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ABSTRACT OF DISSERTATION

Unimodality Questions in Ehrhart Theory

An interesting open problem in Ehrhart theory is to classify those lattice polytopes having

a unimodal h⇤-vector. Although various su�cient conditions have been found, necessary

conditions remain a challenge. Highly-structured polytopes, such as the polytope of real

doubly-stochastic matrices, have been proven to possess unimodal h⇤-vectors, but the same

is unknown even for small variations of it.

In this dissertation, we mainly consider two particular classes of polytopes: reflexive

simplices and the polytope of symmetric real doubly-stochastic matrices. For the first class,

we discuss an operation that preserves reflexivity, integral closure, and unimodality of the h⇤-

vector, providing one explanation for why unimodality occurs in this setting. We also discuss

the failure of proving unimodality in this setting using weak Lefschetz elements. With the

second class, we prove partial unimodality results by examining their toric ideals and using

a correspondence between these and regular triangulations of the polytopes. Lastly, we

describe the computational methods used to help develop these results. Several software

programs were used, and the code has proven useful outside of the main focus of this work.
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Chapter 1 Introduction

1.1 Lattice Polytopes

We begin by describing objects that have been studied since antiquity. Although simply

described, there is an astounding amount of deep mathematics required to answer basic

questions surrounding them.

Definition 1.1.1. Amagic square of size n and order r is an n⇥n square array of nonnegative

integers such that each row and each column sums to r.

Perhaps the most famous magic square is the Lo Shu, which is said to have been found

on the shell of a turtle after a massive flood in China:

4 9 2
3 5 7
8 1 6

Figure 1.1: The Lo Shu magic square

In this example, the entries are all distinct, positive, and the sums of the diagonals add

to the same sum as the rows and columns. These extra properties cause the literature to be

a bit inconsistent in terminology: What we call a magic square is sometimes referred to as

a semi-magic square, e.g. in [14]. Our definition follows that of [36].

Combinatorists often like to ask “How many X are there?” This situation is no di↵erent:

deep mathematics have developed based on the question “How many magic squares of a fixed

size n and order r exist?” If we let M
n

be the function defined on Z�0 whose evaluation at r

gives the number of magic squares of size n and order r, this question is equivalent to asking

for the value of M
n

(r). When n = 1, the solution is trivial: M1(r) = 1.

When n = 2, there are r + 1: one for each k 2 {0, . . . , r}; see Figure 1.2. Once n � 3, it

is not quite so easy to determine how many magic squares of order r exist, although it has

been shown that

M3(r) =
1

8
r4 +

3

4
r3 +

15

8
r2 +

9

4
r + 1,

1



k r � k

r � k k

Figure 1.2: An arbitrary 2⇥ 2 magic square

and it is not quite as obvious as to why this is. In [2] it was conjectured that M
n

(r) is

always a polynomial in r of degree (n� 1)2.

Counting the number of magic squares of size n and order r is equivalent to determining

how many elements in the rth dilate of the set

B
n

:=

(
(x

ij

) 2 Rn⇥n

�0

���
nX

i=1

x
ij

= 1 for all j,
nX

j=1

x
ij

= 1 for all i

)

have all entries in Z. In [2] it was proven that B
n

can be described as the convex hull of the

n⇥ n permutation matrices; i.e., let {P1, . . . , Pn!} be the set of permutation matrices. Then

B
n

=

(
n!X

i=1

�
i

P
i

����
i

� 0 for all i,
n!X

i=1

�
i

= 1

)
.

This result, known as the Birkho↵-von Neumann Theorem, is the key to proving the above

conjecture, whose proof then quickly follows. It also motivates the following more general

definitions.

Definition 1.1.2. A lattice N is a subgroup of Rn isomorphic to Zk for some k. A (convex)

polytope is the convex hull of a finite number of points in Rn. A polytope is called lattice if

every vertex lies in N .

When given an infinite sequence of rational numbers, it is common to try to find a

generating function for the sequence; i.e., a closed form of the formal power series whose

2



coe�cients are the given sequence. In our situation, we end up with

H(M1; x) =
X

r�0

M1(r)x
r

=
X

r�0

xr

=
1

1� x
;

H(M2; x) =
X

r�0

M2(r)x
r

=
X

r�0

(r + 1)xr

=
1

(1� x)2
;

H(M3; x) =
X

r�0

M3(r)x
r

=
X

r�0

✓
1

8
r4 +

3

4
r3 +

15

8
r2 +

9

4
r + 1

◆
xr

=
1 + x+ x2

(1� x)5
.

Thinking of B
n

as a polytope, it can be seen that these power series are encoding the number

of lattice points in dilations of the polytope. We will return to magic squares in the third

chapter.

1.2 Ehrhart Theory

For a lattice polytope P ✓ Rn of dimension d, consider the counting function |mP \ Zn|,

where mP is the m-th dilate of P . Figure 1.3 provides a concrete example of the points

being counted by |mP \ Zn|. The Ehrhart series of P is

EP(t) := 1 +
X

m2Z�1

|mP \ Zn|tm .

Combining two well-known theorems due to Ehrhart [16] and Stanley [33], there exist values

h⇤
0, . . . , h

⇤
d

2 Z�0 with h⇤
0 = 1 such that

EP(t) =

P
d

j=0 h
⇤
j

tj

(1� t)d+1
.

3



We say the polynomial h⇤
P(t) :=

P
d

j=0 h
⇤
j

tj is the h⇤
-polynomial of P (sometimes referred

to as the �-polynomial of P) and the vector of coe�cients h⇤(P) is the h⇤
-vector of P .

That EP(t) is of this rational form with h⇤
P(1) 6= 0 is equivalent to |mP \ Zn| being a

polynomial function of m of degree d; the non-negativity of the h⇤-vector is an even stronger

property. The h⇤-vector of a lattice polytope P is a fascinating partial invariant. Obtaining

a general understanding of h⇤-vectors of lattice polytopes and their geometric/combinatorial

implications is currently of great interest.

Figure 1.3: A lattice square and two of its dilations

Note that, since the Ehrhart series may be written as a rational function, the counting

function LP(m) := |mP \ Zn| can be written as the polynomial

LP(m) = h⇤
0

✓
m+ d

d

◆
+ h⇤

1

✓
m+ d� 1

d

◆
+ · · ·+ h⇤

d�1

✓
m+ 1

d

◆
+ h⇤

d

✓
m

d

◆
.

From this expansion, one can easily compute that the number of lattice points in P is

h⇤
1 + d + 1. Using other results, namely Ehrhart-Macdonald reciprocity, it can be shown

that if deg h⇤
P(t) = k, then the smallest positive integer dilate of P containing an interior

lattice point is d�k+1, and h⇤
k

is the number of lattice points in the interior of this scaling.

However, such nice combinatorial results do not exist for general choices of h⇤
i

.

Recent work has focused on determining when h⇤(P) is unimodal, that is, when there

exists some k for which h⇤
0  · · ·  h⇤

k

� · · · � h⇤
d

. One reason combinatorists are interested

in unimodality results is that their proofs often point to interesting and unexpected properties

of combinatorial, geometric, and algebraic objects. In particular, symmetric h⇤-vectors play

a key role in Ehrhart theory through their connection to reflexive polytopes, defined below.

4



There are many interesting techniques for studying symmetric unimodal sequences, using

tools from analysis, Lie theory, algebraic geometry, etc. [35].

1.3 Techniques for Proving Unimodality of the h⇤-vector

Triangulations

There are multiple ways one may attempt to prove the unimodality of the h⇤-vector of a

lattice polytope. A common notion underlying many of these methods is the idea of decom-

posing a polytope into simplices in a controlled manner. The structure of this decomposition

then manifests in multiple ways, one of which being a unimodal h⇤-vector. The following

definitions and examples make these ideas more precise.

Definition 1.3.1. A supporting hyperplane of a polytope P is hyperplane such that P lies

in one of the closed half spaces determined by H. The faces of P consist of P itself and

any intersection of P with a supporting hyperplane (including the empty set). The faces of

dimension one less than dimP are called facets.

There is much research that comes from the simple question: Given a certain polytope P ,

how can we describe the faces? The Birkho↵-von Neumann theorem is a significant result,

and that only sought to describe the vertices of a polytope. Another result in this direction

relates to Gelfand-Tsetlin polytopes, which simply asked if their vertices were integral [15]

(The answer, by the way, is “Not always.”).

Definition 1.3.2. A triangulation of a polytope P is a finite collection of simplices T = {T
i

}

such that: [T
i

= P ; for every T
i

, T
j

2 T , the intersection T
i

\ T
j

is a common face of each;

and if T
i

2 T , then every face of T
i

is in T as well.

Definition 1.3.3. A lattice simplex is unimodular if it has smallest possible volume in

the lattice. Equivalently, the simplex is unimodular if, for any ordering {v0, . . . , vn} of its

vertices, the set {v1 � v0, v2 � v0, . . . , vn � v0} is a basis of the lattice. A triangulation T of

P is unimodular if every simplex in T is unimodular.

5



Figure 1.4: Two triangulations of a regular hexagon

In two dimensions, Pick’s theorem proves that any triangle in R2 such that the only points

of Z2 it contains are its vertices must be unimodular. However, this does not generalize to

higher dimensions: the Reeve tetrahedron R
h

= conv {0, e1, e2, e1 + e2 + he3} ✓ R3, h 2 Z
>1

has only its vertices as lattice points, but has volume h/6. Its vertices generate the lattice

Z2 � hZ instead of Z3.

Example 1.3.4. If P \ Zn = {v0, . . . , vk}, choose real numbers w0, . . . , wk

and form the

polytope

conv {(v0, w0), (v1, w1), . . . , (vk, wk

)} ✓ Rn+1.

Project each facet whose normal vector has a negative last coordinate back to Rn. If the

image of each projection is a simplex, then the collection of projections form the maximal

simplices of a triangulation of P . If this triangulation agrees with a given triangulation T of

P , then T is called a regular triangulation.

Figure 1.4 provides examples of triangulations, while Figure 1.5 demonstrates the con-

struction of a regular triangulation.

Example 1.3.5. Let ⌧ = {v1, . . . , vk} be an ordering of the vertices of a lattice polytope P .

The reverse lexicographic triangulation, or pulling triangulation, with respect to ⌧ , which we

denote pull
⌧

(P) is as follows. Let F denote the polytopal complex consisting of all faces of

P . If F is a single vertex point v, then pull
⌧

(F) = {v}. Otherwise,

pull
⌧

(F) = pull
⌧

(F\v
i

) [
 
[

F

{conv {{v
i

} [G} |G 2 pull
⌧

(F(F )) [ {;}}
!

where the union is over facets of the maximal faces of F containing v
i

, but the facets

themselves do not contain v
i

. We call ⌧ compressed if the pulling triangulation with respect

6



Figure 1.5: A triangulation of an interval of length 4 obtained as a projection of the lower
hull of a higher-dimensional polytope

to this ordering is unimodular. If the reverse lexicographic triangulation with respect to

every possible ⌧ is unimodular, then we called P itself compressed.

The definitions of regular triangulations and reverse lexicographic triangulations are both

fairly cumbersome, but there are miraculous algebraic interpretations of these triangulations

that simplify much of the work. More of this perspective will be explored in Section 3.3.

The g-theorem

Triangulations of polytopes are desirable in part because they can be considered combi-

natorially as geometric realizations of the following structures, which appear frequently in

mathematics.

Definition 1.3.6. An abstract simplicial complex � on the finite vertex set V is a nonempty

subset of 2V such that if � 2 � and ⌧ ✓ �, then ⌧ 2 �. The elements of � are called faces,

and the dimension of a face � is |�| � 1. By convention, dim ; := �1. The dimension of a

simplicial complex is max{dim �|� 2 �}.

Simplicial complexes and their geometric realizations appear in many forms. They are

useful in topology since they may be used to approximate a more complicated space, allowing

simplified computation of, say, (co)homology. Simplicial complexes may encode structure of

posets through the order complex. Stanley examined non-faces of simplicial complexes to

7



study what later became known as Stanley-Reisner rings, which connects the study of faces

of simplicial complexes with the Hilbert series of associated quotient algebras.

Definition 1.3.7. For a (d�1)-dimensional simplicial complex �, let f
i

denote the number

of i-dimensional faces of �. The f -vector of � is f(�) := (f�1, f0, . . . , fd�1). The h-vector

of � is the vector of coe�cients (h0, . . . , hd

) in the expansion

dX

i=0

f
i�1(x� 1)d�i =

dX

j=0

h
j

xd�j.

The h-vector of a simplicial complex is a natural sequence to study because it appears

when studying the Hilbert series of the corresponding Stanley-Reisner ring. One of the most

well-known results involving the h-vector is a characterization of h-vectors for simplicial

polytopes; that is, polytopes whose facets are all simplices.

Theorem 1.3.8 (Billera, Lee [8, 9], Stanley [34]). The sequence (h0, h1, . . . , hd

) is the h-

vector of a simplicial polytope if and only if

1. h
i

= h
d�i

for all i = 0, . . . , bd/2c, and

2. the sequence (h0, h1 � h0, h2 � h1, . . . , hbd/2c � hbd/2c�1) is an M -sequence.

In particular, the h-vector of a simplicial d-polytope is symmetric and unimodal.

Although we do not discuss M -sequences here, their important property for this discus-

sion is that they are sequences of nonnegative integers, hence the unimodality. Thus, one way

to prove that an h⇤-vector is unimodal is to prove that it is also the h-vector of a simplicial

polytope. While this may seem just as di�cult, there have been results that make such a

verification more tractable.

Definition 1.3.9. Suppose a subset S of vertices of a lattice polytope P satisfy

1. The set conv {S} is a simplex, and

2. Each facet of P contains all but one element of S.

Then conv {S} is called a special simplex.

8



Athanasiadis introduced special simplices to prove that the Birkho↵ polytope has a uni-

modal h⇤-vector. Along the way, he proved the following theorem.

Theorem 1.3.10 (Athanasiadis [3]). Suppose P is a lattice polytope and ⌧ = {v
k

, v
k�1, . . . , v1}

is an ordering of its vertices such that

1. ⌧ is compressed and

2. for some n, {v1, . . . , vn} is the vertex set of a special simplex.

Then the h⇤-vector of P is the h-vector of a simplicial polytope.

This theorem was the starting point for what became Theorem 3.2.6, a very useful result

for proving unimodality of h⇤-vectors. Other methods available involve shelling orders [33],

studying the roots of the h⇤-polynomial, the �-vector, or log-concavity of the h⇤-vector [10].

Copyright c� Robert Davis, 2015.
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Chapter 2 Special Classes of Lattice Polytopes

2.1 Reflexive Polytopes

Definition 2.1.1. A lattice polytope P is called reflexive if 0 2 P� and its (polar) dual

P� := {y 2 Rn : x · y  1 for all x 2 P}

is also a lattice polytope. A lattice translate of a reflexive polytope is also called reflexive.

Reflexive polytopes have been the subject of a large amount of recent research [4, 5, 7,

11, 20, 23, 28, 30]. It is known from work of Lagarias and Ziegler [27] that there are only

finitely many reflexive polytopes (up to unimodular equivalence) in each dimension, with one

reflexive in dimension one, 16 in dimension two, 4 319 in dimension three, and 473 800 776 in

dimension four according to computations by Kreuzer and Skarke [26]. The number of five-

and-higher-dimensional reflexives is unknown. One of the reasons reflexives are of interest is

the following.

Theorem 2.1.2 (Hibi, [23]). A d-dimensional lattice polytope P ⇢ Rd containing the origin

in its interior is reflexive if and only if h⇤(P) satisfies h⇤
i

= h⇤
d�i

for all i = 0, . . . , d.

Hibi [22] conjectured that every reflexive polytope has a unimodal h⇤-vector. Coun-

terexamples to this were found in dimensions 6 and higher by Mustaţǎ and Payne [28, 30].

However, Hibi and Ohsugi [29] also asked whether or not every normal reflexive polytope

has a unimodal h⇤-vector; we consider the related question for integrally closed reflexives,

where integral closure is defined as follows.

Definition 2.1.3. A lattice polytope P ✓ Rn is integrally closed if, for every x 2 mP \ Zn,

there exist x1, . . . , xm

2 P \ Zn such that x = x1 + · · ·+ x
m

.

While the terms integrally closed and normal are often used interchangably, these are

not synonymous [19]. The counterexamples found by Mustaţǎ and Payne are not normal,

hence not integrally closed. It remains to be seen whether or not every integrally closed

10



reflexive polytope has a unimodal h⇤-vector. A stronger open question is whether or not

being integrally closed is alone su�cient to imply unimodality [31]. One condition that forces

a lattice polytope P to be integrally closed is if P admits a unimodular triangulation; the

latter condition has been shown to imply unimodality in the reflexive case by Athanasiadis

[3] and Bruns and Römer [12].

Construction 2.1.4 (Conrads, [13]). Let Q = (q0, . . . , qn) be a sequence of positive, in-

creasing integers such that

gcd(Q) = 1 and q
i

�����

nX

j=0

q
j

for all i. (2.1)

Furthermore, define

d
i...j

:= gcd(q
i

, . . . , q
j

)

d
i...k̂...j

:= gcd(q
i

, . . . , q̂
k

, . . . , q
j

)

d
i

:= d0...̂i...n,

where q̂
k

means to not include q
k

. Form the matrix

⇣
c
ij

⌘
:=

0

BBBBBBBBB@

q

0

d

01

c12 c13 · · · c1(n�1) c1n

0 d

01

d

0...2
c23 · · · c2(n�1) c2n

0 0 d

0...2
d

0...3
· · · c3(n�1) c3n

...
...

...
. . .

...
...

0 0 0 · · · 0 dn
d

0...n

1

CCCCCCCCCA

,

where the c
ij

are determined in the following way: for fixed j 2 {2, . . . , n} recursively

construct c
ij

for i = j � 1, . . . , 1 by setting c
ij

to be the smallest nonnegative integer such

that

c
ij

q
i

+
jX

k=i+1

c
kj

q
k

2 d0...iZ.

Labeling the rows of the above matrix by r1, . . . , rn, define one additional vector as

r0 := �
nX

i=1

q
i

q0
r
i

.

11



Then the vectors r0, . . . , rn form the vertices of the unique reflexive simplex (up to isomor-

phism) of type (Q, 1).

Ranging over all possible (n+1)-tuples, one obtains all reflexive simplices of type (Q, 1).

Obtaining reflexive simplices of type (Q,�) for � > 1 requires additional work, and these

details are contained in [13].

2.2 A New Construction

We follow the notation of [6] and define the relevant operation on polytopes that we will

consider.

Definition 2.2.1. Suppose P ,Q ✓ Rn are lattice polytopes. Call P �Q := conv {P [Q}

a free sum if, up to unimodular equivalence, P \Q = {0} and the a�ne spans of P and Q

are orthogonal coordinate subspaces of Rn.

Example 2.2.2. The Reeve tetrahedron R
h

cannot be expressed as a free sum when h > 1;

if it could, then the lattice generated by R
h

would be Z3. However, it only generates Z2⇥hZ.

Example 2.2.3. The d-cross-polytope, given by conv {e1, . . . , ed,�e1, . . . ,�e
d

} ⇢ Rd, is a

d-fold free sum of [�1, 1].

As with normality and integral closure, one must be cautious when discussing free sums;

di↵erent authors sometimes use di↵erent definitions, and the validity of results may change

based on which definition is used. The definition above is useful due to the following result.

Theorem 2.2.4. [6, Corollary 3.4] If P ,Q ✓ Rn are reflexive polytopes such that 0 2 P�

and P �Q = conv {P [Q} is a free sum, then

h⇤
P�Q(t) = h⇤

P(t)h
⇤
Q(t).

Our next proposition provides a method for producing reflexive simplices from pairs of

lower-dimensional reflexive simplices.

12



Proposition 2.2.5. Suppose P ✓ Rn and Q ✓ Rm are full-dimensional simplices with

0 2 P and {v0, . . . , vm} denoting the vertices of Q. Then for each i = 0, 1, . . . ,m the

polytope formed by

P ⇤
i

Q := conv {(P ⇥ 0m) [ (0n ⇥Q� v
i

)} ✓ Rn+m

is a free sum and is itself a simplex. Moreover, if 0 2 P� and P and Q are both reflexive,

then P ⇤
i

Q is also reflexive.

Proof. Since each of P and Q � v
i

are full-dimensional, their a�ne spans are orthogonal

subspaces of Rn+m. Moreover, their intersection is 0, so the operation gives a free sum. By

Theorem 2.2.4, the denominator of EP⇤iQ(t) as a rational function is of degree n+m+1, so

dim(P ⇤
i

Q) = n+m. Because P ⇤
i

Q is the convex hull of n+m+2 distinct point, but one

vertex lies inside P ⇥ 0m, it can be expressed as a convex hull of at most n+m+ 1 points.

Thus P ⇤
i

Q is a simplex.

Now we assume that both P and Q are reflexive. Noting that EQ�vi(t) = EQ(t), Theo-

rem 2.2.4 tells us that the numerator of EP⇤iQ(t) as a rational function has degree n + m.

This polynomial also has symmetric coe�cients, since it is the product of polynomials that

each have symmetric coe�cients. A well-known result in Ehrhart theory tells us that the

smallest dilate of P ⇤
i

Q containing an interior lattice point is dim(P ⇤
i

Q)� (n+m�1) = 1.

Thus, by Theorem 2.1.2, the constructed simplex must be reflexive.

Geometrically, applying this operation to reflexive simplices corresponds to fixing P and

translating Q so that their intersection point is a vertex of Q and the unique interior point

of P .

An important property of the ⇤
i

operation is that, under appropriate constraints, it

preserves being integrally closed.

Theorem 2.2.6. If P and Q are any integrally closed simplices with 0 2 P� and P reflexive,

then P ⇤
i

Q is integrally closed.

Proof. Since P ⇤
i

Q is a free sum, we may assume that P and Q intersect at the origin with

P ✓ Rn ⇥ 0m and Q ✓ 0n ⇥ Rm.

13



By definition, the convex hull of P and Q is the set of points representable as

rX

i=1

↵
i

p
i

+
sX

j=1

�
j

q
j

where p
i

2 P , q
j

2 Q for each i, j, and the ↵
i

, �
j

are nonnegative numbers whose total sum

is 1. Form the points

u =
1P

r

j=1 ↵j

 
rX

i=1

↵
i

p
i

!
, v =

1P
s

k=1 �k

 
sX

l=1

�
l

q
l

!
.

Then u 2 P and v 2 Q. Setting t =
P

r

i=1 ↵i

, their convex sum

 
rX

i=1

↵
i

!
u+

 
sX

j=1

�
j

!
v = tu+ (1� t)v

is in P �Q, and, in particular, is in tP ⇥ (1� t)Q. Therefore the free sum is covered by sets

of this form for 0  t  1.

For the last step, let (p, q) 2 tP ⇥ (m � t)Q where m is a positive integer, p 2 tP , and

q 2 (m� t)Q. Since P is reflexive, p lies on the boundary of some integer scaling of P , thus

we may assume t is an integer. Hence q is an integer scaling of Q. By the integral closure of

P and Q, there are t lattice points of P summing to p and m� t lattice points of Q summing

to q. These summands are all contained in P ⇤
i

Q, hence it is integrally closed.

This brings us to our main observation.

Corollary 2.2.7. If P and Q are integrally closed, reflexive simplices with 0 2 P�, then so

is P ⇤
i

Q for each i. If, in addition, h⇤(P) and h⇤(Q) are unimodal, then so is h⇤(P ⇤
i

Q).

Proof. Integral closure follows from Theorem 2.2.6, and reflexivity follows from Proposi-

tion 2.2.5. By Theorem 2.2.4 and [35, Proposition 1], which states that the product of two

polynomials with symmetric unimodal coe�cients has these same properties, the last claim

holds.

We end this section by noting that the conclusions of Proposition 2.2.5 and Theo-

rem 2.2.6 still hold when “simplex” is replaced with “polytope;” adaptations of their proofs

are straightforward. However, there is no classification for arbitrary reflexive polytopes by
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type in the manner that we discuss in the next section. Regardless, this gives one reason why

a reflexive polytope may have a unimodal h⇤-vector. We remark that it is not clear what the

relationship is between polytopes formed when using the ⇤
i

construction on di↵erent vertices

of the second operand, and it is not easy to identify geometrically that a reflexive polytope

decomposes as a free sum.

2.3 Searching for Non-unimodal Examples

If one wishes to search for an example of an integrally closed, reflexive polytope with a non-

unimodal h⇤-vector, then it is natural to first rule out those polytopes obtained as a result of

Corollary 2.2.7. As mentioned earlier, reflexive simplices are a class one might focus on when

searching for such a polytope. It is helpful in this case to consider how Construction 2.1.4

interacts with the free sum operation.

Given a reflexive simplex, the type Q = (q0, . . . , qn) can be found by setting

q
i

=

���������

det

0

BBB@

| | · · · | · · · |

v0 v1 · · · bv
i

· · · v
n

| | · · · | · · · |

1

CCCA

���������

.

Note that reordering Q corresponds to performing this same process to a unimodularly equiv-

alent simplex. Thus, we may assume that Q is nondecreasing. Setting � = gcd(q0, . . . , qn)

and Q
red

= 1
�

Q, the reflexive simplex will have type (Q
red

,�). Recall that simplices of

type (Q, 1) are exactly those that satisfy the conditions of Construction 2.1.4, and denote

these simplices by �
Q

. The remaining simplices are found by performing various additional

operations on the �
Q

.

For any reflexive simplex, we call Q
red

the reduced weight of the simplex, and a simplex

with this reduced weight has the property that

X

i

q
iP
�

q
�

v
i

= 0 .

This follows from scaling the equality

X

i

q
i

v
i

= 0 ,
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which itself follows from Cramer’s rule. Note that because there are n + 1 of the v
i

’s in n-

dimensional space, the coe�cients of the above sum are uniquely determined up to scaling.

Thus, the Q
red

vector of a reflexive simplex is the particular choice of coe�cients for this

sum that satisfies the divisibility condition (2.1).

Example 2.3.1. The weight Q = (1, 1, 1, . . . , 1) 2 Zn+1 corresponds to the polytope

�
Q

= conv

(
e1, . . . , en,�

X

i

e
i

)
,

which is often called the standard reflexive simplex of minimal volume. Note that the sum of

these vertices, each weighted by 1, is equal to zero. It is well known that one can demonstrate

that this polytope is integrally closed by showing that it has a unimodular triangulation,

specifically the triangulation whose facets consist of those simplices that are the convex hull

of the origin and all but one of the vertices of �
Q

.

This ⇤
i

operation has a corresponding interpretation in terms of the types of the sum-

mands.

Theorem 2.3.2. If P = conv {v0, . . . , vn} ✓ Rn and Q = conv {w0, . . . , wm

} ✓ Rm are full-

dimensional reflexive simplices of types ((p0, . . . , pn),�) and ((q0, . . . , qm), µ), respectively,

then P ⇤
i

Q is a reflexive simplex of type

✓
1

d
(q

i

p0, qip1, . . . , qipn, sq0, sq1, . . . ,csqi, . . . , sqm), d
◆
,

where s =
P

n

j=0 pj and d = gcd(q
i

,
P

n

j=0 pj).

Proof. For notational convenience, we identify P and Q with their embeddings in Rn+m.

Before the embedding, we know from the weights of P and Q that

nX

j=0

p
jP
p
↵

v
j

= 0 and
mX

k=0

q
kP
q
�

w
k

= 0 .

After the embedding, the translation of Q in Rn+m results in

mX

k=0

q
kP
q
�

(w
k

� w
i

) = �w
i

.
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Therefore, on the vertices of the free sum, we see

�w
i

=
q
iP
q
�

(w
i

� w
i

) +
mX

k=0
k 6=i

q
kP
q
�

(w
k

� w
i

)

=
nX

j=0

✓
q
iP
q
�

· p
jP
p
↵

◆
v
j

+
mX

k=0
k 6=i

q
kP
q
�

(w
k

� w
i

) ,

giving us the unique interior point of the simplex. Thus, Q
red

for P ⇤
i

Q is given by a scaling

of the vector

✓
q
iP
q
�

· p0P
p
↵

,
q
iP
q
�

· p1P
p
↵

, . . . ,
q
iP
q
�

· p
nP
p
↵

,
q0P
q
�

,
q1P
q
�

, . . . ,
dq

iP
q
�

, . . . ,
q
mP
q
�

◆
.

Scaling this vector by (
P

p
↵

) (
P

q
�

) and dividing by gcd(q
i

,
P

n

j=0 pj), we obtain an integer

vector that satisfies (2.1). Thus, this is our desired Q
red

. To find the full Q vector for

P ⇤
i

Q, we first translate the polytope by w
i

so that the interior vertex is zero, then compute

determinants as described at the beginning of the section. Since the determinant of the

matrix formed by v1 + w
i

, v2 + w
i

, . . . , v
n

+ w
i

, w0, w1, . . . , bwi

, . . . , w
m

(where all vectors are

considered to be embedded in Rn+m) is equal to q
i

p0, this determines the type vector for

P ⇤
i

Q, and completes our proof.

Thus, one way to search for examples of integrally closed reflexive simplices with non-

unimodal h⇤-vectors is to generate Q-vectors for the polytopes, then reduce the Q-vectors

under consideration using Theorem 2.3.2 before testing �
Q

for integral closure and uni-

modality. This operation is particularly helpful when a simplex has type (Q
red

, 1), since it

is the only simplex of that type. For example, �(1,1,2) can be decomposed as �(1,1) ⇤0 �(1,1),

since we know the ⇤0 operation provides a reflexive simplex of type ((1, 1, 2), 1), and there

is only one of this type. However, there may be multiple simplices of type (Q
red

,�) when

� > 1, no longer guaranteeing that a simplex decomposes in a particular way. An example

would be ((1, 2, 3, 3, 9), 2); there are two simplices of this type, but only one of them can be

of the form �(1,2,3) ⇤1 �(1,2,3). In this case, more checks are needed to identify which simplex

decomposes as a free sum.

Unfortunately, while the free sum operation produces a large number of reflexive poly-

topes, it appears that these might be rare among the reflexive polytopes with unimodal
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h⇤-vectors. For example, when we randomly generated 1100 eight-dimensional integrally-

closed reflexive simplices, all of them had unimodal h⇤-vectors, yet none of their type vectors

split in the manner given in Theorem 2.3.2. Given that there are nearly 500 million reflexive

polytopes of dimension 4, and the number of reflexive polytopes in higher dimensions is

unknown, 1100 in dimension 6 is a very small sample size. In dimension 6 there are 2676

reflexive simplices of type (Q, 1) alone (verified experimentally), so 1100 such simplices in

dimension 8 is a small sample even among simplices. It would be interesting to know more

about the reflexive simplices formed via the free sum operation in comparison to the family

of all reflexive simplices.

2.4 The Weak Lefschetz Property

In this section, we show that a natural approach inspired by commutative algebra fails to

establish unimodality for integrally closed reflexive simplices in general. For any lattice

simplex P ✓ Rn with vertices {v0, . . . , vn}, recall that there is an associated semigroup

algebra given by

C[P ] := C[xazm|a 2 mP \ Zn]

where xa := xa

1

1 xa

2

2 · · · xan
n

. The Ehrhart series EP(t) coincides with the Hilbert series of

C[P ]. Thus, the numerator of EP corresponds to the Hilbert series of C[P ]/J , where J =

(✓0, . . . , ✓n) is a 0-dimensional ideal whose generators are degree 1 – more specifically, J is a

linear system of parameters (l.s.o.p.). There is a canonical choice of J when P is a simplex,

RP := C[P ]/(xv

0z, . . . , xvnz) ,

graded by the exponent on z. Here, h⇤
k

is equal to the number of lattice points satisfying
P

c
i

= k in the fundamental parallelepiped ⇧(P) defined by

⇧(P) :=

(
nX

i=0

c
i

(v
i

, 1)
���0  c

i

< 1

)
⇢ Rn+1 .

The study of Hilbert functions gives a method for establishing unimodality of h⇤(P) in

this context.
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Definition 2.4.1. A linear form l 2 RP is called a weak Lefschetz element if the multiplica-

tion map

⇥l : [RP ]i ! [RP ]i+1

has maximal rank, that is, is either injective or surjective, for each i.

By Remark 3.3 of [21], if RP has a weak Lefschetz element, then the Hilbert series has

unimodal coe�cients in its numerator, and therefore so does EP(t). Experimental data sug-

gests that a weak Lefschetz element exists for many instances of RP when P is an integrally

closed reflexive simplex, but we will now show that such an element need not exist using the

choice of J above.

Proposition 2.4.2. For every d � 3, there exists a d-dimensional integrally closed re-

flexive simplex �
Q

such that R�Q does not admit a weak Lefschetz element when J =

(xv

0z, . . . , xvnz).

Proof. For fixed d, let Q = (1, d, d+ 1, . . . , d+ 1| {z }
d�1 times

). Then Q defines a reflexive simplex

�
Q

= conv
�
e1, . . . , ed, (�d,�d� 1, . . . ,�d� 1)T

 
.

Consider the cone consisting of all rays from the origin though a point in (�
Q

, 1) ✓ Rd+1.

Elements of this cone with last coordinate m are in bijection with points of m(�
Q

) by

projection onto the first d coordinates. Additionally, the cone has hyperplane description

given by Ax � 0, where A is the (d+ 1)⇥ (d+ 1) matrix

1

d(d+ 1)

0

BBBBBBBBBBBB@

d2 �d �d · · · �d d

�d� 1 d2 � 1 �d� 1 · · · �d� 1 d+ 1

�d� 1 �d� 1 d2 � 1 · · · �d� 1 d+ 1
...

...
...

. . .
...

...

�d� 1 �d� 1 �d� 1 · · · d2 � 1 d+ 1

�1 �1 �1 · · · �1 1

1

CCCCCCCCCCCCA

.
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Thus, there are d(d + 1) lattice points in ⇧(�
Q

). For each r 2 {1, . . . , d � 1}, form the

vectors

v0,r = (0, 0, . . . , 0, r)

v1,r = (�1,�1, . . . ,�1, r)

...
...

v
r�1,r = (�r + 1,�r + 1, . . . ,�r + 1, r)

v
r,r

= (�r,�r, . . . ,�r, r)

v
r+1,r = (�r + 1,�r, . . . ,�r, r)

v
r+2,r = (�r,�r � 1, . . . ,�r � 1, r)

...
...

v
d,r

= (�d+ 2,�d+ 1, . . . ,�d+ 1, r)

v
d+1,r = (�d+ 1,�d, . . . ,�d, r)

There are d+2 of these for each r, and along with the zero vector and (�d+1,�d, . . . ,�d, d)

we have (d � 1)(d + 2) + 2 = d(d + 1) total vectors, which we claim to be all of the lattice

points in ⇧(�
Q

).

To make this easier, we first show that �
Q

is integrally closed. Observe that every vector

v
i,r

can be written as a sum of vectors v
j,r�1 + v

k,1 in the following way. We assume r � 2.

When i > r, we may let j = i and k = 0; when i < r we may let j = i and k = 1; when

i = r we may use j = r � 1 and k = 1. Thus, by induction on r, every lattice point in

⇧(�
Q

) is a sum of elements satisfying r = 1. Since every lattice point in the cone over �
Q

is

a sum of lattice points that are either ray generators or fundamental parallelepiped points,

we conclude that �
Q

is integrally closed.

To see that the lattice points of ⇧(�
Q

) are precisely those described above, we show that

all are obtained as a linear combination of the ray generators with coe�cients less than one.

It is straightforward using the matrix above to show that all coe�cients of the ray generators

are less than 1
d

when representing the lattice points in ⇧(�
Q

) with r = 1; integral closure

then ensures that the coe�cients of all points for r 2 {2, . . . , d� 1} will be bounded by d�1
d

.

Then one only needs to check the coe�cients on the vector (�d + 1,�d, . . . ,�d, d). These
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verifications are also straightforward, and the details are omitted.

Now we must verify that no potential weak Lefschetz element is injective from [R�Q ]1 to

[R�Q ]2. A weak Lefschetz element would be of the form

d+1X

i=0

a
i

xvi,1z

where a
i

are field elements. The map from [R�Q ]1 to [R�Q ]2 induced by multiplication by

this element is representable as the matrix
0

BBBBBBBBBBBBBBBBBBBBB@

a0 0 0 0 0 · · · 0 0 0

a1 a0 0 0 0 · · · 0 0 0

0 a1 0 0 0 · · · 0 0 0

a3 a2 a1 a0 0 · · · 0 0 0

a4 a3 0 a1 a0 · · · 0 0 0

a5 a4 0 0 a1 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

a
d

a
d�1 0 0 0 · · · a1 a0 0

a
d+1 a

d

0 0 0 · · · 0 a1 a0

1

CCCCCCCCCCCCCCCCCCCCCA

where the columns are indexed by the degree 1 elements in the order v0,1, . . . , vd+1,1 and

similarly for the rows with the degree 2 elements. This is a triangular matrix with a zero

on the diagonal, so it cannot have full rank regardless of the values of the a
i

. Therefore, the

map is not injective and there is no weak Lefschetz element in R�Q .

Despite the non-existence of a weak Lefschetz element for this choice of J , the h⇤-vectors

of these simplices are easily computed and found to be of the form (1, d+2, d+2, . . . , d+2, 1).

Thus, unimodality still holds for this family, indicating that unimodality, if it holds in general

for integrally closed reflexive simplices, is a consequence of some subtle properties of these

polytopes.

It is very important to note that although there was not a weak Lefschetz element of the

quotient of C[P ] by (xv

0z, . . . , xvnz), there may very well be a weak Lefschetz element when

taking the quotient by di↵erent choices of J . For example, the choice J = (xv

0z, . . . , xvnz+z)

appears to induce algebras R�Q with the weak Lefschetz property when Q = (1, d, d +
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1, . . . , d+1). Indeed, experimental data suggests that when J is generated by generic linear

forms, a weak Lefschetz element always exists. More information about experimental data

is discussed in Chapter 4.

Copyright c� Robert Davis, 2015.
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Chapter 3 A Return to Magic Squares

3.1 Background

Since the 1950s, much has become known about the Ehrhart theory of the Birkho↵ polytope,

B
n

. Stanley [32] was able to prove that B
n

has the h⇤-vector of a reflexive polytope, hence

h⇤(B
n

) is symmetric. Later, Athanasiadis introduced in [3] the notion of a “special simplex”

embedded in a polytope. Using this idea, he was able to prove that the h⇤-vector of B
n

is the same as the combinatorial h-vector for the boundary of a simplicial polytope. The

g-theorem proves that these vectors are unimodal.

However, little is known about the polytope ⌃
n

obtained by intersecting B
n

with the

hyperplanes x
ij

= x
ji

for all i, j, that is, by requiring the corresponding matrices to be

symmetric. Nothing is new when n  2, but complications arise once n � 3 since the

vertices of ⌃
n

are no longer always integral. They are contained in the set

L
n

=

⇢
1

2
(P + P T )|P 2 Rn⇥n is a permutation matrix

�
,

but L
n

is not necessarily equal to the vertex set of ⌃
n

. When a polytope has rational vertices,

the Ehrhart series of the polytope, while still able to be defined, comes in a di↵erent form.

Let den P denote the least common multiple of the denominators appearing in the co-

ordinates of the vertices of P . Then there exist values h⇤
0, . . . , h

⇤
k

2 Z�0 with h⇤
0 = 1 such

that

EP(t) =

P
k

j=0 h
⇤
j

tj

(1� tden P)d+1
.

Although EP(t) may have cancellation when written as a rational function, we refer to its

h⇤-vector as the coe�cients in the unreduced form. A description of the vertices and a

generating function for the number of them can be found in [37]. The h⇤-vector of ⌃
n

is

known to be symmetric [36] and E⌃n(t) has been computed in a reduced form for some small

n [38], but it is still unknown whether the h⇤-vector is always unimodal in this case.

Definition 3.1.1. Denote by S
n

the polytope containing all real n⇥ n symmetric matrices

with nonnegative entries such that every row and column sum is 2. That is, S
n

is the dilation
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of ⌃
n

by two.

Fortunately, some information about ⌃
n

is retained by S
n

, a polytope that is combi-

natorially equivalent but with integral vertices. Figure 3.1 provides a realization of S3 as a

three-dimensional polytope. This is the first n for which S
n

di↵ers from the second scaling of

the Birhko↵ polytope itself, and is the largest n which has a realization in three dimensions

or fewer.

0

@
2 0 0
0 0 2
0 2 0

1

A

0

@
0 1 1
1 0 1
1 1 0

1

A

0

@
2 0 0
0 2 0
0 0 2

1

A

0

@
0 2 0
2 0 0
0 0 2

1

A

0

@
0 0 2
0 2 0
2 0 0

1

A

Figure 3.1: Second dilate of the polytope of real doubly-stochastic symmetric matrices.

A common way to prove that the h⇤-vector of a polytope P is unimodal is to examine

the toric ideal IP of the polytope and Gröbner bases of the toric ideals, notions which will

be discussed more precisely in Section 3.3. The main purpose of this chapter is to examine

what happens when trying to prove that h⇤(S
n

) is unimodal by adapting the techniques used

to prove that h⇤(B
n

) is unimodal. Key ingredients of proving unimodality of h⇤(B
n

) are that

B
n

is integrally closed and that for a certain class of orderings on the variables of I
Bn , the

initial ideal of I
Bn is generated by squarefree monomials. In this direction, we will show the

following.

Theorem 3.1.2. For all n, let I
Sn denote the toric ideal of S

n

. The following properties

hold:
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1. For any term ordering, every element of the reduced Gröbner basis G of I
Sn with respect

to this order consists of binomials, one monomial of which is squarefree.

2. For any term ordering, every variable in I
Sn appears in a degree-two binomial in G.

3. There exists a class of term orders �
Sn for which the initial term of each degree-two

binomial in G is squarefree.

4. For the term orders �
Sn , the initial term in�Sn

(g) of each g 2 G is cubefree; that is,

in�Sn
(g) is not divisible by t3

i

for any variable t
i

appearing in g.

3.2 Basic Properties, Symmetry, and Integral Closure

Although relatively little has been established about the Ehrhart theory of S
n

, it has still

been studied and some basic information is known. For ⌃
n

, the degrees of the constituent

polynomials of its Ehrhart quasipolynomial are known.

Theorem 3.2.1 (Theorem 8.1, [24]). The Ehrhart quasipolynomial of ⌃
n

is of the form

f
n

(t) + (�1)tg
n

(t), where deg f(t) =
�
n

2

�
and

deg g
n

(t) =

8
<

:

�
n�1
2

�
� 1 if n odd

�
n�2
2

�
� 1 if n even

.

Stanley first proved that the above degrees are upper bounds and conjectured equality

[32], and the conjecture was proven using analytic methods. These degrees provide an upper

bound on the degree of h⇤
⌃n
(t); we will provide exact degrees later. Since the Ehrhart series

of S
n

, as a formal power series, consists of the even-degree terms of the monomials appearing

in E⌃n(t), we get L
Sn(t) = f

n

(2t) + g
n

(2t).

The defining inequalities of our polytopes will be helpful in some contexts. For S
n

, these

are

x
ij

� 0 for all 1  i  j  n,

x
ij

= x
ji

for all 1  i < j  n,
nX

i=1

x
ij

= 2 for each j = 1, . . . , n.
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The first set of inequalities provided indicate that the facet-defining supporting hyperplanes

of S
n

are x
ij

= 0: if any of these are disregarded, the solution set strictly increases in size.

Additionally, by knowing that the vertices of B
n

are the permutation matrices, it follows

very quickly that B
n

is integrally closed. It is not so simple for S
n

, since it contains lattice

points that are not vertices. In this case, it is helpful to interpret the lattice points of S
n

as

certain incidence matrices of graphs.

Proposition 3.2.2. For all n, S
n

is integrally closed.

Proof. This result can be seen as a corollary of Petersen’s 2-factor theorem. For any m 2

Z�0, each lattice point X = (x
ij

) 2 mS
n

can be interpreted as the incidence matrix of an

undirected m-regular multigraph G
X

on distinct vertices v1, . . . , vn, with loops having degree

1. We first observe that the total number of loops will be even: if there were an odd number

of loops, consider the graph with the loops removed. The sum of degrees of the vertices in

the resulting graph would be odd, which is an impossibility.

Denote by V
odd

(G
X

) the vertices ofG
X

with an odd number of loops, and write |V
odd

(G
X

)| =

2mt + s, where t, s are nonnegative integers and s < 2m. Note in particular that s will be

even. Construct a new graph G
Y

with vertex set V (G
Y

) = {v1, . . . , vn, w0, w1, . . . , wt

} with

the same edges as in G
X

with the following modifications:

1. For each v
i

/2 V
odd

(G
X

), v
i

will have 1
2xii

loops in G
Y

.

2. For each v
i

2 V
odd

(G
X

), v
i

will have 1
2(xii

� 1) loops and an edge between v
i

and the

lowest-indexed w
j

such that degw
j

< 2m.

3. Vertex w
t

will have 1
2(2m� s) loops.

This new graph will be 2m-regular, now counting loops as degree 2; see Figure 3.2 for an

example on four vertices.

Thus, by Petersen’s 2-factorization theorem, G
Y

can be decomposed into 2-factors. Hence

the matrix Y corresponding to G
Y

will decompose as the sum of Y1, . . . , Ym

, each summand

a lattice point of mS
n+t+1.

Now we must “undo” the changes we made to G
X

to obtain the desired sum. Index the

rows and columns by {v1, . . . , vn, w0, w1, . . . , wt

}. Each edge v
i

w
j

will appear in some Y
k

as

26



v1 v2

v3 v4

�!

v1 v2

v3 v4

w0

Figure 3.2: Altering a graph to be 2m-regular

a 1 in positions (v
i

, w
j

) and (w
j

, v
i

). Replace these entries with 0 and add 1 to entry (v
i

, v
i

).

Denote by X
k

the submatrix of Y
k

consisting of rows and columns indexed by v1, . . . , vn

after any appropriate replacements have been made. Each replacement preserves the sum of

row/column v
i

, and applying this to each Y
k

leaves any entry (v
i

, w
j

) as 0, so each X
k

is a

lattice point of S
n

. Thus X =
P

X
k

, as desired.

A second necessary ingredient in proving that h⇤(B
n

) is unimodal is proving that it has

the following property.

Definition 3.2.3. For a lattice polytope P ✓ Rn, denote by k[P ] the semigroup algebra

k[P ] := k[xazm|a 2 mP \ Zn+1] ✓ k[x±1
1 , . . . , x±1

n

, z].

Then P is called Gorenstein if k[P ] is Gorenstein. More specifically, P is Gorenstein of index

r if there exists a (necessarily unique) monomial xczr for which

k[P�] ⇠= (xczr)k[P ].

Gorenstein polytopes generalize reflexive polytopes; reflexive polytopes are exactly the

Gorenstein polytopes of type 1. Moreover, they retain the symmetry of the h⇤-vector.

Theorem 3.2.4 (see [36]). The h⇤-vector of a lattice polytope P is symmetric if and only

if P is Gorenstein.

It is worth noting that reflexive polytopes were not introduced as special cases of Goren-

stein polytopes. This fact was only determined later, leading to Theorem 2.1.2

Having the hyperplane description of a polytope can make it easier to determine if it is

Gorenstein, as evidenced by the following lemma.
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Lemma 3.2.5 (Lemma 2(ii), [12]). Suppose P has irredundant supporting hyperplanes

l1, . . . , ls � 0, where the coe�cients of each l
i

are relatively prime integers. Then P is

Gorenstein (of index r) if and only if there is some c 2 rP \ Zn for which l
i

(c) = 1 for all i.

Generally, proving the unimodality of an h⇤-vector is a challenging task. There are more

techniques available, though, if we have a Gorenstein polytope; that is, if the semigroup

algebra k[P ] is Gorenstein.

Lemma 3.2.6 (Corollary 7, [12]). Suppose P ✓ Rn is an integrally closed Gorenstein

polytope with irredundant, integral supporting hyperplanes l1, . . . , ls, and contains lattice

points v0, . . . , vk. If these points form a k-dimensional simplex and l
i

(v0 + · · · + v
k

) = 1 for

each i, then P projects to an integrally closed reflexive polytope Q of dimension n� k with

equal h⇤-vector.

Theorem 3.2.7. S
n

is Gorenstein if and only if n is even. When n = 2k, S
n

is Gorenstein of

type k, and h⇤(S
n

) is the h⇤-vector of a reflexive polytope of dimension 2k2� 2k+1. Hence,

deg h⇤
Sn
(t) = 2k2 � 2k + 1.

Proof. By Lemma 3.2.5 and knowing the facet description of S
n

, we can see that the polytope

is Gorenstein by choosing integer matrices of S
n

whose sum is the all-ones matrix. When n

is odd, this is impossible: such a matrix has an odd line sum, whereas any sum of matrices

in S
n

has even line sum.

Let n = 2k. For each i 2 {1, 2, . . . , k � 1}, construct a matrix

0

BBBBBBBBBBBB@

a0 a
n�1 a

n�2 · · · a2 a1

a
n�1 a0 a

n�1 · · · a3 a2

a
n�2 a

n�1 a0 · · · a4 a3
...

...
...

. . .
...

...

a2 a3 a4 · · · a0 a
n�1

a1 a2 a3 · · · a
n�1 a0

1

CCCCCCCCCCCCA

by setting a
i

= a
n�i

= 1 and a
j

= 0 for all j 6= i. Construct one additional matrix by

setting a0 = a
k

= 1 and a
j

= 0 for all j 6= 0, k. Each of the k matrices are symmetric and
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have pairwise disjoint support by construction. These are therefore vertices of a simplex of

dimension k � 1, and Lemma 3.2.6 provides the reflexivity result.

Note that this is not the only class of simplices satisfying the conditions of Lemma 3.2.5

contained in S
n

for even n; others may be found. It may be interesting to ask how many

such distinct simplices in S
n

exist.

Example 3.2.8. For n = 6, we construct the special simplex described above. It has three

vertices, which are
0

BBBBBBBBBBBB@

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

1

CCCCCCCCCCCCA

,

0

BBBBBBBBBBBB@

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

1

CCCCCCCCCCCCA

,

0

BBBBBBBBBBBB@

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1

CCCCCCCCCCCCA

.

Proposition 3.2.9. If n = 2k+1, then the first scaling of S
n

containing interior lattice points

is
�
n+1
2

�
S
n

. Specifically, the number of interior lattice points in this scaling is the number

of symmetric permutation matrices; i.e. the number of involutions of the set {1, 2, . . . , n}.

Thus, deg h⇤
Sn
(t) = 2k2.

Proof. For an interior point, each matrix entry must be positive. However, the matrix of all

1s does not work since this results in an odd line sum. Thus there must be a 2 in each row

and column as well. Thus by subtracting the all-1s matrix, each lattice point corresponds to

a symmetric permutation matrix, that is, an involution. The line sum for the interior lattice

points will be n+ 1, and we remember that the line sums of matrices in S
n

is 2.

By Theorem 1.5 of [33],

E(Sn)�(t) = (�1)(
n
2

)E
Sn

✓
1

t

◆
.

When expanded as a power series, the lowest-degree term will be t((
n
2

)+1)�d, where d =

deg h⇤
Sn
(t). The degree of h⇤

Sn
(t) follows.

With this information, we can deduce the degrees of h⇤
⌃n
(t) for each n.
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Proposition 3.2.10. For all n, h⇤(S
n

) consists of the even-indexed entries of h⇤(⌃
n

). Thus, if

n is even, then deg h⇤
⌃n
(t) = 2(deg h⇤

Sn
(t)), and if n is odd, then deg h⇤

⌃n
(t) = 2(deg h⇤

Sn
(t))+1.

Proof. As power series, the coe�cient of tm in E
Sn(t) is the same as the coe�cient of t2m in

E⌃n(t). Recalling Theorem 3.2.1, this gives

E⌃n(t) = E
Sn(t

2) + t
X

m�0

f(m)t2m

for some polynomial f . So, as rational functions, the first summand of the above will have

entirely even-degree terms in the numerator and the same denominator as the rational form

of E⌃n(t). Thus, the second summand, when written to have a common denominator as

the first summand, will have entirely odd-degree terms in its numerator. Therefore, h⇤(S
n

)

consists of the even-indexed entries of h⇤(⌃
n

).

Since h⇤(S
n

) is symmetric for even n only, and by Proposition 3.2.9, the degrees of h⇤(⌃
n

)

follow.

3.3 Toric Ideals and Regular, Unimodular Triangulations

For a polytope P ✓ Rn let P \ Zn = {a1, . . . , as}. We define the toric ideal of P to be the

kernel of the map

⇡ : TP = k[t1, . . . , ts] ! k[P ],

where ⇡(t
i

) = (
Q

xai) z, using the multivariate notation. This ideal we denote IP . Because

the lattice points of S
n

correspond to matrices, it will sometimes be more convenient to use

the indexing

T
Sn = k[t

A

|A 2 S
n

\ Zn⇥n] and k[S
n

] = k[xAzm|A 2 mS
n

\ Zn⇥n],

where we now use

xAzm =
Y

0i,jn

x
ai,j

ij

zm

with A = (a
i,j

). Thus ⇡ : T
Sn ! k[S

n

] is given by ⇡(t
M

) = xMz.

The toric ideal of a polytope has been widely studied, in large part for its connections to

triangulations of the polytope. Various properties of the initial ideal of IP are equivalent to
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corresponding properties of the triangulation, with perhaps the most well-known connection

being the following result.

Theorem 3.3.1 (Theorem 8.9, [39]). Given a monomial ordering � on TP , the initial ideal

in�(IP) is squarefree if and only if the corresponding regular triangulation of P is unimodular.

In general, in�
rlex

(IP) cannot be guaranteed to be squarefree. This does not rule out

the existence of in�
rlex

(IP) being squarefree for some ordering of their lattice points, though

this may require much more work; the generators of a toric ideal are notoriously di�cult

to compute in general. Fortunately, the following ordering we place on S
n

provides enough

structure to prove the existence of a regular, unimodular triangulation.

Definition 3.3.2. We place a total order <
Sn on the lattice points of S

n

by setting M <
Sn

N if M contains more 2s in its entries than N , and by then taking a linear extension.

This induces a graded reverse lexicographic monomial order �
Sn on the variables of T

Sn ,

specifically t
M

�
Sn t

N

if M <
Sn N .

We are now ready to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. First, let G be the reduced Gröbner basis of I
Sn with respect to any

ordering. It is known to consist of binomials itself. Suppose G has a binomial u�v with both

terms containing squares, and ⇡(u) = ⇡(v) = xAzk. Note in particular that the variables

in u and v are distinct. Suppose t
M

and t
N

are the variables in the separate terms with

powers greater than 1. Then ⇡(t
M

t
N

) is the average of the points corresponding to ⇡(t2
M

)

and ⇡(t2
N

), thus is subtractable from A. By the integral closure of S
n

, there is some third

monomial b such that ⇡(t
M

t
N

b) = xAzk. So u� t
M

t
N

b is in I
Sn ; however, we can factor out

t
M

from this to get u � t
M

t
N

b = t
M

(u1 � u2). We may similarly factor t
N

from v � t
M

t
N

b

to get t
N

(v1 � v2), which must also be in I
Sn . Therefore u1 � u2 and v1 � v2 must be in I

Sn

themselves, and u� v can be written as

u� v = u� t
M

t
N

b+ t
M

t
N

b� v = t
M

(u1 � u2)� t
N

(v2 � v1)

which contradicts G being reduced. Therefore no binomial in G can have both terms con-

taining a square.
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For the second property, we must show that, for any lattice point M 2 S
n

, we can find a

second lattice point N 2 S
n

such that M +N can be represented in a second, distinct sum.

Since these are degree 2, the relation must be recorded in I
Sn , meaning both terms appear

individually in G (even if not as part of the same binomial). While this can be proven in

terms of matrices, it will be easier to work in terms of graph labelings.

As we saw in Proposition 3.2.2, each lattice point M 2 S
n

corresponds to a 2-factor G
M

,

a covering of n vertices so that each vertex is incident to two edges. Thus for each 2-factor

G
M

, we want to find a second 2-factor G
N

such that G
M

[ G
N

can be written as a union

of 2-factors, each distinct from both G
M

and G
N

. Each covering is a disjoint union of two

possible connected components: first, a path, possibly of length 0, whose endpoints also have

loops; second, a k-cycle for some k  n. This allows us to break the remainder of the proof

into three cases.

First suppose G
M

contains a path v1, v2, . . . , vk, k > 1, with loops at its endpoints. Set

G
N

to be the graph agreeing with G
M

except on these vertices. Here we place a single loop on

each of v1 and v
k

, an edge between these two vertices, and two loops on each of v2, . . . , vk�1.

The union G
M

[G
N

can be decomposed appropriately as a cycle v1, v2, . . . , vk, v1 and as two

loops on each vertex.

Next suppose that G
M

contains no such paths but does contain a cycle v1, v2, . . . , vk, v1

for some k � 2. Let G
N

be the cover with two loops on each v
i

. Then G
M

[G
N

decomposes

as the path v1, . . . , vk with a loop on v1 and v
k

as one covering and the other covering as the

edge v1, vk with loops v1, v1 and v
k

, v
k

along with two loops on all other vertices.

If G
M

does not fit into either of the previous cases, then its connected components all

consist of two loops on each of the n vertices. Form a new graph G0 by setting it equal to

G
M

, except for two distinct vertices, v1 and v2. Instead, place two edges between v1 and

v2. Then G0 is also a 2-factor, and G0 = G
N

for some lattice point N 2 S
n

. Moreover, the

entries of both M and N consist of only zeros or twos, so their average A = 1
2(M +N) is a

lattice point of S
n

distinct from both M and N . So, G
M

[G
N

= G
A

[G
A

. This covers all

cases, so the corresponding M will always appear in a degree-two binomial of G.

We restrict to the order �
Sn and fix this order for the remainder of the proof. For

the third property, consider t
M

t
N

� t
X

t
Y

2 G. Since we know one of the monomials must
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be squarefree, it is enough to check the case when the other monomial is a square square.

Suppose M = N . This can only occur if M is not a vertex; hence, M is the midpoint

of X and Y . Thus if any entries of M are 2, the corresponding entries of X and Y must

also be 2. Since X and Y are distinct, though, they have distinct support. This implies

that some entry of M is 1, which arises from one of the corresponding entries of X and Y

being 0 and the other being 2. So, one of X or Y will contain more twos than M , giving us

in�Sn
(t

M

t
N

� t
X

t
Y

) = �t
X

t
Y

.

Lastly, consider an arbitrary binomial u � v of degree k from G. If the initial term is

the squarefree term, then it is certainly cubefree. Otherwise, the binomial is of the form

ta1
A

1

· · · tar
Ar

� t
B

1

· · · t
Bk
, with in�Sn

(u � v) = u = ta1
A

1

· · · tar
Ar

and each a
i

� 1. Since we are

using the order �
Sn , one of the variables of v = t

B

1

· · · t
Bk

is less than all variables in u;

without loss of generality, assume this variable is t
B

1

.

Choose a nonzero entry ofB1. There will be some variable t
M

1

such thatM1 2 {A1, . . . , Ar

}

and M1 is also nonzero in the same position. Now, choose a nonzero entry of B1 such

that the position is zero in A1. Then we know there is some variable t
M

2

such that

M2 2 {A1, . . . , Ar

} \ {M1} and M2 is nonzero in this new position. Repeating this pro-

cess gives a monomial t
M

1

· · · t
Ms such that M = M1 + · · · + M

s

is nonzero whenever B1

is nonzero. If there are any positions that are 2 in B1 and 1 in M , then square a variable

of t
M

1

· · · t
Ms whose corresponding matrix is nonzero in that position. Repeat on distinct

variables if necessary.

The resulting monomial, which we will call m1, is cubefree, and there is some second

monomial m2 such that m1 � t
B

1

m2 2 I
Sn . Because t

B

1

was chosen to be less than all the

variables t
A

1

, . . . , t
Ar , we know that in�Sn

(m1 � t
B

1

m2) = m1, which divides ta1
A

1

· · · tar
Ar

Since

our chosen binomial is in a reduced Gröbner basis, the two must be equal. Therefore, every

initial term of a binomial in G is cubefree.

If the initial terms can be proven to be squarefree, then the following results follow.

Conjecture 3.3.3. S
n

has a regular, unimodular triangulation, hence h⇤(S
n

) is unimodal

when n is even.
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The last part of the previous proof adapts the method used in Theorem 14.8 of [39] to

show that I
Bn has a squarefree initial ideal for any reverse lexicographic ordering. However,

we cannot continue to adapt this proof so simply at this point: although one of the matrices

A
j

in a variable of the initial term may be nonzero in a same position that B1 is, the entry

may be 1 in A
j

and 2 in B1, and there is no indication that any other variable corresponds

to a matrix with a nonzero entry in the same position.

3.4 Future Directions, Questions, and Conjectures

Experimental data and the results we have shown lead to some natural questions and con-

jectures.

Conjecture 3.4.1. Let G be the reduced Gröbner basis of I
Sn , and let g 2 G with deg g � 3.

1. The matrix corresponding to g does not have a block form. In other words, the corre-

sponding graph is connected.

2. The matrix corresponding to g has a decomposition into lattice points of S
n

such that

one summand consists of only ones and zeros.

If the second part of this conjecture holds, then Conjecture 3.3.3 holds as well.

To prove that an initial term of a binomial is squarefree, one strategy is to prove that both

monomials are squarefree. While this is a stronger result, it may rely less on the monomial

order than simply proving the initial term is squarefree. We propose a monomial order that

is a refinement of �
Sn and appears to hold this behavior.

Conjecture 3.4.2. Set t
M

> t
N

if the matrix M contains more twos than N . If neither

contains a two, then set t
M

> t
N

if M contains more zeros. This refinement induces an order

such that G consists of binomials of degree at most n�1, and the binomials of degree greater

than 2 are squarefree in both terms.

Another modification that can be made to ⌃
n

is the following. Define by P
n

the convex

hull of the lattice points in ⌃
n

. In general, P
n

is neither Gorenstein nor integrally closed.

However, based on experimental data, we conjecture the following.
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Conjecture 3.4.3. For all n, h⇤(P
n

) is unimodal.

Many methods for showing unimodality aim to show that the h⇤-vector of a polytope is

the same as the h-vector of a simplicial polytope, but another approach is necessary for P
n

,

as well as S
n

for odd n.

Instead of looking at all lattice points of S
n

, one can form triangulations using only the

vertices. These will not be unimodular triangulations, but they might lead to something

interesting.

Conjecture 3.4.4. For n � 2, any reverse lexicographic initial ideal of the toric ideal I
Sn

(no new vertices) is n-free and is generated by monomials of degree 3(n� 2).

The conjecture is experimentally true for n = 3 by an exhaustive search. Higher dimen-

sions result in exponentially increasing numbers of vertices, vastly increasing the computa-

tional di�culty of experimentation.

Copyright c� Robert Davis, 2015.
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Chapter 4 Experimental Methods and Results

4.1 Integral Closure

Determining when a polytope is integrally closed is generally a highly nontrivial task. If

the polytope possesses a unimodular triangulation (or even a unimodular cover), then inte-

gral closure clearly holds. However, wthout knowledge of additional structure, proving the

integral closure of a lattice polytope is di�cult. Fortunately, if one wants to test conjec-

tures through computer programs, there are multiple choices available. Tests for this work

were done mainly inside of Macaulay2 [18], using the Normaliz interface. Explicitly checking

h⇤-vectors was often performed using LattE [25].

The complete lists of vectors in Zn

>0, n  7, satisfying the conditions from Construc-

tion 2.1.4 were produced using GAP [17] by Jack Schmidt, to whom we are very grateful.

From these vectors we used Construction 2.1.4 to produce all reflexive simplices of type

(Q, 1). Those vectors corresponding to integrally closed simplices were then collected, the

complete lists of which are available at

https : //sites.google.com/site/rtda223/research.

Table 4.1 lists the number of reflexive simplices of type (Q, 1) for low dimensions, as well as

how many of them are integrally closed.

Dimension # reflexive simplices # integrally closed

of type (Q, 1)
3 14 14 (100%)
4 147 113 (77%)
5 3462 1124 (33%)
6 294134 2676 (<1%)

Table 4.1: The number of integrally closed reflexive simplices for low dimensions.
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4.2 The Weak Lefschetz Property

As we saw in Chapter 2, not every integrally closed reflexive simplex P induces a weak Lef-

schetz element in C[P ] using the standard choice of l.s.o.p. Nevertheless, using this choice

is successful for a highly significant portion of such simplices when using a generic linear

combination of degree-1 elements. Table 4.2 describes vectors Q = (q0, . . . , qn) correspond-

ing to integrally closed reflexive simplices such that the canonical choice of linear system

of parameters does not induce a generic weak Lefschetz element of such a form. Due to

computational limitations, there were restrictions on vectors Q that were tested.

Dimension # simplices # without generic WLE

tested using standard l.s.o.p

3 14 1 (7.1%)
4 83 1 (1.2%)
5 312 31 (9.9%)
6 577 21 (3.6%)

Table 4.2: Integrally closed reflexive simplices whose canonical choice of linear system of
parameters does not induce a generic weak Lefschetz element.

Although these are small samples, this data suggests that the canonical choice of l.s.o.p. is

more successful for simplices of even dimension. The reason for this phenomenon is currently

completely opaque.

Since every reflexive polytope contains the origin, there will always be a minimal generator

of C[P ] corresponding to it. There is no single way to choose how to incorporate this

generator into the canonical l.s.o.p., but simply choosing a second l.s.o.p.

(xr

1z, . . . , xrnz, xr

0z + z),

where the r
i

are the vertices as they appear in Construction 2.1.4, has been e↵ective exper-

imentally. Table 4.3 describes how many of the same simplices as before do not induce a

weak Lefschetz element using this second l.s.o.p. Proving that the resulting quotient algebras

do have a weak Lefschetz element is more di�cult since the correspondence between basis

elements of the algebra and the lattice points of the fundamental parallelepiped is not as

clear.
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Dimension # simplices # without generic WLE

tested using second l.s.o.p

3 14 0 (0%)
4 83 0 (0%)
5 312 13 (4.2%)
6 577 9 (1.6%)

Table 4.3: Integrally closed reflexive simplices whose second choice of linear system of pa-
rameters does not induce a generic weak Lefschetz element.

4.3 Lexicographic Toric Ideals

One may also approach the unimodality of h⇤-vectors for integrally closed, reflexive simplices

by examining their toric ideals, as we did in Section 3.3. This time, however, there is no

hope for any reverse lexicographic orderings to work in full generality; if a polytope contains

at least four collinear lattice points on an edge, then some initial term of a Gröbner basis

element will not be squarefree. A more successful ordering to use is lexicographic, although

the “correct” variation is not entirely obvious.

For example, let Q = (1, 2, 9, 24, 36). By ordering the lattice points of �
Q

using the

standard lexicographic order, the reduced Gröbner basis of the toric ideal is not generated

by binomials that all have squarefree initial terms. However, ordering the lattice points in

a di↵erent way does result in such a reduced Gröbner basis. Similarly to the existence of

a weak Lefschetz element for some ideal J in the previous section, it appears that for each

integrally closed reflexive simplex, there is some lexicographic initial ideal that is squarefree.

Table 4.3 describes a sample of how many integrally closed reflexive simplices fail to

posses a regular unimodular triangulation using the standard choice of lexicographic order.

Dimension # simplices # without a regular

tested unimodular triangulation

3 14 1 (7%)
4 91 24 (26%)
5 312 84 (27%)
6 577 97 (17%)

Table 4.4: Integrally closed reflexive simplices with unimodular lexicographic triangulations.
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4.4 Applications to Other Areas

Although the code was originally developed to explore the questions asked in Chapter 2, it

was written with enough generality to be used for many other polytopes. In fact, it was

used heavily when exploring symmetric magic squares, which led to the main results of

Chapter 3. The code has already found use outside of the settings for which it was written

and is expected to continually demonstrate its use as a helpful computational tool.

In May 2014, Alexandersson made an initial preprint of [1] available. This article dis-

cusses various properties of certain Gelfand-Tsetlin polytopes, including reverse lexicographic

triangulations and partial orders on the polytopes. It originally included a conjecture that

one of these classes is integrally closed. To either disprove or gather evidence to support this

conjecture, we examined the following polytope.

Definition 4.4.1. Let Part(n, d) be the convex hull of weak integer partitions of n into d

parts. That is,

Part(n, d) := conv

(
(x1, . . . , xd

) 2 Zd

�0|xd

� x
d�1 � · · · � x1 � 0 and

dX

i=1

x
i

= n

)
.

Although Part(n, d) was computationally verified to be integrally closed for many small

values of n and d, it is not integrally closed when n = 18 and d = 9: the partition

(6, 6, 6, 6, 4, 4, 2, 1, 1) is in 2Part(18, 9), using the convex combination

(6, 6, 6, 6, 4, 4, 2, 1, 1) =
1

2
((2, 2, 2, 2, 2, 2, 2, 2, 2) + (3, 3, 3, 3, 2, 2, 2, 0, 0)

= (3, 3, 3, 3, 3, 3, 0, 0, 0) + (4, 4, 4, 4, 1, 1, 0, 0, 0)).

However, it is straightforward to check that this cannot be written as a sum of two lattice

points of Part(18, 9).

After this finding was communicated to Alexandersson, he was able to use it to construct

a counterexample of his conjecture. The article was consequently revised to explicitly include

the non-integrally closed Gelfand-Tsetlin polytope found from Part(18, 9).

Copyright c� Robert Davis, 2015.
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