∇ũ0)‖L2(Ω2ε) + Cε‖χεSε(∇2ũ0)‖L2(Ω2ε)

+ C
{
‖χεSε(∇ũ0)‖L2(Ω2ε) + ‖(∇χ)εSε(∇ũ0)‖L2(Ω2ε)

}
≤ C
√
ε‖u0‖H2(Ω),

where we have used Lemma 2.2.3 and Proposition 2.2.2 for the last inequality. This,

together with the H1 convergence (4.1.2), gives us the estimate (4.4.2).

Similarly, using Lemma 2.2.3, we see that

‖θ̃επεSε∇ũ0‖L2(Ω) ≤ C

(ˆ
Ω̃2ε

|πεSε(∇ũ0)|2dx
)1/2

≤ C
√
ε‖π‖1/2

L2(Y )‖∇ũ0‖1/2

H1(Rd)
‖∇ũ0‖1/2

L2(Rd)

≤ C
√
ε‖u0‖H2(Ω).

Combining with estimate (4.1.3), gives us the proof of (4.4.3).
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Proof of Theorem 1.0.3. In view of (4.4.1), it suffices to show that

‖wε‖L2(Ω) ≤ Cε‖u0‖H2(Ω).

Furthermore, let

φε = εθεχ
εSε∇ũ0.

Since ‖φε‖L2(Ω) ≤ Cε‖u0‖H2(Ω), it is enough to show that

‖ηε‖L2(Ω) ≤ Cε‖u0‖H2(Ω), (4.4.4)

where ηε = wε − φε.
To this end, we first note that by the definition of (wε, τε) in (4.2.3), the functions

(ηε, τε) ∈ H1
0 (Ω;Rd)× L2(Ω) satisfy

Lε(ηε) +∇τε = −Lε(φε) in Ω,

div(ηε) = ε div((1− θε)χεSε∇ũ0) in Ω,

ηε = 0 on ∂Ω.

(4.4.5)

additionally, we let (η0, τ0) ∈ H1
0 (Ω;Rd)×L2(Ω) be weak solution of the corresponding

homogenized problem
L0(η0) +∇τ0 = −Lε(φε) in Ω,

div(η0) = ε div((1− θε)χεSε∇ũ0) in Ω,

η0 = 0 on ∂Ω.

(4.4.6)

To estimate ηε − η0, we consider the following duality problems. For any H ∈
L2(Ω;Rd), let (ρε, σε) ∈ H1

0 (Ω;Rd)× L2(Ω) be the weak solution of
L∗ε(ρε) +∇σε = H in Ω,

div(ρε) = 0 in Ω,

ρε = 0 on ∂Ω,

(4.4.7)

and (ρ0, σ0) ∈ (H2(Ω;Rd) ∩H1
0 (Ω;Rd))×H1(Ω) be the weak solution of
L∗0(ρ0) +∇σ0 = H in Ω,

div(ρ0) = 0 in Ω,

ρ0 = 0 on ∂Ω,

(4.4.8)

with ˆ
Ω

σε =

ˆ
Ω

σ0 = 0.
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Here we have used the notations: L∗ε = −div
(
A∗(x/ε)∇

)
and L∗0 = −div

(
Â∗∇

)
to

denote the adjoint operator. We note that Lemma 4.4.1 continues to hold for L∗ε, as

A∗ satisfies the same conditions as A. Also, by the W 2,2 estimates (3.1.4) for Stokes

systems with constant coefficients in C1,1 domains,

‖ρ0‖H2(Ω) + ‖σ0‖H1(Ω) ≤ C ‖H‖L2(Ω).

As a result, we have

‖ρε − ρ0 − ε(1− θ̃ε)χ∗εSε (∇ρ̃0) ‖H1(Ω) ≤ C
√
ε‖ρ0‖H2(Ω)

≤ C
√
ε‖H‖L2(Ω),

(4.4.9)

and

‖σε − σ0 −
[
(1− θ̃ε)π∗εSε (∇ρ̃0)−−

ˆ
Ω

π∗εSε (∇ρ̃0)
]
‖L2(Ω) ≤ C

√
ε‖H‖L2(Ω), (4.4.10)

where (χ∗, π∗) denotes the correctors associated with the adjoint matrix A∗.

Let Ψ = −Lε(φε), and

Γ = div(ε(1− θε)χεSε∇ũ0).

Note that by (4.4.5), (4.4.6), (4.4.7) and (4.4.8),ˆ
Ω

H · (ηε − η0) = 〈Ψ, ρε − ρ0〉H−1(Ω;Rd)×H1
0 (Ω;Rd) −

ˆ
Ω

Γ(σε − σ0)

= J1 + J2.

(4.4.11)

For the first term of the R.H.S. of (4.4.11), because Ψ ∈ H−1(Ω;Rd) is supported in

Ω̃ε, and 1− θ̃ε = 0 in Ω̃ε, we obtain

J1 = 〈Ψ, ρε − ρ0 − ε(1− θ̃ε)χ∗εSε (∇ρ̃0)〉H−1(Ω;Rd)×H1
0 (Ω;Rd).

Therefore,

|J1| ≤ ‖Ψ‖H−1(Ω)‖ρε − ρ0 − ε(1− θ̃ε)χ∗εSε (∇ρ̃0) ‖H1(Ω)

≤ C‖εθεχεSε∇ũ0‖H1(Ω)

√
ε‖H‖L2(Ω)

≤ Cε‖u0‖H2(Ω) ‖H‖L2(Ω)

(4.4.12)

where the second inequality follows from (4.4.9), and the last inequality follows from

the analog of (4.2.19) (with θ̃ε replaced by θε). For the second term of the R.H.S. of

(4.4.11), we recall that div(χ) = 0. Hence,

Γ = −ε ∂θε
∂xα

χαβj (x/ε)Sε
∂ũβ0
∂xj

+ ε(1− θε)χαβj (x/ε)Sε
∂2ũβ0
∂xα∂xj

= Γ1 + Γ2.
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Since
´

Ω
Γ = 0, for any constant E,

J2 = −
ˆ

Ω

Γ(σε − σ0 + E)

= −
ˆ

Ω

[Γ1 + Γ2](σε − σ0 + E).

We split J2 as two integrals, for the first integral, again since 1− θ̃ε = 0 in Ω̃ε and Γ1

is supported in Ω̃ε, just as we did for J1,

−
ˆ

Ω

Γ1(σε − σ0 + E) = −
ˆ

Ω

Γ1

(
σε − σ0 − (1− θ̃ε)π∗εSε (∇ρ̃0) + E

)
.

Now, if we choose the constant E as E = −́
Ω
π∗εSε (∇ρ̃0), then∣∣∣∣ˆ

Ω

Γ1(σε − σ0 + E)

∣∣∣∣
=

∣∣∣∣ ˆ
Ω

Γ1

{
σε − σ0 −

[
(1− θ̃ε)π∗εSε (∇ρ̃0)−−

ˆ
Ω

π∗εSε (∇ρ̃0)
]}∣∣∣∣

≤ C‖Γ1‖L2(Ω̃ε)

√
ε‖H‖L2(Ω)

≤ C
(√

ε‖χ‖L2(Y )‖∇ũ0‖H1(Rd)

)(√
ε‖H‖L2(Ω)

)
≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω),

(4.4.13)

where we have used (4.4.10), (4.2.2) and Lemma 2.2.3. For the second integral in J2,

we have ∣∣∣∣ˆ
Ω

Γ2

(
σε − σ0 + E

)∣∣∣∣
≤ ‖Γ2‖L2(Ω)‖σε − σ0 +−

ˆ
Ω

π∗εSε (∇ρ̃0) ‖L2(Ω)

≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω),

(4.4.14)

where for the last inequality we have used the fact

‖σε − σ0 +−
ˆ

Ω

π∗εSε (∇ρ̃0) ‖L2(Ω)

≤ ‖σε‖L2(Ω) + ‖σ0‖L2(Ω) + ‖ −
ˆ

Ω

π∗εSε (∇ρ̃0) ‖L2(Ω)

≤ C‖H‖L2(Ω).

Therefore, by combining (4.4.12)-(4.4.14), we have proved∣∣∣∣ˆ
Ω

H · (ηε − η0)

∣∣∣∣ ≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω) for any H ∈ L2(Ω;Rd). (4.4.15)
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By duality this implies that

‖ηε − η0‖L2(Ω) ≤ Cε‖u0‖H2(Ω). (4.4.16)

Finally, the problem has been reduced to the estimate of ‖η0‖L2(Ω). This will be

done by another duality argument. Let (ρ0, σ0) be defined by (4.4.8). Then we split

the following estimates by three parts∣∣∣∣ˆ
Ω

H · η0

∣∣∣∣ =

∣∣∣∣〈Ψ, ρ0〉H−1(Ω;Rd)×H1
0 (Ω;Rd) −

ˆ
Ω

Γσ0

∣∣∣∣
≤ |〈Ψ, ρ0〉H−1(Ω;Rd)×H1

0 (Ω;Rd)|+
∣∣∣∣ˆ

Ωε

Γ1σ0

∣∣∣∣+

∣∣∣∣ˆ
Ω

Γ2σ0

∣∣∣∣
= K1 +K2 +K3,

(4.4.17)

where Ψ,Γ,Γ1 and Γ2 are as denoted above. Notice that again by Lemma 2.2.3 and

through the same argument of (4.2.19), we have

K1 ≤ ‖Ψ‖H−1(Ω)‖ρ0‖H1(Ωε)

≤ C‖εθεχεSε(∇ũ0)‖H1(Ω)

√
ε‖ρ0‖H2(Ω)

≤ C(
√
ε‖u0‖H2(Ω)) (

√
ε‖ρ0‖H2(Ω))

≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω),

(4.4.18)

where we have also used the first property (2.2.2) of Lemma 2.2.3 in the second

inequality to obtain

‖ρ0‖H1(Ωε) ≤ C
√
ε‖ρ0‖H2(Ω).

Similarly, by Lemma 2.2.3, we see that

K2 ≤ ‖Γ1‖L2(Ω̃ε)
‖σ0‖L2(Ωε)

≤ C(
√
ε‖χ‖L2(Y )‖ũ0‖H2(Rd))(

√
ε‖σ0‖H1(Ω)))

≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω),

(4.4.19)

and

K3 ≤ ‖Γ2‖L2(Ω)‖σ0‖L2(Ω) ≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω). (4.4.20)

By combining (4.4.17)-(4.4.20), we obtain∣∣∣∣ˆ
Ω

H · η0

∣∣∣∣ ≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω),

which, by duality, leads to

‖η0‖L2(Ω) ≤ Cε‖u0‖H2(Ω). (4.4.21)
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Hence we have proved that

‖wε‖L2(Ω) ≤ ‖ηε − η0‖L2(Ω) + ‖η0‖L2(Ω) + ‖φε‖L2(Ω)

≤ Cε‖u0‖H2(Ω).
(4.4.22)

Therefore the proof of Theorem 1.0.3 is now complete.

Copyright c© Shu Gu, 2016.
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Chapter 5 Convergence Rates of Neumann Problems in Homogenization

of Stokes Systems

In this chapter we study the convergence rates in L2 and H1 of Neumann problems

for Stokes systems with rapidly oscillating periodic coefficient, without any regularity

assumptions on the coefficients.

5.1 Introduction

More precisely, we consider the following Neumann problem for Stokes systems
Lε(uε) +∇pε = F in Ω,

div(uε) = g in Ω,

∂uε
∂νε
− pε · n = h on ∂Ω,

with the Neumann compatibility condition
ˆ

Ω

F +

ˆ
∂Ω

h = 0.

By homogenization theorem (Theorem 3.4.3), we have shown that

uε ⇀ u0 weakly in H1(Ω;Rd),

and

pε −−
ˆ

Ω

pε ⇀ p0 −−
ˆ

Ω

p0 weakly in L2(Ω),

where (u0, p0) ∈ H1(Ω;Rd)×L2(Ω) is the weak solution of the homogenized problem
L0(u0) +∇p0 = F in Ω,

div(u0) = g in Ω,

∂u0

∂ν0

− p0 · n = h on ∂Ω.

The main purpose of this chapter is to investigate the rate of convergence of ‖uε −
u0‖L2(Ω) as ε→ 0, which is stated in the following theorem.

Theorem 5.1.1. Let Ω be a bounded C1,1 domain. Suppose A satisfies ellipticity

condition (1.0.3) and periodicity condition (1.0.4). Given F ∈ L2(Ω;Rd) and h ∈
H1/2(∂Ω;Rd) satisfying the Neumann compatibility condition (3.4.1), for g ∈ H1(Ω),
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let (uε, pε), (u0, p0) be weak solutions of Neumann problems (3.4.4), (3.4.5), respec-

tively. Then

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H2(Ω), (5.1.1)

where the constant C depends only on µ, d, and Ω.

In this chapter we also obtain O(
√
ε) rates for a two-scale expansion of (uε, pε) in

H1 × L2. Let (χ, π) denote the correctors associated with A, defined by (3.1.5), and

Sε the Steklov smoothing operator defined by (2.2.1).

Theorem 5.1.2. Let Ω be a bounded C1,1 domain. Suppose A satisfies ellipticity

condition (1.0.3) and periodicity condition (1.0.4). Let (uε, pε) and (u0, p0) be the

same as in Theorem (5.1.1). Then

‖uε − u0 − εχεSε (∇ũ0) ‖H1(Ω) ≤ C
√
ε‖u0‖H2(Ω), (5.1.2)

where χε(x) = χ(x/ε) and ũ0 is the extension of u0 defined as in (4.2.1). Moreover,

if
´

Ω
pε =

´
Ω
p0 = 0, then

‖pε − p0 −
[
πεSε (∇ũ0)−−

ˆ
Ω

πεSε (∇ũ0)
]
‖L2(Ω) ≤ C

√
ε‖u0‖H2(Ω), (5.1.3)

where πε(x) = π(x/ε). The constants C in (5.1.2) and (5.1.3) depend only on µ, d,

and Ω.

The problem of convergence rates has been playing an essential role in quanti-

tative homogenization. Most recent work on the problem of convergence rates in

periodic homogenization may be found in [26–28, 31, 32, 35, 44–46, 51, 52, 55, 56] and

their references.

As we mentioned earlier, for the known results on L2 convergence rates, there are

relatively fewer results in the case of the Neumann boundary conditions than Dirichlet

cases. Consider the Neumann problem for the scalar elliptic equation Lε(uε) = F in

Ω with ∂uε
∂νε

= 0 on ∂Ω, the estimate

‖uε − u0‖L2(Ω) ≤ Cε‖F‖H2(Ω)

was proved by Griso [27] for C1,1 domains with bounded measurable coefficients using

the “periodic unfolding” method [14,15], and it was also proved in [42] for curvilinear

convex polygons Ω in R2. For the system case, consider elliptic systems Lε(uε) = F

in Ω with Neumann condition ∂uε
∂νε

= g on ∂Ω, C. Kenig, F. Lin and Z. Shen [32]

have shown that the estimate (5.1.1) continue to hold in bounded Lipschitz domain
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Ω, under additional assumption that A is Hölder continuous. The approaches used

in [32] were based on the explicit computation of conormal derivative of vε and uniform

regularity for the L2 Neumann problem obtained in [36,37]. Here vε = uε−u0−εχε∇u0

is the discrepancy between solution and its first order approximation. Moreover, if

A is Hölder continuous and symmetric, it was proved in [32] that ‖vε‖H1/2(Ω) ≤
Cε‖u0‖H2(Ω).

However, the method used in [32] does not apply to operators with bounded

measurable coefficients, since the correctors χ may not be bounded. Recently, by

using the Steklov smoothing operator, T. A. Suslina [55,56] was able to establish the

O(ε) estimate (5.1.1) in L2 for a broader class of elliptic operators, which, in particular

contains the elliptic systems Lε in divergence form with coefficients satisfying the

ellipticity condition aαβij ξ
α
i ξ

β
j ≥ µ|ξ|2 for any ξ = (ξαi ) ∈ Rm×d. Consider the following

discrepancy between uε and its first order approximation u0 + εχεSε (∇ũ0)

vε = uε − u0 − εχεSε (∇ũ0) , (5.1.4)

where Sε is the Steklov smoothing operator at scale ε defined in (2.2.1) and ũ0 an

extension of u0 to Rd (also see [45, 46, 59] and their references on the use of Sε in

homogenization). Relying on the sharp convergence rates for the whole space Rd and

the estimate on the boundary layer corrector term, the O(
√
ε) convergence (5.1.2) in

H1 can be obtained. The O(ε) estimate in L2 then can be deduced by applying the

estimate (5.1.2) to an adjoint problem and a duality argument.

In this chapter we extend the approach of Suslina to the case of Stokes systems,

which certainly do not fit the standard framework of second-order elliptic systems in

divergence form. As expected in the study of Stokes or Navier-Stokes systems, the

main difficulty is caused by the pressure term pε. In contrast to [55,56], we will use a

more direct approach that does not require the convergence rates in the whole space

Rd and thus we may avoid the estimates of boundary layer correctors. Like we did

for Dirichlet problems, by carefully analyzing the systems for the correctors (χ, π) as

well as their dual (φαβkij, q
β
ij), we are able to establish the O(

√
ε) error estimates for

the two-scale expansions of (uε, pε) in H1 × L2, given in Theorem 5.1.2, delivered by

the following key intermediate step.∣∣∣ ˆ
Ω

Aε∇vε · ∇ϕ
∣∣∣

≤ C‖u0‖H2(Ω)

[
‖div(ϕ)‖L2(Ω) + ε1/2‖∇ϕ‖L2(Ωε) + ε‖∇ϕ‖L2(Ω)

]
,

for any ϕ ∈ H1(Ω;Rd), and Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}. This may allow us to
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apply this O(
√
ε) estimate to solutions of adjoint problems, and further obtain the

O(ε) estimate in L2 by a duality argument.

We may now mention the potential applications of these results. Inspired by recent

paper of Shen [51] on systems of linear elasticity, we expect to establish the boundary

Lipschitz estimates in C1,α domains for Neumann problems of Stokes systems with

rapidly oscillating periodic coefficients, using convergence rates in H1 and L2 rather

than using the compactness method. We may also use the result to investigate the Cα,

W 1,p, and Lp estimates in C1 domains with VMO or Hölder continuous coefficients.

5.2 Convergence rates for uε in H1

From now on we will assume that Ω is a bounded domain with boundary of class

C1,1, F ∈ L2(Ω;Rd), g ∈ H1(Ω), and h ∈ H1/2(∂Ω;Rd). For simplicity, we let

vε = uε − u0 − εχεSε(∇ũ0) (5.2.1)

to denote the difference between uε and its first order approximation u0+εχεSε(∇ũ0),

where ũ0 is the extension of u0 in Rd defined in (4.2.1), Sε is the Steklov smoothing

operator defined by (2.2.1). In order to show

‖vε‖H1(Ω) ≤ C‖u0‖H2(Ω),

for 1 ≤ i, j, α, β ≤ d, we once again let

bαβij (y) = aαβij (y) + aαγik (y)
∂

∂yk

(
χγβj
)
− âαβij ,

be the 1-periodic function defined in (4.2.4), and let Φαβ
kij, q

β
ij be the functions been

introduced in Lemma (4.2.1). We will use the next lemma to show which system

should vε satisfy.

Lemma 5.2.1. Let Ω be a bounded C1,1 domain. Suppose A satisfies ellipticity con-

dition (1.0.3) and periodicity condition (1.0.4). Given F ∈ L2(Ω;Rd) and f ∈
H1/2(∂Ω;Rd) satisfying the compatibility condition(3.4.1), for g ∈ H1(Ω), (uε, pε),

(u0, p0) are weak solutions of Neumann problems (3.4.4) and (3.4.5), respectively. If
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vε is defined as (5.2.1), then vε satisfies

(Lε(vε))α = −∂[pε − p0]

∂xα
+

∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

][
Sε
∂ũβ0
∂xj
− ∂uβ0
∂xj

])

+ ε
∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

)
+

∂

∂xi

(
bαβij (x/ε)Sε

∂ũβ0
∂xj

)
in Ω,

div(vε) = −εχαβj (x/ε)Sε
∂2ũβ0
∂xα∂xj

in Ω,(
∂vε
∂νε

)α
= nα

[
pε − p0

]
− ni

[
âαβij − a

αβ
ij (x/ε)

][
Sε
∂ũβ0
∂xj
− ∂uβ0
∂xj

]
− εniaαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

− nibαβij (x/ε)Sε
∂ũβ0
∂xj

on ∂Ω.

(5.2.2)

Proof. Since div(uε) = div(u0), and recall that div(χ) = 0, hence

div(vε) = −εχαβj (x/ε)Sε
∂2ũβ0
∂xα∂xj

.

Now we compute Lε(vε), by using the definition of b,

(Lε(vε))α = −∂[pε − p0]

∂xα
− ∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

]∂uβ0
∂xj

)

+
∂

∂xi

(
aαγik (x/ε)

∂

∂xk

[
εχγβj (x/ε)

]
Sε
∂ũβ0
∂xj

)
+ ε

∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

)

= −∂[pε − p0]

∂xα
+

∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

][
Sε
∂ũβ0
∂xj
− ∂uβ0
∂xj

])

+ ε
∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

)
+

∂

∂xi

(
bαβij (x/ε)Sε

∂ũβ0
∂xj

)
.

Then we deal with the conormal derivative of vε, similarly, we have(
∂vε
∂νε

)α
= nia

αβ
ij (x/ε)

∂uβε
∂xj
− niâαβij

∂uβ0
∂xj

+ ni

[
âαβij − a

αβ
ij (x/ε)

]∂uβ0
∂xj

− niaαγik (x/ε)
∂

∂xk
(εχγβj (x/ε))Sε

∂ũβ0
∂xj
− εniaαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

= nα
[
pε − p0

]
− ni

[
âαβij − a

αβ
ij (x/ε)

][
Sε
∂ũβ0
∂xj
− ∂uβ0
∂xj

]
− εniaαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

− nibαβij (x/ε)Sε
∂ũβ0
∂xj

.

Therefore we have given the system vε satisfied.

44



We choose the same cut-off function θε(x) as in Section 3.1, i.e. it satisfy the

following conditions,

θε ∈ C∞0 (Rd), supp(θε) ⊂ Ω̃ε, 0 ≤ θε(x) ≤ 1,

θε|∂Ω = 1, |∇θε| ≤ κ/ε.

Lemma 2.2.3 and the following lemma will be served as key ingredients in the proof

of the convergence rates in H1.

Lemma 5.2.2. Let vε be defined as in (5.2.1). Then, for any ϕ ∈ H1(Ω;Rd), we

have the following estimate

|aε(vε, ϕ)| ≤ C‖u0‖H2(Ω)

[
‖div(ϕ)‖L2(Ω) + ε1/2‖∇ϕ‖L2(Ωε) + ε‖∇ϕ‖L2(Ω)

]
, (5.2.3)

where the constant C depends only on µ, d, and Ω.

Proof. For any ϕ ∈ H1(Ω;Rd), by Lemma 5.2.1 and integrating by parts,

aε(vε, ϕ) =

ˆ
Ω

aαβij (x/ε)
∂vβε
∂xj

∂ϕα

∂xi
=

ˆ
Ω

(Lε(vε))α ϕα +

ˆ
∂Ω

(
∂vε
∂νε

)α
ϕα

=

ˆ
Ω

(pε − p0) div(ϕ)−
ˆ

Ω

[
âαβij − a

αβ
ij (x/ε)

][
Sε
∂ũβ0
∂xj
− ∂uβ0
∂xj

]
∂ϕα

∂xi

− ε
ˆ

Ω

aαγik (x/ε)χγβj (x/ε)Sε
∂2ũβ0
∂xk∂xj

∂ϕα

∂xi
−
ˆ

Ω

bαβij (x/ε)Sε
∂ũβ0
∂xj

∂ϕα

∂xi
.

(5.2.4)

By Lemma 4.2.1, we may rewrite the last term in R.H.S. of (5.2.4) as

−
ˆ

Ω

bαβij (x/ε)Sε
∂ũβ0
∂xj

∂ϕα

∂xi

= −
ˆ

Ω

∂

∂xk

(
εΦαβ

kij(x/ε)
)
Sε
∂ũβ0
∂xj

∂ϕα

∂xi
−
ˆ

Ω

∂

∂xα

(
εqβij(x/ε)

)
Sε
∂ũβ0
∂xj

∂ϕα

∂xi

= R1 +R2.

(5.2.5)

For the first integral R1, we integrate by parts,

R1 = −ε
ˆ

Ω

∂

∂xk

(
Φαβ
kij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi
+ ε

ˆ
Ω

Φαβ
kij(x/ε)Sε

∂2ũβ0
∂xk∂xj

∂ϕα

∂xi

= R1a +R1b.

(5.2.6)

The second term R1b can be dealt in the same way as for the third term in (5.2.4),

but we will need a more delicate way to treat R1a, recall that 1 − θε ≡ 0 on ∂Ω,
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therefore

R1a = −ε
ˆ

Ω

∂

∂xk

([
θε + 1− θε

]
Φαβ
kij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi

= −ε
ˆ

Ω

∂

∂xk

(
θεΦ

αβ
kij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi

+ ε

ˆ
Ω

∂2

∂xk∂xi

(
(1− θε)Φαβ

kij(x/ε)Sε
∂ũβ0
∂xj

)
ϕα

= −ε
ˆ

Ω

∂

∂xk

(
θεΦ

αβ
kij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi
,

(5.2.7)

where the second term in the second equality vanish since Φ is anti-symmetric. Sim-

ilarly for R2, we split the integral into two separate integrals after integrating by

parts,

R2 = −ε
ˆ

Ω

∂

∂xα

(
qβij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi
+ ε

ˆ
Ω

qβij(x/ε)Sε
∂2ũβ0
∂xk∂xj

∂ϕα

∂xi

= R2a +R2b.

(5.2.8)

Again, it will need some effort on the term R2b, recalling that 1− θε ≡ 0 on ∂Ω,

R2a = −ε
ˆ

Ω

∂

∂xα

([
θε + 1− θε

]
qβij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi

= −ε
ˆ

Ω

∂

∂xα

(
θεq

β
ij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi

+ ε

ˆ
Ω

∂2

∂xα∂xi

(
(1− θε)qβij(x/ε)Sε

∂ũβ0
∂xj

)
ϕα

= −ε
ˆ

Ω

∂

∂xα

(
θεq

β
ij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi

− ε
ˆ

Ω

∂

∂xi

(
(1− θε)qβij(x/ε)Sε

∂ũβ0
∂xj

)
div(ϕ).

(5.2.9)

By remark 4.2.2, more precisely that,

R2a =

ˆ
Ω

[(
ε
∂θε
∂xi

qβij(x/ε)− (1− θε)πβj (x/ε)
)
Sε
∂ũβ0
∂xj

]
div(ϕ)

−
ˆ

Ω

ε
[
(1− θε)qβij(x/ε)Sε

∂2ũβ0
∂xj∂xj

]
div(ϕ)− ε

ˆ
Ω

∂

∂xα

(
θεq

β
ij(x/ε)Sε

∂ũβ0
∂xj

)
∂ϕα

∂xi
.

(5.2.10)
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Therefore, we have updated (5.2.4) as

aε(vε, ϕ) = I1[ϕ] + I2[ϕ] + I3[ϕ], for any ϕ in H1(Ω;Rd), (5.2.11)

where I1, I2, and I3 are defined by

I1[ϕ] =

ˆ
Ω

[
pε − p0 −

[
(1− θε)πε − ε∇θεqε]Sε(∇ũ0)− ε(1− θε)qεSε(∇2ũ0)

]
div(ϕ);

I2[ϕ] = ε

ˆ
Ω

[
qεSε(∇2ũ0)

]
· ∇ϕ+ ε

ˆ
Ω

[
(Φε − Aεχε)Sε(∇2ũ0)

]
· ∇ϕ

−
ˆ

Ω

[
(Â− Aε)

(
Sε(∇ũ0)−∇u0

)]
· ∇ϕ;

I3[ϕ] = −
ˆ

Ω

[
∇
(
εθεΦ

εSε(∇ũ0)
)]
· ∇ϕ−

ˆ
Ω

[
∇
(
εθεq

εSε(∇ũ0)
)]
· ∇ϕ.

(5.2.12)

For the estimate on I1, by the energy estimate (3.4.2) and Proposition 2.2.2, we use

Hölder’s inequality to obtain

|I1[ϕ]| ≤ C‖u0‖H2(Ω)‖div(ϕ)‖L2(Ω). (5.2.13)

Also, by Proposition 2.2.1-2.2.2, (4.2.2), and Hölder’s inequality, we can obtain that

|I2[ϕ]| ≤ Cε
([
‖χ‖L2(Y ) + ‖Φ‖L2(Y ) + ‖q‖L2(Y ) + 1

]
‖ũ0‖H2(Rd)

)
‖∇ϕ‖L2(Ω)

≤ Cε‖u0‖H2(Ω)‖∇ϕ‖L2(Ω).
(5.2.14)

For I3, since supp θε ⊂ Ω̃ε and again by Hölder inequality, we have

|I3[ϕ]| ≤ C
(
‖εθεqεSε(∇ũ0)‖H1(Ω) + ‖εθεΦεSε(∇ũ0)‖H1(Ω)

)
‖∇ϕ‖L2(Ωε)

≤ C(M1 +M2)‖∇ϕ‖L2(Ωε)

(5.2.15)

The term M1 and M2 are treated the same way as we did in (4.2.19) for Dirichlet

problem, indeed for M1,

M1 = ε‖θεqεSε(∇ũ0)‖H1(Ω) ≤ Cε
{
‖qεSε(∇ũ0)‖L2(Ω) + ‖(∇θε)qεSε(∇ũ0)‖L2(Ω)

+ ε−1‖θε(∇q)εSε(∇ũ0)‖L2(Ω) + ‖qεSε(∇2ũ0)‖L2(Ω)

}
≤ Cε

{
‖qεSε(∇ũ0)‖L2(Ω) + ‖qεSε(∇2ũ0)‖L2(Ω)

}
+ C

{
‖qεSε(∇ũ0)‖L2(Ω̃2ε)

+ ‖(∇q)εSε(∇ũ0)‖L2(Ω̃2ε)

}
≤ Cε‖ũ0‖H2(Rd) + C

√
ε‖ũ0‖H2(Rd)

≤ C
√
ε‖ũ0‖H2(Rd),

(5.2.16)
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where we have used Proposition 2.2.2 and Lemma 2.2.3 for the second last inequality.

We can treat M2 as the same manner,

M2 = ε‖θεΦεSε(∇ũ0)‖H1(Ω) ≤ Cε
{
‖ΦεSε(∇ũ0)‖L2(Ω) + ‖(∇θε)ΦεSε(∇ũ0)‖L2(Ω)

+ ε−1‖θε(∇Φ)εSε(∇ũ0)‖L2(Ω) + ‖ΦεSε(∇2ũ0)‖L2(Ω)

}
≤ Cε

{
‖ΦεSε(∇ũ0)‖L2(Ω) + ‖ΦεSε(∇2ũ0)‖L2(Ω)

}
+ C

{
‖ΦεSε(∇ũ0)‖L2(Ω̃2ε)

+ ‖(∇Φ)εSε(∇ũ0)‖L2(Ω̃2ε)

}
≤ C
√
ε‖ũ0‖H2(Rd),

(5.2.17)

Substituting (5.2.16)-(5.2.17 into (5.2.15), by (4.2.2), we have proved that

|I3[ϕ]| ≤ Cε1/2‖u0‖H2(Ω)‖∇ϕ‖L2(Ωε) (5.2.18)

Therefore, by gathering (5.2.13), (5.2.14) and (5.2.18) together, we have proved

|aε(vε, ϕ)| ≤ C‖u0‖H2(Ω)

[
‖div(ϕ)‖L2(Ω) + ε1/2‖∇ϕ‖L2(Ωε) + ε‖∇ϕ‖L2(Ω)

]
,

where C depends only on d, µ, and Ω.

Proof of estimate (5.1.2). We will now prove (5.1.2) by energy estimates. Notic-

ing that by Lemma 5.2.1 and (4.2.2),

‖div(vε)‖L2(Ω) ≤ Cε‖u0‖H2(Ω) (5.2.19)

If we choose ϕ = vε in Lemma 5.2.1, therefore by ellipticity condition (1.0.3), (5.2.3)

and (5.2.19), we see that

‖∇vε‖2
L2(Ω) ≤ C‖u0‖H2(Ω)

[
ε1/2‖∇vε‖L2(Ωε) + ε‖∇vε‖L2(Ω)

]
This implies the desired convergence rate in H1,

‖vε‖H1(Ω) ≤ C
√
ε‖u0‖H2(Ω), (5.2.20)

where C depends only on d, µ, and Ω.

5.3 Convergence rates of the pressure term

Before proving (5.1.3), once again we recall that if (uε, pε) ∈ H1(Ω;Rd)× L2(Ω) is a

weak solution of any Stokes system (1.0.2), then

‖pε −−
ˆ

Ω

pε‖L2(Ω) ≤ ‖∇pε‖H−1(Ω)

≤ C
{
‖F‖H−1(Ω) + ‖uε‖H1(Ω)

}
,

where C depends only on d, µ, and Ω.
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Proof of estimate (5.1.3). To prove the desired estimates, we need a more precise

calculation of the pressure term associated with vε in system (5.2.2). Recalling from

Lemma 5.2.1 that

(Lε(vε))α = −∂[pε − p0]

∂xα
+

∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

][
Sε
∂ũβ0
∂xj
− ∂uβ0
∂xj

])

+ ε
∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)Sε

∂2ũβ0
∂xk∂xj

)
+

∂

∂xi

(
bαβij (x/ε)Sε

∂ũβ0
∂xj

)
in Ω,

(5.3.1)

Using Lemma 4.2.1, we may rewrite the last term on the R.H.S. of (5.3.1) as

∂

∂xi

(
bαβij (x/ε)Sε

∂ũβ0
∂xj

)
=

∂

∂xi

([
∂

∂xk

(
εΦαβ

kij(x/ε)
)

+
∂

∂xα

(
εqβij(x/ε)

)]
Sε
∂ũβ0
∂xj

)
= N1 +N2.

(5.3.2)

Since Φαβ
kij = −Φαβ

ikj, we see that

N1 =
∂2

∂xi∂xk

(
εΦαβ

kij(x/ε)Sε
∂ũ0

β

∂xj

)
− ε ∂

∂xi

(
Φαβ
kij(x/ε)Sε

∂2ũβ0
∂xj∂xk

)

= −ε ∂

∂xi

(
Φαβ
kij(x/ε)Sε

∂2ũβ0
∂xj∂xk

)
.

For the second term in the R.H.S. of (5.3.2), we have

N2 =
∂

∂xα

(
∂

∂xi

[
εqβij(x/ε)Sε

∂ũβ0
∂xj

])
− ∂

∂xi

(
εqβij(x/ε)Sε

∂2ũβ0
∂xα∂xj

)

= N3 −
∂

∂xi

(
εqβij(x/ε)Sε

∂2ũβ0
∂xα∂xj

)
.

(5.3.3)

In view of (4.2.10), for the first term on the R.H.S. of (5.3.3), we obtain

N3 =
∂

∂xα

(
πβj (x/ε)Sε

∂ũβ0
∂xj

)
+

∂

∂xα

(
εqβij(x/ε)Sε

∂2ũβ0
∂xj∂xi

)
.

Substituting N1 −N3 into (5.3.1), we see that

(Lε(vε))α +
∂

∂xα

(
pε − p0 − πβj (x/ε)Sε

∂ũβ0
∂xj
− εqβij(x/ε)Sε

∂2ũβ0
∂xj∂xi

)

= ε
∂

∂xi

([
aαγij (x/ε)χγβk (x/ε)− Φαβ

kij(x/ε)
]
Sε

∂2ũβ0
∂xj∂xk

)

− ε ∂

∂xi

(
qβij(x/ε)Sε

∂2ũβ0
∂xα∂xj

)
− ∂

∂xi

([
âαβij − a

αβ
ij (x/ε)

][∂uβ0
∂xj
− Sε

∂ũβ0
∂xj

])
.

(5.3.4)
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By applying (4.3.1) to system (5.3.4), and recall that
´

Ω
pε =

´
Ω
p0 = 0, we see that∥∥∥[pε − p0 − πεSε(∇ũ0)− εqεSε(∇2ũ0)

]
+−
ˆ

Ω

[
πεSε(∇ũ0) + εqεSε(∇2ũ0)

]∥∥∥
L2(Ω)

≤
∥∥∥∇[pε − p0 − πεSε(∇ũ0)− εqεSε(∇2ũ0)

]∥∥∥
H−1(Ω)

≤ C‖∇vε‖L2(Ω) + Cε
[
‖χ‖L2(Y ) + ‖Φ‖L2(Y ) + ‖q‖L2(Y ) + 1

]
‖ũ0‖H2(Rd)

≤ C
√
ε‖u0‖H2(Ω),

(5.3.5)

where we have used Proposition 2.2.2-2.2.1 for the second last inequality, while

(5.2.20) and (4.2.2) for the last, and the constant C is independent of ε. Also,

by Proposition 2.2.2 and (4.2.2), we see that

ε‖qεSε(∇2ũ0)−−
ˆ
qεSε(∇2ũ0)‖L2(Ω) ≤ Cε‖ũ0‖H2(Rd)

≤ Cε‖u0‖H2(Ω).

(5.3.6)

By combining (5.3.5) and (5.3.6), we have proved the convergence rate of pressure

term

‖pε − p0 −
[
πεSε(∇ũ0)−−

ˆ
Ω

πεSε(∇ũ0)
]
‖L2(Ω) ≤ C

√
ε‖u0‖H2(Ω).

5.4 Convergence rates for uε in L2

Now we assume that
´

Ω
uε =

´
Ω
u0 = 0. To establish the sharp O(ε) rate for uε in

L2, noticing that

‖uε − u0‖L2(Ω) ≤ ‖vε‖L2(Ω) + ε‖χεSε(∇ũ0)‖L2(Ω). (5.4.1)

Using Proposition 2.2.2 and (4.2.2), we observe that

‖χεSε(∇ũ0)‖L2(Ω) ≤ ‖χ‖L2(Y )‖∇ũ0‖L2(Rd)

≤ C‖u0‖H2(Ω).

Thus, (5.4.1) has been reduced to prove

‖vε‖L2(Ω) ≤ Cε‖u0‖H2(Ω), (5.4.2)

for which we will use the duality argument.
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Proof of Theorem (1.0.4). We consider the following duality problems, for any

H ∈ L2(Ω;Rd), let (ϕε, σε) ∈ H1(Ω;Rd)×L2(Ω) be the weak solution of the following

Neumann problem of Stokes system
L∗ε(ϕε) +∇σε = H −−

ˆ
Ω

H in Ω,

div(ϕε) = 0 in Ω,(
∂ϕε
∂νε

)∗
− σε · n = 0 on ∂Ω,

(5.4.3)

and let (ϕ0, σ0) ∈ H2(Ω;Rd) × H1(Ω) be the weak solution of the corresponding

homogenized problem
L∗0(ϕ0) +∇σ0 = H −−

ˆ
Ω

H in Ω,

div(ϕ0) = 0 in Ω,(
∂ϕ0

∂ν0

)∗
− σ0 · n = 0 on ∂Ω,

(5.4.4)

with ˆ
Ω

σε =

ˆ
Ω

σ0 = 0.

Here we have used the notations: L∗ε = −div
(
A∗(x/ε)∇

)
and L∗0 = −div

(
Â∗∇

)
to

denote the adjoint operators. We note that Theorem 5.1.2 continues to hold for L∗ε, as

A∗ satisfies the same conditions as A. Also, by the W 2,2 estimates (3.4.3) for Stokes

systems with constant coefficients in C1,1 domains, we have

‖ϕ0‖H2(Ω) + ‖σ0‖H1(Ω) ≤ C‖H‖L2(Ω).

In other words, we have obtained

‖ϕε − ϕ0 − εχ∗εSε(∇ϕ̃0)‖H1(Ω) ≤ C
√
ε‖ϕ0‖H2(Ω)

≤ C
√
ε‖H‖L2(Ω).

(5.4.5)

where (χ∗, π∗) denotes the correctors associated with adjoint matrix A∗. Therefore

through dual pairing, and integrating by parts, we get

ˆ
Ω

vε ·
(
H −−

ˆ
Ω

H
)

= 〈L∗ε(ϕε), vε〉H−1
0 (Ω;Rd)×H1(Ω;Rd) +

ˆ
Ω

vε · ∇σε

= aε(vε, ϕε)−
ˆ

Ω

σε div(vε).

(5.4.6)
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By (3.4.2) and (5.2.19), we know that∣∣∣∣ˆ
Ω

σε div(vε)

∣∣∣∣ ≤ C‖σε‖L2(Ω)‖div(vε)‖L2(Ω)

≤ C‖H‖L2(Ω)(ε‖u0‖H2(Ω))

≤ Cε‖H‖L2(Ω)‖u0‖H2(Ω).

(5.4.7)

By choosing ϕ = ϕε in (5.2.11), we get

aε(vε, ϕε) = I1[ϕε] + I2[ϕε] + I3[ϕε]

where I1, I2 and I3 are defined in (5.2.12). Since div(ϕε) = 0, then by Lemma 5.2.2,

|aε(vε, ϕε)| ≤ C‖u0‖H2(Ω)

[
ε1/2‖∇ϕε‖L2(Ωε) + ε‖∇ϕε‖L2(Ω)

]
≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω) + Cε1/2‖u0‖H2(Ω)‖∇ϕε‖L2(Ωε),

(5.4.8)

where we have used (3.4.2) for the last inequality and C is independent of ε. Simply

by triangle inequality, we break the latter term on the R.H.S. of (5.4.8) as

‖∇ϕε‖L2(Ωε) ≤ ‖∇
(
ϕε − ϕ0 − εχ∗εSε(∇ϕ̃0)

)
‖L2(Ωε)

+ ‖∇ϕ0‖L2(Ωε) + ‖∇
(
εχ∗εSε(∇ϕ̃0)

)
‖L2(Ωε).

(5.4.9)

Directly deriving from (5.4.5), we know that

‖∇
(
ϕε − ϕ0 − εχ∗εSε(∇ϕ̃0)

)
‖L2(Ωε) ≤ C

√
ε‖H‖L2(Ω). (5.4.10)

By using Lemma 2.2.3 and (4.2.2) again, we get

‖∇ϕ0‖L2(Ωε) ≤ C
(
ε‖∇ϕ0‖H1(Ω)‖∇ϕ0‖L2(Ω)

)1/2

≤ C
√
ε‖ϕ0‖H2(Ω)

≤ C
√
ε‖H‖L2(Ω).

(5.4.11)

By the same argument as in (4.2.19), by Lemma 2.2.3, Proposition 2.2.2, 3.4.2 and

(4.2.2),

‖∇
(
εχ∗εSε(∇ϕ̃0)

)
‖L2(Ωε) ≤ C

{
‖(∇χ∗)εSε(ϕ̃0)‖L2(Ω̃ε)

+ ε‖ϕ̃0‖H2(Rd)

}
≤ C
√
ε‖ϕ0‖H2(Ω)

≤ C
√
ε‖H‖L2(Ω)

(5.4.12)

Substituting (5.4.10), (5.4.11) and (5.4.12) into (5.4.9), we have proved that

‖∇ϕε‖L2(Ωε) ≤ C
√
ε‖H‖L2(Ω). (5.4.13)
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Therefore,

|aε(vε, ϕε)| ≤ Cε‖u0‖H2(Ω)‖H‖L2(Ω) + Cε1/2‖u0‖H2(Ω)(ε
1/2‖H‖L2(Ω))

≤ Cε‖H‖L2(Ω)‖u0‖H2(Ω).
(5.4.14)

Hence, by using (5.4.14) and (5.4.7), we already proved that for any H ∈ L2(Ω;Rd)∣∣∣ˆ
Ω

vε ·
(
H −−

ˆ
Ω

H
)∣∣∣ ≤ |aε(vε, ϕε)|+ ∣∣∣ ˆ

Ω

σε div(ϕε)
∣∣∣

≤ Cε‖H‖L2(Ω)‖u0‖H2(Ω).

(5.4.15)

Since we assume
´

Ω
uε =

´
Ω
u0 = 0,∣∣∣ˆ

Ω

vε ·H
∣∣∣ ≤ ∣∣∣ˆ

Ω

vε ·
(
H −−

ˆ
Ω

H
)∣∣∣+

∣∣∣ ˆ
Ω

vε(−
ˆ

Ω

H)
∣∣∣

≤ Cε‖H‖L2(Ω)‖u0‖H2(Ω) + C
∣∣∣ ˆ

Ω

εχεSε(∇ũ0)(−
ˆ

Ω

H)
∣∣∣

≤ Cε‖H‖L2(Ω)‖u0‖H2(Ω)

(5.4.16)

where we have used (5.4.15) for the second last inequality and Proposition 2.2.2 for

the last, for any H ∈ L2(Ω;Rd). By duality argument, this implies

‖vε‖L2(Ω) ≤ Cε‖u0‖H2(Ω).

where C is independent of ε. Therefore we have complete the proof.

Copyright c© Shu Gu, 2016.
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Chapter 6 Uniform Regularity Estimates in Homogenization of Stokes

Systems

In this chapter, we study uniform regularity estimates for a family of Stokes systems

with rapidly oscillating periodic coefficients. We establish interior Lipschitz estimates

for the velocity and L∞ estimates for the pressure as well as Liouville property for

solutions in Rd. We also obtain the boundary W 1,p estimates in a bounded C1 domain

for any 1 < p <∞.

6.1 Introduction

More precisely, we consider the Stokes systems in fluid dynamics,{
Lε(uε) +∇pε = F,

div(uε) = g

in a bounded domain Ω in Rd. One of our main purpose of this chapter is to prove

the following theorem.

Theorem 6.1.1. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and pe-

riodicity condition (1.0.4). Let (uε, pε) be a weak solution of the Stokes system (1.0.2)

in B(x0, R) for some x0 ∈ Rd and R > ε. Then, for any ε ≤ r < R,(
−
ˆ
B(x0,r)

|∇uε|2
)1/2

+

(
−
ˆ
B(x0,r)

|pε −−
ˆ
B(x0,R)

pε|2
)1/2

≤ C

{(
−
ˆ
B(x0,R)

|∇uε|2
)1/2

+ ‖g‖L∞(B(x0,R)) +Rρ[g]C0,ρ(B(x0,R))

+ CR

(
−
ˆ
B(x0,R)

|F |q
)1/q

}
,

(6.1.1)

where 0 < ρ = 1− d
q
< 1, and the constant C depends only on d, µ, and ρ.

The scaling-invariant estimate (6.1.1) should be regarded as a Lipschitz estimate

for the velocity uε and L∞ estimate for the pressure pε down to the microscopic scale

ε, even though no smoothness assumption is made on the coefficient matrix A(y).

Indeed, if estimate (6.1.1) holds for any 0 < r < R, we would be able to bound

|∇uε(x0)|+ |pε(x0)−−
ˆ
B(x0,R)

pε|
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by the right hand side of (6.1.1). Here we have taken a point of view that solution

should behave much better on mesoscopic scales due to homogenization and that the

smoothness of coefficients only effects the solutions below the microscopic scale (see

this viewpoint in the recent development on quantitative stochastic homogenization

in [2,25] and their references). In fact, under the additional assumption that A(y) is

Hölder continuous,

|A(x)− A(y)| ≤ τ |x− y|λ for x, y ∈ Rd,

where τ ≥ 0 and λ ∈ (0, 1], we may deduce the full uniform Lipschitz estimate for uε

and L∞ estimate for pε from Theorem 6.1.1, by a blow-up argument.

Corollary 6.1.2. Suppose that A(y) satisfies ellipticity (1.0.3), periodicity (1.0.4)

and Hölder continuity (2.1.2) conditions. Let (uε, pε) be a weak solution of (1.0.2) in

B(x0, R) for some x0 ∈ Rd and R > 0. Then

‖∇uε‖L∞(B(x0,R/2)) + ‖pε −−
ˆ
B(x0,R)

pε‖L∞(B(x0,R/2))

≤ C

{(
−
ˆ
B(x0,R)

|∇uε|2
)1/2

+ ‖g‖L∞(B(x0,R)) +Rρ[g]C0,ρ(B(x0,R))

+ CR

(
−
ˆ
B(x0,R)

|F |q
)1/q

}
,

(6.1.2)

where 0 < ρ = 1− d
q
< 1, and the constant C depends only on d, µ, λ, τ and ρ.

As we mentioned in the Chapter 1, for the standard second-order elliptic system

Lε(uε) = F , uniform interior Lipschitz estimates as well as uniform boundary Lip-

schitz estimates with Dirichlet conditions in C1,α domains, were established by M.

Avellaneda and F. Lin in [3], under conditions (1.0.3), (1.0.4) and (2.1.2). Under the

additional symmetry condition A∗ = A, the boundary Lipschitz estimates with Neu-

mann boundary conditions in C1,α domains were obtained by C. Kenig, F. Lin and Z.

Shen in [34]. This symmetry condition was recently removed by S. N. Armstrong and

Z. Shen in [1], where the uniform Lipschitz estimates were studied for second-order

elliptic systems in divergence form with almost-periodic coefficients.

The proof of Theorem 6.1.1, uses a compactness argument, which was introduced

to the study of homogenization problems by M. Avellaneda and F. Lin [3, 6]. Let

(uε, pε) be a weak solution of the Stokes system (1.0.2) in B(0, 1). Suppose that

max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
≤ 1
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where ρ = 1 − d
q
. By the compactness argument with an iteration procedure, which

is more or less the L2 version of the compactness method used in [3], we are able to

show that if 0 < ε < θ`−1ε0 for some ` ≥ 1, then(
−
ˆ
B(0,θ`)

|uε − (P β
j (x) + εχβj (x/ε))Eβ

j (ε, `)−G(ε, `)|2dx
)1/2

≤ θ`(1+σ) (6.1.3)

where 0 < σ < ρ, and Eβ
j (ε, `), G(ε, `) are constants satisfying

|Eβ
j (ε, `)|+ |G(ε, `)| ≤ C.

In (6.1.3), P β
j (y) = yj(0, · · · , 1, · · · ) with 1 in the βth position and χ = (χβj (y)) is

the so-called corrector associated with the Stokes system (1.0.2). We remark that

estimate (6.1.3) may be regarded as a C1,σ estimate for uε in scales larger than ε.

This estimate allow us to deduce the Lipschitz estimate for the velocity uε down

to the scale ε. Moreover, by carefully analyzing the error terms in the asymptotic

expansion of pε, the estimate (6.1.3) also allows us to bound∣∣∣∣−ˆ
B(x0,r)

pε −−
ˆ
B(x0,R)

pε

∣∣∣∣
and to derive the L∞ estimate for the pressure pε, one of the main novelties of this

thesis. We should point out that pε is related to ∇uε by singular integrals that are

not bounded on L∞; Lipschitz estimate for uε in general do not imply L∞ estimates

for pε. Also, observe that the L2 formulation in (6.1.3) appears to be necessary, as

the correctors are not necessarily bounded without smoothness conditions on A. We

further note that as a consequence of (6.1.3), we establish a Liouville property for

Stokes systems with periodic coefficients.

In this chapter we also study the uniform boundary regularity estimates for Stokes

system (1.0.2) in C1 domains. The following theorem, whose proof is given in Section

6, may be regarded as a boundary Hölder estimate for uε down to the scale ε. We

emphasize that as in the case of Theorem 6.1.1, no smoothness assumption on A is

required for Theorem 6.1.3.

Theorem 6.1.3. Suppose that A(y) satisfies ellipticity (1.0.3) and periodicity (1.0.4)

conditions. Let Ω be a bounded C1 domain in Rd. Let x0 ∈ ∂Ω and 0 < R < R0,

where R0 = diam(Ω). Let (uε, pε) be a weak solution of
Lε(uε) +∇pε = 0 in B(x0, R) ∩ Ω,

div(uε) = 0 in B(x0, R) ∩ Ω,

uε = 0 on B(x0, R) ∩ ∂Ω.

(6.1.4)
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Suppose that 0 < ε ≤ R and 0 < R < 1. Then(
−
ˆ
B(x0,r)∩Ω

|∇uε|2
)1/2

≤ Cρ

( r
R

)ρ−1
(
−
ˆ
B(x0,R)∩Ω

|∇uε|2
)1/2

, (6.1.5)

where Cρ depends only on d, µ, ρ, and Ω.

Theorem 6.1.3 is also proved by compactness method, though correctors are not

needed here. The scaling-invariant boundary estimate (6.1.5), combined with the in-

terior estimates in Theorem 6.1.1, allows us to establish the boundary W 1,p estimates

for Stokes systems with VMO coefficients in C1 domains.

Let Bα,q(∂Ω;Rd) denote the Besov space of Rd-valued functions on ∂Ω of order

α ∈ (0, 1) with exponent q ∈ (1,∞). It is known that if u ∈ W 1,q(Ω;Rd) for some

1 < q <∞, where Ω is a bounded Lipschitz domain, then u|∂Ω ∈ B1− 1
q
,q(∂Ω;Rd).

Theorem 6.1.4. Let Ω be a bounded C1 domain in Rd and 1 < q < ∞. Suppose

that A satisfies ellipticity (1.0.3) and periodicity (1.0.4) conditions. Also assume that

A ∈ VMO(Rd). Let f = (fαi ) ∈ Lq(Ω;Rd×d), g ∈ Lq(Ω) and h ∈ B1− 1
q
,q(∂Ω;Rd)

satisfy the compatibility condition

ˆ
Ω

g −
ˆ
∂Ω

h · n = 0,

where n denotes the outward unit normal to ∂Ω. Then the solutions (uε, pε) in

W 1,q(Ω;Rd)× Lq(Ω) to Dirichlet problem
Lε(uε) +∇pε = div(f) in Ω,

div(uε) = g in Ω,

uε = h on ∂Ω,

(6.1.6)

satisfy the estimate

‖∇uε‖Lq(Ω) + ‖pε −−
ˆ

Ω

pε‖Lq(Ω) ≤ Cq

{
‖f‖Lq(Ω) + ‖g‖Lq(Ω) + ‖h‖

B
1− 1

q ,q(∂Ω)

}
, (6.1.7)

where Cρ depends only on d, µ, A, and Ω.

We mention that W 1,p estimates for elliptic and parabolic equations with contin-

uous or VMO coefficients have been studied extensively in recent years. We refer the

reader to [11–13,21,38,48] as well as their references for work on elliptic equations and

systems, and to [3, 7, 13, 22,23,34,50] for uniform W 1,p estimates in homogenization.
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6.2 Interior Lipschitz estimates for uε

For a ball B = B(x0, r) = {x ∈ Rd : |x − x0| < r} in Rd, we will use tB to denote

B(x0, tr), the ball with the same center and t times the radius of B.

We start with a Cacciopoli’s inequality for the Stokes system, whose proof may

be found in [24].

Theorem 6.2.1. Let (uε, pε) ∈ (H1(2B;Rd)× L2(2B)) be a weak solution of{
Lε(uε) +∇pε = F + div(f),

div(uε) = g

in 2B, where B = B(x0, r), F ∈ L2(2B,Rd) and f ∈ L2(2B;Rd×d). Then

ˆ
B

|∇uε|2 +

ˆ
B

|pε −−
ˆ
B

pε|2

≤ C

{
1

r2

ˆ
2B

|uε|2 +

ˆ
2B

|f |2 +

ˆ
2B

|g|2 + r2

ˆ
2B

|F |2
} (6.2.1)

where C depends only on d and µ.

Lemma 6.2.2. Let 0 < σ < ρ < 1 and ρ = 1− d
q
. Then there exist ε0 ∈ (0, 1/2) and

θ ∈ (0, 1/4), depending only on d, µ, σ and ρ, such that(
−
ˆ
B(0,θ)

∣∣∣uε −−ˆ
B(0,θ)

uε −
(
P β
j (x) + εχβj (x/ε)

)
−
ˆ
B(0,θ)

∂uβε
∂xj

∣∣∣2dx)1/2

≤ θ1+σ max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
,

(6.2.2)

whenever 0 < ε < ε0, and (uε, pε) is weak solution of{
Lε(uε) +∇pε = F,

div(uε) = g

in B(0, 1).

Proof. We prove the lemma by contradiction, using the same approach as in [3] for

the elliptic system Lε(uε) = F . First, we note that by the interior C1,ρ estimates for
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solutions of Stokes systems with constant coefficients,(
−
ˆ
B(0,θ)

∣∣∣u0 −−
ˆ
B(0,θ)

u0 − P β
j −
ˆ
B(0,θ)

∂uβ0
∂xj

∣∣∣2dx)1/2

≤ Cθ1+ρ‖u0‖C1,ρ(B(0,1/4))

≤ C0θ
1+ρ max

{(
−
ˆ
B(0,1/2)

|u0|2
)1/2

,

(
−
ˆ
B(0,1/2)

|F0|q
)1/q

, ‖g0‖Cρ(B(0,1/2))

}
(6.2.3)

for any θ ∈ (0, 1/4), where (u0, p0) is weak solution of

−div(A0∇u0) +∇p0 = F0 and div(u0) = g0

in B(0, 1/2) and A0 is a constant matrix satisfying the ellipticity condition (1.0.3). We

emphasize that the constant C0 in (6.2.3) depends only on d and µ. Since 0 < σ < ρ,

we may choose θ ∈ (0, 1/4) such that

2dC0θ
ρ < θσ. (6.2.4)

We claim that there exists ε0 > 0, depending only on d, µ, σ and ρ, such that the

estimate (6.2.2) holds with this θ, whenever 0 < ε < ε0, and (uε, pε) is a weak solution

of Stokes system (1.0.2) in B(0, 1).

Suppose this is not the case. Then there exist sequences {εk}, {Ak(y)}, {uk}
and {pk} such that εk → 0, Ak(y) satisfies ellipticity (1.0.3) (with the same µ) and

periodicity (1.0.4) conditions, such that{
−div(Ak(x/εk)∇uk) +∇pk = Fk in B(0, 1),

div(uk) = gk in B(0, 1),
(6.2.5)

max

{(
−
ˆ
B(0,1)

|uk|2
)1/2

,

(
−
ˆ
B(0,1)

|Fk|q
)1/q

, ‖gk‖Cρ(B(0,1))

}
≤ 1, (6.2.6)

and(
−
ˆ
B(0,θ)

∣∣∣uk −−ˆ
B(0,θ)

uk −
(
P β
j (x) + εkχ

kβ
j (x/εk)

)
−
ˆ
B(0,θ)

∂uβk
∂xj

∣∣∣2dx)1/2

> θ1+σ,

(6.2.7)

where χkβj denotes the correctors for the Stokes systems with coefficient matrices

Ak(x/ε). Note that by (6.2.6) and Cacciopoli’s inequality (6.2.1), the sequence {uk}
is bounded in H1(B(0, 1/2);Rd). Thus, by passing to a subsequence, we may assume

that uk ⇀ u0 weakly in L2(B(0, 1);Rd) and uk ⇀ u0 weakly in H1(B(0, 1/2);Rd).
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Similarly, in view of (6.2.6), by passing to subsequences, we may assume that gk → g0

in L∞(B(0, 1)) and Fk ⇀ F0 in Lq(B(0, 1);Rd). Since Âk satisfies the ellipticity

condition (3.1.8), we may further assume that Âk → A0 for some constant matrix A0

satisfying (3.1.8).

Since εkχ
kβ
j (x/εk)→ 0 strongly in L2(B(0, 1);Rd), by taking the limit in (6.2.7),

we obtain (
−
ˆ
B(0,θ)

∣∣∣u0 −−
ˆ
B(0,θ)

u0 − P β
j −
ˆ
B(0,θ)

∂uβ0
∂xj

∣∣∣2dx)1/2

≥ θ1+σ. (6.2.8)

Also observe that (6.2.6) implies

max

{(
−
ˆ
B(0,1)

|u0|2
)1/2

,

(
−
ˆ
B(0,1)

|F0|q
)1/q

, ‖g0‖Cρ(B(0,1))

}
≤ 1. (6.2.9)

Finally, we note that

‖pk −−
ˆ
B(0,1/2)

pk‖L2(B(0,1/2)) ≤ ‖∇pk‖H−1(B(0,1/2))

≤ C
{
‖∇uk‖L2(B(0,1/2)) + ‖Fk‖H−1(B(0,1/2))

}
≤ C,

where the first inequality holds for any pk ∈ L2(B(0, 1/2)), and we have applied

(4.3.1) to the first equation in (6.2.5) for the second inequality and Cacciopoli’s

inequality for the third. Clearly, we may assume
´
B(0,1/2)

pk = 0 by subtracting a

constant. Thus, by passing to a subsequence, we may assume that pk ⇀ p0 weakly

in L2(B(0, 1/2)). This, together with convergence of uk, Fk, gk, and Âk, allow us to

apply the Compactness Theorem (Theorem 3.3.2) of Stokes system to conclude that{
−div(A0∇u0) +∇p0 = F0 in B(0, 1/2),

div(u0) = g0 in B(0, 1/2).

As a result, in view of (6.2.3), (6.2.8) and (6.2.9), we obtain

θ1+σ ≤ C0θ
1+ρ max

{(
−
ˆ
B(0,1/2)

|u0|2
)1/2

,

(
−
ˆ
B(0,1/2)

|F0|q
)1/q

, ‖g0‖Cρ(B(0,1/2))

}
≤ 2dC0θ

1+ρ,

which contradicts the choice of θ in (6.2.4). This completes the proof.
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Remark 6.2.3. It is easy to see that estimate (6.2.2) continues to hold if we replace

−́
B(0,θ)

uε by the average

−
ˆ
B(0,θ)

[
uε − (P β

j + εχβj (x/ε)−
ˆ
B(0,θ)

∂uβε
∂xj

]
dx.

This will be used in the next lemma.

Lemma 6.2.4. Let 0 < σ < ρ < 1 and ρ = 1 − d
q
. Let (ε0, θ) be given by Lemma

6.2.2. Suppose that 0 < ε < θk−1ε0 for some k ≥ 1, and{
Lε(uε) +∇pε = F,

div(uε) = g

in B(0, 1). Then there exist constants E(ε, `) = (Eβ
j (ε, `)) ∈ Rd×d for 1 ≤ ` ≤ k,

such that(
−
ˆ
B(0,θ`)

∣∣∣uε − (P β
j + εχβj (x/ε)

)
Eβ
j (ε, `)−−

ˆ
B(0,θ`)

[
uε −

(
P β
j + εχβj (x/ε)

)
Eβ
j (ε, `)

]∣∣∣2)1/2

≤ θ`(1+σ) max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
.

(6.2.10)

Moreover, the constants E(ε, `) satisfy

|E(ε, `)| ≤ C max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
, (6.2.11)

|E(ε, `+ 1)− E(ε, `)|

≤ Cθ`σ max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
,

(6.2.12)

where C depends only on d, µ, σ and ρ, and in particular,

d∑
j=1

Ej
j (ε, `) = −

ˆ
B(0,θ`)

g. (6.2.13)

Proof. The lemma is proved by an induction argument on `. The case ` = 1 follows

directly from Lemma 6.2.2, with

Eβ
j (ε, 1) = −

ˆ
B(0,θ)

∂uβε
∂xj
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(see Remark 6.2.3). Suppose that the desired constants exist for all positive integers

up to some `, where 1 ≤ ` ≤ k − 1. To construct E(ε, `+ 1), we consider

w(x) = uε(θ
`x)−

{
P β
j (θ`x) + εχβj (θ`x/ε)

}
Eβ
j (ε, `)

−−
ˆ
B(0,θ`)

[
uε(θ

`x)−
{
P β
j (θ`x) + εχβj (θ`x/ε)

}
Eβ
j (ε, `)

]
.

Note that by the rescaling property of the Stokes system (see in Section 2.1),
L ε

θ`
(w) +∇

{
θ`pε(θ

`x)− θ`πβj (θ`x/ε)Eβ
j (ε, `)

}
= θ2`F (θ`x),

div(w) = θ`g(θ`x)− θ`
d∑
j=1

Ej
j (ε, `),

(6.2.14)

in B(0, 1), where πβj is defined by (3.1.5). Since (ε/θ`) ≤ (ε/θk−1) ≤ ε0, we may apply

Lemma 6.2.2 to obtain(
−
ˆ
B(0,θ)

∣∣∣∣w − (P β
j + θ−`εχβj (θ`x/ε)

)
−
ˆ
B(0,θ)

∂wβ

∂xj

−−
ˆ
B(0,θ)

[
w −

(
P β
j + θ−`εχβj (θ`x/ε)

)
−
ˆ
B(0,θ)

∂wβ

∂xj

]∣∣∣∣2dx)1/2

≤ θ1+σ max

{(
−
ˆ
B(0,1)

|w|2
)1/2

,

(
−
ˆ
B(0,1)

|F`|qdx
)1/q

, ‖div(w)‖Cρ(B(0,1))

}
,

(6.2.15)

where F`(x) = θ2`F (θ`x).

We now estimate the right hand side of (6.2.15). Observe that by the induction

assumption,(
−
ˆ
B(0,1)

|w|2
)1/2

≤ θ`(1+σ) max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
.

(6.2.16)

Also note that since 0 < ρ = 1− d
q
,(

−
ˆ
B(0,1)

|θ2`F (θ`x)|qdx
)1/q

≤ θ`(1+ρ)

(
−
ˆ
B(0,1)

|F |q
)1/q

.

In view of (6.2.14) and (6.2.13), we have

div(w) = θ`
{
g(θ`x)−−

ˆ
B(0,θ`)

g

}
,
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which gives

‖div(w)‖Cρ(B(0,1)) ≤ θ`(1+ρ)‖g‖Cρ(B(0,1)).

Thus we have proved that the right hand side of (6.2.15) is bounded by

θ(`+1)(1+σ) max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
.

Finally, we note that the left hand side of (6.2.15) may be written as(
−
ˆ
B(0,θ`+1)

∣∣∣∣uε−(P β
j + εχβj (x/ε)

)
Eβ
j (ε, `+ 1)

−−
ˆ
B(0,θ`+1)

[
uε −

(
P β
j + εχβj (x/ε)

)
Eβ
j (ε, `+ 1)

]∣∣∣∣2dx)1/2

with

Eβ
j (ε, `+ 1) = Eβ

j (ε, `) + θ−` −
ˆ
B(0,θ)

∂wβ

∂xj
. (6.2.17)

Observe that by Cacciopoli’s inequality (6.2.1),

|E(ε, `+ 1)− E(ε, `)| ≤ θ−`
(
−
ˆ
B(0,θ)

|∇w|2
)1/2

≤ Cθ−` max

{(
−
ˆ
B(0,1)

|w|2
)1/2

,

(
−
ˆ
B(0,1)

|θ2`F (θ2`x)|2
)1/2

,

(
−
ˆ
B(0,1)

|div(w)|2
)1/2

}

≤ Cθ`σ max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
,

where we have used the estimates for the right hand side of (6.2.15) for the last

inequality. This, together with the estimate of E(ε, 1) gives (6.2.11) and (6.2.12). To

see (6.2.13), we note that by (6.2.14) and (6.2.17),

d∑
j=1

Ej
j (ε, `+ 1) =

d∑
j=1

Ej
j (ε, `) + θ−` −

ˆ
B(0,θ)

div(w) = −
ˆ
B(0,θ)

g(θ`x)dx

= −
ˆ
B(0,θ`+1)

g,

This completes the proof.

The following theorem may be viewed as the Lipschitz estimate for uε, down to

the scale ε. Recalling in (2.1.8), we use [g]C0,ρ(E) to denote the semi-norm

[g]C0,ρ(E) = sup

{
|g(x)− g(y)|
|x− y|ρ

: x, y ∈ E and x 6= y

}
.
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Theorem 6.2.5. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and pe-

riodicity condition (1.0.4). Let (uε, pε) be a weak solution of{
Lε(uε) +∇pε = F

div(uε) = g

in B(x0, R) for some x0 ∈ Rd and R > 2ε. Then, if ε ≤ r ≤ (R/2),(
−
ˆ
B(x0,r)

|∇uε|2
)1/2

≤ C

{
1

R

(
−
ˆ
B(x0,R)

|uε|2
)1/2

+R

(
−
ˆ
B(x0,R)

|F |q
)1/q

+ ‖g‖L∞(B(x0,R)) +Rρ[g]C0,ρ(B(x0,R))

} (6.2.18)

where ρ ∈ (0, 1), ρ = 1− d
q
, and C depends only on d, µ, and ρ.

Proof. By covering B(x0, r) with balls of radius ε, we only need to consider the case

r = ε. By translation and dilation, we may further assume that x0 = 0 and R = 1.

Thus we would need to show that if 0 < ε ≤ (1/2),(
−
ˆ
B(0,ε)

|∇uε|2
)1/2

≤ C

{(
−
ˆ
B(0,1)

|uε|2
)1/2

+

(
−
ˆ
B(0,1)

|F |q
)1/q

+ ‖g‖Cρ(B(0,1))

}
(6.2.19)

We will see that this follows readily from Lemma 6.2.4.

Indeed, let (ε0, θ) be given by Lemma 6.2.2. The case θε0 ≤ ε ≤ (1/2) follows

directly from Cacciopoli’s inequality. Suppose now that 0 < ε < θε0, choose k ≥ 2 so

that θkε0 ≤ ε < θk−1ε0. It follows from Lemma 6.2.4 that(
−
ˆ
B(0,θk−1)

|uε −−
ˆ
B(0,θk−1)

uε|2
)1/2

≤ C

{(
−
ˆ
B(0,1)

|uε|2
)1/2

+

(
−
ˆ
B(0,1)

|F |q
)1/q

+ ‖g‖Cρ(B(0,1))

}
.

(6.2.20)

This, together with the Cacciopoli’s inequality (6.2.1), implies that(
−
ˆ
B(0,θk−1)

|∇uε|2
)1/2

≤ C

{(
−
ˆ
B(0,1)

|uε|2
)1/2

+

(
−
ˆ
B(0,1)

|F |q
)1/q

+ ‖g‖Cρ(B(0,1))

}
.

from which the estimate (6.2.19) follows.

6.3 A Liouville property for Stokes systems

In this section we prove a Liouville property for global solutions of the Stokes systems

with periodic coefficient. We refer the readers to [5] for the case of the elliptic systems
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L1(u) = 0 (also see [39, 41] and their references for related work). The Liouville

property for Stokes systems with constant coefficients is well known; however, we are

not aware of any previous work on the Liouville property for Stokes systems with

variable coefficients.

Theorem 6.3.1. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and pe-

riodicity condition (1.0.4). Let (u, p) ∈ H1
loc(Rd;Rd)× L2

loc(Rd) be a weak solution of{
L1(u) +∇p = 0,

div(u) = g
(6.3.1)

in Rd, where g is a constant. Assume that(
−
ˆ
B(0,R)

|u|2
)1/2

≤ CuR
1+σ (6.3.2)

for some Cu > 0, σ ∈ (0, 1), and for all R > 1. Then{
u(x) = H +

(
P β
j (x) + χβj (x)

)
Eβ
j ,

p(x) = H̃ + πβj (x)Eβ
j

(6.3.3)

for some constants H ∈ Rd, H̃ ∈ R, and E = (Eβ
j ) ∈ Rd×d. In particular, the space

of functions (u, p) that satisfy (6.3.1) and (6.3.2) is of dimension d2 + d+ 1.

Proof. Fix σ1 ∈ (σ, 1). Let (ε0, θ) be the constants given by Lemma 6.2.2 for 0 <

σ1 < ρ < 1. Suppose that (u, p) is a solution of (6.3.1) in Rd for some constant g. Let

uε(x) = u(x/ε) and pε(x) = ε−1p(x/ε).

Then {
Lε(uε) +∇pε = 0,

div(uε) = ε−1g,

in B(0, 1). It follows from Lemma 6.2.4 that if 0 < ε < θk−1ε0 for some k ≥ 1, then

inf
E=(E

β
j
)∈Rd×d

H∈Rd

(
−
ˆ
B(0,θ`)

|uε − (P β
j + εχβj (x/ε))Eβ

j −H|2
)1/2

≤ θ`(1+σ1) max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

, ε−1|g|

}
,
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where 1 ≤ ` ≤ k. By a change of variable this gives

inf
E=(E

β
j
)∈Rd×d

H∈Rd

(
−
ˆ
B(0,ε−1θ`)

|u− (P β
j + χβj (x))Eβ

j −H|2
)1/2

≤ θ`(1+σ1) max

{(
−
ˆ
B(0,ε−1)

|u|2
)1/2

, ε−1|g|

}
,

(6.3.4)

where 0 < ε < θk−1ε0 for some k ≥ 1 and 1 ≤ ` ≤ k.

Now, suppose that u satisfies the growth condition (6.3.2). For any m ≥ 1 such

that θm+1 ≤ ε0, let ε = θm+` where ` > 1. It follows from (6.3.4) and (6.3.2) that

inf
E=(E

β
j
)∈Rd×d

H∈Rd

(
−
ˆ
B(0,θ−m)

|u− (P β
j + χβj (x))Eβ

j −H|2
)1/2

≤ θ`(1+σ1) max
{
C(ε−1)1+σ, ε−1|g|

}
≤ θ`(1+σ1) max

{
Cθ−(m+`)(1+σ), θ−(m+`)|g|

}
,

(6.3.5)

for some constant C independent of m and `. Since σ1 > σ, we may fix m and let

`→∞ in (6.3.5) to conclude that the left hand side of (6.3.5) is zero. Thus, for each

m large, there exist constants Hm ∈ Rd and Em = (Emβ
j ) ∈ Rd×d such that

u(x) = Hm +
(
P β
j (x) + χβj (x)

)
Emβ
j in B(0, θ−m).

Finally, we observe that ∇u = (∇P β
j +∇χβj )Eβ

j and since
´
Y
∇χβj = 0,

ˆ
Y

∇u =

ˆ
Y

∇P β
j · E

mβ
j .

This implies that Emβ
j = Enβ

j for any m, n large; as a consequence, we obtain

Hm = Hn, for any m, n large. Thus we have proved that (6.3.3) holds for some

H ∈ Rd and E = (Eβ
j ) ∈ Rd×d, Note that if

H + (P β
j + χβj )Eβ

j = 0 in Rd,

then
´
Y
∇P β

j · E
β
j = 0. It follows that Eβ

j = 0 and hence, H = 0. This shows that

the space of functions (u, p) that satisfy (6.3.1)-(6.3.2) is of dimension d2 + d+ 1.

Remark 6.3.2. Suppose that (u, p) satisfies (6.3.1) in Rd for some constant g and

that (
−
ˆ
B(0,R)

|u|2
)1/2

≤ CσR
σ (6.3.6)

for some Cu > 0, σ ∈ (0, 1), and for all R > 1. It follows from Theorem 6.3.1 that

(u, p) must be constants.
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Remark 6.3.3. One may use the results in Theorem 6.3.1 and a line of argument

used in [41] to characterize all solutions of (6.3.1) in Rd that satisfy the growth

condition (
−
ˆ
B(0,R)

|u|2
)1/2

≤ CσR
N+σ (6.3.7)

for some Cu > 0, integer N ≥ 2, σ ∈ (0, 1), and for all R > 1. In particular, by

using the difference operator ∆iφ = φ(x+ ei)−φ(x) repeatedly, one may deduce from

the observation in Remark 6.3.2 that

uα(x) =
∑
|ν|=N

E(ν, α)xν +
∑

0≤|ν|≤N−1

wv,α(x)xν ,

where E(v, α) is constant and wν,α(x) is 1-periodic. Hence ν = (ν1, ν2, · · · , νd) is a

multi-index and xν = xν11 x2ν2 · · · xνdd . We will pursue this line of research elsewhere.

6.4 L∞ estimates for pε and proof of Theorem 1.0.1

In this section we prove an L∞ estimate for pε, down to the scale ε. We also give the

proof of Theorem 1.0.1 and Corollary 6.1.2.

Theorem 6.4.1. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and pe-

riodicity condition (1.0.4). Let (uε, pε) be a weak solution of{
Lε(uε) +∇pε = F,

div(uε) = g

in B(x0, R) for some x0 ∈ Rd and R > ε. Then, if ε ≤ r < R,(
−
ˆ
B(x0,r)

∣∣pε −−ˆ
B(x0,R)

pε
∣∣2)1/2

≤ C

{(
−
ˆ
B(x0,R)

|∇uε|2
)1/2

+R

(
−
ˆ
B(x0,R)

|F |q
)1/q

+ ‖g‖L∞(B(x0,R)) +Rρ[g]C0,ρ(B(x0,R))

}
,

(6.4.1)

where ρ ∈ (0, 1), ρ = 1− d
q
, and C depends only on d, µ and ρ.

Proof. By translation and dilation we may assume that x0 = 0 and R = 1. Note that

by applying (4.3.1) to the Stoke system (1.0.2) in B(0, r), we have

‖pε −−
ˆ
B(0,r)

pε‖L2(B(0,r)) ≤ C‖∇pε‖H−1(B(0,r))

≤ C
{
‖∇uε‖L2(B(0,r)) + ‖F‖H−1(B(0,1))

}
.

(6.4.2)
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Thus, in view of Theorem 6.2.5, it suffices to show that∣∣∣−ˆ
B(0,r)

pε −−
ˆ
B(0,1)

pε

∣∣∣
is bounded by the right hand side of (6.4.1). This will be done by using the C1,σ

estimate for uε down to the scale ε in Lemma 6.2.2.

Let (θ, ε0) be the constants given by Lemma 6.2.2. By (6.4.2) we may assume that

0 < ε ≤ r < ε0. Let θkε0 ≤ ε < θk−1ε0 and θtε0 ≤ r < θt−1ε0 for some 1 ≤ t ≤ k. The

terms −́
B(0,r)

pε − −́B(0,θt)
pε and −́

B(0,1)
pε − −́B(0,θ)

pε can be handled by using (6.4.2).

To deal with −́
B(0,θt)

pε − −́B(0,θ)
pε, we write

−
ˆ
B(0,θt)

pε −−
ˆ
B(0,θ)

pε =
t−1∑
`=1

{
−
ˆ
B(0,θ`+1)

pε −−
ˆ
B(0,θ`)

pε

}
. (6.4.3)

Let
v` = uε(x)− (P β

j (x) + εχβj (x/ε))Eβ
j (ε, `)

−−
ˆ
B(0,θ`)

{
uε(x)− (P β

j (x) + εχβj (x/ε))Eβ
j (ε, `)

}
,

where E(ε, `) = (Eβ
j (ε, `)) ∈ Rd×d are constants given by Lemma 6.2.4. Note that by

Lemma 6.2.4,(
−
ˆ
B(0,θ`)

|v`|2
)1/2

≤ θ`(1+σ) max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
,

(6.4.4)

where 0 < σ < ρ < 1, and
Lε(v`) +∇

{
pε − πβj (x/ε)Eβ

j (ε, `)
}

= F,

div(v`) = g −−
ˆ
B(0,θ`)

g,
(6.4.5)

in B(0, 1). Observe that for any H ∈ R,∣∣∣∣−ˆ
B(0,θ`+1)

pε −−
ˆ
B(0,θ`)

pε

∣∣∣∣
≤
∣∣∣∣−ˆ
B(0,θ`+1)

[
pε −H − πβj (x/ε)Eβ

j (ε, `)
]
dx

∣∣∣∣
+

∣∣∣∣−ˆ
B(0,θ`)

[
pε −H − πβj (x/ε)Eβ

j (ε, `)
]
dx

∣∣∣∣
+ |Eβ

j (ε, `)|
∣∣∣∣−ˆ
B(0,θ`+1)

πβj (x/ε)−−
ˆ
B(0,θ`)

πβj (x/ε)

∣∣∣∣ .
(6.4.6)
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Choose

H = −
ˆ
B(0,θ`)

[
pε − πβj (x/ε)Eβ

j (ε, `)
]
dx

so that the second term in the right hand side of (6.4.6) equals zero. Using (6.4.2),

(6.4.5), Cacciopoli’s inequality (6.2.1) and (6.4.4), we see that the first term in the

right hand side of (6.4.6) is bounded by

C

(
−
ˆ
B(0,θ`)

|pε −H − πβj (x/ε)Eβ
j (ε, `)|2dx

)1/2

≤ Cθ−d`/2
{
‖∇v`‖L2(B(0,θ`)) + ‖F‖H−1(B(0,θ`))

}
≤ Cθ`σ max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
,

where we have also used q > d, 0 < σ < ρ = 1− d
q
, and

‖F‖H−1(B(0,θ`)) ≤ C|B(0, θ`)|
1
2

+ 1
d

(
−
ˆ
B(0,θ`)

|F |q
)1/q

≤ Cθ`(
d
2

+ρ)

(
−
ˆ
B(0,1)

|F |q
)1/q

.

Finally, we note that since πβj is 1-periodic,∣∣∣∣−ˆ
B(0,θ`+1)

πβj (x/ε)−−
ˆ
B(0,θ`)

πβj (x/ε)

∣∣∣∣
=

∣∣∣∣−ˆ
B(0,ε−1θ`+1)

πβj − 〈π
β
j 〉
∣∣∣∣+

∣∣∣∣−ˆ
B(0,ε−1θ`)

πβj − 〈π
β
j 〉
∣∣∣∣

≤ Cεθ−`‖πβj ‖L2(Y )

≤ Cεθ−`,

(6.4.7)

where 〈πβj 〉 denotes the average of 1-periodic function πβj over the periodic cell, i.e.,

〈πβj 〉 = −
ˆ
Y

πβj .

This, together with the estimate of the first two terms in the right hand side of (6.4.6),

shows that the left hand side of (6.4.3) is bounded by

C
t−1∑
`=1

(θ`σ + εθ−`) max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}

≤ C max

{(
−
ˆ
B(0,1)

|uε|2
)1/2

,

(
−
ˆ
B(0,1)

|F |q
)1/q

, ‖g‖Cρ(B(0,1))

}
,

This completes the proof.
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Proof of Theorem 1.0.1. The estimate for ∇uε in (1.0.5) is given by Theorem

6.2.5, while the estimate for pε is contained in Theorem 6.4.1.

Proof of Corollary 6.1.2. Under the Hölder continuous condition (2.1.2), it is

known that solutions of the Stokes systems are locally C1,α for α < λ (see [24]). In

particular, it follows that if (u, p) is a weak solution of{
L1(u) +∇p = F,

div(u) = g

in B(y, 1) for some y ∈ Rd, then

‖∇u‖L∞(B(y,1/2)) + ‖p−−
ˆ
B(y,1/2)

p‖L∞(B(y,1/2))

≤ C

{(
−
ˆ
B(y,1)

|∇u|2
)1/2

+

(
−
ˆ
B(y,1)

|F |q
)1/q

+ ‖g‖Cρ(B(y,1))

}
,

(6.4.8)

where 0 < ρ < 1, ρ = 1− d
q
, and the constant C depends only on d, µ, ρ, and (λ, τ)

in (2.1.2).

To prove (6.1.2), by translation and dilation, we may assume that x0 = 0 and

R = 1. Now suppose (uε, pε) is a weak solution of (1.0.2) in B(0, 1). The estimate

(6.1.2) for the case ε ≥ (1/8) follows directly from (6.4.8), as the matrix A(x/ε)

satisfies Hölder continuity (2.1.2) uniformly in ε. For 0 < ε < (1/8), we use a blow-

up argument and estimate (6.4.8) by considering

u(x) = ε−1uε(εx) and p(x) = pε(εx).

This leads to

‖∇uε‖L∞(B(y,ε)) + ‖pε −−
ˆ
B(y,ε)

pε‖L∞(B(y,ε))

≤ C

{(
−
ˆ
B(y,2ε)

|∇uε|2
)1/2

+ ε

(
−
ˆ
B(y,2ε)

|F |q
)1/q

+ ‖g‖Cρ(B(y,2ε))

}
,

(6.4.9)

for any y ∈ B(0, 1/2). In view of Theorem 6.2.5 we obtain

‖∇uε‖L∞(B(0,1/2)) + ‖pε −−
ˆ
B(y,ε)

pε‖L∞(B(y,ε))

≤ C

{(
−
ˆ
B(0,1)

|∇uε|2
)1/2

+

(
−
ˆ
B(0,1)

|F |q
)1/q

+ ‖g‖Cρ(B(0,1))

}
.

(6.4.10)
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Finally, we note that for any y ∈ B(0, 1/2),∣∣∣∣pε −−ˆ
B(0,1)

pε

∣∣∣∣
≤
∣∣∣∣pε −−ˆ

B(y,ε)

pε

∣∣∣∣+

∣∣∣∣−ˆ
B(y,ε)

pε −−
ˆ
B(y,1/2)

pε

∣∣∣∣+

∣∣∣∣−ˆ
B(y,1/2)

pε −−
ˆ
B(0,1)

pε

∣∣∣∣
≤
∣∣∣∣pε −−ˆ

B(y,ε)

pε

∣∣∣∣+

(
−
ˆ
B(y,ε)

|pε −−
ˆ
B(y,1/2)

pε|2
)1/2

+

(
−
ˆ
B(y,1/2)

|pε −−
ˆ
B(0,1)

pε|2
)1/2

≤ C

{(
−
ˆ
B(0,1)

|∇uε|2
)1/2

+

(
−
ˆ
B(0,1)

|F |q
)1/q

+ ‖g‖Cρ(B(0,1))

}
where we have used (6.4.9), (6.4.10), Theorem 6.4.1, and (6.4.2) for the last inequality.

This completes the proof.

6.5 Boundary Hölder estimates

In this section we establish uniform boundary Hölder estimates for the Stokes system

(1.0.2) in C1 domains and give the proof of Theorem 6.1.3.

Let ψ : Rd−1 → R be a C1 function and

Dr = D(r, ψ) = {x = (x′, xd) ∈ Rd : |x′| < r and ψ(x′) < xd < ψ(x′) + 10(M + 1)r},

∆r = ∆(r, ψ) = {x = (x′, xd) ∈ Rd : |x′| < r and xd = ψ(x′)}.
(6.5.1)

We will always assume that ψ(0) = 0 and

|∇ψ‖∞ ≤M, and |∇ψ(x′)−∇ψ(y′)| ≤ ω(|x′− y′|) for any x′, y′ ∈ Rd−1 (6.5.2)

whereM > 0 is a fixed constant and ω(r) is a fixed, nondecreasing continuous function

on [0,∞) and ω(0) = 0.

Theorem 6.5.1. Let 0 < ρ, η < 1. Let (uε, pε) ∈ H1(Dr;Rd) × L2(Dr) be a weak

solution of 
Lε(uε) +∇pε = 0 in Dr,

div(uε) = g in Dr,

uε = h on ∆r

(6.5.3)

for some 0 < ε < r < r0, where g ∈ Cη(Dr), h ∈ C0,1(∆r) and h(0) = 0. Then for

any 0 < ε ≤ t < r,(
−
ˆ
Dt

|uε|2
)1/2

≤ C

(
t

r

)ρ{(
−
ˆ
Dr

|uε|2
)1/2

+ r‖g‖L∞(Dr) + r1+η[g]C0,η(Dr) + r[h]C0,1(∆r)

}
,

(6.5.4)
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where C depends only on d, µ, ρ, η, r0, and (M,ω) in (6.5.2).

It is not hard to see that Theorem 6.1.3 follows from Theorem 6.5.1 and the

following boundary Cacciopoli’s inequality whose proof may be found in [24].

Theorem 6.5.2. Suppose that A satisfies ellipticity condition (1.0.3). Let (u, p) ∈
H1(Dr;Rd)× L2(Dr) be a weak solution of

−div(A(x)∇u) +∇p = F + div(f) in Dr,

div(u) = g in Dr,

u = h on ∆r.

Then
ˆ
Dr/2

|∇uε|2 ≤ C

{
1

r2

ˆ
Dr

|u|2 +

ˆ
Dr

|f |2 +

ˆ
Dr

|g|2 + r2

ˆ
Dr

|F |2 + ‖h‖2
H1/2(∆r)

]
(6.5.5)

where C depends only on d, µ, and M .

To prove Theorem 6.5.1 we need an analogue of Theorem 3.3.2 in the presence of

boundary. The following lemma is the compactness theorem of Stokes system with

Dirichlet boundary conditions.

Lemma 6.5.3. Let {Ak(y)} be a sequence of matrices satisfying the ellipticity condi-

tion (1.0.3) (with the same µ) and periodicity condition (1.0.4). Let D(k) = D(r, ψk)

and ∆(k) = ∆(r, ψk), where {ψk} is a sequence of C1 functions satisfying ψk(0) = 0

and (6.5.2). Let (uk, pk) ∈ H1(D(k);Rd))× L2(D(k)) be the weak solution of
−div(Ak(x/εk)∇uk) +∇pk = 0 in D(k),

div(uk) = gk in D(k),

uk = hk on ∆(k).

where εk → 0, fk(0) = 0 and

‖uk‖H1(D(k)) + ‖pk‖L2(D(k)) + ‖gk‖Cη(D(k)) + ‖hk‖C0,1(∆(k)) ≤ C (6.5.6)

Then there exist subsequences of {Ak}, {uk}, {pk}, {ψk}, {gk}, and {hk}, which we

will still denote by the same notation, and a constant matrix A0 satisfying (3.1.8), a

function ψ0 satisfying ψ0(0) = 0 and (6.5.2), u0 ∈ H1(D(r, ψ0);Rd), p0 ∈ L2(D(r, ψ0)),

72



g0 ∈ Cη(D(r, ψ0)), h0 ∈ C0,1(∆(r, ψ0);Rd) such that

Âk → A0,

ψk(x
′)→ ψ0(x′) and ∇ψk(x′)→ ∇ψ0(x′) uniformly for |x′| < r,

hk(x
′, ψk(x

′))→ h0(x′, ψ0(x′)) uniformly for |x′| < r,

gk(x
′, ψk(x

′))→ g0(x′, ψ0(x′)) uniformly for |x′| < r,

uk(x
′, xd − ψk(x′)) ⇀ u0(x′, xd − ψ0(x′)) weakly in H1(Q;Rd),

pk(x
′, xd − ψk(x′)) ⇀ p0(x′, xd − ψ0(x′)) weakly in L2(Q),

(6.5.7)

where Q = {(x′, xd) : |x′| < r and 0 < xd < 10(M + 1)r}. Moreover, (u0, p0) is a

weak solution of 
−div(A0∇u0) +∇p0 = 0 in D(r, ψ0),

div(u0) = g0 in D(r, ψ0),

u0 = h0 on ∆(r, ψ0).

(6.5.8)

Proof. We first note that (6.5.7) follows from (6.5.2) and (6.5.6) by passing to subse-

quences. To prove (6.5.8), let Ω ⊂ Ω ⊂ D(r, ψ0). Observe that if k is sufficiently large,

Ω ⊂ D(r, ψk). We now apply Theorem 3.3.2 in Ω to conclude that Ak(x/εk)∇uk ⇀
A0∇u0 weakly in L2(Ω;Rd×d). As a consequence, (u0, p0) is a weak solution of

−div(A0∇u0) + ∇p0 = 0 and div(u0) = g0 in Ω for some domain Ω such that

Ω ⊂ D(r, ψ0), and thus for Ω = D(r, ψ0). Finally, let vk(x
′, xd) = uk(x

′, xd + ψ(x′))

and v0(x′, xd) = u0(x′, xd + ψ0(x′)). That u0 = h0 on ∆(r, ψ0) in the sense of trace

follows from the fact that vk ⇀ v0 weakly in H1(Q;Rd), vk(x
′, 0) = hk(x

′, ψk(x
′)) and

hk(x
′, ψk(x

′))→ h0(x′, ψ0(x′)) uniformly on {|x′| < r}.

With the help of Lemma 6.5.3, we prove Theorem 6.5.1 by a compactness argu-

ment in the same manner as in [3].

Lemma 6.5.4. Let 0 < ρ, η < 1. Then there exist constants ε0 ∈ (0, 1/2) and

θ ∈ (0, 1/4), depending only on d, µ, ρ, η, and (M,ω) in (6.5.2), such that(
−
ˆ
D(θ)

|uε|2
)1/2

≤ θρ (6.5.9)

for any 0 < ε < ε0, whenever (uε, pε) ∈ H1(D1;Rd)× L2(D1) is a weak solution of
Lε(uε) +∇pε = 0 in D1,

div(uε) = g in D1,

uε = h on ∆1,

(6.5.10)
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and 
h(0) = 0, ‖h‖C0,1(∆1) ≤ 1,

−
ˆ
D1

|uε|2 ≤ 1, ‖g‖Cη(D1) ≤ 1.
(6.5.11)

Proof. We will prove the lemma by contradiction. Let σ = (1 + ρ)/2 > ρ. Using the

boundary Hölder Estimates for solutions of Stokes systems with constant coefficients,

we obtain (
−
ˆ
Dr

|w|2
)1/2

≤ Crσ‖w‖Cσ(D1/4) ≤ C0r
σ, (6.5.12)

if 0 < r < 1
4

and (w, p0) satisfies

− div(A0∇w) +∇p0 = 0 in D1/2,

div(w) = g in D1/2,

w = h on ∆1/2

‖h‖C0,1(∆1/2) ≤ 1, f(0) = 0

−
ˆ
D1/2

|w|2dx ≤ |D1|, and ‖g‖Cη(D1/2) ≤ 1,

(6.5.13)

where A0 is a constant matrix satisfying the ellipticity condition (3.1.8). The constant

C0 in (6.5.12) depends only on d, µ, ρ, η, and (M,ω) in (6.5.2). We now choose

θ ∈ (0, 1/4) so small that

2C0θ
σ < θρ (6.5.14)

We claim that the lemma holds for this θ and some ε0 > 0, which depends only on

d, µ, ρ, η, and (M,ω).

Suppose this is not the case, then there exist sequences {εk}, {Ak}, {pk}, {gk},
{hk}, {ψk}, such that as εk → 0, Ak satisfies ellipticity (1.0.3)( with the same µ) and

periodicity (1.0.4) conditions, ψk satisfies (6.5.2),

− div(Ak(x/εk)∇uk) +∇pk = 0 in D(k),

div(uk) = gk in D(k),

uk = hk on ∆(k),

‖hk‖C0,1(∆(k)) ≤ 1, hk(0) = 0,(
−
ˆ
D(k)

|uk|2
)1/2

≤ 1, and ‖gk‖Cη(D(1,ψk)) ≤ 1,

(6.5.15)

and (
−
ˆ
D(θ,ψk)

|uk|2
)1/2

> θρ (6.5.16)
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where D(k) = D(1, ψk) and ∆(k) = ∆(1, ψk). Note that by Cacciopoli’s inequality

(6.5.5), the sequence {‖uk‖H1(D(1/2,ψk))} is uniformly bounded. In view of Lemma

6.5.3, by passing to subsequences, we may assume that

Âk → A0,

ψk → ψ0 and ∇ψk → ∇ψ0 uniformly in {|x′| < 1},

uk(x
′, xd − ψk(x′)) ⇀ u0(x′, xd − ψ0(x′)) weakly in H1(Q;Rd),

hk(x
′, ψk(x

′))→ h0(x′, ψ0(x′)) uniformly in {|x′| < 1},

gk(x
′, xd − ψk(x′))→ g0(x′, xd − ψ0(x′)) uniformly in Q,

(6.5.17)

where Q = {(x′, xd) : |x′| < 1/2 and 0 < xd < 5(M + 1)}. Moreover, we note that

u0 ∈ H1(D(1/2, ψ0);Rd) and satisfies
−div(Â∇u0) +∇p0 = 0 in D(1/2, ψ0),

div(u0) = g0 in D(1/2, ψ0),

u0 = h0 on ∆(1/2, ψ0).

Observe that by (6.5.15) and (6.5.17),

h0(0) = 0, ‖h0‖C0,1(∆(1/2,ψ0)) ≤ 1, ‖g0‖Cη(D(1/2,ψ0)) ≤ 1,

and ˆ
D(1/2,ψ0)

|u0|2 = lim
k→∞

ˆ
D(1/2,ψk)

|uk|2

≤ lim
k→∞
|D(1, ψk)|

= |D(1, ψ0)|.

It follows that w = u0 satisfies (6.5.13). However, by (6.5.16),(
−
ˆ
D(θ,ψ0)

|u0|2
)1/2

= lim
k→∞

(
−
ˆ
D(θ,ψk)

|uk|2
)1/2

≥ θρ. (6.5.18)

Thus, by (6.5.12), we obtain θρ ≤ C0θ
σ, which contradicts the choice of θ. This

completes the proof.

Lemma 6.5.5. Fix 0 < ρ, η < 1. Let ε0 and θ be constants given by Lemma 6.5.4.

Suppose that (uε, pε) ∈ H1(D(1, ψ);Rd)× L2(D(1, ψ)) is a weak solution of
Lε(uε) +∇pε = 0 in D(1, ψ),

div(uε) = g in D(1, ψ),

uε = h on ∆(1, ψ),
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where g ∈ Cη(D(1, ψ)), h ∈ C0,1(∆(1, ψ),Rd) and h(0) = 0. Then, if 0 < ε < ε0θ
k−1,

for some k ≥ 1,(
−
ˆ
D(θk,ψ)

|uε|2
)1/2

≤ θkρ max

{(
−
ˆ
D(1,ψ)

|uε|2
)1/2

, ‖g‖Cη(D(1,ψ)), ‖h‖C0,1(∆(1,ψ))

}
.

(6.5.19)

Proof. We will prove the lemma by an induction argument on k. The case k = 1

follows directly from Lemma 6.5.4. Now suppose that the estimate (6.5.19) is true

for some k ≥ 1. Let 0 < ε < ε0θ
k, we apply Lemma 6.5.4 to the function

w(x) = uε(θ
kx) in D(1, ψk),

where ψk(x
′) = θ−kψ(θkx′). Observe that ψk satisfies (6.5.2) uniformly in k, and

L ε

θk
(w) +∇(θkpε(θ

kx)) = 0 in D(1, ψk),

div(w) = θkg(θkx) in D(1, ψk),

w = h(θkx) on ∆(1, ψk).

Since θ−kε < ε0, by the induction assumption,(
−
ˆ
D(θk+1,ψ)

|uε|2
)1/2

=

(
−
ˆ
D(θ,ψk)

|w|2
)1/2

≤ θρ max

{(
−
ˆ
D(1,ψk)

|w|2
)1/2

, ‖θkg(θkx)‖Cη(D(1,ψk)), ‖h(θkx)‖C0,1(∆(1,ψk))

}

≤ θρ max

{(
−
ˆ
D(θk,ψ)

|uε|2
)1/2

, θk‖g‖Cη(D(1,ψ)), θ
k‖h‖C0,1(∆(1,ψ))

}

≤ θ(k+1)ρ max

{(
−
ˆ
D(1,ψ)

|uε|2
)1/2

, ‖g‖Cη(D(1,ψ)), ‖h‖C0,1(∆(1,ψ))

}
.

This completes the proof.

We now ready to give the proof of Theorem 6.5.1 and Theorem 6.1.3.

Proof of Theorem 6.5.1. By considering the function uε(rx) in D(1, ψr), where

ψr(x
′) = r−1ψ(rx′), we may assume that r = 1. Note that

‖∇ψr‖∞ = ‖∇ψ‖∞ ≤M

and
|∇ψr(x′)−∇ψr(y′)| = |∇ψ(rx′)−∇ψ(ry′)|

≤ ω(|rx′ − ry′|)

≤ ω(r0|x′ − y′|).
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The bounding constant C will depend on r0, if r0 > 1.

Let ε ≤ t < 1. We may assume that t < ε0θ, for otherwise the estimate is trivial.

Choose k ≥ 1 so that ε0θ
k+1 ≤ t < εθk. Since ε < ε0θ

k−1, it follows from Lemma

6.5.5 that(
−
ˆ
D(t,ψ)

|uε|2
)1/2

≤ C

(
−
ˆ
D
θk

|uε|2
)1/2

≤ Cθkρ

{(
−
ˆ
D1

|uε|2
)1/2

+ ‖g‖Cη(D1) + ‖h‖C0,1(∆1)

}

≤ Ctρ

{(
−
ˆ
D1

|uε|2
)1/2

+ ‖g‖Cη(D1) + ‖h‖C0,1(∆1)

}
This finishes the proof.

Proof of Theorem 6.1.3. First, we note that by Cacciopoli’s inequality and Poincarè

inequality, it suffices to show that(
−
ˆ
B(x0,r)∩Ω

|uε|2
)1/2

≤
( r
R

)ρ(
−
ˆ
B(x0,R)∩Ω

|uε|2
)1/2

(6.5.20)

for 0 < r < c0R < R0. By translation we may assume that x0 = 0. Next, we may

assume that in a new coordinate system, obtained from the current system through

a rotation by an orthogonal matrix with rational entries,

B(0, R) ∩ Ω = B(0, R) ∩ {(x′, xd) : xd > ψ(x′)}

B(0, R) ∩ ∂Ω = B(0, R) ∩ {(x′, xd) : xd = ψ(x′)}
(6.5.21)

where ψ is a C1 function satisfying ψ(0) = 0 and (6.5.2). Here we have used the fact

that for any d × d orthogonal matrix O and δ > 0, there exists a d × d orthogonal

matrix T with rational entries such that ‖O − T‖∞ < δ. Moreover, each entry of

T has a denominator less than a constant depending only on d and δ (see [47]).

Finally, we point out that if (uε, pε) is a solution of the Stokes system (1.0.2) and

uβ(x) = Tγβv
γ(y), p(x) = q(y), where T = (Tij) is an orthogonal matrix and y = Tx,

then {
−divy(B(y/ε)∇yv) +∇yq = G(y),

divy(v) = h(y),
(6.5.22)

where B(y) = (btγk`(y)) with
btγk`(y) = TtαTγβT`jTkia

αβ
ij (x),

Gt(y) = TtαF
α(x),

h(y) = g(x).
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Note that the matrix B(y) is periodic, if T has rational entries (a dilation may be

needed to ensure that B is 1-periodic). These observations allow us to deduce estimate

(6.5.20) from Theorem 6.5.1 and complete the proof.

6.6 Interior W 1,p estimates

In this and next sections we establish uniform W 1,p estimates for the Stokes sys-

tem (1.0.2) under the additional condition that A belongs to VMO(Rd) (see also in

(2.1.10):

sup
y∈Rd
0<t<r

−
ˆ
B(y,t)

∣∣A−−ˆ
B(y,t)

A
∣∣ ≤ ω1(r), (6.6.1)

where ω1 is a (fixed) nondecreasing continuous function on [0,∞) and ω1(0) = 0.

The following two lemmas provide the local interior and boundary W 1,p estimates

of Stokes system with variable coefficients.

Lemma 6.6.1. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and smooth-

ness condition (6.6.1). Let (u, p) ∈ H1(B(0, 1);Rd)× L2(B(0, 1)) be a weak solution

to {
−div(A(x)∇u) +∇p = 0,

div(u) = 0
(6.6.2)

in B(0, 1). Then |∇u| ∈ Lq(B(0, 1/2)) for any 2 < q <∞, and(
−
ˆ
B(0,1/2)

|∇u|q
)1/q

≤ Cq

(
−
ˆ
B(0,1)

|∇u|2
)1/2

. (6.6.3)

where Cq depends only on d, µ, q, and ω1 in (6.6.1).

Lemma 6.6.2. Suppose that A(y) satisfies the ellipticity condition (1.0.3) and smooth-

ness condition (6.6.1). Let (u, p) ∈ H1(D1;Rd)×L2(D1) be a weak solution to (6.6.2)

in D1 and u = 0 on ∆1. Then |∇u| ∈ Lq(D1/2) for any 2 < q <∞, and(
−
ˆ
D1/2

|∇u|q
)1/q

≤ Cq

(
−
ˆ
D1

|∇u|2
)1/2

. (6.6.4)

where Cq depends only on d, µ, q, (M,ω) in (6.5.2) and ω1 in (6.6.1).

We remark that W 1,p estimates for elliptic equations and systems with continuous

or VMO coefficients have been studied extensively in recent years. In particular,

estimates in Lemma 6.6.1 and 6.6.2 are known for solutions of −div(A(x)∇u) = 0

(see [11–13,38,48] and their references). To prove Lemma 6.6.1 and 6.6.2, one follows
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the approach in [48] and apply a real-variable argument originated in [13]. This

reduces the problem to the case of Stokes systems with constant coefficients. Note

that for Stokes systems with constant coefficients, the interior estimate (6.6.3) is well

known, while the boundary estimate (6.6.4) in C1 domains follows from [19]. We

omit the details.

Lemma 6.6.3. Suppose that A(y) satisfies ellipticity (1.0.3), periodicity (1.0.4) and

VMO continuity (6.6.1) conditions. Let (uε, pε) ∈ H1(B(x0, r);Rd)×L2(B(x0, r)) be

a weak solution to {
Lε(uε) +∇pε = 0,

div(uε) = 0
(6.6.5)

in B(x0, r) for some x0 ∈ Rd and r > 0. Then for any 2 < q <∞,(
−
ˆ
B(x0,r/2)

|∇uε|q
)1/q

≤ Cq

(
−
ˆ
B(x0,r)

|∇uε|2
)1/2

, (6.6.6)

where Cq depends only on d, µ, q, and ω1 in (6.6.1).

Proof. By translation and dilation we may assume that x0 = 0 and r = 1. We may

also assume ε < (1/4). The case ε ≥ (1/4) follows directly from Lemma 6.6.1, as the

coefficient matrix A(x/ε) satisfies (6.6.1) uniformly in ε.

Let

u(x) = ε−1uε(εx) and p(x) = pε(εx).

Then (u, p) satisfies (6.6.2) in B(0, 1). It follows that(
−
ˆ
B(0,ε/2)

|∇uε|q
)1/q

≤ C

(
−
ˆ
B(0,ε)

|∇uε|2
)1/2

≤ C

(
−
ˆ
B(0,1/2)

|∇uε|2
)1/2

,

where we have used Theorem 1.0.1 for the second inequality. By translation the same

argument also gives(
−
ˆ
B(y,ε/2)

|∇uε|q
)1/q

≤ C

(
−
ˆ
B(y,1/2)

|∇uε|2
)1/2

(6.6.7)

for any y ∈ B(0, 1/2). Estimate (6.6.6) now follows from (6.6.7) by covering B(0, 1/2)

with balls {B(yk, ε/2)}, where yk ∈ B(0, 1/2).

The next theorem, whose proof may be found in [49], provides a real-variable

argument we will need for the W 1,p estimates.
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Theorem 6.6.4. Let B0 be a ball in Rd and F ∈ L2(4B0). Let q > 2 and f ∈ Lp(4B0)

for some 2 < p < q. Suppose that for each ball B ⊂ 2B0 with |B| ≤ c1|B0|, there exist

two measurable functions FB and RB on 2B, such that |F | ≤ |FB|+ |RB| on 2B,(
−
ˆ

2B

|RB|q
)1/q

≤ C1

{(
−
ˆ
c2B

|F |2
)1/2

+ sup
4B0⊃B′⊃B

(
−
ˆ
B′
|f |2
)1/2

}
,(

−
ˆ

2B

|FB|2
)1/2

≤ C2 sup
4B0⊃B′⊃B

(
−
ˆ
B′
|f |2
)1/2

,

(6.6.8)

where C1, C2 > 0, 0 < c1 < 1, and c2 > 2. Then F ∈ Lp(B0) and(
−
ˆ
B0

|F |p
)1/p

≤ C

{(
−
ˆ

4B0

|F |2
)1/2

+

(
−
ˆ

4B0

|f |p
)1/p

}
, (6.6.9)

where C depends only on C1, C2, c1, c2, p and q.

We are now ready to prove the interior W 1,p estimates for Stokes system (1.0.2).

Theorem 6.6.5. Suppose that A(y) satisfies ellipticity (1.0.3), periodicity (1.0.4) and

VMO continuity (6.6.1) conditions. Let (uε, pε) ∈ H1(B(x0, r);Rd)×L2(B(x0, r)) be

a weak solution to {
Lε(uε) +∇pε = div(f)

div(uε) = g
(6.6.10)

in B(x0, r) for some x0 ∈ Rd and r > 0. Then for any 2 < q <∞,(
−
ˆ
B(x0,r/2)

|∇uε|q
)1/q

+

(
−
ˆ
B(x0,r/2)

|pε −−
ˆ
B(x0,r/2)

pε|q
)1/q

≤ Cq

{(
−
ˆ
B(x0,r)

|∇uε|2
)1/2

+

(
−
ˆ
B(x0,r)

|f |q
)1/q

+

(
−
ˆ
B(x0,r)

|g|q
)1/q

}
,

(6.6.11)

where Cq depends only on d, µ, q, and ω1 in (6.6.1).

Proof. By translation and dilation we may assume that x0 = 0 and r = 1. Note that

the estimate for pε in (6.6.11) follows easily from the estimate for ∇uε by applying

(4.3.1) to the system (6.6.10). Also we may assume that g = 0 by considering uε−∇w,

where w is a scalar function such that{
∆w = g in B(0, 1),

w = 0 on ∂B(0, 1).

To apply Theorem 6.6.4, for each B = B(y, t) ⊂ B(0, 3/4) with 0 < t < (1/64),

we write

uε = vε + zε,
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where vε ∈ H1
0 (4B;Rd) and{

Lε(vε) +∇πε = div(f) in 4B,

div(vε) = 0 in 4B.

Note that

−
ˆ

4B

|∇vε|2 ≤ C −
ˆ

4B

|f |2. (6.6.12)

Also, since zε satisfies {
Lε(zε) +∇(pε − πε) = 0 in 4B,

div(zε) = 0 in 4B,

we may apply Lemma 6.6.3 to obtain(
−
ˆ

2B

|∇zε|q̄
)1/q̄

≤ C

(
−
ˆ

4B

|∇zε|2
)1/2

≤ C

(
−
ˆ

4B

|∇uε|2
)1/2

+ C

(
−
ˆ

4B

|f |2
)1/2

,

(6.6.13)

where q̄ = q + 1 and we have used (6.6.12) for the last inequality.

Finally, Let F = |∇uε|, FB = |∇vε| and RB = |∇zε|. Note that

|F | ≤ |FB|+ |RB| in 4B,

and in view of (6.6.12) and (6.6.13), we have proved that(
−
ˆ

2B

|RB|q̄
)1/q̄

≤ C

(
−
ˆ

4B

|F |2
)1/2

+ C

(
−
ˆ

4B

|f |2
)1/2

,(
−
ˆ

2B

|FB|q̄
)1/q̄

≤ C

(
−
ˆ

4B

|f |2
)1/2

.

This allows us to use Theorem 6.6.4 to conclude that(
−
ˆ
B(x0,1/16)

|∇uε|q
)1/q

≤ C

{(
−
ˆ
B(0,1)

|∇uε|2
)1/2

+

(
−
ˆ
B(0,1)

|f |q
)1/q

}

for any x0 ∈ B(0, 1/2), which gives the desired estimate for ∇uε by a simple covering

argument.

6.7 Uniform Boundary W 1,p estimates and Proof of Theorem 1.0.2

In this section we establish uniform boundary W 1,p estimates and gives the proof of

Theorem 1.0.2. Throughout this section we will assume that A satisfies ellipticity
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(1.0.3), periodicity (1.0.4) and VMO continuity (6.6.1) conditions and that Ω is a

bounded C1 domain.

We begin with a boundary Hölder estimate.

Lemma 6.7.1. Let x0 ∈ ∂Ω and 0 < R < R0, where R0 = diam(Ω). Let (uε, pε) ∈
W 1,2(B(x0, R) ∩ Ω;Rd)× L2(B(x0, R) ∩ Ω) be a weak solution to

Lε(uε) +∇pε = 0 in B(x0, R) ∩ Ω,

div(uε) = 0 in B(x0, R) ∩ Ω,

uε = 0 on B(x0, R) ∩ ∂Ω.

(6.7.1)

Then

|uε(x)− uε(y)| ≤ C

(
|x− y|
R

)ρ(
−
ˆ
B(x0,R)∩Ω

|uε|2
)1/2

, (6.7.2)

for any x, y ∈ B(x0, R/2) ∩ Ω, where 0 < ρ < 1 and C depends only on d, ρ, A and

Ω.

Proof. By translation and dilation we may assume that x0 = 0 and R = 1. The case

ε ≥ (1/4) follows directly from the local boundary W 1,p estimates in Lemma 6.6.2 by

Sobolev imbedding. To treat the case 0 < ε < (1/4), we note that if 0 < r < ε, we

may deduce from Lemma 6.6.2 by rescaling that(
−
ˆ
B(0,r)∩Ω

|∇uε|2
)1/2

≤ Cq

(ε
r

) d
q

(
−
ˆ
B(0,ε)∩Ω

|∇uε|q
)1/q

≤ Cq

(ε
r

) d
q

(
−
ˆ
B(0,2ε)∩Ω

|∇uε|2
)1/2

(6.7.3)

for any 2 < q < ∞, where we have used Hölder’s inequality for the first inequality.

This, together with the estimate in Theorem 6.1.3, implies that(
−
ˆ
B(0,r)∩Ω

|∇uε|2
)1/2

≤ Cρr
ρ−1

(
−
ˆ
B(0,1)∩Ω

|∇uε|2
)1/2

(6.7.4)

for any 0 < r < (1/2), where 0 < ρ < 1. A similar argument gives(
−
ˆ
B(y,r)∩Ω

|∇uε|2
)1/2

≤ Cρr
ρ−1

(
−
ˆ
B(0,1)∩Ω

|∇uε|2
)1/2

(6.7.5)

for any y ∈ B(0, 1/2) and 0 < r < (1/2). The estimate (6.7.2) now follows.
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Lemma 6.7.2. Let x0 ∈ ∂Ω and 0 < R < R0, where R0 = diam(Ω). Let (uε, pε) ∈
W 1,2(B(x0, R) ∩ Ω;Rd) × L2(B(x0, R) ∩ Ω) be a weak solution to the system (6.7.1)

given in Lemma 6.7.1. Then for any 2 < q <∞,(
−
ˆ
B(x0,R/2)∩Ω

|∇uε|q
)1/q

≤ Cq

(
−
ˆ
B(x0,R)∩Ω

|∇uε|2
)1/2

, (6.7.6)

where Cq depends only on d, ρ, A and Ω.

Proof. By translation and dilation we may assume that x0 = 0 and R = 1. Let

δ(x) = dist(x, ∂Ω). It follows from the interior W 1,p estimates in Lemma 6.6.3 that

−
ˆ
B(y,c δ(y))

|∇uε(x)|qdx ≤ C −
ˆ
B(y,2c δ(y))

∣∣∣∣uε(x)

δ(x)

∣∣∣∣q dx, (6.7.7)

for any y ∈ B(0, 1/2) ∩ Ω, where c = c(Ω) > 0 is sufficiently small. Integrating both

sides of (6.7.7) in y over B(0, 1/2) ∩ Ω yieldsˆ
B(0,1/2)∩Ω

|∇uε(x)|qdx ≤ C

ˆ
B(0,3/4)∩Ω

∣∣∣∣uε(x)

δ(x)

∣∣∣∣q dx. (6.7.8)

Finally, note that by Lemma 6.7.1,

|uε(x)| ≤ C[δ(x)]ρ
(
−
ˆ
B(0,1)∩Ω

|uε|2
)1/2

(6.7.9)

for any x ∈ B(0, 3/4) ∩ Ω. Choosing ρ ∈ (0, 1) so that (1 − ρ)q < 1, we obtain

estimate (6.7.6) by substituting (6.7.9) into the right hand side of (6.7.8).

The following theorem gives the boundary W 1,p estimates for the Stokes system

(1.0.2).

Theorem 6.7.3. Suppose that A(y) satisfies ellipticity (1.0.3), periodicity (1.0.4)

and VMO continuity (6.6.1) conditions. Let Ω be a bounded C1 domain in Rd. Let

(uε, pε) ∈ H1(B(x0, R) ∩ Ω;Rd)× L2(B(x0, R) ∩ Ω) be a weak solution to{
−div(A(x/ε)∇uε) +∇pε = div(f),

div(uε) = g
(6.7.10)

in B(x0, R) ∩ Ω for some x0 ∈ ∂Ω and 0 < R < R0, where R0 = diam(Ω). Then for

any 2 < q <∞,(
−
ˆ
B(x0,R/2)∩Ω

|∇uε|q
)1/q

+

(
−
ˆ
B(x0,R/2)∩Ω

|pε −−
ˆ
B(x0,R/2)∩Ω

pε|q
)1/q

≤ Cq

{(
−
ˆ
B(x0,R)∩Ω

|∇uε|2
)1/2

+

(
−
ˆ
B(x0,R)∩Ω

|f |
)1/q

+

(
−
ˆ
B(x0,R)∩Ω

|g|q
)1/q

}
,

(6.7.11)

where Cq depends only on d, µ, q, ω1 in (6.6.1) and Ω.
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Proof. This theorem follows from Lemma 6.6.3 and 6.7.2 by a real-variable argument

in the same manner as in the proof of Theorem 6.6.5. We omit the details and refer

the reader to [48].

Finally, we give the proof of Theorem 1.0.2.

Proof of Theorem 1.0.2. Since h ∈ B1− 1
q
,q(∂Ω;Rd) and Ω is a bounded C1 do-

main, there exists H ∈ W 1,q(Ω;Rd) such that

‖H‖W 1,q(Ω) ≤ C‖h‖
B

1− 1
q ,q(∂Ω)

.

Thus, by considering uε − H, we may assume that h = 0. Note that if uε, vε ∈
W 1,2

0 (Ω;Rd) satisfy{
Lε(uε) +∇pε = div(f)

div(uε) = g
and

{
L∗ε(vε) +∇πε = div(F )

div(uε) = G
(6.7.12)

in Ω, then ˆ
Ω

∇uε · F +

ˆ
Ω

(
pε −−

ˆ
Ω

pε
)
·G

=

ˆ
Ω

∇vε · f +

ˆ
Ω

(
πε −−

ˆ
Ω

πε
)
· g

(6.7.13)

This allows us to use a duality argument that reduces the theorem to the estimate

‖∇uε‖Lq(Ω) + ‖pε −−
ˆ

Ω

pε‖Lq(Ω) ≤ C
{
‖f‖Lq(Ω) + ‖g‖Lq(Ω)

}
(6.7.14)

for 2 < q <∞, where 
Lε(uε) +∇pε = div(f) in Ω,

div(uε) = g in Ω,

uε = 0 on ∂Ω.

Finally, by covering Ω with balls of radius r0 = c0diam(Ω), we may deduce from

Theorem 6.6.5 and 6.7.1 that

‖∇uε‖Lq(Ω) ≤ C{‖∇uε‖L2(Ω) + ‖f‖Lq(Ω) + ‖g‖Lq(Ω)}

≤ C{‖f‖Lq(Ω) + ‖g‖Lq(Ω)},

where we have used the estimate in Theorem 3.1.1 as well as q > 2. Also, note that

‖pε −−
ˆ

Ω

pε‖Lq(Ω) ≤ C‖∇pε‖W−1,q(Ω)

≤ {‖∇uε‖Lq(Ω) + ‖f‖Lq(Ω)}

≤ C{‖f‖Lq(Ω) + ‖g‖Lq(Ω)},
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where we have used ∇pε = Lε(uε) − div(f) in Ω for the second inequality. This

completes the proof.

Copyright c© Shu Gu, 2016.
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